1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 int iDb, /* Database the cursor belongs to, or -1 */ 245 u8 eCurType /* Type of the new cursor */ 246 ){ 247 /* Find the memory cell that will be used to store the blob of memory 248 ** required for this VdbeCursor structure. It is convenient to use a 249 ** vdbe memory cell to manage the memory allocation required for a 250 ** VdbeCursor structure for the following reasons: 251 ** 252 ** * Sometimes cursor numbers are used for a couple of different 253 ** purposes in a vdbe program. The different uses might require 254 ** different sized allocations. Memory cells provide growable 255 ** allocations. 256 ** 257 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 258 ** be freed lazily via the sqlite3_release_memory() API. This 259 ** minimizes the number of malloc calls made by the system. 260 ** 261 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 262 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 263 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 264 */ 265 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 266 267 int nByte; 268 VdbeCursor *pCx = 0; 269 nByte = 270 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 271 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 272 273 assert( iCur>=0 && iCur<p->nCursor ); 274 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 275 /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag 276 ** is clear. Otherwise, if this is an ephemeral cursor created by 277 ** OP_OpenDup, the cursor will not be closed and will still be part 278 ** of a BtShared.pCursor list. */ 279 if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0; 280 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 281 p->apCsr[iCur] = 0; 282 } 283 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 284 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 285 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 286 pCx->eCurType = eCurType; 287 pCx->iDb = iDb; 288 pCx->nField = nField; 289 pCx->aOffset = &pCx->aType[nField]; 290 if( eCurType==CURTYPE_BTREE ){ 291 pCx->uc.pCursor = (BtCursor*) 292 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 293 sqlite3BtreeCursorZero(pCx->uc.pCursor); 294 } 295 } 296 return pCx; 297 } 298 299 /* 300 ** The string in pRec is known to look like an integer and to have a 301 ** floating point value of rValue. Return true and set *piValue to the 302 ** integer value if the string is in range to be an integer. Otherwise, 303 ** return false. 304 */ 305 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 306 i64 iValue = (double)rValue; 307 if( sqlite3RealSameAsInt(rValue,iValue) ){ 308 *piValue = iValue; 309 return 1; 310 } 311 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 312 } 313 314 /* 315 ** Try to convert a value into a numeric representation if we can 316 ** do so without loss of information. In other words, if the string 317 ** looks like a number, convert it into a number. If it does not 318 ** look like a number, leave it alone. 319 ** 320 ** If the bTryForInt flag is true, then extra effort is made to give 321 ** an integer representation. Strings that look like floating point 322 ** values but which have no fractional component (example: '48.00') 323 ** will have a MEM_Int representation when bTryForInt is true. 324 ** 325 ** If bTryForInt is false, then if the input string contains a decimal 326 ** point or exponential notation, the result is only MEM_Real, even 327 ** if there is an exact integer representation of the quantity. 328 */ 329 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 330 double rValue; 331 u8 enc = pRec->enc; 332 int rc; 333 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 334 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 335 if( rc<=0 ) return; 336 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 337 pRec->flags |= MEM_Int; 338 }else{ 339 pRec->u.r = rValue; 340 pRec->flags |= MEM_Real; 341 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 342 } 343 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 344 ** string representation after computing a numeric equivalent, because the 345 ** string representation might not be the canonical representation for the 346 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 347 pRec->flags &= ~MEM_Str; 348 } 349 350 /* 351 ** Processing is determine by the affinity parameter: 352 ** 353 ** SQLITE_AFF_INTEGER: 354 ** SQLITE_AFF_REAL: 355 ** SQLITE_AFF_NUMERIC: 356 ** Try to convert pRec to an integer representation or a 357 ** floating-point representation if an integer representation 358 ** is not possible. Note that the integer representation is 359 ** always preferred, even if the affinity is REAL, because 360 ** an integer representation is more space efficient on disk. 361 ** 362 ** SQLITE_AFF_TEXT: 363 ** Convert pRec to a text representation. 364 ** 365 ** SQLITE_AFF_BLOB: 366 ** SQLITE_AFF_NONE: 367 ** No-op. pRec is unchanged. 368 */ 369 static void applyAffinity( 370 Mem *pRec, /* The value to apply affinity to */ 371 char affinity, /* The affinity to be applied */ 372 u8 enc /* Use this text encoding */ 373 ){ 374 if( affinity>=SQLITE_AFF_NUMERIC ){ 375 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 376 || affinity==SQLITE_AFF_NUMERIC ); 377 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 378 if( (pRec->flags & MEM_Real)==0 ){ 379 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 380 }else{ 381 sqlite3VdbeIntegerAffinity(pRec); 382 } 383 } 384 }else if( affinity==SQLITE_AFF_TEXT ){ 385 /* Only attempt the conversion to TEXT if there is an integer or real 386 ** representation (blob and NULL do not get converted) but no string 387 ** representation. It would be harmless to repeat the conversion if 388 ** there is already a string rep, but it is pointless to waste those 389 ** CPU cycles. */ 390 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 391 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 392 testcase( pRec->flags & MEM_Int ); 393 testcase( pRec->flags & MEM_Real ); 394 testcase( pRec->flags & MEM_IntReal ); 395 sqlite3VdbeMemStringify(pRec, enc, 1); 396 } 397 } 398 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 399 } 400 } 401 402 /* 403 ** Try to convert the type of a function argument or a result column 404 ** into a numeric representation. Use either INTEGER or REAL whichever 405 ** is appropriate. But only do the conversion if it is possible without 406 ** loss of information and return the revised type of the argument. 407 */ 408 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 409 int eType = sqlite3_value_type(pVal); 410 if( eType==SQLITE_TEXT ){ 411 Mem *pMem = (Mem*)pVal; 412 applyNumericAffinity(pMem, 0); 413 eType = sqlite3_value_type(pVal); 414 } 415 return eType; 416 } 417 418 /* 419 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 420 ** not the internal Mem* type. 421 */ 422 void sqlite3ValueApplyAffinity( 423 sqlite3_value *pVal, 424 u8 affinity, 425 u8 enc 426 ){ 427 applyAffinity((Mem *)pVal, affinity, enc); 428 } 429 430 /* 431 ** pMem currently only holds a string type (or maybe a BLOB that we can 432 ** interpret as a string if we want to). Compute its corresponding 433 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 434 ** accordingly. 435 */ 436 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 437 int rc; 438 sqlite3_int64 ix; 439 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 440 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 441 ExpandBlob(pMem); 442 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 443 if( rc<=0 ){ 444 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 445 pMem->u.i = ix; 446 return MEM_Int; 447 }else{ 448 return MEM_Real; 449 } 450 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 451 pMem->u.i = ix; 452 return MEM_Int; 453 } 454 return MEM_Real; 455 } 456 457 /* 458 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 459 ** none. 460 ** 461 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 462 ** But it does set pMem->u.r and pMem->u.i appropriately. 463 */ 464 static u16 numericType(Mem *pMem){ 465 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 466 testcase( pMem->flags & MEM_Int ); 467 testcase( pMem->flags & MEM_Real ); 468 testcase( pMem->flags & MEM_IntReal ); 469 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 470 } 471 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 472 testcase( pMem->flags & MEM_Str ); 473 testcase( pMem->flags & MEM_Blob ); 474 return computeNumericType(pMem); 475 } 476 return 0; 477 } 478 479 #ifdef SQLITE_DEBUG 480 /* 481 ** Write a nice string representation of the contents of cell pMem 482 ** into buffer zBuf, length nBuf. 483 */ 484 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 485 int f = pMem->flags; 486 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 487 if( f&MEM_Blob ){ 488 int i; 489 char c; 490 if( f & MEM_Dyn ){ 491 c = 'z'; 492 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 493 }else if( f & MEM_Static ){ 494 c = 't'; 495 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 496 }else if( f & MEM_Ephem ){ 497 c = 'e'; 498 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 499 }else{ 500 c = 's'; 501 } 502 sqlite3_str_appendf(pStr, "%cx[", c); 503 for(i=0; i<25 && i<pMem->n; i++){ 504 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 505 } 506 sqlite3_str_appendf(pStr, "|"); 507 for(i=0; i<25 && i<pMem->n; i++){ 508 char z = pMem->z[i]; 509 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 510 } 511 sqlite3_str_appendf(pStr,"]"); 512 if( f & MEM_Zero ){ 513 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 514 } 515 }else if( f & MEM_Str ){ 516 int j; 517 u8 c; 518 if( f & MEM_Dyn ){ 519 c = 'z'; 520 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 521 }else if( f & MEM_Static ){ 522 c = 't'; 523 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 524 }else if( f & MEM_Ephem ){ 525 c = 'e'; 526 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 527 }else{ 528 c = 's'; 529 } 530 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 531 for(j=0; j<25 && j<pMem->n; j++){ 532 c = pMem->z[j]; 533 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 534 } 535 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 536 } 537 } 538 #endif 539 540 #ifdef SQLITE_DEBUG 541 /* 542 ** Print the value of a register for tracing purposes: 543 */ 544 static void memTracePrint(Mem *p){ 545 if( p->flags & MEM_Undefined ){ 546 printf(" undefined"); 547 }else if( p->flags & MEM_Null ){ 548 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 549 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 550 printf(" si:%lld", p->u.i); 551 }else if( (p->flags & (MEM_IntReal))!=0 ){ 552 printf(" ir:%lld", p->u.i); 553 }else if( p->flags & MEM_Int ){ 554 printf(" i:%lld", p->u.i); 555 #ifndef SQLITE_OMIT_FLOATING_POINT 556 }else if( p->flags & MEM_Real ){ 557 printf(" r:%.17g", p->u.r); 558 #endif 559 }else if( sqlite3VdbeMemIsRowSet(p) ){ 560 printf(" (rowset)"); 561 }else{ 562 StrAccum acc; 563 char zBuf[1000]; 564 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 565 sqlite3VdbeMemPrettyPrint(p, &acc); 566 printf(" %s", sqlite3StrAccumFinish(&acc)); 567 } 568 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 569 } 570 static void registerTrace(int iReg, Mem *p){ 571 printf("R[%d] = ", iReg); 572 memTracePrint(p); 573 if( p->pScopyFrom ){ 574 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 575 } 576 printf("\n"); 577 sqlite3VdbeCheckMemInvariants(p); 578 } 579 #endif 580 581 #ifdef SQLITE_DEBUG 582 /* 583 ** Show the values of all registers in the virtual machine. Used for 584 ** interactive debugging. 585 */ 586 void sqlite3VdbeRegisterDump(Vdbe *v){ 587 int i; 588 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 589 } 590 #endif /* SQLITE_DEBUG */ 591 592 593 #ifdef SQLITE_DEBUG 594 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 595 #else 596 # define REGISTER_TRACE(R,M) 597 #endif 598 599 600 #ifdef VDBE_PROFILE 601 602 /* 603 ** hwtime.h contains inline assembler code for implementing 604 ** high-performance timing routines. 605 */ 606 #include "hwtime.h" 607 608 #endif 609 610 #ifndef NDEBUG 611 /* 612 ** This function is only called from within an assert() expression. It 613 ** checks that the sqlite3.nTransaction variable is correctly set to 614 ** the number of non-transaction savepoints currently in the 615 ** linked list starting at sqlite3.pSavepoint. 616 ** 617 ** Usage: 618 ** 619 ** assert( checkSavepointCount(db) ); 620 */ 621 static int checkSavepointCount(sqlite3 *db){ 622 int n = 0; 623 Savepoint *p; 624 for(p=db->pSavepoint; p; p=p->pNext) n++; 625 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 626 return 1; 627 } 628 #endif 629 630 /* 631 ** Return the register of pOp->p2 after first preparing it to be 632 ** overwritten with an integer value. 633 */ 634 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 635 sqlite3VdbeMemSetNull(pOut); 636 pOut->flags = MEM_Int; 637 return pOut; 638 } 639 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 640 Mem *pOut; 641 assert( pOp->p2>0 ); 642 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 643 pOut = &p->aMem[pOp->p2]; 644 memAboutToChange(p, pOut); 645 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 646 return out2PrereleaseWithClear(pOut); 647 }else{ 648 pOut->flags = MEM_Int; 649 return pOut; 650 } 651 } 652 653 654 /* 655 ** Execute as much of a VDBE program as we can. 656 ** This is the core of sqlite3_step(). 657 */ 658 int sqlite3VdbeExec( 659 Vdbe *p /* The VDBE */ 660 ){ 661 Op *aOp = p->aOp; /* Copy of p->aOp */ 662 Op *pOp = aOp; /* Current operation */ 663 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 664 Op *pOrigOp; /* Value of pOp at the top of the loop */ 665 #endif 666 #ifdef SQLITE_DEBUG 667 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 668 #endif 669 int rc = SQLITE_OK; /* Value to return */ 670 sqlite3 *db = p->db; /* The database */ 671 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 672 u8 encoding = ENC(db); /* The database encoding */ 673 int iCompare = 0; /* Result of last comparison */ 674 unsigned nVmStep = 0; /* Number of virtual machine steps */ 675 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 676 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 677 #endif 678 Mem *aMem = p->aMem; /* Copy of p->aMem */ 679 Mem *pIn1 = 0; /* 1st input operand */ 680 Mem *pIn2 = 0; /* 2nd input operand */ 681 Mem *pIn3 = 0; /* 3rd input operand */ 682 Mem *pOut = 0; /* Output operand */ 683 #ifdef VDBE_PROFILE 684 u64 start; /* CPU clock count at start of opcode */ 685 #endif 686 /*** INSERT STACK UNION HERE ***/ 687 688 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 689 sqlite3VdbeEnter(p); 690 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 691 if( db->xProgress ){ 692 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 693 assert( 0 < db->nProgressOps ); 694 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 695 }else{ 696 nProgressLimit = 0xffffffff; 697 } 698 #endif 699 if( p->rc==SQLITE_NOMEM ){ 700 /* This happens if a malloc() inside a call to sqlite3_column_text() or 701 ** sqlite3_column_text16() failed. */ 702 goto no_mem; 703 } 704 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 705 testcase( p->rc!=SQLITE_OK ); 706 p->rc = SQLITE_OK; 707 assert( p->bIsReader || p->readOnly!=0 ); 708 p->iCurrentTime = 0; 709 assert( p->explain==0 ); 710 p->pResultSet = 0; 711 db->busyHandler.nBusy = 0; 712 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 713 sqlite3VdbeIOTraceSql(p); 714 #ifdef SQLITE_DEBUG 715 sqlite3BeginBenignMalloc(); 716 if( p->pc==0 717 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 718 ){ 719 int i; 720 int once = 1; 721 sqlite3VdbePrintSql(p); 722 if( p->db->flags & SQLITE_VdbeListing ){ 723 printf("VDBE Program Listing:\n"); 724 for(i=0; i<p->nOp; i++){ 725 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 726 } 727 } 728 if( p->db->flags & SQLITE_VdbeEQP ){ 729 for(i=0; i<p->nOp; i++){ 730 if( aOp[i].opcode==OP_Explain ){ 731 if( once ) printf("VDBE Query Plan:\n"); 732 printf("%s\n", aOp[i].p4.z); 733 once = 0; 734 } 735 } 736 } 737 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 738 } 739 sqlite3EndBenignMalloc(); 740 #endif 741 for(pOp=&aOp[p->pc]; 1; pOp++){ 742 /* Errors are detected by individual opcodes, with an immediate 743 ** jumps to abort_due_to_error. */ 744 assert( rc==SQLITE_OK ); 745 746 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 747 #ifdef VDBE_PROFILE 748 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 749 #endif 750 nVmStep++; 751 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 752 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 753 #endif 754 755 /* Only allow tracing if SQLITE_DEBUG is defined. 756 */ 757 #ifdef SQLITE_DEBUG 758 if( db->flags & SQLITE_VdbeTrace ){ 759 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 760 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 761 } 762 #endif 763 764 765 /* Check to see if we need to simulate an interrupt. This only happens 766 ** if we have a special test build. 767 */ 768 #ifdef SQLITE_TEST 769 if( sqlite3_interrupt_count>0 ){ 770 sqlite3_interrupt_count--; 771 if( sqlite3_interrupt_count==0 ){ 772 sqlite3_interrupt(db); 773 } 774 } 775 #endif 776 777 /* Sanity checking on other operands */ 778 #ifdef SQLITE_DEBUG 779 { 780 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 781 if( (opProperty & OPFLG_IN1)!=0 ){ 782 assert( pOp->p1>0 ); 783 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 784 assert( memIsValid(&aMem[pOp->p1]) ); 785 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 786 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 787 } 788 if( (opProperty & OPFLG_IN2)!=0 ){ 789 assert( pOp->p2>0 ); 790 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 791 assert( memIsValid(&aMem[pOp->p2]) ); 792 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 793 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 794 } 795 if( (opProperty & OPFLG_IN3)!=0 ){ 796 assert( pOp->p3>0 ); 797 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 798 assert( memIsValid(&aMem[pOp->p3]) ); 799 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 800 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 801 } 802 if( (opProperty & OPFLG_OUT2)!=0 ){ 803 assert( pOp->p2>0 ); 804 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 805 memAboutToChange(p, &aMem[pOp->p2]); 806 } 807 if( (opProperty & OPFLG_OUT3)!=0 ){ 808 assert( pOp->p3>0 ); 809 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 810 memAboutToChange(p, &aMem[pOp->p3]); 811 } 812 } 813 #endif 814 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 815 pOrigOp = pOp; 816 #endif 817 818 switch( pOp->opcode ){ 819 820 /***************************************************************************** 821 ** What follows is a massive switch statement where each case implements a 822 ** separate instruction in the virtual machine. If we follow the usual 823 ** indentation conventions, each case should be indented by 6 spaces. But 824 ** that is a lot of wasted space on the left margin. So the code within 825 ** the switch statement will break with convention and be flush-left. Another 826 ** big comment (similar to this one) will mark the point in the code where 827 ** we transition back to normal indentation. 828 ** 829 ** The formatting of each case is important. The makefile for SQLite 830 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 831 ** file looking for lines that begin with "case OP_". The opcodes.h files 832 ** will be filled with #defines that give unique integer values to each 833 ** opcode and the opcodes.c file is filled with an array of strings where 834 ** each string is the symbolic name for the corresponding opcode. If the 835 ** case statement is followed by a comment of the form "/# same as ... #/" 836 ** that comment is used to determine the particular value of the opcode. 837 ** 838 ** Other keywords in the comment that follows each case are used to 839 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 840 ** Keywords include: in1, in2, in3, out2, out3. See 841 ** the mkopcodeh.awk script for additional information. 842 ** 843 ** Documentation about VDBE opcodes is generated by scanning this file 844 ** for lines of that contain "Opcode:". That line and all subsequent 845 ** comment lines are used in the generation of the opcode.html documentation 846 ** file. 847 ** 848 ** SUMMARY: 849 ** 850 ** Formatting is important to scripts that scan this file. 851 ** Do not deviate from the formatting style currently in use. 852 ** 853 *****************************************************************************/ 854 855 /* Opcode: Goto * P2 * * * 856 ** 857 ** An unconditional jump to address P2. 858 ** The next instruction executed will be 859 ** the one at index P2 from the beginning of 860 ** the program. 861 ** 862 ** The P1 parameter is not actually used by this opcode. However, it 863 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 864 ** that this Goto is the bottom of a loop and that the lines from P2 down 865 ** to the current line should be indented for EXPLAIN output. 866 */ 867 case OP_Goto: { /* jump */ 868 869 #ifdef SQLITE_DEBUG 870 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 871 ** means we should really jump back to the preceeding OP_ReleaseReg 872 ** instruction. */ 873 if( pOp->p5 ){ 874 assert( pOp->p2 < (int)(pOp - aOp) ); 875 assert( pOp->p2 > 1 ); 876 pOp = &aOp[pOp->p2 - 2]; 877 assert( pOp[1].opcode==OP_ReleaseReg ); 878 goto check_for_interrupt; 879 } 880 #endif 881 882 jump_to_p2_and_check_for_interrupt: 883 pOp = &aOp[pOp->p2 - 1]; 884 885 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 886 ** OP_VNext, or OP_SorterNext) all jump here upon 887 ** completion. Check to see if sqlite3_interrupt() has been called 888 ** or if the progress callback needs to be invoked. 889 ** 890 ** This code uses unstructured "goto" statements and does not look clean. 891 ** But that is not due to sloppy coding habits. The code is written this 892 ** way for performance, to avoid having to run the interrupt and progress 893 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 894 ** faster according to "valgrind --tool=cachegrind" */ 895 check_for_interrupt: 896 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 897 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 898 /* Call the progress callback if it is configured and the required number 899 ** of VDBE ops have been executed (either since this invocation of 900 ** sqlite3VdbeExec() or since last time the progress callback was called). 901 ** If the progress callback returns non-zero, exit the virtual machine with 902 ** a return code SQLITE_ABORT. 903 */ 904 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 905 assert( db->nProgressOps!=0 ); 906 nProgressLimit += db->nProgressOps; 907 if( db->xProgress(db->pProgressArg) ){ 908 nProgressLimit = 0xffffffff; 909 rc = SQLITE_INTERRUPT; 910 goto abort_due_to_error; 911 } 912 } 913 #endif 914 915 break; 916 } 917 918 /* Opcode: Gosub P1 P2 * * * 919 ** 920 ** Write the current address onto register P1 921 ** and then jump to address P2. 922 */ 923 case OP_Gosub: { /* jump */ 924 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 925 pIn1 = &aMem[pOp->p1]; 926 assert( VdbeMemDynamic(pIn1)==0 ); 927 memAboutToChange(p, pIn1); 928 pIn1->flags = MEM_Int; 929 pIn1->u.i = (int)(pOp-aOp); 930 REGISTER_TRACE(pOp->p1, pIn1); 931 932 /* Most jump operations do a goto to this spot in order to update 933 ** the pOp pointer. */ 934 jump_to_p2: 935 pOp = &aOp[pOp->p2 - 1]; 936 break; 937 } 938 939 /* Opcode: Return P1 * * * * 940 ** 941 ** Jump to the next instruction after the address in register P1. After 942 ** the jump, register P1 becomes undefined. 943 */ 944 case OP_Return: { /* in1 */ 945 pIn1 = &aMem[pOp->p1]; 946 assert( pIn1->flags==MEM_Int ); 947 pOp = &aOp[pIn1->u.i]; 948 pIn1->flags = MEM_Undefined; 949 break; 950 } 951 952 /* Opcode: InitCoroutine P1 P2 P3 * * 953 ** 954 ** Set up register P1 so that it will Yield to the coroutine 955 ** located at address P3. 956 ** 957 ** If P2!=0 then the coroutine implementation immediately follows 958 ** this opcode. So jump over the coroutine implementation to 959 ** address P2. 960 ** 961 ** See also: EndCoroutine 962 */ 963 case OP_InitCoroutine: { /* jump */ 964 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 965 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 966 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 967 pOut = &aMem[pOp->p1]; 968 assert( !VdbeMemDynamic(pOut) ); 969 pOut->u.i = pOp->p3 - 1; 970 pOut->flags = MEM_Int; 971 if( pOp->p2 ) goto jump_to_p2; 972 break; 973 } 974 975 /* Opcode: EndCoroutine P1 * * * * 976 ** 977 ** The instruction at the address in register P1 is a Yield. 978 ** Jump to the P2 parameter of that Yield. 979 ** After the jump, register P1 becomes undefined. 980 ** 981 ** See also: InitCoroutine 982 */ 983 case OP_EndCoroutine: { /* in1 */ 984 VdbeOp *pCaller; 985 pIn1 = &aMem[pOp->p1]; 986 assert( pIn1->flags==MEM_Int ); 987 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 988 pCaller = &aOp[pIn1->u.i]; 989 assert( pCaller->opcode==OP_Yield ); 990 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 991 pOp = &aOp[pCaller->p2 - 1]; 992 pIn1->flags = MEM_Undefined; 993 break; 994 } 995 996 /* Opcode: Yield P1 P2 * * * 997 ** 998 ** Swap the program counter with the value in register P1. This 999 ** has the effect of yielding to a coroutine. 1000 ** 1001 ** If the coroutine that is launched by this instruction ends with 1002 ** Yield or Return then continue to the next instruction. But if 1003 ** the coroutine launched by this instruction ends with 1004 ** EndCoroutine, then jump to P2 rather than continuing with the 1005 ** next instruction. 1006 ** 1007 ** See also: InitCoroutine 1008 */ 1009 case OP_Yield: { /* in1, jump */ 1010 int pcDest; 1011 pIn1 = &aMem[pOp->p1]; 1012 assert( VdbeMemDynamic(pIn1)==0 ); 1013 pIn1->flags = MEM_Int; 1014 pcDest = (int)pIn1->u.i; 1015 pIn1->u.i = (int)(pOp - aOp); 1016 REGISTER_TRACE(pOp->p1, pIn1); 1017 pOp = &aOp[pcDest]; 1018 break; 1019 } 1020 1021 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1022 ** Synopsis: if r[P3]=null halt 1023 ** 1024 ** Check the value in register P3. If it is NULL then Halt using 1025 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1026 ** value in register P3 is not NULL, then this routine is a no-op. 1027 ** The P5 parameter should be 1. 1028 */ 1029 case OP_HaltIfNull: { /* in3 */ 1030 pIn3 = &aMem[pOp->p3]; 1031 #ifdef SQLITE_DEBUG 1032 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1033 #endif 1034 if( (pIn3->flags & MEM_Null)==0 ) break; 1035 /* Fall through into OP_Halt */ 1036 } 1037 1038 /* Opcode: Halt P1 P2 * P4 P5 1039 ** 1040 ** Exit immediately. All open cursors, etc are closed 1041 ** automatically. 1042 ** 1043 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1044 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1045 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1046 ** whether or not to rollback the current transaction. Do not rollback 1047 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1048 ** then back out all changes that have occurred during this execution of the 1049 ** VDBE, but do not rollback the transaction. 1050 ** 1051 ** If P4 is not null then it is an error message string. 1052 ** 1053 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1054 ** 1055 ** 0: (no change) 1056 ** 1: NOT NULL contraint failed: P4 1057 ** 2: UNIQUE constraint failed: P4 1058 ** 3: CHECK constraint failed: P4 1059 ** 4: FOREIGN KEY constraint failed: P4 1060 ** 1061 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1062 ** omitted. 1063 ** 1064 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1065 ** every program. So a jump past the last instruction of the program 1066 ** is the same as executing Halt. 1067 */ 1068 case OP_Halt: { 1069 VdbeFrame *pFrame; 1070 int pcx; 1071 1072 pcx = (int)(pOp - aOp); 1073 #ifdef SQLITE_DEBUG 1074 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1075 #endif 1076 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1077 /* Halt the sub-program. Return control to the parent frame. */ 1078 pFrame = p->pFrame; 1079 p->pFrame = pFrame->pParent; 1080 p->nFrame--; 1081 sqlite3VdbeSetChanges(db, p->nChange); 1082 pcx = sqlite3VdbeFrameRestore(pFrame); 1083 if( pOp->p2==OE_Ignore ){ 1084 /* Instruction pcx is the OP_Program that invoked the sub-program 1085 ** currently being halted. If the p2 instruction of this OP_Halt 1086 ** instruction is set to OE_Ignore, then the sub-program is throwing 1087 ** an IGNORE exception. In this case jump to the address specified 1088 ** as the p2 of the calling OP_Program. */ 1089 pcx = p->aOp[pcx].p2-1; 1090 } 1091 aOp = p->aOp; 1092 aMem = p->aMem; 1093 pOp = &aOp[pcx]; 1094 break; 1095 } 1096 p->rc = pOp->p1; 1097 p->errorAction = (u8)pOp->p2; 1098 p->pc = pcx; 1099 assert( pOp->p5<=4 ); 1100 if( p->rc ){ 1101 if( pOp->p5 ){ 1102 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1103 "FOREIGN KEY" }; 1104 testcase( pOp->p5==1 ); 1105 testcase( pOp->p5==2 ); 1106 testcase( pOp->p5==3 ); 1107 testcase( pOp->p5==4 ); 1108 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1109 if( pOp->p4.z ){ 1110 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1111 } 1112 }else{ 1113 sqlite3VdbeError(p, "%s", pOp->p4.z); 1114 } 1115 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1116 } 1117 rc = sqlite3VdbeHalt(p); 1118 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1119 if( rc==SQLITE_BUSY ){ 1120 p->rc = SQLITE_BUSY; 1121 }else{ 1122 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1123 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1124 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1125 } 1126 goto vdbe_return; 1127 } 1128 1129 /* Opcode: Integer P1 P2 * * * 1130 ** Synopsis: r[P2]=P1 1131 ** 1132 ** The 32-bit integer value P1 is written into register P2. 1133 */ 1134 case OP_Integer: { /* out2 */ 1135 pOut = out2Prerelease(p, pOp); 1136 pOut->u.i = pOp->p1; 1137 break; 1138 } 1139 1140 /* Opcode: Int64 * P2 * P4 * 1141 ** Synopsis: r[P2]=P4 1142 ** 1143 ** P4 is a pointer to a 64-bit integer value. 1144 ** Write that value into register P2. 1145 */ 1146 case OP_Int64: { /* out2 */ 1147 pOut = out2Prerelease(p, pOp); 1148 assert( pOp->p4.pI64!=0 ); 1149 pOut->u.i = *pOp->p4.pI64; 1150 break; 1151 } 1152 1153 #ifndef SQLITE_OMIT_FLOATING_POINT 1154 /* Opcode: Real * P2 * P4 * 1155 ** Synopsis: r[P2]=P4 1156 ** 1157 ** P4 is a pointer to a 64-bit floating point value. 1158 ** Write that value into register P2. 1159 */ 1160 case OP_Real: { /* same as TK_FLOAT, out2 */ 1161 pOut = out2Prerelease(p, pOp); 1162 pOut->flags = MEM_Real; 1163 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1164 pOut->u.r = *pOp->p4.pReal; 1165 break; 1166 } 1167 #endif 1168 1169 /* Opcode: String8 * P2 * P4 * 1170 ** Synopsis: r[P2]='P4' 1171 ** 1172 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1173 ** into a String opcode before it is executed for the first time. During 1174 ** this transformation, the length of string P4 is computed and stored 1175 ** as the P1 parameter. 1176 */ 1177 case OP_String8: { /* same as TK_STRING, out2 */ 1178 assert( pOp->p4.z!=0 ); 1179 pOut = out2Prerelease(p, pOp); 1180 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1181 1182 #ifndef SQLITE_OMIT_UTF16 1183 if( encoding!=SQLITE_UTF8 ){ 1184 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1185 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1186 if( rc ) goto too_big; 1187 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1188 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1189 assert( VdbeMemDynamic(pOut)==0 ); 1190 pOut->szMalloc = 0; 1191 pOut->flags |= MEM_Static; 1192 if( pOp->p4type==P4_DYNAMIC ){ 1193 sqlite3DbFree(db, pOp->p4.z); 1194 } 1195 pOp->p4type = P4_DYNAMIC; 1196 pOp->p4.z = pOut->z; 1197 pOp->p1 = pOut->n; 1198 } 1199 #endif 1200 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1201 goto too_big; 1202 } 1203 pOp->opcode = OP_String; 1204 assert( rc==SQLITE_OK ); 1205 /* Fall through to the next case, OP_String */ 1206 } 1207 1208 /* Opcode: String P1 P2 P3 P4 P5 1209 ** Synopsis: r[P2]='P4' (len=P1) 1210 ** 1211 ** The string value P4 of length P1 (bytes) is stored in register P2. 1212 ** 1213 ** If P3 is not zero and the content of register P3 is equal to P5, then 1214 ** the datatype of the register P2 is converted to BLOB. The content is 1215 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1216 ** of a string, as if it had been CAST. In other words: 1217 ** 1218 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1219 */ 1220 case OP_String: { /* out2 */ 1221 assert( pOp->p4.z!=0 ); 1222 pOut = out2Prerelease(p, pOp); 1223 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1224 pOut->z = pOp->p4.z; 1225 pOut->n = pOp->p1; 1226 pOut->enc = encoding; 1227 UPDATE_MAX_BLOBSIZE(pOut); 1228 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1229 if( pOp->p3>0 ){ 1230 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1231 pIn3 = &aMem[pOp->p3]; 1232 assert( pIn3->flags & MEM_Int ); 1233 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1234 } 1235 #endif 1236 break; 1237 } 1238 1239 /* Opcode: Null P1 P2 P3 * * 1240 ** Synopsis: r[P2..P3]=NULL 1241 ** 1242 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1243 ** NULL into register P3 and every register in between P2 and P3. If P3 1244 ** is less than P2 (typically P3 is zero) then only register P2 is 1245 ** set to NULL. 1246 ** 1247 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1248 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1249 ** OP_Ne or OP_Eq. 1250 */ 1251 case OP_Null: { /* out2 */ 1252 int cnt; 1253 u16 nullFlag; 1254 pOut = out2Prerelease(p, pOp); 1255 cnt = pOp->p3-pOp->p2; 1256 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1257 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1258 pOut->n = 0; 1259 #ifdef SQLITE_DEBUG 1260 pOut->uTemp = 0; 1261 #endif 1262 while( cnt>0 ){ 1263 pOut++; 1264 memAboutToChange(p, pOut); 1265 sqlite3VdbeMemSetNull(pOut); 1266 pOut->flags = nullFlag; 1267 pOut->n = 0; 1268 cnt--; 1269 } 1270 break; 1271 } 1272 1273 /* Opcode: SoftNull P1 * * * * 1274 ** Synopsis: r[P1]=NULL 1275 ** 1276 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1277 ** instruction, but do not free any string or blob memory associated with 1278 ** the register, so that if the value was a string or blob that was 1279 ** previously copied using OP_SCopy, the copies will continue to be valid. 1280 */ 1281 case OP_SoftNull: { 1282 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1283 pOut = &aMem[pOp->p1]; 1284 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1285 break; 1286 } 1287 1288 /* Opcode: Blob P1 P2 * P4 * 1289 ** Synopsis: r[P2]=P4 (len=P1) 1290 ** 1291 ** P4 points to a blob of data P1 bytes long. Store this 1292 ** blob in register P2. 1293 */ 1294 case OP_Blob: { /* out2 */ 1295 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1296 pOut = out2Prerelease(p, pOp); 1297 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1298 pOut->enc = encoding; 1299 UPDATE_MAX_BLOBSIZE(pOut); 1300 break; 1301 } 1302 1303 /* Opcode: Variable P1 P2 * P4 * 1304 ** Synopsis: r[P2]=parameter(P1,P4) 1305 ** 1306 ** Transfer the values of bound parameter P1 into register P2 1307 ** 1308 ** If the parameter is named, then its name appears in P4. 1309 ** The P4 value is used by sqlite3_bind_parameter_name(). 1310 */ 1311 case OP_Variable: { /* out2 */ 1312 Mem *pVar; /* Value being transferred */ 1313 1314 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1315 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1316 pVar = &p->aVar[pOp->p1 - 1]; 1317 if( sqlite3VdbeMemTooBig(pVar) ){ 1318 goto too_big; 1319 } 1320 pOut = &aMem[pOp->p2]; 1321 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1322 memcpy(pOut, pVar, MEMCELLSIZE); 1323 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1324 pOut->flags |= MEM_Static|MEM_FromBind; 1325 UPDATE_MAX_BLOBSIZE(pOut); 1326 break; 1327 } 1328 1329 /* Opcode: Move P1 P2 P3 * * 1330 ** Synopsis: r[P2@P3]=r[P1@P3] 1331 ** 1332 ** Move the P3 values in register P1..P1+P3-1 over into 1333 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1334 ** left holding a NULL. It is an error for register ranges 1335 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1336 ** for P3 to be less than 1. 1337 */ 1338 case OP_Move: { 1339 int n; /* Number of registers left to copy */ 1340 int p1; /* Register to copy from */ 1341 int p2; /* Register to copy to */ 1342 1343 n = pOp->p3; 1344 p1 = pOp->p1; 1345 p2 = pOp->p2; 1346 assert( n>0 && p1>0 && p2>0 ); 1347 assert( p1+n<=p2 || p2+n<=p1 ); 1348 1349 pIn1 = &aMem[p1]; 1350 pOut = &aMem[p2]; 1351 do{ 1352 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1353 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1354 assert( memIsValid(pIn1) ); 1355 memAboutToChange(p, pOut); 1356 sqlite3VdbeMemMove(pOut, pIn1); 1357 #ifdef SQLITE_DEBUG 1358 pIn1->pScopyFrom = 0; 1359 { int i; 1360 for(i=1; i<p->nMem; i++){ 1361 if( aMem[i].pScopyFrom==pIn1 ){ 1362 aMem[i].pScopyFrom = pOut; 1363 } 1364 } 1365 } 1366 #endif 1367 Deephemeralize(pOut); 1368 REGISTER_TRACE(p2++, pOut); 1369 pIn1++; 1370 pOut++; 1371 }while( --n ); 1372 break; 1373 } 1374 1375 /* Opcode: Copy P1 P2 P3 * * 1376 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1377 ** 1378 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1379 ** 1380 ** This instruction makes a deep copy of the value. A duplicate 1381 ** is made of any string or blob constant. See also OP_SCopy. 1382 */ 1383 case OP_Copy: { 1384 int n; 1385 1386 n = pOp->p3; 1387 pIn1 = &aMem[pOp->p1]; 1388 pOut = &aMem[pOp->p2]; 1389 assert( pOut!=pIn1 ); 1390 while( 1 ){ 1391 memAboutToChange(p, pOut); 1392 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1393 Deephemeralize(pOut); 1394 #ifdef SQLITE_DEBUG 1395 pOut->pScopyFrom = 0; 1396 #endif 1397 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1398 if( (n--)==0 ) break; 1399 pOut++; 1400 pIn1++; 1401 } 1402 break; 1403 } 1404 1405 /* Opcode: SCopy P1 P2 * * * 1406 ** Synopsis: r[P2]=r[P1] 1407 ** 1408 ** Make a shallow copy of register P1 into register P2. 1409 ** 1410 ** This instruction makes a shallow copy of the value. If the value 1411 ** is a string or blob, then the copy is only a pointer to the 1412 ** original and hence if the original changes so will the copy. 1413 ** Worse, if the original is deallocated, the copy becomes invalid. 1414 ** Thus the program must guarantee that the original will not change 1415 ** during the lifetime of the copy. Use OP_Copy to make a complete 1416 ** copy. 1417 */ 1418 case OP_SCopy: { /* out2 */ 1419 pIn1 = &aMem[pOp->p1]; 1420 pOut = &aMem[pOp->p2]; 1421 assert( pOut!=pIn1 ); 1422 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1423 #ifdef SQLITE_DEBUG 1424 pOut->pScopyFrom = pIn1; 1425 pOut->mScopyFlags = pIn1->flags; 1426 #endif 1427 break; 1428 } 1429 1430 /* Opcode: IntCopy P1 P2 * * * 1431 ** Synopsis: r[P2]=r[P1] 1432 ** 1433 ** Transfer the integer value held in register P1 into register P2. 1434 ** 1435 ** This is an optimized version of SCopy that works only for integer 1436 ** values. 1437 */ 1438 case OP_IntCopy: { /* out2 */ 1439 pIn1 = &aMem[pOp->p1]; 1440 assert( (pIn1->flags & MEM_Int)!=0 ); 1441 pOut = &aMem[pOp->p2]; 1442 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1443 break; 1444 } 1445 1446 /* Opcode: ResultRow P1 P2 * * * 1447 ** Synopsis: output=r[P1@P2] 1448 ** 1449 ** The registers P1 through P1+P2-1 contain a single row of 1450 ** results. This opcode causes the sqlite3_step() call to terminate 1451 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1452 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1453 ** the result row. 1454 */ 1455 case OP_ResultRow: { 1456 Mem *pMem; 1457 int i; 1458 assert( p->nResColumn==pOp->p2 ); 1459 assert( pOp->p1>0 ); 1460 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1461 1462 /* If this statement has violated immediate foreign key constraints, do 1463 ** not return the number of rows modified. And do not RELEASE the statement 1464 ** transaction. It needs to be rolled back. */ 1465 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1466 assert( db->flags&SQLITE_CountRows ); 1467 assert( p->usesStmtJournal ); 1468 goto abort_due_to_error; 1469 } 1470 1471 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1472 ** DML statements invoke this opcode to return the number of rows 1473 ** modified to the user. This is the only way that a VM that 1474 ** opens a statement transaction may invoke this opcode. 1475 ** 1476 ** In case this is such a statement, close any statement transaction 1477 ** opened by this VM before returning control to the user. This is to 1478 ** ensure that statement-transactions are always nested, not overlapping. 1479 ** If the open statement-transaction is not closed here, then the user 1480 ** may step another VM that opens its own statement transaction. This 1481 ** may lead to overlapping statement transactions. 1482 ** 1483 ** The statement transaction is never a top-level transaction. Hence 1484 ** the RELEASE call below can never fail. 1485 */ 1486 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1487 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1488 assert( rc==SQLITE_OK ); 1489 1490 /* Invalidate all ephemeral cursor row caches */ 1491 p->cacheCtr = (p->cacheCtr + 2)|1; 1492 1493 /* Make sure the results of the current row are \000 terminated 1494 ** and have an assigned type. The results are de-ephemeralized as 1495 ** a side effect. 1496 */ 1497 pMem = p->pResultSet = &aMem[pOp->p1]; 1498 for(i=0; i<pOp->p2; i++){ 1499 assert( memIsValid(&pMem[i]) ); 1500 Deephemeralize(&pMem[i]); 1501 assert( (pMem[i].flags & MEM_Ephem)==0 1502 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1503 sqlite3VdbeMemNulTerminate(&pMem[i]); 1504 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1505 #ifdef SQLITE_DEBUG 1506 /* The registers in the result will not be used again when the 1507 ** prepared statement restarts. This is because sqlite3_column() 1508 ** APIs might have caused type conversions of made other changes to 1509 ** the register values. Therefore, we can go ahead and break any 1510 ** OP_SCopy dependencies. */ 1511 pMem[i].pScopyFrom = 0; 1512 #endif 1513 } 1514 if( db->mallocFailed ) goto no_mem; 1515 1516 if( db->mTrace & SQLITE_TRACE_ROW ){ 1517 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1518 } 1519 1520 1521 /* Return SQLITE_ROW 1522 */ 1523 p->pc = (int)(pOp - aOp) + 1; 1524 rc = SQLITE_ROW; 1525 goto vdbe_return; 1526 } 1527 1528 /* Opcode: Concat P1 P2 P3 * * 1529 ** Synopsis: r[P3]=r[P2]+r[P1] 1530 ** 1531 ** Add the text in register P1 onto the end of the text in 1532 ** register P2 and store the result in register P3. 1533 ** If either the P1 or P2 text are NULL then store NULL in P3. 1534 ** 1535 ** P3 = P2 || P1 1536 ** 1537 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1538 ** if P3 is the same register as P2, the implementation is able 1539 ** to avoid a memcpy(). 1540 */ 1541 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1542 i64 nByte; /* Total size of the output string or blob */ 1543 u16 flags1; /* Initial flags for P1 */ 1544 u16 flags2; /* Initial flags for P2 */ 1545 1546 pIn1 = &aMem[pOp->p1]; 1547 pIn2 = &aMem[pOp->p2]; 1548 pOut = &aMem[pOp->p3]; 1549 testcase( pOut==pIn2 ); 1550 assert( pIn1!=pOut ); 1551 flags1 = pIn1->flags; 1552 testcase( flags1 & MEM_Null ); 1553 testcase( pIn2->flags & MEM_Null ); 1554 if( (flags1 | pIn2->flags) & MEM_Null ){ 1555 sqlite3VdbeMemSetNull(pOut); 1556 break; 1557 } 1558 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1559 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1560 flags1 = pIn1->flags & ~MEM_Str; 1561 }else if( (flags1 & MEM_Zero)!=0 ){ 1562 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1563 flags1 = pIn1->flags & ~MEM_Str; 1564 } 1565 flags2 = pIn2->flags; 1566 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1567 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1568 flags2 = pIn2->flags & ~MEM_Str; 1569 }else if( (flags2 & MEM_Zero)!=0 ){ 1570 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1571 flags2 = pIn2->flags & ~MEM_Str; 1572 } 1573 nByte = pIn1->n + pIn2->n; 1574 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1575 goto too_big; 1576 } 1577 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1578 goto no_mem; 1579 } 1580 MemSetTypeFlag(pOut, MEM_Str); 1581 if( pOut!=pIn2 ){ 1582 memcpy(pOut->z, pIn2->z, pIn2->n); 1583 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1584 pIn2->flags = flags2; 1585 } 1586 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1587 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1588 pIn1->flags = flags1; 1589 pOut->z[nByte]=0; 1590 pOut->z[nByte+1] = 0; 1591 pOut->z[nByte+2] = 0; 1592 pOut->flags |= MEM_Term; 1593 pOut->n = (int)nByte; 1594 pOut->enc = encoding; 1595 UPDATE_MAX_BLOBSIZE(pOut); 1596 break; 1597 } 1598 1599 /* Opcode: Add P1 P2 P3 * * 1600 ** Synopsis: r[P3]=r[P1]+r[P2] 1601 ** 1602 ** Add the value in register P1 to the value in register P2 1603 ** and store the result in register P3. 1604 ** If either input is NULL, the result is NULL. 1605 */ 1606 /* Opcode: Multiply P1 P2 P3 * * 1607 ** Synopsis: r[P3]=r[P1]*r[P2] 1608 ** 1609 ** 1610 ** Multiply the value in register P1 by the value in register P2 1611 ** and store the result in register P3. 1612 ** If either input is NULL, the result is NULL. 1613 */ 1614 /* Opcode: Subtract P1 P2 P3 * * 1615 ** Synopsis: r[P3]=r[P2]-r[P1] 1616 ** 1617 ** Subtract the value in register P1 from the value in register P2 1618 ** and store the result in register P3. 1619 ** If either input is NULL, the result is NULL. 1620 */ 1621 /* Opcode: Divide P1 P2 P3 * * 1622 ** Synopsis: r[P3]=r[P2]/r[P1] 1623 ** 1624 ** Divide the value in register P1 by the value in register P2 1625 ** and store the result in register P3 (P3=P2/P1). If the value in 1626 ** register P1 is zero, then the result is NULL. If either input is 1627 ** NULL, the result is NULL. 1628 */ 1629 /* Opcode: Remainder P1 P2 P3 * * 1630 ** Synopsis: r[P3]=r[P2]%r[P1] 1631 ** 1632 ** Compute the remainder after integer register P2 is divided by 1633 ** register P1 and store the result in register P3. 1634 ** If the value in register P1 is zero the result is NULL. 1635 ** If either operand is NULL, the result is NULL. 1636 */ 1637 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1638 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1639 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1640 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1641 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1642 u16 flags; /* Combined MEM_* flags from both inputs */ 1643 u16 type1; /* Numeric type of left operand */ 1644 u16 type2; /* Numeric type of right operand */ 1645 i64 iA; /* Integer value of left operand */ 1646 i64 iB; /* Integer value of right operand */ 1647 double rA; /* Real value of left operand */ 1648 double rB; /* Real value of right operand */ 1649 1650 pIn1 = &aMem[pOp->p1]; 1651 type1 = numericType(pIn1); 1652 pIn2 = &aMem[pOp->p2]; 1653 type2 = numericType(pIn2); 1654 pOut = &aMem[pOp->p3]; 1655 flags = pIn1->flags | pIn2->flags; 1656 if( (type1 & type2 & MEM_Int)!=0 ){ 1657 iA = pIn1->u.i; 1658 iB = pIn2->u.i; 1659 switch( pOp->opcode ){ 1660 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1661 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1662 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1663 case OP_Divide: { 1664 if( iA==0 ) goto arithmetic_result_is_null; 1665 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1666 iB /= iA; 1667 break; 1668 } 1669 default: { 1670 if( iA==0 ) goto arithmetic_result_is_null; 1671 if( iA==-1 ) iA = 1; 1672 iB %= iA; 1673 break; 1674 } 1675 } 1676 pOut->u.i = iB; 1677 MemSetTypeFlag(pOut, MEM_Int); 1678 }else if( (flags & MEM_Null)!=0 ){ 1679 goto arithmetic_result_is_null; 1680 }else{ 1681 fp_math: 1682 rA = sqlite3VdbeRealValue(pIn1); 1683 rB = sqlite3VdbeRealValue(pIn2); 1684 switch( pOp->opcode ){ 1685 case OP_Add: rB += rA; break; 1686 case OP_Subtract: rB -= rA; break; 1687 case OP_Multiply: rB *= rA; break; 1688 case OP_Divide: { 1689 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1690 if( rA==(double)0 ) goto arithmetic_result_is_null; 1691 rB /= rA; 1692 break; 1693 } 1694 default: { 1695 iA = sqlite3VdbeIntValue(pIn1); 1696 iB = sqlite3VdbeIntValue(pIn2); 1697 if( iA==0 ) goto arithmetic_result_is_null; 1698 if( iA==-1 ) iA = 1; 1699 rB = (double)(iB % iA); 1700 break; 1701 } 1702 } 1703 #ifdef SQLITE_OMIT_FLOATING_POINT 1704 pOut->u.i = rB; 1705 MemSetTypeFlag(pOut, MEM_Int); 1706 #else 1707 if( sqlite3IsNaN(rB) ){ 1708 goto arithmetic_result_is_null; 1709 } 1710 pOut->u.r = rB; 1711 MemSetTypeFlag(pOut, MEM_Real); 1712 #endif 1713 } 1714 break; 1715 1716 arithmetic_result_is_null: 1717 sqlite3VdbeMemSetNull(pOut); 1718 break; 1719 } 1720 1721 /* Opcode: CollSeq P1 * * P4 1722 ** 1723 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1724 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1725 ** be returned. This is used by the built-in min(), max() and nullif() 1726 ** functions. 1727 ** 1728 ** If P1 is not zero, then it is a register that a subsequent min() or 1729 ** max() aggregate will set to 1 if the current row is not the minimum or 1730 ** maximum. The P1 register is initialized to 0 by this instruction. 1731 ** 1732 ** The interface used by the implementation of the aforementioned functions 1733 ** to retrieve the collation sequence set by this opcode is not available 1734 ** publicly. Only built-in functions have access to this feature. 1735 */ 1736 case OP_CollSeq: { 1737 assert( pOp->p4type==P4_COLLSEQ ); 1738 if( pOp->p1 ){ 1739 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1740 } 1741 break; 1742 } 1743 1744 /* Opcode: BitAnd P1 P2 P3 * * 1745 ** Synopsis: r[P3]=r[P1]&r[P2] 1746 ** 1747 ** Take the bit-wise AND of the values in register P1 and P2 and 1748 ** store the result in register P3. 1749 ** If either input is NULL, the result is NULL. 1750 */ 1751 /* Opcode: BitOr P1 P2 P3 * * 1752 ** Synopsis: r[P3]=r[P1]|r[P2] 1753 ** 1754 ** Take the bit-wise OR of the values in register P1 and P2 and 1755 ** store the result in register P3. 1756 ** If either input is NULL, the result is NULL. 1757 */ 1758 /* Opcode: ShiftLeft P1 P2 P3 * * 1759 ** Synopsis: r[P3]=r[P2]<<r[P1] 1760 ** 1761 ** Shift the integer value in register P2 to the left by the 1762 ** number of bits specified by the integer in register P1. 1763 ** Store the result in register P3. 1764 ** If either input is NULL, the result is NULL. 1765 */ 1766 /* Opcode: ShiftRight P1 P2 P3 * * 1767 ** Synopsis: r[P3]=r[P2]>>r[P1] 1768 ** 1769 ** Shift the integer value in register P2 to the right by the 1770 ** number of bits specified by the integer in register P1. 1771 ** Store the result in register P3. 1772 ** If either input is NULL, the result is NULL. 1773 */ 1774 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1775 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1776 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1777 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1778 i64 iA; 1779 u64 uA; 1780 i64 iB; 1781 u8 op; 1782 1783 pIn1 = &aMem[pOp->p1]; 1784 pIn2 = &aMem[pOp->p2]; 1785 pOut = &aMem[pOp->p3]; 1786 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1787 sqlite3VdbeMemSetNull(pOut); 1788 break; 1789 } 1790 iA = sqlite3VdbeIntValue(pIn2); 1791 iB = sqlite3VdbeIntValue(pIn1); 1792 op = pOp->opcode; 1793 if( op==OP_BitAnd ){ 1794 iA &= iB; 1795 }else if( op==OP_BitOr ){ 1796 iA |= iB; 1797 }else if( iB!=0 ){ 1798 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1799 1800 /* If shifting by a negative amount, shift in the other direction */ 1801 if( iB<0 ){ 1802 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1803 op = 2*OP_ShiftLeft + 1 - op; 1804 iB = iB>(-64) ? -iB : 64; 1805 } 1806 1807 if( iB>=64 ){ 1808 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1809 }else{ 1810 memcpy(&uA, &iA, sizeof(uA)); 1811 if( op==OP_ShiftLeft ){ 1812 uA <<= iB; 1813 }else{ 1814 uA >>= iB; 1815 /* Sign-extend on a right shift of a negative number */ 1816 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1817 } 1818 memcpy(&iA, &uA, sizeof(iA)); 1819 } 1820 } 1821 pOut->u.i = iA; 1822 MemSetTypeFlag(pOut, MEM_Int); 1823 break; 1824 } 1825 1826 /* Opcode: AddImm P1 P2 * * * 1827 ** Synopsis: r[P1]=r[P1]+P2 1828 ** 1829 ** Add the constant P2 to the value in register P1. 1830 ** The result is always an integer. 1831 ** 1832 ** To force any register to be an integer, just add 0. 1833 */ 1834 case OP_AddImm: { /* in1 */ 1835 pIn1 = &aMem[pOp->p1]; 1836 memAboutToChange(p, pIn1); 1837 sqlite3VdbeMemIntegerify(pIn1); 1838 pIn1->u.i += pOp->p2; 1839 break; 1840 } 1841 1842 /* Opcode: MustBeInt P1 P2 * * * 1843 ** 1844 ** Force the value in register P1 to be an integer. If the value 1845 ** in P1 is not an integer and cannot be converted into an integer 1846 ** without data loss, then jump immediately to P2, or if P2==0 1847 ** raise an SQLITE_MISMATCH exception. 1848 */ 1849 case OP_MustBeInt: { /* jump, in1 */ 1850 pIn1 = &aMem[pOp->p1]; 1851 if( (pIn1->flags & MEM_Int)==0 ){ 1852 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1853 if( (pIn1->flags & MEM_Int)==0 ){ 1854 VdbeBranchTaken(1, 2); 1855 if( pOp->p2==0 ){ 1856 rc = SQLITE_MISMATCH; 1857 goto abort_due_to_error; 1858 }else{ 1859 goto jump_to_p2; 1860 } 1861 } 1862 } 1863 VdbeBranchTaken(0, 2); 1864 MemSetTypeFlag(pIn1, MEM_Int); 1865 break; 1866 } 1867 1868 #ifndef SQLITE_OMIT_FLOATING_POINT 1869 /* Opcode: RealAffinity P1 * * * * 1870 ** 1871 ** If register P1 holds an integer convert it to a real value. 1872 ** 1873 ** This opcode is used when extracting information from a column that 1874 ** has REAL affinity. Such column values may still be stored as 1875 ** integers, for space efficiency, but after extraction we want them 1876 ** to have only a real value. 1877 */ 1878 case OP_RealAffinity: { /* in1 */ 1879 pIn1 = &aMem[pOp->p1]; 1880 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1881 testcase( pIn1->flags & MEM_Int ); 1882 testcase( pIn1->flags & MEM_IntReal ); 1883 sqlite3VdbeMemRealify(pIn1); 1884 REGISTER_TRACE(pOp->p1, pIn1); 1885 } 1886 break; 1887 } 1888 #endif 1889 1890 #ifndef SQLITE_OMIT_CAST 1891 /* Opcode: Cast P1 P2 * * * 1892 ** Synopsis: affinity(r[P1]) 1893 ** 1894 ** Force the value in register P1 to be the type defined by P2. 1895 ** 1896 ** <ul> 1897 ** <li> P2=='A' → BLOB 1898 ** <li> P2=='B' → TEXT 1899 ** <li> P2=='C' → NUMERIC 1900 ** <li> P2=='D' → INTEGER 1901 ** <li> P2=='E' → REAL 1902 ** </ul> 1903 ** 1904 ** A NULL value is not changed by this routine. It remains NULL. 1905 */ 1906 case OP_Cast: { /* in1 */ 1907 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1908 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1909 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1910 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1911 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1912 testcase( pOp->p2==SQLITE_AFF_REAL ); 1913 pIn1 = &aMem[pOp->p1]; 1914 memAboutToChange(p, pIn1); 1915 rc = ExpandBlob(pIn1); 1916 if( rc ) goto abort_due_to_error; 1917 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1918 if( rc ) goto abort_due_to_error; 1919 UPDATE_MAX_BLOBSIZE(pIn1); 1920 REGISTER_TRACE(pOp->p1, pIn1); 1921 break; 1922 } 1923 #endif /* SQLITE_OMIT_CAST */ 1924 1925 /* Opcode: Eq P1 P2 P3 P4 P5 1926 ** Synopsis: IF r[P3]==r[P1] 1927 ** 1928 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1929 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1930 ** store the result of comparison in register P2. 1931 ** 1932 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1933 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1934 ** to coerce both inputs according to this affinity before the 1935 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1936 ** affinity is used. Note that the affinity conversions are stored 1937 ** back into the input registers P1 and P3. So this opcode can cause 1938 ** persistent changes to registers P1 and P3. 1939 ** 1940 ** Once any conversions have taken place, and neither value is NULL, 1941 ** the values are compared. If both values are blobs then memcmp() is 1942 ** used to determine the results of the comparison. If both values 1943 ** are text, then the appropriate collating function specified in 1944 ** P4 is used to do the comparison. If P4 is not specified then 1945 ** memcmp() is used to compare text string. If both values are 1946 ** numeric, then a numeric comparison is used. If the two values 1947 ** are of different types, then numbers are considered less than 1948 ** strings and strings are considered less than blobs. 1949 ** 1950 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1951 ** true or false and is never NULL. If both operands are NULL then the result 1952 ** of comparison is true. If either operand is NULL then the result is false. 1953 ** If neither operand is NULL the result is the same as it would be if 1954 ** the SQLITE_NULLEQ flag were omitted from P5. 1955 ** 1956 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1957 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1958 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1959 */ 1960 /* Opcode: Ne P1 P2 P3 P4 P5 1961 ** Synopsis: IF r[P3]!=r[P1] 1962 ** 1963 ** This works just like the Eq opcode except that the jump is taken if 1964 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1965 ** additional information. 1966 ** 1967 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1968 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1969 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1970 */ 1971 /* Opcode: Lt P1 P2 P3 P4 P5 1972 ** Synopsis: IF r[P3]<r[P1] 1973 ** 1974 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1975 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1976 ** the result of comparison (0 or 1 or NULL) into register P2. 1977 ** 1978 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1979 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1980 ** bit is clear then fall through if either operand is NULL. 1981 ** 1982 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1983 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1984 ** to coerce both inputs according to this affinity before the 1985 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1986 ** affinity is used. Note that the affinity conversions are stored 1987 ** back into the input registers P1 and P3. So this opcode can cause 1988 ** persistent changes to registers P1 and P3. 1989 ** 1990 ** Once any conversions have taken place, and neither value is NULL, 1991 ** the values are compared. If both values are blobs then memcmp() is 1992 ** used to determine the results of the comparison. If both values 1993 ** are text, then the appropriate collating function specified in 1994 ** P4 is used to do the comparison. If P4 is not specified then 1995 ** memcmp() is used to compare text string. If both values are 1996 ** numeric, then a numeric comparison is used. If the two values 1997 ** are of different types, then numbers are considered less than 1998 ** strings and strings are considered less than blobs. 1999 */ 2000 /* Opcode: Le P1 P2 P3 P4 P5 2001 ** Synopsis: IF r[P3]<=r[P1] 2002 ** 2003 ** This works just like the Lt opcode except that the jump is taken if 2004 ** the content of register P3 is less than or equal to the content of 2005 ** register P1. See the Lt opcode for additional information. 2006 */ 2007 /* Opcode: Gt P1 P2 P3 P4 P5 2008 ** Synopsis: IF r[P3]>r[P1] 2009 ** 2010 ** This works just like the Lt opcode except that the jump is taken if 2011 ** the content of register P3 is greater than the content of 2012 ** register P1. See the Lt opcode for additional information. 2013 */ 2014 /* Opcode: Ge P1 P2 P3 P4 P5 2015 ** Synopsis: IF r[P3]>=r[P1] 2016 ** 2017 ** This works just like the Lt opcode except that the jump is taken if 2018 ** the content of register P3 is greater than or equal to the content of 2019 ** register P1. See the Lt opcode for additional information. 2020 */ 2021 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2022 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2023 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2024 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2025 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2026 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2027 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2028 char affinity; /* Affinity to use for comparison */ 2029 u16 flags1; /* Copy of initial value of pIn1->flags */ 2030 u16 flags3; /* Copy of initial value of pIn3->flags */ 2031 2032 pIn1 = &aMem[pOp->p1]; 2033 pIn3 = &aMem[pOp->p3]; 2034 flags1 = pIn1->flags; 2035 flags3 = pIn3->flags; 2036 if( (flags1 | flags3)&MEM_Null ){ 2037 /* One or both operands are NULL */ 2038 if( pOp->p5 & SQLITE_NULLEQ ){ 2039 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2040 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2041 ** or not both operands are null. 2042 */ 2043 assert( (flags1 & MEM_Cleared)==0 ); 2044 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2045 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2046 if( (flags1&flags3&MEM_Null)!=0 2047 && (flags3&MEM_Cleared)==0 2048 ){ 2049 res = 0; /* Operands are equal */ 2050 }else{ 2051 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2052 } 2053 }else{ 2054 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2055 ** then the result is always NULL. 2056 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2057 */ 2058 if( pOp->p5 & SQLITE_STOREP2 ){ 2059 pOut = &aMem[pOp->p2]; 2060 iCompare = 1; /* Operands are not equal */ 2061 memAboutToChange(p, pOut); 2062 MemSetTypeFlag(pOut, MEM_Null); 2063 REGISTER_TRACE(pOp->p2, pOut); 2064 }else{ 2065 VdbeBranchTaken(2,3); 2066 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2067 goto jump_to_p2; 2068 } 2069 } 2070 break; 2071 } 2072 }else{ 2073 /* Neither operand is NULL. Do a comparison. */ 2074 affinity = pOp->p5 & SQLITE_AFF_MASK; 2075 if( affinity>=SQLITE_AFF_NUMERIC ){ 2076 if( (flags1 | flags3)&MEM_Str ){ 2077 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2078 applyNumericAffinity(pIn1,0); 2079 testcase( flags3==pIn3->flags ); 2080 flags3 = pIn3->flags; 2081 } 2082 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2083 applyNumericAffinity(pIn3,0); 2084 } 2085 } 2086 /* Handle the common case of integer comparison here, as an 2087 ** optimization, to avoid a call to sqlite3MemCompare() */ 2088 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 2089 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 2090 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 2091 res = 0; 2092 goto compare_op; 2093 } 2094 }else if( affinity==SQLITE_AFF_TEXT ){ 2095 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2096 testcase( pIn1->flags & MEM_Int ); 2097 testcase( pIn1->flags & MEM_Real ); 2098 testcase( pIn1->flags & MEM_IntReal ); 2099 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2100 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2101 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2102 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 2103 } 2104 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2105 testcase( pIn3->flags & MEM_Int ); 2106 testcase( pIn3->flags & MEM_Real ); 2107 testcase( pIn3->flags & MEM_IntReal ); 2108 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2109 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2110 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2111 } 2112 } 2113 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2114 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2115 } 2116 compare_op: 2117 /* At this point, res is negative, zero, or positive if reg[P1] is 2118 ** less than, equal to, or greater than reg[P3], respectively. Compute 2119 ** the answer to this operator in res2, depending on what the comparison 2120 ** operator actually is. The next block of code depends on the fact 2121 ** that the 6 comparison operators are consecutive integers in this 2122 ** order: NE, EQ, GT, LE, LT, GE */ 2123 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2124 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2125 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 2126 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 2127 res2 = aLTb[pOp->opcode - OP_Ne]; 2128 }else if( res==0 ){ 2129 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2130 res2 = aEQb[pOp->opcode - OP_Ne]; 2131 }else{ 2132 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2133 res2 = aGTb[pOp->opcode - OP_Ne]; 2134 } 2135 2136 /* Undo any changes made by applyAffinity() to the input registers. */ 2137 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2138 pIn3->flags = flags3; 2139 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2140 pIn1->flags = flags1; 2141 2142 if( pOp->p5 & SQLITE_STOREP2 ){ 2143 pOut = &aMem[pOp->p2]; 2144 iCompare = res; 2145 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2146 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2147 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2148 ** is only used in contexts where either: 2149 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2150 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2151 ** Therefore it is not necessary to check the content of r[P2] for 2152 ** NULL. */ 2153 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2154 assert( res2==0 || res2==1 ); 2155 testcase( res2==0 && pOp->opcode==OP_Eq ); 2156 testcase( res2==1 && pOp->opcode==OP_Eq ); 2157 testcase( res2==0 && pOp->opcode==OP_Ne ); 2158 testcase( res2==1 && pOp->opcode==OP_Ne ); 2159 if( (pOp->opcode==OP_Eq)==res2 ) break; 2160 } 2161 memAboutToChange(p, pOut); 2162 MemSetTypeFlag(pOut, MEM_Int); 2163 pOut->u.i = res2; 2164 REGISTER_TRACE(pOp->p2, pOut); 2165 }else{ 2166 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2167 if( res2 ){ 2168 goto jump_to_p2; 2169 } 2170 } 2171 break; 2172 } 2173 2174 /* Opcode: ElseNotEq * P2 * * * 2175 ** 2176 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2177 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2178 ** opcodes are allowed to occur between this instruction and the previous 2179 ** OP_Lt or OP_Gt. Furthermore, the prior OP_Lt or OP_Gt must have the 2180 ** SQLITE_STOREP2 bit set in the P5 field. 2181 ** 2182 ** If result of an OP_Eq comparison on the same two operands as the 2183 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then 2184 ** jump to P2. If the result of an OP_Eq comparison on the two previous 2185 ** operands would have been true (1), then fall through. 2186 */ 2187 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2188 2189 #ifdef SQLITE_DEBUG 2190 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2191 ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening 2192 ** OP_ReleaseReg opcodes */ 2193 int iAddr; 2194 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2195 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2196 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2197 assert( aOp[iAddr].p5 & SQLITE_STOREP2 ); 2198 break; 2199 } 2200 #endif /* SQLITE_DEBUG */ 2201 VdbeBranchTaken(iCompare!=0, 2); 2202 if( iCompare!=0 ) goto jump_to_p2; 2203 break; 2204 } 2205 2206 2207 /* Opcode: Permutation * * * P4 * 2208 ** 2209 ** Set the permutation used by the OP_Compare operator in the next 2210 ** instruction. The permutation is stored in the P4 operand. 2211 ** 2212 ** The permutation is only valid until the next OP_Compare that has 2213 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2214 ** occur immediately prior to the OP_Compare. 2215 ** 2216 ** The first integer in the P4 integer array is the length of the array 2217 ** and does not become part of the permutation. 2218 */ 2219 case OP_Permutation: { 2220 assert( pOp->p4type==P4_INTARRAY ); 2221 assert( pOp->p4.ai ); 2222 assert( pOp[1].opcode==OP_Compare ); 2223 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2224 break; 2225 } 2226 2227 /* Opcode: Compare P1 P2 P3 P4 P5 2228 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2229 ** 2230 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2231 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2232 ** the comparison for use by the next OP_Jump instruct. 2233 ** 2234 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2235 ** determined by the most recent OP_Permutation operator. If the 2236 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2237 ** order. 2238 ** 2239 ** P4 is a KeyInfo structure that defines collating sequences and sort 2240 ** orders for the comparison. The permutation applies to registers 2241 ** only. The KeyInfo elements are used sequentially. 2242 ** 2243 ** The comparison is a sort comparison, so NULLs compare equal, 2244 ** NULLs are less than numbers, numbers are less than strings, 2245 ** and strings are less than blobs. 2246 */ 2247 case OP_Compare: { 2248 int n; 2249 int i; 2250 int p1; 2251 int p2; 2252 const KeyInfo *pKeyInfo; 2253 int idx; 2254 CollSeq *pColl; /* Collating sequence to use on this term */ 2255 int bRev; /* True for DESCENDING sort order */ 2256 int *aPermute; /* The permutation */ 2257 2258 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2259 aPermute = 0; 2260 }else{ 2261 assert( pOp>aOp ); 2262 assert( pOp[-1].opcode==OP_Permutation ); 2263 assert( pOp[-1].p4type==P4_INTARRAY ); 2264 aPermute = pOp[-1].p4.ai + 1; 2265 assert( aPermute!=0 ); 2266 } 2267 n = pOp->p3; 2268 pKeyInfo = pOp->p4.pKeyInfo; 2269 assert( n>0 ); 2270 assert( pKeyInfo!=0 ); 2271 p1 = pOp->p1; 2272 p2 = pOp->p2; 2273 #ifdef SQLITE_DEBUG 2274 if( aPermute ){ 2275 int k, mx = 0; 2276 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2277 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2278 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2279 }else{ 2280 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2281 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2282 } 2283 #endif /* SQLITE_DEBUG */ 2284 for(i=0; i<n; i++){ 2285 idx = aPermute ? aPermute[i] : i; 2286 assert( memIsValid(&aMem[p1+idx]) ); 2287 assert( memIsValid(&aMem[p2+idx]) ); 2288 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2289 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2290 assert( i<pKeyInfo->nKeyField ); 2291 pColl = pKeyInfo->aColl[i]; 2292 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2293 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2294 if( iCompare ){ 2295 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2296 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2297 ){ 2298 iCompare = -iCompare; 2299 } 2300 if( bRev ) iCompare = -iCompare; 2301 break; 2302 } 2303 } 2304 break; 2305 } 2306 2307 /* Opcode: Jump P1 P2 P3 * * 2308 ** 2309 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2310 ** in the most recent OP_Compare instruction the P1 vector was less than 2311 ** equal to, or greater than the P2 vector, respectively. 2312 */ 2313 case OP_Jump: { /* jump */ 2314 if( iCompare<0 ){ 2315 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2316 }else if( iCompare==0 ){ 2317 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2318 }else{ 2319 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2320 } 2321 break; 2322 } 2323 2324 /* Opcode: And P1 P2 P3 * * 2325 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2326 ** 2327 ** Take the logical AND of the values in registers P1 and P2 and 2328 ** write the result into register P3. 2329 ** 2330 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2331 ** the other input is NULL. A NULL and true or two NULLs give 2332 ** a NULL output. 2333 */ 2334 /* Opcode: Or P1 P2 P3 * * 2335 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2336 ** 2337 ** Take the logical OR of the values in register P1 and P2 and 2338 ** store the answer in register P3. 2339 ** 2340 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2341 ** even if the other input is NULL. A NULL and false or two NULLs 2342 ** give a NULL output. 2343 */ 2344 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2345 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2346 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2347 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2348 2349 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2350 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2351 if( pOp->opcode==OP_And ){ 2352 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2353 v1 = and_logic[v1*3+v2]; 2354 }else{ 2355 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2356 v1 = or_logic[v1*3+v2]; 2357 } 2358 pOut = &aMem[pOp->p3]; 2359 if( v1==2 ){ 2360 MemSetTypeFlag(pOut, MEM_Null); 2361 }else{ 2362 pOut->u.i = v1; 2363 MemSetTypeFlag(pOut, MEM_Int); 2364 } 2365 break; 2366 } 2367 2368 /* Opcode: IsTrue P1 P2 P3 P4 * 2369 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2370 ** 2371 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2372 ** IS NOT FALSE operators. 2373 ** 2374 ** Interpret the value in register P1 as a boolean value. Store that 2375 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2376 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2377 ** is 1. 2378 ** 2379 ** The logic is summarized like this: 2380 ** 2381 ** <ul> 2382 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2383 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2384 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2385 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2386 ** </ul> 2387 */ 2388 case OP_IsTrue: { /* in1, out2 */ 2389 assert( pOp->p4type==P4_INT32 ); 2390 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2391 assert( pOp->p3==0 || pOp->p3==1 ); 2392 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2393 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2394 break; 2395 } 2396 2397 /* Opcode: Not P1 P2 * * * 2398 ** Synopsis: r[P2]= !r[P1] 2399 ** 2400 ** Interpret the value in register P1 as a boolean value. Store the 2401 ** boolean complement in register P2. If the value in register P1 is 2402 ** NULL, then a NULL is stored in P2. 2403 */ 2404 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2405 pIn1 = &aMem[pOp->p1]; 2406 pOut = &aMem[pOp->p2]; 2407 if( (pIn1->flags & MEM_Null)==0 ){ 2408 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2409 }else{ 2410 sqlite3VdbeMemSetNull(pOut); 2411 } 2412 break; 2413 } 2414 2415 /* Opcode: BitNot P1 P2 * * * 2416 ** Synopsis: r[P2]= ~r[P1] 2417 ** 2418 ** Interpret the content of register P1 as an integer. Store the 2419 ** ones-complement of the P1 value into register P2. If P1 holds 2420 ** a NULL then store a NULL in P2. 2421 */ 2422 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2423 pIn1 = &aMem[pOp->p1]; 2424 pOut = &aMem[pOp->p2]; 2425 sqlite3VdbeMemSetNull(pOut); 2426 if( (pIn1->flags & MEM_Null)==0 ){ 2427 pOut->flags = MEM_Int; 2428 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2429 } 2430 break; 2431 } 2432 2433 /* Opcode: Once P1 P2 * * * 2434 ** 2435 ** Fall through to the next instruction the first time this opcode is 2436 ** encountered on each invocation of the byte-code program. Jump to P2 2437 ** on the second and all subsequent encounters during the same invocation. 2438 ** 2439 ** Top-level programs determine first invocation by comparing the P1 2440 ** operand against the P1 operand on the OP_Init opcode at the beginning 2441 ** of the program. If the P1 values differ, then fall through and make 2442 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2443 ** the same then take the jump. 2444 ** 2445 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2446 ** whether or not the jump should be taken. The bitmask is necessary 2447 ** because the self-altering code trick does not work for recursive 2448 ** triggers. 2449 */ 2450 case OP_Once: { /* jump */ 2451 u32 iAddr; /* Address of this instruction */ 2452 assert( p->aOp[0].opcode==OP_Init ); 2453 if( p->pFrame ){ 2454 iAddr = (int)(pOp - p->aOp); 2455 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2456 VdbeBranchTaken(1, 2); 2457 goto jump_to_p2; 2458 } 2459 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2460 }else{ 2461 if( p->aOp[0].p1==pOp->p1 ){ 2462 VdbeBranchTaken(1, 2); 2463 goto jump_to_p2; 2464 } 2465 } 2466 VdbeBranchTaken(0, 2); 2467 pOp->p1 = p->aOp[0].p1; 2468 break; 2469 } 2470 2471 /* Opcode: If P1 P2 P3 * * 2472 ** 2473 ** Jump to P2 if the value in register P1 is true. The value 2474 ** is considered true if it is numeric and non-zero. If the value 2475 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2476 */ 2477 case OP_If: { /* jump, in1 */ 2478 int c; 2479 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2480 VdbeBranchTaken(c!=0, 2); 2481 if( c ) goto jump_to_p2; 2482 break; 2483 } 2484 2485 /* Opcode: IfNot P1 P2 P3 * * 2486 ** 2487 ** Jump to P2 if the value in register P1 is False. The value 2488 ** is considered false if it has a numeric value of zero. If the value 2489 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2490 */ 2491 case OP_IfNot: { /* jump, in1 */ 2492 int c; 2493 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2494 VdbeBranchTaken(c!=0, 2); 2495 if( c ) goto jump_to_p2; 2496 break; 2497 } 2498 2499 /* Opcode: IsNull P1 P2 * * * 2500 ** Synopsis: if r[P1]==NULL goto P2 2501 ** 2502 ** Jump to P2 if the value in register P1 is NULL. 2503 */ 2504 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2505 pIn1 = &aMem[pOp->p1]; 2506 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2507 if( (pIn1->flags & MEM_Null)!=0 ){ 2508 goto jump_to_p2; 2509 } 2510 break; 2511 } 2512 2513 /* Opcode: NotNull P1 P2 * * * 2514 ** Synopsis: if r[P1]!=NULL goto P2 2515 ** 2516 ** Jump to P2 if the value in register P1 is not NULL. 2517 */ 2518 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2519 pIn1 = &aMem[pOp->p1]; 2520 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2521 if( (pIn1->flags & MEM_Null)==0 ){ 2522 goto jump_to_p2; 2523 } 2524 break; 2525 } 2526 2527 /* Opcode: IfNullRow P1 P2 P3 * * 2528 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2529 ** 2530 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2531 ** If it is, then set register P3 to NULL and jump immediately to P2. 2532 ** If P1 is not on a NULL row, then fall through without making any 2533 ** changes. 2534 */ 2535 case OP_IfNullRow: { /* jump */ 2536 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2537 assert( p->apCsr[pOp->p1]!=0 ); 2538 if( p->apCsr[pOp->p1]->nullRow ){ 2539 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2540 goto jump_to_p2; 2541 } 2542 break; 2543 } 2544 2545 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2546 /* Opcode: Offset P1 P2 P3 * * 2547 ** Synopsis: r[P3] = sqlite_offset(P1) 2548 ** 2549 ** Store in register r[P3] the byte offset into the database file that is the 2550 ** start of the payload for the record at which that cursor P1 is currently 2551 ** pointing. 2552 ** 2553 ** P2 is the column number for the argument to the sqlite_offset() function. 2554 ** This opcode does not use P2 itself, but the P2 value is used by the 2555 ** code generator. The P1, P2, and P3 operands to this opcode are the 2556 ** same as for OP_Column. 2557 ** 2558 ** This opcode is only available if SQLite is compiled with the 2559 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2560 */ 2561 case OP_Offset: { /* out3 */ 2562 VdbeCursor *pC; /* The VDBE cursor */ 2563 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2564 pC = p->apCsr[pOp->p1]; 2565 pOut = &p->aMem[pOp->p3]; 2566 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2567 sqlite3VdbeMemSetNull(pOut); 2568 }else{ 2569 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2570 } 2571 break; 2572 } 2573 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2574 2575 /* Opcode: Column P1 P2 P3 P4 P5 2576 ** Synopsis: r[P3]=PX 2577 ** 2578 ** Interpret the data that cursor P1 points to as a structure built using 2579 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2580 ** information about the format of the data.) Extract the P2-th column 2581 ** from this record. If there are less that (P2+1) 2582 ** values in the record, extract a NULL. 2583 ** 2584 ** The value extracted is stored in register P3. 2585 ** 2586 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2587 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2588 ** the result. 2589 ** 2590 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2591 ** the result is guaranteed to only be used as the argument of a length() 2592 ** or typeof() function, respectively. The loading of large blobs can be 2593 ** skipped for length() and all content loading can be skipped for typeof(). 2594 */ 2595 case OP_Column: { 2596 int p2; /* column number to retrieve */ 2597 VdbeCursor *pC; /* The VDBE cursor */ 2598 BtCursor *pCrsr; /* The BTree cursor */ 2599 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2600 int len; /* The length of the serialized data for the column */ 2601 int i; /* Loop counter */ 2602 Mem *pDest; /* Where to write the extracted value */ 2603 Mem sMem; /* For storing the record being decoded */ 2604 const u8 *zData; /* Part of the record being decoded */ 2605 const u8 *zHdr; /* Next unparsed byte of the header */ 2606 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2607 u64 offset64; /* 64-bit offset */ 2608 u32 t; /* A type code from the record header */ 2609 Mem *pReg; /* PseudoTable input register */ 2610 2611 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2612 pC = p->apCsr[pOp->p1]; 2613 assert( pC!=0 ); 2614 p2 = pOp->p2; 2615 2616 /* If the cursor cache is stale (meaning it is not currently point at 2617 ** the correct row) then bring it up-to-date by doing the necessary 2618 ** B-Tree seek. */ 2619 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2620 if( rc ) goto abort_due_to_error; 2621 2622 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2623 pDest = &aMem[pOp->p3]; 2624 memAboutToChange(p, pDest); 2625 assert( pC!=0 ); 2626 assert( p2<pC->nField ); 2627 aOffset = pC->aOffset; 2628 assert( pC->eCurType!=CURTYPE_VTAB ); 2629 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2630 assert( pC->eCurType!=CURTYPE_SORTER ); 2631 2632 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2633 if( pC->nullRow ){ 2634 if( pC->eCurType==CURTYPE_PSEUDO ){ 2635 /* For the special case of as pseudo-cursor, the seekResult field 2636 ** identifies the register that holds the record */ 2637 assert( pC->seekResult>0 ); 2638 pReg = &aMem[pC->seekResult]; 2639 assert( pReg->flags & MEM_Blob ); 2640 assert( memIsValid(pReg) ); 2641 pC->payloadSize = pC->szRow = pReg->n; 2642 pC->aRow = (u8*)pReg->z; 2643 }else{ 2644 sqlite3VdbeMemSetNull(pDest); 2645 goto op_column_out; 2646 } 2647 }else{ 2648 pCrsr = pC->uc.pCursor; 2649 assert( pC->eCurType==CURTYPE_BTREE ); 2650 assert( pCrsr ); 2651 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2652 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2653 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2654 assert( pC->szRow<=pC->payloadSize ); 2655 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2656 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2657 goto too_big; 2658 } 2659 } 2660 pC->cacheStatus = p->cacheCtr; 2661 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2662 pC->nHdrParsed = 0; 2663 2664 2665 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2666 /* pC->aRow does not have to hold the entire row, but it does at least 2667 ** need to cover the header of the record. If pC->aRow does not contain 2668 ** the complete header, then set it to zero, forcing the header to be 2669 ** dynamically allocated. */ 2670 pC->aRow = 0; 2671 pC->szRow = 0; 2672 2673 /* Make sure a corrupt database has not given us an oversize header. 2674 ** Do this now to avoid an oversize memory allocation. 2675 ** 2676 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2677 ** types use so much data space that there can only be 4096 and 32 of 2678 ** them, respectively. So the maximum header length results from a 2679 ** 3-byte type for each of the maximum of 32768 columns plus three 2680 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2681 */ 2682 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2683 goto op_column_corrupt; 2684 } 2685 }else{ 2686 /* This is an optimization. By skipping over the first few tests 2687 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2688 ** measurable performance gain. 2689 ** 2690 ** This branch is taken even if aOffset[0]==0. Such a record is never 2691 ** generated by SQLite, and could be considered corruption, but we 2692 ** accept it for historical reasons. When aOffset[0]==0, the code this 2693 ** branch jumps to reads past the end of the record, but never more 2694 ** than a few bytes. Even if the record occurs at the end of the page 2695 ** content area, the "page header" comes after the page content and so 2696 ** this overread is harmless. Similar overreads can occur for a corrupt 2697 ** database file. 2698 */ 2699 zData = pC->aRow; 2700 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2701 testcase( aOffset[0]==0 ); 2702 goto op_column_read_header; 2703 } 2704 } 2705 2706 /* Make sure at least the first p2+1 entries of the header have been 2707 ** parsed and valid information is in aOffset[] and pC->aType[]. 2708 */ 2709 if( pC->nHdrParsed<=p2 ){ 2710 /* If there is more header available for parsing in the record, try 2711 ** to extract additional fields up through the p2+1-th field 2712 */ 2713 if( pC->iHdrOffset<aOffset[0] ){ 2714 /* Make sure zData points to enough of the record to cover the header. */ 2715 if( pC->aRow==0 ){ 2716 memset(&sMem, 0, sizeof(sMem)); 2717 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2718 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2719 zData = (u8*)sMem.z; 2720 }else{ 2721 zData = pC->aRow; 2722 } 2723 2724 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2725 op_column_read_header: 2726 i = pC->nHdrParsed; 2727 offset64 = aOffset[i]; 2728 zHdr = zData + pC->iHdrOffset; 2729 zEndHdr = zData + aOffset[0]; 2730 testcase( zHdr>=zEndHdr ); 2731 do{ 2732 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2733 zHdr++; 2734 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2735 }else{ 2736 zHdr += sqlite3GetVarint32(zHdr, &t); 2737 pC->aType[i] = t; 2738 offset64 += sqlite3VdbeSerialTypeLen(t); 2739 } 2740 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2741 }while( i<=p2 && zHdr<zEndHdr ); 2742 2743 /* The record is corrupt if any of the following are true: 2744 ** (1) the bytes of the header extend past the declared header size 2745 ** (2) the entire header was used but not all data was used 2746 ** (3) the end of the data extends beyond the end of the record. 2747 */ 2748 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2749 || (offset64 > pC->payloadSize) 2750 ){ 2751 if( aOffset[0]==0 ){ 2752 i = 0; 2753 zHdr = zEndHdr; 2754 }else{ 2755 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2756 goto op_column_corrupt; 2757 } 2758 } 2759 2760 pC->nHdrParsed = i; 2761 pC->iHdrOffset = (u32)(zHdr - zData); 2762 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2763 }else{ 2764 t = 0; 2765 } 2766 2767 /* If after trying to extract new entries from the header, nHdrParsed is 2768 ** still not up to p2, that means that the record has fewer than p2 2769 ** columns. So the result will be either the default value or a NULL. 2770 */ 2771 if( pC->nHdrParsed<=p2 ){ 2772 if( pOp->p4type==P4_MEM ){ 2773 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2774 }else{ 2775 sqlite3VdbeMemSetNull(pDest); 2776 } 2777 goto op_column_out; 2778 } 2779 }else{ 2780 t = pC->aType[p2]; 2781 } 2782 2783 /* Extract the content for the p2+1-th column. Control can only 2784 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2785 ** all valid. 2786 */ 2787 assert( p2<pC->nHdrParsed ); 2788 assert( rc==SQLITE_OK ); 2789 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2790 if( VdbeMemDynamic(pDest) ){ 2791 sqlite3VdbeMemSetNull(pDest); 2792 } 2793 assert( t==pC->aType[p2] ); 2794 if( pC->szRow>=aOffset[p2+1] ){ 2795 /* This is the common case where the desired content fits on the original 2796 ** page - where the content is not on an overflow page */ 2797 zData = pC->aRow + aOffset[p2]; 2798 if( t<12 ){ 2799 sqlite3VdbeSerialGet(zData, t, pDest); 2800 }else{ 2801 /* If the column value is a string, we need a persistent value, not 2802 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2803 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2804 */ 2805 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2806 pDest->n = len = (t-12)/2; 2807 pDest->enc = encoding; 2808 if( pDest->szMalloc < len+2 ){ 2809 pDest->flags = MEM_Null; 2810 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2811 }else{ 2812 pDest->z = pDest->zMalloc; 2813 } 2814 memcpy(pDest->z, zData, len); 2815 pDest->z[len] = 0; 2816 pDest->z[len+1] = 0; 2817 pDest->flags = aFlag[t&1]; 2818 } 2819 }else{ 2820 pDest->enc = encoding; 2821 /* This branch happens only when content is on overflow pages */ 2822 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2823 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2824 || (len = sqlite3VdbeSerialTypeLen(t))==0 2825 ){ 2826 /* Content is irrelevant for 2827 ** 1. the typeof() function, 2828 ** 2. the length(X) function if X is a blob, and 2829 ** 3. if the content length is zero. 2830 ** So we might as well use bogus content rather than reading 2831 ** content from disk. 2832 ** 2833 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2834 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2835 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2836 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2837 ** and it begins with a bunch of zeros. 2838 */ 2839 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2840 }else{ 2841 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2842 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2843 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2844 pDest->flags &= ~MEM_Ephem; 2845 } 2846 } 2847 2848 op_column_out: 2849 UPDATE_MAX_BLOBSIZE(pDest); 2850 REGISTER_TRACE(pOp->p3, pDest); 2851 break; 2852 2853 op_column_corrupt: 2854 if( aOp[0].p3>0 ){ 2855 pOp = &aOp[aOp[0].p3-1]; 2856 break; 2857 }else{ 2858 rc = SQLITE_CORRUPT_BKPT; 2859 goto abort_due_to_error; 2860 } 2861 } 2862 2863 /* Opcode: Affinity P1 P2 * P4 * 2864 ** Synopsis: affinity(r[P1@P2]) 2865 ** 2866 ** Apply affinities to a range of P2 registers starting with P1. 2867 ** 2868 ** P4 is a string that is P2 characters long. The N-th character of the 2869 ** string indicates the column affinity that should be used for the N-th 2870 ** memory cell in the range. 2871 */ 2872 case OP_Affinity: { 2873 const char *zAffinity; /* The affinity to be applied */ 2874 2875 zAffinity = pOp->p4.z; 2876 assert( zAffinity!=0 ); 2877 assert( pOp->p2>0 ); 2878 assert( zAffinity[pOp->p2]==0 ); 2879 pIn1 = &aMem[pOp->p1]; 2880 while( 1 /*exit-by-break*/ ){ 2881 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2882 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 2883 applyAffinity(pIn1, zAffinity[0], encoding); 2884 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 2885 /* When applying REAL affinity, if the result is still an MEM_Int 2886 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2887 ** so that we keep the high-resolution integer value but know that 2888 ** the type really wants to be REAL. */ 2889 testcase( pIn1->u.i==140737488355328LL ); 2890 testcase( pIn1->u.i==140737488355327LL ); 2891 testcase( pIn1->u.i==-140737488355328LL ); 2892 testcase( pIn1->u.i==-140737488355329LL ); 2893 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 2894 pIn1->flags |= MEM_IntReal; 2895 pIn1->flags &= ~MEM_Int; 2896 }else{ 2897 pIn1->u.r = (double)pIn1->u.i; 2898 pIn1->flags |= MEM_Real; 2899 pIn1->flags &= ~MEM_Int; 2900 } 2901 } 2902 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 2903 zAffinity++; 2904 if( zAffinity[0]==0 ) break; 2905 pIn1++; 2906 } 2907 break; 2908 } 2909 2910 /* Opcode: MakeRecord P1 P2 P3 P4 * 2911 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2912 ** 2913 ** Convert P2 registers beginning with P1 into the [record format] 2914 ** use as a data record in a database table or as a key 2915 ** in an index. The OP_Column opcode can decode the record later. 2916 ** 2917 ** P4 may be a string that is P2 characters long. The N-th character of the 2918 ** string indicates the column affinity that should be used for the N-th 2919 ** field of the index key. 2920 ** 2921 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2922 ** macros defined in sqliteInt.h. 2923 ** 2924 ** If P4 is NULL then all index fields have the affinity BLOB. 2925 */ 2926 case OP_MakeRecord: { 2927 Mem *pRec; /* The new record */ 2928 u64 nData; /* Number of bytes of data space */ 2929 int nHdr; /* Number of bytes of header space */ 2930 i64 nByte; /* Data space required for this record */ 2931 i64 nZero; /* Number of zero bytes at the end of the record */ 2932 int nVarint; /* Number of bytes in a varint */ 2933 u32 serial_type; /* Type field */ 2934 Mem *pData0; /* First field to be combined into the record */ 2935 Mem *pLast; /* Last field of the record */ 2936 int nField; /* Number of fields in the record */ 2937 char *zAffinity; /* The affinity string for the record */ 2938 int file_format; /* File format to use for encoding */ 2939 u32 len; /* Length of a field */ 2940 u8 *zHdr; /* Where to write next byte of the header */ 2941 u8 *zPayload; /* Where to write next byte of the payload */ 2942 2943 /* Assuming the record contains N fields, the record format looks 2944 ** like this: 2945 ** 2946 ** ------------------------------------------------------------------------ 2947 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2948 ** ------------------------------------------------------------------------ 2949 ** 2950 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2951 ** and so forth. 2952 ** 2953 ** Each type field is a varint representing the serial type of the 2954 ** corresponding data element (see sqlite3VdbeSerialType()). The 2955 ** hdr-size field is also a varint which is the offset from the beginning 2956 ** of the record to data0. 2957 */ 2958 nData = 0; /* Number of bytes of data space */ 2959 nHdr = 0; /* Number of bytes of header space */ 2960 nZero = 0; /* Number of zero bytes at the end of the record */ 2961 nField = pOp->p1; 2962 zAffinity = pOp->p4.z; 2963 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2964 pData0 = &aMem[nField]; 2965 nField = pOp->p2; 2966 pLast = &pData0[nField-1]; 2967 file_format = p->minWriteFileFormat; 2968 2969 /* Identify the output register */ 2970 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2971 pOut = &aMem[pOp->p3]; 2972 memAboutToChange(p, pOut); 2973 2974 /* Apply the requested affinity to all inputs 2975 */ 2976 assert( pData0<=pLast ); 2977 if( zAffinity ){ 2978 pRec = pData0; 2979 do{ 2980 applyAffinity(pRec, zAffinity[0], encoding); 2981 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 2982 pRec->flags |= MEM_IntReal; 2983 pRec->flags &= ~(MEM_Int); 2984 } 2985 REGISTER_TRACE((int)(pRec-aMem), pRec); 2986 zAffinity++; 2987 pRec++; 2988 assert( zAffinity[0]==0 || pRec<=pLast ); 2989 }while( zAffinity[0] ); 2990 } 2991 2992 #ifdef SQLITE_ENABLE_NULL_TRIM 2993 /* NULLs can be safely trimmed from the end of the record, as long as 2994 ** as the schema format is 2 or more and none of the omitted columns 2995 ** have a non-NULL default value. Also, the record must be left with 2996 ** at least one field. If P5>0 then it will be one more than the 2997 ** index of the right-most column with a non-NULL default value */ 2998 if( pOp->p5 ){ 2999 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3000 pLast--; 3001 nField--; 3002 } 3003 } 3004 #endif 3005 3006 /* Loop through the elements that will make up the record to figure 3007 ** out how much space is required for the new record. After this loop, 3008 ** the Mem.uTemp field of each term should hold the serial-type that will 3009 ** be used for that term in the generated record: 3010 ** 3011 ** Mem.uTemp value type 3012 ** --------------- --------------- 3013 ** 0 NULL 3014 ** 1 1-byte signed integer 3015 ** 2 2-byte signed integer 3016 ** 3 3-byte signed integer 3017 ** 4 4-byte signed integer 3018 ** 5 6-byte signed integer 3019 ** 6 8-byte signed integer 3020 ** 7 IEEE float 3021 ** 8 Integer constant 0 3022 ** 9 Integer constant 1 3023 ** 10,11 reserved for expansion 3024 ** N>=12 and even BLOB 3025 ** N>=13 and odd text 3026 ** 3027 ** The following additional values are computed: 3028 ** nHdr Number of bytes needed for the record header 3029 ** nData Number of bytes of data space needed for the record 3030 ** nZero Zero bytes at the end of the record 3031 */ 3032 pRec = pLast; 3033 do{ 3034 assert( memIsValid(pRec) ); 3035 if( pRec->flags & MEM_Null ){ 3036 if( pRec->flags & MEM_Zero ){ 3037 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3038 ** table methods that never invoke sqlite3_result_xxxxx() while 3039 ** computing an unchanging column value in an UPDATE statement. 3040 ** Give such values a special internal-use-only serial-type of 10 3041 ** so that they can be passed through to xUpdate and have 3042 ** a true sqlite3_value_nochange(). */ 3043 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3044 pRec->uTemp = 10; 3045 }else{ 3046 pRec->uTemp = 0; 3047 } 3048 nHdr++; 3049 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3050 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3051 i64 i = pRec->u.i; 3052 u64 uu; 3053 testcase( pRec->flags & MEM_Int ); 3054 testcase( pRec->flags & MEM_IntReal ); 3055 if( i<0 ){ 3056 uu = ~i; 3057 }else{ 3058 uu = i; 3059 } 3060 nHdr++; 3061 testcase( uu==127 ); testcase( uu==128 ); 3062 testcase( uu==32767 ); testcase( uu==32768 ); 3063 testcase( uu==8388607 ); testcase( uu==8388608 ); 3064 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3065 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3066 if( uu<=127 ){ 3067 if( (i&1)==i && file_format>=4 ){ 3068 pRec->uTemp = 8+(u32)uu; 3069 }else{ 3070 nData++; 3071 pRec->uTemp = 1; 3072 } 3073 }else if( uu<=32767 ){ 3074 nData += 2; 3075 pRec->uTemp = 2; 3076 }else if( uu<=8388607 ){ 3077 nData += 3; 3078 pRec->uTemp = 3; 3079 }else if( uu<=2147483647 ){ 3080 nData += 4; 3081 pRec->uTemp = 4; 3082 }else if( uu<=140737488355327LL ){ 3083 nData += 6; 3084 pRec->uTemp = 5; 3085 }else{ 3086 nData += 8; 3087 if( pRec->flags & MEM_IntReal ){ 3088 /* If the value is IntReal and is going to take up 8 bytes to store 3089 ** as an integer, then we might as well make it an 8-byte floating 3090 ** point value */ 3091 pRec->u.r = (double)pRec->u.i; 3092 pRec->flags &= ~MEM_IntReal; 3093 pRec->flags |= MEM_Real; 3094 pRec->uTemp = 7; 3095 }else{ 3096 pRec->uTemp = 6; 3097 } 3098 } 3099 }else if( pRec->flags & MEM_Real ){ 3100 nHdr++; 3101 nData += 8; 3102 pRec->uTemp = 7; 3103 }else{ 3104 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3105 assert( pRec->n>=0 ); 3106 len = (u32)pRec->n; 3107 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3108 if( pRec->flags & MEM_Zero ){ 3109 serial_type += pRec->u.nZero*2; 3110 if( nData ){ 3111 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3112 len += pRec->u.nZero; 3113 }else{ 3114 nZero += pRec->u.nZero; 3115 } 3116 } 3117 nData += len; 3118 nHdr += sqlite3VarintLen(serial_type); 3119 pRec->uTemp = serial_type; 3120 } 3121 if( pRec==pData0 ) break; 3122 pRec--; 3123 }while(1); 3124 3125 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3126 ** which determines the total number of bytes in the header. The varint 3127 ** value is the size of the header in bytes including the size varint 3128 ** itself. */ 3129 testcase( nHdr==126 ); 3130 testcase( nHdr==127 ); 3131 if( nHdr<=126 ){ 3132 /* The common case */ 3133 nHdr += 1; 3134 }else{ 3135 /* Rare case of a really large header */ 3136 nVarint = sqlite3VarintLen(nHdr); 3137 nHdr += nVarint; 3138 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3139 } 3140 nByte = nHdr+nData; 3141 3142 /* Make sure the output register has a buffer large enough to store 3143 ** the new record. The output register (pOp->p3) is not allowed to 3144 ** be one of the input registers (because the following call to 3145 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3146 */ 3147 if( nByte+nZero<=pOut->szMalloc ){ 3148 /* The output register is already large enough to hold the record. 3149 ** No error checks or buffer enlargement is required */ 3150 pOut->z = pOut->zMalloc; 3151 }else{ 3152 /* Need to make sure that the output is not too big and then enlarge 3153 ** the output register to hold the full result */ 3154 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3155 goto too_big; 3156 } 3157 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3158 goto no_mem; 3159 } 3160 } 3161 pOut->n = (int)nByte; 3162 pOut->flags = MEM_Blob; 3163 if( nZero ){ 3164 pOut->u.nZero = nZero; 3165 pOut->flags |= MEM_Zero; 3166 } 3167 UPDATE_MAX_BLOBSIZE(pOut); 3168 zHdr = (u8 *)pOut->z; 3169 zPayload = zHdr + nHdr; 3170 3171 /* Write the record */ 3172 zHdr += putVarint32(zHdr, nHdr); 3173 assert( pData0<=pLast ); 3174 pRec = pData0; 3175 do{ 3176 serial_type = pRec->uTemp; 3177 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3178 ** additional varints, one per column. */ 3179 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3180 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3181 ** immediately follow the header. */ 3182 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3183 }while( (++pRec)<=pLast ); 3184 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3185 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3186 3187 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3188 REGISTER_TRACE(pOp->p3, pOut); 3189 break; 3190 } 3191 3192 /* Opcode: Count P1 P2 p3 * * 3193 ** Synopsis: r[P2]=count() 3194 ** 3195 ** Store the number of entries (an integer value) in the table or index 3196 ** opened by cursor P1 in register P2. 3197 ** 3198 ** If P3==0, then an exact count is obtained, which involves visiting 3199 ** every btree page of the table. But if P3 is non-zero, an estimate 3200 ** is returned based on the current cursor position. 3201 */ 3202 case OP_Count: { /* out2 */ 3203 i64 nEntry; 3204 BtCursor *pCrsr; 3205 3206 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3207 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3208 assert( pCrsr ); 3209 if( pOp->p3 ){ 3210 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3211 }else{ 3212 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3213 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3214 if( rc ) goto abort_due_to_error; 3215 } 3216 pOut = out2Prerelease(p, pOp); 3217 pOut->u.i = nEntry; 3218 goto check_for_interrupt; 3219 } 3220 3221 /* Opcode: Savepoint P1 * * P4 * 3222 ** 3223 ** Open, release or rollback the savepoint named by parameter P4, depending 3224 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3225 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3226 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3227 */ 3228 case OP_Savepoint: { 3229 int p1; /* Value of P1 operand */ 3230 char *zName; /* Name of savepoint */ 3231 int nName; 3232 Savepoint *pNew; 3233 Savepoint *pSavepoint; 3234 Savepoint *pTmp; 3235 int iSavepoint; 3236 int ii; 3237 3238 p1 = pOp->p1; 3239 zName = pOp->p4.z; 3240 3241 /* Assert that the p1 parameter is valid. Also that if there is no open 3242 ** transaction, then there cannot be any savepoints. 3243 */ 3244 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3245 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3246 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3247 assert( checkSavepointCount(db) ); 3248 assert( p->bIsReader ); 3249 3250 if( p1==SAVEPOINT_BEGIN ){ 3251 if( db->nVdbeWrite>0 ){ 3252 /* A new savepoint cannot be created if there are active write 3253 ** statements (i.e. open read/write incremental blob handles). 3254 */ 3255 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3256 rc = SQLITE_BUSY; 3257 }else{ 3258 nName = sqlite3Strlen30(zName); 3259 3260 #ifndef SQLITE_OMIT_VIRTUALTABLE 3261 /* This call is Ok even if this savepoint is actually a transaction 3262 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3263 ** If this is a transaction savepoint being opened, it is guaranteed 3264 ** that the db->aVTrans[] array is empty. */ 3265 assert( db->autoCommit==0 || db->nVTrans==0 ); 3266 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3267 db->nStatement+db->nSavepoint); 3268 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3269 #endif 3270 3271 /* Create a new savepoint structure. */ 3272 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3273 if( pNew ){ 3274 pNew->zName = (char *)&pNew[1]; 3275 memcpy(pNew->zName, zName, nName+1); 3276 3277 /* If there is no open transaction, then mark this as a special 3278 ** "transaction savepoint". */ 3279 if( db->autoCommit ){ 3280 db->autoCommit = 0; 3281 db->isTransactionSavepoint = 1; 3282 }else{ 3283 db->nSavepoint++; 3284 } 3285 3286 /* Link the new savepoint into the database handle's list. */ 3287 pNew->pNext = db->pSavepoint; 3288 db->pSavepoint = pNew; 3289 pNew->nDeferredCons = db->nDeferredCons; 3290 pNew->nDeferredImmCons = db->nDeferredImmCons; 3291 } 3292 } 3293 }else{ 3294 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3295 iSavepoint = 0; 3296 3297 /* Find the named savepoint. If there is no such savepoint, then an 3298 ** an error is returned to the user. */ 3299 for( 3300 pSavepoint = db->pSavepoint; 3301 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3302 pSavepoint = pSavepoint->pNext 3303 ){ 3304 iSavepoint++; 3305 } 3306 if( !pSavepoint ){ 3307 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3308 rc = SQLITE_ERROR; 3309 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3310 /* It is not possible to release (commit) a savepoint if there are 3311 ** active write statements. 3312 */ 3313 sqlite3VdbeError(p, "cannot release savepoint - " 3314 "SQL statements in progress"); 3315 rc = SQLITE_BUSY; 3316 }else{ 3317 3318 /* Determine whether or not this is a transaction savepoint. If so, 3319 ** and this is a RELEASE command, then the current transaction 3320 ** is committed. 3321 */ 3322 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3323 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3324 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3325 goto vdbe_return; 3326 } 3327 db->autoCommit = 1; 3328 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3329 p->pc = (int)(pOp - aOp); 3330 db->autoCommit = 0; 3331 p->rc = rc = SQLITE_BUSY; 3332 goto vdbe_return; 3333 } 3334 rc = p->rc; 3335 if( rc ){ 3336 db->autoCommit = 0; 3337 }else{ 3338 db->isTransactionSavepoint = 0; 3339 } 3340 }else{ 3341 int isSchemaChange; 3342 iSavepoint = db->nSavepoint - iSavepoint - 1; 3343 if( p1==SAVEPOINT_ROLLBACK ){ 3344 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3345 for(ii=0; ii<db->nDb; ii++){ 3346 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3347 SQLITE_ABORT_ROLLBACK, 3348 isSchemaChange==0); 3349 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3350 } 3351 }else{ 3352 assert( p1==SAVEPOINT_RELEASE ); 3353 isSchemaChange = 0; 3354 } 3355 for(ii=0; ii<db->nDb; ii++){ 3356 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3357 if( rc!=SQLITE_OK ){ 3358 goto abort_due_to_error; 3359 } 3360 } 3361 if( isSchemaChange ){ 3362 sqlite3ExpirePreparedStatements(db, 0); 3363 sqlite3ResetAllSchemasOfConnection(db); 3364 db->mDbFlags |= DBFLAG_SchemaChange; 3365 } 3366 } 3367 if( rc ) goto abort_due_to_error; 3368 3369 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3370 ** savepoints nested inside of the savepoint being operated on. */ 3371 while( db->pSavepoint!=pSavepoint ){ 3372 pTmp = db->pSavepoint; 3373 db->pSavepoint = pTmp->pNext; 3374 sqlite3DbFree(db, pTmp); 3375 db->nSavepoint--; 3376 } 3377 3378 /* If it is a RELEASE, then destroy the savepoint being operated on 3379 ** too. If it is a ROLLBACK TO, then set the number of deferred 3380 ** constraint violations present in the database to the value stored 3381 ** when the savepoint was created. */ 3382 if( p1==SAVEPOINT_RELEASE ){ 3383 assert( pSavepoint==db->pSavepoint ); 3384 db->pSavepoint = pSavepoint->pNext; 3385 sqlite3DbFree(db, pSavepoint); 3386 if( !isTransaction ){ 3387 db->nSavepoint--; 3388 } 3389 }else{ 3390 assert( p1==SAVEPOINT_ROLLBACK ); 3391 db->nDeferredCons = pSavepoint->nDeferredCons; 3392 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3393 } 3394 3395 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3396 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3397 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3398 } 3399 } 3400 } 3401 if( rc ) goto abort_due_to_error; 3402 3403 break; 3404 } 3405 3406 /* Opcode: AutoCommit P1 P2 * * * 3407 ** 3408 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3409 ** back any currently active btree transactions. If there are any active 3410 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3411 ** there are active writing VMs or active VMs that use shared cache. 3412 ** 3413 ** This instruction causes the VM to halt. 3414 */ 3415 case OP_AutoCommit: { 3416 int desiredAutoCommit; 3417 int iRollback; 3418 3419 desiredAutoCommit = pOp->p1; 3420 iRollback = pOp->p2; 3421 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3422 assert( desiredAutoCommit==1 || iRollback==0 ); 3423 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3424 assert( p->bIsReader ); 3425 3426 if( desiredAutoCommit!=db->autoCommit ){ 3427 if( iRollback ){ 3428 assert( desiredAutoCommit==1 ); 3429 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3430 db->autoCommit = 1; 3431 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3432 /* If this instruction implements a COMMIT and other VMs are writing 3433 ** return an error indicating that the other VMs must complete first. 3434 */ 3435 sqlite3VdbeError(p, "cannot commit transaction - " 3436 "SQL statements in progress"); 3437 rc = SQLITE_BUSY; 3438 goto abort_due_to_error; 3439 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3440 goto vdbe_return; 3441 }else{ 3442 db->autoCommit = (u8)desiredAutoCommit; 3443 } 3444 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3445 p->pc = (int)(pOp - aOp); 3446 db->autoCommit = (u8)(1-desiredAutoCommit); 3447 p->rc = rc = SQLITE_BUSY; 3448 goto vdbe_return; 3449 } 3450 sqlite3CloseSavepoints(db); 3451 if( p->rc==SQLITE_OK ){ 3452 rc = SQLITE_DONE; 3453 }else{ 3454 rc = SQLITE_ERROR; 3455 } 3456 goto vdbe_return; 3457 }else{ 3458 sqlite3VdbeError(p, 3459 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3460 (iRollback)?"cannot rollback - no transaction is active": 3461 "cannot commit - no transaction is active")); 3462 3463 rc = SQLITE_ERROR; 3464 goto abort_due_to_error; 3465 } 3466 /*NOTREACHED*/ assert(0); 3467 } 3468 3469 /* Opcode: Transaction P1 P2 P3 P4 P5 3470 ** 3471 ** Begin a transaction on database P1 if a transaction is not already 3472 ** active. 3473 ** If P2 is non-zero, then a write-transaction is started, or if a 3474 ** read-transaction is already active, it is upgraded to a write-transaction. 3475 ** If P2 is zero, then a read-transaction is started. 3476 ** 3477 ** P1 is the index of the database file on which the transaction is 3478 ** started. Index 0 is the main database file and index 1 is the 3479 ** file used for temporary tables. Indices of 2 or more are used for 3480 ** attached databases. 3481 ** 3482 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3483 ** true (this flag is set if the Vdbe may modify more than one row and may 3484 ** throw an ABORT exception), a statement transaction may also be opened. 3485 ** More specifically, a statement transaction is opened iff the database 3486 ** connection is currently not in autocommit mode, or if there are other 3487 ** active statements. A statement transaction allows the changes made by this 3488 ** VDBE to be rolled back after an error without having to roll back the 3489 ** entire transaction. If no error is encountered, the statement transaction 3490 ** will automatically commit when the VDBE halts. 3491 ** 3492 ** If P5!=0 then this opcode also checks the schema cookie against P3 3493 ** and the schema generation counter against P4. 3494 ** The cookie changes its value whenever the database schema changes. 3495 ** This operation is used to detect when that the cookie has changed 3496 ** and that the current process needs to reread the schema. If the schema 3497 ** cookie in P3 differs from the schema cookie in the database header or 3498 ** if the schema generation counter in P4 differs from the current 3499 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3500 ** halts. The sqlite3_step() wrapper function might then reprepare the 3501 ** statement and rerun it from the beginning. 3502 */ 3503 case OP_Transaction: { 3504 Btree *pBt; 3505 int iMeta = 0; 3506 3507 assert( p->bIsReader ); 3508 assert( p->readOnly==0 || pOp->p2==0 ); 3509 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3510 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3511 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3512 rc = SQLITE_READONLY; 3513 goto abort_due_to_error; 3514 } 3515 pBt = db->aDb[pOp->p1].pBt; 3516 3517 if( pBt ){ 3518 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3519 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3520 testcase( rc==SQLITE_BUSY_RECOVERY ); 3521 if( rc!=SQLITE_OK ){ 3522 if( (rc&0xff)==SQLITE_BUSY ){ 3523 p->pc = (int)(pOp - aOp); 3524 p->rc = rc; 3525 goto vdbe_return; 3526 } 3527 goto abort_due_to_error; 3528 } 3529 3530 if( p->usesStmtJournal 3531 && pOp->p2 3532 && (db->autoCommit==0 || db->nVdbeRead>1) 3533 ){ 3534 assert( sqlite3BtreeIsInTrans(pBt) ); 3535 if( p->iStatement==0 ){ 3536 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3537 db->nStatement++; 3538 p->iStatement = db->nSavepoint + db->nStatement; 3539 } 3540 3541 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3542 if( rc==SQLITE_OK ){ 3543 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3544 } 3545 3546 /* Store the current value of the database handles deferred constraint 3547 ** counter. If the statement transaction needs to be rolled back, 3548 ** the value of this counter needs to be restored too. */ 3549 p->nStmtDefCons = db->nDeferredCons; 3550 p->nStmtDefImmCons = db->nDeferredImmCons; 3551 } 3552 } 3553 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3554 if( pOp->p5 3555 && (iMeta!=pOp->p3 3556 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3557 ){ 3558 /* 3559 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3560 ** version is checked to ensure that the schema has not changed since the 3561 ** SQL statement was prepared. 3562 */ 3563 sqlite3DbFree(db, p->zErrMsg); 3564 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3565 /* If the schema-cookie from the database file matches the cookie 3566 ** stored with the in-memory representation of the schema, do 3567 ** not reload the schema from the database file. 3568 ** 3569 ** If virtual-tables are in use, this is not just an optimization. 3570 ** Often, v-tables store their data in other SQLite tables, which 3571 ** are queried from within xNext() and other v-table methods using 3572 ** prepared queries. If such a query is out-of-date, we do not want to 3573 ** discard the database schema, as the user code implementing the 3574 ** v-table would have to be ready for the sqlite3_vtab structure itself 3575 ** to be invalidated whenever sqlite3_step() is called from within 3576 ** a v-table method. 3577 */ 3578 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3579 sqlite3ResetOneSchema(db, pOp->p1); 3580 } 3581 p->expired = 1; 3582 rc = SQLITE_SCHEMA; 3583 } 3584 if( rc ) goto abort_due_to_error; 3585 break; 3586 } 3587 3588 /* Opcode: ReadCookie P1 P2 P3 * * 3589 ** 3590 ** Read cookie number P3 from database P1 and write it into register P2. 3591 ** P3==1 is the schema version. P3==2 is the database format. 3592 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3593 ** the main database file and P1==1 is the database file used to store 3594 ** temporary tables. 3595 ** 3596 ** There must be a read-lock on the database (either a transaction 3597 ** must be started or there must be an open cursor) before 3598 ** executing this instruction. 3599 */ 3600 case OP_ReadCookie: { /* out2 */ 3601 int iMeta; 3602 int iDb; 3603 int iCookie; 3604 3605 assert( p->bIsReader ); 3606 iDb = pOp->p1; 3607 iCookie = pOp->p3; 3608 assert( pOp->p3<SQLITE_N_BTREE_META ); 3609 assert( iDb>=0 && iDb<db->nDb ); 3610 assert( db->aDb[iDb].pBt!=0 ); 3611 assert( DbMaskTest(p->btreeMask, iDb) ); 3612 3613 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3614 pOut = out2Prerelease(p, pOp); 3615 pOut->u.i = iMeta; 3616 break; 3617 } 3618 3619 /* Opcode: SetCookie P1 P2 P3 * * 3620 ** 3621 ** Write the integer value P3 into cookie number P2 of database P1. 3622 ** P2==1 is the schema version. P2==2 is the database format. 3623 ** P2==3 is the recommended pager cache 3624 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3625 ** database file used to store temporary tables. 3626 ** 3627 ** A transaction must be started before executing this opcode. 3628 */ 3629 case OP_SetCookie: { 3630 Db *pDb; 3631 3632 sqlite3VdbeIncrWriteCounter(p, 0); 3633 assert( pOp->p2<SQLITE_N_BTREE_META ); 3634 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3635 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3636 assert( p->readOnly==0 ); 3637 pDb = &db->aDb[pOp->p1]; 3638 assert( pDb->pBt!=0 ); 3639 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3640 /* See note about index shifting on OP_ReadCookie */ 3641 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3642 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3643 /* When the schema cookie changes, record the new cookie internally */ 3644 pDb->pSchema->schema_cookie = pOp->p3; 3645 db->mDbFlags |= DBFLAG_SchemaChange; 3646 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3647 /* Record changes in the file format */ 3648 pDb->pSchema->file_format = pOp->p3; 3649 } 3650 if( pOp->p1==1 ){ 3651 /* Invalidate all prepared statements whenever the TEMP database 3652 ** schema is changed. Ticket #1644 */ 3653 sqlite3ExpirePreparedStatements(db, 0); 3654 p->expired = 0; 3655 } 3656 if( rc ) goto abort_due_to_error; 3657 break; 3658 } 3659 3660 /* Opcode: OpenRead P1 P2 P3 P4 P5 3661 ** Synopsis: root=P2 iDb=P3 3662 ** 3663 ** Open a read-only cursor for the database table whose root page is 3664 ** P2 in a database file. The database file is determined by P3. 3665 ** P3==0 means the main database, P3==1 means the database used for 3666 ** temporary tables, and P3>1 means used the corresponding attached 3667 ** database. Give the new cursor an identifier of P1. The P1 3668 ** values need not be contiguous but all P1 values should be small integers. 3669 ** It is an error for P1 to be negative. 3670 ** 3671 ** Allowed P5 bits: 3672 ** <ul> 3673 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3674 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3675 ** of OP_SeekLE/OP_IdxLT) 3676 ** </ul> 3677 ** 3678 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3679 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3680 ** object, then table being opened must be an [index b-tree] where the 3681 ** KeyInfo object defines the content and collating 3682 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3683 ** value, then the table being opened must be a [table b-tree] with a 3684 ** number of columns no less than the value of P4. 3685 ** 3686 ** See also: OpenWrite, ReopenIdx 3687 */ 3688 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3689 ** Synopsis: root=P2 iDb=P3 3690 ** 3691 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3692 ** checks to see if the cursor on P1 is already open on the same 3693 ** b-tree and if it is this opcode becomes a no-op. In other words, 3694 ** if the cursor is already open, do not reopen it. 3695 ** 3696 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3697 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3698 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3699 ** number. 3700 ** 3701 ** Allowed P5 bits: 3702 ** <ul> 3703 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3704 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3705 ** of OP_SeekLE/OP_IdxLT) 3706 ** </ul> 3707 ** 3708 ** See also: OP_OpenRead, OP_OpenWrite 3709 */ 3710 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3711 ** Synopsis: root=P2 iDb=P3 3712 ** 3713 ** Open a read/write cursor named P1 on the table or index whose root 3714 ** page is P2 (or whose root page is held in register P2 if the 3715 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3716 ** 3717 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3718 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3719 ** object, then table being opened must be an [index b-tree] where the 3720 ** KeyInfo object defines the content and collating 3721 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3722 ** value, then the table being opened must be a [table b-tree] with a 3723 ** number of columns no less than the value of P4. 3724 ** 3725 ** Allowed P5 bits: 3726 ** <ul> 3727 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3728 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3729 ** of OP_SeekLE/OP_IdxLT) 3730 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3731 ** and subsequently delete entries in an index btree. This is a 3732 ** hint to the storage engine that the storage engine is allowed to 3733 ** ignore. The hint is not used by the official SQLite b*tree storage 3734 ** engine, but is used by COMDB2. 3735 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3736 ** as the root page, not the value of P2 itself. 3737 ** </ul> 3738 ** 3739 ** This instruction works like OpenRead except that it opens the cursor 3740 ** in read/write mode. 3741 ** 3742 ** See also: OP_OpenRead, OP_ReopenIdx 3743 */ 3744 case OP_ReopenIdx: { 3745 int nField; 3746 KeyInfo *pKeyInfo; 3747 int p2; 3748 int iDb; 3749 int wrFlag; 3750 Btree *pX; 3751 VdbeCursor *pCur; 3752 Db *pDb; 3753 3754 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3755 assert( pOp->p4type==P4_KEYINFO ); 3756 pCur = p->apCsr[pOp->p1]; 3757 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3758 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3759 goto open_cursor_set_hints; 3760 } 3761 /* If the cursor is not currently open or is open on a different 3762 ** index, then fall through into OP_OpenRead to force a reopen */ 3763 case OP_OpenRead: 3764 case OP_OpenWrite: 3765 3766 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3767 assert( p->bIsReader ); 3768 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3769 || p->readOnly==0 ); 3770 3771 if( p->expired==1 ){ 3772 rc = SQLITE_ABORT_ROLLBACK; 3773 goto abort_due_to_error; 3774 } 3775 3776 nField = 0; 3777 pKeyInfo = 0; 3778 p2 = pOp->p2; 3779 iDb = pOp->p3; 3780 assert( iDb>=0 && iDb<db->nDb ); 3781 assert( DbMaskTest(p->btreeMask, iDb) ); 3782 pDb = &db->aDb[iDb]; 3783 pX = pDb->pBt; 3784 assert( pX!=0 ); 3785 if( pOp->opcode==OP_OpenWrite ){ 3786 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3787 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3788 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3789 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3790 p->minWriteFileFormat = pDb->pSchema->file_format; 3791 } 3792 }else{ 3793 wrFlag = 0; 3794 } 3795 if( pOp->p5 & OPFLAG_P2ISREG ){ 3796 assert( p2>0 ); 3797 assert( p2<=(p->nMem+1 - p->nCursor) ); 3798 assert( pOp->opcode==OP_OpenWrite ); 3799 pIn2 = &aMem[p2]; 3800 assert( memIsValid(pIn2) ); 3801 assert( (pIn2->flags & MEM_Int)!=0 ); 3802 sqlite3VdbeMemIntegerify(pIn2); 3803 p2 = (int)pIn2->u.i; 3804 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3805 ** that opcode will always set the p2 value to 2 or more or else fail. 3806 ** If there were a failure, the prepared statement would have halted 3807 ** before reaching this instruction. */ 3808 assert( p2>=2 ); 3809 } 3810 if( pOp->p4type==P4_KEYINFO ){ 3811 pKeyInfo = pOp->p4.pKeyInfo; 3812 assert( pKeyInfo->enc==ENC(db) ); 3813 assert( pKeyInfo->db==db ); 3814 nField = pKeyInfo->nAllField; 3815 }else if( pOp->p4type==P4_INT32 ){ 3816 nField = pOp->p4.i; 3817 } 3818 assert( pOp->p1>=0 ); 3819 assert( nField>=0 ); 3820 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3821 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3822 if( pCur==0 ) goto no_mem; 3823 pCur->nullRow = 1; 3824 pCur->isOrdered = 1; 3825 pCur->pgnoRoot = p2; 3826 #ifdef SQLITE_DEBUG 3827 pCur->wrFlag = wrFlag; 3828 #endif 3829 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3830 pCur->pKeyInfo = pKeyInfo; 3831 /* Set the VdbeCursor.isTable variable. Previous versions of 3832 ** SQLite used to check if the root-page flags were sane at this point 3833 ** and report database corruption if they were not, but this check has 3834 ** since moved into the btree layer. */ 3835 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3836 3837 open_cursor_set_hints: 3838 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3839 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3840 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3841 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3842 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3843 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3844 if( rc ) goto abort_due_to_error; 3845 break; 3846 } 3847 3848 /* Opcode: OpenDup P1 P2 * * * 3849 ** 3850 ** Open a new cursor P1 that points to the same ephemeral table as 3851 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3852 ** opcode. Only ephemeral cursors may be duplicated. 3853 ** 3854 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3855 */ 3856 case OP_OpenDup: { 3857 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3858 VdbeCursor *pCx; /* The new cursor */ 3859 3860 pOrig = p->apCsr[pOp->p2]; 3861 assert( pOrig ); 3862 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3863 3864 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3865 if( pCx==0 ) goto no_mem; 3866 pCx->nullRow = 1; 3867 pCx->isEphemeral = 1; 3868 pCx->pKeyInfo = pOrig->pKeyInfo; 3869 pCx->isTable = pOrig->isTable; 3870 pCx->pgnoRoot = pOrig->pgnoRoot; 3871 pCx->isOrdered = pOrig->isOrdered; 3872 rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3873 pCx->pKeyInfo, pCx->uc.pCursor); 3874 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3875 ** opened for a database. Since there is already an open cursor when this 3876 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3877 assert( rc==SQLITE_OK ); 3878 break; 3879 } 3880 3881 3882 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3883 ** Synopsis: nColumn=P2 3884 ** 3885 ** Open a new cursor P1 to a transient table. 3886 ** The cursor is always opened read/write even if 3887 ** the main database is read-only. The ephemeral 3888 ** table is deleted automatically when the cursor is closed. 3889 ** 3890 ** If the cursor P1 is already opened on an ephemeral table, the table 3891 ** is cleared (all content is erased). 3892 ** 3893 ** P2 is the number of columns in the ephemeral table. 3894 ** The cursor points to a BTree table if P4==0 and to a BTree index 3895 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3896 ** that defines the format of keys in the index. 3897 ** 3898 ** The P5 parameter can be a mask of the BTREE_* flags defined 3899 ** in btree.h. These flags control aspects of the operation of 3900 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3901 ** added automatically. 3902 */ 3903 /* Opcode: OpenAutoindex P1 P2 * P4 * 3904 ** Synopsis: nColumn=P2 3905 ** 3906 ** This opcode works the same as OP_OpenEphemeral. It has a 3907 ** different name to distinguish its use. Tables created using 3908 ** by this opcode will be used for automatically created transient 3909 ** indices in joins. 3910 */ 3911 case OP_OpenAutoindex: 3912 case OP_OpenEphemeral: { 3913 VdbeCursor *pCx; 3914 KeyInfo *pKeyInfo; 3915 3916 static const int vfsFlags = 3917 SQLITE_OPEN_READWRITE | 3918 SQLITE_OPEN_CREATE | 3919 SQLITE_OPEN_EXCLUSIVE | 3920 SQLITE_OPEN_DELETEONCLOSE | 3921 SQLITE_OPEN_TRANSIENT_DB; 3922 assert( pOp->p1>=0 ); 3923 assert( pOp->p2>=0 ); 3924 pCx = p->apCsr[pOp->p1]; 3925 if( pCx && pCx->pBtx ){ 3926 /* If the ephermeral table is already open, erase all existing content 3927 ** so that the table is empty again, rather than creating a new table. */ 3928 assert( pCx->isEphemeral ); 3929 pCx->seqCount = 0; 3930 pCx->cacheStatus = CACHE_STALE; 3931 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 3932 }else{ 3933 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3934 if( pCx==0 ) goto no_mem; 3935 pCx->isEphemeral = 1; 3936 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3937 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 3938 vfsFlags); 3939 if( rc==SQLITE_OK ){ 3940 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3941 } 3942 if( rc==SQLITE_OK ){ 3943 /* If a transient index is required, create it by calling 3944 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3945 ** opening it. If a transient table is required, just use the 3946 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3947 */ 3948 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3949 assert( pOp->p4type==P4_KEYINFO ); 3950 rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot, 3951 BTREE_BLOBKEY | pOp->p5); 3952 if( rc==SQLITE_OK ){ 3953 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 3954 assert( pKeyInfo->db==db ); 3955 assert( pKeyInfo->enc==ENC(db) ); 3956 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3957 pKeyInfo, pCx->uc.pCursor); 3958 } 3959 pCx->isTable = 0; 3960 }else{ 3961 pCx->pgnoRoot = SCHEMA_ROOT; 3962 rc = sqlite3BtreeCursor(pCx->pBtx, SCHEMA_ROOT, BTREE_WRCSR, 3963 0, pCx->uc.pCursor); 3964 pCx->isTable = 1; 3965 } 3966 } 3967 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3968 } 3969 if( rc ) goto abort_due_to_error; 3970 pCx->nullRow = 1; 3971 break; 3972 } 3973 3974 /* Opcode: SorterOpen P1 P2 P3 P4 * 3975 ** 3976 ** This opcode works like OP_OpenEphemeral except that it opens 3977 ** a transient index that is specifically designed to sort large 3978 ** tables using an external merge-sort algorithm. 3979 ** 3980 ** If argument P3 is non-zero, then it indicates that the sorter may 3981 ** assume that a stable sort considering the first P3 fields of each 3982 ** key is sufficient to produce the required results. 3983 */ 3984 case OP_SorterOpen: { 3985 VdbeCursor *pCx; 3986 3987 assert( pOp->p1>=0 ); 3988 assert( pOp->p2>=0 ); 3989 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3990 if( pCx==0 ) goto no_mem; 3991 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3992 assert( pCx->pKeyInfo->db==db ); 3993 assert( pCx->pKeyInfo->enc==ENC(db) ); 3994 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3995 if( rc ) goto abort_due_to_error; 3996 break; 3997 } 3998 3999 /* Opcode: SequenceTest P1 P2 * * * 4000 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4001 ** 4002 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4003 ** to P2. Regardless of whether or not the jump is taken, increment the 4004 ** the sequence value. 4005 */ 4006 case OP_SequenceTest: { 4007 VdbeCursor *pC; 4008 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4009 pC = p->apCsr[pOp->p1]; 4010 assert( isSorter(pC) ); 4011 if( (pC->seqCount++)==0 ){ 4012 goto jump_to_p2; 4013 } 4014 break; 4015 } 4016 4017 /* Opcode: OpenPseudo P1 P2 P3 * * 4018 ** Synopsis: P3 columns in r[P2] 4019 ** 4020 ** Open a new cursor that points to a fake table that contains a single 4021 ** row of data. The content of that one row is the content of memory 4022 ** register P2. In other words, cursor P1 becomes an alias for the 4023 ** MEM_Blob content contained in register P2. 4024 ** 4025 ** A pseudo-table created by this opcode is used to hold a single 4026 ** row output from the sorter so that the row can be decomposed into 4027 ** individual columns using the OP_Column opcode. The OP_Column opcode 4028 ** is the only cursor opcode that works with a pseudo-table. 4029 ** 4030 ** P3 is the number of fields in the records that will be stored by 4031 ** the pseudo-table. 4032 */ 4033 case OP_OpenPseudo: { 4034 VdbeCursor *pCx; 4035 4036 assert( pOp->p1>=0 ); 4037 assert( pOp->p3>=0 ); 4038 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 4039 if( pCx==0 ) goto no_mem; 4040 pCx->nullRow = 1; 4041 pCx->seekResult = pOp->p2; 4042 pCx->isTable = 1; 4043 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4044 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4045 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4046 ** which is a performance optimization */ 4047 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4048 assert( pOp->p5==0 ); 4049 break; 4050 } 4051 4052 /* Opcode: Close P1 * * * * 4053 ** 4054 ** Close a cursor previously opened as P1. If P1 is not 4055 ** currently open, this instruction is a no-op. 4056 */ 4057 case OP_Close: { 4058 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4059 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4060 p->apCsr[pOp->p1] = 0; 4061 break; 4062 } 4063 4064 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4065 /* Opcode: ColumnsUsed P1 * * P4 * 4066 ** 4067 ** This opcode (which only exists if SQLite was compiled with 4068 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4069 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4070 ** (P4_INT64) in which the first 63 bits are one for each of the 4071 ** first 63 columns of the table or index that are actually used 4072 ** by the cursor. The high-order bit is set if any column after 4073 ** the 64th is used. 4074 */ 4075 case OP_ColumnsUsed: { 4076 VdbeCursor *pC; 4077 pC = p->apCsr[pOp->p1]; 4078 assert( pC->eCurType==CURTYPE_BTREE ); 4079 pC->maskUsed = *(u64*)pOp->p4.pI64; 4080 break; 4081 } 4082 #endif 4083 4084 /* Opcode: SeekGE P1 P2 P3 P4 * 4085 ** Synopsis: key=r[P3@P4] 4086 ** 4087 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4088 ** use the value in register P3 as the key. If cursor P1 refers 4089 ** to an SQL index, then P3 is the first in an array of P4 registers 4090 ** that are used as an unpacked index key. 4091 ** 4092 ** Reposition cursor P1 so that it points to the smallest entry that 4093 ** is greater than or equal to the key value. If there are no records 4094 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4095 ** 4096 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4097 ** opcode will either land on a record that exactly matches the key, or 4098 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4099 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4100 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4101 ** IdxGT opcode will be used on subsequent loop iterations. The 4102 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4103 ** is an equality search. 4104 ** 4105 ** This opcode leaves the cursor configured to move in forward order, 4106 ** from the beginning toward the end. In other words, the cursor is 4107 ** configured to use Next, not Prev. 4108 ** 4109 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4110 */ 4111 /* Opcode: SeekGT P1 P2 P3 P4 * 4112 ** Synopsis: key=r[P3@P4] 4113 ** 4114 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4115 ** use the value in register P3 as a key. If cursor P1 refers 4116 ** to an SQL index, then P3 is the first in an array of P4 registers 4117 ** that are used as an unpacked index key. 4118 ** 4119 ** Reposition cursor P1 so that it points to the smallest entry that 4120 ** is greater than the key value. If there are no records greater than 4121 ** the key and P2 is not zero, then jump to P2. 4122 ** 4123 ** This opcode leaves the cursor configured to move in forward order, 4124 ** from the beginning toward the end. In other words, the cursor is 4125 ** configured to use Next, not Prev. 4126 ** 4127 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4128 */ 4129 /* Opcode: SeekLT P1 P2 P3 P4 * 4130 ** Synopsis: key=r[P3@P4] 4131 ** 4132 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4133 ** use the value in register P3 as a key. If cursor P1 refers 4134 ** to an SQL index, then P3 is the first in an array of P4 registers 4135 ** that are used as an unpacked index key. 4136 ** 4137 ** Reposition cursor P1 so that it points to the largest entry that 4138 ** is less than the key value. If there are no records less than 4139 ** the key and P2 is not zero, then jump to P2. 4140 ** 4141 ** This opcode leaves the cursor configured to move in reverse order, 4142 ** from the end toward the beginning. In other words, the cursor is 4143 ** configured to use Prev, not Next. 4144 ** 4145 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4146 */ 4147 /* Opcode: SeekLE P1 P2 P3 P4 * 4148 ** Synopsis: key=r[P3@P4] 4149 ** 4150 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4151 ** use the value in register P3 as a key. If cursor P1 refers 4152 ** to an SQL index, then P3 is the first in an array of P4 registers 4153 ** that are used as an unpacked index key. 4154 ** 4155 ** Reposition cursor P1 so that it points to the largest entry that 4156 ** is less than or equal to the key value. If there are no records 4157 ** less than or equal to the key and P2 is not zero, then jump to P2. 4158 ** 4159 ** This opcode leaves the cursor configured to move in reverse order, 4160 ** from the end toward the beginning. In other words, the cursor is 4161 ** configured to use Prev, not Next. 4162 ** 4163 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4164 ** opcode will either land on a record that exactly matches the key, or 4165 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4166 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4167 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4168 ** IdxGE opcode will be used on subsequent loop iterations. The 4169 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4170 ** is an equality search. 4171 ** 4172 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4173 */ 4174 case OP_SeekLT: /* jump, in3, group */ 4175 case OP_SeekLE: /* jump, in3, group */ 4176 case OP_SeekGE: /* jump, in3, group */ 4177 case OP_SeekGT: { /* jump, in3, group */ 4178 int res; /* Comparison result */ 4179 int oc; /* Opcode */ 4180 VdbeCursor *pC; /* The cursor to seek */ 4181 UnpackedRecord r; /* The key to seek for */ 4182 int nField; /* Number of columns or fields in the key */ 4183 i64 iKey; /* The rowid we are to seek to */ 4184 int eqOnly; /* Only interested in == results */ 4185 4186 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4187 assert( pOp->p2!=0 ); 4188 pC = p->apCsr[pOp->p1]; 4189 assert( pC!=0 ); 4190 assert( pC->eCurType==CURTYPE_BTREE ); 4191 assert( OP_SeekLE == OP_SeekLT+1 ); 4192 assert( OP_SeekGE == OP_SeekLT+2 ); 4193 assert( OP_SeekGT == OP_SeekLT+3 ); 4194 assert( pC->isOrdered ); 4195 assert( pC->uc.pCursor!=0 ); 4196 oc = pOp->opcode; 4197 eqOnly = 0; 4198 pC->nullRow = 0; 4199 #ifdef SQLITE_DEBUG 4200 pC->seekOp = pOp->opcode; 4201 #endif 4202 4203 pC->deferredMoveto = 0; 4204 pC->cacheStatus = CACHE_STALE; 4205 if( pC->isTable ){ 4206 u16 flags3, newType; 4207 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4208 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4209 || CORRUPT_DB ); 4210 4211 /* The input value in P3 might be of any type: integer, real, string, 4212 ** blob, or NULL. But it needs to be an integer before we can do 4213 ** the seek, so convert it. */ 4214 pIn3 = &aMem[pOp->p3]; 4215 flags3 = pIn3->flags; 4216 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4217 applyNumericAffinity(pIn3, 0); 4218 } 4219 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4220 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4221 pIn3->flags = flags3; /* But convert the type back to its original */ 4222 4223 /* If the P3 value could not be converted into an integer without 4224 ** loss of information, then special processing is required... */ 4225 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4226 if( (newType & MEM_Real)==0 ){ 4227 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4228 VdbeBranchTaken(1,2); 4229 goto jump_to_p2; 4230 }else{ 4231 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4232 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4233 goto seek_not_found; 4234 } 4235 }else 4236 4237 /* If the approximation iKey is larger than the actual real search 4238 ** term, substitute >= for > and < for <=. e.g. if the search term 4239 ** is 4.9 and the integer approximation 5: 4240 ** 4241 ** (x > 4.9) -> (x >= 5) 4242 ** (x <= 4.9) -> (x < 5) 4243 */ 4244 if( pIn3->u.r<(double)iKey ){ 4245 assert( OP_SeekGE==(OP_SeekGT-1) ); 4246 assert( OP_SeekLT==(OP_SeekLE-1) ); 4247 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4248 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4249 } 4250 4251 /* If the approximation iKey is smaller than the actual real search 4252 ** term, substitute <= for < and > for >=. */ 4253 else if( pIn3->u.r>(double)iKey ){ 4254 assert( OP_SeekLE==(OP_SeekLT+1) ); 4255 assert( OP_SeekGT==(OP_SeekGE+1) ); 4256 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4257 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4258 } 4259 } 4260 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 4261 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4262 if( rc!=SQLITE_OK ){ 4263 goto abort_due_to_error; 4264 } 4265 }else{ 4266 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4267 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4268 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4269 ** with the same key. 4270 */ 4271 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4272 eqOnly = 1; 4273 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4274 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4275 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4276 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4277 assert( pOp[1].p1==pOp[0].p1 ); 4278 assert( pOp[1].p2==pOp[0].p2 ); 4279 assert( pOp[1].p3==pOp[0].p3 ); 4280 assert( pOp[1].p4.i==pOp[0].p4.i ); 4281 } 4282 4283 nField = pOp->p4.i; 4284 assert( pOp->p4type==P4_INT32 ); 4285 assert( nField>0 ); 4286 r.pKeyInfo = pC->pKeyInfo; 4287 r.nField = (u16)nField; 4288 4289 /* The next line of code computes as follows, only faster: 4290 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4291 ** r.default_rc = -1; 4292 ** }else{ 4293 ** r.default_rc = +1; 4294 ** } 4295 */ 4296 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4297 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4298 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4299 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4300 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4301 4302 r.aMem = &aMem[pOp->p3]; 4303 #ifdef SQLITE_DEBUG 4304 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4305 #endif 4306 r.eqSeen = 0; 4307 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4308 if( rc!=SQLITE_OK ){ 4309 goto abort_due_to_error; 4310 } 4311 if( eqOnly && r.eqSeen==0 ){ 4312 assert( res!=0 ); 4313 goto seek_not_found; 4314 } 4315 } 4316 #ifdef SQLITE_TEST 4317 sqlite3_search_count++; 4318 #endif 4319 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4320 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4321 res = 0; 4322 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4323 if( rc!=SQLITE_OK ){ 4324 if( rc==SQLITE_DONE ){ 4325 rc = SQLITE_OK; 4326 res = 1; 4327 }else{ 4328 goto abort_due_to_error; 4329 } 4330 } 4331 }else{ 4332 res = 0; 4333 } 4334 }else{ 4335 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4336 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4337 res = 0; 4338 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4339 if( rc!=SQLITE_OK ){ 4340 if( rc==SQLITE_DONE ){ 4341 rc = SQLITE_OK; 4342 res = 1; 4343 }else{ 4344 goto abort_due_to_error; 4345 } 4346 } 4347 }else{ 4348 /* res might be negative because the table is empty. Check to 4349 ** see if this is the case. 4350 */ 4351 res = sqlite3BtreeEof(pC->uc.pCursor); 4352 } 4353 } 4354 seek_not_found: 4355 assert( pOp->p2>0 ); 4356 VdbeBranchTaken(res!=0,2); 4357 if( res ){ 4358 goto jump_to_p2; 4359 }else if( eqOnly ){ 4360 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4361 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4362 } 4363 break; 4364 } 4365 4366 /* Opcode: SeekHit P1 P2 * * * 4367 ** Synopsis: seekHit=P2 4368 ** 4369 ** Set the seekHit flag on cursor P1 to the value in P2. 4370 * The seekHit flag is used by the IfNoHope opcode. 4371 ** 4372 ** P1 must be a valid b-tree cursor. P2 must be a boolean value, 4373 ** either 0 or 1. 4374 */ 4375 case OP_SeekHit: { 4376 VdbeCursor *pC; 4377 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4378 pC = p->apCsr[pOp->p1]; 4379 assert( pC!=0 ); 4380 assert( pOp->p2==0 || pOp->p2==1 ); 4381 pC->seekHit = pOp->p2 & 1; 4382 break; 4383 } 4384 4385 /* Opcode: IfNotOpen P1 P2 * * * 4386 ** Synopsis: if( !csr[P1] ) goto P2 4387 ** 4388 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4389 */ 4390 case OP_IfNotOpen: { /* jump */ 4391 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4392 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4393 if( !p->apCsr[pOp->p1] ){ 4394 goto jump_to_p2_and_check_for_interrupt; 4395 } 4396 break; 4397 } 4398 4399 /* Opcode: Found P1 P2 P3 P4 * 4400 ** Synopsis: key=r[P3@P4] 4401 ** 4402 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4403 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4404 ** record. 4405 ** 4406 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4407 ** is a prefix of any entry in P1 then a jump is made to P2 and 4408 ** P1 is left pointing at the matching entry. 4409 ** 4410 ** This operation leaves the cursor in a state where it can be 4411 ** advanced in the forward direction. The Next instruction will work, 4412 ** but not the Prev instruction. 4413 ** 4414 ** See also: NotFound, NoConflict, NotExists. SeekGe 4415 */ 4416 /* Opcode: NotFound P1 P2 P3 P4 * 4417 ** Synopsis: key=r[P3@P4] 4418 ** 4419 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4420 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4421 ** record. 4422 ** 4423 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4424 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4425 ** does contain an entry whose prefix matches the P3/P4 record then control 4426 ** falls through to the next instruction and P1 is left pointing at the 4427 ** matching entry. 4428 ** 4429 ** This operation leaves the cursor in a state where it cannot be 4430 ** advanced in either direction. In other words, the Next and Prev 4431 ** opcodes do not work after this operation. 4432 ** 4433 ** See also: Found, NotExists, NoConflict, IfNoHope 4434 */ 4435 /* Opcode: IfNoHope P1 P2 P3 P4 * 4436 ** Synopsis: key=r[P3@P4] 4437 ** 4438 ** Register P3 is the first of P4 registers that form an unpacked 4439 ** record. 4440 ** 4441 ** Cursor P1 is on an index btree. If the seekHit flag is set on P1, then 4442 ** this opcode is a no-op. But if the seekHit flag of P1 is clear, then 4443 ** check to see if there is any entry in P1 that matches the 4444 ** prefix identified by P3 and P4. If no entry matches the prefix, 4445 ** jump to P2. Otherwise fall through. 4446 ** 4447 ** This opcode behaves like OP_NotFound if the seekHit 4448 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set. 4449 ** 4450 ** This opcode is used in IN clause processing for a multi-column key. 4451 ** If an IN clause is attached to an element of the key other than the 4452 ** left-most element, and if there are no matches on the most recent 4453 ** seek over the whole key, then it might be that one of the key element 4454 ** to the left is prohibiting a match, and hence there is "no hope" of 4455 ** any match regardless of how many IN clause elements are checked. 4456 ** In such a case, we abandon the IN clause search early, using this 4457 ** opcode. The opcode name comes from the fact that the 4458 ** jump is taken if there is "no hope" of achieving a match. 4459 ** 4460 ** See also: NotFound, SeekHit 4461 */ 4462 /* Opcode: NoConflict P1 P2 P3 P4 * 4463 ** Synopsis: key=r[P3@P4] 4464 ** 4465 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4466 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4467 ** record. 4468 ** 4469 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4470 ** contains any NULL value, jump immediately to P2. If all terms of the 4471 ** record are not-NULL then a check is done to determine if any row in the 4472 ** P1 index btree has a matching key prefix. If there are no matches, jump 4473 ** immediately to P2. If there is a match, fall through and leave the P1 4474 ** cursor pointing to the matching row. 4475 ** 4476 ** This opcode is similar to OP_NotFound with the exceptions that the 4477 ** branch is always taken if any part of the search key input is NULL. 4478 ** 4479 ** This operation leaves the cursor in a state where it cannot be 4480 ** advanced in either direction. In other words, the Next and Prev 4481 ** opcodes do not work after this operation. 4482 ** 4483 ** See also: NotFound, Found, NotExists 4484 */ 4485 case OP_IfNoHope: { /* jump, in3 */ 4486 VdbeCursor *pC; 4487 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4488 pC = p->apCsr[pOp->p1]; 4489 assert( pC!=0 ); 4490 if( pC->seekHit ) break; 4491 /* Fall through into OP_NotFound */ 4492 } 4493 case OP_NoConflict: /* jump, in3 */ 4494 case OP_NotFound: /* jump, in3 */ 4495 case OP_Found: { /* jump, in3 */ 4496 int alreadyExists; 4497 int takeJump; 4498 int ii; 4499 VdbeCursor *pC; 4500 int res; 4501 UnpackedRecord *pFree; 4502 UnpackedRecord *pIdxKey; 4503 UnpackedRecord r; 4504 4505 #ifdef SQLITE_TEST 4506 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4507 #endif 4508 4509 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4510 assert( pOp->p4type==P4_INT32 ); 4511 pC = p->apCsr[pOp->p1]; 4512 assert( pC!=0 ); 4513 #ifdef SQLITE_DEBUG 4514 pC->seekOp = pOp->opcode; 4515 #endif 4516 pIn3 = &aMem[pOp->p3]; 4517 assert( pC->eCurType==CURTYPE_BTREE ); 4518 assert( pC->uc.pCursor!=0 ); 4519 assert( pC->isTable==0 ); 4520 if( pOp->p4.i>0 ){ 4521 r.pKeyInfo = pC->pKeyInfo; 4522 r.nField = (u16)pOp->p4.i; 4523 r.aMem = pIn3; 4524 #ifdef SQLITE_DEBUG 4525 for(ii=0; ii<r.nField; ii++){ 4526 assert( memIsValid(&r.aMem[ii]) ); 4527 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4528 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4529 } 4530 #endif 4531 pIdxKey = &r; 4532 pFree = 0; 4533 }else{ 4534 assert( pIn3->flags & MEM_Blob ); 4535 rc = ExpandBlob(pIn3); 4536 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4537 if( rc ) goto no_mem; 4538 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4539 if( pIdxKey==0 ) goto no_mem; 4540 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4541 } 4542 pIdxKey->default_rc = 0; 4543 takeJump = 0; 4544 if( pOp->opcode==OP_NoConflict ){ 4545 /* For the OP_NoConflict opcode, take the jump if any of the 4546 ** input fields are NULL, since any key with a NULL will not 4547 ** conflict */ 4548 for(ii=0; ii<pIdxKey->nField; ii++){ 4549 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4550 takeJump = 1; 4551 break; 4552 } 4553 } 4554 } 4555 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4556 if( pFree ) sqlite3DbFreeNN(db, pFree); 4557 if( rc!=SQLITE_OK ){ 4558 goto abort_due_to_error; 4559 } 4560 pC->seekResult = res; 4561 alreadyExists = (res==0); 4562 pC->nullRow = 1-alreadyExists; 4563 pC->deferredMoveto = 0; 4564 pC->cacheStatus = CACHE_STALE; 4565 if( pOp->opcode==OP_Found ){ 4566 VdbeBranchTaken(alreadyExists!=0,2); 4567 if( alreadyExists ) goto jump_to_p2; 4568 }else{ 4569 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4570 if( takeJump || !alreadyExists ) goto jump_to_p2; 4571 } 4572 break; 4573 } 4574 4575 /* Opcode: SeekRowid P1 P2 P3 * * 4576 ** Synopsis: intkey=r[P3] 4577 ** 4578 ** P1 is the index of a cursor open on an SQL table btree (with integer 4579 ** keys). If register P3 does not contain an integer or if P1 does not 4580 ** contain a record with rowid P3 then jump immediately to P2. 4581 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4582 ** a record with rowid P3 then 4583 ** leave the cursor pointing at that record and fall through to the next 4584 ** instruction. 4585 ** 4586 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4587 ** the P3 register must be guaranteed to contain an integer value. With this 4588 ** opcode, register P3 might not contain an integer. 4589 ** 4590 ** The OP_NotFound opcode performs the same operation on index btrees 4591 ** (with arbitrary multi-value keys). 4592 ** 4593 ** This opcode leaves the cursor in a state where it cannot be advanced 4594 ** in either direction. In other words, the Next and Prev opcodes will 4595 ** not work following this opcode. 4596 ** 4597 ** See also: Found, NotFound, NoConflict, SeekRowid 4598 */ 4599 /* Opcode: NotExists P1 P2 P3 * * 4600 ** Synopsis: intkey=r[P3] 4601 ** 4602 ** P1 is the index of a cursor open on an SQL table btree (with integer 4603 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4604 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4605 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4606 ** leave the cursor pointing at that record and fall through to the next 4607 ** instruction. 4608 ** 4609 ** The OP_SeekRowid opcode performs the same operation but also allows the 4610 ** P3 register to contain a non-integer value, in which case the jump is 4611 ** always taken. This opcode requires that P3 always contain an integer. 4612 ** 4613 ** The OP_NotFound opcode performs the same operation on index btrees 4614 ** (with arbitrary multi-value keys). 4615 ** 4616 ** This opcode leaves the cursor in a state where it cannot be advanced 4617 ** in either direction. In other words, the Next and Prev opcodes will 4618 ** not work following this opcode. 4619 ** 4620 ** See also: Found, NotFound, NoConflict, SeekRowid 4621 */ 4622 case OP_SeekRowid: { /* jump, in3 */ 4623 VdbeCursor *pC; 4624 BtCursor *pCrsr; 4625 int res; 4626 u64 iKey; 4627 4628 pIn3 = &aMem[pOp->p3]; 4629 testcase( pIn3->flags & MEM_Int ); 4630 testcase( pIn3->flags & MEM_IntReal ); 4631 testcase( pIn3->flags & MEM_Real ); 4632 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 4633 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 4634 /* If pIn3->u.i does not contain an integer, compute iKey as the 4635 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 4636 ** into an integer without loss of information. Take care to avoid 4637 ** changing the datatype of pIn3, however, as it is used by other 4638 ** parts of the prepared statement. */ 4639 Mem x = pIn3[0]; 4640 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 4641 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 4642 iKey = x.u.i; 4643 goto notExistsWithKey; 4644 } 4645 /* Fall through into OP_NotExists */ 4646 case OP_NotExists: /* jump, in3 */ 4647 pIn3 = &aMem[pOp->p3]; 4648 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 4649 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4650 iKey = pIn3->u.i; 4651 notExistsWithKey: 4652 pC = p->apCsr[pOp->p1]; 4653 assert( pC!=0 ); 4654 #ifdef SQLITE_DEBUG 4655 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 4656 #endif 4657 assert( pC->isTable ); 4658 assert( pC->eCurType==CURTYPE_BTREE ); 4659 pCrsr = pC->uc.pCursor; 4660 assert( pCrsr!=0 ); 4661 res = 0; 4662 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4663 assert( rc==SQLITE_OK || res==0 ); 4664 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4665 pC->nullRow = 0; 4666 pC->cacheStatus = CACHE_STALE; 4667 pC->deferredMoveto = 0; 4668 VdbeBranchTaken(res!=0,2); 4669 pC->seekResult = res; 4670 if( res!=0 ){ 4671 assert( rc==SQLITE_OK ); 4672 if( pOp->p2==0 ){ 4673 rc = SQLITE_CORRUPT_BKPT; 4674 }else{ 4675 goto jump_to_p2; 4676 } 4677 } 4678 if( rc ) goto abort_due_to_error; 4679 break; 4680 } 4681 4682 /* Opcode: Sequence P1 P2 * * * 4683 ** Synopsis: r[P2]=cursor[P1].ctr++ 4684 ** 4685 ** Find the next available sequence number for cursor P1. 4686 ** Write the sequence number into register P2. 4687 ** The sequence number on the cursor is incremented after this 4688 ** instruction. 4689 */ 4690 case OP_Sequence: { /* out2 */ 4691 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4692 assert( p->apCsr[pOp->p1]!=0 ); 4693 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4694 pOut = out2Prerelease(p, pOp); 4695 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4696 break; 4697 } 4698 4699 4700 /* Opcode: NewRowid P1 P2 P3 * * 4701 ** Synopsis: r[P2]=rowid 4702 ** 4703 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4704 ** The record number is not previously used as a key in the database 4705 ** table that cursor P1 points to. The new record number is written 4706 ** written to register P2. 4707 ** 4708 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4709 ** the largest previously generated record number. No new record numbers are 4710 ** allowed to be less than this value. When this value reaches its maximum, 4711 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4712 ** generated record number. This P3 mechanism is used to help implement the 4713 ** AUTOINCREMENT feature. 4714 */ 4715 case OP_NewRowid: { /* out2 */ 4716 i64 v; /* The new rowid */ 4717 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4718 int res; /* Result of an sqlite3BtreeLast() */ 4719 int cnt; /* Counter to limit the number of searches */ 4720 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4721 VdbeFrame *pFrame; /* Root frame of VDBE */ 4722 4723 v = 0; 4724 res = 0; 4725 pOut = out2Prerelease(p, pOp); 4726 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4727 pC = p->apCsr[pOp->p1]; 4728 assert( pC!=0 ); 4729 assert( pC->isTable ); 4730 assert( pC->eCurType==CURTYPE_BTREE ); 4731 assert( pC->uc.pCursor!=0 ); 4732 { 4733 /* The next rowid or record number (different terms for the same 4734 ** thing) is obtained in a two-step algorithm. 4735 ** 4736 ** First we attempt to find the largest existing rowid and add one 4737 ** to that. But if the largest existing rowid is already the maximum 4738 ** positive integer, we have to fall through to the second 4739 ** probabilistic algorithm 4740 ** 4741 ** The second algorithm is to select a rowid at random and see if 4742 ** it already exists in the table. If it does not exist, we have 4743 ** succeeded. If the random rowid does exist, we select a new one 4744 ** and try again, up to 100 times. 4745 */ 4746 assert( pC->isTable ); 4747 4748 #ifdef SQLITE_32BIT_ROWID 4749 # define MAX_ROWID 0x7fffffff 4750 #else 4751 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4752 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4753 ** to provide the constant while making all compilers happy. 4754 */ 4755 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4756 #endif 4757 4758 if( !pC->useRandomRowid ){ 4759 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4760 if( rc!=SQLITE_OK ){ 4761 goto abort_due_to_error; 4762 } 4763 if( res ){ 4764 v = 1; /* IMP: R-61914-48074 */ 4765 }else{ 4766 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4767 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4768 if( v>=MAX_ROWID ){ 4769 pC->useRandomRowid = 1; 4770 }else{ 4771 v++; /* IMP: R-29538-34987 */ 4772 } 4773 } 4774 } 4775 4776 #ifndef SQLITE_OMIT_AUTOINCREMENT 4777 if( pOp->p3 ){ 4778 /* Assert that P3 is a valid memory cell. */ 4779 assert( pOp->p3>0 ); 4780 if( p->pFrame ){ 4781 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4782 /* Assert that P3 is a valid memory cell. */ 4783 assert( pOp->p3<=pFrame->nMem ); 4784 pMem = &pFrame->aMem[pOp->p3]; 4785 }else{ 4786 /* Assert that P3 is a valid memory cell. */ 4787 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4788 pMem = &aMem[pOp->p3]; 4789 memAboutToChange(p, pMem); 4790 } 4791 assert( memIsValid(pMem) ); 4792 4793 REGISTER_TRACE(pOp->p3, pMem); 4794 sqlite3VdbeMemIntegerify(pMem); 4795 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4796 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4797 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4798 goto abort_due_to_error; 4799 } 4800 if( v<pMem->u.i+1 ){ 4801 v = pMem->u.i + 1; 4802 } 4803 pMem->u.i = v; 4804 } 4805 #endif 4806 if( pC->useRandomRowid ){ 4807 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4808 ** largest possible integer (9223372036854775807) then the database 4809 ** engine starts picking positive candidate ROWIDs at random until 4810 ** it finds one that is not previously used. */ 4811 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4812 ** an AUTOINCREMENT table. */ 4813 cnt = 0; 4814 do{ 4815 sqlite3_randomness(sizeof(v), &v); 4816 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4817 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4818 0, &res))==SQLITE_OK) 4819 && (res==0) 4820 && (++cnt<100)); 4821 if( rc ) goto abort_due_to_error; 4822 if( res==0 ){ 4823 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4824 goto abort_due_to_error; 4825 } 4826 assert( v>0 ); /* EV: R-40812-03570 */ 4827 } 4828 pC->deferredMoveto = 0; 4829 pC->cacheStatus = CACHE_STALE; 4830 } 4831 pOut->u.i = v; 4832 break; 4833 } 4834 4835 /* Opcode: Insert P1 P2 P3 P4 P5 4836 ** Synopsis: intkey=r[P3] data=r[P2] 4837 ** 4838 ** Write an entry into the table of cursor P1. A new entry is 4839 ** created if it doesn't already exist or the data for an existing 4840 ** entry is overwritten. The data is the value MEM_Blob stored in register 4841 ** number P2. The key is stored in register P3. The key must 4842 ** be a MEM_Int. 4843 ** 4844 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4845 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4846 ** then rowid is stored for subsequent return by the 4847 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4848 ** 4849 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4850 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4851 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4852 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4853 ** 4854 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4855 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4856 ** is part of an INSERT operation. The difference is only important to 4857 ** the update hook. 4858 ** 4859 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4860 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4861 ** following a successful insert. 4862 ** 4863 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4864 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4865 ** and register P2 becomes ephemeral. If the cursor is changed, the 4866 ** value of register P2 will then change. Make sure this does not 4867 ** cause any problems.) 4868 ** 4869 ** This instruction only works on tables. The equivalent instruction 4870 ** for indices is OP_IdxInsert. 4871 */ 4872 case OP_Insert: { 4873 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4874 Mem *pKey; /* MEM cell holding key for the record */ 4875 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4876 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4877 const char *zDb; /* database name - used by the update hook */ 4878 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4879 BtreePayload x; /* Payload to be inserted */ 4880 4881 pData = &aMem[pOp->p2]; 4882 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4883 assert( memIsValid(pData) ); 4884 pC = p->apCsr[pOp->p1]; 4885 assert( pC!=0 ); 4886 assert( pC->eCurType==CURTYPE_BTREE ); 4887 assert( pC->deferredMoveto==0 ); 4888 assert( pC->uc.pCursor!=0 ); 4889 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4890 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4891 REGISTER_TRACE(pOp->p2, pData); 4892 sqlite3VdbeIncrWriteCounter(p, pC); 4893 4894 pKey = &aMem[pOp->p3]; 4895 assert( pKey->flags & MEM_Int ); 4896 assert( memIsValid(pKey) ); 4897 REGISTER_TRACE(pOp->p3, pKey); 4898 x.nKey = pKey->u.i; 4899 4900 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4901 assert( pC->iDb>=0 ); 4902 zDb = db->aDb[pC->iDb].zDbSName; 4903 pTab = pOp->p4.pTab; 4904 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4905 }else{ 4906 pTab = 0; 4907 zDb = 0; /* Not needed. Silence a compiler warning. */ 4908 } 4909 4910 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4911 /* Invoke the pre-update hook, if any */ 4912 if( pTab ){ 4913 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 4914 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 4915 } 4916 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 4917 /* Prevent post-update hook from running in cases when it should not */ 4918 pTab = 0; 4919 } 4920 } 4921 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4922 #endif 4923 4924 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4925 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4926 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4927 x.pData = pData->z; 4928 x.nData = pData->n; 4929 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4930 if( pData->flags & MEM_Zero ){ 4931 x.nZero = pData->u.nZero; 4932 }else{ 4933 x.nZero = 0; 4934 } 4935 x.pKey = 0; 4936 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4937 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4938 ); 4939 pC->deferredMoveto = 0; 4940 pC->cacheStatus = CACHE_STALE; 4941 4942 /* Invoke the update-hook if required. */ 4943 if( rc ) goto abort_due_to_error; 4944 if( pTab ){ 4945 assert( db->xUpdateCallback!=0 ); 4946 assert( pTab->aCol!=0 ); 4947 db->xUpdateCallback(db->pUpdateArg, 4948 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 4949 zDb, pTab->zName, x.nKey); 4950 } 4951 break; 4952 } 4953 4954 /* Opcode: Delete P1 P2 P3 P4 P5 4955 ** 4956 ** Delete the record at which the P1 cursor is currently pointing. 4957 ** 4958 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4959 ** the cursor will be left pointing at either the next or the previous 4960 ** record in the table. If it is left pointing at the next record, then 4961 ** the next Next instruction will be a no-op. As a result, in this case 4962 ** it is ok to delete a record from within a Next loop. If 4963 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4964 ** left in an undefined state. 4965 ** 4966 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4967 ** delete one of several associated with deleting a table row and all its 4968 ** associated index entries. Exactly one of those deletes is the "primary" 4969 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4970 ** marked with the AUXDELETE flag. 4971 ** 4972 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4973 ** change count is incremented (otherwise not). 4974 ** 4975 ** P1 must not be pseudo-table. It has to be a real table with 4976 ** multiple rows. 4977 ** 4978 ** If P4 is not NULL then it points to a Table object. In this case either 4979 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4980 ** have been positioned using OP_NotFound prior to invoking this opcode in 4981 ** this case. Specifically, if one is configured, the pre-update hook is 4982 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4983 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4984 ** 4985 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4986 ** of the memory cell that contains the value that the rowid of the row will 4987 ** be set to by the update. 4988 */ 4989 case OP_Delete: { 4990 VdbeCursor *pC; 4991 const char *zDb; 4992 Table *pTab; 4993 int opflags; 4994 4995 opflags = pOp->p2; 4996 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4997 pC = p->apCsr[pOp->p1]; 4998 assert( pC!=0 ); 4999 assert( pC->eCurType==CURTYPE_BTREE ); 5000 assert( pC->uc.pCursor!=0 ); 5001 assert( pC->deferredMoveto==0 ); 5002 sqlite3VdbeIncrWriteCounter(p, pC); 5003 5004 #ifdef SQLITE_DEBUG 5005 if( pOp->p4type==P4_TABLE 5006 && HasRowid(pOp->p4.pTab) 5007 && pOp->p5==0 5008 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5009 ){ 5010 /* If p5 is zero, the seek operation that positioned the cursor prior to 5011 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5012 ** the row that is being deleted */ 5013 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5014 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5015 } 5016 #endif 5017 5018 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5019 ** the name of the db to pass as to it. Also set local pTab to a copy 5020 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5021 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5022 ** VdbeCursor.movetoTarget to the current rowid. */ 5023 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5024 assert( pC->iDb>=0 ); 5025 assert( pOp->p4.pTab!=0 ); 5026 zDb = db->aDb[pC->iDb].zDbSName; 5027 pTab = pOp->p4.pTab; 5028 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5029 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5030 } 5031 }else{ 5032 zDb = 0; /* Not needed. Silence a compiler warning. */ 5033 pTab = 0; /* Not needed. Silence a compiler warning. */ 5034 } 5035 5036 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5037 /* Invoke the pre-update-hook if required. */ 5038 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 5039 assert( !(opflags & OPFLAG_ISUPDATE) 5040 || HasRowid(pTab)==0 5041 || (aMem[pOp->p3].flags & MEM_Int) 5042 ); 5043 sqlite3VdbePreUpdateHook(p, pC, 5044 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5045 zDb, pTab, pC->movetoTarget, 5046 pOp->p3 5047 ); 5048 } 5049 if( opflags & OPFLAG_ISNOOP ) break; 5050 #endif 5051 5052 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5053 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5054 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5055 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5056 5057 #ifdef SQLITE_DEBUG 5058 if( p->pFrame==0 ){ 5059 if( pC->isEphemeral==0 5060 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5061 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5062 ){ 5063 nExtraDelete++; 5064 } 5065 if( pOp->p2 & OPFLAG_NCHANGE ){ 5066 nExtraDelete--; 5067 } 5068 } 5069 #endif 5070 5071 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5072 pC->cacheStatus = CACHE_STALE; 5073 pC->seekResult = 0; 5074 if( rc ) goto abort_due_to_error; 5075 5076 /* Invoke the update-hook if required. */ 5077 if( opflags & OPFLAG_NCHANGE ){ 5078 p->nChange++; 5079 if( db->xUpdateCallback && HasRowid(pTab) ){ 5080 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5081 pC->movetoTarget); 5082 assert( pC->iDb>=0 ); 5083 } 5084 } 5085 5086 break; 5087 } 5088 /* Opcode: ResetCount * * * * * 5089 ** 5090 ** The value of the change counter is copied to the database handle 5091 ** change counter (returned by subsequent calls to sqlite3_changes()). 5092 ** Then the VMs internal change counter resets to 0. 5093 ** This is used by trigger programs. 5094 */ 5095 case OP_ResetCount: { 5096 sqlite3VdbeSetChanges(db, p->nChange); 5097 p->nChange = 0; 5098 break; 5099 } 5100 5101 /* Opcode: SorterCompare P1 P2 P3 P4 5102 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5103 ** 5104 ** P1 is a sorter cursor. This instruction compares a prefix of the 5105 ** record blob in register P3 against a prefix of the entry that 5106 ** the sorter cursor currently points to. Only the first P4 fields 5107 ** of r[P3] and the sorter record are compared. 5108 ** 5109 ** If either P3 or the sorter contains a NULL in one of their significant 5110 ** fields (not counting the P4 fields at the end which are ignored) then 5111 ** the comparison is assumed to be equal. 5112 ** 5113 ** Fall through to next instruction if the two records compare equal to 5114 ** each other. Jump to P2 if they are different. 5115 */ 5116 case OP_SorterCompare: { 5117 VdbeCursor *pC; 5118 int res; 5119 int nKeyCol; 5120 5121 pC = p->apCsr[pOp->p1]; 5122 assert( isSorter(pC) ); 5123 assert( pOp->p4type==P4_INT32 ); 5124 pIn3 = &aMem[pOp->p3]; 5125 nKeyCol = pOp->p4.i; 5126 res = 0; 5127 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5128 VdbeBranchTaken(res!=0,2); 5129 if( rc ) goto abort_due_to_error; 5130 if( res ) goto jump_to_p2; 5131 break; 5132 }; 5133 5134 /* Opcode: SorterData P1 P2 P3 * * 5135 ** Synopsis: r[P2]=data 5136 ** 5137 ** Write into register P2 the current sorter data for sorter cursor P1. 5138 ** Then clear the column header cache on cursor P3. 5139 ** 5140 ** This opcode is normally use to move a record out of the sorter and into 5141 ** a register that is the source for a pseudo-table cursor created using 5142 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5143 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5144 ** us from having to issue a separate NullRow instruction to clear that cache. 5145 */ 5146 case OP_SorterData: { 5147 VdbeCursor *pC; 5148 5149 pOut = &aMem[pOp->p2]; 5150 pC = p->apCsr[pOp->p1]; 5151 assert( isSorter(pC) ); 5152 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5153 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5154 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5155 if( rc ) goto abort_due_to_error; 5156 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5157 break; 5158 } 5159 5160 /* Opcode: RowData P1 P2 P3 * * 5161 ** Synopsis: r[P2]=data 5162 ** 5163 ** Write into register P2 the complete row content for the row at 5164 ** which cursor P1 is currently pointing. 5165 ** There is no interpretation of the data. 5166 ** It is just copied onto the P2 register exactly as 5167 ** it is found in the database file. 5168 ** 5169 ** If cursor P1 is an index, then the content is the key of the row. 5170 ** If cursor P2 is a table, then the content extracted is the data. 5171 ** 5172 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5173 ** of a real table, not a pseudo-table. 5174 ** 5175 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5176 ** into the database page. That means that the content of the output 5177 ** register will be invalidated as soon as the cursor moves - including 5178 ** moves caused by other cursors that "save" the current cursors 5179 ** position in order that they can write to the same table. If P3==0 5180 ** then a copy of the data is made into memory. P3!=0 is faster, but 5181 ** P3==0 is safer. 5182 ** 5183 ** If P3!=0 then the content of the P2 register is unsuitable for use 5184 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5185 ** The P2 register content is invalidated by opcodes like OP_Function or 5186 ** by any use of another cursor pointing to the same table. 5187 */ 5188 case OP_RowData: { 5189 VdbeCursor *pC; 5190 BtCursor *pCrsr; 5191 u32 n; 5192 5193 pOut = out2Prerelease(p, pOp); 5194 5195 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5196 pC = p->apCsr[pOp->p1]; 5197 assert( pC!=0 ); 5198 assert( pC->eCurType==CURTYPE_BTREE ); 5199 assert( isSorter(pC)==0 ); 5200 assert( pC->nullRow==0 ); 5201 assert( pC->uc.pCursor!=0 ); 5202 pCrsr = pC->uc.pCursor; 5203 5204 /* The OP_RowData opcodes always follow OP_NotExists or 5205 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5206 ** that might invalidate the cursor. 5207 ** If this where not the case, on of the following assert()s 5208 ** would fail. Should this ever change (because of changes in the code 5209 ** generator) then the fix would be to insert a call to 5210 ** sqlite3VdbeCursorMoveto(). 5211 */ 5212 assert( pC->deferredMoveto==0 ); 5213 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5214 #if 0 /* Not required due to the previous to assert() statements */ 5215 rc = sqlite3VdbeCursorMoveto(pC); 5216 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5217 #endif 5218 5219 n = sqlite3BtreePayloadSize(pCrsr); 5220 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5221 goto too_big; 5222 } 5223 testcase( n==0 ); 5224 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5225 if( rc ) goto abort_due_to_error; 5226 if( !pOp->p3 ) Deephemeralize(pOut); 5227 UPDATE_MAX_BLOBSIZE(pOut); 5228 REGISTER_TRACE(pOp->p2, pOut); 5229 break; 5230 } 5231 5232 /* Opcode: Rowid P1 P2 * * * 5233 ** Synopsis: r[P2]=rowid 5234 ** 5235 ** Store in register P2 an integer which is the key of the table entry that 5236 ** P1 is currently point to. 5237 ** 5238 ** P1 can be either an ordinary table or a virtual table. There used to 5239 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5240 ** one opcode now works for both table types. 5241 */ 5242 case OP_Rowid: { /* out2 */ 5243 VdbeCursor *pC; 5244 i64 v; 5245 sqlite3_vtab *pVtab; 5246 const sqlite3_module *pModule; 5247 5248 pOut = out2Prerelease(p, pOp); 5249 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5250 pC = p->apCsr[pOp->p1]; 5251 assert( pC!=0 ); 5252 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5253 if( pC->nullRow ){ 5254 pOut->flags = MEM_Null; 5255 break; 5256 }else if( pC->deferredMoveto ){ 5257 v = pC->movetoTarget; 5258 #ifndef SQLITE_OMIT_VIRTUALTABLE 5259 }else if( pC->eCurType==CURTYPE_VTAB ){ 5260 assert( pC->uc.pVCur!=0 ); 5261 pVtab = pC->uc.pVCur->pVtab; 5262 pModule = pVtab->pModule; 5263 assert( pModule->xRowid ); 5264 rc = pModule->xRowid(pC->uc.pVCur, &v); 5265 sqlite3VtabImportErrmsg(p, pVtab); 5266 if( rc ) goto abort_due_to_error; 5267 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5268 }else{ 5269 assert( pC->eCurType==CURTYPE_BTREE ); 5270 assert( pC->uc.pCursor!=0 ); 5271 rc = sqlite3VdbeCursorRestore(pC); 5272 if( rc ) goto abort_due_to_error; 5273 if( pC->nullRow ){ 5274 pOut->flags = MEM_Null; 5275 break; 5276 } 5277 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5278 } 5279 pOut->u.i = v; 5280 break; 5281 } 5282 5283 /* Opcode: NullRow P1 * * * * 5284 ** 5285 ** Move the cursor P1 to a null row. Any OP_Column operations 5286 ** that occur while the cursor is on the null row will always 5287 ** write a NULL. 5288 */ 5289 case OP_NullRow: { 5290 VdbeCursor *pC; 5291 5292 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5293 pC = p->apCsr[pOp->p1]; 5294 assert( pC!=0 ); 5295 pC->nullRow = 1; 5296 pC->cacheStatus = CACHE_STALE; 5297 if( pC->eCurType==CURTYPE_BTREE ){ 5298 assert( pC->uc.pCursor!=0 ); 5299 sqlite3BtreeClearCursor(pC->uc.pCursor); 5300 } 5301 #ifdef SQLITE_DEBUG 5302 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5303 #endif 5304 break; 5305 } 5306 5307 /* Opcode: SeekEnd P1 * * * * 5308 ** 5309 ** Position cursor P1 at the end of the btree for the purpose of 5310 ** appending a new entry onto the btree. 5311 ** 5312 ** It is assumed that the cursor is used only for appending and so 5313 ** if the cursor is valid, then the cursor must already be pointing 5314 ** at the end of the btree and so no changes are made to 5315 ** the cursor. 5316 */ 5317 /* Opcode: Last P1 P2 * * * 5318 ** 5319 ** The next use of the Rowid or Column or Prev instruction for P1 5320 ** will refer to the last entry in the database table or index. 5321 ** If the table or index is empty and P2>0, then jump immediately to P2. 5322 ** If P2 is 0 or if the table or index is not empty, fall through 5323 ** to the following instruction. 5324 ** 5325 ** This opcode leaves the cursor configured to move in reverse order, 5326 ** from the end toward the beginning. In other words, the cursor is 5327 ** configured to use Prev, not Next. 5328 */ 5329 case OP_SeekEnd: 5330 case OP_Last: { /* jump */ 5331 VdbeCursor *pC; 5332 BtCursor *pCrsr; 5333 int res; 5334 5335 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5336 pC = p->apCsr[pOp->p1]; 5337 assert( pC!=0 ); 5338 assert( pC->eCurType==CURTYPE_BTREE ); 5339 pCrsr = pC->uc.pCursor; 5340 res = 0; 5341 assert( pCrsr!=0 ); 5342 #ifdef SQLITE_DEBUG 5343 pC->seekOp = pOp->opcode; 5344 #endif 5345 if( pOp->opcode==OP_SeekEnd ){ 5346 assert( pOp->p2==0 ); 5347 pC->seekResult = -1; 5348 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5349 break; 5350 } 5351 } 5352 rc = sqlite3BtreeLast(pCrsr, &res); 5353 pC->nullRow = (u8)res; 5354 pC->deferredMoveto = 0; 5355 pC->cacheStatus = CACHE_STALE; 5356 if( rc ) goto abort_due_to_error; 5357 if( pOp->p2>0 ){ 5358 VdbeBranchTaken(res!=0,2); 5359 if( res ) goto jump_to_p2; 5360 } 5361 break; 5362 } 5363 5364 /* Opcode: IfSmaller P1 P2 P3 * * 5365 ** 5366 ** Estimate the number of rows in the table P1. Jump to P2 if that 5367 ** estimate is less than approximately 2**(0.1*P3). 5368 */ 5369 case OP_IfSmaller: { /* jump */ 5370 VdbeCursor *pC; 5371 BtCursor *pCrsr; 5372 int res; 5373 i64 sz; 5374 5375 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5376 pC = p->apCsr[pOp->p1]; 5377 assert( pC!=0 ); 5378 pCrsr = pC->uc.pCursor; 5379 assert( pCrsr ); 5380 rc = sqlite3BtreeFirst(pCrsr, &res); 5381 if( rc ) goto abort_due_to_error; 5382 if( res==0 ){ 5383 sz = sqlite3BtreeRowCountEst(pCrsr); 5384 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5385 } 5386 VdbeBranchTaken(res!=0,2); 5387 if( res ) goto jump_to_p2; 5388 break; 5389 } 5390 5391 5392 /* Opcode: SorterSort P1 P2 * * * 5393 ** 5394 ** After all records have been inserted into the Sorter object 5395 ** identified by P1, invoke this opcode to actually do the sorting. 5396 ** Jump to P2 if there are no records to be sorted. 5397 ** 5398 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5399 ** for Sorter objects. 5400 */ 5401 /* Opcode: Sort P1 P2 * * * 5402 ** 5403 ** This opcode does exactly the same thing as OP_Rewind except that 5404 ** it increments an undocumented global variable used for testing. 5405 ** 5406 ** Sorting is accomplished by writing records into a sorting index, 5407 ** then rewinding that index and playing it back from beginning to 5408 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5409 ** rewinding so that the global variable will be incremented and 5410 ** regression tests can determine whether or not the optimizer is 5411 ** correctly optimizing out sorts. 5412 */ 5413 case OP_SorterSort: /* jump */ 5414 case OP_Sort: { /* jump */ 5415 #ifdef SQLITE_TEST 5416 sqlite3_sort_count++; 5417 sqlite3_search_count--; 5418 #endif 5419 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5420 /* Fall through into OP_Rewind */ 5421 } 5422 /* Opcode: Rewind P1 P2 * * * 5423 ** 5424 ** The next use of the Rowid or Column or Next instruction for P1 5425 ** will refer to the first entry in the database table or index. 5426 ** If the table or index is empty, jump immediately to P2. 5427 ** If the table or index is not empty, fall through to the following 5428 ** instruction. 5429 ** 5430 ** This opcode leaves the cursor configured to move in forward order, 5431 ** from the beginning toward the end. In other words, the cursor is 5432 ** configured to use Next, not Prev. 5433 */ 5434 case OP_Rewind: { /* jump */ 5435 VdbeCursor *pC; 5436 BtCursor *pCrsr; 5437 int res; 5438 5439 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5440 assert( pOp->p5==0 ); 5441 pC = p->apCsr[pOp->p1]; 5442 assert( pC!=0 ); 5443 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5444 res = 1; 5445 #ifdef SQLITE_DEBUG 5446 pC->seekOp = OP_Rewind; 5447 #endif 5448 if( isSorter(pC) ){ 5449 rc = sqlite3VdbeSorterRewind(pC, &res); 5450 }else{ 5451 assert( pC->eCurType==CURTYPE_BTREE ); 5452 pCrsr = pC->uc.pCursor; 5453 assert( pCrsr ); 5454 rc = sqlite3BtreeFirst(pCrsr, &res); 5455 pC->deferredMoveto = 0; 5456 pC->cacheStatus = CACHE_STALE; 5457 } 5458 if( rc ) goto abort_due_to_error; 5459 pC->nullRow = (u8)res; 5460 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5461 VdbeBranchTaken(res!=0,2); 5462 if( res ) goto jump_to_p2; 5463 break; 5464 } 5465 5466 /* Opcode: Next P1 P2 P3 P4 P5 5467 ** 5468 ** Advance cursor P1 so that it points to the next key/data pair in its 5469 ** table or index. If there are no more key/value pairs then fall through 5470 ** to the following instruction. But if the cursor advance was successful, 5471 ** jump immediately to P2. 5472 ** 5473 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5474 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5475 ** to follow SeekLT, SeekLE, or OP_Last. 5476 ** 5477 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5478 ** been opened prior to this opcode or the program will segfault. 5479 ** 5480 ** The P3 value is a hint to the btree implementation. If P3==1, that 5481 ** means P1 is an SQL index and that this instruction could have been 5482 ** omitted if that index had been unique. P3 is usually 0. P3 is 5483 ** always either 0 or 1. 5484 ** 5485 ** P4 is always of type P4_ADVANCE. The function pointer points to 5486 ** sqlite3BtreeNext(). 5487 ** 5488 ** If P5 is positive and the jump is taken, then event counter 5489 ** number P5-1 in the prepared statement is incremented. 5490 ** 5491 ** See also: Prev 5492 */ 5493 /* Opcode: Prev P1 P2 P3 P4 P5 5494 ** 5495 ** Back up cursor P1 so that it points to the previous key/data pair in its 5496 ** table or index. If there is no previous key/value pairs then fall through 5497 ** to the following instruction. But if the cursor backup was successful, 5498 ** jump immediately to P2. 5499 ** 5500 ** 5501 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5502 ** OP_Last opcode used to position the cursor. Prev is not allowed 5503 ** to follow SeekGT, SeekGE, or OP_Rewind. 5504 ** 5505 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5506 ** not open then the behavior is undefined. 5507 ** 5508 ** The P3 value is a hint to the btree implementation. If P3==1, that 5509 ** means P1 is an SQL index and that this instruction could have been 5510 ** omitted if that index had been unique. P3 is usually 0. P3 is 5511 ** always either 0 or 1. 5512 ** 5513 ** P4 is always of type P4_ADVANCE. The function pointer points to 5514 ** sqlite3BtreePrevious(). 5515 ** 5516 ** If P5 is positive and the jump is taken, then event counter 5517 ** number P5-1 in the prepared statement is incremented. 5518 */ 5519 /* Opcode: SorterNext P1 P2 * * P5 5520 ** 5521 ** This opcode works just like OP_Next except that P1 must be a 5522 ** sorter object for which the OP_SorterSort opcode has been 5523 ** invoked. This opcode advances the cursor to the next sorted 5524 ** record, or jumps to P2 if there are no more sorted records. 5525 */ 5526 case OP_SorterNext: { /* jump */ 5527 VdbeCursor *pC; 5528 5529 pC = p->apCsr[pOp->p1]; 5530 assert( isSorter(pC) ); 5531 rc = sqlite3VdbeSorterNext(db, pC); 5532 goto next_tail; 5533 case OP_Prev: /* jump */ 5534 case OP_Next: /* jump */ 5535 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5536 assert( pOp->p5<ArraySize(p->aCounter) ); 5537 pC = p->apCsr[pOp->p1]; 5538 assert( pC!=0 ); 5539 assert( pC->deferredMoveto==0 ); 5540 assert( pC->eCurType==CURTYPE_BTREE ); 5541 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5542 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5543 5544 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5545 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5546 assert( pOp->opcode!=OP_Next 5547 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5548 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5549 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5550 || pC->seekOp==OP_IfNoHope); 5551 assert( pOp->opcode!=OP_Prev 5552 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5553 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5554 || pC->seekOp==OP_NullRow); 5555 5556 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5557 next_tail: 5558 pC->cacheStatus = CACHE_STALE; 5559 VdbeBranchTaken(rc==SQLITE_OK,2); 5560 if( rc==SQLITE_OK ){ 5561 pC->nullRow = 0; 5562 p->aCounter[pOp->p5]++; 5563 #ifdef SQLITE_TEST 5564 sqlite3_search_count++; 5565 #endif 5566 goto jump_to_p2_and_check_for_interrupt; 5567 } 5568 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5569 rc = SQLITE_OK; 5570 pC->nullRow = 1; 5571 goto check_for_interrupt; 5572 } 5573 5574 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5575 ** Synopsis: key=r[P2] 5576 ** 5577 ** Register P2 holds an SQL index key made using the 5578 ** MakeRecord instructions. This opcode writes that key 5579 ** into the index P1. Data for the entry is nil. 5580 ** 5581 ** If P4 is not zero, then it is the number of values in the unpacked 5582 ** key of reg(P2). In that case, P3 is the index of the first register 5583 ** for the unpacked key. The availability of the unpacked key can sometimes 5584 ** be an optimization. 5585 ** 5586 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5587 ** that this insert is likely to be an append. 5588 ** 5589 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5590 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5591 ** then the change counter is unchanged. 5592 ** 5593 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5594 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5595 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5596 ** seeks on the cursor or if the most recent seek used a key equivalent 5597 ** to P2. 5598 ** 5599 ** This instruction only works for indices. The equivalent instruction 5600 ** for tables is OP_Insert. 5601 */ 5602 case OP_IdxInsert: { /* in2 */ 5603 VdbeCursor *pC; 5604 BtreePayload x; 5605 5606 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5607 pC = p->apCsr[pOp->p1]; 5608 sqlite3VdbeIncrWriteCounter(p, pC); 5609 assert( pC!=0 ); 5610 assert( !isSorter(pC) ); 5611 pIn2 = &aMem[pOp->p2]; 5612 assert( pIn2->flags & MEM_Blob ); 5613 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5614 assert( pC->eCurType==CURTYPE_BTREE ); 5615 assert( pC->isTable==0 ); 5616 rc = ExpandBlob(pIn2); 5617 if( rc ) goto abort_due_to_error; 5618 x.nKey = pIn2->n; 5619 x.pKey = pIn2->z; 5620 x.aMem = aMem + pOp->p3; 5621 x.nMem = (u16)pOp->p4.i; 5622 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5623 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5624 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5625 ); 5626 assert( pC->deferredMoveto==0 ); 5627 pC->cacheStatus = CACHE_STALE; 5628 if( rc) goto abort_due_to_error; 5629 break; 5630 } 5631 5632 /* Opcode: SorterInsert P1 P2 * * * 5633 ** Synopsis: key=r[P2] 5634 ** 5635 ** Register P2 holds an SQL index key made using the 5636 ** MakeRecord instructions. This opcode writes that key 5637 ** into the sorter P1. Data for the entry is nil. 5638 */ 5639 case OP_SorterInsert: { /* in2 */ 5640 VdbeCursor *pC; 5641 5642 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5643 pC = p->apCsr[pOp->p1]; 5644 sqlite3VdbeIncrWriteCounter(p, pC); 5645 assert( pC!=0 ); 5646 assert( isSorter(pC) ); 5647 pIn2 = &aMem[pOp->p2]; 5648 assert( pIn2->flags & MEM_Blob ); 5649 assert( pC->isTable==0 ); 5650 rc = ExpandBlob(pIn2); 5651 if( rc ) goto abort_due_to_error; 5652 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5653 if( rc) goto abort_due_to_error; 5654 break; 5655 } 5656 5657 /* Opcode: IdxDelete P1 P2 P3 * P5 5658 ** Synopsis: key=r[P2@P3] 5659 ** 5660 ** The content of P3 registers starting at register P2 form 5661 ** an unpacked index key. This opcode removes that entry from the 5662 ** index opened by cursor P1. 5663 ** 5664 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 5665 ** if no matching index entry is found. This happens when running 5666 ** an UPDATE or DELETE statement and the index entry to be updated 5667 ** or deleted is not found. For some uses of IdxDelete 5668 ** (example: the EXCEPT operator) it does not matter that no matching 5669 ** entry is found. For those cases, P5 is zero. 5670 */ 5671 case OP_IdxDelete: { 5672 VdbeCursor *pC; 5673 BtCursor *pCrsr; 5674 int res; 5675 UnpackedRecord r; 5676 5677 assert( pOp->p3>0 ); 5678 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5679 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5680 pC = p->apCsr[pOp->p1]; 5681 assert( pC!=0 ); 5682 assert( pC->eCurType==CURTYPE_BTREE ); 5683 sqlite3VdbeIncrWriteCounter(p, pC); 5684 pCrsr = pC->uc.pCursor; 5685 assert( pCrsr!=0 ); 5686 r.pKeyInfo = pC->pKeyInfo; 5687 r.nField = (u16)pOp->p3; 5688 r.default_rc = 0; 5689 r.aMem = &aMem[pOp->p2]; 5690 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5691 if( rc ) goto abort_due_to_error; 5692 if( res==0 ){ 5693 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5694 if( rc ) goto abort_due_to_error; 5695 }else if( pOp->p5 ){ 5696 rc = SQLITE_CORRUPT_INDEX; 5697 goto abort_due_to_error; 5698 } 5699 assert( pC->deferredMoveto==0 ); 5700 pC->cacheStatus = CACHE_STALE; 5701 pC->seekResult = 0; 5702 break; 5703 } 5704 5705 /* Opcode: DeferredSeek P1 * P3 P4 * 5706 ** Synopsis: Move P3 to P1.rowid if needed 5707 ** 5708 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5709 ** table. This opcode does a deferred seek of the P3 table cursor 5710 ** to the row that corresponds to the current row of P1. 5711 ** 5712 ** This is a deferred seek. Nothing actually happens until 5713 ** the cursor is used to read a record. That way, if no reads 5714 ** occur, no unnecessary I/O happens. 5715 ** 5716 ** P4 may be an array of integers (type P4_INTARRAY) containing 5717 ** one entry for each column in the P3 table. If array entry a(i) 5718 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5719 ** equivalent to performing the deferred seek and then reading column i 5720 ** from P1. This information is stored in P3 and used to redirect 5721 ** reads against P3 over to P1, thus possibly avoiding the need to 5722 ** seek and read cursor P3. 5723 */ 5724 /* Opcode: IdxRowid P1 P2 * * * 5725 ** Synopsis: r[P2]=rowid 5726 ** 5727 ** Write into register P2 an integer which is the last entry in the record at 5728 ** the end of the index key pointed to by cursor P1. This integer should be 5729 ** the rowid of the table entry to which this index entry points. 5730 ** 5731 ** See also: Rowid, MakeRecord. 5732 */ 5733 case OP_DeferredSeek: 5734 case OP_IdxRowid: { /* out2 */ 5735 VdbeCursor *pC; /* The P1 index cursor */ 5736 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5737 i64 rowid; /* Rowid that P1 current points to */ 5738 5739 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5740 pC = p->apCsr[pOp->p1]; 5741 assert( pC!=0 ); 5742 assert( pC->eCurType==CURTYPE_BTREE ); 5743 assert( pC->uc.pCursor!=0 ); 5744 assert( pC->isTable==0 ); 5745 assert( pC->deferredMoveto==0 ); 5746 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5747 5748 /* The IdxRowid and Seek opcodes are combined because of the commonality 5749 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5750 rc = sqlite3VdbeCursorRestore(pC); 5751 5752 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5753 ** out from under the cursor. That will never happens for an IdxRowid 5754 ** or Seek opcode */ 5755 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5756 5757 if( !pC->nullRow ){ 5758 rowid = 0; /* Not needed. Only used to silence a warning. */ 5759 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5760 if( rc!=SQLITE_OK ){ 5761 goto abort_due_to_error; 5762 } 5763 if( pOp->opcode==OP_DeferredSeek ){ 5764 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5765 pTabCur = p->apCsr[pOp->p3]; 5766 assert( pTabCur!=0 ); 5767 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5768 assert( pTabCur->uc.pCursor!=0 ); 5769 assert( pTabCur->isTable ); 5770 pTabCur->nullRow = 0; 5771 pTabCur->movetoTarget = rowid; 5772 pTabCur->deferredMoveto = 1; 5773 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5774 pTabCur->aAltMap = pOp->p4.ai; 5775 pTabCur->pAltCursor = pC; 5776 }else{ 5777 pOut = out2Prerelease(p, pOp); 5778 pOut->u.i = rowid; 5779 } 5780 }else{ 5781 assert( pOp->opcode==OP_IdxRowid ); 5782 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5783 } 5784 break; 5785 } 5786 5787 /* Opcode: FinishSeek P1 * * * * 5788 ** 5789 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 5790 ** seek operation now, without further delay. If the cursor seek has 5791 ** already occurred, this instruction is a no-op. 5792 */ 5793 case OP_FinishSeek: { 5794 VdbeCursor *pC; /* The P1 index cursor */ 5795 5796 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5797 pC = p->apCsr[pOp->p1]; 5798 if( pC->deferredMoveto ){ 5799 rc = sqlite3VdbeFinishMoveto(pC); 5800 if( rc ) goto abort_due_to_error; 5801 } 5802 break; 5803 } 5804 5805 /* Opcode: IdxGE P1 P2 P3 P4 P5 5806 ** Synopsis: key=r[P3@P4] 5807 ** 5808 ** The P4 register values beginning with P3 form an unpacked index 5809 ** key that omits the PRIMARY KEY. Compare this key value against the index 5810 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5811 ** fields at the end. 5812 ** 5813 ** If the P1 index entry is greater than or equal to the key value 5814 ** then jump to P2. Otherwise fall through to the next instruction. 5815 */ 5816 /* Opcode: IdxGT P1 P2 P3 P4 P5 5817 ** Synopsis: key=r[P3@P4] 5818 ** 5819 ** The P4 register values beginning with P3 form an unpacked index 5820 ** key that omits the PRIMARY KEY. Compare this key value against the index 5821 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5822 ** fields at the end. 5823 ** 5824 ** If the P1 index entry is greater than the key value 5825 ** then jump to P2. Otherwise fall through to the next instruction. 5826 */ 5827 /* Opcode: IdxLT P1 P2 P3 P4 P5 5828 ** Synopsis: key=r[P3@P4] 5829 ** 5830 ** The P4 register values beginning with P3 form an unpacked index 5831 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5832 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5833 ** ROWID on the P1 index. 5834 ** 5835 ** If the P1 index entry is less than the key value then jump to P2. 5836 ** Otherwise fall through to the next instruction. 5837 */ 5838 /* Opcode: IdxLE P1 P2 P3 P4 P5 5839 ** Synopsis: key=r[P3@P4] 5840 ** 5841 ** The P4 register values beginning with P3 form an unpacked index 5842 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5843 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5844 ** ROWID on the P1 index. 5845 ** 5846 ** If the P1 index entry is less than or equal to the key value then jump 5847 ** to P2. Otherwise fall through to the next instruction. 5848 */ 5849 case OP_IdxLE: /* jump */ 5850 case OP_IdxGT: /* jump */ 5851 case OP_IdxLT: /* jump */ 5852 case OP_IdxGE: { /* jump */ 5853 VdbeCursor *pC; 5854 int res; 5855 UnpackedRecord r; 5856 5857 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5858 pC = p->apCsr[pOp->p1]; 5859 assert( pC!=0 ); 5860 assert( pC->isOrdered ); 5861 assert( pC->eCurType==CURTYPE_BTREE ); 5862 assert( pC->uc.pCursor!=0); 5863 assert( pC->deferredMoveto==0 ); 5864 assert( pOp->p5==0 || pOp->p5==1 ); 5865 assert( pOp->p4type==P4_INT32 ); 5866 r.pKeyInfo = pC->pKeyInfo; 5867 r.nField = (u16)pOp->p4.i; 5868 if( pOp->opcode<OP_IdxLT ){ 5869 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5870 r.default_rc = -1; 5871 }else{ 5872 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5873 r.default_rc = 0; 5874 } 5875 r.aMem = &aMem[pOp->p3]; 5876 #ifdef SQLITE_DEBUG 5877 { 5878 int i; 5879 for(i=0; i<r.nField; i++){ 5880 assert( memIsValid(&r.aMem[i]) ); 5881 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 5882 } 5883 } 5884 #endif 5885 res = 0; /* Not needed. Only used to silence a warning. */ 5886 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5887 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5888 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5889 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5890 res = -res; 5891 }else{ 5892 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5893 res++; 5894 } 5895 VdbeBranchTaken(res>0,2); 5896 if( rc ) goto abort_due_to_error; 5897 if( res>0 ) goto jump_to_p2; 5898 break; 5899 } 5900 5901 /* Opcode: Destroy P1 P2 P3 * * 5902 ** 5903 ** Delete an entire database table or index whose root page in the database 5904 ** file is given by P1. 5905 ** 5906 ** The table being destroyed is in the main database file if P3==0. If 5907 ** P3==1 then the table to be clear is in the auxiliary database file 5908 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5909 ** 5910 ** If AUTOVACUUM is enabled then it is possible that another root page 5911 ** might be moved into the newly deleted root page in order to keep all 5912 ** root pages contiguous at the beginning of the database. The former 5913 ** value of the root page that moved - its value before the move occurred - 5914 ** is stored in register P2. If no page movement was required (because the 5915 ** table being dropped was already the last one in the database) then a 5916 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5917 ** is stored in register P2. 5918 ** 5919 ** This opcode throws an error if there are any active reader VMs when 5920 ** it is invoked. This is done to avoid the difficulty associated with 5921 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5922 ** database. This error is thrown even if the database is not an AUTOVACUUM 5923 ** db in order to avoid introducing an incompatibility between autovacuum 5924 ** and non-autovacuum modes. 5925 ** 5926 ** See also: Clear 5927 */ 5928 case OP_Destroy: { /* out2 */ 5929 int iMoved; 5930 int iDb; 5931 5932 sqlite3VdbeIncrWriteCounter(p, 0); 5933 assert( p->readOnly==0 ); 5934 assert( pOp->p1>1 ); 5935 pOut = out2Prerelease(p, pOp); 5936 pOut->flags = MEM_Null; 5937 if( db->nVdbeRead > db->nVDestroy+1 ){ 5938 rc = SQLITE_LOCKED; 5939 p->errorAction = OE_Abort; 5940 goto abort_due_to_error; 5941 }else{ 5942 iDb = pOp->p3; 5943 assert( DbMaskTest(p->btreeMask, iDb) ); 5944 iMoved = 0; /* Not needed. Only to silence a warning. */ 5945 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5946 pOut->flags = MEM_Int; 5947 pOut->u.i = iMoved; 5948 if( rc ) goto abort_due_to_error; 5949 #ifndef SQLITE_OMIT_AUTOVACUUM 5950 if( iMoved!=0 ){ 5951 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5952 /* All OP_Destroy operations occur on the same btree */ 5953 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5954 resetSchemaOnFault = iDb+1; 5955 } 5956 #endif 5957 } 5958 break; 5959 } 5960 5961 /* Opcode: Clear P1 P2 P3 5962 ** 5963 ** Delete all contents of the database table or index whose root page 5964 ** in the database file is given by P1. But, unlike Destroy, do not 5965 ** remove the table or index from the database file. 5966 ** 5967 ** The table being clear is in the main database file if P2==0. If 5968 ** P2==1 then the table to be clear is in the auxiliary database file 5969 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5970 ** 5971 ** If the P3 value is non-zero, then the table referred to must be an 5972 ** intkey table (an SQL table, not an index). In this case the row change 5973 ** count is incremented by the number of rows in the table being cleared. 5974 ** If P3 is greater than zero, then the value stored in register P3 is 5975 ** also incremented by the number of rows in the table being cleared. 5976 ** 5977 ** See also: Destroy 5978 */ 5979 case OP_Clear: { 5980 int nChange; 5981 5982 sqlite3VdbeIncrWriteCounter(p, 0); 5983 nChange = 0; 5984 assert( p->readOnly==0 ); 5985 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5986 rc = sqlite3BtreeClearTable( 5987 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5988 ); 5989 if( pOp->p3 ){ 5990 p->nChange += nChange; 5991 if( pOp->p3>0 ){ 5992 assert( memIsValid(&aMem[pOp->p3]) ); 5993 memAboutToChange(p, &aMem[pOp->p3]); 5994 aMem[pOp->p3].u.i += nChange; 5995 } 5996 } 5997 if( rc ) goto abort_due_to_error; 5998 break; 5999 } 6000 6001 /* Opcode: ResetSorter P1 * * * * 6002 ** 6003 ** Delete all contents from the ephemeral table or sorter 6004 ** that is open on cursor P1. 6005 ** 6006 ** This opcode only works for cursors used for sorting and 6007 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6008 */ 6009 case OP_ResetSorter: { 6010 VdbeCursor *pC; 6011 6012 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6013 pC = p->apCsr[pOp->p1]; 6014 assert( pC!=0 ); 6015 if( isSorter(pC) ){ 6016 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6017 }else{ 6018 assert( pC->eCurType==CURTYPE_BTREE ); 6019 assert( pC->isEphemeral ); 6020 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6021 if( rc ) goto abort_due_to_error; 6022 } 6023 break; 6024 } 6025 6026 /* Opcode: CreateBtree P1 P2 P3 * * 6027 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6028 ** 6029 ** Allocate a new b-tree in the main database file if P1==0 or in the 6030 ** TEMP database file if P1==1 or in an attached database if 6031 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6032 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6033 ** The root page number of the new b-tree is stored in register P2. 6034 */ 6035 case OP_CreateBtree: { /* out2 */ 6036 int pgno; 6037 Db *pDb; 6038 6039 sqlite3VdbeIncrWriteCounter(p, 0); 6040 pOut = out2Prerelease(p, pOp); 6041 pgno = 0; 6042 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6043 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6044 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6045 assert( p->readOnly==0 ); 6046 pDb = &db->aDb[pOp->p1]; 6047 assert( pDb->pBt!=0 ); 6048 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6049 if( rc ) goto abort_due_to_error; 6050 pOut->u.i = pgno; 6051 break; 6052 } 6053 6054 /* Opcode: SqlExec * * * P4 * 6055 ** 6056 ** Run the SQL statement or statements specified in the P4 string. 6057 */ 6058 case OP_SqlExec: { 6059 sqlite3VdbeIncrWriteCounter(p, 0); 6060 db->nSqlExec++; 6061 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6062 db->nSqlExec--; 6063 if( rc ) goto abort_due_to_error; 6064 break; 6065 } 6066 6067 /* Opcode: ParseSchema P1 * * P4 * 6068 ** 6069 ** Read and parse all entries from the schema table of database P1 6070 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6071 ** entire schema for P1 is reparsed. 6072 ** 6073 ** This opcode invokes the parser to create a new virtual machine, 6074 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6075 */ 6076 case OP_ParseSchema: { 6077 int iDb; 6078 const char *zSchema; 6079 char *zSql; 6080 InitData initData; 6081 6082 /* Any prepared statement that invokes this opcode will hold mutexes 6083 ** on every btree. This is a prerequisite for invoking 6084 ** sqlite3InitCallback(). 6085 */ 6086 #ifdef SQLITE_DEBUG 6087 for(iDb=0; iDb<db->nDb; iDb++){ 6088 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6089 } 6090 #endif 6091 6092 iDb = pOp->p1; 6093 assert( iDb>=0 && iDb<db->nDb ); 6094 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 6095 6096 #ifndef SQLITE_OMIT_ALTERTABLE 6097 if( pOp->p4.z==0 ){ 6098 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6099 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6100 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable); 6101 db->mDbFlags |= DBFLAG_SchemaChange; 6102 p->expired = 0; 6103 }else 6104 #endif 6105 { 6106 zSchema = DFLT_SCHEMA_TABLE; 6107 initData.db = db; 6108 initData.iDb = iDb; 6109 initData.pzErrMsg = &p->zErrMsg; 6110 initData.mInitFlags = 0; 6111 zSql = sqlite3MPrintf(db, 6112 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6113 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6114 if( zSql==0 ){ 6115 rc = SQLITE_NOMEM_BKPT; 6116 }else{ 6117 assert( db->init.busy==0 ); 6118 db->init.busy = 1; 6119 initData.rc = SQLITE_OK; 6120 initData.nInitRow = 0; 6121 assert( !db->mallocFailed ); 6122 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6123 if( rc==SQLITE_OK ) rc = initData.rc; 6124 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6125 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6126 ** at least one SQL statement. Any less than that indicates that 6127 ** the sqlite_schema table is corrupt. */ 6128 rc = SQLITE_CORRUPT_BKPT; 6129 } 6130 sqlite3DbFreeNN(db, zSql); 6131 db->init.busy = 0; 6132 } 6133 } 6134 if( rc ){ 6135 sqlite3ResetAllSchemasOfConnection(db); 6136 if( rc==SQLITE_NOMEM ){ 6137 goto no_mem; 6138 } 6139 goto abort_due_to_error; 6140 } 6141 break; 6142 } 6143 6144 #if !defined(SQLITE_OMIT_ANALYZE) 6145 /* Opcode: LoadAnalysis P1 * * * * 6146 ** 6147 ** Read the sqlite_stat1 table for database P1 and load the content 6148 ** of that table into the internal index hash table. This will cause 6149 ** the analysis to be used when preparing all subsequent queries. 6150 */ 6151 case OP_LoadAnalysis: { 6152 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6153 rc = sqlite3AnalysisLoad(db, pOp->p1); 6154 if( rc ) goto abort_due_to_error; 6155 break; 6156 } 6157 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6158 6159 /* Opcode: DropTable P1 * * P4 * 6160 ** 6161 ** Remove the internal (in-memory) data structures that describe 6162 ** the table named P4 in database P1. This is called after a table 6163 ** is dropped from disk (using the Destroy opcode) in order to keep 6164 ** the internal representation of the 6165 ** schema consistent with what is on disk. 6166 */ 6167 case OP_DropTable: { 6168 sqlite3VdbeIncrWriteCounter(p, 0); 6169 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6170 break; 6171 } 6172 6173 /* Opcode: DropIndex P1 * * P4 * 6174 ** 6175 ** Remove the internal (in-memory) data structures that describe 6176 ** the index named P4 in database P1. This is called after an index 6177 ** is dropped from disk (using the Destroy opcode) 6178 ** in order to keep the internal representation of the 6179 ** schema consistent with what is on disk. 6180 */ 6181 case OP_DropIndex: { 6182 sqlite3VdbeIncrWriteCounter(p, 0); 6183 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6184 break; 6185 } 6186 6187 /* Opcode: DropTrigger P1 * * P4 * 6188 ** 6189 ** Remove the internal (in-memory) data structures that describe 6190 ** the trigger named P4 in database P1. This is called after a trigger 6191 ** is dropped from disk (using the Destroy opcode) in order to keep 6192 ** the internal representation of the 6193 ** schema consistent with what is on disk. 6194 */ 6195 case OP_DropTrigger: { 6196 sqlite3VdbeIncrWriteCounter(p, 0); 6197 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6198 break; 6199 } 6200 6201 6202 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6203 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6204 ** 6205 ** Do an analysis of the currently open database. Store in 6206 ** register P1 the text of an error message describing any problems. 6207 ** If no problems are found, store a NULL in register P1. 6208 ** 6209 ** The register P3 contains one less than the maximum number of allowed errors. 6210 ** At most reg(P3) errors will be reported. 6211 ** In other words, the analysis stops as soon as reg(P1) errors are 6212 ** seen. Reg(P1) is updated with the number of errors remaining. 6213 ** 6214 ** The root page numbers of all tables in the database are integers 6215 ** stored in P4_INTARRAY argument. 6216 ** 6217 ** If P5 is not zero, the check is done on the auxiliary database 6218 ** file, not the main database file. 6219 ** 6220 ** This opcode is used to implement the integrity_check pragma. 6221 */ 6222 case OP_IntegrityCk: { 6223 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6224 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 6225 int nErr; /* Number of errors reported */ 6226 char *z; /* Text of the error report */ 6227 Mem *pnErr; /* Register keeping track of errors remaining */ 6228 6229 assert( p->bIsReader ); 6230 nRoot = pOp->p2; 6231 aRoot = pOp->p4.ai; 6232 assert( nRoot>0 ); 6233 assert( aRoot[0]==nRoot ); 6234 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6235 pnErr = &aMem[pOp->p3]; 6236 assert( (pnErr->flags & MEM_Int)!=0 ); 6237 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6238 pIn1 = &aMem[pOp->p1]; 6239 assert( pOp->p5<db->nDb ); 6240 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6241 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6242 (int)pnErr->u.i+1, &nErr); 6243 sqlite3VdbeMemSetNull(pIn1); 6244 if( nErr==0 ){ 6245 assert( z==0 ); 6246 }else if( z==0 ){ 6247 goto no_mem; 6248 }else{ 6249 pnErr->u.i -= nErr-1; 6250 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6251 } 6252 UPDATE_MAX_BLOBSIZE(pIn1); 6253 sqlite3VdbeChangeEncoding(pIn1, encoding); 6254 goto check_for_interrupt; 6255 } 6256 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6257 6258 /* Opcode: RowSetAdd P1 P2 * * * 6259 ** Synopsis: rowset(P1)=r[P2] 6260 ** 6261 ** Insert the integer value held by register P2 into a RowSet object 6262 ** held in register P1. 6263 ** 6264 ** An assertion fails if P2 is not an integer. 6265 */ 6266 case OP_RowSetAdd: { /* in1, in2 */ 6267 pIn1 = &aMem[pOp->p1]; 6268 pIn2 = &aMem[pOp->p2]; 6269 assert( (pIn2->flags & MEM_Int)!=0 ); 6270 if( (pIn1->flags & MEM_Blob)==0 ){ 6271 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6272 } 6273 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6274 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6275 break; 6276 } 6277 6278 /* Opcode: RowSetRead P1 P2 P3 * * 6279 ** Synopsis: r[P3]=rowset(P1) 6280 ** 6281 ** Extract the smallest value from the RowSet object in P1 6282 ** and put that value into register P3. 6283 ** Or, if RowSet object P1 is initially empty, leave P3 6284 ** unchanged and jump to instruction P2. 6285 */ 6286 case OP_RowSetRead: { /* jump, in1, out3 */ 6287 i64 val; 6288 6289 pIn1 = &aMem[pOp->p1]; 6290 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6291 if( (pIn1->flags & MEM_Blob)==0 6292 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6293 ){ 6294 /* The boolean index is empty */ 6295 sqlite3VdbeMemSetNull(pIn1); 6296 VdbeBranchTaken(1,2); 6297 goto jump_to_p2_and_check_for_interrupt; 6298 }else{ 6299 /* A value was pulled from the index */ 6300 VdbeBranchTaken(0,2); 6301 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6302 } 6303 goto check_for_interrupt; 6304 } 6305 6306 /* Opcode: RowSetTest P1 P2 P3 P4 6307 ** Synopsis: if r[P3] in rowset(P1) goto P2 6308 ** 6309 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6310 ** contains a RowSet object and that RowSet object contains 6311 ** the value held in P3, jump to register P2. Otherwise, insert the 6312 ** integer in P3 into the RowSet and continue on to the 6313 ** next opcode. 6314 ** 6315 ** The RowSet object is optimized for the case where sets of integers 6316 ** are inserted in distinct phases, which each set contains no duplicates. 6317 ** Each set is identified by a unique P4 value. The first set 6318 ** must have P4==0, the final set must have P4==-1, and for all other sets 6319 ** must have P4>0. 6320 ** 6321 ** This allows optimizations: (a) when P4==0 there is no need to test 6322 ** the RowSet object for P3, as it is guaranteed not to contain it, 6323 ** (b) when P4==-1 there is no need to insert the value, as it will 6324 ** never be tested for, and (c) when a value that is part of set X is 6325 ** inserted, there is no need to search to see if the same value was 6326 ** previously inserted as part of set X (only if it was previously 6327 ** inserted as part of some other set). 6328 */ 6329 case OP_RowSetTest: { /* jump, in1, in3 */ 6330 int iSet; 6331 int exists; 6332 6333 pIn1 = &aMem[pOp->p1]; 6334 pIn3 = &aMem[pOp->p3]; 6335 iSet = pOp->p4.i; 6336 assert( pIn3->flags&MEM_Int ); 6337 6338 /* If there is anything other than a rowset object in memory cell P1, 6339 ** delete it now and initialize P1 with an empty rowset 6340 */ 6341 if( (pIn1->flags & MEM_Blob)==0 ){ 6342 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6343 } 6344 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6345 assert( pOp->p4type==P4_INT32 ); 6346 assert( iSet==-1 || iSet>=0 ); 6347 if( iSet ){ 6348 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6349 VdbeBranchTaken(exists!=0,2); 6350 if( exists ) goto jump_to_p2; 6351 } 6352 if( iSet>=0 ){ 6353 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6354 } 6355 break; 6356 } 6357 6358 6359 #ifndef SQLITE_OMIT_TRIGGER 6360 6361 /* Opcode: Program P1 P2 P3 P4 P5 6362 ** 6363 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6364 ** 6365 ** P1 contains the address of the memory cell that contains the first memory 6366 ** cell in an array of values used as arguments to the sub-program. P2 6367 ** contains the address to jump to if the sub-program throws an IGNORE 6368 ** exception using the RAISE() function. Register P3 contains the address 6369 ** of a memory cell in this (the parent) VM that is used to allocate the 6370 ** memory required by the sub-vdbe at runtime. 6371 ** 6372 ** P4 is a pointer to the VM containing the trigger program. 6373 ** 6374 ** If P5 is non-zero, then recursive program invocation is enabled. 6375 */ 6376 case OP_Program: { /* jump */ 6377 int nMem; /* Number of memory registers for sub-program */ 6378 int nByte; /* Bytes of runtime space required for sub-program */ 6379 Mem *pRt; /* Register to allocate runtime space */ 6380 Mem *pMem; /* Used to iterate through memory cells */ 6381 Mem *pEnd; /* Last memory cell in new array */ 6382 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6383 SubProgram *pProgram; /* Sub-program to execute */ 6384 void *t; /* Token identifying trigger */ 6385 6386 pProgram = pOp->p4.pProgram; 6387 pRt = &aMem[pOp->p3]; 6388 assert( pProgram->nOp>0 ); 6389 6390 /* If the p5 flag is clear, then recursive invocation of triggers is 6391 ** disabled for backwards compatibility (p5 is set if this sub-program 6392 ** is really a trigger, not a foreign key action, and the flag set 6393 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6394 ** 6395 ** It is recursive invocation of triggers, at the SQL level, that is 6396 ** disabled. In some cases a single trigger may generate more than one 6397 ** SubProgram (if the trigger may be executed with more than one different 6398 ** ON CONFLICT algorithm). SubProgram structures associated with a 6399 ** single trigger all have the same value for the SubProgram.token 6400 ** variable. */ 6401 if( pOp->p5 ){ 6402 t = pProgram->token; 6403 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6404 if( pFrame ) break; 6405 } 6406 6407 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6408 rc = SQLITE_ERROR; 6409 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6410 goto abort_due_to_error; 6411 } 6412 6413 /* Register pRt is used to store the memory required to save the state 6414 ** of the current program, and the memory required at runtime to execute 6415 ** the trigger program. If this trigger has been fired before, then pRt 6416 ** is already allocated. Otherwise, it must be initialized. */ 6417 if( (pRt->flags&MEM_Blob)==0 ){ 6418 /* SubProgram.nMem is set to the number of memory cells used by the 6419 ** program stored in SubProgram.aOp. As well as these, one memory 6420 ** cell is required for each cursor used by the program. Set local 6421 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6422 */ 6423 nMem = pProgram->nMem + pProgram->nCsr; 6424 assert( nMem>0 ); 6425 if( pProgram->nCsr==0 ) nMem++; 6426 nByte = ROUND8(sizeof(VdbeFrame)) 6427 + nMem * sizeof(Mem) 6428 + pProgram->nCsr * sizeof(VdbeCursor*) 6429 + (pProgram->nOp + 7)/8; 6430 pFrame = sqlite3DbMallocZero(db, nByte); 6431 if( !pFrame ){ 6432 goto no_mem; 6433 } 6434 sqlite3VdbeMemRelease(pRt); 6435 pRt->flags = MEM_Blob|MEM_Dyn; 6436 pRt->z = (char*)pFrame; 6437 pRt->n = nByte; 6438 pRt->xDel = sqlite3VdbeFrameMemDel; 6439 6440 pFrame->v = p; 6441 pFrame->nChildMem = nMem; 6442 pFrame->nChildCsr = pProgram->nCsr; 6443 pFrame->pc = (int)(pOp - aOp); 6444 pFrame->aMem = p->aMem; 6445 pFrame->nMem = p->nMem; 6446 pFrame->apCsr = p->apCsr; 6447 pFrame->nCursor = p->nCursor; 6448 pFrame->aOp = p->aOp; 6449 pFrame->nOp = p->nOp; 6450 pFrame->token = pProgram->token; 6451 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6452 pFrame->anExec = p->anExec; 6453 #endif 6454 #ifdef SQLITE_DEBUG 6455 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6456 #endif 6457 6458 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6459 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6460 pMem->flags = MEM_Undefined; 6461 pMem->db = db; 6462 } 6463 }else{ 6464 pFrame = (VdbeFrame*)pRt->z; 6465 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6466 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6467 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6468 assert( pProgram->nCsr==pFrame->nChildCsr ); 6469 assert( (int)(pOp - aOp)==pFrame->pc ); 6470 } 6471 6472 p->nFrame++; 6473 pFrame->pParent = p->pFrame; 6474 pFrame->lastRowid = db->lastRowid; 6475 pFrame->nChange = p->nChange; 6476 pFrame->nDbChange = p->db->nChange; 6477 assert( pFrame->pAuxData==0 ); 6478 pFrame->pAuxData = p->pAuxData; 6479 p->pAuxData = 0; 6480 p->nChange = 0; 6481 p->pFrame = pFrame; 6482 p->aMem = aMem = VdbeFrameMem(pFrame); 6483 p->nMem = pFrame->nChildMem; 6484 p->nCursor = (u16)pFrame->nChildCsr; 6485 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6486 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6487 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6488 p->aOp = aOp = pProgram->aOp; 6489 p->nOp = pProgram->nOp; 6490 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6491 p->anExec = 0; 6492 #endif 6493 #ifdef SQLITE_DEBUG 6494 /* Verify that second and subsequent executions of the same trigger do not 6495 ** try to reuse register values from the first use. */ 6496 { 6497 int i; 6498 for(i=0; i<p->nMem; i++){ 6499 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6500 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6501 } 6502 } 6503 #endif 6504 pOp = &aOp[-1]; 6505 goto check_for_interrupt; 6506 } 6507 6508 /* Opcode: Param P1 P2 * * * 6509 ** 6510 ** This opcode is only ever present in sub-programs called via the 6511 ** OP_Program instruction. Copy a value currently stored in a memory 6512 ** cell of the calling (parent) frame to cell P2 in the current frames 6513 ** address space. This is used by trigger programs to access the new.* 6514 ** and old.* values. 6515 ** 6516 ** The address of the cell in the parent frame is determined by adding 6517 ** the value of the P1 argument to the value of the P1 argument to the 6518 ** calling OP_Program instruction. 6519 */ 6520 case OP_Param: { /* out2 */ 6521 VdbeFrame *pFrame; 6522 Mem *pIn; 6523 pOut = out2Prerelease(p, pOp); 6524 pFrame = p->pFrame; 6525 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6526 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6527 break; 6528 } 6529 6530 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6531 6532 #ifndef SQLITE_OMIT_FOREIGN_KEY 6533 /* Opcode: FkCounter P1 P2 * * * 6534 ** Synopsis: fkctr[P1]+=P2 6535 ** 6536 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6537 ** If P1 is non-zero, the database constraint counter is incremented 6538 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6539 ** statement counter is incremented (immediate foreign key constraints). 6540 */ 6541 case OP_FkCounter: { 6542 if( db->flags & SQLITE_DeferFKs ){ 6543 db->nDeferredImmCons += pOp->p2; 6544 }else if( pOp->p1 ){ 6545 db->nDeferredCons += pOp->p2; 6546 }else{ 6547 p->nFkConstraint += pOp->p2; 6548 } 6549 break; 6550 } 6551 6552 /* Opcode: FkIfZero P1 P2 * * * 6553 ** Synopsis: if fkctr[P1]==0 goto P2 6554 ** 6555 ** This opcode tests if a foreign key constraint-counter is currently zero. 6556 ** If so, jump to instruction P2. Otherwise, fall through to the next 6557 ** instruction. 6558 ** 6559 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6560 ** is zero (the one that counts deferred constraint violations). If P1 is 6561 ** zero, the jump is taken if the statement constraint-counter is zero 6562 ** (immediate foreign key constraint violations). 6563 */ 6564 case OP_FkIfZero: { /* jump */ 6565 if( pOp->p1 ){ 6566 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6567 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6568 }else{ 6569 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6570 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6571 } 6572 break; 6573 } 6574 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6575 6576 #ifndef SQLITE_OMIT_AUTOINCREMENT 6577 /* Opcode: MemMax P1 P2 * * * 6578 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6579 ** 6580 ** P1 is a register in the root frame of this VM (the root frame is 6581 ** different from the current frame if this instruction is being executed 6582 ** within a sub-program). Set the value of register P1 to the maximum of 6583 ** its current value and the value in register P2. 6584 ** 6585 ** This instruction throws an error if the memory cell is not initially 6586 ** an integer. 6587 */ 6588 case OP_MemMax: { /* in2 */ 6589 VdbeFrame *pFrame; 6590 if( p->pFrame ){ 6591 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6592 pIn1 = &pFrame->aMem[pOp->p1]; 6593 }else{ 6594 pIn1 = &aMem[pOp->p1]; 6595 } 6596 assert( memIsValid(pIn1) ); 6597 sqlite3VdbeMemIntegerify(pIn1); 6598 pIn2 = &aMem[pOp->p2]; 6599 sqlite3VdbeMemIntegerify(pIn2); 6600 if( pIn1->u.i<pIn2->u.i){ 6601 pIn1->u.i = pIn2->u.i; 6602 } 6603 break; 6604 } 6605 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6606 6607 /* Opcode: IfPos P1 P2 P3 * * 6608 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6609 ** 6610 ** Register P1 must contain an integer. 6611 ** If the value of register P1 is 1 or greater, subtract P3 from the 6612 ** value in P1 and jump to P2. 6613 ** 6614 ** If the initial value of register P1 is less than 1, then the 6615 ** value is unchanged and control passes through to the next instruction. 6616 */ 6617 case OP_IfPos: { /* jump, in1 */ 6618 pIn1 = &aMem[pOp->p1]; 6619 assert( pIn1->flags&MEM_Int ); 6620 VdbeBranchTaken( pIn1->u.i>0, 2); 6621 if( pIn1->u.i>0 ){ 6622 pIn1->u.i -= pOp->p3; 6623 goto jump_to_p2; 6624 } 6625 break; 6626 } 6627 6628 /* Opcode: OffsetLimit P1 P2 P3 * * 6629 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6630 ** 6631 ** This opcode performs a commonly used computation associated with 6632 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6633 ** holds the offset counter. The opcode computes the combined value 6634 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6635 ** value computed is the total number of rows that will need to be 6636 ** visited in order to complete the query. 6637 ** 6638 ** If r[P3] is zero or negative, that means there is no OFFSET 6639 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6640 ** 6641 ** if r[P1] is zero or negative, that means there is no LIMIT 6642 ** and r[P2] is set to -1. 6643 ** 6644 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6645 */ 6646 case OP_OffsetLimit: { /* in1, out2, in3 */ 6647 i64 x; 6648 pIn1 = &aMem[pOp->p1]; 6649 pIn3 = &aMem[pOp->p3]; 6650 pOut = out2Prerelease(p, pOp); 6651 assert( pIn1->flags & MEM_Int ); 6652 assert( pIn3->flags & MEM_Int ); 6653 x = pIn1->u.i; 6654 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6655 /* If the LIMIT is less than or equal to zero, loop forever. This 6656 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6657 ** also loop forever. This is undocumented. In fact, one could argue 6658 ** that the loop should terminate. But assuming 1 billion iterations 6659 ** per second (far exceeding the capabilities of any current hardware) 6660 ** it would take nearly 300 years to actually reach the limit. So 6661 ** looping forever is a reasonable approximation. */ 6662 pOut->u.i = -1; 6663 }else{ 6664 pOut->u.i = x; 6665 } 6666 break; 6667 } 6668 6669 /* Opcode: IfNotZero P1 P2 * * * 6670 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6671 ** 6672 ** Register P1 must contain an integer. If the content of register P1 is 6673 ** initially greater than zero, then decrement the value in register P1. 6674 ** If it is non-zero (negative or positive) and then also jump to P2. 6675 ** If register P1 is initially zero, leave it unchanged and fall through. 6676 */ 6677 case OP_IfNotZero: { /* jump, in1 */ 6678 pIn1 = &aMem[pOp->p1]; 6679 assert( pIn1->flags&MEM_Int ); 6680 VdbeBranchTaken(pIn1->u.i<0, 2); 6681 if( pIn1->u.i ){ 6682 if( pIn1->u.i>0 ) pIn1->u.i--; 6683 goto jump_to_p2; 6684 } 6685 break; 6686 } 6687 6688 /* Opcode: DecrJumpZero P1 P2 * * * 6689 ** Synopsis: if (--r[P1])==0 goto P2 6690 ** 6691 ** Register P1 must hold an integer. Decrement the value in P1 6692 ** and jump to P2 if the new value is exactly zero. 6693 */ 6694 case OP_DecrJumpZero: { /* jump, in1 */ 6695 pIn1 = &aMem[pOp->p1]; 6696 assert( pIn1->flags&MEM_Int ); 6697 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6698 VdbeBranchTaken(pIn1->u.i==0, 2); 6699 if( pIn1->u.i==0 ) goto jump_to_p2; 6700 break; 6701 } 6702 6703 6704 /* Opcode: AggStep * P2 P3 P4 P5 6705 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6706 ** 6707 ** Execute the xStep function for an aggregate. 6708 ** The function has P5 arguments. P4 is a pointer to the 6709 ** FuncDef structure that specifies the function. Register P3 is the 6710 ** accumulator. 6711 ** 6712 ** The P5 arguments are taken from register P2 and its 6713 ** successors. 6714 */ 6715 /* Opcode: AggInverse * P2 P3 P4 P5 6716 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6717 ** 6718 ** Execute the xInverse function for an aggregate. 6719 ** The function has P5 arguments. P4 is a pointer to the 6720 ** FuncDef structure that specifies the function. Register P3 is the 6721 ** accumulator. 6722 ** 6723 ** The P5 arguments are taken from register P2 and its 6724 ** successors. 6725 */ 6726 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6727 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6728 ** 6729 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6730 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6731 ** FuncDef structure that specifies the function. Register P3 is the 6732 ** accumulator. 6733 ** 6734 ** The P5 arguments are taken from register P2 and its 6735 ** successors. 6736 ** 6737 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6738 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6739 ** the opcode is changed. In this way, the initialization of the 6740 ** sqlite3_context only happens once, instead of on each call to the 6741 ** step function. 6742 */ 6743 case OP_AggInverse: 6744 case OP_AggStep: { 6745 int n; 6746 sqlite3_context *pCtx; 6747 6748 assert( pOp->p4type==P4_FUNCDEF ); 6749 n = pOp->p5; 6750 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6751 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6752 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6753 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6754 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6755 if( pCtx==0 ) goto no_mem; 6756 pCtx->pMem = 0; 6757 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6758 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6759 pCtx->pFunc = pOp->p4.pFunc; 6760 pCtx->iOp = (int)(pOp - aOp); 6761 pCtx->pVdbe = p; 6762 pCtx->skipFlag = 0; 6763 pCtx->isError = 0; 6764 pCtx->argc = n; 6765 pOp->p4type = P4_FUNCCTX; 6766 pOp->p4.pCtx = pCtx; 6767 6768 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 6769 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 6770 6771 pOp->opcode = OP_AggStep1; 6772 /* Fall through into OP_AggStep */ 6773 } 6774 case OP_AggStep1: { 6775 int i; 6776 sqlite3_context *pCtx; 6777 Mem *pMem; 6778 6779 assert( pOp->p4type==P4_FUNCCTX ); 6780 pCtx = pOp->p4.pCtx; 6781 pMem = &aMem[pOp->p3]; 6782 6783 #ifdef SQLITE_DEBUG 6784 if( pOp->p1 ){ 6785 /* This is an OP_AggInverse call. Verify that xStep has always 6786 ** been called at least once prior to any xInverse call. */ 6787 assert( pMem->uTemp==0x1122e0e3 ); 6788 }else{ 6789 /* This is an OP_AggStep call. Mark it as such. */ 6790 pMem->uTemp = 0x1122e0e3; 6791 } 6792 #endif 6793 6794 /* If this function is inside of a trigger, the register array in aMem[] 6795 ** might change from one evaluation to the next. The next block of code 6796 ** checks to see if the register array has changed, and if so it 6797 ** reinitializes the relavant parts of the sqlite3_context object */ 6798 if( pCtx->pMem != pMem ){ 6799 pCtx->pMem = pMem; 6800 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6801 } 6802 6803 #ifdef SQLITE_DEBUG 6804 for(i=0; i<pCtx->argc; i++){ 6805 assert( memIsValid(pCtx->argv[i]) ); 6806 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6807 } 6808 #endif 6809 6810 pMem->n++; 6811 assert( pCtx->pOut->flags==MEM_Null ); 6812 assert( pCtx->isError==0 ); 6813 assert( pCtx->skipFlag==0 ); 6814 #ifndef SQLITE_OMIT_WINDOWFUNC 6815 if( pOp->p1 ){ 6816 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 6817 }else 6818 #endif 6819 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6820 6821 if( pCtx->isError ){ 6822 if( pCtx->isError>0 ){ 6823 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 6824 rc = pCtx->isError; 6825 } 6826 if( pCtx->skipFlag ){ 6827 assert( pOp[-1].opcode==OP_CollSeq ); 6828 i = pOp[-1].p1; 6829 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6830 pCtx->skipFlag = 0; 6831 } 6832 sqlite3VdbeMemRelease(pCtx->pOut); 6833 pCtx->pOut->flags = MEM_Null; 6834 pCtx->isError = 0; 6835 if( rc ) goto abort_due_to_error; 6836 } 6837 assert( pCtx->pOut->flags==MEM_Null ); 6838 assert( pCtx->skipFlag==0 ); 6839 break; 6840 } 6841 6842 /* Opcode: AggFinal P1 P2 * P4 * 6843 ** Synopsis: accum=r[P1] N=P2 6844 ** 6845 ** P1 is the memory location that is the accumulator for an aggregate 6846 ** or window function. Execute the finalizer function 6847 ** for an aggregate and store the result in P1. 6848 ** 6849 ** P2 is the number of arguments that the step function takes and 6850 ** P4 is a pointer to the FuncDef for this function. The P2 6851 ** argument is not used by this opcode. It is only there to disambiguate 6852 ** functions that can take varying numbers of arguments. The 6853 ** P4 argument is only needed for the case where 6854 ** the step function was not previously called. 6855 */ 6856 /* Opcode: AggValue * P2 P3 P4 * 6857 ** Synopsis: r[P3]=value N=P2 6858 ** 6859 ** Invoke the xValue() function and store the result in register P3. 6860 ** 6861 ** P2 is the number of arguments that the step function takes and 6862 ** P4 is a pointer to the FuncDef for this function. The P2 6863 ** argument is not used by this opcode. It is only there to disambiguate 6864 ** functions that can take varying numbers of arguments. The 6865 ** P4 argument is only needed for the case where 6866 ** the step function was not previously called. 6867 */ 6868 case OP_AggValue: 6869 case OP_AggFinal: { 6870 Mem *pMem; 6871 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6872 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 6873 pMem = &aMem[pOp->p1]; 6874 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6875 #ifndef SQLITE_OMIT_WINDOWFUNC 6876 if( pOp->p3 ){ 6877 memAboutToChange(p, &aMem[pOp->p3]); 6878 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 6879 pMem = &aMem[pOp->p3]; 6880 }else 6881 #endif 6882 { 6883 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6884 } 6885 6886 if( rc ){ 6887 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6888 goto abort_due_to_error; 6889 } 6890 sqlite3VdbeChangeEncoding(pMem, encoding); 6891 UPDATE_MAX_BLOBSIZE(pMem); 6892 if( sqlite3VdbeMemTooBig(pMem) ){ 6893 goto too_big; 6894 } 6895 break; 6896 } 6897 6898 #ifndef SQLITE_OMIT_WAL 6899 /* Opcode: Checkpoint P1 P2 P3 * * 6900 ** 6901 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6902 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6903 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6904 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6905 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6906 ** in the WAL that have been checkpointed after the checkpoint 6907 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6908 ** mem[P3+2] are initialized to -1. 6909 */ 6910 case OP_Checkpoint: { 6911 int i; /* Loop counter */ 6912 int aRes[3]; /* Results */ 6913 Mem *pMem; /* Write results here */ 6914 6915 assert( p->readOnly==0 ); 6916 aRes[0] = 0; 6917 aRes[1] = aRes[2] = -1; 6918 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6919 || pOp->p2==SQLITE_CHECKPOINT_FULL 6920 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6921 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6922 ); 6923 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6924 if( rc ){ 6925 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6926 rc = SQLITE_OK; 6927 aRes[0] = 1; 6928 } 6929 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6930 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6931 } 6932 break; 6933 }; 6934 #endif 6935 6936 #ifndef SQLITE_OMIT_PRAGMA 6937 /* Opcode: JournalMode P1 P2 P3 * * 6938 ** 6939 ** Change the journal mode of database P1 to P3. P3 must be one of the 6940 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6941 ** modes (delete, truncate, persist, off and memory), this is a simple 6942 ** operation. No IO is required. 6943 ** 6944 ** If changing into or out of WAL mode the procedure is more complicated. 6945 ** 6946 ** Write a string containing the final journal-mode to register P2. 6947 */ 6948 case OP_JournalMode: { /* out2 */ 6949 Btree *pBt; /* Btree to change journal mode of */ 6950 Pager *pPager; /* Pager associated with pBt */ 6951 int eNew; /* New journal mode */ 6952 int eOld; /* The old journal mode */ 6953 #ifndef SQLITE_OMIT_WAL 6954 const char *zFilename; /* Name of database file for pPager */ 6955 #endif 6956 6957 pOut = out2Prerelease(p, pOp); 6958 eNew = pOp->p3; 6959 assert( eNew==PAGER_JOURNALMODE_DELETE 6960 || eNew==PAGER_JOURNALMODE_TRUNCATE 6961 || eNew==PAGER_JOURNALMODE_PERSIST 6962 || eNew==PAGER_JOURNALMODE_OFF 6963 || eNew==PAGER_JOURNALMODE_MEMORY 6964 || eNew==PAGER_JOURNALMODE_WAL 6965 || eNew==PAGER_JOURNALMODE_QUERY 6966 ); 6967 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6968 assert( p->readOnly==0 ); 6969 6970 pBt = db->aDb[pOp->p1].pBt; 6971 pPager = sqlite3BtreePager(pBt); 6972 eOld = sqlite3PagerGetJournalMode(pPager); 6973 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6974 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6975 6976 #ifndef SQLITE_OMIT_WAL 6977 zFilename = sqlite3PagerFilename(pPager, 1); 6978 6979 /* Do not allow a transition to journal_mode=WAL for a database 6980 ** in temporary storage or if the VFS does not support shared memory 6981 */ 6982 if( eNew==PAGER_JOURNALMODE_WAL 6983 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6984 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6985 ){ 6986 eNew = eOld; 6987 } 6988 6989 if( (eNew!=eOld) 6990 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6991 ){ 6992 if( !db->autoCommit || db->nVdbeRead>1 ){ 6993 rc = SQLITE_ERROR; 6994 sqlite3VdbeError(p, 6995 "cannot change %s wal mode from within a transaction", 6996 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6997 ); 6998 goto abort_due_to_error; 6999 }else{ 7000 7001 if( eOld==PAGER_JOURNALMODE_WAL ){ 7002 /* If leaving WAL mode, close the log file. If successful, the call 7003 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7004 ** file. An EXCLUSIVE lock may still be held on the database file 7005 ** after a successful return. 7006 */ 7007 rc = sqlite3PagerCloseWal(pPager, db); 7008 if( rc==SQLITE_OK ){ 7009 sqlite3PagerSetJournalMode(pPager, eNew); 7010 } 7011 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7012 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7013 ** as an intermediate */ 7014 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7015 } 7016 7017 /* Open a transaction on the database file. Regardless of the journal 7018 ** mode, this transaction always uses a rollback journal. 7019 */ 7020 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 7021 if( rc==SQLITE_OK ){ 7022 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7023 } 7024 } 7025 } 7026 #endif /* ifndef SQLITE_OMIT_WAL */ 7027 7028 if( rc ) eNew = eOld; 7029 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7030 7031 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7032 pOut->z = (char *)sqlite3JournalModename(eNew); 7033 pOut->n = sqlite3Strlen30(pOut->z); 7034 pOut->enc = SQLITE_UTF8; 7035 sqlite3VdbeChangeEncoding(pOut, encoding); 7036 if( rc ) goto abort_due_to_error; 7037 break; 7038 }; 7039 #endif /* SQLITE_OMIT_PRAGMA */ 7040 7041 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7042 /* Opcode: Vacuum P1 P2 * * * 7043 ** 7044 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7045 ** for an attached database. The "temp" database may not be vacuumed. 7046 ** 7047 ** If P2 is not zero, then it is a register holding a string which is 7048 ** the file into which the result of vacuum should be written. When 7049 ** P2 is zero, the vacuum overwrites the original database. 7050 */ 7051 case OP_Vacuum: { 7052 assert( p->readOnly==0 ); 7053 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7054 pOp->p2 ? &aMem[pOp->p2] : 0); 7055 if( rc ) goto abort_due_to_error; 7056 break; 7057 } 7058 #endif 7059 7060 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7061 /* Opcode: IncrVacuum P1 P2 * * * 7062 ** 7063 ** Perform a single step of the incremental vacuum procedure on 7064 ** the P1 database. If the vacuum has finished, jump to instruction 7065 ** P2. Otherwise, fall through to the next instruction. 7066 */ 7067 case OP_IncrVacuum: { /* jump */ 7068 Btree *pBt; 7069 7070 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7071 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7072 assert( p->readOnly==0 ); 7073 pBt = db->aDb[pOp->p1].pBt; 7074 rc = sqlite3BtreeIncrVacuum(pBt); 7075 VdbeBranchTaken(rc==SQLITE_DONE,2); 7076 if( rc ){ 7077 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7078 rc = SQLITE_OK; 7079 goto jump_to_p2; 7080 } 7081 break; 7082 } 7083 #endif 7084 7085 /* Opcode: Expire P1 P2 * * * 7086 ** 7087 ** Cause precompiled statements to expire. When an expired statement 7088 ** is executed using sqlite3_step() it will either automatically 7089 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7090 ** or it will fail with SQLITE_SCHEMA. 7091 ** 7092 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7093 ** then only the currently executing statement is expired. 7094 ** 7095 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7096 ** then running SQL statements are allowed to continue to run to completion. 7097 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7098 ** that might help the statement run faster but which does not affect the 7099 ** correctness of operation. 7100 */ 7101 case OP_Expire: { 7102 assert( pOp->p2==0 || pOp->p2==1 ); 7103 if( !pOp->p1 ){ 7104 sqlite3ExpirePreparedStatements(db, pOp->p2); 7105 }else{ 7106 p->expired = pOp->p2+1; 7107 } 7108 break; 7109 } 7110 7111 /* Opcode: CursorLock P1 * * * * 7112 ** 7113 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7114 ** written by an other cursor. 7115 */ 7116 case OP_CursorLock: { 7117 VdbeCursor *pC; 7118 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7119 pC = p->apCsr[pOp->p1]; 7120 assert( pC!=0 ); 7121 assert( pC->eCurType==CURTYPE_BTREE ); 7122 sqlite3BtreeCursorPin(pC->uc.pCursor); 7123 break; 7124 } 7125 7126 /* Opcode: CursorUnlock P1 * * * * 7127 ** 7128 ** Unlock the btree to which cursor P1 is pointing so that it can be 7129 ** written by other cursors. 7130 */ 7131 case OP_CursorUnlock: { 7132 VdbeCursor *pC; 7133 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7134 pC = p->apCsr[pOp->p1]; 7135 assert( pC!=0 ); 7136 assert( pC->eCurType==CURTYPE_BTREE ); 7137 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7138 break; 7139 } 7140 7141 #ifndef SQLITE_OMIT_SHARED_CACHE 7142 /* Opcode: TableLock P1 P2 P3 P4 * 7143 ** Synopsis: iDb=P1 root=P2 write=P3 7144 ** 7145 ** Obtain a lock on a particular table. This instruction is only used when 7146 ** the shared-cache feature is enabled. 7147 ** 7148 ** P1 is the index of the database in sqlite3.aDb[] of the database 7149 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7150 ** a write lock if P3==1. 7151 ** 7152 ** P2 contains the root-page of the table to lock. 7153 ** 7154 ** P4 contains a pointer to the name of the table being locked. This is only 7155 ** used to generate an error message if the lock cannot be obtained. 7156 */ 7157 case OP_TableLock: { 7158 u8 isWriteLock = (u8)pOp->p3; 7159 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7160 int p1 = pOp->p1; 7161 assert( p1>=0 && p1<db->nDb ); 7162 assert( DbMaskTest(p->btreeMask, p1) ); 7163 assert( isWriteLock==0 || isWriteLock==1 ); 7164 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7165 if( rc ){ 7166 if( (rc&0xFF)==SQLITE_LOCKED ){ 7167 const char *z = pOp->p4.z; 7168 sqlite3VdbeError(p, "database table is locked: %s", z); 7169 } 7170 goto abort_due_to_error; 7171 } 7172 } 7173 break; 7174 } 7175 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7176 7177 #ifndef SQLITE_OMIT_VIRTUALTABLE 7178 /* Opcode: VBegin * * * P4 * 7179 ** 7180 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7181 ** xBegin method for that table. 7182 ** 7183 ** Also, whether or not P4 is set, check that this is not being called from 7184 ** within a callback to a virtual table xSync() method. If it is, the error 7185 ** code will be set to SQLITE_LOCKED. 7186 */ 7187 case OP_VBegin: { 7188 VTable *pVTab; 7189 pVTab = pOp->p4.pVtab; 7190 rc = sqlite3VtabBegin(db, pVTab); 7191 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7192 if( rc ) goto abort_due_to_error; 7193 break; 7194 } 7195 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7196 7197 #ifndef SQLITE_OMIT_VIRTUALTABLE 7198 /* Opcode: VCreate P1 P2 * * * 7199 ** 7200 ** P2 is a register that holds the name of a virtual table in database 7201 ** P1. Call the xCreate method for that table. 7202 */ 7203 case OP_VCreate: { 7204 Mem sMem; /* For storing the record being decoded */ 7205 const char *zTab; /* Name of the virtual table */ 7206 7207 memset(&sMem, 0, sizeof(sMem)); 7208 sMem.db = db; 7209 /* Because P2 is always a static string, it is impossible for the 7210 ** sqlite3VdbeMemCopy() to fail */ 7211 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7212 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7213 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7214 assert( rc==SQLITE_OK ); 7215 zTab = (const char*)sqlite3_value_text(&sMem); 7216 assert( zTab || db->mallocFailed ); 7217 if( zTab ){ 7218 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7219 } 7220 sqlite3VdbeMemRelease(&sMem); 7221 if( rc ) goto abort_due_to_error; 7222 break; 7223 } 7224 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7225 7226 #ifndef SQLITE_OMIT_VIRTUALTABLE 7227 /* Opcode: VDestroy P1 * * P4 * 7228 ** 7229 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7230 ** of that table. 7231 */ 7232 case OP_VDestroy: { 7233 db->nVDestroy++; 7234 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7235 db->nVDestroy--; 7236 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7237 if( rc ) goto abort_due_to_error; 7238 break; 7239 } 7240 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7241 7242 #ifndef SQLITE_OMIT_VIRTUALTABLE 7243 /* Opcode: VOpen P1 * * P4 * 7244 ** 7245 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7246 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7247 ** table and stores that cursor in P1. 7248 */ 7249 case OP_VOpen: { 7250 VdbeCursor *pCur; 7251 sqlite3_vtab_cursor *pVCur; 7252 sqlite3_vtab *pVtab; 7253 const sqlite3_module *pModule; 7254 7255 assert( p->bIsReader ); 7256 pCur = 0; 7257 pVCur = 0; 7258 pVtab = pOp->p4.pVtab->pVtab; 7259 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7260 rc = SQLITE_LOCKED; 7261 goto abort_due_to_error; 7262 } 7263 pModule = pVtab->pModule; 7264 rc = pModule->xOpen(pVtab, &pVCur); 7265 sqlite3VtabImportErrmsg(p, pVtab); 7266 if( rc ) goto abort_due_to_error; 7267 7268 /* Initialize sqlite3_vtab_cursor base class */ 7269 pVCur->pVtab = pVtab; 7270 7271 /* Initialize vdbe cursor object */ 7272 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7273 if( pCur ){ 7274 pCur->uc.pVCur = pVCur; 7275 pVtab->nRef++; 7276 }else{ 7277 assert( db->mallocFailed ); 7278 pModule->xClose(pVCur); 7279 goto no_mem; 7280 } 7281 break; 7282 } 7283 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7284 7285 #ifndef SQLITE_OMIT_VIRTUALTABLE 7286 /* Opcode: VFilter P1 P2 P3 P4 * 7287 ** Synopsis: iplan=r[P3] zplan='P4' 7288 ** 7289 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7290 ** the filtered result set is empty. 7291 ** 7292 ** P4 is either NULL or a string that was generated by the xBestIndex 7293 ** method of the module. The interpretation of the P4 string is left 7294 ** to the module implementation. 7295 ** 7296 ** This opcode invokes the xFilter method on the virtual table specified 7297 ** by P1. The integer query plan parameter to xFilter is stored in register 7298 ** P3. Register P3+1 stores the argc parameter to be passed to the 7299 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7300 ** additional parameters which are passed to 7301 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7302 ** 7303 ** A jump is made to P2 if the result set after filtering would be empty. 7304 */ 7305 case OP_VFilter: { /* jump */ 7306 int nArg; 7307 int iQuery; 7308 const sqlite3_module *pModule; 7309 Mem *pQuery; 7310 Mem *pArgc; 7311 sqlite3_vtab_cursor *pVCur; 7312 sqlite3_vtab *pVtab; 7313 VdbeCursor *pCur; 7314 int res; 7315 int i; 7316 Mem **apArg; 7317 7318 pQuery = &aMem[pOp->p3]; 7319 pArgc = &pQuery[1]; 7320 pCur = p->apCsr[pOp->p1]; 7321 assert( memIsValid(pQuery) ); 7322 REGISTER_TRACE(pOp->p3, pQuery); 7323 assert( pCur->eCurType==CURTYPE_VTAB ); 7324 pVCur = pCur->uc.pVCur; 7325 pVtab = pVCur->pVtab; 7326 pModule = pVtab->pModule; 7327 7328 /* Grab the index number and argc parameters */ 7329 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7330 nArg = (int)pArgc->u.i; 7331 iQuery = (int)pQuery->u.i; 7332 7333 /* Invoke the xFilter method */ 7334 res = 0; 7335 apArg = p->apArg; 7336 for(i = 0; i<nArg; i++){ 7337 apArg[i] = &pArgc[i+1]; 7338 } 7339 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7340 sqlite3VtabImportErrmsg(p, pVtab); 7341 if( rc ) goto abort_due_to_error; 7342 res = pModule->xEof(pVCur); 7343 pCur->nullRow = 0; 7344 VdbeBranchTaken(res!=0,2); 7345 if( res ) goto jump_to_p2; 7346 break; 7347 } 7348 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7349 7350 #ifndef SQLITE_OMIT_VIRTUALTABLE 7351 /* Opcode: VColumn P1 P2 P3 * P5 7352 ** Synopsis: r[P3]=vcolumn(P2) 7353 ** 7354 ** Store in register P3 the value of the P2-th column of 7355 ** the current row of the virtual-table of cursor P1. 7356 ** 7357 ** If the VColumn opcode is being used to fetch the value of 7358 ** an unchanging column during an UPDATE operation, then the P5 7359 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7360 ** function to return true inside the xColumn method of the virtual 7361 ** table implementation. The P5 column might also contain other 7362 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7363 ** unused by OP_VColumn. 7364 */ 7365 case OP_VColumn: { 7366 sqlite3_vtab *pVtab; 7367 const sqlite3_module *pModule; 7368 Mem *pDest; 7369 sqlite3_context sContext; 7370 7371 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7372 assert( pCur->eCurType==CURTYPE_VTAB ); 7373 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7374 pDest = &aMem[pOp->p3]; 7375 memAboutToChange(p, pDest); 7376 if( pCur->nullRow ){ 7377 sqlite3VdbeMemSetNull(pDest); 7378 break; 7379 } 7380 pVtab = pCur->uc.pVCur->pVtab; 7381 pModule = pVtab->pModule; 7382 assert( pModule->xColumn ); 7383 memset(&sContext, 0, sizeof(sContext)); 7384 sContext.pOut = pDest; 7385 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7386 if( pOp->p5 & OPFLAG_NOCHNG ){ 7387 sqlite3VdbeMemSetNull(pDest); 7388 pDest->flags = MEM_Null|MEM_Zero; 7389 pDest->u.nZero = 0; 7390 }else{ 7391 MemSetTypeFlag(pDest, MEM_Null); 7392 } 7393 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7394 sqlite3VtabImportErrmsg(p, pVtab); 7395 if( sContext.isError>0 ){ 7396 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7397 rc = sContext.isError; 7398 } 7399 sqlite3VdbeChangeEncoding(pDest, encoding); 7400 REGISTER_TRACE(pOp->p3, pDest); 7401 UPDATE_MAX_BLOBSIZE(pDest); 7402 7403 if( sqlite3VdbeMemTooBig(pDest) ){ 7404 goto too_big; 7405 } 7406 if( rc ) goto abort_due_to_error; 7407 break; 7408 } 7409 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7410 7411 #ifndef SQLITE_OMIT_VIRTUALTABLE 7412 /* Opcode: VNext P1 P2 * * * 7413 ** 7414 ** Advance virtual table P1 to the next row in its result set and 7415 ** jump to instruction P2. Or, if the virtual table has reached 7416 ** the end of its result set, then fall through to the next instruction. 7417 */ 7418 case OP_VNext: { /* jump */ 7419 sqlite3_vtab *pVtab; 7420 const sqlite3_module *pModule; 7421 int res; 7422 VdbeCursor *pCur; 7423 7424 res = 0; 7425 pCur = p->apCsr[pOp->p1]; 7426 assert( pCur->eCurType==CURTYPE_VTAB ); 7427 if( pCur->nullRow ){ 7428 break; 7429 } 7430 pVtab = pCur->uc.pVCur->pVtab; 7431 pModule = pVtab->pModule; 7432 assert( pModule->xNext ); 7433 7434 /* Invoke the xNext() method of the module. There is no way for the 7435 ** underlying implementation to return an error if one occurs during 7436 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7437 ** data is available) and the error code returned when xColumn or 7438 ** some other method is next invoked on the save virtual table cursor. 7439 */ 7440 rc = pModule->xNext(pCur->uc.pVCur); 7441 sqlite3VtabImportErrmsg(p, pVtab); 7442 if( rc ) goto abort_due_to_error; 7443 res = pModule->xEof(pCur->uc.pVCur); 7444 VdbeBranchTaken(!res,2); 7445 if( !res ){ 7446 /* If there is data, jump to P2 */ 7447 goto jump_to_p2_and_check_for_interrupt; 7448 } 7449 goto check_for_interrupt; 7450 } 7451 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7452 7453 #ifndef SQLITE_OMIT_VIRTUALTABLE 7454 /* Opcode: VRename P1 * * P4 * 7455 ** 7456 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7457 ** This opcode invokes the corresponding xRename method. The value 7458 ** in register P1 is passed as the zName argument to the xRename method. 7459 */ 7460 case OP_VRename: { 7461 sqlite3_vtab *pVtab; 7462 Mem *pName; 7463 int isLegacy; 7464 7465 isLegacy = (db->flags & SQLITE_LegacyAlter); 7466 db->flags |= SQLITE_LegacyAlter; 7467 pVtab = pOp->p4.pVtab->pVtab; 7468 pName = &aMem[pOp->p1]; 7469 assert( pVtab->pModule->xRename ); 7470 assert( memIsValid(pName) ); 7471 assert( p->readOnly==0 ); 7472 REGISTER_TRACE(pOp->p1, pName); 7473 assert( pName->flags & MEM_Str ); 7474 testcase( pName->enc==SQLITE_UTF8 ); 7475 testcase( pName->enc==SQLITE_UTF16BE ); 7476 testcase( pName->enc==SQLITE_UTF16LE ); 7477 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7478 if( rc ) goto abort_due_to_error; 7479 rc = pVtab->pModule->xRename(pVtab, pName->z); 7480 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7481 sqlite3VtabImportErrmsg(p, pVtab); 7482 p->expired = 0; 7483 if( rc ) goto abort_due_to_error; 7484 break; 7485 } 7486 #endif 7487 7488 #ifndef SQLITE_OMIT_VIRTUALTABLE 7489 /* Opcode: VUpdate P1 P2 P3 P4 P5 7490 ** Synopsis: data=r[P3@P2] 7491 ** 7492 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7493 ** This opcode invokes the corresponding xUpdate method. P2 values 7494 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7495 ** invocation. The value in register (P3+P2-1) corresponds to the 7496 ** p2th element of the argv array passed to xUpdate. 7497 ** 7498 ** The xUpdate method will do a DELETE or an INSERT or both. 7499 ** The argv[0] element (which corresponds to memory cell P3) 7500 ** is the rowid of a row to delete. If argv[0] is NULL then no 7501 ** deletion occurs. The argv[1] element is the rowid of the new 7502 ** row. This can be NULL to have the virtual table select the new 7503 ** rowid for itself. The subsequent elements in the array are 7504 ** the values of columns in the new row. 7505 ** 7506 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7507 ** a row to delete. 7508 ** 7509 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7510 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7511 ** is set to the value of the rowid for the row just inserted. 7512 ** 7513 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7514 ** apply in the case of a constraint failure on an insert or update. 7515 */ 7516 case OP_VUpdate: { 7517 sqlite3_vtab *pVtab; 7518 const sqlite3_module *pModule; 7519 int nArg; 7520 int i; 7521 sqlite_int64 rowid; 7522 Mem **apArg; 7523 Mem *pX; 7524 7525 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7526 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7527 ); 7528 assert( p->readOnly==0 ); 7529 if( db->mallocFailed ) goto no_mem; 7530 sqlite3VdbeIncrWriteCounter(p, 0); 7531 pVtab = pOp->p4.pVtab->pVtab; 7532 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7533 rc = SQLITE_LOCKED; 7534 goto abort_due_to_error; 7535 } 7536 pModule = pVtab->pModule; 7537 nArg = pOp->p2; 7538 assert( pOp->p4type==P4_VTAB ); 7539 if( ALWAYS(pModule->xUpdate) ){ 7540 u8 vtabOnConflict = db->vtabOnConflict; 7541 apArg = p->apArg; 7542 pX = &aMem[pOp->p3]; 7543 for(i=0; i<nArg; i++){ 7544 assert( memIsValid(pX) ); 7545 memAboutToChange(p, pX); 7546 apArg[i] = pX; 7547 pX++; 7548 } 7549 db->vtabOnConflict = pOp->p5; 7550 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7551 db->vtabOnConflict = vtabOnConflict; 7552 sqlite3VtabImportErrmsg(p, pVtab); 7553 if( rc==SQLITE_OK && pOp->p1 ){ 7554 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7555 db->lastRowid = rowid; 7556 } 7557 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7558 if( pOp->p5==OE_Ignore ){ 7559 rc = SQLITE_OK; 7560 }else{ 7561 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7562 } 7563 }else{ 7564 p->nChange++; 7565 } 7566 if( rc ) goto abort_due_to_error; 7567 } 7568 break; 7569 } 7570 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7571 7572 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7573 /* Opcode: Pagecount P1 P2 * * * 7574 ** 7575 ** Write the current number of pages in database P1 to memory cell P2. 7576 */ 7577 case OP_Pagecount: { /* out2 */ 7578 pOut = out2Prerelease(p, pOp); 7579 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7580 break; 7581 } 7582 #endif 7583 7584 7585 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7586 /* Opcode: MaxPgcnt P1 P2 P3 * * 7587 ** 7588 ** Try to set the maximum page count for database P1 to the value in P3. 7589 ** Do not let the maximum page count fall below the current page count and 7590 ** do not change the maximum page count value if P3==0. 7591 ** 7592 ** Store the maximum page count after the change in register P2. 7593 */ 7594 case OP_MaxPgcnt: { /* out2 */ 7595 unsigned int newMax; 7596 Btree *pBt; 7597 7598 pOut = out2Prerelease(p, pOp); 7599 pBt = db->aDb[pOp->p1].pBt; 7600 newMax = 0; 7601 if( pOp->p3 ){ 7602 newMax = sqlite3BtreeLastPage(pBt); 7603 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7604 } 7605 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7606 break; 7607 } 7608 #endif 7609 7610 /* Opcode: Function P1 P2 P3 P4 * 7611 ** Synopsis: r[P3]=func(r[P2@NP]) 7612 ** 7613 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7614 ** contains a pointer to the function to be run) with arguments taken 7615 ** from register P2 and successors. The number of arguments is in 7616 ** the sqlite3_context object that P4 points to. 7617 ** The result of the function is stored 7618 ** in register P3. Register P3 must not be one of the function inputs. 7619 ** 7620 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7621 ** function was determined to be constant at compile time. If the first 7622 ** argument was constant then bit 0 of P1 is set. This is used to determine 7623 ** whether meta data associated with a user function argument using the 7624 ** sqlite3_set_auxdata() API may be safely retained until the next 7625 ** invocation of this opcode. 7626 ** 7627 ** See also: AggStep, AggFinal, PureFunc 7628 */ 7629 /* Opcode: PureFunc P1 P2 P3 P4 * 7630 ** Synopsis: r[P3]=func(r[P2@NP]) 7631 ** 7632 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7633 ** contains a pointer to the function to be run) with arguments taken 7634 ** from register P2 and successors. The number of arguments is in 7635 ** the sqlite3_context object that P4 points to. 7636 ** The result of the function is stored 7637 ** in register P3. Register P3 must not be one of the function inputs. 7638 ** 7639 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7640 ** function was determined to be constant at compile time. If the first 7641 ** argument was constant then bit 0 of P1 is set. This is used to determine 7642 ** whether meta data associated with a user function argument using the 7643 ** sqlite3_set_auxdata() API may be safely retained until the next 7644 ** invocation of this opcode. 7645 ** 7646 ** This opcode works exactly like OP_Function. The only difference is in 7647 ** its name. This opcode is used in places where the function must be 7648 ** purely non-deterministic. Some built-in date/time functions can be 7649 ** either determinitic of non-deterministic, depending on their arguments. 7650 ** When those function are used in a non-deterministic way, they will check 7651 ** to see if they were called using OP_PureFunc instead of OP_Function, and 7652 ** if they were, they throw an error. 7653 ** 7654 ** See also: AggStep, AggFinal, Function 7655 */ 7656 case OP_PureFunc: /* group */ 7657 case OP_Function: { /* group */ 7658 int i; 7659 sqlite3_context *pCtx; 7660 7661 assert( pOp->p4type==P4_FUNCCTX ); 7662 pCtx = pOp->p4.pCtx; 7663 7664 /* If this function is inside of a trigger, the register array in aMem[] 7665 ** might change from one evaluation to the next. The next block of code 7666 ** checks to see if the register array has changed, and if so it 7667 ** reinitializes the relavant parts of the sqlite3_context object */ 7668 pOut = &aMem[pOp->p3]; 7669 if( pCtx->pOut != pOut ){ 7670 pCtx->pVdbe = p; 7671 pCtx->pOut = pOut; 7672 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7673 } 7674 assert( pCtx->pVdbe==p ); 7675 7676 memAboutToChange(p, pOut); 7677 #ifdef SQLITE_DEBUG 7678 for(i=0; i<pCtx->argc; i++){ 7679 assert( memIsValid(pCtx->argv[i]) ); 7680 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7681 } 7682 #endif 7683 MemSetTypeFlag(pOut, MEM_Null); 7684 assert( pCtx->isError==0 ); 7685 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7686 7687 /* If the function returned an error, throw an exception */ 7688 if( pCtx->isError ){ 7689 if( pCtx->isError>0 ){ 7690 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7691 rc = pCtx->isError; 7692 } 7693 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7694 pCtx->isError = 0; 7695 if( rc ) goto abort_due_to_error; 7696 } 7697 7698 /* Copy the result of the function into register P3 */ 7699 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7700 sqlite3VdbeChangeEncoding(pOut, encoding); 7701 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7702 } 7703 7704 REGISTER_TRACE(pOp->p3, pOut); 7705 UPDATE_MAX_BLOBSIZE(pOut); 7706 break; 7707 } 7708 7709 /* Opcode: Trace P1 P2 * P4 * 7710 ** 7711 ** Write P4 on the statement trace output if statement tracing is 7712 ** enabled. 7713 ** 7714 ** Operand P1 must be 0x7fffffff and P2 must positive. 7715 */ 7716 /* Opcode: Init P1 P2 P3 P4 * 7717 ** Synopsis: Start at P2 7718 ** 7719 ** Programs contain a single instance of this opcode as the very first 7720 ** opcode. 7721 ** 7722 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7723 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7724 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7725 ** 7726 ** If P2 is not zero, jump to instruction P2. 7727 ** 7728 ** Increment the value of P1 so that OP_Once opcodes will jump the 7729 ** first time they are evaluated for this run. 7730 ** 7731 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7732 ** error is encountered. 7733 */ 7734 case OP_Trace: 7735 case OP_Init: { /* jump */ 7736 int i; 7737 #ifndef SQLITE_OMIT_TRACE 7738 char *zTrace; 7739 #endif 7740 7741 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7742 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7743 ** 7744 ** This assert() provides evidence for: 7745 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7746 ** would have been returned by the legacy sqlite3_trace() interface by 7747 ** using the X argument when X begins with "--" and invoking 7748 ** sqlite3_expanded_sql(P) otherwise. 7749 */ 7750 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7751 7752 /* OP_Init is always instruction 0 */ 7753 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7754 7755 #ifndef SQLITE_OMIT_TRACE 7756 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7757 && !p->doingRerun 7758 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7759 ){ 7760 #ifndef SQLITE_OMIT_DEPRECATED 7761 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7762 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7763 char *z = sqlite3VdbeExpandSql(p, zTrace); 7764 x(db->pTraceArg, z); 7765 sqlite3_free(z); 7766 }else 7767 #endif 7768 if( db->nVdbeExec>1 ){ 7769 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7770 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7771 sqlite3DbFree(db, z); 7772 }else{ 7773 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7774 } 7775 } 7776 #ifdef SQLITE_USE_FCNTL_TRACE 7777 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7778 if( zTrace ){ 7779 int j; 7780 for(j=0; j<db->nDb; j++){ 7781 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7782 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7783 } 7784 } 7785 #endif /* SQLITE_USE_FCNTL_TRACE */ 7786 #ifdef SQLITE_DEBUG 7787 if( (db->flags & SQLITE_SqlTrace)!=0 7788 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7789 ){ 7790 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7791 } 7792 #endif /* SQLITE_DEBUG */ 7793 #endif /* SQLITE_OMIT_TRACE */ 7794 assert( pOp->p2>0 ); 7795 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7796 if( pOp->opcode==OP_Trace ) break; 7797 for(i=1; i<p->nOp; i++){ 7798 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7799 } 7800 pOp->p1 = 0; 7801 } 7802 pOp->p1++; 7803 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7804 goto jump_to_p2; 7805 } 7806 7807 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7808 /* Opcode: CursorHint P1 * * P4 * 7809 ** 7810 ** Provide a hint to cursor P1 that it only needs to return rows that 7811 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7812 ** to values currently held in registers. TK_COLUMN terms in the P4 7813 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7814 */ 7815 case OP_CursorHint: { 7816 VdbeCursor *pC; 7817 7818 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7819 assert( pOp->p4type==P4_EXPR ); 7820 pC = p->apCsr[pOp->p1]; 7821 if( pC ){ 7822 assert( pC->eCurType==CURTYPE_BTREE ); 7823 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7824 pOp->p4.pExpr, aMem); 7825 } 7826 break; 7827 } 7828 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7829 7830 #ifdef SQLITE_DEBUG 7831 /* Opcode: Abortable * * * * * 7832 ** 7833 ** Verify that an Abort can happen. Assert if an Abort at this point 7834 ** might cause database corruption. This opcode only appears in debugging 7835 ** builds. 7836 ** 7837 ** An Abort is safe if either there have been no writes, or if there is 7838 ** an active statement journal. 7839 */ 7840 case OP_Abortable: { 7841 sqlite3VdbeAssertAbortable(p); 7842 break; 7843 } 7844 #endif 7845 7846 #ifdef SQLITE_DEBUG 7847 /* Opcode: ReleaseReg P1 P2 P3 * P5 7848 ** Synopsis: release r[P1@P2] mask P3 7849 ** 7850 ** Release registers from service. Any content that was in the 7851 ** the registers is unreliable after this opcode completes. 7852 ** 7853 ** The registers released will be the P2 registers starting at P1, 7854 ** except if bit ii of P3 set, then do not release register P1+ii. 7855 ** In other words, P3 is a mask of registers to preserve. 7856 ** 7857 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 7858 ** that if the content of the released register was set using OP_SCopy, 7859 ** a change to the value of the source register for the OP_SCopy will no longer 7860 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 7861 ** 7862 ** If P5 is set, then all released registers have their type set 7863 ** to MEM_Undefined so that any subsequent attempt to read the released 7864 ** register (before it is reinitialized) will generate an assertion fault. 7865 ** 7866 ** P5 ought to be set on every call to this opcode. 7867 ** However, there are places in the code generator will release registers 7868 ** before their are used, under the (valid) assumption that the registers 7869 ** will not be reallocated for some other purpose before they are used and 7870 ** hence are safe to release. 7871 ** 7872 ** This opcode is only available in testing and debugging builds. It is 7873 ** not generated for release builds. The purpose of this opcode is to help 7874 ** validate the generated bytecode. This opcode does not actually contribute 7875 ** to computing an answer. 7876 */ 7877 case OP_ReleaseReg: { 7878 Mem *pMem; 7879 int i; 7880 u32 constMask; 7881 assert( pOp->p1>0 ); 7882 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 7883 pMem = &aMem[pOp->p1]; 7884 constMask = pOp->p3; 7885 for(i=0; i<pOp->p2; i++, pMem++){ 7886 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 7887 pMem->pScopyFrom = 0; 7888 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 7889 } 7890 } 7891 break; 7892 } 7893 #endif 7894 7895 /* Opcode: Noop * * * * * 7896 ** 7897 ** Do nothing. This instruction is often useful as a jump 7898 ** destination. 7899 */ 7900 /* 7901 ** The magic Explain opcode are only inserted when explain==2 (which 7902 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7903 ** This opcode records information from the optimizer. It is the 7904 ** the same as a no-op. This opcodesnever appears in a real VM program. 7905 */ 7906 default: { /* This is really OP_Noop, OP_Explain */ 7907 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7908 7909 break; 7910 } 7911 7912 /***************************************************************************** 7913 ** The cases of the switch statement above this line should all be indented 7914 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7915 ** readability. From this point on down, the normal indentation rules are 7916 ** restored. 7917 *****************************************************************************/ 7918 } 7919 7920 #ifdef VDBE_PROFILE 7921 { 7922 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 7923 if( endTime>start ) pOrigOp->cycles += endTime - start; 7924 pOrigOp->cnt++; 7925 } 7926 #endif 7927 7928 /* The following code adds nothing to the actual functionality 7929 ** of the program. It is only here for testing and debugging. 7930 ** On the other hand, it does burn CPU cycles every time through 7931 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7932 */ 7933 #ifndef NDEBUG 7934 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7935 7936 #ifdef SQLITE_DEBUG 7937 if( db->flags & SQLITE_VdbeTrace ){ 7938 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7939 if( rc!=0 ) printf("rc=%d\n",rc); 7940 if( opProperty & (OPFLG_OUT2) ){ 7941 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7942 } 7943 if( opProperty & OPFLG_OUT3 ){ 7944 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7945 } 7946 if( opProperty==0xff ){ 7947 /* Never happens. This code exists to avoid a harmless linkage 7948 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 7949 ** used. */ 7950 sqlite3VdbeRegisterDump(p); 7951 } 7952 } 7953 #endif /* SQLITE_DEBUG */ 7954 #endif /* NDEBUG */ 7955 } /* The end of the for(;;) loop the loops through opcodes */ 7956 7957 /* If we reach this point, it means that execution is finished with 7958 ** an error of some kind. 7959 */ 7960 abort_due_to_error: 7961 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7962 assert( rc ); 7963 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7964 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7965 } 7966 p->rc = rc; 7967 sqlite3SystemError(db, rc); 7968 testcase( sqlite3GlobalConfig.xLog!=0 ); 7969 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7970 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7971 sqlite3VdbeHalt(p); 7972 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7973 rc = SQLITE_ERROR; 7974 if( resetSchemaOnFault>0 ){ 7975 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7976 } 7977 7978 /* This is the only way out of this procedure. We have to 7979 ** release the mutexes on btrees that were acquired at the 7980 ** top. */ 7981 vdbe_return: 7982 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 7983 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 7984 nProgressLimit += db->nProgressOps; 7985 if( db->xProgress(db->pProgressArg) ){ 7986 nProgressLimit = 0xffffffff; 7987 rc = SQLITE_INTERRUPT; 7988 goto abort_due_to_error; 7989 } 7990 } 7991 #endif 7992 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7993 sqlite3VdbeLeave(p); 7994 assert( rc!=SQLITE_OK || nExtraDelete==0 7995 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7996 ); 7997 return rc; 7998 7999 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8000 ** is encountered. 8001 */ 8002 too_big: 8003 sqlite3VdbeError(p, "string or blob too big"); 8004 rc = SQLITE_TOOBIG; 8005 goto abort_due_to_error; 8006 8007 /* Jump to here if a malloc() fails. 8008 */ 8009 no_mem: 8010 sqlite3OomFault(db); 8011 sqlite3VdbeError(p, "out of memory"); 8012 rc = SQLITE_NOMEM_BKPT; 8013 goto abort_due_to_error; 8014 8015 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8016 ** flag. 8017 */ 8018 abort_due_to_interrupt: 8019 assert( AtomicLoad(&db->u1.isInterrupted) ); 8020 rc = SQLITE_INTERRUPT; 8021 goto abort_due_to_error; 8022 } 8023