1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** The next global variable is incremented each time the OP_Found opcode 91 ** is executed. This is used to test whether or not the foreign key 92 ** operation implemented using OP_FkIsZero is working. This variable 93 ** has no function other than to help verify the correct operation of the 94 ** library. 95 */ 96 #ifdef SQLITE_TEST 97 int sqlite3_found_count = 0; 98 #endif 99 100 /* 101 ** Test a register to see if it exceeds the current maximum blob size. 102 ** If it does, record the new maximum blob size. 103 */ 104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 106 #else 107 # define UPDATE_MAX_BLOBSIZE(P) 108 #endif 109 110 /* 111 ** Invoke the VDBE coverage callback, if that callback is defined. This 112 ** feature is used for test suite validation only and does not appear an 113 ** production builds. 114 ** 115 ** M is an integer, 2 or 3, that indices how many different ways the 116 ** branch can go. It is usually 2. "I" is the direction the branch 117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 118 ** second alternative branch is taken. 119 ** 120 ** iSrcLine is the source code line (from the __LINE__ macro) that 121 ** generated the VDBE instruction. This instrumentation assumes that all 122 ** source code is in a single file (the amalgamation). Special values 1 123 ** and 2 for the iSrcLine parameter mean that this particular branch is 124 ** always taken or never taken, respectively. 125 */ 126 #if !defined(SQLITE_VDBE_COVERAGE) 127 # define VdbeBranchTaken(I,M) 128 #else 129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 132 M = iSrcLine; 133 /* Assert the truth of VdbeCoverageAlwaysTaken() and 134 ** VdbeCoverageNeverTaken() */ 135 assert( (M & I)==I ); 136 }else{ 137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 139 iSrcLine,I,M); 140 } 141 } 142 #endif 143 144 /* 145 ** Convert the given register into a string if it isn't one 146 ** already. Return non-zero if a malloc() fails. 147 */ 148 #define Stringify(P, enc) \ 149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 150 { goto no_mem; } 151 152 /* 153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 154 ** a pointer to a dynamically allocated string where some other entity 155 ** is responsible for deallocating that string. Because the register 156 ** does not control the string, it might be deleted without the register 157 ** knowing it. 158 ** 159 ** This routine converts an ephemeral string into a dynamically allocated 160 ** string that the register itself controls. In other words, it 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 162 */ 163 #define Deephemeralize(P) \ 164 if( ((P)->flags&MEM_Ephem)!=0 \ 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 166 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 168 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 169 170 /* 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 172 ** if we run out of memory. 173 */ 174 static VdbeCursor *allocateCursor( 175 Vdbe *p, /* The virtual machine */ 176 int iCur, /* Index of the new VdbeCursor */ 177 int nField, /* Number of fields in the table or index */ 178 int iDb, /* Database the cursor belongs to, or -1 */ 179 u8 eCurType /* Type of the new cursor */ 180 ){ 181 /* Find the memory cell that will be used to store the blob of memory 182 ** required for this VdbeCursor structure. It is convenient to use a 183 ** vdbe memory cell to manage the memory allocation required for a 184 ** VdbeCursor structure for the following reasons: 185 ** 186 ** * Sometimes cursor numbers are used for a couple of different 187 ** purposes in a vdbe program. The different uses might require 188 ** different sized allocations. Memory cells provide growable 189 ** allocations. 190 ** 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 192 ** be freed lazily via the sqlite3_release_memory() API. This 193 ** minimizes the number of malloc calls made by the system. 194 ** 195 ** Memory cells for cursors are allocated at the top of the address 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 198 */ 199 Mem *pMem = &p->aMem[p->nMem-iCur]; 200 201 int nByte; 202 VdbeCursor *pCx = 0; 203 nByte = 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 205 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 206 207 assert( iCur<p->nCursor ); 208 if( p->apCsr[iCur] ){ 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 210 p->apCsr[iCur] = 0; 211 } 212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 214 memset(pCx, 0, sizeof(VdbeCursor)); 215 pCx->eCurType = eCurType; 216 pCx->iDb = iDb; 217 pCx->nField = nField; 218 pCx->aOffset = &pCx->aType[nField]; 219 if( eCurType==CURTYPE_BTREE ){ 220 pCx->uc.pCursor = (BtCursor*) 221 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 222 sqlite3BtreeCursorZero(pCx->uc.pCursor); 223 } 224 } 225 return pCx; 226 } 227 228 /* 229 ** Try to convert a value into a numeric representation if we can 230 ** do so without loss of information. In other words, if the string 231 ** looks like a number, convert it into a number. If it does not 232 ** look like a number, leave it alone. 233 ** 234 ** If the bTryForInt flag is true, then extra effort is made to give 235 ** an integer representation. Strings that look like floating point 236 ** values but which have no fractional component (example: '48.00') 237 ** will have a MEM_Int representation when bTryForInt is true. 238 ** 239 ** If bTryForInt is false, then if the input string contains a decimal 240 ** point or exponential notation, the result is only MEM_Real, even 241 ** if there is an exact integer representation of the quantity. 242 */ 243 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 244 double rValue; 245 i64 iValue; 246 u8 enc = pRec->enc; 247 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 248 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 249 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 250 pRec->u.i = iValue; 251 pRec->flags |= MEM_Int; 252 }else{ 253 pRec->u.r = rValue; 254 pRec->flags |= MEM_Real; 255 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 256 } 257 } 258 259 /* 260 ** Processing is determine by the affinity parameter: 261 ** 262 ** SQLITE_AFF_INTEGER: 263 ** SQLITE_AFF_REAL: 264 ** SQLITE_AFF_NUMERIC: 265 ** Try to convert pRec to an integer representation or a 266 ** floating-point representation if an integer representation 267 ** is not possible. Note that the integer representation is 268 ** always preferred, even if the affinity is REAL, because 269 ** an integer representation is more space efficient on disk. 270 ** 271 ** SQLITE_AFF_TEXT: 272 ** Convert pRec to a text representation. 273 ** 274 ** SQLITE_AFF_BLOB: 275 ** No-op. pRec is unchanged. 276 */ 277 static void applyAffinity( 278 Mem *pRec, /* The value to apply affinity to */ 279 char affinity, /* The affinity to be applied */ 280 u8 enc /* Use this text encoding */ 281 ){ 282 if( affinity>=SQLITE_AFF_NUMERIC ){ 283 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 284 || affinity==SQLITE_AFF_NUMERIC ); 285 if( (pRec->flags & MEM_Int)==0 ){ 286 if( (pRec->flags & MEM_Real)==0 ){ 287 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 288 }else{ 289 sqlite3VdbeIntegerAffinity(pRec); 290 } 291 } 292 }else if( affinity==SQLITE_AFF_TEXT ){ 293 /* Only attempt the conversion to TEXT if there is an integer or real 294 ** representation (blob and NULL do not get converted) but no string 295 ** representation. 296 */ 297 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 298 sqlite3VdbeMemStringify(pRec, enc, 1); 299 } 300 pRec->flags &= ~(MEM_Real|MEM_Int); 301 } 302 } 303 304 /* 305 ** Try to convert the type of a function argument or a result column 306 ** into a numeric representation. Use either INTEGER or REAL whichever 307 ** is appropriate. But only do the conversion if it is possible without 308 ** loss of information and return the revised type of the argument. 309 */ 310 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 311 int eType = sqlite3_value_type(pVal); 312 if( eType==SQLITE_TEXT ){ 313 Mem *pMem = (Mem*)pVal; 314 applyNumericAffinity(pMem, 0); 315 eType = sqlite3_value_type(pVal); 316 } 317 return eType; 318 } 319 320 /* 321 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 322 ** not the internal Mem* type. 323 */ 324 void sqlite3ValueApplyAffinity( 325 sqlite3_value *pVal, 326 u8 affinity, 327 u8 enc 328 ){ 329 applyAffinity((Mem *)pVal, affinity, enc); 330 } 331 332 /* 333 ** pMem currently only holds a string type (or maybe a BLOB that we can 334 ** interpret as a string if we want to). Compute its corresponding 335 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 336 ** accordingly. 337 */ 338 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 339 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 340 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 341 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 342 return 0; 343 } 344 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ 345 return MEM_Int; 346 } 347 return MEM_Real; 348 } 349 350 /* 351 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 352 ** none. 353 ** 354 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 355 ** But it does set pMem->u.r and pMem->u.i appropriately. 356 */ 357 static u16 numericType(Mem *pMem){ 358 if( pMem->flags & (MEM_Int|MEM_Real) ){ 359 return pMem->flags & (MEM_Int|MEM_Real); 360 } 361 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 362 return computeNumericType(pMem); 363 } 364 return 0; 365 } 366 367 #ifdef SQLITE_DEBUG 368 /* 369 ** Write a nice string representation of the contents of cell pMem 370 ** into buffer zBuf, length nBuf. 371 */ 372 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 373 char *zCsr = zBuf; 374 int f = pMem->flags; 375 376 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 377 378 if( f&MEM_Blob ){ 379 int i; 380 char c; 381 if( f & MEM_Dyn ){ 382 c = 'z'; 383 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 384 }else if( f & MEM_Static ){ 385 c = 't'; 386 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 387 }else if( f & MEM_Ephem ){ 388 c = 'e'; 389 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 390 }else{ 391 c = 's'; 392 } 393 394 sqlite3_snprintf(100, zCsr, "%c", c); 395 zCsr += sqlite3Strlen30(zCsr); 396 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 397 zCsr += sqlite3Strlen30(zCsr); 398 for(i=0; i<16 && i<pMem->n; i++){ 399 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 400 zCsr += sqlite3Strlen30(zCsr); 401 } 402 for(i=0; i<16 && i<pMem->n; i++){ 403 char z = pMem->z[i]; 404 if( z<32 || z>126 ) *zCsr++ = '.'; 405 else *zCsr++ = z; 406 } 407 408 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 409 zCsr += sqlite3Strlen30(zCsr); 410 if( f & MEM_Zero ){ 411 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 412 zCsr += sqlite3Strlen30(zCsr); 413 } 414 *zCsr = '\0'; 415 }else if( f & MEM_Str ){ 416 int j, k; 417 zBuf[0] = ' '; 418 if( f & MEM_Dyn ){ 419 zBuf[1] = 'z'; 420 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 421 }else if( f & MEM_Static ){ 422 zBuf[1] = 't'; 423 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 424 }else if( f & MEM_Ephem ){ 425 zBuf[1] = 'e'; 426 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 427 }else{ 428 zBuf[1] = 's'; 429 } 430 k = 2; 431 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 432 k += sqlite3Strlen30(&zBuf[k]); 433 zBuf[k++] = '['; 434 for(j=0; j<15 && j<pMem->n; j++){ 435 u8 c = pMem->z[j]; 436 if( c>=0x20 && c<0x7f ){ 437 zBuf[k++] = c; 438 }else{ 439 zBuf[k++] = '.'; 440 } 441 } 442 zBuf[k++] = ']'; 443 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 444 k += sqlite3Strlen30(&zBuf[k]); 445 zBuf[k++] = 0; 446 } 447 } 448 #endif 449 450 #ifdef SQLITE_DEBUG 451 /* 452 ** Print the value of a register for tracing purposes: 453 */ 454 static void memTracePrint(Mem *p){ 455 if( p->flags & MEM_Undefined ){ 456 printf(" undefined"); 457 }else if( p->flags & MEM_Null ){ 458 printf(" NULL"); 459 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 460 printf(" si:%lld", p->u.i); 461 }else if( p->flags & MEM_Int ){ 462 printf(" i:%lld", p->u.i); 463 #ifndef SQLITE_OMIT_FLOATING_POINT 464 }else if( p->flags & MEM_Real ){ 465 printf(" r:%g", p->u.r); 466 #endif 467 }else if( p->flags & MEM_RowSet ){ 468 printf(" (rowset)"); 469 }else{ 470 char zBuf[200]; 471 sqlite3VdbeMemPrettyPrint(p, zBuf); 472 printf(" %s", zBuf); 473 } 474 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 475 } 476 static void registerTrace(int iReg, Mem *p){ 477 printf("REG[%d] = ", iReg); 478 memTracePrint(p); 479 printf("\n"); 480 } 481 #endif 482 483 #ifdef SQLITE_DEBUG 484 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 485 #else 486 # define REGISTER_TRACE(R,M) 487 #endif 488 489 490 #ifdef VDBE_PROFILE 491 492 /* 493 ** hwtime.h contains inline assembler code for implementing 494 ** high-performance timing routines. 495 */ 496 #include "hwtime.h" 497 498 #endif 499 500 #ifndef NDEBUG 501 /* 502 ** This function is only called from within an assert() expression. It 503 ** checks that the sqlite3.nTransaction variable is correctly set to 504 ** the number of non-transaction savepoints currently in the 505 ** linked list starting at sqlite3.pSavepoint. 506 ** 507 ** Usage: 508 ** 509 ** assert( checkSavepointCount(db) ); 510 */ 511 static int checkSavepointCount(sqlite3 *db){ 512 int n = 0; 513 Savepoint *p; 514 for(p=db->pSavepoint; p; p=p->pNext) n++; 515 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 516 return 1; 517 } 518 #endif 519 520 /* 521 ** Return the register of pOp->p2 after first preparing it to be 522 ** overwritten with an integer value. 523 */ 524 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 525 sqlite3VdbeMemSetNull(pOut); 526 pOut->flags = MEM_Int; 527 return pOut; 528 } 529 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 530 Mem *pOut; 531 assert( pOp->p2>0 ); 532 assert( pOp->p2<=(p->nMem-p->nCursor) ); 533 pOut = &p->aMem[pOp->p2]; 534 memAboutToChange(p, pOut); 535 if( VdbeMemDynamic(pOut) ){ 536 return out2PrereleaseWithClear(pOut); 537 }else{ 538 pOut->flags = MEM_Int; 539 return pOut; 540 } 541 } 542 543 544 /* 545 ** Execute as much of a VDBE program as we can. 546 ** This is the core of sqlite3_step(). 547 */ 548 int sqlite3VdbeExec( 549 Vdbe *p /* The VDBE */ 550 ){ 551 Op *aOp = p->aOp; /* Copy of p->aOp */ 552 Op *pOp = aOp; /* Current operation */ 553 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 554 Op *pOrigOp; /* Value of pOp at the top of the loop */ 555 #endif 556 #ifdef SQLITE_DEBUG 557 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 558 #endif 559 int rc = SQLITE_OK; /* Value to return */ 560 sqlite3 *db = p->db; /* The database */ 561 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 562 u8 encoding = ENC(db); /* The database encoding */ 563 int iCompare = 0; /* Result of last OP_Compare operation */ 564 unsigned nVmStep = 0; /* Number of virtual machine steps */ 565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 566 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 567 #endif 568 Mem *aMem = p->aMem; /* Copy of p->aMem */ 569 Mem *pIn1 = 0; /* 1st input operand */ 570 Mem *pIn2 = 0; /* 2nd input operand */ 571 Mem *pIn3 = 0; /* 3rd input operand */ 572 Mem *pOut = 0; /* Output operand */ 573 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 574 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 575 #ifdef VDBE_PROFILE 576 u64 start; /* CPU clock count at start of opcode */ 577 #endif 578 /*** INSERT STACK UNION HERE ***/ 579 580 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 581 sqlite3VdbeEnter(p); 582 if( p->rc==SQLITE_NOMEM ){ 583 /* This happens if a malloc() inside a call to sqlite3_column_text() or 584 ** sqlite3_column_text16() failed. */ 585 goto no_mem; 586 } 587 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 588 assert( p->bIsReader || p->readOnly!=0 ); 589 p->rc = SQLITE_OK; 590 p->iCurrentTime = 0; 591 assert( p->explain==0 ); 592 p->pResultSet = 0; 593 db->busyHandler.nBusy = 0; 594 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 595 sqlite3VdbeIOTraceSql(p); 596 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 597 if( db->xProgress ){ 598 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 599 assert( 0 < db->nProgressOps ); 600 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 601 } 602 #endif 603 #ifdef SQLITE_DEBUG 604 sqlite3BeginBenignMalloc(); 605 if( p->pc==0 606 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 607 ){ 608 int i; 609 int once = 1; 610 sqlite3VdbePrintSql(p); 611 if( p->db->flags & SQLITE_VdbeListing ){ 612 printf("VDBE Program Listing:\n"); 613 for(i=0; i<p->nOp; i++){ 614 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 615 } 616 } 617 if( p->db->flags & SQLITE_VdbeEQP ){ 618 for(i=0; i<p->nOp; i++){ 619 if( aOp[i].opcode==OP_Explain ){ 620 if( once ) printf("VDBE Query Plan:\n"); 621 printf("%s\n", aOp[i].p4.z); 622 once = 0; 623 } 624 } 625 } 626 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 627 } 628 sqlite3EndBenignMalloc(); 629 #endif 630 for(pOp=&aOp[p->pc]; 1; pOp++){ 631 /* Errors are detected by individual opcodes, with an immediate 632 ** jumps to abort_due_to_error. */ 633 assert( rc==SQLITE_OK ); 634 635 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 636 #ifdef VDBE_PROFILE 637 start = sqlite3Hwtime(); 638 #endif 639 nVmStep++; 640 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 641 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 642 #endif 643 644 /* Only allow tracing if SQLITE_DEBUG is defined. 645 */ 646 #ifdef SQLITE_DEBUG 647 if( db->flags & SQLITE_VdbeTrace ){ 648 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 649 } 650 #endif 651 652 653 /* Check to see if we need to simulate an interrupt. This only happens 654 ** if we have a special test build. 655 */ 656 #ifdef SQLITE_TEST 657 if( sqlite3_interrupt_count>0 ){ 658 sqlite3_interrupt_count--; 659 if( sqlite3_interrupt_count==0 ){ 660 sqlite3_interrupt(db); 661 } 662 } 663 #endif 664 665 /* Sanity checking on other operands */ 666 #ifdef SQLITE_DEBUG 667 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 668 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 669 assert( pOp->p1>0 ); 670 assert( pOp->p1<=(p->nMem-p->nCursor) ); 671 assert( memIsValid(&aMem[pOp->p1]) ); 672 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 673 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 674 } 675 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 676 assert( pOp->p2>0 ); 677 assert( pOp->p2<=(p->nMem-p->nCursor) ); 678 assert( memIsValid(&aMem[pOp->p2]) ); 679 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 680 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 681 } 682 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 683 assert( pOp->p3>0 ); 684 assert( pOp->p3<=(p->nMem-p->nCursor) ); 685 assert( memIsValid(&aMem[pOp->p3]) ); 686 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 687 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 688 } 689 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 690 assert( pOp->p2>0 ); 691 assert( pOp->p2<=(p->nMem-p->nCursor) ); 692 memAboutToChange(p, &aMem[pOp->p2]); 693 } 694 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 695 assert( pOp->p3>0 ); 696 assert( pOp->p3<=(p->nMem-p->nCursor) ); 697 memAboutToChange(p, &aMem[pOp->p3]); 698 } 699 #endif 700 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 701 pOrigOp = pOp; 702 #endif 703 704 switch( pOp->opcode ){ 705 706 /***************************************************************************** 707 ** What follows is a massive switch statement where each case implements a 708 ** separate instruction in the virtual machine. If we follow the usual 709 ** indentation conventions, each case should be indented by 6 spaces. But 710 ** that is a lot of wasted space on the left margin. So the code within 711 ** the switch statement will break with convention and be flush-left. Another 712 ** big comment (similar to this one) will mark the point in the code where 713 ** we transition back to normal indentation. 714 ** 715 ** The formatting of each case is important. The makefile for SQLite 716 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 717 ** file looking for lines that begin with "case OP_". The opcodes.h files 718 ** will be filled with #defines that give unique integer values to each 719 ** opcode and the opcodes.c file is filled with an array of strings where 720 ** each string is the symbolic name for the corresponding opcode. If the 721 ** case statement is followed by a comment of the form "/# same as ... #/" 722 ** that comment is used to determine the particular value of the opcode. 723 ** 724 ** Other keywords in the comment that follows each case are used to 725 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 726 ** Keywords include: in1, in2, in3, out2, out3. See 727 ** the mkopcodeh.awk script for additional information. 728 ** 729 ** Documentation about VDBE opcodes is generated by scanning this file 730 ** for lines of that contain "Opcode:". That line and all subsequent 731 ** comment lines are used in the generation of the opcode.html documentation 732 ** file. 733 ** 734 ** SUMMARY: 735 ** 736 ** Formatting is important to scripts that scan this file. 737 ** Do not deviate from the formatting style currently in use. 738 ** 739 *****************************************************************************/ 740 741 /* Opcode: Goto * P2 * * * 742 ** 743 ** An unconditional jump to address P2. 744 ** The next instruction executed will be 745 ** the one at index P2 from the beginning of 746 ** the program. 747 ** 748 ** The P1 parameter is not actually used by this opcode. However, it 749 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 750 ** that this Goto is the bottom of a loop and that the lines from P2 down 751 ** to the current line should be indented for EXPLAIN output. 752 */ 753 case OP_Goto: { /* jump */ 754 jump_to_p2_and_check_for_interrupt: 755 pOp = &aOp[pOp->p2 - 1]; 756 757 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 758 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 759 ** completion. Check to see if sqlite3_interrupt() has been called 760 ** or if the progress callback needs to be invoked. 761 ** 762 ** This code uses unstructured "goto" statements and does not look clean. 763 ** But that is not due to sloppy coding habits. The code is written this 764 ** way for performance, to avoid having to run the interrupt and progress 765 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 766 ** faster according to "valgrind --tool=cachegrind" */ 767 check_for_interrupt: 768 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 769 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 770 /* Call the progress callback if it is configured and the required number 771 ** of VDBE ops have been executed (either since this invocation of 772 ** sqlite3VdbeExec() or since last time the progress callback was called). 773 ** If the progress callback returns non-zero, exit the virtual machine with 774 ** a return code SQLITE_ABORT. 775 */ 776 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ 777 assert( db->nProgressOps!=0 ); 778 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 779 if( db->xProgress(db->pProgressArg) ){ 780 rc = SQLITE_INTERRUPT; 781 goto abort_due_to_error; 782 } 783 } 784 #endif 785 786 break; 787 } 788 789 /* Opcode: Gosub P1 P2 * * * 790 ** 791 ** Write the current address onto register P1 792 ** and then jump to address P2. 793 */ 794 case OP_Gosub: { /* jump */ 795 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 796 pIn1 = &aMem[pOp->p1]; 797 assert( VdbeMemDynamic(pIn1)==0 ); 798 memAboutToChange(p, pIn1); 799 pIn1->flags = MEM_Int; 800 pIn1->u.i = (int)(pOp-aOp); 801 REGISTER_TRACE(pOp->p1, pIn1); 802 803 /* Most jump operations do a goto to this spot in order to update 804 ** the pOp pointer. */ 805 jump_to_p2: 806 pOp = &aOp[pOp->p2 - 1]; 807 break; 808 } 809 810 /* Opcode: Return P1 * * * * 811 ** 812 ** Jump to the next instruction after the address in register P1. After 813 ** the jump, register P1 becomes undefined. 814 */ 815 case OP_Return: { /* in1 */ 816 pIn1 = &aMem[pOp->p1]; 817 assert( pIn1->flags==MEM_Int ); 818 pOp = &aOp[pIn1->u.i]; 819 pIn1->flags = MEM_Undefined; 820 break; 821 } 822 823 /* Opcode: InitCoroutine P1 P2 P3 * * 824 ** 825 ** Set up register P1 so that it will Yield to the coroutine 826 ** located at address P3. 827 ** 828 ** If P2!=0 then the coroutine implementation immediately follows 829 ** this opcode. So jump over the coroutine implementation to 830 ** address P2. 831 ** 832 ** See also: EndCoroutine 833 */ 834 case OP_InitCoroutine: { /* jump */ 835 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 836 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 837 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 838 pOut = &aMem[pOp->p1]; 839 assert( !VdbeMemDynamic(pOut) ); 840 pOut->u.i = pOp->p3 - 1; 841 pOut->flags = MEM_Int; 842 if( pOp->p2 ) goto jump_to_p2; 843 break; 844 } 845 846 /* Opcode: EndCoroutine P1 * * * * 847 ** 848 ** The instruction at the address in register P1 is a Yield. 849 ** Jump to the P2 parameter of that Yield. 850 ** After the jump, register P1 becomes undefined. 851 ** 852 ** See also: InitCoroutine 853 */ 854 case OP_EndCoroutine: { /* in1 */ 855 VdbeOp *pCaller; 856 pIn1 = &aMem[pOp->p1]; 857 assert( pIn1->flags==MEM_Int ); 858 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 859 pCaller = &aOp[pIn1->u.i]; 860 assert( pCaller->opcode==OP_Yield ); 861 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 862 pOp = &aOp[pCaller->p2 - 1]; 863 pIn1->flags = MEM_Undefined; 864 break; 865 } 866 867 /* Opcode: Yield P1 P2 * * * 868 ** 869 ** Swap the program counter with the value in register P1. This 870 ** has the effect of yielding to a coroutine. 871 ** 872 ** If the coroutine that is launched by this instruction ends with 873 ** Yield or Return then continue to the next instruction. But if 874 ** the coroutine launched by this instruction ends with 875 ** EndCoroutine, then jump to P2 rather than continuing with the 876 ** next instruction. 877 ** 878 ** See also: InitCoroutine 879 */ 880 case OP_Yield: { /* in1, jump */ 881 int pcDest; 882 pIn1 = &aMem[pOp->p1]; 883 assert( VdbeMemDynamic(pIn1)==0 ); 884 pIn1->flags = MEM_Int; 885 pcDest = (int)pIn1->u.i; 886 pIn1->u.i = (int)(pOp - aOp); 887 REGISTER_TRACE(pOp->p1, pIn1); 888 pOp = &aOp[pcDest]; 889 break; 890 } 891 892 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 893 ** Synopsis: if r[P3]=null halt 894 ** 895 ** Check the value in register P3. If it is NULL then Halt using 896 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 897 ** value in register P3 is not NULL, then this routine is a no-op. 898 ** The P5 parameter should be 1. 899 */ 900 case OP_HaltIfNull: { /* in3 */ 901 pIn3 = &aMem[pOp->p3]; 902 if( (pIn3->flags & MEM_Null)==0 ) break; 903 /* Fall through into OP_Halt */ 904 } 905 906 /* Opcode: Halt P1 P2 * P4 P5 907 ** 908 ** Exit immediately. All open cursors, etc are closed 909 ** automatically. 910 ** 911 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 912 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 913 ** For errors, it can be some other value. If P1!=0 then P2 will determine 914 ** whether or not to rollback the current transaction. Do not rollback 915 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 916 ** then back out all changes that have occurred during this execution of the 917 ** VDBE, but do not rollback the transaction. 918 ** 919 ** If P4 is not null then it is an error message string. 920 ** 921 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 922 ** 923 ** 0: (no change) 924 ** 1: NOT NULL contraint failed: P4 925 ** 2: UNIQUE constraint failed: P4 926 ** 3: CHECK constraint failed: P4 927 ** 4: FOREIGN KEY constraint failed: P4 928 ** 929 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 930 ** omitted. 931 ** 932 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 933 ** every program. So a jump past the last instruction of the program 934 ** is the same as executing Halt. 935 */ 936 case OP_Halt: { 937 const char *zType; 938 const char *zLogFmt; 939 VdbeFrame *pFrame; 940 int pcx; 941 942 pcx = (int)(pOp - aOp); 943 if( pOp->p1==SQLITE_OK && p->pFrame ){ 944 /* Halt the sub-program. Return control to the parent frame. */ 945 pFrame = p->pFrame; 946 p->pFrame = pFrame->pParent; 947 p->nFrame--; 948 sqlite3VdbeSetChanges(db, p->nChange); 949 pcx = sqlite3VdbeFrameRestore(pFrame); 950 lastRowid = db->lastRowid; 951 if( pOp->p2==OE_Ignore ){ 952 /* Instruction pcx is the OP_Program that invoked the sub-program 953 ** currently being halted. If the p2 instruction of this OP_Halt 954 ** instruction is set to OE_Ignore, then the sub-program is throwing 955 ** an IGNORE exception. In this case jump to the address specified 956 ** as the p2 of the calling OP_Program. */ 957 pcx = p->aOp[pcx].p2-1; 958 } 959 aOp = p->aOp; 960 aMem = p->aMem; 961 pOp = &aOp[pcx]; 962 break; 963 } 964 p->rc = pOp->p1; 965 p->errorAction = (u8)pOp->p2; 966 p->pc = pcx; 967 if( p->rc ){ 968 if( pOp->p5 ){ 969 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 970 "FOREIGN KEY" }; 971 assert( pOp->p5>=1 && pOp->p5<=4 ); 972 testcase( pOp->p5==1 ); 973 testcase( pOp->p5==2 ); 974 testcase( pOp->p5==3 ); 975 testcase( pOp->p5==4 ); 976 zType = azType[pOp->p5-1]; 977 }else{ 978 zType = 0; 979 } 980 assert( zType!=0 || pOp->p4.z!=0 ); 981 zLogFmt = "abort at %d in [%s]: %s"; 982 if( zType && pOp->p4.z ){ 983 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z); 984 }else if( pOp->p4.z ){ 985 sqlite3VdbeError(p, "%s", pOp->p4.z); 986 }else{ 987 sqlite3VdbeError(p, "%s constraint failed", zType); 988 } 989 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg); 990 } 991 rc = sqlite3VdbeHalt(p); 992 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 993 if( rc==SQLITE_BUSY ){ 994 p->rc = rc = SQLITE_BUSY; 995 }else{ 996 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 997 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 998 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 999 } 1000 goto vdbe_return; 1001 } 1002 1003 /* Opcode: Integer P1 P2 * * * 1004 ** Synopsis: r[P2]=P1 1005 ** 1006 ** The 32-bit integer value P1 is written into register P2. 1007 */ 1008 case OP_Integer: { /* out2 */ 1009 pOut = out2Prerelease(p, pOp); 1010 pOut->u.i = pOp->p1; 1011 break; 1012 } 1013 1014 /* Opcode: Int64 * P2 * P4 * 1015 ** Synopsis: r[P2]=P4 1016 ** 1017 ** P4 is a pointer to a 64-bit integer value. 1018 ** Write that value into register P2. 1019 */ 1020 case OP_Int64: { /* out2 */ 1021 pOut = out2Prerelease(p, pOp); 1022 assert( pOp->p4.pI64!=0 ); 1023 pOut->u.i = *pOp->p4.pI64; 1024 break; 1025 } 1026 1027 #ifndef SQLITE_OMIT_FLOATING_POINT 1028 /* Opcode: Real * P2 * P4 * 1029 ** Synopsis: r[P2]=P4 1030 ** 1031 ** P4 is a pointer to a 64-bit floating point value. 1032 ** Write that value into register P2. 1033 */ 1034 case OP_Real: { /* same as TK_FLOAT, out2 */ 1035 pOut = out2Prerelease(p, pOp); 1036 pOut->flags = MEM_Real; 1037 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1038 pOut->u.r = *pOp->p4.pReal; 1039 break; 1040 } 1041 #endif 1042 1043 /* Opcode: String8 * P2 * P4 * 1044 ** Synopsis: r[P2]='P4' 1045 ** 1046 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1047 ** into a String opcode before it is executed for the first time. During 1048 ** this transformation, the length of string P4 is computed and stored 1049 ** as the P1 parameter. 1050 */ 1051 case OP_String8: { /* same as TK_STRING, out2 */ 1052 assert( pOp->p4.z!=0 ); 1053 pOut = out2Prerelease(p, pOp); 1054 pOp->opcode = OP_String; 1055 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1056 1057 #ifndef SQLITE_OMIT_UTF16 1058 if( encoding!=SQLITE_UTF8 ){ 1059 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1060 if( rc ){ 1061 assert( rc==SQLITE_TOOBIG ); /* This is the only possible error here */ 1062 goto too_big; 1063 } 1064 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1065 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1066 assert( VdbeMemDynamic(pOut)==0 ); 1067 pOut->szMalloc = 0; 1068 pOut->flags |= MEM_Static; 1069 if( pOp->p4type==P4_DYNAMIC ){ 1070 sqlite3DbFree(db, pOp->p4.z); 1071 } 1072 pOp->p4type = P4_DYNAMIC; 1073 pOp->p4.z = pOut->z; 1074 pOp->p1 = pOut->n; 1075 } 1076 #endif 1077 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1078 goto too_big; 1079 } 1080 /* Fall through to the next case, OP_String */ 1081 } 1082 1083 /* Opcode: String P1 P2 P3 P4 P5 1084 ** Synopsis: r[P2]='P4' (len=P1) 1085 ** 1086 ** The string value P4 of length P1 (bytes) is stored in register P2. 1087 ** 1088 ** If P5!=0 and the content of register P3 is greater than zero, then 1089 ** the datatype of the register P2 is converted to BLOB. The content is 1090 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1091 ** of a string, as if it had been CAST. 1092 */ 1093 case OP_String: { /* out2 */ 1094 assert( pOp->p4.z!=0 ); 1095 pOut = out2Prerelease(p, pOp); 1096 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1097 pOut->z = pOp->p4.z; 1098 pOut->n = pOp->p1; 1099 pOut->enc = encoding; 1100 UPDATE_MAX_BLOBSIZE(pOut); 1101 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1102 if( pOp->p5 ){ 1103 assert( pOp->p3>0 ); 1104 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1105 pIn3 = &aMem[pOp->p3]; 1106 assert( pIn3->flags & MEM_Int ); 1107 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1108 } 1109 #endif 1110 break; 1111 } 1112 1113 /* Opcode: Null P1 P2 P3 * * 1114 ** Synopsis: r[P2..P3]=NULL 1115 ** 1116 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1117 ** NULL into register P3 and every register in between P2 and P3. If P3 1118 ** is less than P2 (typically P3 is zero) then only register P2 is 1119 ** set to NULL. 1120 ** 1121 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1122 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1123 ** OP_Ne or OP_Eq. 1124 */ 1125 case OP_Null: { /* out2 */ 1126 int cnt; 1127 u16 nullFlag; 1128 pOut = out2Prerelease(p, pOp); 1129 cnt = pOp->p3-pOp->p2; 1130 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1131 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1132 while( cnt>0 ){ 1133 pOut++; 1134 memAboutToChange(p, pOut); 1135 sqlite3VdbeMemSetNull(pOut); 1136 pOut->flags = nullFlag; 1137 cnt--; 1138 } 1139 break; 1140 } 1141 1142 /* Opcode: SoftNull P1 * * * * 1143 ** Synopsis: r[P1]=NULL 1144 ** 1145 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1146 ** instruction, but do not free any string or blob memory associated with 1147 ** the register, so that if the value was a string or blob that was 1148 ** previously copied using OP_SCopy, the copies will continue to be valid. 1149 */ 1150 case OP_SoftNull: { 1151 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 1152 pOut = &aMem[pOp->p1]; 1153 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; 1154 break; 1155 } 1156 1157 /* Opcode: Blob P1 P2 * P4 * 1158 ** Synopsis: r[P2]=P4 (len=P1) 1159 ** 1160 ** P4 points to a blob of data P1 bytes long. Store this 1161 ** blob in register P2. 1162 */ 1163 case OP_Blob: { /* out2 */ 1164 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1165 pOut = out2Prerelease(p, pOp); 1166 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1167 pOut->enc = encoding; 1168 UPDATE_MAX_BLOBSIZE(pOut); 1169 break; 1170 } 1171 1172 /* Opcode: Variable P1 P2 * P4 * 1173 ** Synopsis: r[P2]=parameter(P1,P4) 1174 ** 1175 ** Transfer the values of bound parameter P1 into register P2 1176 ** 1177 ** If the parameter is named, then its name appears in P4. 1178 ** The P4 value is used by sqlite3_bind_parameter_name(). 1179 */ 1180 case OP_Variable: { /* out2 */ 1181 Mem *pVar; /* Value being transferred */ 1182 1183 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1184 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1185 pVar = &p->aVar[pOp->p1 - 1]; 1186 if( sqlite3VdbeMemTooBig(pVar) ){ 1187 goto too_big; 1188 } 1189 pOut = out2Prerelease(p, pOp); 1190 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1191 UPDATE_MAX_BLOBSIZE(pOut); 1192 break; 1193 } 1194 1195 /* Opcode: Move P1 P2 P3 * * 1196 ** Synopsis: r[P2@P3]=r[P1@P3] 1197 ** 1198 ** Move the P3 values in register P1..P1+P3-1 over into 1199 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1200 ** left holding a NULL. It is an error for register ranges 1201 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1202 ** for P3 to be less than 1. 1203 */ 1204 case OP_Move: { 1205 int n; /* Number of registers left to copy */ 1206 int p1; /* Register to copy from */ 1207 int p2; /* Register to copy to */ 1208 1209 n = pOp->p3; 1210 p1 = pOp->p1; 1211 p2 = pOp->p2; 1212 assert( n>0 && p1>0 && p2>0 ); 1213 assert( p1+n<=p2 || p2+n<=p1 ); 1214 1215 pIn1 = &aMem[p1]; 1216 pOut = &aMem[p2]; 1217 do{ 1218 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); 1219 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); 1220 assert( memIsValid(pIn1) ); 1221 memAboutToChange(p, pOut); 1222 sqlite3VdbeMemMove(pOut, pIn1); 1223 #ifdef SQLITE_DEBUG 1224 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1225 pOut->pScopyFrom += pOp->p2 - p1; 1226 } 1227 #endif 1228 Deephemeralize(pOut); 1229 REGISTER_TRACE(p2++, pOut); 1230 pIn1++; 1231 pOut++; 1232 }while( --n ); 1233 break; 1234 } 1235 1236 /* Opcode: Copy P1 P2 P3 * * 1237 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1238 ** 1239 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1240 ** 1241 ** This instruction makes a deep copy of the value. A duplicate 1242 ** is made of any string or blob constant. See also OP_SCopy. 1243 */ 1244 case OP_Copy: { 1245 int n; 1246 1247 n = pOp->p3; 1248 pIn1 = &aMem[pOp->p1]; 1249 pOut = &aMem[pOp->p2]; 1250 assert( pOut!=pIn1 ); 1251 while( 1 ){ 1252 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1253 Deephemeralize(pOut); 1254 #ifdef SQLITE_DEBUG 1255 pOut->pScopyFrom = 0; 1256 #endif 1257 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1258 if( (n--)==0 ) break; 1259 pOut++; 1260 pIn1++; 1261 } 1262 break; 1263 } 1264 1265 /* Opcode: SCopy P1 P2 * * * 1266 ** Synopsis: r[P2]=r[P1] 1267 ** 1268 ** Make a shallow copy of register P1 into register P2. 1269 ** 1270 ** This instruction makes a shallow copy of the value. If the value 1271 ** is a string or blob, then the copy is only a pointer to the 1272 ** original and hence if the original changes so will the copy. 1273 ** Worse, if the original is deallocated, the copy becomes invalid. 1274 ** Thus the program must guarantee that the original will not change 1275 ** during the lifetime of the copy. Use OP_Copy to make a complete 1276 ** copy. 1277 */ 1278 case OP_SCopy: { /* out2 */ 1279 pIn1 = &aMem[pOp->p1]; 1280 pOut = &aMem[pOp->p2]; 1281 assert( pOut!=pIn1 ); 1282 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1283 #ifdef SQLITE_DEBUG 1284 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1285 #endif 1286 break; 1287 } 1288 1289 /* Opcode: IntCopy P1 P2 * * * 1290 ** Synopsis: r[P2]=r[P1] 1291 ** 1292 ** Transfer the integer value held in register P1 into register P2. 1293 ** 1294 ** This is an optimized version of SCopy that works only for integer 1295 ** values. 1296 */ 1297 case OP_IntCopy: { /* out2 */ 1298 pIn1 = &aMem[pOp->p1]; 1299 assert( (pIn1->flags & MEM_Int)!=0 ); 1300 pOut = &aMem[pOp->p2]; 1301 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1302 break; 1303 } 1304 1305 /* Opcode: ResultRow P1 P2 * * * 1306 ** Synopsis: output=r[P1@P2] 1307 ** 1308 ** The registers P1 through P1+P2-1 contain a single row of 1309 ** results. This opcode causes the sqlite3_step() call to terminate 1310 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1311 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1312 ** the result row. 1313 */ 1314 case OP_ResultRow: { 1315 Mem *pMem; 1316 int i; 1317 assert( p->nResColumn==pOp->p2 ); 1318 assert( pOp->p1>0 ); 1319 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); 1320 1321 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1322 /* Run the progress counter just before returning. 1323 */ 1324 if( db->xProgress!=0 1325 && nVmStep>=nProgressLimit 1326 && db->xProgress(db->pProgressArg)!=0 1327 ){ 1328 rc = SQLITE_INTERRUPT; 1329 goto abort_due_to_error; 1330 } 1331 #endif 1332 1333 /* If this statement has violated immediate foreign key constraints, do 1334 ** not return the number of rows modified. And do not RELEASE the statement 1335 ** transaction. It needs to be rolled back. */ 1336 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1337 assert( db->flags&SQLITE_CountRows ); 1338 assert( p->usesStmtJournal ); 1339 goto abort_due_to_error; 1340 } 1341 1342 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1343 ** DML statements invoke this opcode to return the number of rows 1344 ** modified to the user. This is the only way that a VM that 1345 ** opens a statement transaction may invoke this opcode. 1346 ** 1347 ** In case this is such a statement, close any statement transaction 1348 ** opened by this VM before returning control to the user. This is to 1349 ** ensure that statement-transactions are always nested, not overlapping. 1350 ** If the open statement-transaction is not closed here, then the user 1351 ** may step another VM that opens its own statement transaction. This 1352 ** may lead to overlapping statement transactions. 1353 ** 1354 ** The statement transaction is never a top-level transaction. Hence 1355 ** the RELEASE call below can never fail. 1356 */ 1357 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1358 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1359 assert( rc==SQLITE_OK ); 1360 1361 /* Invalidate all ephemeral cursor row caches */ 1362 p->cacheCtr = (p->cacheCtr + 2)|1; 1363 1364 /* Make sure the results of the current row are \000 terminated 1365 ** and have an assigned type. The results are de-ephemeralized as 1366 ** a side effect. 1367 */ 1368 pMem = p->pResultSet = &aMem[pOp->p1]; 1369 for(i=0; i<pOp->p2; i++){ 1370 assert( memIsValid(&pMem[i]) ); 1371 Deephemeralize(&pMem[i]); 1372 assert( (pMem[i].flags & MEM_Ephem)==0 1373 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1374 sqlite3VdbeMemNulTerminate(&pMem[i]); 1375 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1376 } 1377 if( db->mallocFailed ) goto no_mem; 1378 1379 /* Return SQLITE_ROW 1380 */ 1381 p->pc = (int)(pOp - aOp) + 1; 1382 rc = SQLITE_ROW; 1383 goto vdbe_return; 1384 } 1385 1386 /* Opcode: Concat P1 P2 P3 * * 1387 ** Synopsis: r[P3]=r[P2]+r[P1] 1388 ** 1389 ** Add the text in register P1 onto the end of the text in 1390 ** register P2 and store the result in register P3. 1391 ** If either the P1 or P2 text are NULL then store NULL in P3. 1392 ** 1393 ** P3 = P2 || P1 1394 ** 1395 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1396 ** if P3 is the same register as P2, the implementation is able 1397 ** to avoid a memcpy(). 1398 */ 1399 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1400 i64 nByte; 1401 1402 pIn1 = &aMem[pOp->p1]; 1403 pIn2 = &aMem[pOp->p2]; 1404 pOut = &aMem[pOp->p3]; 1405 assert( pIn1!=pOut ); 1406 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1407 sqlite3VdbeMemSetNull(pOut); 1408 break; 1409 } 1410 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1411 Stringify(pIn1, encoding); 1412 Stringify(pIn2, encoding); 1413 nByte = pIn1->n + pIn2->n; 1414 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1415 goto too_big; 1416 } 1417 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1418 goto no_mem; 1419 } 1420 MemSetTypeFlag(pOut, MEM_Str); 1421 if( pOut!=pIn2 ){ 1422 memcpy(pOut->z, pIn2->z, pIn2->n); 1423 } 1424 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1425 pOut->z[nByte]=0; 1426 pOut->z[nByte+1] = 0; 1427 pOut->flags |= MEM_Term; 1428 pOut->n = (int)nByte; 1429 pOut->enc = encoding; 1430 UPDATE_MAX_BLOBSIZE(pOut); 1431 break; 1432 } 1433 1434 /* Opcode: Add P1 P2 P3 * * 1435 ** Synopsis: r[P3]=r[P1]+r[P2] 1436 ** 1437 ** Add the value in register P1 to the value in register P2 1438 ** and store the result in register P3. 1439 ** If either input is NULL, the result is NULL. 1440 */ 1441 /* Opcode: Multiply P1 P2 P3 * * 1442 ** Synopsis: r[P3]=r[P1]*r[P2] 1443 ** 1444 ** 1445 ** Multiply the value in register P1 by the value in register P2 1446 ** and store the result in register P3. 1447 ** If either input is NULL, the result is NULL. 1448 */ 1449 /* Opcode: Subtract P1 P2 P3 * * 1450 ** Synopsis: r[P3]=r[P2]-r[P1] 1451 ** 1452 ** Subtract the value in register P1 from the value in register P2 1453 ** and store the result in register P3. 1454 ** If either input is NULL, the result is NULL. 1455 */ 1456 /* Opcode: Divide P1 P2 P3 * * 1457 ** Synopsis: r[P3]=r[P2]/r[P1] 1458 ** 1459 ** Divide the value in register P1 by the value in register P2 1460 ** and store the result in register P3 (P3=P2/P1). If the value in 1461 ** register P1 is zero, then the result is NULL. If either input is 1462 ** NULL, the result is NULL. 1463 */ 1464 /* Opcode: Remainder P1 P2 P3 * * 1465 ** Synopsis: r[P3]=r[P2]%r[P1] 1466 ** 1467 ** Compute the remainder after integer register P2 is divided by 1468 ** register P1 and store the result in register P3. 1469 ** If the value in register P1 is zero the result is NULL. 1470 ** If either operand is NULL, the result is NULL. 1471 */ 1472 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1473 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1474 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1475 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1476 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1477 char bIntint; /* Started out as two integer operands */ 1478 u16 flags; /* Combined MEM_* flags from both inputs */ 1479 u16 type1; /* Numeric type of left operand */ 1480 u16 type2; /* Numeric type of right operand */ 1481 i64 iA; /* Integer value of left operand */ 1482 i64 iB; /* Integer value of right operand */ 1483 double rA; /* Real value of left operand */ 1484 double rB; /* Real value of right operand */ 1485 1486 pIn1 = &aMem[pOp->p1]; 1487 type1 = numericType(pIn1); 1488 pIn2 = &aMem[pOp->p2]; 1489 type2 = numericType(pIn2); 1490 pOut = &aMem[pOp->p3]; 1491 flags = pIn1->flags | pIn2->flags; 1492 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1493 if( (type1 & type2 & MEM_Int)!=0 ){ 1494 iA = pIn1->u.i; 1495 iB = pIn2->u.i; 1496 bIntint = 1; 1497 switch( pOp->opcode ){ 1498 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1499 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1500 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1501 case OP_Divide: { 1502 if( iA==0 ) goto arithmetic_result_is_null; 1503 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1504 iB /= iA; 1505 break; 1506 } 1507 default: { 1508 if( iA==0 ) goto arithmetic_result_is_null; 1509 if( iA==-1 ) iA = 1; 1510 iB %= iA; 1511 break; 1512 } 1513 } 1514 pOut->u.i = iB; 1515 MemSetTypeFlag(pOut, MEM_Int); 1516 }else{ 1517 bIntint = 0; 1518 fp_math: 1519 rA = sqlite3VdbeRealValue(pIn1); 1520 rB = sqlite3VdbeRealValue(pIn2); 1521 switch( pOp->opcode ){ 1522 case OP_Add: rB += rA; break; 1523 case OP_Subtract: rB -= rA; break; 1524 case OP_Multiply: rB *= rA; break; 1525 case OP_Divide: { 1526 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1527 if( rA==(double)0 ) goto arithmetic_result_is_null; 1528 rB /= rA; 1529 break; 1530 } 1531 default: { 1532 iA = (i64)rA; 1533 iB = (i64)rB; 1534 if( iA==0 ) goto arithmetic_result_is_null; 1535 if( iA==-1 ) iA = 1; 1536 rB = (double)(iB % iA); 1537 break; 1538 } 1539 } 1540 #ifdef SQLITE_OMIT_FLOATING_POINT 1541 pOut->u.i = rB; 1542 MemSetTypeFlag(pOut, MEM_Int); 1543 #else 1544 if( sqlite3IsNaN(rB) ){ 1545 goto arithmetic_result_is_null; 1546 } 1547 pOut->u.r = rB; 1548 MemSetTypeFlag(pOut, MEM_Real); 1549 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1550 sqlite3VdbeIntegerAffinity(pOut); 1551 } 1552 #endif 1553 } 1554 break; 1555 1556 arithmetic_result_is_null: 1557 sqlite3VdbeMemSetNull(pOut); 1558 break; 1559 } 1560 1561 /* Opcode: CollSeq P1 * * P4 1562 ** 1563 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1564 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1565 ** be returned. This is used by the built-in min(), max() and nullif() 1566 ** functions. 1567 ** 1568 ** If P1 is not zero, then it is a register that a subsequent min() or 1569 ** max() aggregate will set to 1 if the current row is not the minimum or 1570 ** maximum. The P1 register is initialized to 0 by this instruction. 1571 ** 1572 ** The interface used by the implementation of the aforementioned functions 1573 ** to retrieve the collation sequence set by this opcode is not available 1574 ** publicly. Only built-in functions have access to this feature. 1575 */ 1576 case OP_CollSeq: { 1577 assert( pOp->p4type==P4_COLLSEQ ); 1578 if( pOp->p1 ){ 1579 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1580 } 1581 break; 1582 } 1583 1584 /* Opcode: Function0 P1 P2 P3 P4 P5 1585 ** Synopsis: r[P3]=func(r[P2@P5]) 1586 ** 1587 ** Invoke a user function (P4 is a pointer to a FuncDef object that 1588 ** defines the function) with P5 arguments taken from register P2 and 1589 ** successors. The result of the function is stored in register P3. 1590 ** Register P3 must not be one of the function inputs. 1591 ** 1592 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1593 ** function was determined to be constant at compile time. If the first 1594 ** argument was constant then bit 0 of P1 is set. This is used to determine 1595 ** whether meta data associated with a user function argument using the 1596 ** sqlite3_set_auxdata() API may be safely retained until the next 1597 ** invocation of this opcode. 1598 ** 1599 ** See also: Function, AggStep, AggFinal 1600 */ 1601 /* Opcode: Function P1 P2 P3 P4 P5 1602 ** Synopsis: r[P3]=func(r[P2@P5]) 1603 ** 1604 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 1605 ** contains a pointer to the function to be run) with P5 arguments taken 1606 ** from register P2 and successors. The result of the function is stored 1607 ** in register P3. Register P3 must not be one of the function inputs. 1608 ** 1609 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1610 ** function was determined to be constant at compile time. If the first 1611 ** argument was constant then bit 0 of P1 is set. This is used to determine 1612 ** whether meta data associated with a user function argument using the 1613 ** sqlite3_set_auxdata() API may be safely retained until the next 1614 ** invocation of this opcode. 1615 ** 1616 ** SQL functions are initially coded as OP_Function0 with P4 pointing 1617 ** to a FuncDef object. But on first evaluation, the P4 operand is 1618 ** automatically converted into an sqlite3_context object and the operation 1619 ** changed to this OP_Function opcode. In this way, the initialization of 1620 ** the sqlite3_context object occurs only once, rather than once for each 1621 ** evaluation of the function. 1622 ** 1623 ** See also: Function0, AggStep, AggFinal 1624 */ 1625 case OP_Function0: { 1626 int n; 1627 sqlite3_context *pCtx; 1628 1629 assert( pOp->p4type==P4_FUNCDEF ); 1630 n = pOp->p5; 1631 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 1632 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 1633 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1634 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 1635 if( pCtx==0 ) goto no_mem; 1636 pCtx->pOut = 0; 1637 pCtx->pFunc = pOp->p4.pFunc; 1638 pCtx->iOp = (int)(pOp - aOp); 1639 pCtx->pVdbe = p; 1640 pCtx->argc = n; 1641 pOp->p4type = P4_FUNCCTX; 1642 pOp->p4.pCtx = pCtx; 1643 pOp->opcode = OP_Function; 1644 /* Fall through into OP_Function */ 1645 } 1646 case OP_Function: { 1647 int i; 1648 sqlite3_context *pCtx; 1649 1650 assert( pOp->p4type==P4_FUNCCTX ); 1651 pCtx = pOp->p4.pCtx; 1652 1653 /* If this function is inside of a trigger, the register array in aMem[] 1654 ** might change from one evaluation to the next. The next block of code 1655 ** checks to see if the register array has changed, and if so it 1656 ** reinitializes the relavant parts of the sqlite3_context object */ 1657 pOut = &aMem[pOp->p3]; 1658 if( pCtx->pOut != pOut ){ 1659 pCtx->pOut = pOut; 1660 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 1661 } 1662 1663 memAboutToChange(p, pCtx->pOut); 1664 #ifdef SQLITE_DEBUG 1665 for(i=0; i<pCtx->argc; i++){ 1666 assert( memIsValid(pCtx->argv[i]) ); 1667 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 1668 } 1669 #endif 1670 MemSetTypeFlag(pCtx->pOut, MEM_Null); 1671 pCtx->fErrorOrAux = 0; 1672 db->lastRowid = lastRowid; 1673 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 1674 lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */ 1675 1676 /* If the function returned an error, throw an exception */ 1677 if( pCtx->fErrorOrAux ){ 1678 if( pCtx->isError ){ 1679 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 1680 rc = pCtx->isError; 1681 } 1682 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 1683 if( rc ) goto abort_due_to_error; 1684 } 1685 1686 /* Copy the result of the function into register P3 */ 1687 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 1688 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); 1689 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big; 1690 } 1691 1692 REGISTER_TRACE(pOp->p3, pCtx->pOut); 1693 UPDATE_MAX_BLOBSIZE(pCtx->pOut); 1694 break; 1695 } 1696 1697 /* Opcode: BitAnd P1 P2 P3 * * 1698 ** Synopsis: r[P3]=r[P1]&r[P2] 1699 ** 1700 ** Take the bit-wise AND of the values in register P1 and P2 and 1701 ** store the result in register P3. 1702 ** If either input is NULL, the result is NULL. 1703 */ 1704 /* Opcode: BitOr P1 P2 P3 * * 1705 ** Synopsis: r[P3]=r[P1]|r[P2] 1706 ** 1707 ** Take the bit-wise OR of the values in register P1 and P2 and 1708 ** store the result in register P3. 1709 ** If either input is NULL, the result is NULL. 1710 */ 1711 /* Opcode: ShiftLeft P1 P2 P3 * * 1712 ** Synopsis: r[P3]=r[P2]<<r[P1] 1713 ** 1714 ** Shift the integer value in register P2 to the left by the 1715 ** number of bits specified by the integer in register P1. 1716 ** Store the result in register P3. 1717 ** If either input is NULL, the result is NULL. 1718 */ 1719 /* Opcode: ShiftRight P1 P2 P3 * * 1720 ** Synopsis: r[P3]=r[P2]>>r[P1] 1721 ** 1722 ** Shift the integer value in register P2 to the right by the 1723 ** number of bits specified by the integer in register P1. 1724 ** Store the result in register P3. 1725 ** If either input is NULL, the result is NULL. 1726 */ 1727 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1728 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1729 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1730 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1731 i64 iA; 1732 u64 uA; 1733 i64 iB; 1734 u8 op; 1735 1736 pIn1 = &aMem[pOp->p1]; 1737 pIn2 = &aMem[pOp->p2]; 1738 pOut = &aMem[pOp->p3]; 1739 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1740 sqlite3VdbeMemSetNull(pOut); 1741 break; 1742 } 1743 iA = sqlite3VdbeIntValue(pIn2); 1744 iB = sqlite3VdbeIntValue(pIn1); 1745 op = pOp->opcode; 1746 if( op==OP_BitAnd ){ 1747 iA &= iB; 1748 }else if( op==OP_BitOr ){ 1749 iA |= iB; 1750 }else if( iB!=0 ){ 1751 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1752 1753 /* If shifting by a negative amount, shift in the other direction */ 1754 if( iB<0 ){ 1755 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1756 op = 2*OP_ShiftLeft + 1 - op; 1757 iB = iB>(-64) ? -iB : 64; 1758 } 1759 1760 if( iB>=64 ){ 1761 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1762 }else{ 1763 memcpy(&uA, &iA, sizeof(uA)); 1764 if( op==OP_ShiftLeft ){ 1765 uA <<= iB; 1766 }else{ 1767 uA >>= iB; 1768 /* Sign-extend on a right shift of a negative number */ 1769 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1770 } 1771 memcpy(&iA, &uA, sizeof(iA)); 1772 } 1773 } 1774 pOut->u.i = iA; 1775 MemSetTypeFlag(pOut, MEM_Int); 1776 break; 1777 } 1778 1779 /* Opcode: AddImm P1 P2 * * * 1780 ** Synopsis: r[P1]=r[P1]+P2 1781 ** 1782 ** Add the constant P2 to the value in register P1. 1783 ** The result is always an integer. 1784 ** 1785 ** To force any register to be an integer, just add 0. 1786 */ 1787 case OP_AddImm: { /* in1 */ 1788 pIn1 = &aMem[pOp->p1]; 1789 memAboutToChange(p, pIn1); 1790 sqlite3VdbeMemIntegerify(pIn1); 1791 pIn1->u.i += pOp->p2; 1792 break; 1793 } 1794 1795 /* Opcode: MustBeInt P1 P2 * * * 1796 ** 1797 ** Force the value in register P1 to be an integer. If the value 1798 ** in P1 is not an integer and cannot be converted into an integer 1799 ** without data loss, then jump immediately to P2, or if P2==0 1800 ** raise an SQLITE_MISMATCH exception. 1801 */ 1802 case OP_MustBeInt: { /* jump, in1 */ 1803 pIn1 = &aMem[pOp->p1]; 1804 if( (pIn1->flags & MEM_Int)==0 ){ 1805 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1806 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1807 if( (pIn1->flags & MEM_Int)==0 ){ 1808 if( pOp->p2==0 ){ 1809 rc = SQLITE_MISMATCH; 1810 goto abort_due_to_error; 1811 }else{ 1812 goto jump_to_p2; 1813 } 1814 } 1815 } 1816 MemSetTypeFlag(pIn1, MEM_Int); 1817 break; 1818 } 1819 1820 #ifndef SQLITE_OMIT_FLOATING_POINT 1821 /* Opcode: RealAffinity P1 * * * * 1822 ** 1823 ** If register P1 holds an integer convert it to a real value. 1824 ** 1825 ** This opcode is used when extracting information from a column that 1826 ** has REAL affinity. Such column values may still be stored as 1827 ** integers, for space efficiency, but after extraction we want them 1828 ** to have only a real value. 1829 */ 1830 case OP_RealAffinity: { /* in1 */ 1831 pIn1 = &aMem[pOp->p1]; 1832 if( pIn1->flags & MEM_Int ){ 1833 sqlite3VdbeMemRealify(pIn1); 1834 } 1835 break; 1836 } 1837 #endif 1838 1839 #ifndef SQLITE_OMIT_CAST 1840 /* Opcode: Cast P1 P2 * * * 1841 ** Synopsis: affinity(r[P1]) 1842 ** 1843 ** Force the value in register P1 to be the type defined by P2. 1844 ** 1845 ** <ul> 1846 ** <li value="97"> TEXT 1847 ** <li value="98"> BLOB 1848 ** <li value="99"> NUMERIC 1849 ** <li value="100"> INTEGER 1850 ** <li value="101"> REAL 1851 ** </ul> 1852 ** 1853 ** A NULL value is not changed by this routine. It remains NULL. 1854 */ 1855 case OP_Cast: { /* in1 */ 1856 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1857 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1858 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1859 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1860 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1861 testcase( pOp->p2==SQLITE_AFF_REAL ); 1862 pIn1 = &aMem[pOp->p1]; 1863 memAboutToChange(p, pIn1); 1864 rc = ExpandBlob(pIn1); 1865 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1866 UPDATE_MAX_BLOBSIZE(pIn1); 1867 if( rc ) goto abort_due_to_error; 1868 break; 1869 } 1870 #endif /* SQLITE_OMIT_CAST */ 1871 1872 /* Opcode: Lt P1 P2 P3 P4 P5 1873 ** Synopsis: if r[P1]<r[P3] goto P2 1874 ** 1875 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1876 ** jump to address P2. 1877 ** 1878 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1879 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1880 ** bit is clear then fall through if either operand is NULL. 1881 ** 1882 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1883 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1884 ** to coerce both inputs according to this affinity before the 1885 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1886 ** affinity is used. Note that the affinity conversions are stored 1887 ** back into the input registers P1 and P3. So this opcode can cause 1888 ** persistent changes to registers P1 and P3. 1889 ** 1890 ** Once any conversions have taken place, and neither value is NULL, 1891 ** the values are compared. If both values are blobs then memcmp() is 1892 ** used to determine the results of the comparison. If both values 1893 ** are text, then the appropriate collating function specified in 1894 ** P4 is used to do the comparison. If P4 is not specified then 1895 ** memcmp() is used to compare text string. If both values are 1896 ** numeric, then a numeric comparison is used. If the two values 1897 ** are of different types, then numbers are considered less than 1898 ** strings and strings are considered less than blobs. 1899 ** 1900 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1901 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1902 ** 1903 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered 1904 ** equal to one another, provided that they do not have their MEM_Cleared 1905 ** bit set. 1906 */ 1907 /* Opcode: Ne P1 P2 P3 P4 P5 1908 ** Synopsis: if r[P1]!=r[P3] goto P2 1909 ** 1910 ** This works just like the Lt opcode except that the jump is taken if 1911 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1912 ** additional information. 1913 ** 1914 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1915 ** true or false and is never NULL. If both operands are NULL then the result 1916 ** of comparison is false. If either operand is NULL then the result is true. 1917 ** If neither operand is NULL the result is the same as it would be if 1918 ** the SQLITE_NULLEQ flag were omitted from P5. 1919 */ 1920 /* Opcode: Eq P1 P2 P3 P4 P5 1921 ** Synopsis: if r[P1]==r[P3] goto P2 1922 ** 1923 ** This works just like the Lt opcode except that the jump is taken if 1924 ** the operands in registers P1 and P3 are equal. 1925 ** See the Lt opcode for additional information. 1926 ** 1927 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1928 ** true or false and is never NULL. If both operands are NULL then the result 1929 ** of comparison is true. If either operand is NULL then the result is false. 1930 ** If neither operand is NULL the result is the same as it would be if 1931 ** the SQLITE_NULLEQ flag were omitted from P5. 1932 */ 1933 /* Opcode: Le P1 P2 P3 P4 P5 1934 ** Synopsis: if r[P1]<=r[P3] goto P2 1935 ** 1936 ** This works just like the Lt opcode except that the jump is taken if 1937 ** the content of register P3 is less than or equal to the content of 1938 ** register P1. See the Lt opcode for additional information. 1939 */ 1940 /* Opcode: Gt P1 P2 P3 P4 P5 1941 ** Synopsis: if r[P1]>r[P3] goto P2 1942 ** 1943 ** This works just like the Lt opcode except that the jump is taken if 1944 ** the content of register P3 is greater than the content of 1945 ** register P1. See the Lt opcode for additional information. 1946 */ 1947 /* Opcode: Ge P1 P2 P3 P4 P5 1948 ** Synopsis: if r[P1]>=r[P3] goto P2 1949 ** 1950 ** This works just like the Lt opcode except that the jump is taken if 1951 ** the content of register P3 is greater than or equal to the content of 1952 ** register P1. See the Lt opcode for additional information. 1953 */ 1954 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1955 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1956 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1957 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1958 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1959 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1960 int res; /* Result of the comparison of pIn1 against pIn3 */ 1961 char affinity; /* Affinity to use for comparison */ 1962 u16 flags1; /* Copy of initial value of pIn1->flags */ 1963 u16 flags3; /* Copy of initial value of pIn3->flags */ 1964 1965 pIn1 = &aMem[pOp->p1]; 1966 pIn3 = &aMem[pOp->p3]; 1967 flags1 = pIn1->flags; 1968 flags3 = pIn3->flags; 1969 if( (flags1 | flags3)&MEM_Null ){ 1970 /* One or both operands are NULL */ 1971 if( pOp->p5 & SQLITE_NULLEQ ){ 1972 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1973 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1974 ** or not both operands are null. 1975 */ 1976 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1977 assert( (flags1 & MEM_Cleared)==0 ); 1978 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1979 if( (flags1&MEM_Null)!=0 1980 && (flags3&MEM_Null)!=0 1981 && (flags3&MEM_Cleared)==0 1982 ){ 1983 res = 0; /* Results are equal */ 1984 }else{ 1985 res = 1; /* Results are not equal */ 1986 } 1987 }else{ 1988 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1989 ** then the result is always NULL. 1990 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1991 */ 1992 if( pOp->p5 & SQLITE_STOREP2 ){ 1993 pOut = &aMem[pOp->p2]; 1994 memAboutToChange(p, pOut); 1995 MemSetTypeFlag(pOut, MEM_Null); 1996 REGISTER_TRACE(pOp->p2, pOut); 1997 }else{ 1998 VdbeBranchTaken(2,3); 1999 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2000 goto jump_to_p2; 2001 } 2002 } 2003 break; 2004 } 2005 }else{ 2006 /* Neither operand is NULL. Do a comparison. */ 2007 affinity = pOp->p5 & SQLITE_AFF_MASK; 2008 if( affinity>=SQLITE_AFF_NUMERIC ){ 2009 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 2010 applyNumericAffinity(pIn1,0); 2011 } 2012 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 2013 applyNumericAffinity(pIn3,0); 2014 } 2015 }else if( affinity==SQLITE_AFF_TEXT ){ 2016 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ 2017 testcase( pIn1->flags & MEM_Int ); 2018 testcase( pIn1->flags & MEM_Real ); 2019 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2020 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2021 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2022 } 2023 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ 2024 testcase( pIn3->flags & MEM_Int ); 2025 testcase( pIn3->flags & MEM_Real ); 2026 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2027 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2028 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2029 } 2030 } 2031 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2032 if( flags1 & MEM_Zero ){ 2033 sqlite3VdbeMemExpandBlob(pIn1); 2034 flags1 &= ~MEM_Zero; 2035 } 2036 if( flags3 & MEM_Zero ){ 2037 sqlite3VdbeMemExpandBlob(pIn3); 2038 flags3 &= ~MEM_Zero; 2039 } 2040 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2041 } 2042 switch( pOp->opcode ){ 2043 case OP_Eq: res = res==0; break; 2044 case OP_Ne: res = res!=0; break; 2045 case OP_Lt: res = res<0; break; 2046 case OP_Le: res = res<=0; break; 2047 case OP_Gt: res = res>0; break; 2048 default: res = res>=0; break; 2049 } 2050 2051 /* Undo any changes made by applyAffinity() to the input registers. */ 2052 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2053 pIn1->flags = flags1; 2054 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2055 pIn3->flags = flags3; 2056 2057 if( pOp->p5 & SQLITE_STOREP2 ){ 2058 pOut = &aMem[pOp->p2]; 2059 memAboutToChange(p, pOut); 2060 MemSetTypeFlag(pOut, MEM_Int); 2061 pOut->u.i = res; 2062 REGISTER_TRACE(pOp->p2, pOut); 2063 }else{ 2064 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2065 if( res ){ 2066 goto jump_to_p2; 2067 } 2068 } 2069 break; 2070 } 2071 2072 /* Opcode: Permutation * * * P4 * 2073 ** 2074 ** Set the permutation used by the OP_Compare operator to be the array 2075 ** of integers in P4. 2076 ** 2077 ** The permutation is only valid until the next OP_Compare that has 2078 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2079 ** occur immediately prior to the OP_Compare. 2080 ** 2081 ** The first integer in the P4 integer array is the length of the array 2082 ** and does not become part of the permutation. 2083 */ 2084 case OP_Permutation: { 2085 assert( pOp->p4type==P4_INTARRAY ); 2086 assert( pOp->p4.ai ); 2087 aPermute = pOp->p4.ai + 1; 2088 break; 2089 } 2090 2091 /* Opcode: Compare P1 P2 P3 P4 P5 2092 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2093 ** 2094 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2095 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2096 ** the comparison for use by the next OP_Jump instruct. 2097 ** 2098 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2099 ** determined by the most recent OP_Permutation operator. If the 2100 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2101 ** order. 2102 ** 2103 ** P4 is a KeyInfo structure that defines collating sequences and sort 2104 ** orders for the comparison. The permutation applies to registers 2105 ** only. The KeyInfo elements are used sequentially. 2106 ** 2107 ** The comparison is a sort comparison, so NULLs compare equal, 2108 ** NULLs are less than numbers, numbers are less than strings, 2109 ** and strings are less than blobs. 2110 */ 2111 case OP_Compare: { 2112 int n; 2113 int i; 2114 int p1; 2115 int p2; 2116 const KeyInfo *pKeyInfo; 2117 int idx; 2118 CollSeq *pColl; /* Collating sequence to use on this term */ 2119 int bRev; /* True for DESCENDING sort order */ 2120 2121 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 2122 n = pOp->p3; 2123 pKeyInfo = pOp->p4.pKeyInfo; 2124 assert( n>0 ); 2125 assert( pKeyInfo!=0 ); 2126 p1 = pOp->p1; 2127 p2 = pOp->p2; 2128 #if SQLITE_DEBUG 2129 if( aPermute ){ 2130 int k, mx = 0; 2131 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2132 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); 2133 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); 2134 }else{ 2135 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); 2136 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); 2137 } 2138 #endif /* SQLITE_DEBUG */ 2139 for(i=0; i<n; i++){ 2140 idx = aPermute ? aPermute[i] : i; 2141 assert( memIsValid(&aMem[p1+idx]) ); 2142 assert( memIsValid(&aMem[p2+idx]) ); 2143 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2144 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2145 assert( i<pKeyInfo->nField ); 2146 pColl = pKeyInfo->aColl[i]; 2147 bRev = pKeyInfo->aSortOrder[i]; 2148 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2149 if( iCompare ){ 2150 if( bRev ) iCompare = -iCompare; 2151 break; 2152 } 2153 } 2154 aPermute = 0; 2155 break; 2156 } 2157 2158 /* Opcode: Jump P1 P2 P3 * * 2159 ** 2160 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2161 ** in the most recent OP_Compare instruction the P1 vector was less than 2162 ** equal to, or greater than the P2 vector, respectively. 2163 */ 2164 case OP_Jump: { /* jump */ 2165 if( iCompare<0 ){ 2166 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; 2167 }else if( iCompare==0 ){ 2168 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; 2169 }else{ 2170 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; 2171 } 2172 break; 2173 } 2174 2175 /* Opcode: And P1 P2 P3 * * 2176 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2177 ** 2178 ** Take the logical AND of the values in registers P1 and P2 and 2179 ** write the result into register P3. 2180 ** 2181 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2182 ** the other input is NULL. A NULL and true or two NULLs give 2183 ** a NULL output. 2184 */ 2185 /* Opcode: Or P1 P2 P3 * * 2186 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2187 ** 2188 ** Take the logical OR of the values in register P1 and P2 and 2189 ** store the answer in register P3. 2190 ** 2191 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2192 ** even if the other input is NULL. A NULL and false or two NULLs 2193 ** give a NULL output. 2194 */ 2195 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2196 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2197 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2198 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2199 2200 pIn1 = &aMem[pOp->p1]; 2201 if( pIn1->flags & MEM_Null ){ 2202 v1 = 2; 2203 }else{ 2204 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2205 } 2206 pIn2 = &aMem[pOp->p2]; 2207 if( pIn2->flags & MEM_Null ){ 2208 v2 = 2; 2209 }else{ 2210 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2211 } 2212 if( pOp->opcode==OP_And ){ 2213 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2214 v1 = and_logic[v1*3+v2]; 2215 }else{ 2216 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2217 v1 = or_logic[v1*3+v2]; 2218 } 2219 pOut = &aMem[pOp->p3]; 2220 if( v1==2 ){ 2221 MemSetTypeFlag(pOut, MEM_Null); 2222 }else{ 2223 pOut->u.i = v1; 2224 MemSetTypeFlag(pOut, MEM_Int); 2225 } 2226 break; 2227 } 2228 2229 /* Opcode: Not P1 P2 * * * 2230 ** Synopsis: r[P2]= !r[P1] 2231 ** 2232 ** Interpret the value in register P1 as a boolean value. Store the 2233 ** boolean complement in register P2. If the value in register P1 is 2234 ** NULL, then a NULL is stored in P2. 2235 */ 2236 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2237 pIn1 = &aMem[pOp->p1]; 2238 pOut = &aMem[pOp->p2]; 2239 sqlite3VdbeMemSetNull(pOut); 2240 if( (pIn1->flags & MEM_Null)==0 ){ 2241 pOut->flags = MEM_Int; 2242 pOut->u.i = !sqlite3VdbeIntValue(pIn1); 2243 } 2244 break; 2245 } 2246 2247 /* Opcode: BitNot P1 P2 * * * 2248 ** Synopsis: r[P1]= ~r[P1] 2249 ** 2250 ** Interpret the content of register P1 as an integer. Store the 2251 ** ones-complement of the P1 value into register P2. If P1 holds 2252 ** a NULL then store a NULL in P2. 2253 */ 2254 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2255 pIn1 = &aMem[pOp->p1]; 2256 pOut = &aMem[pOp->p2]; 2257 sqlite3VdbeMemSetNull(pOut); 2258 if( (pIn1->flags & MEM_Null)==0 ){ 2259 pOut->flags = MEM_Int; 2260 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2261 } 2262 break; 2263 } 2264 2265 /* Opcode: Once P1 P2 * * * 2266 ** 2267 ** Check the "once" flag number P1. If it is set, jump to instruction P2. 2268 ** Otherwise, set the flag and fall through to the next instruction. 2269 ** In other words, this opcode causes all following opcodes up through P2 2270 ** (but not including P2) to run just once and to be skipped on subsequent 2271 ** times through the loop. 2272 ** 2273 ** All "once" flags are initially cleared whenever a prepared statement 2274 ** first begins to run. 2275 */ 2276 case OP_Once: { /* jump */ 2277 assert( pOp->p1<p->nOnceFlag ); 2278 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); 2279 if( p->aOnceFlag[pOp->p1] ){ 2280 goto jump_to_p2; 2281 }else{ 2282 p->aOnceFlag[pOp->p1] = 1; 2283 } 2284 break; 2285 } 2286 2287 /* Opcode: If P1 P2 P3 * * 2288 ** 2289 ** Jump to P2 if the value in register P1 is true. The value 2290 ** is considered true if it is numeric and non-zero. If the value 2291 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2292 */ 2293 /* Opcode: IfNot P1 P2 P3 * * 2294 ** 2295 ** Jump to P2 if the value in register P1 is False. The value 2296 ** is considered false if it has a numeric value of zero. If the value 2297 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2298 */ 2299 case OP_If: /* jump, in1 */ 2300 case OP_IfNot: { /* jump, in1 */ 2301 int c; 2302 pIn1 = &aMem[pOp->p1]; 2303 if( pIn1->flags & MEM_Null ){ 2304 c = pOp->p3; 2305 }else{ 2306 #ifdef SQLITE_OMIT_FLOATING_POINT 2307 c = sqlite3VdbeIntValue(pIn1)!=0; 2308 #else 2309 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2310 #endif 2311 if( pOp->opcode==OP_IfNot ) c = !c; 2312 } 2313 VdbeBranchTaken(c!=0, 2); 2314 if( c ){ 2315 goto jump_to_p2; 2316 } 2317 break; 2318 } 2319 2320 /* Opcode: IsNull P1 P2 * * * 2321 ** Synopsis: if r[P1]==NULL goto P2 2322 ** 2323 ** Jump to P2 if the value in register P1 is NULL. 2324 */ 2325 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2326 pIn1 = &aMem[pOp->p1]; 2327 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2328 if( (pIn1->flags & MEM_Null)!=0 ){ 2329 goto jump_to_p2; 2330 } 2331 break; 2332 } 2333 2334 /* Opcode: NotNull P1 P2 * * * 2335 ** Synopsis: if r[P1]!=NULL goto P2 2336 ** 2337 ** Jump to P2 if the value in register P1 is not NULL. 2338 */ 2339 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2340 pIn1 = &aMem[pOp->p1]; 2341 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2342 if( (pIn1->flags & MEM_Null)==0 ){ 2343 goto jump_to_p2; 2344 } 2345 break; 2346 } 2347 2348 /* Opcode: Column P1 P2 P3 P4 P5 2349 ** Synopsis: r[P3]=PX 2350 ** 2351 ** Interpret the data that cursor P1 points to as a structure built using 2352 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2353 ** information about the format of the data.) Extract the P2-th column 2354 ** from this record. If there are less that (P2+1) 2355 ** values in the record, extract a NULL. 2356 ** 2357 ** The value extracted is stored in register P3. 2358 ** 2359 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2360 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2361 ** the result. 2362 ** 2363 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2364 ** then the cache of the cursor is reset prior to extracting the column. 2365 ** The first OP_Column against a pseudo-table after the value of the content 2366 ** register has changed should have this bit set. 2367 ** 2368 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2369 ** the result is guaranteed to only be used as the argument of a length() 2370 ** or typeof() function, respectively. The loading of large blobs can be 2371 ** skipped for length() and all content loading can be skipped for typeof(). 2372 */ 2373 case OP_Column: { 2374 i64 payloadSize64; /* Number of bytes in the record */ 2375 int p2; /* column number to retrieve */ 2376 VdbeCursor *pC; /* The VDBE cursor */ 2377 BtCursor *pCrsr; /* The BTree cursor */ 2378 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2379 int len; /* The length of the serialized data for the column */ 2380 int i; /* Loop counter */ 2381 Mem *pDest; /* Where to write the extracted value */ 2382 Mem sMem; /* For storing the record being decoded */ 2383 const u8 *zData; /* Part of the record being decoded */ 2384 const u8 *zHdr; /* Next unparsed byte of the header */ 2385 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2386 u32 offset; /* Offset into the data */ 2387 u64 offset64; /* 64-bit offset */ 2388 u32 avail; /* Number of bytes of available data */ 2389 u32 t; /* A type code from the record header */ 2390 Mem *pReg; /* PseudoTable input register */ 2391 2392 pC = p->apCsr[pOp->p1]; 2393 p2 = pOp->p2; 2394 2395 /* If the cursor cache is stale, bring it up-to-date */ 2396 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2397 2398 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2399 pDest = &aMem[pOp->p3]; 2400 memAboutToChange(p, pDest); 2401 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2402 assert( pC!=0 ); 2403 assert( p2<pC->nField ); 2404 aOffset = pC->aOffset; 2405 assert( pC->eCurType!=CURTYPE_VTAB ); 2406 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2407 assert( pC->eCurType!=CURTYPE_SORTER ); 2408 pCrsr = pC->uc.pCursor; 2409 2410 if( rc ) goto abort_due_to_error; 2411 if( pC->cacheStatus!=p->cacheCtr ){ 2412 if( pC->nullRow ){ 2413 if( pC->eCurType==CURTYPE_PSEUDO ){ 2414 assert( pC->uc.pseudoTableReg>0 ); 2415 pReg = &aMem[pC->uc.pseudoTableReg]; 2416 assert( pReg->flags & MEM_Blob ); 2417 assert( memIsValid(pReg) ); 2418 pC->payloadSize = pC->szRow = avail = pReg->n; 2419 pC->aRow = (u8*)pReg->z; 2420 }else{ 2421 sqlite3VdbeMemSetNull(pDest); 2422 goto op_column_out; 2423 } 2424 }else{ 2425 assert( pC->eCurType==CURTYPE_BTREE ); 2426 assert( pCrsr ); 2427 if( pC->isTable==0 ){ 2428 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2429 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2430 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2431 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2432 ** payload size, so it is impossible for payloadSize64 to be 2433 ** larger than 32 bits. */ 2434 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2435 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); 2436 pC->payloadSize = (u32)payloadSize64; 2437 }else{ 2438 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2439 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); 2440 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2441 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); 2442 } 2443 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2444 if( pC->payloadSize <= (u32)avail ){ 2445 pC->szRow = pC->payloadSize; 2446 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2447 goto too_big; 2448 }else{ 2449 pC->szRow = avail; 2450 } 2451 } 2452 pC->cacheStatus = p->cacheCtr; 2453 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2454 pC->nHdrParsed = 0; 2455 aOffset[0] = offset; 2456 2457 2458 if( avail<offset ){ 2459 /* pC->aRow does not have to hold the entire row, but it does at least 2460 ** need to cover the header of the record. If pC->aRow does not contain 2461 ** the complete header, then set it to zero, forcing the header to be 2462 ** dynamically allocated. */ 2463 pC->aRow = 0; 2464 pC->szRow = 0; 2465 2466 /* Make sure a corrupt database has not given us an oversize header. 2467 ** Do this now to avoid an oversize memory allocation. 2468 ** 2469 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2470 ** types use so much data space that there can only be 4096 and 32 of 2471 ** them, respectively. So the maximum header length results from a 2472 ** 3-byte type for each of the maximum of 32768 columns plus three 2473 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2474 */ 2475 if( offset > 98307 || offset > pC->payloadSize ){ 2476 rc = SQLITE_CORRUPT_BKPT; 2477 goto abort_due_to_error; 2478 } 2479 } 2480 2481 /* The following goto is an optimization. It can be omitted and 2482 ** everything will still work. But OP_Column is measurably faster 2483 ** by skipping the subsequent conditional, which is always true. 2484 */ 2485 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2486 goto op_column_read_header; 2487 } 2488 2489 /* Make sure at least the first p2+1 entries of the header have been 2490 ** parsed and valid information is in aOffset[] and pC->aType[]. 2491 */ 2492 if( pC->nHdrParsed<=p2 ){ 2493 /* If there is more header available for parsing in the record, try 2494 ** to extract additional fields up through the p2+1-th field 2495 */ 2496 op_column_read_header: 2497 if( pC->iHdrOffset<aOffset[0] ){ 2498 /* Make sure zData points to enough of the record to cover the header. */ 2499 if( pC->aRow==0 ){ 2500 memset(&sMem, 0, sizeof(sMem)); 2501 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem); 2502 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2503 zData = (u8*)sMem.z; 2504 }else{ 2505 zData = pC->aRow; 2506 } 2507 2508 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2509 i = pC->nHdrParsed; 2510 offset64 = aOffset[i]; 2511 zHdr = zData + pC->iHdrOffset; 2512 zEndHdr = zData + aOffset[0]; 2513 assert( i<=p2 && zHdr<zEndHdr ); 2514 do{ 2515 if( (t = zHdr[0])<0x80 ){ 2516 zHdr++; 2517 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2518 }else{ 2519 zHdr += sqlite3GetVarint32(zHdr, &t); 2520 offset64 += sqlite3VdbeSerialTypeLen(t); 2521 } 2522 pC->aType[i++] = t; 2523 aOffset[i] = (u32)(offset64 & 0xffffffff); 2524 }while( i<=p2 && zHdr<zEndHdr ); 2525 pC->nHdrParsed = i; 2526 pC->iHdrOffset = (u32)(zHdr - zData); 2527 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2528 2529 /* The record is corrupt if any of the following are true: 2530 ** (1) the bytes of the header extend past the declared header size 2531 ** (2) the entire header was used but not all data was used 2532 ** (3) the end of the data extends beyond the end of the record. 2533 */ 2534 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2535 || (offset64 > pC->payloadSize) 2536 ){ 2537 rc = SQLITE_CORRUPT_BKPT; 2538 goto abort_due_to_error; 2539 } 2540 }else{ 2541 t = 0; 2542 } 2543 2544 /* If after trying to extract new entries from the header, nHdrParsed is 2545 ** still not up to p2, that means that the record has fewer than p2 2546 ** columns. So the result will be either the default value or a NULL. 2547 */ 2548 if( pC->nHdrParsed<=p2 ){ 2549 if( pOp->p4type==P4_MEM ){ 2550 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2551 }else{ 2552 sqlite3VdbeMemSetNull(pDest); 2553 } 2554 goto op_column_out; 2555 } 2556 }else{ 2557 t = pC->aType[p2]; 2558 } 2559 2560 /* Extract the content for the p2+1-th column. Control can only 2561 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2562 ** all valid. 2563 */ 2564 assert( p2<pC->nHdrParsed ); 2565 assert( rc==SQLITE_OK ); 2566 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2567 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); 2568 assert( t==pC->aType[p2] ); 2569 pDest->enc = encoding; 2570 if( pC->szRow>=aOffset[p2+1] ){ 2571 /* This is the common case where the desired content fits on the original 2572 ** page - where the content is not on an overflow page */ 2573 zData = pC->aRow + aOffset[p2]; 2574 if( t<12 ){ 2575 sqlite3VdbeSerialGet(zData, t, pDest); 2576 }else{ 2577 /* If the column value is a string, we need a persistent value, not 2578 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2579 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2580 */ 2581 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2582 pDest->n = len = (t-12)/2; 2583 if( pDest->szMalloc < len+2 ){ 2584 pDest->flags = MEM_Null; 2585 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2586 }else{ 2587 pDest->z = pDest->zMalloc; 2588 } 2589 memcpy(pDest->z, zData, len); 2590 pDest->z[len] = 0; 2591 pDest->z[len+1] = 0; 2592 pDest->flags = aFlag[t&1]; 2593 } 2594 }else{ 2595 /* This branch happens only when content is on overflow pages */ 2596 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2597 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2598 || (len = sqlite3VdbeSerialTypeLen(t))==0 2599 ){ 2600 /* Content is irrelevant for 2601 ** 1. the typeof() function, 2602 ** 2. the length(X) function if X is a blob, and 2603 ** 3. if the content length is zero. 2604 ** So we might as well use bogus content rather than reading 2605 ** content from disk. */ 2606 static u8 aZero[8]; /* This is the bogus content */ 2607 sqlite3VdbeSerialGet(aZero, t, pDest); 2608 }else{ 2609 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, 2610 pDest); 2611 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2612 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2613 pDest->flags &= ~MEM_Ephem; 2614 } 2615 } 2616 2617 op_column_out: 2618 UPDATE_MAX_BLOBSIZE(pDest); 2619 REGISTER_TRACE(pOp->p3, pDest); 2620 break; 2621 } 2622 2623 /* Opcode: Affinity P1 P2 * P4 * 2624 ** Synopsis: affinity(r[P1@P2]) 2625 ** 2626 ** Apply affinities to a range of P2 registers starting with P1. 2627 ** 2628 ** P4 is a string that is P2 characters long. The nth character of the 2629 ** string indicates the column affinity that should be used for the nth 2630 ** memory cell in the range. 2631 */ 2632 case OP_Affinity: { 2633 const char *zAffinity; /* The affinity to be applied */ 2634 char cAff; /* A single character of affinity */ 2635 2636 zAffinity = pOp->p4.z; 2637 assert( zAffinity!=0 ); 2638 assert( zAffinity[pOp->p2]==0 ); 2639 pIn1 = &aMem[pOp->p1]; 2640 while( (cAff = *(zAffinity++))!=0 ){ 2641 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); 2642 assert( memIsValid(pIn1) ); 2643 applyAffinity(pIn1, cAff, encoding); 2644 pIn1++; 2645 } 2646 break; 2647 } 2648 2649 /* Opcode: MakeRecord P1 P2 P3 P4 * 2650 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2651 ** 2652 ** Convert P2 registers beginning with P1 into the [record format] 2653 ** use as a data record in a database table or as a key 2654 ** in an index. The OP_Column opcode can decode the record later. 2655 ** 2656 ** P4 may be a string that is P2 characters long. The nth character of the 2657 ** string indicates the column affinity that should be used for the nth 2658 ** field of the index key. 2659 ** 2660 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2661 ** macros defined in sqliteInt.h. 2662 ** 2663 ** If P4 is NULL then all index fields have the affinity BLOB. 2664 */ 2665 case OP_MakeRecord: { 2666 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2667 Mem *pRec; /* The new record */ 2668 u64 nData; /* Number of bytes of data space */ 2669 int nHdr; /* Number of bytes of header space */ 2670 i64 nByte; /* Data space required for this record */ 2671 i64 nZero; /* Number of zero bytes at the end of the record */ 2672 int nVarint; /* Number of bytes in a varint */ 2673 u32 serial_type; /* Type field */ 2674 Mem *pData0; /* First field to be combined into the record */ 2675 Mem *pLast; /* Last field of the record */ 2676 int nField; /* Number of fields in the record */ 2677 char *zAffinity; /* The affinity string for the record */ 2678 int file_format; /* File format to use for encoding */ 2679 int i; /* Space used in zNewRecord[] header */ 2680 int j; /* Space used in zNewRecord[] content */ 2681 u32 len; /* Length of a field */ 2682 2683 /* Assuming the record contains N fields, the record format looks 2684 ** like this: 2685 ** 2686 ** ------------------------------------------------------------------------ 2687 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2688 ** ------------------------------------------------------------------------ 2689 ** 2690 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2691 ** and so forth. 2692 ** 2693 ** Each type field is a varint representing the serial type of the 2694 ** corresponding data element (see sqlite3VdbeSerialType()). The 2695 ** hdr-size field is also a varint which is the offset from the beginning 2696 ** of the record to data0. 2697 */ 2698 nData = 0; /* Number of bytes of data space */ 2699 nHdr = 0; /* Number of bytes of header space */ 2700 nZero = 0; /* Number of zero bytes at the end of the record */ 2701 nField = pOp->p1; 2702 zAffinity = pOp->p4.z; 2703 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); 2704 pData0 = &aMem[nField]; 2705 nField = pOp->p2; 2706 pLast = &pData0[nField-1]; 2707 file_format = p->minWriteFileFormat; 2708 2709 /* Identify the output register */ 2710 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2711 pOut = &aMem[pOp->p3]; 2712 memAboutToChange(p, pOut); 2713 2714 /* Apply the requested affinity to all inputs 2715 */ 2716 assert( pData0<=pLast ); 2717 if( zAffinity ){ 2718 pRec = pData0; 2719 do{ 2720 applyAffinity(pRec++, *(zAffinity++), encoding); 2721 assert( zAffinity[0]==0 || pRec<=pLast ); 2722 }while( zAffinity[0] ); 2723 } 2724 2725 /* Loop through the elements that will make up the record to figure 2726 ** out how much space is required for the new record. 2727 */ 2728 pRec = pLast; 2729 do{ 2730 assert( memIsValid(pRec) ); 2731 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); 2732 if( pRec->flags & MEM_Zero ){ 2733 if( nData ){ 2734 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 2735 }else{ 2736 nZero += pRec->u.nZero; 2737 len -= pRec->u.nZero; 2738 } 2739 } 2740 nData += len; 2741 testcase( serial_type==127 ); 2742 testcase( serial_type==128 ); 2743 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2744 }while( (--pRec)>=pData0 ); 2745 2746 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2747 ** which determines the total number of bytes in the header. The varint 2748 ** value is the size of the header in bytes including the size varint 2749 ** itself. */ 2750 testcase( nHdr==126 ); 2751 testcase( nHdr==127 ); 2752 if( nHdr<=126 ){ 2753 /* The common case */ 2754 nHdr += 1; 2755 }else{ 2756 /* Rare case of a really large header */ 2757 nVarint = sqlite3VarintLen(nHdr); 2758 nHdr += nVarint; 2759 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2760 } 2761 nByte = nHdr+nData; 2762 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2763 goto too_big; 2764 } 2765 2766 /* Make sure the output register has a buffer large enough to store 2767 ** the new record. The output register (pOp->p3) is not allowed to 2768 ** be one of the input registers (because the following call to 2769 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2770 */ 2771 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2772 goto no_mem; 2773 } 2774 zNewRecord = (u8 *)pOut->z; 2775 2776 /* Write the record */ 2777 i = putVarint32(zNewRecord, nHdr); 2778 j = nHdr; 2779 assert( pData0<=pLast ); 2780 pRec = pData0; 2781 do{ 2782 serial_type = pRec->uTemp; 2783 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2784 ** additional varints, one per column. */ 2785 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2786 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2787 ** immediately follow the header. */ 2788 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2789 }while( (++pRec)<=pLast ); 2790 assert( i==nHdr ); 2791 assert( j==nByte ); 2792 2793 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2794 pOut->n = (int)nByte; 2795 pOut->flags = MEM_Blob; 2796 if( nZero ){ 2797 pOut->u.nZero = nZero; 2798 pOut->flags |= MEM_Zero; 2799 } 2800 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2801 REGISTER_TRACE(pOp->p3, pOut); 2802 UPDATE_MAX_BLOBSIZE(pOut); 2803 break; 2804 } 2805 2806 /* Opcode: Count P1 P2 * * * 2807 ** Synopsis: r[P2]=count() 2808 ** 2809 ** Store the number of entries (an integer value) in the table or index 2810 ** opened by cursor P1 in register P2 2811 */ 2812 #ifndef SQLITE_OMIT_BTREECOUNT 2813 case OP_Count: { /* out2 */ 2814 i64 nEntry; 2815 BtCursor *pCrsr; 2816 2817 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 2818 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 2819 assert( pCrsr ); 2820 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2821 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2822 if( rc ) goto abort_due_to_error; 2823 pOut = out2Prerelease(p, pOp); 2824 pOut->u.i = nEntry; 2825 break; 2826 } 2827 #endif 2828 2829 /* Opcode: Savepoint P1 * * P4 * 2830 ** 2831 ** Open, release or rollback the savepoint named by parameter P4, depending 2832 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2833 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2834 */ 2835 case OP_Savepoint: { 2836 int p1; /* Value of P1 operand */ 2837 char *zName; /* Name of savepoint */ 2838 int nName; 2839 Savepoint *pNew; 2840 Savepoint *pSavepoint; 2841 Savepoint *pTmp; 2842 int iSavepoint; 2843 int ii; 2844 2845 p1 = pOp->p1; 2846 zName = pOp->p4.z; 2847 2848 /* Assert that the p1 parameter is valid. Also that if there is no open 2849 ** transaction, then there cannot be any savepoints. 2850 */ 2851 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2852 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2853 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2854 assert( checkSavepointCount(db) ); 2855 assert( p->bIsReader ); 2856 2857 if( p1==SAVEPOINT_BEGIN ){ 2858 if( db->nVdbeWrite>0 ){ 2859 /* A new savepoint cannot be created if there are active write 2860 ** statements (i.e. open read/write incremental blob handles). 2861 */ 2862 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 2863 rc = SQLITE_BUSY; 2864 }else{ 2865 nName = sqlite3Strlen30(zName); 2866 2867 #ifndef SQLITE_OMIT_VIRTUALTABLE 2868 /* This call is Ok even if this savepoint is actually a transaction 2869 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2870 ** If this is a transaction savepoint being opened, it is guaranteed 2871 ** that the db->aVTrans[] array is empty. */ 2872 assert( db->autoCommit==0 || db->nVTrans==0 ); 2873 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2874 db->nStatement+db->nSavepoint); 2875 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2876 #endif 2877 2878 /* Create a new savepoint structure. */ 2879 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 2880 if( pNew ){ 2881 pNew->zName = (char *)&pNew[1]; 2882 memcpy(pNew->zName, zName, nName+1); 2883 2884 /* If there is no open transaction, then mark this as a special 2885 ** "transaction savepoint". */ 2886 if( db->autoCommit ){ 2887 db->autoCommit = 0; 2888 db->isTransactionSavepoint = 1; 2889 }else{ 2890 db->nSavepoint++; 2891 } 2892 2893 /* Link the new savepoint into the database handle's list. */ 2894 pNew->pNext = db->pSavepoint; 2895 db->pSavepoint = pNew; 2896 pNew->nDeferredCons = db->nDeferredCons; 2897 pNew->nDeferredImmCons = db->nDeferredImmCons; 2898 } 2899 } 2900 }else{ 2901 iSavepoint = 0; 2902 2903 /* Find the named savepoint. If there is no such savepoint, then an 2904 ** an error is returned to the user. */ 2905 for( 2906 pSavepoint = db->pSavepoint; 2907 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2908 pSavepoint = pSavepoint->pNext 2909 ){ 2910 iSavepoint++; 2911 } 2912 if( !pSavepoint ){ 2913 sqlite3VdbeError(p, "no such savepoint: %s", zName); 2914 rc = SQLITE_ERROR; 2915 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2916 /* It is not possible to release (commit) a savepoint if there are 2917 ** active write statements. 2918 */ 2919 sqlite3VdbeError(p, "cannot release savepoint - " 2920 "SQL statements in progress"); 2921 rc = SQLITE_BUSY; 2922 }else{ 2923 2924 /* Determine whether or not this is a transaction savepoint. If so, 2925 ** and this is a RELEASE command, then the current transaction 2926 ** is committed. 2927 */ 2928 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2929 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2930 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2931 goto vdbe_return; 2932 } 2933 db->autoCommit = 1; 2934 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2935 p->pc = (int)(pOp - aOp); 2936 db->autoCommit = 0; 2937 p->rc = rc = SQLITE_BUSY; 2938 goto vdbe_return; 2939 } 2940 db->isTransactionSavepoint = 0; 2941 rc = p->rc; 2942 }else{ 2943 int isSchemaChange; 2944 iSavepoint = db->nSavepoint - iSavepoint - 1; 2945 if( p1==SAVEPOINT_ROLLBACK ){ 2946 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; 2947 for(ii=0; ii<db->nDb; ii++){ 2948 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 2949 SQLITE_ABORT_ROLLBACK, 2950 isSchemaChange==0); 2951 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2952 } 2953 }else{ 2954 isSchemaChange = 0; 2955 } 2956 for(ii=0; ii<db->nDb; ii++){ 2957 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2958 if( rc!=SQLITE_OK ){ 2959 goto abort_due_to_error; 2960 } 2961 } 2962 if( isSchemaChange ){ 2963 sqlite3ExpirePreparedStatements(db); 2964 sqlite3ResetAllSchemasOfConnection(db); 2965 db->flags = (db->flags | SQLITE_InternChanges); 2966 } 2967 } 2968 2969 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2970 ** savepoints nested inside of the savepoint being operated on. */ 2971 while( db->pSavepoint!=pSavepoint ){ 2972 pTmp = db->pSavepoint; 2973 db->pSavepoint = pTmp->pNext; 2974 sqlite3DbFree(db, pTmp); 2975 db->nSavepoint--; 2976 } 2977 2978 /* If it is a RELEASE, then destroy the savepoint being operated on 2979 ** too. If it is a ROLLBACK TO, then set the number of deferred 2980 ** constraint violations present in the database to the value stored 2981 ** when the savepoint was created. */ 2982 if( p1==SAVEPOINT_RELEASE ){ 2983 assert( pSavepoint==db->pSavepoint ); 2984 db->pSavepoint = pSavepoint->pNext; 2985 sqlite3DbFree(db, pSavepoint); 2986 if( !isTransaction ){ 2987 db->nSavepoint--; 2988 } 2989 }else{ 2990 db->nDeferredCons = pSavepoint->nDeferredCons; 2991 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 2992 } 2993 2994 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 2995 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2996 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2997 } 2998 } 2999 } 3000 if( rc ) goto abort_due_to_error; 3001 3002 break; 3003 } 3004 3005 /* Opcode: AutoCommit P1 P2 * * * 3006 ** 3007 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3008 ** back any currently active btree transactions. If there are any active 3009 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3010 ** there are active writing VMs or active VMs that use shared cache. 3011 ** 3012 ** This instruction causes the VM to halt. 3013 */ 3014 case OP_AutoCommit: { 3015 int desiredAutoCommit; 3016 int iRollback; 3017 3018 desiredAutoCommit = pOp->p1; 3019 iRollback = pOp->p2; 3020 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3021 assert( desiredAutoCommit==1 || iRollback==0 ); 3022 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3023 assert( p->bIsReader ); 3024 3025 if( desiredAutoCommit!=db->autoCommit ){ 3026 if( iRollback ){ 3027 assert( desiredAutoCommit==1 ); 3028 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3029 db->autoCommit = 1; 3030 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3031 /* If this instruction implements a COMMIT and other VMs are writing 3032 ** return an error indicating that the other VMs must complete first. 3033 */ 3034 sqlite3VdbeError(p, "cannot commit transaction - " 3035 "SQL statements in progress"); 3036 rc = SQLITE_BUSY; 3037 goto abort_due_to_error; 3038 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3039 goto vdbe_return; 3040 }else{ 3041 db->autoCommit = (u8)desiredAutoCommit; 3042 } 3043 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3044 p->pc = (int)(pOp - aOp); 3045 db->autoCommit = (u8)(1-desiredAutoCommit); 3046 p->rc = rc = SQLITE_BUSY; 3047 goto vdbe_return; 3048 } 3049 assert( db->nStatement==0 ); 3050 sqlite3CloseSavepoints(db); 3051 if( p->rc==SQLITE_OK ){ 3052 rc = SQLITE_DONE; 3053 }else{ 3054 rc = SQLITE_ERROR; 3055 } 3056 goto vdbe_return; 3057 }else{ 3058 sqlite3VdbeError(p, 3059 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3060 (iRollback)?"cannot rollback - no transaction is active": 3061 "cannot commit - no transaction is active")); 3062 3063 rc = SQLITE_ERROR; 3064 goto abort_due_to_error; 3065 } 3066 break; 3067 } 3068 3069 /* Opcode: Transaction P1 P2 P3 P4 P5 3070 ** 3071 ** Begin a transaction on database P1 if a transaction is not already 3072 ** active. 3073 ** If P2 is non-zero, then a write-transaction is started, or if a 3074 ** read-transaction is already active, it is upgraded to a write-transaction. 3075 ** If P2 is zero, then a read-transaction is started. 3076 ** 3077 ** P1 is the index of the database file on which the transaction is 3078 ** started. Index 0 is the main database file and index 1 is the 3079 ** file used for temporary tables. Indices of 2 or more are used for 3080 ** attached databases. 3081 ** 3082 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3083 ** true (this flag is set if the Vdbe may modify more than one row and may 3084 ** throw an ABORT exception), a statement transaction may also be opened. 3085 ** More specifically, a statement transaction is opened iff the database 3086 ** connection is currently not in autocommit mode, or if there are other 3087 ** active statements. A statement transaction allows the changes made by this 3088 ** VDBE to be rolled back after an error without having to roll back the 3089 ** entire transaction. If no error is encountered, the statement transaction 3090 ** will automatically commit when the VDBE halts. 3091 ** 3092 ** If P5!=0 then this opcode also checks the schema cookie against P3 3093 ** and the schema generation counter against P4. 3094 ** The cookie changes its value whenever the database schema changes. 3095 ** This operation is used to detect when that the cookie has changed 3096 ** and that the current process needs to reread the schema. If the schema 3097 ** cookie in P3 differs from the schema cookie in the database header or 3098 ** if the schema generation counter in P4 differs from the current 3099 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3100 ** halts. The sqlite3_step() wrapper function might then reprepare the 3101 ** statement and rerun it from the beginning. 3102 */ 3103 case OP_Transaction: { 3104 Btree *pBt; 3105 int iMeta; 3106 int iGen; 3107 3108 assert( p->bIsReader ); 3109 assert( p->readOnly==0 || pOp->p2==0 ); 3110 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3111 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3112 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3113 rc = SQLITE_READONLY; 3114 goto abort_due_to_error; 3115 } 3116 pBt = db->aDb[pOp->p1].pBt; 3117 3118 if( pBt ){ 3119 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3120 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3121 testcase( rc==SQLITE_BUSY_RECOVERY ); 3122 if( (rc&0xff)==SQLITE_BUSY ){ 3123 p->pc = (int)(pOp - aOp); 3124 p->rc = rc; 3125 goto vdbe_return; 3126 } 3127 if( rc!=SQLITE_OK ){ 3128 goto abort_due_to_error; 3129 } 3130 3131 if( pOp->p2 && p->usesStmtJournal 3132 && (db->autoCommit==0 || db->nVdbeRead>1) 3133 ){ 3134 assert( sqlite3BtreeIsInTrans(pBt) ); 3135 if( p->iStatement==0 ){ 3136 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3137 db->nStatement++; 3138 p->iStatement = db->nSavepoint + db->nStatement; 3139 } 3140 3141 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3142 if( rc==SQLITE_OK ){ 3143 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3144 } 3145 3146 /* Store the current value of the database handles deferred constraint 3147 ** counter. If the statement transaction needs to be rolled back, 3148 ** the value of this counter needs to be restored too. */ 3149 p->nStmtDefCons = db->nDeferredCons; 3150 p->nStmtDefImmCons = db->nDeferredImmCons; 3151 } 3152 3153 /* Gather the schema version number for checking: 3154 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite 3155 ** each time a query is executed to ensure that the internal cache of the 3156 ** schema used when compiling the SQL query matches the schema of the 3157 ** database against which the compiled query is actually executed. 3158 */ 3159 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3160 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3161 }else{ 3162 iGen = iMeta = 0; 3163 } 3164 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3165 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3166 sqlite3DbFree(db, p->zErrMsg); 3167 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3168 /* If the schema-cookie from the database file matches the cookie 3169 ** stored with the in-memory representation of the schema, do 3170 ** not reload the schema from the database file. 3171 ** 3172 ** If virtual-tables are in use, this is not just an optimization. 3173 ** Often, v-tables store their data in other SQLite tables, which 3174 ** are queried from within xNext() and other v-table methods using 3175 ** prepared queries. If such a query is out-of-date, we do not want to 3176 ** discard the database schema, as the user code implementing the 3177 ** v-table would have to be ready for the sqlite3_vtab structure itself 3178 ** to be invalidated whenever sqlite3_step() is called from within 3179 ** a v-table method. 3180 */ 3181 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3182 sqlite3ResetOneSchema(db, pOp->p1); 3183 } 3184 p->expired = 1; 3185 rc = SQLITE_SCHEMA; 3186 } 3187 if( rc ) goto abort_due_to_error; 3188 break; 3189 } 3190 3191 /* Opcode: ReadCookie P1 P2 P3 * * 3192 ** 3193 ** Read cookie number P3 from database P1 and write it into register P2. 3194 ** P3==1 is the schema version. P3==2 is the database format. 3195 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3196 ** the main database file and P1==1 is the database file used to store 3197 ** temporary tables. 3198 ** 3199 ** There must be a read-lock on the database (either a transaction 3200 ** must be started or there must be an open cursor) before 3201 ** executing this instruction. 3202 */ 3203 case OP_ReadCookie: { /* out2 */ 3204 int iMeta; 3205 int iDb; 3206 int iCookie; 3207 3208 assert( p->bIsReader ); 3209 iDb = pOp->p1; 3210 iCookie = pOp->p3; 3211 assert( pOp->p3<SQLITE_N_BTREE_META ); 3212 assert( iDb>=0 && iDb<db->nDb ); 3213 assert( db->aDb[iDb].pBt!=0 ); 3214 assert( DbMaskTest(p->btreeMask, iDb) ); 3215 3216 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3217 pOut = out2Prerelease(p, pOp); 3218 pOut->u.i = iMeta; 3219 break; 3220 } 3221 3222 /* Opcode: SetCookie P1 P2 P3 * * 3223 ** 3224 ** Write the integer value P3 into cookie number P2 of database P1. 3225 ** P2==1 is the schema version. P2==2 is the database format. 3226 ** P2==3 is the recommended pager cache 3227 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3228 ** database file used to store temporary tables. 3229 ** 3230 ** A transaction must be started before executing this opcode. 3231 */ 3232 case OP_SetCookie: { 3233 Db *pDb; 3234 assert( pOp->p2<SQLITE_N_BTREE_META ); 3235 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3236 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3237 assert( p->readOnly==0 ); 3238 pDb = &db->aDb[pOp->p1]; 3239 assert( pDb->pBt!=0 ); 3240 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3241 /* See note about index shifting on OP_ReadCookie */ 3242 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3243 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3244 /* When the schema cookie changes, record the new cookie internally */ 3245 pDb->pSchema->schema_cookie = pOp->p3; 3246 db->flags |= SQLITE_InternChanges; 3247 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3248 /* Record changes in the file format */ 3249 pDb->pSchema->file_format = pOp->p3; 3250 } 3251 if( pOp->p1==1 ){ 3252 /* Invalidate all prepared statements whenever the TEMP database 3253 ** schema is changed. Ticket #1644 */ 3254 sqlite3ExpirePreparedStatements(db); 3255 p->expired = 0; 3256 } 3257 if( rc ) goto abort_due_to_error; 3258 break; 3259 } 3260 3261 /* Opcode: OpenRead P1 P2 P3 P4 P5 3262 ** Synopsis: root=P2 iDb=P3 3263 ** 3264 ** Open a read-only cursor for the database table whose root page is 3265 ** P2 in a database file. The database file is determined by P3. 3266 ** P3==0 means the main database, P3==1 means the database used for 3267 ** temporary tables, and P3>1 means used the corresponding attached 3268 ** database. Give the new cursor an identifier of P1. The P1 3269 ** values need not be contiguous but all P1 values should be small integers. 3270 ** It is an error for P1 to be negative. 3271 ** 3272 ** If P5!=0 then use the content of register P2 as the root page, not 3273 ** the value of P2 itself. 3274 ** 3275 ** There will be a read lock on the database whenever there is an 3276 ** open cursor. If the database was unlocked prior to this instruction 3277 ** then a read lock is acquired as part of this instruction. A read 3278 ** lock allows other processes to read the database but prohibits 3279 ** any other process from modifying the database. The read lock is 3280 ** released when all cursors are closed. If this instruction attempts 3281 ** to get a read lock but fails, the script terminates with an 3282 ** SQLITE_BUSY error code. 3283 ** 3284 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3285 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3286 ** structure, then said structure defines the content and collating 3287 ** sequence of the index being opened. Otherwise, if P4 is an integer 3288 ** value, it is set to the number of columns in the table. 3289 ** 3290 ** See also: OpenWrite, ReopenIdx 3291 */ 3292 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3293 ** Synopsis: root=P2 iDb=P3 3294 ** 3295 ** The ReopenIdx opcode works exactly like ReadOpen except that it first 3296 ** checks to see if the cursor on P1 is already open with a root page 3297 ** number of P2 and if it is this opcode becomes a no-op. In other words, 3298 ** if the cursor is already open, do not reopen it. 3299 ** 3300 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being 3301 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as 3302 ** every other ReopenIdx or OpenRead for the same cursor number. 3303 ** 3304 ** See the OpenRead opcode documentation for additional information. 3305 */ 3306 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3307 ** Synopsis: root=P2 iDb=P3 3308 ** 3309 ** Open a read/write cursor named P1 on the table or index whose root 3310 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3311 ** root page. 3312 ** 3313 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3314 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3315 ** structure, then said structure defines the content and collating 3316 ** sequence of the index being opened. Otherwise, if P4 is an integer 3317 ** value, it is set to the number of columns in the table, or to the 3318 ** largest index of any column of the table that is actually used. 3319 ** 3320 ** This instruction works just like OpenRead except that it opens the cursor 3321 ** in read/write mode. For a given table, there can be one or more read-only 3322 ** cursors or a single read/write cursor but not both. 3323 ** 3324 ** See also OpenRead. 3325 */ 3326 case OP_ReopenIdx: { 3327 int nField; 3328 KeyInfo *pKeyInfo; 3329 int p2; 3330 int iDb; 3331 int wrFlag; 3332 Btree *pX; 3333 VdbeCursor *pCur; 3334 Db *pDb; 3335 3336 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3337 assert( pOp->p4type==P4_KEYINFO ); 3338 pCur = p->apCsr[pOp->p1]; 3339 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3340 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3341 goto open_cursor_set_hints; 3342 } 3343 /* If the cursor is not currently open or is open on a different 3344 ** index, then fall through into OP_OpenRead to force a reopen */ 3345 case OP_OpenRead: 3346 case OP_OpenWrite: 3347 3348 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3349 assert( p->bIsReader ); 3350 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3351 || p->readOnly==0 ); 3352 3353 if( p->expired ){ 3354 rc = SQLITE_ABORT_ROLLBACK; 3355 goto abort_due_to_error; 3356 } 3357 3358 nField = 0; 3359 pKeyInfo = 0; 3360 p2 = pOp->p2; 3361 iDb = pOp->p3; 3362 assert( iDb>=0 && iDb<db->nDb ); 3363 assert( DbMaskTest(p->btreeMask, iDb) ); 3364 pDb = &db->aDb[iDb]; 3365 pX = pDb->pBt; 3366 assert( pX!=0 ); 3367 if( pOp->opcode==OP_OpenWrite ){ 3368 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3369 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3370 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3371 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3372 p->minWriteFileFormat = pDb->pSchema->file_format; 3373 } 3374 }else{ 3375 wrFlag = 0; 3376 } 3377 if( pOp->p5 & OPFLAG_P2ISREG ){ 3378 assert( p2>0 ); 3379 assert( p2<=(p->nMem-p->nCursor) ); 3380 pIn2 = &aMem[p2]; 3381 assert( memIsValid(pIn2) ); 3382 assert( (pIn2->flags & MEM_Int)!=0 ); 3383 sqlite3VdbeMemIntegerify(pIn2); 3384 p2 = (int)pIn2->u.i; 3385 /* The p2 value always comes from a prior OP_CreateTable opcode and 3386 ** that opcode will always set the p2 value to 2 or more or else fail. 3387 ** If there were a failure, the prepared statement would have halted 3388 ** before reaching this instruction. */ 3389 assert( p2>=2 ); 3390 } 3391 if( pOp->p4type==P4_KEYINFO ){ 3392 pKeyInfo = pOp->p4.pKeyInfo; 3393 assert( pKeyInfo->enc==ENC(db) ); 3394 assert( pKeyInfo->db==db ); 3395 nField = pKeyInfo->nField+pKeyInfo->nXField; 3396 }else if( pOp->p4type==P4_INT32 ){ 3397 nField = pOp->p4.i; 3398 } 3399 assert( pOp->p1>=0 ); 3400 assert( nField>=0 ); 3401 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3402 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3403 if( pCur==0 ) goto no_mem; 3404 pCur->nullRow = 1; 3405 pCur->isOrdered = 1; 3406 pCur->pgnoRoot = p2; 3407 #ifdef SQLITE_DEBUG 3408 pCur->wrFlag = wrFlag; 3409 #endif 3410 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3411 pCur->pKeyInfo = pKeyInfo; 3412 /* Set the VdbeCursor.isTable variable. Previous versions of 3413 ** SQLite used to check if the root-page flags were sane at this point 3414 ** and report database corruption if they were not, but this check has 3415 ** since moved into the btree layer. */ 3416 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3417 3418 open_cursor_set_hints: 3419 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3420 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3421 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3422 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3423 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3424 #endif 3425 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3426 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3427 if( rc ) goto abort_due_to_error; 3428 break; 3429 } 3430 3431 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3432 ** Synopsis: nColumn=P2 3433 ** 3434 ** Open a new cursor P1 to a transient table. 3435 ** The cursor is always opened read/write even if 3436 ** the main database is read-only. The ephemeral 3437 ** table is deleted automatically when the cursor is closed. 3438 ** 3439 ** P2 is the number of columns in the ephemeral table. 3440 ** The cursor points to a BTree table if P4==0 and to a BTree index 3441 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3442 ** that defines the format of keys in the index. 3443 ** 3444 ** The P5 parameter can be a mask of the BTREE_* flags defined 3445 ** in btree.h. These flags control aspects of the operation of 3446 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3447 ** added automatically. 3448 */ 3449 /* Opcode: OpenAutoindex P1 P2 * P4 * 3450 ** Synopsis: nColumn=P2 3451 ** 3452 ** This opcode works the same as OP_OpenEphemeral. It has a 3453 ** different name to distinguish its use. Tables created using 3454 ** by this opcode will be used for automatically created transient 3455 ** indices in joins. 3456 */ 3457 case OP_OpenAutoindex: 3458 case OP_OpenEphemeral: { 3459 VdbeCursor *pCx; 3460 KeyInfo *pKeyInfo; 3461 3462 static const int vfsFlags = 3463 SQLITE_OPEN_READWRITE | 3464 SQLITE_OPEN_CREATE | 3465 SQLITE_OPEN_EXCLUSIVE | 3466 SQLITE_OPEN_DELETEONCLOSE | 3467 SQLITE_OPEN_TRANSIENT_DB; 3468 assert( pOp->p1>=0 ); 3469 assert( pOp->p2>=0 ); 3470 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3471 if( pCx==0 ) goto no_mem; 3472 pCx->nullRow = 1; 3473 pCx->isEphemeral = 1; 3474 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3475 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3476 if( rc==SQLITE_OK ){ 3477 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3478 } 3479 if( rc==SQLITE_OK ){ 3480 /* If a transient index is required, create it by calling 3481 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3482 ** opening it. If a transient table is required, just use the 3483 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3484 */ 3485 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3486 int pgno; 3487 assert( pOp->p4type==P4_KEYINFO ); 3488 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3489 if( rc==SQLITE_OK ){ 3490 assert( pgno==MASTER_ROOT+1 ); 3491 assert( pKeyInfo->db==db ); 3492 assert( pKeyInfo->enc==ENC(db) ); 3493 pCx->pKeyInfo = pKeyInfo; 3494 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR, 3495 pKeyInfo, pCx->uc.pCursor); 3496 } 3497 pCx->isTable = 0; 3498 }else{ 3499 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR, 3500 0, pCx->uc.pCursor); 3501 pCx->isTable = 1; 3502 } 3503 } 3504 if( rc ) goto abort_due_to_error; 3505 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3506 break; 3507 } 3508 3509 /* Opcode: SorterOpen P1 P2 P3 P4 * 3510 ** 3511 ** This opcode works like OP_OpenEphemeral except that it opens 3512 ** a transient index that is specifically designed to sort large 3513 ** tables using an external merge-sort algorithm. 3514 ** 3515 ** If argument P3 is non-zero, then it indicates that the sorter may 3516 ** assume that a stable sort considering the first P3 fields of each 3517 ** key is sufficient to produce the required results. 3518 */ 3519 case OP_SorterOpen: { 3520 VdbeCursor *pCx; 3521 3522 assert( pOp->p1>=0 ); 3523 assert( pOp->p2>=0 ); 3524 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3525 if( pCx==0 ) goto no_mem; 3526 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3527 assert( pCx->pKeyInfo->db==db ); 3528 assert( pCx->pKeyInfo->enc==ENC(db) ); 3529 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3530 if( rc ) goto abort_due_to_error; 3531 break; 3532 } 3533 3534 /* Opcode: SequenceTest P1 P2 * * * 3535 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3536 ** 3537 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3538 ** to P2. Regardless of whether or not the jump is taken, increment the 3539 ** the sequence value. 3540 */ 3541 case OP_SequenceTest: { 3542 VdbeCursor *pC; 3543 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3544 pC = p->apCsr[pOp->p1]; 3545 assert( isSorter(pC) ); 3546 if( (pC->seqCount++)==0 ){ 3547 goto jump_to_p2; 3548 } 3549 break; 3550 } 3551 3552 /* Opcode: OpenPseudo P1 P2 P3 * * 3553 ** Synopsis: P3 columns in r[P2] 3554 ** 3555 ** Open a new cursor that points to a fake table that contains a single 3556 ** row of data. The content of that one row is the content of memory 3557 ** register P2. In other words, cursor P1 becomes an alias for the 3558 ** MEM_Blob content contained in register P2. 3559 ** 3560 ** A pseudo-table created by this opcode is used to hold a single 3561 ** row output from the sorter so that the row can be decomposed into 3562 ** individual columns using the OP_Column opcode. The OP_Column opcode 3563 ** is the only cursor opcode that works with a pseudo-table. 3564 ** 3565 ** P3 is the number of fields in the records that will be stored by 3566 ** the pseudo-table. 3567 */ 3568 case OP_OpenPseudo: { 3569 VdbeCursor *pCx; 3570 3571 assert( pOp->p1>=0 ); 3572 assert( pOp->p3>=0 ); 3573 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3574 if( pCx==0 ) goto no_mem; 3575 pCx->nullRow = 1; 3576 pCx->uc.pseudoTableReg = pOp->p2; 3577 pCx->isTable = 1; 3578 assert( pOp->p5==0 ); 3579 break; 3580 } 3581 3582 /* Opcode: Close P1 * * * * 3583 ** 3584 ** Close a cursor previously opened as P1. If P1 is not 3585 ** currently open, this instruction is a no-op. 3586 */ 3587 case OP_Close: { 3588 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3589 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3590 p->apCsr[pOp->p1] = 0; 3591 break; 3592 } 3593 3594 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3595 /* Opcode: ColumnsUsed P1 * * P4 * 3596 ** 3597 ** This opcode (which only exists if SQLite was compiled with 3598 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3599 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3600 ** (P4_INT64) in which the first 63 bits are one for each of the 3601 ** first 63 columns of the table or index that are actually used 3602 ** by the cursor. The high-order bit is set if any column after 3603 ** the 64th is used. 3604 */ 3605 case OP_ColumnsUsed: { 3606 VdbeCursor *pC; 3607 pC = p->apCsr[pOp->p1]; 3608 assert( pC->eCurType==CURTYPE_BTREE ); 3609 pC->maskUsed = *(u64*)pOp->p4.pI64; 3610 break; 3611 } 3612 #endif 3613 3614 /* Opcode: SeekGE P1 P2 P3 P4 * 3615 ** Synopsis: key=r[P3@P4] 3616 ** 3617 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3618 ** use the value in register P3 as the key. If cursor P1 refers 3619 ** to an SQL index, then P3 is the first in an array of P4 registers 3620 ** that are used as an unpacked index key. 3621 ** 3622 ** Reposition cursor P1 so that it points to the smallest entry that 3623 ** is greater than or equal to the key value. If there are no records 3624 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3625 ** 3626 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3627 ** opcode will always land on a record that equally equals the key, or 3628 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3629 ** opcode must be followed by an IdxLE opcode with the same arguments. 3630 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 3631 ** IdxLE opcode will be used on subsequent loop iterations. 3632 ** 3633 ** This opcode leaves the cursor configured to move in forward order, 3634 ** from the beginning toward the end. In other words, the cursor is 3635 ** configured to use Next, not Prev. 3636 ** 3637 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3638 */ 3639 /* Opcode: SeekGT P1 P2 P3 P4 * 3640 ** Synopsis: key=r[P3@P4] 3641 ** 3642 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3643 ** use the value in register P3 as a key. If cursor P1 refers 3644 ** to an SQL index, then P3 is the first in an array of P4 registers 3645 ** that are used as an unpacked index key. 3646 ** 3647 ** Reposition cursor P1 so that it points to the smallest entry that 3648 ** is greater than the key value. If there are no records greater than 3649 ** the key and P2 is not zero, then jump to P2. 3650 ** 3651 ** This opcode leaves the cursor configured to move in forward order, 3652 ** from the beginning toward the end. In other words, the cursor is 3653 ** configured to use Next, not Prev. 3654 ** 3655 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3656 */ 3657 /* Opcode: SeekLT P1 P2 P3 P4 * 3658 ** Synopsis: key=r[P3@P4] 3659 ** 3660 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3661 ** use the value in register P3 as a key. If cursor P1 refers 3662 ** to an SQL index, then P3 is the first in an array of P4 registers 3663 ** that are used as an unpacked index key. 3664 ** 3665 ** Reposition cursor P1 so that it points to the largest entry that 3666 ** is less than the key value. If there are no records less than 3667 ** the key and P2 is not zero, then jump to P2. 3668 ** 3669 ** This opcode leaves the cursor configured to move in reverse order, 3670 ** from the end toward the beginning. In other words, the cursor is 3671 ** configured to use Prev, not Next. 3672 ** 3673 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3674 */ 3675 /* Opcode: SeekLE P1 P2 P3 P4 * 3676 ** Synopsis: key=r[P3@P4] 3677 ** 3678 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3679 ** use the value in register P3 as a key. If cursor P1 refers 3680 ** to an SQL index, then P3 is the first in an array of P4 registers 3681 ** that are used as an unpacked index key. 3682 ** 3683 ** Reposition cursor P1 so that it points to the largest entry that 3684 ** is less than or equal to the key value. If there are no records 3685 ** less than or equal to the key and P2 is not zero, then jump to P2. 3686 ** 3687 ** This opcode leaves the cursor configured to move in reverse order, 3688 ** from the end toward the beginning. In other words, the cursor is 3689 ** configured to use Prev, not Next. 3690 ** 3691 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3692 ** opcode will always land on a record that equally equals the key, or 3693 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3694 ** opcode must be followed by an IdxGE opcode with the same arguments. 3695 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 3696 ** IdxGE opcode will be used on subsequent loop iterations. 3697 ** 3698 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3699 */ 3700 case OP_SeekLT: /* jump, in3 */ 3701 case OP_SeekLE: /* jump, in3 */ 3702 case OP_SeekGE: /* jump, in3 */ 3703 case OP_SeekGT: { /* jump, in3 */ 3704 int res; /* Comparison result */ 3705 int oc; /* Opcode */ 3706 VdbeCursor *pC; /* The cursor to seek */ 3707 UnpackedRecord r; /* The key to seek for */ 3708 int nField; /* Number of columns or fields in the key */ 3709 i64 iKey; /* The rowid we are to seek to */ 3710 int eqOnly; /* Only interested in == results */ 3711 3712 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3713 assert( pOp->p2!=0 ); 3714 pC = p->apCsr[pOp->p1]; 3715 assert( pC!=0 ); 3716 assert( pC->eCurType==CURTYPE_BTREE ); 3717 assert( OP_SeekLE == OP_SeekLT+1 ); 3718 assert( OP_SeekGE == OP_SeekLT+2 ); 3719 assert( OP_SeekGT == OP_SeekLT+3 ); 3720 assert( pC->isOrdered ); 3721 assert( pC->uc.pCursor!=0 ); 3722 oc = pOp->opcode; 3723 eqOnly = 0; 3724 pC->nullRow = 0; 3725 #ifdef SQLITE_DEBUG 3726 pC->seekOp = pOp->opcode; 3727 #endif 3728 3729 if( pC->isTable ){ 3730 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 3731 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 ); 3732 3733 /* The input value in P3 might be of any type: integer, real, string, 3734 ** blob, or NULL. But it needs to be an integer before we can do 3735 ** the seek, so convert it. */ 3736 pIn3 = &aMem[pOp->p3]; 3737 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3738 applyNumericAffinity(pIn3, 0); 3739 } 3740 iKey = sqlite3VdbeIntValue(pIn3); 3741 3742 /* If the P3 value could not be converted into an integer without 3743 ** loss of information, then special processing is required... */ 3744 if( (pIn3->flags & MEM_Int)==0 ){ 3745 if( (pIn3->flags & MEM_Real)==0 ){ 3746 /* If the P3 value cannot be converted into any kind of a number, 3747 ** then the seek is not possible, so jump to P2 */ 3748 VdbeBranchTaken(1,2); goto jump_to_p2; 3749 break; 3750 } 3751 3752 /* If the approximation iKey is larger than the actual real search 3753 ** term, substitute >= for > and < for <=. e.g. if the search term 3754 ** is 4.9 and the integer approximation 5: 3755 ** 3756 ** (x > 4.9) -> (x >= 5) 3757 ** (x <= 4.9) -> (x < 5) 3758 */ 3759 if( pIn3->u.r<(double)iKey ){ 3760 assert( OP_SeekGE==(OP_SeekGT-1) ); 3761 assert( OP_SeekLT==(OP_SeekLE-1) ); 3762 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3763 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3764 } 3765 3766 /* If the approximation iKey is smaller than the actual real search 3767 ** term, substitute <= for < and > for >=. */ 3768 else if( pIn3->u.r>(double)iKey ){ 3769 assert( OP_SeekLE==(OP_SeekLT+1) ); 3770 assert( OP_SeekGT==(OP_SeekGE+1) ); 3771 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3772 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3773 } 3774 } 3775 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 3776 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3777 if( rc!=SQLITE_OK ){ 3778 goto abort_due_to_error; 3779 } 3780 }else{ 3781 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 3782 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 3783 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 3784 */ 3785 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 3786 eqOnly = 1; 3787 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 3788 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3789 assert( pOp[1].p1==pOp[0].p1 ); 3790 assert( pOp[1].p2==pOp[0].p2 ); 3791 assert( pOp[1].p3==pOp[0].p3 ); 3792 assert( pOp[1].p4.i==pOp[0].p4.i ); 3793 } 3794 3795 nField = pOp->p4.i; 3796 assert( pOp->p4type==P4_INT32 ); 3797 assert( nField>0 ); 3798 r.pKeyInfo = pC->pKeyInfo; 3799 r.nField = (u16)nField; 3800 3801 /* The next line of code computes as follows, only faster: 3802 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3803 ** r.default_rc = -1; 3804 ** }else{ 3805 ** r.default_rc = +1; 3806 ** } 3807 */ 3808 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3809 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3810 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3811 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3812 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3813 3814 r.aMem = &aMem[pOp->p3]; 3815 #ifdef SQLITE_DEBUG 3816 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3817 #endif 3818 ExpandBlob(r.aMem); 3819 r.eqSeen = 0; 3820 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 3821 if( rc!=SQLITE_OK ){ 3822 goto abort_due_to_error; 3823 } 3824 if( eqOnly && r.eqSeen==0 ){ 3825 assert( res!=0 ); 3826 goto seek_not_found; 3827 } 3828 } 3829 pC->deferredMoveto = 0; 3830 pC->cacheStatus = CACHE_STALE; 3831 #ifdef SQLITE_TEST 3832 sqlite3_search_count++; 3833 #endif 3834 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3835 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3836 res = 0; 3837 rc = sqlite3BtreeNext(pC->uc.pCursor, &res); 3838 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3839 }else{ 3840 res = 0; 3841 } 3842 }else{ 3843 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3844 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3845 res = 0; 3846 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res); 3847 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3848 }else{ 3849 /* res might be negative because the table is empty. Check to 3850 ** see if this is the case. 3851 */ 3852 res = sqlite3BtreeEof(pC->uc.pCursor); 3853 } 3854 } 3855 seek_not_found: 3856 assert( pOp->p2>0 ); 3857 VdbeBranchTaken(res!=0,2); 3858 if( res ){ 3859 goto jump_to_p2; 3860 }else if( eqOnly ){ 3861 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3862 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 3863 } 3864 break; 3865 } 3866 3867 3868 /* Opcode: Found P1 P2 P3 P4 * 3869 ** Synopsis: key=r[P3@P4] 3870 ** 3871 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3872 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3873 ** record. 3874 ** 3875 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3876 ** is a prefix of any entry in P1 then a jump is made to P2 and 3877 ** P1 is left pointing at the matching entry. 3878 ** 3879 ** This operation leaves the cursor in a state where it can be 3880 ** advanced in the forward direction. The Next instruction will work, 3881 ** but not the Prev instruction. 3882 ** 3883 ** See also: NotFound, NoConflict, NotExists. SeekGe 3884 */ 3885 /* Opcode: NotFound P1 P2 P3 P4 * 3886 ** Synopsis: key=r[P3@P4] 3887 ** 3888 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3889 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3890 ** record. 3891 ** 3892 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3893 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3894 ** does contain an entry whose prefix matches the P3/P4 record then control 3895 ** falls through to the next instruction and P1 is left pointing at the 3896 ** matching entry. 3897 ** 3898 ** This operation leaves the cursor in a state where it cannot be 3899 ** advanced in either direction. In other words, the Next and Prev 3900 ** opcodes do not work after this operation. 3901 ** 3902 ** See also: Found, NotExists, NoConflict 3903 */ 3904 /* Opcode: NoConflict P1 P2 P3 P4 * 3905 ** Synopsis: key=r[P3@P4] 3906 ** 3907 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3908 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3909 ** record. 3910 ** 3911 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3912 ** contains any NULL value, jump immediately to P2. If all terms of the 3913 ** record are not-NULL then a check is done to determine if any row in the 3914 ** P1 index btree has a matching key prefix. If there are no matches, jump 3915 ** immediately to P2. If there is a match, fall through and leave the P1 3916 ** cursor pointing to the matching row. 3917 ** 3918 ** This opcode is similar to OP_NotFound with the exceptions that the 3919 ** branch is always taken if any part of the search key input is NULL. 3920 ** 3921 ** This operation leaves the cursor in a state where it cannot be 3922 ** advanced in either direction. In other words, the Next and Prev 3923 ** opcodes do not work after this operation. 3924 ** 3925 ** See also: NotFound, Found, NotExists 3926 */ 3927 case OP_NoConflict: /* jump, in3 */ 3928 case OP_NotFound: /* jump, in3 */ 3929 case OP_Found: { /* jump, in3 */ 3930 int alreadyExists; 3931 int takeJump; 3932 int ii; 3933 VdbeCursor *pC; 3934 int res; 3935 char *pFree; 3936 UnpackedRecord *pIdxKey; 3937 UnpackedRecord r; 3938 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; 3939 3940 #ifdef SQLITE_TEST 3941 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3942 #endif 3943 3944 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3945 assert( pOp->p4type==P4_INT32 ); 3946 pC = p->apCsr[pOp->p1]; 3947 assert( pC!=0 ); 3948 #ifdef SQLITE_DEBUG 3949 pC->seekOp = pOp->opcode; 3950 #endif 3951 pIn3 = &aMem[pOp->p3]; 3952 assert( pC->eCurType==CURTYPE_BTREE ); 3953 assert( pC->uc.pCursor!=0 ); 3954 assert( pC->isTable==0 ); 3955 pFree = 0; 3956 if( pOp->p4.i>0 ){ 3957 r.pKeyInfo = pC->pKeyInfo; 3958 r.nField = (u16)pOp->p4.i; 3959 r.aMem = pIn3; 3960 for(ii=0; ii<r.nField; ii++){ 3961 assert( memIsValid(&r.aMem[ii]) ); 3962 ExpandBlob(&r.aMem[ii]); 3963 #ifdef SQLITE_DEBUG 3964 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 3965 #endif 3966 } 3967 pIdxKey = &r; 3968 }else{ 3969 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3970 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3971 ); 3972 if( pIdxKey==0 ) goto no_mem; 3973 assert( pIn3->flags & MEM_Blob ); 3974 ExpandBlob(pIn3); 3975 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3976 } 3977 pIdxKey->default_rc = 0; 3978 takeJump = 0; 3979 if( pOp->opcode==OP_NoConflict ){ 3980 /* For the OP_NoConflict opcode, take the jump if any of the 3981 ** input fields are NULL, since any key with a NULL will not 3982 ** conflict */ 3983 for(ii=0; ii<pIdxKey->nField; ii++){ 3984 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 3985 takeJump = 1; 3986 break; 3987 } 3988 } 3989 } 3990 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 3991 sqlite3DbFree(db, pFree); 3992 if( rc!=SQLITE_OK ){ 3993 goto abort_due_to_error; 3994 } 3995 pC->seekResult = res; 3996 alreadyExists = (res==0); 3997 pC->nullRow = 1-alreadyExists; 3998 pC->deferredMoveto = 0; 3999 pC->cacheStatus = CACHE_STALE; 4000 if( pOp->opcode==OP_Found ){ 4001 VdbeBranchTaken(alreadyExists!=0,2); 4002 if( alreadyExists ) goto jump_to_p2; 4003 }else{ 4004 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4005 if( takeJump || !alreadyExists ) goto jump_to_p2; 4006 } 4007 break; 4008 } 4009 4010 /* Opcode: NotExists P1 P2 P3 * * 4011 ** Synopsis: intkey=r[P3] 4012 ** 4013 ** P1 is the index of a cursor open on an SQL table btree (with integer 4014 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4015 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4016 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4017 ** leave the cursor pointing at that record and fall through to the next 4018 ** instruction. 4019 ** 4020 ** The OP_NotFound opcode performs the same operation on index btrees 4021 ** (with arbitrary multi-value keys). 4022 ** 4023 ** This opcode leaves the cursor in a state where it cannot be advanced 4024 ** in either direction. In other words, the Next and Prev opcodes will 4025 ** not work following this opcode. 4026 ** 4027 ** See also: Found, NotFound, NoConflict 4028 */ 4029 case OP_NotExists: { /* jump, in3 */ 4030 VdbeCursor *pC; 4031 BtCursor *pCrsr; 4032 int res; 4033 u64 iKey; 4034 4035 pIn3 = &aMem[pOp->p3]; 4036 assert( pIn3->flags & MEM_Int ); 4037 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4038 pC = p->apCsr[pOp->p1]; 4039 assert( pC!=0 ); 4040 #ifdef SQLITE_DEBUG 4041 pC->seekOp = 0; 4042 #endif 4043 assert( pC->isTable ); 4044 assert( pC->eCurType==CURTYPE_BTREE ); 4045 pCrsr = pC->uc.pCursor; 4046 assert( pCrsr!=0 ); 4047 res = 0; 4048 iKey = pIn3->u.i; 4049 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4050 assert( rc==SQLITE_OK || res==0 ); 4051 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4052 pC->nullRow = 0; 4053 pC->cacheStatus = CACHE_STALE; 4054 pC->deferredMoveto = 0; 4055 VdbeBranchTaken(res!=0,2); 4056 pC->seekResult = res; 4057 if( res!=0 ){ 4058 assert( rc==SQLITE_OK ); 4059 if( pOp->p2==0 ){ 4060 rc = SQLITE_CORRUPT_BKPT; 4061 }else{ 4062 goto jump_to_p2; 4063 } 4064 } 4065 if( rc ) goto abort_due_to_error; 4066 break; 4067 } 4068 4069 /* Opcode: Sequence P1 P2 * * * 4070 ** Synopsis: r[P2]=cursor[P1].ctr++ 4071 ** 4072 ** Find the next available sequence number for cursor P1. 4073 ** Write the sequence number into register P2. 4074 ** The sequence number on the cursor is incremented after this 4075 ** instruction. 4076 */ 4077 case OP_Sequence: { /* out2 */ 4078 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4079 assert( p->apCsr[pOp->p1]!=0 ); 4080 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4081 pOut = out2Prerelease(p, pOp); 4082 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4083 break; 4084 } 4085 4086 4087 /* Opcode: NewRowid P1 P2 P3 * * 4088 ** Synopsis: r[P2]=rowid 4089 ** 4090 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4091 ** The record number is not previously used as a key in the database 4092 ** table that cursor P1 points to. The new record number is written 4093 ** written to register P2. 4094 ** 4095 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4096 ** the largest previously generated record number. No new record numbers are 4097 ** allowed to be less than this value. When this value reaches its maximum, 4098 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4099 ** generated record number. This P3 mechanism is used to help implement the 4100 ** AUTOINCREMENT feature. 4101 */ 4102 case OP_NewRowid: { /* out2 */ 4103 i64 v; /* The new rowid */ 4104 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4105 int res; /* Result of an sqlite3BtreeLast() */ 4106 int cnt; /* Counter to limit the number of searches */ 4107 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4108 VdbeFrame *pFrame; /* Root frame of VDBE */ 4109 4110 v = 0; 4111 res = 0; 4112 pOut = out2Prerelease(p, pOp); 4113 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4114 pC = p->apCsr[pOp->p1]; 4115 assert( pC!=0 ); 4116 assert( pC->eCurType==CURTYPE_BTREE ); 4117 assert( pC->uc.pCursor!=0 ); 4118 { 4119 /* The next rowid or record number (different terms for the same 4120 ** thing) is obtained in a two-step algorithm. 4121 ** 4122 ** First we attempt to find the largest existing rowid and add one 4123 ** to that. But if the largest existing rowid is already the maximum 4124 ** positive integer, we have to fall through to the second 4125 ** probabilistic algorithm 4126 ** 4127 ** The second algorithm is to select a rowid at random and see if 4128 ** it already exists in the table. If it does not exist, we have 4129 ** succeeded. If the random rowid does exist, we select a new one 4130 ** and try again, up to 100 times. 4131 */ 4132 assert( pC->isTable ); 4133 4134 #ifdef SQLITE_32BIT_ROWID 4135 # define MAX_ROWID 0x7fffffff 4136 #else 4137 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4138 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4139 ** to provide the constant while making all compilers happy. 4140 */ 4141 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4142 #endif 4143 4144 if( !pC->useRandomRowid ){ 4145 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4146 if( rc!=SQLITE_OK ){ 4147 goto abort_due_to_error; 4148 } 4149 if( res ){ 4150 v = 1; /* IMP: R-61914-48074 */ 4151 }else{ 4152 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4153 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v); 4154 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 4155 if( v>=MAX_ROWID ){ 4156 pC->useRandomRowid = 1; 4157 }else{ 4158 v++; /* IMP: R-29538-34987 */ 4159 } 4160 } 4161 } 4162 4163 #ifndef SQLITE_OMIT_AUTOINCREMENT 4164 if( pOp->p3 ){ 4165 /* Assert that P3 is a valid memory cell. */ 4166 assert( pOp->p3>0 ); 4167 if( p->pFrame ){ 4168 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4169 /* Assert that P3 is a valid memory cell. */ 4170 assert( pOp->p3<=pFrame->nMem ); 4171 pMem = &pFrame->aMem[pOp->p3]; 4172 }else{ 4173 /* Assert that P3 is a valid memory cell. */ 4174 assert( pOp->p3<=(p->nMem-p->nCursor) ); 4175 pMem = &aMem[pOp->p3]; 4176 memAboutToChange(p, pMem); 4177 } 4178 assert( memIsValid(pMem) ); 4179 4180 REGISTER_TRACE(pOp->p3, pMem); 4181 sqlite3VdbeMemIntegerify(pMem); 4182 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4183 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4184 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 4185 goto abort_due_to_error; 4186 } 4187 if( v<pMem->u.i+1 ){ 4188 v = pMem->u.i + 1; 4189 } 4190 pMem->u.i = v; 4191 } 4192 #endif 4193 if( pC->useRandomRowid ){ 4194 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4195 ** largest possible integer (9223372036854775807) then the database 4196 ** engine starts picking positive candidate ROWIDs at random until 4197 ** it finds one that is not previously used. */ 4198 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4199 ** an AUTOINCREMENT table. */ 4200 cnt = 0; 4201 do{ 4202 sqlite3_randomness(sizeof(v), &v); 4203 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4204 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4205 0, &res))==SQLITE_OK) 4206 && (res==0) 4207 && (++cnt<100)); 4208 if( rc ) goto abort_due_to_error; 4209 if( res==0 ){ 4210 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4211 goto abort_due_to_error; 4212 } 4213 assert( v>0 ); /* EV: R-40812-03570 */ 4214 } 4215 pC->deferredMoveto = 0; 4216 pC->cacheStatus = CACHE_STALE; 4217 } 4218 pOut->u.i = v; 4219 break; 4220 } 4221 4222 /* Opcode: Insert P1 P2 P3 P4 P5 4223 ** Synopsis: intkey=r[P3] data=r[P2] 4224 ** 4225 ** Write an entry into the table of cursor P1. A new entry is 4226 ** created if it doesn't already exist or the data for an existing 4227 ** entry is overwritten. The data is the value MEM_Blob stored in register 4228 ** number P2. The key is stored in register P3. The key must 4229 ** be a MEM_Int. 4230 ** 4231 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4232 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4233 ** then rowid is stored for subsequent return by the 4234 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4235 ** 4236 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 4237 ** the last seek operation (OP_NotExists) was a success, then this 4238 ** operation will not attempt to find the appropriate row before doing 4239 ** the insert but will instead overwrite the row that the cursor is 4240 ** currently pointing to. Presumably, the prior OP_NotExists opcode 4241 ** has already positioned the cursor correctly. This is an optimization 4242 ** that boosts performance by avoiding redundant seeks. 4243 ** 4244 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4245 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4246 ** is part of an INSERT operation. The difference is only important to 4247 ** the update hook. 4248 ** 4249 ** Parameter P4 may point to a string containing the table-name, or 4250 ** may be NULL. If it is not NULL, then the update-hook 4251 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 4252 ** 4253 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4254 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4255 ** and register P2 becomes ephemeral. If the cursor is changed, the 4256 ** value of register P2 will then change. Make sure this does not 4257 ** cause any problems.) 4258 ** 4259 ** This instruction only works on tables. The equivalent instruction 4260 ** for indices is OP_IdxInsert. 4261 */ 4262 /* Opcode: InsertInt P1 P2 P3 P4 P5 4263 ** Synopsis: intkey=P3 data=r[P2] 4264 ** 4265 ** This works exactly like OP_Insert except that the key is the 4266 ** integer value P3, not the value of the integer stored in register P3. 4267 */ 4268 case OP_Insert: 4269 case OP_InsertInt: { 4270 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4271 Mem *pKey; /* MEM cell holding key for the record */ 4272 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 4273 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4274 int nZero; /* Number of zero-bytes to append */ 4275 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4276 const char *zDb; /* database name - used by the update hook */ 4277 const char *zTbl; /* Table name - used by the opdate hook */ 4278 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4279 4280 pData = &aMem[pOp->p2]; 4281 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4282 assert( memIsValid(pData) ); 4283 pC = p->apCsr[pOp->p1]; 4284 assert( pC!=0 ); 4285 assert( pC->eCurType==CURTYPE_BTREE ); 4286 assert( pC->uc.pCursor!=0 ); 4287 assert( pC->isTable ); 4288 REGISTER_TRACE(pOp->p2, pData); 4289 4290 if( pOp->opcode==OP_Insert ){ 4291 pKey = &aMem[pOp->p3]; 4292 assert( pKey->flags & MEM_Int ); 4293 assert( memIsValid(pKey) ); 4294 REGISTER_TRACE(pOp->p3, pKey); 4295 iKey = pKey->u.i; 4296 }else{ 4297 assert( pOp->opcode==OP_InsertInt ); 4298 iKey = pOp->p3; 4299 } 4300 4301 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4302 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4303 if( pData->flags & MEM_Null ){ 4304 pData->z = 0; 4305 pData->n = 0; 4306 }else{ 4307 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4308 } 4309 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4310 if( pData->flags & MEM_Zero ){ 4311 nZero = pData->u.nZero; 4312 }else{ 4313 nZero = 0; 4314 } 4315 rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey, 4316 pData->z, pData->n, nZero, 4317 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult 4318 ); 4319 pC->deferredMoveto = 0; 4320 pC->cacheStatus = CACHE_STALE; 4321 4322 /* Invoke the update-hook if required. */ 4323 if( rc ) goto abort_due_to_error; 4324 if( db->xUpdateCallback && pOp->p4.z ){ 4325 zDb = db->aDb[pC->iDb].zName; 4326 zTbl = pOp->p4.z; 4327 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4328 assert( pC->isTable ); 4329 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4330 assert( pC->iDb>=0 ); 4331 } 4332 break; 4333 } 4334 4335 /* Opcode: Delete P1 P2 * P4 P5 4336 ** 4337 ** Delete the record at which the P1 cursor is currently pointing. 4338 ** 4339 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4340 ** the cursor will be left pointing at either the next or the previous 4341 ** record in the table. If it is left pointing at the next record, then 4342 ** the next Next instruction will be a no-op. As a result, in this case 4343 ** it is ok to delete a record from within a Next loop. If 4344 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4345 ** left in an undefined state. 4346 ** 4347 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4348 ** delete one of several associated with deleting a table row and all its 4349 ** associated index entries. Exactly one of those deletes is the "primary" 4350 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4351 ** marked with the AUXDELETE flag. 4352 ** 4353 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4354 ** change count is incremented (otherwise not). 4355 ** 4356 ** P1 must not be pseudo-table. It has to be a real table with 4357 ** multiple rows. 4358 ** 4359 ** If P4 is not NULL, then it is the name of the table that P1 is 4360 ** pointing to. The update hook will be invoked, if it exists. 4361 ** If P4 is not NULL then the P1 cursor must have been positioned 4362 ** using OP_NotFound prior to invoking this opcode. 4363 */ 4364 case OP_Delete: { 4365 VdbeCursor *pC; 4366 u8 hasUpdateCallback; 4367 4368 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4369 pC = p->apCsr[pOp->p1]; 4370 assert( pC!=0 ); 4371 assert( pC->eCurType==CURTYPE_BTREE ); 4372 assert( pC->uc.pCursor!=0 ); 4373 assert( pC->deferredMoveto==0 ); 4374 4375 hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable; 4376 if( pOp->p5 && hasUpdateCallback ){ 4377 sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget); 4378 } 4379 4380 #ifdef SQLITE_DEBUG 4381 /* The seek operation that positioned the cursor prior to OP_Delete will 4382 ** have also set the pC->movetoTarget field to the rowid of the row that 4383 ** is being deleted */ 4384 if( pOp->p4.z && pC->isTable && pOp->p5==0 ){ 4385 i64 iKey = 0; 4386 sqlite3BtreeKeySize(pC->uc.pCursor, &iKey); 4387 assert( pC->movetoTarget==iKey ); 4388 } 4389 #endif 4390 4391 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4392 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4393 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4394 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4395 4396 #ifdef SQLITE_DEBUG 4397 if( p->pFrame==0 ){ 4398 if( pC->isEphemeral==0 4399 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4400 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4401 ){ 4402 nExtraDelete++; 4403 } 4404 if( pOp->p2 & OPFLAG_NCHANGE ){ 4405 nExtraDelete--; 4406 } 4407 } 4408 #endif 4409 4410 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4411 pC->cacheStatus = CACHE_STALE; 4412 4413 /* Invoke the update-hook if required. */ 4414 if( rc ) goto abort_due_to_error; 4415 if( hasUpdateCallback ){ 4416 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, 4417 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); 4418 assert( pC->iDb>=0 ); 4419 } 4420 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4421 break; 4422 } 4423 /* Opcode: ResetCount * * * * * 4424 ** 4425 ** The value of the change counter is copied to the database handle 4426 ** change counter (returned by subsequent calls to sqlite3_changes()). 4427 ** Then the VMs internal change counter resets to 0. 4428 ** This is used by trigger programs. 4429 */ 4430 case OP_ResetCount: { 4431 sqlite3VdbeSetChanges(db, p->nChange); 4432 p->nChange = 0; 4433 break; 4434 } 4435 4436 /* Opcode: SorterCompare P1 P2 P3 P4 4437 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4438 ** 4439 ** P1 is a sorter cursor. This instruction compares a prefix of the 4440 ** record blob in register P3 against a prefix of the entry that 4441 ** the sorter cursor currently points to. Only the first P4 fields 4442 ** of r[P3] and the sorter record are compared. 4443 ** 4444 ** If either P3 or the sorter contains a NULL in one of their significant 4445 ** fields (not counting the P4 fields at the end which are ignored) then 4446 ** the comparison is assumed to be equal. 4447 ** 4448 ** Fall through to next instruction if the two records compare equal to 4449 ** each other. Jump to P2 if they are different. 4450 */ 4451 case OP_SorterCompare: { 4452 VdbeCursor *pC; 4453 int res; 4454 int nKeyCol; 4455 4456 pC = p->apCsr[pOp->p1]; 4457 assert( isSorter(pC) ); 4458 assert( pOp->p4type==P4_INT32 ); 4459 pIn3 = &aMem[pOp->p3]; 4460 nKeyCol = pOp->p4.i; 4461 res = 0; 4462 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4463 VdbeBranchTaken(res!=0,2); 4464 if( rc ) goto abort_due_to_error; 4465 if( res ) goto jump_to_p2; 4466 break; 4467 }; 4468 4469 /* Opcode: SorterData P1 P2 P3 * * 4470 ** Synopsis: r[P2]=data 4471 ** 4472 ** Write into register P2 the current sorter data for sorter cursor P1. 4473 ** Then clear the column header cache on cursor P3. 4474 ** 4475 ** This opcode is normally use to move a record out of the sorter and into 4476 ** a register that is the source for a pseudo-table cursor created using 4477 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4478 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4479 ** us from having to issue a separate NullRow instruction to clear that cache. 4480 */ 4481 case OP_SorterData: { 4482 VdbeCursor *pC; 4483 4484 pOut = &aMem[pOp->p2]; 4485 pC = p->apCsr[pOp->p1]; 4486 assert( isSorter(pC) ); 4487 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4488 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4489 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4490 if( rc ) goto abort_due_to_error; 4491 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4492 break; 4493 } 4494 4495 /* Opcode: RowData P1 P2 * * * 4496 ** Synopsis: r[P2]=data 4497 ** 4498 ** Write into register P2 the complete row data for cursor P1. 4499 ** There is no interpretation of the data. 4500 ** It is just copied onto the P2 register exactly as 4501 ** it is found in the database file. 4502 ** 4503 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4504 ** of a real table, not a pseudo-table. 4505 */ 4506 /* Opcode: RowKey P1 P2 * * * 4507 ** Synopsis: r[P2]=key 4508 ** 4509 ** Write into register P2 the complete row key for cursor P1. 4510 ** There is no interpretation of the data. 4511 ** The key is copied onto the P2 register exactly as 4512 ** it is found in the database file. 4513 ** 4514 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4515 ** of a real table, not a pseudo-table. 4516 */ 4517 case OP_RowKey: 4518 case OP_RowData: { 4519 VdbeCursor *pC; 4520 BtCursor *pCrsr; 4521 u32 n; 4522 i64 n64; 4523 4524 pOut = &aMem[pOp->p2]; 4525 memAboutToChange(p, pOut); 4526 4527 /* Note that RowKey and RowData are really exactly the same instruction */ 4528 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4529 pC = p->apCsr[pOp->p1]; 4530 assert( pC!=0 ); 4531 assert( pC->eCurType==CURTYPE_BTREE ); 4532 assert( isSorter(pC)==0 ); 4533 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4534 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); 4535 assert( pC->nullRow==0 ); 4536 assert( pC->uc.pCursor!=0 ); 4537 pCrsr = pC->uc.pCursor; 4538 4539 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4540 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4541 ** the cursor. If this where not the case, on of the following assert()s 4542 ** would fail. Should this ever change (because of changes in the code 4543 ** generator) then the fix would be to insert a call to 4544 ** sqlite3VdbeCursorMoveto(). 4545 */ 4546 assert( pC->deferredMoveto==0 ); 4547 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4548 #if 0 /* Not required due to the previous to assert() statements */ 4549 rc = sqlite3VdbeCursorMoveto(pC); 4550 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4551 #endif 4552 4553 if( pC->isTable==0 ){ 4554 assert( !pC->isTable ); 4555 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); 4556 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4557 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4558 goto too_big; 4559 } 4560 n = (u32)n64; 4561 }else{ 4562 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); 4563 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4564 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4565 goto too_big; 4566 } 4567 } 4568 testcase( n==0 ); 4569 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ 4570 goto no_mem; 4571 } 4572 pOut->n = n; 4573 MemSetTypeFlag(pOut, MEM_Blob); 4574 if( pC->isTable==0 ){ 4575 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4576 }else{ 4577 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4578 } 4579 if( rc ) goto abort_due_to_error; 4580 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4581 UPDATE_MAX_BLOBSIZE(pOut); 4582 REGISTER_TRACE(pOp->p2, pOut); 4583 break; 4584 } 4585 4586 /* Opcode: Rowid P1 P2 * * * 4587 ** Synopsis: r[P2]=rowid 4588 ** 4589 ** Store in register P2 an integer which is the key of the table entry that 4590 ** P1 is currently point to. 4591 ** 4592 ** P1 can be either an ordinary table or a virtual table. There used to 4593 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4594 ** one opcode now works for both table types. 4595 */ 4596 case OP_Rowid: { /* out2 */ 4597 VdbeCursor *pC; 4598 i64 v; 4599 sqlite3_vtab *pVtab; 4600 const sqlite3_module *pModule; 4601 4602 pOut = out2Prerelease(p, pOp); 4603 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4604 pC = p->apCsr[pOp->p1]; 4605 assert( pC!=0 ); 4606 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 4607 if( pC->nullRow ){ 4608 pOut->flags = MEM_Null; 4609 break; 4610 }else if( pC->deferredMoveto ){ 4611 v = pC->movetoTarget; 4612 #ifndef SQLITE_OMIT_VIRTUALTABLE 4613 }else if( pC->eCurType==CURTYPE_VTAB ){ 4614 assert( pC->uc.pVCur!=0 ); 4615 pVtab = pC->uc.pVCur->pVtab; 4616 pModule = pVtab->pModule; 4617 assert( pModule->xRowid ); 4618 rc = pModule->xRowid(pC->uc.pVCur, &v); 4619 sqlite3VtabImportErrmsg(p, pVtab); 4620 if( rc ) goto abort_due_to_error; 4621 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4622 }else{ 4623 assert( pC->eCurType==CURTYPE_BTREE ); 4624 assert( pC->uc.pCursor!=0 ); 4625 rc = sqlite3VdbeCursorRestore(pC); 4626 if( rc ) goto abort_due_to_error; 4627 if( pC->nullRow ){ 4628 pOut->flags = MEM_Null; 4629 break; 4630 } 4631 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v); 4632 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ 4633 } 4634 pOut->u.i = v; 4635 break; 4636 } 4637 4638 /* Opcode: NullRow P1 * * * * 4639 ** 4640 ** Move the cursor P1 to a null row. Any OP_Column operations 4641 ** that occur while the cursor is on the null row will always 4642 ** write a NULL. 4643 */ 4644 case OP_NullRow: { 4645 VdbeCursor *pC; 4646 4647 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4648 pC = p->apCsr[pOp->p1]; 4649 assert( pC!=0 ); 4650 pC->nullRow = 1; 4651 pC->cacheStatus = CACHE_STALE; 4652 if( pC->eCurType==CURTYPE_BTREE ){ 4653 assert( pC->uc.pCursor!=0 ); 4654 sqlite3BtreeClearCursor(pC->uc.pCursor); 4655 } 4656 break; 4657 } 4658 4659 /* Opcode: Last P1 P2 P3 * * 4660 ** 4661 ** The next use of the Rowid or Column or Prev instruction for P1 4662 ** will refer to the last entry in the database table or index. 4663 ** If the table or index is empty and P2>0, then jump immediately to P2. 4664 ** If P2 is 0 or if the table or index is not empty, fall through 4665 ** to the following instruction. 4666 ** 4667 ** This opcode leaves the cursor configured to move in reverse order, 4668 ** from the end toward the beginning. In other words, the cursor is 4669 ** configured to use Prev, not Next. 4670 */ 4671 case OP_Last: { /* jump */ 4672 VdbeCursor *pC; 4673 BtCursor *pCrsr; 4674 int res; 4675 4676 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4677 pC = p->apCsr[pOp->p1]; 4678 assert( pC!=0 ); 4679 assert( pC->eCurType==CURTYPE_BTREE ); 4680 pCrsr = pC->uc.pCursor; 4681 res = 0; 4682 assert( pCrsr!=0 ); 4683 rc = sqlite3BtreeLast(pCrsr, &res); 4684 pC->nullRow = (u8)res; 4685 pC->deferredMoveto = 0; 4686 pC->cacheStatus = CACHE_STALE; 4687 pC->seekResult = pOp->p3; 4688 #ifdef SQLITE_DEBUG 4689 pC->seekOp = OP_Last; 4690 #endif 4691 if( rc ) goto abort_due_to_error; 4692 if( pOp->p2>0 ){ 4693 VdbeBranchTaken(res!=0,2); 4694 if( res ) goto jump_to_p2; 4695 } 4696 break; 4697 } 4698 4699 4700 /* Opcode: Sort P1 P2 * * * 4701 ** 4702 ** This opcode does exactly the same thing as OP_Rewind except that 4703 ** it increments an undocumented global variable used for testing. 4704 ** 4705 ** Sorting is accomplished by writing records into a sorting index, 4706 ** then rewinding that index and playing it back from beginning to 4707 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4708 ** rewinding so that the global variable will be incremented and 4709 ** regression tests can determine whether or not the optimizer is 4710 ** correctly optimizing out sorts. 4711 */ 4712 case OP_SorterSort: /* jump */ 4713 case OP_Sort: { /* jump */ 4714 #ifdef SQLITE_TEST 4715 sqlite3_sort_count++; 4716 sqlite3_search_count--; 4717 #endif 4718 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4719 /* Fall through into OP_Rewind */ 4720 } 4721 /* Opcode: Rewind P1 P2 * * * 4722 ** 4723 ** The next use of the Rowid or Column or Next instruction for P1 4724 ** will refer to the first entry in the database table or index. 4725 ** If the table or index is empty, jump immediately to P2. 4726 ** If the table or index is not empty, fall through to the following 4727 ** instruction. 4728 ** 4729 ** This opcode leaves the cursor configured to move in forward order, 4730 ** from the beginning toward the end. In other words, the cursor is 4731 ** configured to use Next, not Prev. 4732 */ 4733 case OP_Rewind: { /* jump */ 4734 VdbeCursor *pC; 4735 BtCursor *pCrsr; 4736 int res; 4737 4738 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4739 pC = p->apCsr[pOp->p1]; 4740 assert( pC!=0 ); 4741 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4742 res = 1; 4743 #ifdef SQLITE_DEBUG 4744 pC->seekOp = OP_Rewind; 4745 #endif 4746 if( isSorter(pC) ){ 4747 rc = sqlite3VdbeSorterRewind(pC, &res); 4748 }else{ 4749 assert( pC->eCurType==CURTYPE_BTREE ); 4750 pCrsr = pC->uc.pCursor; 4751 assert( pCrsr ); 4752 rc = sqlite3BtreeFirst(pCrsr, &res); 4753 pC->deferredMoveto = 0; 4754 pC->cacheStatus = CACHE_STALE; 4755 } 4756 if( rc ) goto abort_due_to_error; 4757 pC->nullRow = (u8)res; 4758 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4759 VdbeBranchTaken(res!=0,2); 4760 if( res ) goto jump_to_p2; 4761 break; 4762 } 4763 4764 /* Opcode: Next P1 P2 P3 P4 P5 4765 ** 4766 ** Advance cursor P1 so that it points to the next key/data pair in its 4767 ** table or index. If there are no more key/value pairs then fall through 4768 ** to the following instruction. But if the cursor advance was successful, 4769 ** jump immediately to P2. 4770 ** 4771 ** The Next opcode is only valid following an SeekGT, SeekGE, or 4772 ** OP_Rewind opcode used to position the cursor. Next is not allowed 4773 ** to follow SeekLT, SeekLE, or OP_Last. 4774 ** 4775 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4776 ** been opened prior to this opcode or the program will segfault. 4777 ** 4778 ** The P3 value is a hint to the btree implementation. If P3==1, that 4779 ** means P1 is an SQL index and that this instruction could have been 4780 ** omitted if that index had been unique. P3 is usually 0. P3 is 4781 ** always either 0 or 1. 4782 ** 4783 ** P4 is always of type P4_ADVANCE. The function pointer points to 4784 ** sqlite3BtreeNext(). 4785 ** 4786 ** If P5 is positive and the jump is taken, then event counter 4787 ** number P5-1 in the prepared statement is incremented. 4788 ** 4789 ** See also: Prev, NextIfOpen 4790 */ 4791 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 4792 ** 4793 ** This opcode works just like Next except that if cursor P1 is not 4794 ** open it behaves a no-op. 4795 */ 4796 /* Opcode: Prev P1 P2 P3 P4 P5 4797 ** 4798 ** Back up cursor P1 so that it points to the previous key/data pair in its 4799 ** table or index. If there is no previous key/value pairs then fall through 4800 ** to the following instruction. But if the cursor backup was successful, 4801 ** jump immediately to P2. 4802 ** 4803 ** 4804 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 4805 ** OP_Last opcode used to position the cursor. Prev is not allowed 4806 ** to follow SeekGT, SeekGE, or OP_Rewind. 4807 ** 4808 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4809 ** not open then the behavior is undefined. 4810 ** 4811 ** The P3 value is a hint to the btree implementation. If P3==1, that 4812 ** means P1 is an SQL index and that this instruction could have been 4813 ** omitted if that index had been unique. P3 is usually 0. P3 is 4814 ** always either 0 or 1. 4815 ** 4816 ** P4 is always of type P4_ADVANCE. The function pointer points to 4817 ** sqlite3BtreePrevious(). 4818 ** 4819 ** If P5 is positive and the jump is taken, then event counter 4820 ** number P5-1 in the prepared statement is incremented. 4821 */ 4822 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 4823 ** 4824 ** This opcode works just like Prev except that if cursor P1 is not 4825 ** open it behaves a no-op. 4826 */ 4827 case OP_SorterNext: { /* jump */ 4828 VdbeCursor *pC; 4829 int res; 4830 4831 pC = p->apCsr[pOp->p1]; 4832 assert( isSorter(pC) ); 4833 res = 0; 4834 rc = sqlite3VdbeSorterNext(db, pC, &res); 4835 goto next_tail; 4836 case OP_PrevIfOpen: /* jump */ 4837 case OP_NextIfOpen: /* jump */ 4838 if( p->apCsr[pOp->p1]==0 ) break; 4839 /* Fall through */ 4840 case OP_Prev: /* jump */ 4841 case OP_Next: /* jump */ 4842 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4843 assert( pOp->p5<ArraySize(p->aCounter) ); 4844 pC = p->apCsr[pOp->p1]; 4845 res = pOp->p3; 4846 assert( pC!=0 ); 4847 assert( pC->deferredMoveto==0 ); 4848 assert( pC->eCurType==CURTYPE_BTREE ); 4849 assert( res==0 || (res==1 && pC->isTable==0) ); 4850 testcase( res==1 ); 4851 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4852 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4853 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 4854 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 4855 4856 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 4857 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 4858 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 4859 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 4860 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 4861 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 4862 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 4863 || pC->seekOp==OP_Last ); 4864 4865 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res); 4866 next_tail: 4867 pC->cacheStatus = CACHE_STALE; 4868 VdbeBranchTaken(res==0,2); 4869 if( rc ) goto abort_due_to_error; 4870 if( res==0 ){ 4871 pC->nullRow = 0; 4872 p->aCounter[pOp->p5]++; 4873 #ifdef SQLITE_TEST 4874 sqlite3_search_count++; 4875 #endif 4876 goto jump_to_p2_and_check_for_interrupt; 4877 }else{ 4878 pC->nullRow = 1; 4879 } 4880 goto check_for_interrupt; 4881 } 4882 4883 /* Opcode: IdxInsert P1 P2 P3 * P5 4884 ** Synopsis: key=r[P2] 4885 ** 4886 ** Register P2 holds an SQL index key made using the 4887 ** MakeRecord instructions. This opcode writes that key 4888 ** into the index P1. Data for the entry is nil. 4889 ** 4890 ** P3 is a flag that provides a hint to the b-tree layer that this 4891 ** insert is likely to be an append. 4892 ** 4893 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 4894 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 4895 ** then the change counter is unchanged. 4896 ** 4897 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have 4898 ** just done a seek to the spot where the new entry is to be inserted. 4899 ** This flag avoids doing an extra seek. 4900 ** 4901 ** This instruction only works for indices. The equivalent instruction 4902 ** for tables is OP_Insert. 4903 */ 4904 case OP_SorterInsert: /* in2 */ 4905 case OP_IdxInsert: { /* in2 */ 4906 VdbeCursor *pC; 4907 int nKey; 4908 const char *zKey; 4909 4910 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4911 pC = p->apCsr[pOp->p1]; 4912 assert( pC!=0 ); 4913 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 4914 pIn2 = &aMem[pOp->p2]; 4915 assert( pIn2->flags & MEM_Blob ); 4916 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4917 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 4918 assert( pC->isTable==0 ); 4919 rc = ExpandBlob(pIn2); 4920 if( rc ) goto abort_due_to_error; 4921 if( pOp->opcode==OP_SorterInsert ){ 4922 rc = sqlite3VdbeSorterWrite(pC, pIn2); 4923 }else{ 4924 nKey = pIn2->n; 4925 zKey = pIn2->z; 4926 rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3, 4927 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4928 ); 4929 assert( pC->deferredMoveto==0 ); 4930 pC->cacheStatus = CACHE_STALE; 4931 } 4932 if( rc) goto abort_due_to_error; 4933 break; 4934 } 4935 4936 /* Opcode: IdxDelete P1 P2 P3 * * 4937 ** Synopsis: key=r[P2@P3] 4938 ** 4939 ** The content of P3 registers starting at register P2 form 4940 ** an unpacked index key. This opcode removes that entry from the 4941 ** index opened by cursor P1. 4942 */ 4943 case OP_IdxDelete: { 4944 VdbeCursor *pC; 4945 BtCursor *pCrsr; 4946 int res; 4947 UnpackedRecord r; 4948 4949 assert( pOp->p3>0 ); 4950 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); 4951 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4952 pC = p->apCsr[pOp->p1]; 4953 assert( pC!=0 ); 4954 assert( pC->eCurType==CURTYPE_BTREE ); 4955 pCrsr = pC->uc.pCursor; 4956 assert( pCrsr!=0 ); 4957 assert( pOp->p5==0 ); 4958 r.pKeyInfo = pC->pKeyInfo; 4959 r.nField = (u16)pOp->p3; 4960 r.default_rc = 0; 4961 r.aMem = &aMem[pOp->p2]; 4962 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4963 if( rc ) goto abort_due_to_error; 4964 if( res==0 ){ 4965 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 4966 if( rc ) goto abort_due_to_error; 4967 } 4968 assert( pC->deferredMoveto==0 ); 4969 pC->cacheStatus = CACHE_STALE; 4970 break; 4971 } 4972 4973 /* Opcode: Seek P1 * P3 P4 * 4974 ** Synopsis: Move P3 to P1.rowid 4975 ** 4976 ** P1 is an open index cursor and P3 is a cursor on the corresponding 4977 ** table. This opcode does a deferred seek of the P3 table cursor 4978 ** to the row that corresponds to the current row of P1. 4979 ** 4980 ** This is a deferred seek. Nothing actually happens until 4981 ** the cursor is used to read a record. That way, if no reads 4982 ** occur, no unnecessary I/O happens. 4983 ** 4984 ** P4 may be an array of integers (type P4_INTARRAY) containing 4985 ** one entry for each column in the P3 table. If array entry a(i) 4986 ** is non-zero, then reading column a(i)-1 from cursor P3 is 4987 ** equivalent to performing the deferred seek and then reading column i 4988 ** from P1. This information is stored in P3 and used to redirect 4989 ** reads against P3 over to P1, thus possibly avoiding the need to 4990 ** seek and read cursor P3. 4991 */ 4992 /* Opcode: IdxRowid P1 P2 * * * 4993 ** Synopsis: r[P2]=rowid 4994 ** 4995 ** Write into register P2 an integer which is the last entry in the record at 4996 ** the end of the index key pointed to by cursor P1. This integer should be 4997 ** the rowid of the table entry to which this index entry points. 4998 ** 4999 ** See also: Rowid, MakeRecord. 5000 */ 5001 case OP_Seek: 5002 case OP_IdxRowid: { /* out2 */ 5003 VdbeCursor *pC; /* The P1 index cursor */ 5004 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */ 5005 i64 rowid; /* Rowid that P1 current points to */ 5006 5007 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5008 pC = p->apCsr[pOp->p1]; 5009 assert( pC!=0 ); 5010 assert( pC->eCurType==CURTYPE_BTREE ); 5011 assert( pC->uc.pCursor!=0 ); 5012 assert( pC->isTable==0 ); 5013 assert( pC->deferredMoveto==0 ); 5014 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5015 5016 /* The IdxRowid and Seek opcodes are combined because of the commonality 5017 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5018 rc = sqlite3VdbeCursorRestore(pC); 5019 5020 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5021 ** out from under the cursor. That will never happens for an IdxRowid 5022 ** or Seek opcode */ 5023 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5024 5025 if( !pC->nullRow ){ 5026 rowid = 0; /* Not needed. Only used to silence a warning. */ 5027 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5028 if( rc!=SQLITE_OK ){ 5029 goto abort_due_to_error; 5030 } 5031 if( pOp->opcode==OP_Seek ){ 5032 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5033 pTabCur = p->apCsr[pOp->p3]; 5034 assert( pTabCur!=0 ); 5035 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5036 assert( pTabCur->uc.pCursor!=0 ); 5037 assert( pTabCur->isTable ); 5038 pTabCur->nullRow = 0; 5039 pTabCur->movetoTarget = rowid; 5040 pTabCur->deferredMoveto = 1; 5041 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5042 pTabCur->aAltMap = pOp->p4.ai; 5043 pTabCur->pAltCursor = pC; 5044 }else{ 5045 pOut = out2Prerelease(p, pOp); 5046 pOut->u.i = rowid; 5047 pOut->flags = MEM_Int; 5048 } 5049 }else{ 5050 assert( pOp->opcode==OP_IdxRowid ); 5051 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5052 } 5053 break; 5054 } 5055 5056 /* Opcode: IdxGE P1 P2 P3 P4 P5 5057 ** Synopsis: key=r[P3@P4] 5058 ** 5059 ** The P4 register values beginning with P3 form an unpacked index 5060 ** key that omits the PRIMARY KEY. Compare this key value against the index 5061 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5062 ** fields at the end. 5063 ** 5064 ** If the P1 index entry is greater than or equal to the key value 5065 ** then jump to P2. Otherwise fall through to the next instruction. 5066 */ 5067 /* Opcode: IdxGT P1 P2 P3 P4 P5 5068 ** Synopsis: key=r[P3@P4] 5069 ** 5070 ** The P4 register values beginning with P3 form an unpacked index 5071 ** key that omits the PRIMARY KEY. Compare this key value against the index 5072 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5073 ** fields at the end. 5074 ** 5075 ** If the P1 index entry is greater than the key value 5076 ** then jump to P2. Otherwise fall through to the next instruction. 5077 */ 5078 /* Opcode: IdxLT P1 P2 P3 P4 P5 5079 ** Synopsis: key=r[P3@P4] 5080 ** 5081 ** The P4 register values beginning with P3 form an unpacked index 5082 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5083 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5084 ** ROWID on the P1 index. 5085 ** 5086 ** If the P1 index entry is less than the key value then jump to P2. 5087 ** Otherwise fall through to the next instruction. 5088 */ 5089 /* Opcode: IdxLE P1 P2 P3 P4 P5 5090 ** Synopsis: key=r[P3@P4] 5091 ** 5092 ** The P4 register values beginning with P3 form an unpacked index 5093 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5094 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5095 ** ROWID on the P1 index. 5096 ** 5097 ** If the P1 index entry is less than or equal to the key value then jump 5098 ** to P2. Otherwise fall through to the next instruction. 5099 */ 5100 case OP_IdxLE: /* jump */ 5101 case OP_IdxGT: /* jump */ 5102 case OP_IdxLT: /* jump */ 5103 case OP_IdxGE: { /* jump */ 5104 VdbeCursor *pC; 5105 int res; 5106 UnpackedRecord r; 5107 5108 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5109 pC = p->apCsr[pOp->p1]; 5110 assert( pC!=0 ); 5111 assert( pC->isOrdered ); 5112 assert( pC->eCurType==CURTYPE_BTREE ); 5113 assert( pC->uc.pCursor!=0); 5114 assert( pC->deferredMoveto==0 ); 5115 assert( pOp->p5==0 || pOp->p5==1 ); 5116 assert( pOp->p4type==P4_INT32 ); 5117 r.pKeyInfo = pC->pKeyInfo; 5118 r.nField = (u16)pOp->p4.i; 5119 if( pOp->opcode<OP_IdxLT ){ 5120 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5121 r.default_rc = -1; 5122 }else{ 5123 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5124 r.default_rc = 0; 5125 } 5126 r.aMem = &aMem[pOp->p3]; 5127 #ifdef SQLITE_DEBUG 5128 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 5129 #endif 5130 res = 0; /* Not needed. Only used to silence a warning. */ 5131 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5132 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5133 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5134 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5135 res = -res; 5136 }else{ 5137 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5138 res++; 5139 } 5140 VdbeBranchTaken(res>0,2); 5141 if( rc ) goto abort_due_to_error; 5142 if( res>0 ) goto jump_to_p2; 5143 break; 5144 } 5145 5146 /* Opcode: Destroy P1 P2 P3 * * 5147 ** 5148 ** Delete an entire database table or index whose root page in the database 5149 ** file is given by P1. 5150 ** 5151 ** The table being destroyed is in the main database file if P3==0. If 5152 ** P3==1 then the table to be clear is in the auxiliary database file 5153 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5154 ** 5155 ** If AUTOVACUUM is enabled then it is possible that another root page 5156 ** might be moved into the newly deleted root page in order to keep all 5157 ** root pages contiguous at the beginning of the database. The former 5158 ** value of the root page that moved - its value before the move occurred - 5159 ** is stored in register P2. If no page 5160 ** movement was required (because the table being dropped was already 5161 ** the last one in the database) then a zero is stored in register P2. 5162 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 5163 ** 5164 ** See also: Clear 5165 */ 5166 case OP_Destroy: { /* out2 */ 5167 int iMoved; 5168 int iDb; 5169 5170 assert( p->readOnly==0 ); 5171 assert( pOp->p1>1 ); 5172 pOut = out2Prerelease(p, pOp); 5173 pOut->flags = MEM_Null; 5174 if( db->nVdbeRead > db->nVDestroy+1 ){ 5175 rc = SQLITE_LOCKED; 5176 p->errorAction = OE_Abort; 5177 goto abort_due_to_error; 5178 }else{ 5179 iDb = pOp->p3; 5180 assert( DbMaskTest(p->btreeMask, iDb) ); 5181 iMoved = 0; /* Not needed. Only to silence a warning. */ 5182 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5183 pOut->flags = MEM_Int; 5184 pOut->u.i = iMoved; 5185 if( rc ) goto abort_due_to_error; 5186 #ifndef SQLITE_OMIT_AUTOVACUUM 5187 if( iMoved!=0 ){ 5188 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5189 /* All OP_Destroy operations occur on the same btree */ 5190 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5191 resetSchemaOnFault = iDb+1; 5192 } 5193 #endif 5194 } 5195 break; 5196 } 5197 5198 /* Opcode: Clear P1 P2 P3 5199 ** 5200 ** Delete all contents of the database table or index whose root page 5201 ** in the database file is given by P1. But, unlike Destroy, do not 5202 ** remove the table or index from the database file. 5203 ** 5204 ** The table being clear is in the main database file if P2==0. If 5205 ** P2==1 then the table to be clear is in the auxiliary database file 5206 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5207 ** 5208 ** If the P3 value is non-zero, then the table referred to must be an 5209 ** intkey table (an SQL table, not an index). In this case the row change 5210 ** count is incremented by the number of rows in the table being cleared. 5211 ** If P3 is greater than zero, then the value stored in register P3 is 5212 ** also incremented by the number of rows in the table being cleared. 5213 ** 5214 ** See also: Destroy 5215 */ 5216 case OP_Clear: { 5217 int nChange; 5218 5219 nChange = 0; 5220 assert( p->readOnly==0 ); 5221 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5222 rc = sqlite3BtreeClearTable( 5223 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5224 ); 5225 if( pOp->p3 ){ 5226 p->nChange += nChange; 5227 if( pOp->p3>0 ){ 5228 assert( memIsValid(&aMem[pOp->p3]) ); 5229 memAboutToChange(p, &aMem[pOp->p3]); 5230 aMem[pOp->p3].u.i += nChange; 5231 } 5232 } 5233 if( rc ) goto abort_due_to_error; 5234 break; 5235 } 5236 5237 /* Opcode: ResetSorter P1 * * * * 5238 ** 5239 ** Delete all contents from the ephemeral table or sorter 5240 ** that is open on cursor P1. 5241 ** 5242 ** This opcode only works for cursors used for sorting and 5243 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5244 */ 5245 case OP_ResetSorter: { 5246 VdbeCursor *pC; 5247 5248 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5249 pC = p->apCsr[pOp->p1]; 5250 assert( pC!=0 ); 5251 if( isSorter(pC) ){ 5252 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5253 }else{ 5254 assert( pC->eCurType==CURTYPE_BTREE ); 5255 assert( pC->isEphemeral ); 5256 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5257 if( rc ) goto abort_due_to_error; 5258 } 5259 break; 5260 } 5261 5262 /* Opcode: CreateTable P1 P2 * * * 5263 ** Synopsis: r[P2]=root iDb=P1 5264 ** 5265 ** Allocate a new table in the main database file if P1==0 or in the 5266 ** auxiliary database file if P1==1 or in an attached database if 5267 ** P1>1. Write the root page number of the new table into 5268 ** register P2 5269 ** 5270 ** The difference between a table and an index is this: A table must 5271 ** have a 4-byte integer key and can have arbitrary data. An index 5272 ** has an arbitrary key but no data. 5273 ** 5274 ** See also: CreateIndex 5275 */ 5276 /* Opcode: CreateIndex P1 P2 * * * 5277 ** Synopsis: r[P2]=root iDb=P1 5278 ** 5279 ** Allocate a new index in the main database file if P1==0 or in the 5280 ** auxiliary database file if P1==1 or in an attached database if 5281 ** P1>1. Write the root page number of the new table into 5282 ** register P2. 5283 ** 5284 ** See documentation on OP_CreateTable for additional information. 5285 */ 5286 case OP_CreateIndex: /* out2 */ 5287 case OP_CreateTable: { /* out2 */ 5288 int pgno; 5289 int flags; 5290 Db *pDb; 5291 5292 pOut = out2Prerelease(p, pOp); 5293 pgno = 0; 5294 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5295 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5296 assert( p->readOnly==0 ); 5297 pDb = &db->aDb[pOp->p1]; 5298 assert( pDb->pBt!=0 ); 5299 if( pOp->opcode==OP_CreateTable ){ 5300 /* flags = BTREE_INTKEY; */ 5301 flags = BTREE_INTKEY; 5302 }else{ 5303 flags = BTREE_BLOBKEY; 5304 } 5305 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 5306 if( rc ) goto abort_due_to_error; 5307 pOut->u.i = pgno; 5308 break; 5309 } 5310 5311 /* Opcode: ParseSchema P1 * * P4 * 5312 ** 5313 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5314 ** that match the WHERE clause P4. 5315 ** 5316 ** This opcode invokes the parser to create a new virtual machine, 5317 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5318 */ 5319 case OP_ParseSchema: { 5320 int iDb; 5321 const char *zMaster; 5322 char *zSql; 5323 InitData initData; 5324 5325 /* Any prepared statement that invokes this opcode will hold mutexes 5326 ** on every btree. This is a prerequisite for invoking 5327 ** sqlite3InitCallback(). 5328 */ 5329 #ifdef SQLITE_DEBUG 5330 for(iDb=0; iDb<db->nDb; iDb++){ 5331 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5332 } 5333 #endif 5334 5335 iDb = pOp->p1; 5336 assert( iDb>=0 && iDb<db->nDb ); 5337 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5338 /* Used to be a conditional */ { 5339 zMaster = SCHEMA_TABLE(iDb); 5340 initData.db = db; 5341 initData.iDb = pOp->p1; 5342 initData.pzErrMsg = &p->zErrMsg; 5343 zSql = sqlite3MPrintf(db, 5344 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5345 db->aDb[iDb].zName, zMaster, pOp->p4.z); 5346 if( zSql==0 ){ 5347 rc = SQLITE_NOMEM_BKPT; 5348 }else{ 5349 assert( db->init.busy==0 ); 5350 db->init.busy = 1; 5351 initData.rc = SQLITE_OK; 5352 assert( !db->mallocFailed ); 5353 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5354 if( rc==SQLITE_OK ) rc = initData.rc; 5355 sqlite3DbFree(db, zSql); 5356 db->init.busy = 0; 5357 } 5358 } 5359 if( rc ){ 5360 sqlite3ResetAllSchemasOfConnection(db); 5361 if( rc==SQLITE_NOMEM ){ 5362 goto no_mem; 5363 } 5364 goto abort_due_to_error; 5365 } 5366 break; 5367 } 5368 5369 #if !defined(SQLITE_OMIT_ANALYZE) 5370 /* Opcode: LoadAnalysis P1 * * * * 5371 ** 5372 ** Read the sqlite_stat1 table for database P1 and load the content 5373 ** of that table into the internal index hash table. This will cause 5374 ** the analysis to be used when preparing all subsequent queries. 5375 */ 5376 case OP_LoadAnalysis: { 5377 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5378 rc = sqlite3AnalysisLoad(db, pOp->p1); 5379 if( rc ) goto abort_due_to_error; 5380 break; 5381 } 5382 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5383 5384 /* Opcode: DropTable P1 * * P4 * 5385 ** 5386 ** Remove the internal (in-memory) data structures that describe 5387 ** the table named P4 in database P1. This is called after a table 5388 ** is dropped from disk (using the Destroy opcode) in order to keep 5389 ** the internal representation of the 5390 ** schema consistent with what is on disk. 5391 */ 5392 case OP_DropTable: { 5393 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5394 break; 5395 } 5396 5397 /* Opcode: DropIndex P1 * * P4 * 5398 ** 5399 ** Remove the internal (in-memory) data structures that describe 5400 ** the index named P4 in database P1. This is called after an index 5401 ** is dropped from disk (using the Destroy opcode) 5402 ** in order to keep the internal representation of the 5403 ** schema consistent with what is on disk. 5404 */ 5405 case OP_DropIndex: { 5406 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5407 break; 5408 } 5409 5410 /* Opcode: DropTrigger P1 * * P4 * 5411 ** 5412 ** Remove the internal (in-memory) data structures that describe 5413 ** the trigger named P4 in database P1. This is called after a trigger 5414 ** is dropped from disk (using the Destroy opcode) in order to keep 5415 ** the internal representation of the 5416 ** schema consistent with what is on disk. 5417 */ 5418 case OP_DropTrigger: { 5419 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5420 break; 5421 } 5422 5423 5424 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5425 /* Opcode: IntegrityCk P1 P2 P3 * P5 5426 ** 5427 ** Do an analysis of the currently open database. Store in 5428 ** register P1 the text of an error message describing any problems. 5429 ** If no problems are found, store a NULL in register P1. 5430 ** 5431 ** The register P3 contains the maximum number of allowed errors. 5432 ** At most reg(P3) errors will be reported. 5433 ** In other words, the analysis stops as soon as reg(P1) errors are 5434 ** seen. Reg(P1) is updated with the number of errors remaining. 5435 ** 5436 ** The root page numbers of all tables in the database are integer 5437 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 5438 ** total. 5439 ** 5440 ** If P5 is not zero, the check is done on the auxiliary database 5441 ** file, not the main database file. 5442 ** 5443 ** This opcode is used to implement the integrity_check pragma. 5444 */ 5445 case OP_IntegrityCk: { 5446 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5447 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5448 int j; /* Loop counter */ 5449 int nErr; /* Number of errors reported */ 5450 char *z; /* Text of the error report */ 5451 Mem *pnErr; /* Register keeping track of errors remaining */ 5452 5453 assert( p->bIsReader ); 5454 nRoot = pOp->p2; 5455 assert( nRoot>0 ); 5456 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(nRoot+1) ); 5457 if( aRoot==0 ) goto no_mem; 5458 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5459 pnErr = &aMem[pOp->p3]; 5460 assert( (pnErr->flags & MEM_Int)!=0 ); 5461 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5462 pIn1 = &aMem[pOp->p1]; 5463 for(j=0; j<nRoot; j++){ 5464 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 5465 } 5466 aRoot[j] = 0; 5467 assert( pOp->p5<db->nDb ); 5468 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5469 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5470 (int)pnErr->u.i, &nErr); 5471 sqlite3DbFree(db, aRoot); 5472 pnErr->u.i -= nErr; 5473 sqlite3VdbeMemSetNull(pIn1); 5474 if( nErr==0 ){ 5475 assert( z==0 ); 5476 }else if( z==0 ){ 5477 goto no_mem; 5478 }else{ 5479 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5480 } 5481 UPDATE_MAX_BLOBSIZE(pIn1); 5482 sqlite3VdbeChangeEncoding(pIn1, encoding); 5483 break; 5484 } 5485 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5486 5487 /* Opcode: RowSetAdd P1 P2 * * * 5488 ** Synopsis: rowset(P1)=r[P2] 5489 ** 5490 ** Insert the integer value held by register P2 into a boolean index 5491 ** held in register P1. 5492 ** 5493 ** An assertion fails if P2 is not an integer. 5494 */ 5495 case OP_RowSetAdd: { /* in1, in2 */ 5496 pIn1 = &aMem[pOp->p1]; 5497 pIn2 = &aMem[pOp->p2]; 5498 assert( (pIn2->flags & MEM_Int)!=0 ); 5499 if( (pIn1->flags & MEM_RowSet)==0 ){ 5500 sqlite3VdbeMemSetRowSet(pIn1); 5501 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5502 } 5503 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5504 break; 5505 } 5506 5507 /* Opcode: RowSetRead P1 P2 P3 * * 5508 ** Synopsis: r[P3]=rowset(P1) 5509 ** 5510 ** Extract the smallest value from boolean index P1 and put that value into 5511 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5512 ** unchanged and jump to instruction P2. 5513 */ 5514 case OP_RowSetRead: { /* jump, in1, out3 */ 5515 i64 val; 5516 5517 pIn1 = &aMem[pOp->p1]; 5518 if( (pIn1->flags & MEM_RowSet)==0 5519 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5520 ){ 5521 /* The boolean index is empty */ 5522 sqlite3VdbeMemSetNull(pIn1); 5523 VdbeBranchTaken(1,2); 5524 goto jump_to_p2_and_check_for_interrupt; 5525 }else{ 5526 /* A value was pulled from the index */ 5527 VdbeBranchTaken(0,2); 5528 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5529 } 5530 goto check_for_interrupt; 5531 } 5532 5533 /* Opcode: RowSetTest P1 P2 P3 P4 5534 ** Synopsis: if r[P3] in rowset(P1) goto P2 5535 ** 5536 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5537 ** contains a RowSet object and that RowSet object contains 5538 ** the value held in P3, jump to register P2. Otherwise, insert the 5539 ** integer in P3 into the RowSet and continue on to the 5540 ** next opcode. 5541 ** 5542 ** The RowSet object is optimized for the case where successive sets 5543 ** of integers, where each set contains no duplicates. Each set 5544 ** of values is identified by a unique P4 value. The first set 5545 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5546 ** non-negative. For non-negative values of P4 only the lower 4 5547 ** bits are significant. 5548 ** 5549 ** This allows optimizations: (a) when P4==0 there is no need to test 5550 ** the rowset object for P3, as it is guaranteed not to contain it, 5551 ** (b) when P4==-1 there is no need to insert the value, as it will 5552 ** never be tested for, and (c) when a value that is part of set X is 5553 ** inserted, there is no need to search to see if the same value was 5554 ** previously inserted as part of set X (only if it was previously 5555 ** inserted as part of some other set). 5556 */ 5557 case OP_RowSetTest: { /* jump, in1, in3 */ 5558 int iSet; 5559 int exists; 5560 5561 pIn1 = &aMem[pOp->p1]; 5562 pIn3 = &aMem[pOp->p3]; 5563 iSet = pOp->p4.i; 5564 assert( pIn3->flags&MEM_Int ); 5565 5566 /* If there is anything other than a rowset object in memory cell P1, 5567 ** delete it now and initialize P1 with an empty rowset 5568 */ 5569 if( (pIn1->flags & MEM_RowSet)==0 ){ 5570 sqlite3VdbeMemSetRowSet(pIn1); 5571 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5572 } 5573 5574 assert( pOp->p4type==P4_INT32 ); 5575 assert( iSet==-1 || iSet>=0 ); 5576 if( iSet ){ 5577 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5578 VdbeBranchTaken(exists!=0,2); 5579 if( exists ) goto jump_to_p2; 5580 } 5581 if( iSet>=0 ){ 5582 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5583 } 5584 break; 5585 } 5586 5587 5588 #ifndef SQLITE_OMIT_TRIGGER 5589 5590 /* Opcode: Program P1 P2 P3 P4 P5 5591 ** 5592 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5593 ** 5594 ** P1 contains the address of the memory cell that contains the first memory 5595 ** cell in an array of values used as arguments to the sub-program. P2 5596 ** contains the address to jump to if the sub-program throws an IGNORE 5597 ** exception using the RAISE() function. Register P3 contains the address 5598 ** of a memory cell in this (the parent) VM that is used to allocate the 5599 ** memory required by the sub-vdbe at runtime. 5600 ** 5601 ** P4 is a pointer to the VM containing the trigger program. 5602 ** 5603 ** If P5 is non-zero, then recursive program invocation is enabled. 5604 */ 5605 case OP_Program: { /* jump */ 5606 int nMem; /* Number of memory registers for sub-program */ 5607 int nByte; /* Bytes of runtime space required for sub-program */ 5608 Mem *pRt; /* Register to allocate runtime space */ 5609 Mem *pMem; /* Used to iterate through memory cells */ 5610 Mem *pEnd; /* Last memory cell in new array */ 5611 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5612 SubProgram *pProgram; /* Sub-program to execute */ 5613 void *t; /* Token identifying trigger */ 5614 5615 pProgram = pOp->p4.pProgram; 5616 pRt = &aMem[pOp->p3]; 5617 assert( pProgram->nOp>0 ); 5618 5619 /* If the p5 flag is clear, then recursive invocation of triggers is 5620 ** disabled for backwards compatibility (p5 is set if this sub-program 5621 ** is really a trigger, not a foreign key action, and the flag set 5622 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5623 ** 5624 ** It is recursive invocation of triggers, at the SQL level, that is 5625 ** disabled. In some cases a single trigger may generate more than one 5626 ** SubProgram (if the trigger may be executed with more than one different 5627 ** ON CONFLICT algorithm). SubProgram structures associated with a 5628 ** single trigger all have the same value for the SubProgram.token 5629 ** variable. */ 5630 if( pOp->p5 ){ 5631 t = pProgram->token; 5632 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5633 if( pFrame ) break; 5634 } 5635 5636 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5637 rc = SQLITE_ERROR; 5638 sqlite3VdbeError(p, "too many levels of trigger recursion"); 5639 goto abort_due_to_error; 5640 } 5641 5642 /* Register pRt is used to store the memory required to save the state 5643 ** of the current program, and the memory required at runtime to execute 5644 ** the trigger program. If this trigger has been fired before, then pRt 5645 ** is already allocated. Otherwise, it must be initialized. */ 5646 if( (pRt->flags&MEM_Frame)==0 ){ 5647 /* SubProgram.nMem is set to the number of memory cells used by the 5648 ** program stored in SubProgram.aOp. As well as these, one memory 5649 ** cell is required for each cursor used by the program. Set local 5650 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5651 */ 5652 nMem = pProgram->nMem + pProgram->nCsr; 5653 nByte = ROUND8(sizeof(VdbeFrame)) 5654 + nMem * sizeof(Mem) 5655 + pProgram->nCsr * sizeof(VdbeCursor *) 5656 + pProgram->nOnce * sizeof(u8); 5657 pFrame = sqlite3DbMallocZero(db, nByte); 5658 if( !pFrame ){ 5659 goto no_mem; 5660 } 5661 sqlite3VdbeMemRelease(pRt); 5662 pRt->flags = MEM_Frame; 5663 pRt->u.pFrame = pFrame; 5664 5665 pFrame->v = p; 5666 pFrame->nChildMem = nMem; 5667 pFrame->nChildCsr = pProgram->nCsr; 5668 pFrame->pc = (int)(pOp - aOp); 5669 pFrame->aMem = p->aMem; 5670 pFrame->nMem = p->nMem; 5671 pFrame->apCsr = p->apCsr; 5672 pFrame->nCursor = p->nCursor; 5673 pFrame->aOp = p->aOp; 5674 pFrame->nOp = p->nOp; 5675 pFrame->token = pProgram->token; 5676 pFrame->aOnceFlag = p->aOnceFlag; 5677 pFrame->nOnceFlag = p->nOnceFlag; 5678 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5679 pFrame->anExec = p->anExec; 5680 #endif 5681 5682 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5683 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5684 pMem->flags = MEM_Undefined; 5685 pMem->db = db; 5686 } 5687 }else{ 5688 pFrame = pRt->u.pFrame; 5689 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5690 assert( pProgram->nCsr==pFrame->nChildCsr ); 5691 assert( (int)(pOp - aOp)==pFrame->pc ); 5692 } 5693 5694 p->nFrame++; 5695 pFrame->pParent = p->pFrame; 5696 pFrame->lastRowid = lastRowid; 5697 pFrame->nChange = p->nChange; 5698 pFrame->nDbChange = p->db->nChange; 5699 assert( pFrame->pAuxData==0 ); 5700 pFrame->pAuxData = p->pAuxData; 5701 p->pAuxData = 0; 5702 p->nChange = 0; 5703 p->pFrame = pFrame; 5704 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5705 p->nMem = pFrame->nChildMem; 5706 p->nCursor = (u16)pFrame->nChildCsr; 5707 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5708 p->aOp = aOp = pProgram->aOp; 5709 p->nOp = pProgram->nOp; 5710 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5711 p->nOnceFlag = pProgram->nOnce; 5712 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5713 p->anExec = 0; 5714 #endif 5715 pOp = &aOp[-1]; 5716 memset(p->aOnceFlag, 0, p->nOnceFlag); 5717 5718 break; 5719 } 5720 5721 /* Opcode: Param P1 P2 * * * 5722 ** 5723 ** This opcode is only ever present in sub-programs called via the 5724 ** OP_Program instruction. Copy a value currently stored in a memory 5725 ** cell of the calling (parent) frame to cell P2 in the current frames 5726 ** address space. This is used by trigger programs to access the new.* 5727 ** and old.* values. 5728 ** 5729 ** The address of the cell in the parent frame is determined by adding 5730 ** the value of the P1 argument to the value of the P1 argument to the 5731 ** calling OP_Program instruction. 5732 */ 5733 case OP_Param: { /* out2 */ 5734 VdbeFrame *pFrame; 5735 Mem *pIn; 5736 pOut = out2Prerelease(p, pOp); 5737 pFrame = p->pFrame; 5738 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5739 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5740 break; 5741 } 5742 5743 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5744 5745 #ifndef SQLITE_OMIT_FOREIGN_KEY 5746 /* Opcode: FkCounter P1 P2 * * * 5747 ** Synopsis: fkctr[P1]+=P2 5748 ** 5749 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5750 ** If P1 is non-zero, the database constraint counter is incremented 5751 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5752 ** statement counter is incremented (immediate foreign key constraints). 5753 */ 5754 case OP_FkCounter: { 5755 if( db->flags & SQLITE_DeferFKs ){ 5756 db->nDeferredImmCons += pOp->p2; 5757 }else if( pOp->p1 ){ 5758 db->nDeferredCons += pOp->p2; 5759 }else{ 5760 p->nFkConstraint += pOp->p2; 5761 } 5762 break; 5763 } 5764 5765 /* Opcode: FkIfZero P1 P2 * * * 5766 ** Synopsis: if fkctr[P1]==0 goto P2 5767 ** 5768 ** This opcode tests if a foreign key constraint-counter is currently zero. 5769 ** If so, jump to instruction P2. Otherwise, fall through to the next 5770 ** instruction. 5771 ** 5772 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5773 ** is zero (the one that counts deferred constraint violations). If P1 is 5774 ** zero, the jump is taken if the statement constraint-counter is zero 5775 ** (immediate foreign key constraint violations). 5776 */ 5777 case OP_FkIfZero: { /* jump */ 5778 if( pOp->p1 ){ 5779 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5780 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 5781 }else{ 5782 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5783 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 5784 } 5785 break; 5786 } 5787 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5788 5789 #ifndef SQLITE_OMIT_AUTOINCREMENT 5790 /* Opcode: MemMax P1 P2 * * * 5791 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5792 ** 5793 ** P1 is a register in the root frame of this VM (the root frame is 5794 ** different from the current frame if this instruction is being executed 5795 ** within a sub-program). Set the value of register P1 to the maximum of 5796 ** its current value and the value in register P2. 5797 ** 5798 ** This instruction throws an error if the memory cell is not initially 5799 ** an integer. 5800 */ 5801 case OP_MemMax: { /* in2 */ 5802 VdbeFrame *pFrame; 5803 if( p->pFrame ){ 5804 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5805 pIn1 = &pFrame->aMem[pOp->p1]; 5806 }else{ 5807 pIn1 = &aMem[pOp->p1]; 5808 } 5809 assert( memIsValid(pIn1) ); 5810 sqlite3VdbeMemIntegerify(pIn1); 5811 pIn2 = &aMem[pOp->p2]; 5812 sqlite3VdbeMemIntegerify(pIn2); 5813 if( pIn1->u.i<pIn2->u.i){ 5814 pIn1->u.i = pIn2->u.i; 5815 } 5816 break; 5817 } 5818 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5819 5820 /* Opcode: IfPos P1 P2 P3 * * 5821 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 5822 ** 5823 ** Register P1 must contain an integer. 5824 ** If the value of register P1 is 1 or greater, subtract P3 from the 5825 ** value in P1 and jump to P2. 5826 ** 5827 ** If the initial value of register P1 is less than 1, then the 5828 ** value is unchanged and control passes through to the next instruction. 5829 */ 5830 case OP_IfPos: { /* jump, in1 */ 5831 pIn1 = &aMem[pOp->p1]; 5832 assert( pIn1->flags&MEM_Int ); 5833 VdbeBranchTaken( pIn1->u.i>0, 2); 5834 if( pIn1->u.i>0 ){ 5835 pIn1->u.i -= pOp->p3; 5836 goto jump_to_p2; 5837 } 5838 break; 5839 } 5840 5841 /* Opcode: OffsetLimit P1 P2 P3 * * 5842 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 5843 ** 5844 ** This opcode performs a commonly used computation associated with 5845 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 5846 ** holds the offset counter. The opcode computes the combined value 5847 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 5848 ** value computed is the total number of rows that will need to be 5849 ** visited in order to complete the query. 5850 ** 5851 ** If r[P3] is zero or negative, that means there is no OFFSET 5852 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 5853 ** 5854 ** if r[P1] is zero or negative, that means there is no LIMIT 5855 ** and r[P2] is set to -1. 5856 ** 5857 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 5858 */ 5859 case OP_OffsetLimit: { /* in1, out2, in3 */ 5860 pIn1 = &aMem[pOp->p1]; 5861 pIn3 = &aMem[pOp->p3]; 5862 pOut = out2Prerelease(p, pOp); 5863 assert( pIn1->flags & MEM_Int ); 5864 assert( pIn3->flags & MEM_Int ); 5865 pOut->u.i = pIn1->u.i<=0 ? -1 : pIn1->u.i+(pIn3->u.i>0?pIn3->u.i:0); 5866 break; 5867 } 5868 5869 /* Opcode: IfNotZero P1 P2 P3 * * 5870 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 5871 ** 5872 ** Register P1 must contain an integer. If the content of register P1 is 5873 ** initially nonzero, then subtract P3 from the value in register P1 and 5874 ** jump to P2. If register P1 is initially zero, leave it unchanged 5875 ** and fall through. 5876 */ 5877 case OP_IfNotZero: { /* jump, in1 */ 5878 pIn1 = &aMem[pOp->p1]; 5879 assert( pIn1->flags&MEM_Int ); 5880 VdbeBranchTaken(pIn1->u.i<0, 2); 5881 if( pIn1->u.i ){ 5882 pIn1->u.i -= pOp->p3; 5883 goto jump_to_p2; 5884 } 5885 break; 5886 } 5887 5888 /* Opcode: DecrJumpZero P1 P2 * * * 5889 ** Synopsis: if (--r[P1])==0 goto P2 5890 ** 5891 ** Register P1 must hold an integer. Decrement the value in register P1 5892 ** then jump to P2 if the new value is exactly zero. 5893 */ 5894 case OP_DecrJumpZero: { /* jump, in1 */ 5895 pIn1 = &aMem[pOp->p1]; 5896 assert( pIn1->flags&MEM_Int ); 5897 pIn1->u.i--; 5898 VdbeBranchTaken(pIn1->u.i==0, 2); 5899 if( pIn1->u.i==0 ) goto jump_to_p2; 5900 break; 5901 } 5902 5903 5904 /* Opcode: JumpZeroIncr P1 P2 * * * 5905 ** Synopsis: if (r[P1]++)==0 ) goto P2 5906 ** 5907 ** The register P1 must contain an integer. If register P1 is initially 5908 ** zero, then jump to P2. Increment register P1 regardless of whether or 5909 ** not the jump is taken. 5910 */ 5911 case OP_JumpZeroIncr: { /* jump, in1 */ 5912 pIn1 = &aMem[pOp->p1]; 5913 assert( pIn1->flags&MEM_Int ); 5914 VdbeBranchTaken(pIn1->u.i==0, 2); 5915 if( (pIn1->u.i++)==0 ) goto jump_to_p2; 5916 break; 5917 } 5918 5919 /* Opcode: AggStep0 * P2 P3 P4 P5 5920 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5921 ** 5922 ** Execute the step function for an aggregate. The 5923 ** function has P5 arguments. P4 is a pointer to the FuncDef 5924 ** structure that specifies the function. Register P3 is the 5925 ** accumulator. 5926 ** 5927 ** The P5 arguments are taken from register P2 and its 5928 ** successors. 5929 */ 5930 /* Opcode: AggStep * P2 P3 P4 P5 5931 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5932 ** 5933 ** Execute the step function for an aggregate. The 5934 ** function has P5 arguments. P4 is a pointer to an sqlite3_context 5935 ** object that is used to run the function. Register P3 is 5936 ** as the accumulator. 5937 ** 5938 ** The P5 arguments are taken from register P2 and its 5939 ** successors. 5940 ** 5941 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 5942 ** the FuncDef stored in P4 is converted into an sqlite3_context and 5943 ** the opcode is changed. In this way, the initialization of the 5944 ** sqlite3_context only happens once, instead of on each call to the 5945 ** step function. 5946 */ 5947 case OP_AggStep0: { 5948 int n; 5949 sqlite3_context *pCtx; 5950 5951 assert( pOp->p4type==P4_FUNCDEF ); 5952 n = pOp->p5; 5953 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5954 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 5955 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 5956 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 5957 if( pCtx==0 ) goto no_mem; 5958 pCtx->pMem = 0; 5959 pCtx->pFunc = pOp->p4.pFunc; 5960 pCtx->iOp = (int)(pOp - aOp); 5961 pCtx->pVdbe = p; 5962 pCtx->argc = n; 5963 pOp->p4type = P4_FUNCCTX; 5964 pOp->p4.pCtx = pCtx; 5965 pOp->opcode = OP_AggStep; 5966 /* Fall through into OP_AggStep */ 5967 } 5968 case OP_AggStep: { 5969 int i; 5970 sqlite3_context *pCtx; 5971 Mem *pMem; 5972 Mem t; 5973 5974 assert( pOp->p4type==P4_FUNCCTX ); 5975 pCtx = pOp->p4.pCtx; 5976 pMem = &aMem[pOp->p3]; 5977 5978 /* If this function is inside of a trigger, the register array in aMem[] 5979 ** might change from one evaluation to the next. The next block of code 5980 ** checks to see if the register array has changed, and if so it 5981 ** reinitializes the relavant parts of the sqlite3_context object */ 5982 if( pCtx->pMem != pMem ){ 5983 pCtx->pMem = pMem; 5984 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 5985 } 5986 5987 #ifdef SQLITE_DEBUG 5988 for(i=0; i<pCtx->argc; i++){ 5989 assert( memIsValid(pCtx->argv[i]) ); 5990 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 5991 } 5992 #endif 5993 5994 pMem->n++; 5995 sqlite3VdbeMemInit(&t, db, MEM_Null); 5996 pCtx->pOut = &t; 5997 pCtx->fErrorOrAux = 0; 5998 pCtx->skipFlag = 0; 5999 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6000 if( pCtx->fErrorOrAux ){ 6001 if( pCtx->isError ){ 6002 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); 6003 rc = pCtx->isError; 6004 } 6005 sqlite3VdbeMemRelease(&t); 6006 if( rc ) goto abort_due_to_error; 6007 }else{ 6008 assert( t.flags==MEM_Null ); 6009 } 6010 if( pCtx->skipFlag ){ 6011 assert( pOp[-1].opcode==OP_CollSeq ); 6012 i = pOp[-1].p1; 6013 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6014 } 6015 break; 6016 } 6017 6018 /* Opcode: AggFinal P1 P2 * P4 * 6019 ** Synopsis: accum=r[P1] N=P2 6020 ** 6021 ** Execute the finalizer function for an aggregate. P1 is 6022 ** the memory location that is the accumulator for the aggregate. 6023 ** 6024 ** P2 is the number of arguments that the step function takes and 6025 ** P4 is a pointer to the FuncDef for this function. The P2 6026 ** argument is not used by this opcode. It is only there to disambiguate 6027 ** functions that can take varying numbers of arguments. The 6028 ** P4 argument is only needed for the degenerate case where 6029 ** the step function was not previously called. 6030 */ 6031 case OP_AggFinal: { 6032 Mem *pMem; 6033 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 6034 pMem = &aMem[pOp->p1]; 6035 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6036 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6037 if( rc ){ 6038 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6039 goto abort_due_to_error; 6040 } 6041 sqlite3VdbeChangeEncoding(pMem, encoding); 6042 UPDATE_MAX_BLOBSIZE(pMem); 6043 if( sqlite3VdbeMemTooBig(pMem) ){ 6044 goto too_big; 6045 } 6046 break; 6047 } 6048 6049 #ifndef SQLITE_OMIT_WAL 6050 /* Opcode: Checkpoint P1 P2 P3 * * 6051 ** 6052 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6053 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6054 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6055 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6056 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6057 ** in the WAL that have been checkpointed after the checkpoint 6058 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6059 ** mem[P3+2] are initialized to -1. 6060 */ 6061 case OP_Checkpoint: { 6062 int i; /* Loop counter */ 6063 int aRes[3]; /* Results */ 6064 Mem *pMem; /* Write results here */ 6065 6066 assert( p->readOnly==0 ); 6067 aRes[0] = 0; 6068 aRes[1] = aRes[2] = -1; 6069 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6070 || pOp->p2==SQLITE_CHECKPOINT_FULL 6071 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6072 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6073 ); 6074 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6075 if( rc ){ 6076 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6077 rc = SQLITE_OK; 6078 aRes[0] = 1; 6079 } 6080 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6081 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6082 } 6083 break; 6084 }; 6085 #endif 6086 6087 #ifndef SQLITE_OMIT_PRAGMA 6088 /* Opcode: JournalMode P1 P2 P3 * * 6089 ** 6090 ** Change the journal mode of database P1 to P3. P3 must be one of the 6091 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6092 ** modes (delete, truncate, persist, off and memory), this is a simple 6093 ** operation. No IO is required. 6094 ** 6095 ** If changing into or out of WAL mode the procedure is more complicated. 6096 ** 6097 ** Write a string containing the final journal-mode to register P2. 6098 */ 6099 case OP_JournalMode: { /* out2 */ 6100 Btree *pBt; /* Btree to change journal mode of */ 6101 Pager *pPager; /* Pager associated with pBt */ 6102 int eNew; /* New journal mode */ 6103 int eOld; /* The old journal mode */ 6104 #ifndef SQLITE_OMIT_WAL 6105 const char *zFilename; /* Name of database file for pPager */ 6106 #endif 6107 6108 pOut = out2Prerelease(p, pOp); 6109 eNew = pOp->p3; 6110 assert( eNew==PAGER_JOURNALMODE_DELETE 6111 || eNew==PAGER_JOURNALMODE_TRUNCATE 6112 || eNew==PAGER_JOURNALMODE_PERSIST 6113 || eNew==PAGER_JOURNALMODE_OFF 6114 || eNew==PAGER_JOURNALMODE_MEMORY 6115 || eNew==PAGER_JOURNALMODE_WAL 6116 || eNew==PAGER_JOURNALMODE_QUERY 6117 ); 6118 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6119 assert( p->readOnly==0 ); 6120 6121 pBt = db->aDb[pOp->p1].pBt; 6122 pPager = sqlite3BtreePager(pBt); 6123 eOld = sqlite3PagerGetJournalMode(pPager); 6124 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6125 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6126 6127 #ifndef SQLITE_OMIT_WAL 6128 zFilename = sqlite3PagerFilename(pPager, 1); 6129 6130 /* Do not allow a transition to journal_mode=WAL for a database 6131 ** in temporary storage or if the VFS does not support shared memory 6132 */ 6133 if( eNew==PAGER_JOURNALMODE_WAL 6134 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6135 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6136 ){ 6137 eNew = eOld; 6138 } 6139 6140 if( (eNew!=eOld) 6141 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6142 ){ 6143 if( !db->autoCommit || db->nVdbeRead>1 ){ 6144 rc = SQLITE_ERROR; 6145 sqlite3VdbeError(p, 6146 "cannot change %s wal mode from within a transaction", 6147 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6148 ); 6149 goto abort_due_to_error; 6150 }else{ 6151 6152 if( eOld==PAGER_JOURNALMODE_WAL ){ 6153 /* If leaving WAL mode, close the log file. If successful, the call 6154 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6155 ** file. An EXCLUSIVE lock may still be held on the database file 6156 ** after a successful return. 6157 */ 6158 rc = sqlite3PagerCloseWal(pPager); 6159 if( rc==SQLITE_OK ){ 6160 sqlite3PagerSetJournalMode(pPager, eNew); 6161 } 6162 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6163 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6164 ** as an intermediate */ 6165 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6166 } 6167 6168 /* Open a transaction on the database file. Regardless of the journal 6169 ** mode, this transaction always uses a rollback journal. 6170 */ 6171 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6172 if( rc==SQLITE_OK ){ 6173 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6174 } 6175 } 6176 } 6177 #endif /* ifndef SQLITE_OMIT_WAL */ 6178 6179 if( rc ) eNew = eOld; 6180 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6181 6182 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6183 pOut->z = (char *)sqlite3JournalModename(eNew); 6184 pOut->n = sqlite3Strlen30(pOut->z); 6185 pOut->enc = SQLITE_UTF8; 6186 sqlite3VdbeChangeEncoding(pOut, encoding); 6187 if( rc ) goto abort_due_to_error; 6188 break; 6189 }; 6190 #endif /* SQLITE_OMIT_PRAGMA */ 6191 6192 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6193 /* Opcode: Vacuum * * * * * 6194 ** 6195 ** Vacuum the entire database. This opcode will cause other virtual 6196 ** machines to be created and run. It may not be called from within 6197 ** a transaction. 6198 */ 6199 case OP_Vacuum: { 6200 assert( p->readOnly==0 ); 6201 rc = sqlite3RunVacuum(&p->zErrMsg, db); 6202 if( rc ) goto abort_due_to_error; 6203 break; 6204 } 6205 #endif 6206 6207 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6208 /* Opcode: IncrVacuum P1 P2 * * * 6209 ** 6210 ** Perform a single step of the incremental vacuum procedure on 6211 ** the P1 database. If the vacuum has finished, jump to instruction 6212 ** P2. Otherwise, fall through to the next instruction. 6213 */ 6214 case OP_IncrVacuum: { /* jump */ 6215 Btree *pBt; 6216 6217 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6218 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6219 assert( p->readOnly==0 ); 6220 pBt = db->aDb[pOp->p1].pBt; 6221 rc = sqlite3BtreeIncrVacuum(pBt); 6222 VdbeBranchTaken(rc==SQLITE_DONE,2); 6223 if( rc ){ 6224 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6225 rc = SQLITE_OK; 6226 goto jump_to_p2; 6227 } 6228 break; 6229 } 6230 #endif 6231 6232 /* Opcode: Expire P1 * * * * 6233 ** 6234 ** Cause precompiled statements to expire. When an expired statement 6235 ** is executed using sqlite3_step() it will either automatically 6236 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6237 ** or it will fail with SQLITE_SCHEMA. 6238 ** 6239 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6240 ** then only the currently executing statement is expired. 6241 */ 6242 case OP_Expire: { 6243 if( !pOp->p1 ){ 6244 sqlite3ExpirePreparedStatements(db); 6245 }else{ 6246 p->expired = 1; 6247 } 6248 break; 6249 } 6250 6251 #ifndef SQLITE_OMIT_SHARED_CACHE 6252 /* Opcode: TableLock P1 P2 P3 P4 * 6253 ** Synopsis: iDb=P1 root=P2 write=P3 6254 ** 6255 ** Obtain a lock on a particular table. This instruction is only used when 6256 ** the shared-cache feature is enabled. 6257 ** 6258 ** P1 is the index of the database in sqlite3.aDb[] of the database 6259 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6260 ** a write lock if P3==1. 6261 ** 6262 ** P2 contains the root-page of the table to lock. 6263 ** 6264 ** P4 contains a pointer to the name of the table being locked. This is only 6265 ** used to generate an error message if the lock cannot be obtained. 6266 */ 6267 case OP_TableLock: { 6268 u8 isWriteLock = (u8)pOp->p3; 6269 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 6270 int p1 = pOp->p1; 6271 assert( p1>=0 && p1<db->nDb ); 6272 assert( DbMaskTest(p->btreeMask, p1) ); 6273 assert( isWriteLock==0 || isWriteLock==1 ); 6274 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6275 if( rc ){ 6276 if( (rc&0xFF)==SQLITE_LOCKED ){ 6277 const char *z = pOp->p4.z; 6278 sqlite3VdbeError(p, "database table is locked: %s", z); 6279 } 6280 goto abort_due_to_error; 6281 } 6282 } 6283 break; 6284 } 6285 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6286 6287 #ifndef SQLITE_OMIT_VIRTUALTABLE 6288 /* Opcode: VBegin * * * P4 * 6289 ** 6290 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6291 ** xBegin method for that table. 6292 ** 6293 ** Also, whether or not P4 is set, check that this is not being called from 6294 ** within a callback to a virtual table xSync() method. If it is, the error 6295 ** code will be set to SQLITE_LOCKED. 6296 */ 6297 case OP_VBegin: { 6298 VTable *pVTab; 6299 pVTab = pOp->p4.pVtab; 6300 rc = sqlite3VtabBegin(db, pVTab); 6301 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6302 if( rc ) goto abort_due_to_error; 6303 break; 6304 } 6305 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6306 6307 #ifndef SQLITE_OMIT_VIRTUALTABLE 6308 /* Opcode: VCreate P1 P2 * * * 6309 ** 6310 ** P2 is a register that holds the name of a virtual table in database 6311 ** P1. Call the xCreate method for that table. 6312 */ 6313 case OP_VCreate: { 6314 Mem sMem; /* For storing the record being decoded */ 6315 const char *zTab; /* Name of the virtual table */ 6316 6317 memset(&sMem, 0, sizeof(sMem)); 6318 sMem.db = db; 6319 /* Because P2 is always a static string, it is impossible for the 6320 ** sqlite3VdbeMemCopy() to fail */ 6321 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 6322 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 6323 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 6324 assert( rc==SQLITE_OK ); 6325 zTab = (const char*)sqlite3_value_text(&sMem); 6326 assert( zTab || db->mallocFailed ); 6327 if( zTab ){ 6328 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 6329 } 6330 sqlite3VdbeMemRelease(&sMem); 6331 if( rc ) goto abort_due_to_error; 6332 break; 6333 } 6334 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6335 6336 #ifndef SQLITE_OMIT_VIRTUALTABLE 6337 /* Opcode: VDestroy P1 * * P4 * 6338 ** 6339 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6340 ** of that table. 6341 */ 6342 case OP_VDestroy: { 6343 db->nVDestroy++; 6344 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6345 db->nVDestroy--; 6346 if( rc ) goto abort_due_to_error; 6347 break; 6348 } 6349 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6350 6351 #ifndef SQLITE_OMIT_VIRTUALTABLE 6352 /* Opcode: VOpen P1 * * P4 * 6353 ** 6354 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6355 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6356 ** table and stores that cursor in P1. 6357 */ 6358 case OP_VOpen: { 6359 VdbeCursor *pCur; 6360 sqlite3_vtab_cursor *pVCur; 6361 sqlite3_vtab *pVtab; 6362 const sqlite3_module *pModule; 6363 6364 assert( p->bIsReader ); 6365 pCur = 0; 6366 pVCur = 0; 6367 pVtab = pOp->p4.pVtab->pVtab; 6368 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6369 rc = SQLITE_LOCKED; 6370 goto abort_due_to_error; 6371 } 6372 pModule = pVtab->pModule; 6373 rc = pModule->xOpen(pVtab, &pVCur); 6374 sqlite3VtabImportErrmsg(p, pVtab); 6375 if( rc ) goto abort_due_to_error; 6376 6377 /* Initialize sqlite3_vtab_cursor base class */ 6378 pVCur->pVtab = pVtab; 6379 6380 /* Initialize vdbe cursor object */ 6381 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 6382 if( pCur ){ 6383 pCur->uc.pVCur = pVCur; 6384 pVtab->nRef++; 6385 }else{ 6386 assert( db->mallocFailed ); 6387 pModule->xClose(pVCur); 6388 goto no_mem; 6389 } 6390 break; 6391 } 6392 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6393 6394 #ifndef SQLITE_OMIT_VIRTUALTABLE 6395 /* Opcode: VFilter P1 P2 P3 P4 * 6396 ** Synopsis: iplan=r[P3] zplan='P4' 6397 ** 6398 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6399 ** the filtered result set is empty. 6400 ** 6401 ** P4 is either NULL or a string that was generated by the xBestIndex 6402 ** method of the module. The interpretation of the P4 string is left 6403 ** to the module implementation. 6404 ** 6405 ** This opcode invokes the xFilter method on the virtual table specified 6406 ** by P1. The integer query plan parameter to xFilter is stored in register 6407 ** P3. Register P3+1 stores the argc parameter to be passed to the 6408 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6409 ** additional parameters which are passed to 6410 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6411 ** 6412 ** A jump is made to P2 if the result set after filtering would be empty. 6413 */ 6414 case OP_VFilter: { /* jump */ 6415 int nArg; 6416 int iQuery; 6417 const sqlite3_module *pModule; 6418 Mem *pQuery; 6419 Mem *pArgc; 6420 sqlite3_vtab_cursor *pVCur; 6421 sqlite3_vtab *pVtab; 6422 VdbeCursor *pCur; 6423 int res; 6424 int i; 6425 Mem **apArg; 6426 6427 pQuery = &aMem[pOp->p3]; 6428 pArgc = &pQuery[1]; 6429 pCur = p->apCsr[pOp->p1]; 6430 assert( memIsValid(pQuery) ); 6431 REGISTER_TRACE(pOp->p3, pQuery); 6432 assert( pCur->eCurType==CURTYPE_VTAB ); 6433 pVCur = pCur->uc.pVCur; 6434 pVtab = pVCur->pVtab; 6435 pModule = pVtab->pModule; 6436 6437 /* Grab the index number and argc parameters */ 6438 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6439 nArg = (int)pArgc->u.i; 6440 iQuery = (int)pQuery->u.i; 6441 6442 /* Invoke the xFilter method */ 6443 res = 0; 6444 apArg = p->apArg; 6445 for(i = 0; i<nArg; i++){ 6446 apArg[i] = &pArgc[i+1]; 6447 } 6448 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 6449 sqlite3VtabImportErrmsg(p, pVtab); 6450 if( rc ) goto abort_due_to_error; 6451 res = pModule->xEof(pVCur); 6452 pCur->nullRow = 0; 6453 VdbeBranchTaken(res!=0,2); 6454 if( res ) goto jump_to_p2; 6455 break; 6456 } 6457 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6458 6459 #ifndef SQLITE_OMIT_VIRTUALTABLE 6460 /* Opcode: VColumn P1 P2 P3 * * 6461 ** Synopsis: r[P3]=vcolumn(P2) 6462 ** 6463 ** Store the value of the P2-th column of 6464 ** the row of the virtual-table that the 6465 ** P1 cursor is pointing to into register P3. 6466 */ 6467 case OP_VColumn: { 6468 sqlite3_vtab *pVtab; 6469 const sqlite3_module *pModule; 6470 Mem *pDest; 6471 sqlite3_context sContext; 6472 6473 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6474 assert( pCur->eCurType==CURTYPE_VTAB ); 6475 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 6476 pDest = &aMem[pOp->p3]; 6477 memAboutToChange(p, pDest); 6478 if( pCur->nullRow ){ 6479 sqlite3VdbeMemSetNull(pDest); 6480 break; 6481 } 6482 pVtab = pCur->uc.pVCur->pVtab; 6483 pModule = pVtab->pModule; 6484 assert( pModule->xColumn ); 6485 memset(&sContext, 0, sizeof(sContext)); 6486 sContext.pOut = pDest; 6487 MemSetTypeFlag(pDest, MEM_Null); 6488 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 6489 sqlite3VtabImportErrmsg(p, pVtab); 6490 if( sContext.isError ){ 6491 rc = sContext.isError; 6492 } 6493 sqlite3VdbeChangeEncoding(pDest, encoding); 6494 REGISTER_TRACE(pOp->p3, pDest); 6495 UPDATE_MAX_BLOBSIZE(pDest); 6496 6497 if( sqlite3VdbeMemTooBig(pDest) ){ 6498 goto too_big; 6499 } 6500 if( rc ) goto abort_due_to_error; 6501 break; 6502 } 6503 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6504 6505 #ifndef SQLITE_OMIT_VIRTUALTABLE 6506 /* Opcode: VNext P1 P2 * * * 6507 ** 6508 ** Advance virtual table P1 to the next row in its result set and 6509 ** jump to instruction P2. Or, if the virtual table has reached 6510 ** the end of its result set, then fall through to the next instruction. 6511 */ 6512 case OP_VNext: { /* jump */ 6513 sqlite3_vtab *pVtab; 6514 const sqlite3_module *pModule; 6515 int res; 6516 VdbeCursor *pCur; 6517 6518 res = 0; 6519 pCur = p->apCsr[pOp->p1]; 6520 assert( pCur->eCurType==CURTYPE_VTAB ); 6521 if( pCur->nullRow ){ 6522 break; 6523 } 6524 pVtab = pCur->uc.pVCur->pVtab; 6525 pModule = pVtab->pModule; 6526 assert( pModule->xNext ); 6527 6528 /* Invoke the xNext() method of the module. There is no way for the 6529 ** underlying implementation to return an error if one occurs during 6530 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6531 ** data is available) and the error code returned when xColumn or 6532 ** some other method is next invoked on the save virtual table cursor. 6533 */ 6534 rc = pModule->xNext(pCur->uc.pVCur); 6535 sqlite3VtabImportErrmsg(p, pVtab); 6536 if( rc ) goto abort_due_to_error; 6537 res = pModule->xEof(pCur->uc.pVCur); 6538 VdbeBranchTaken(!res,2); 6539 if( !res ){ 6540 /* If there is data, jump to P2 */ 6541 goto jump_to_p2_and_check_for_interrupt; 6542 } 6543 goto check_for_interrupt; 6544 } 6545 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6546 6547 #ifndef SQLITE_OMIT_VIRTUALTABLE 6548 /* Opcode: VRename P1 * * P4 * 6549 ** 6550 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6551 ** This opcode invokes the corresponding xRename method. The value 6552 ** in register P1 is passed as the zName argument to the xRename method. 6553 */ 6554 case OP_VRename: { 6555 sqlite3_vtab *pVtab; 6556 Mem *pName; 6557 6558 pVtab = pOp->p4.pVtab->pVtab; 6559 pName = &aMem[pOp->p1]; 6560 assert( pVtab->pModule->xRename ); 6561 assert( memIsValid(pName) ); 6562 assert( p->readOnly==0 ); 6563 REGISTER_TRACE(pOp->p1, pName); 6564 assert( pName->flags & MEM_Str ); 6565 testcase( pName->enc==SQLITE_UTF8 ); 6566 testcase( pName->enc==SQLITE_UTF16BE ); 6567 testcase( pName->enc==SQLITE_UTF16LE ); 6568 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6569 if( rc ) goto abort_due_to_error; 6570 rc = pVtab->pModule->xRename(pVtab, pName->z); 6571 sqlite3VtabImportErrmsg(p, pVtab); 6572 p->expired = 0; 6573 if( rc ) goto abort_due_to_error; 6574 break; 6575 } 6576 #endif 6577 6578 #ifndef SQLITE_OMIT_VIRTUALTABLE 6579 /* Opcode: VUpdate P1 P2 P3 P4 P5 6580 ** Synopsis: data=r[P3@P2] 6581 ** 6582 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6583 ** This opcode invokes the corresponding xUpdate method. P2 values 6584 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6585 ** invocation. The value in register (P3+P2-1) corresponds to the 6586 ** p2th element of the argv array passed to xUpdate. 6587 ** 6588 ** The xUpdate method will do a DELETE or an INSERT or both. 6589 ** The argv[0] element (which corresponds to memory cell P3) 6590 ** is the rowid of a row to delete. If argv[0] is NULL then no 6591 ** deletion occurs. The argv[1] element is the rowid of the new 6592 ** row. This can be NULL to have the virtual table select the new 6593 ** rowid for itself. The subsequent elements in the array are 6594 ** the values of columns in the new row. 6595 ** 6596 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6597 ** a row to delete. 6598 ** 6599 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6600 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6601 ** is set to the value of the rowid for the row just inserted. 6602 ** 6603 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6604 ** apply in the case of a constraint failure on an insert or update. 6605 */ 6606 case OP_VUpdate: { 6607 sqlite3_vtab *pVtab; 6608 const sqlite3_module *pModule; 6609 int nArg; 6610 int i; 6611 sqlite_int64 rowid; 6612 Mem **apArg; 6613 Mem *pX; 6614 6615 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6616 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6617 ); 6618 assert( p->readOnly==0 ); 6619 pVtab = pOp->p4.pVtab->pVtab; 6620 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6621 rc = SQLITE_LOCKED; 6622 goto abort_due_to_error; 6623 } 6624 pModule = pVtab->pModule; 6625 nArg = pOp->p2; 6626 assert( pOp->p4type==P4_VTAB ); 6627 if( ALWAYS(pModule->xUpdate) ){ 6628 u8 vtabOnConflict = db->vtabOnConflict; 6629 apArg = p->apArg; 6630 pX = &aMem[pOp->p3]; 6631 for(i=0; i<nArg; i++){ 6632 assert( memIsValid(pX) ); 6633 memAboutToChange(p, pX); 6634 apArg[i] = pX; 6635 pX++; 6636 } 6637 db->vtabOnConflict = pOp->p5; 6638 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6639 db->vtabOnConflict = vtabOnConflict; 6640 sqlite3VtabImportErrmsg(p, pVtab); 6641 if( rc==SQLITE_OK && pOp->p1 ){ 6642 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6643 db->lastRowid = lastRowid = rowid; 6644 } 6645 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6646 if( pOp->p5==OE_Ignore ){ 6647 rc = SQLITE_OK; 6648 }else{ 6649 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6650 } 6651 }else{ 6652 p->nChange++; 6653 } 6654 if( rc ) goto abort_due_to_error; 6655 } 6656 break; 6657 } 6658 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6659 6660 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6661 /* Opcode: Pagecount P1 P2 * * * 6662 ** 6663 ** Write the current number of pages in database P1 to memory cell P2. 6664 */ 6665 case OP_Pagecount: { /* out2 */ 6666 pOut = out2Prerelease(p, pOp); 6667 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6668 break; 6669 } 6670 #endif 6671 6672 6673 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6674 /* Opcode: MaxPgcnt P1 P2 P3 * * 6675 ** 6676 ** Try to set the maximum page count for database P1 to the value in P3. 6677 ** Do not let the maximum page count fall below the current page count and 6678 ** do not change the maximum page count value if P3==0. 6679 ** 6680 ** Store the maximum page count after the change in register P2. 6681 */ 6682 case OP_MaxPgcnt: { /* out2 */ 6683 unsigned int newMax; 6684 Btree *pBt; 6685 6686 pOut = out2Prerelease(p, pOp); 6687 pBt = db->aDb[pOp->p1].pBt; 6688 newMax = 0; 6689 if( pOp->p3 ){ 6690 newMax = sqlite3BtreeLastPage(pBt); 6691 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6692 } 6693 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6694 break; 6695 } 6696 #endif 6697 6698 6699 /* Opcode: Init * P2 * P4 * 6700 ** Synopsis: Start at P2 6701 ** 6702 ** Programs contain a single instance of this opcode as the very first 6703 ** opcode. 6704 ** 6705 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6706 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6707 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 6708 ** 6709 ** If P2 is not zero, jump to instruction P2. 6710 */ 6711 case OP_Init: { /* jump */ 6712 char *zTrace; 6713 char *z; 6714 6715 #ifndef SQLITE_OMIT_TRACE 6716 if( db->xTrace 6717 && !p->doingRerun 6718 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6719 ){ 6720 z = sqlite3VdbeExpandSql(p, zTrace); 6721 db->xTrace(db->pTraceArg, z); 6722 sqlite3DbFree(db, z); 6723 } 6724 #ifdef SQLITE_USE_FCNTL_TRACE 6725 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6726 if( zTrace ){ 6727 int i; 6728 for(i=0; i<db->nDb; i++){ 6729 if( DbMaskTest(p->btreeMask, i)==0 ) continue; 6730 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); 6731 } 6732 } 6733 #endif /* SQLITE_USE_FCNTL_TRACE */ 6734 #ifdef SQLITE_DEBUG 6735 if( (db->flags & SQLITE_SqlTrace)!=0 6736 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6737 ){ 6738 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6739 } 6740 #endif /* SQLITE_DEBUG */ 6741 #endif /* SQLITE_OMIT_TRACE */ 6742 if( pOp->p2 ) goto jump_to_p2; 6743 break; 6744 } 6745 6746 #ifdef SQLITE_ENABLE_CURSOR_HINTS 6747 /* Opcode: CursorHint P1 * * P4 * 6748 ** 6749 ** Provide a hint to cursor P1 that it only needs to return rows that 6750 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 6751 ** to values currently held in registers. TK_COLUMN terms in the P4 6752 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 6753 */ 6754 case OP_CursorHint: { 6755 VdbeCursor *pC; 6756 6757 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6758 assert( pOp->p4type==P4_EXPR ); 6759 pC = p->apCsr[pOp->p1]; 6760 if( pC ){ 6761 assert( pC->eCurType==CURTYPE_BTREE ); 6762 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 6763 pOp->p4.pExpr, aMem); 6764 } 6765 break; 6766 } 6767 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 6768 6769 /* Opcode: Noop * * * * * 6770 ** 6771 ** Do nothing. This instruction is often useful as a jump 6772 ** destination. 6773 */ 6774 /* 6775 ** The magic Explain opcode are only inserted when explain==2 (which 6776 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6777 ** This opcode records information from the optimizer. It is the 6778 ** the same as a no-op. This opcodesnever appears in a real VM program. 6779 */ 6780 default: { /* This is really OP_Noop and OP_Explain */ 6781 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6782 break; 6783 } 6784 6785 /***************************************************************************** 6786 ** The cases of the switch statement above this line should all be indented 6787 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6788 ** readability. From this point on down, the normal indentation rules are 6789 ** restored. 6790 *****************************************************************************/ 6791 } 6792 6793 #ifdef VDBE_PROFILE 6794 { 6795 u64 endTime = sqlite3Hwtime(); 6796 if( endTime>start ) pOrigOp->cycles += endTime - start; 6797 pOrigOp->cnt++; 6798 } 6799 #endif 6800 6801 /* The following code adds nothing to the actual functionality 6802 ** of the program. It is only here for testing and debugging. 6803 ** On the other hand, it does burn CPU cycles every time through 6804 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6805 */ 6806 #ifndef NDEBUG 6807 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 6808 6809 #ifdef SQLITE_DEBUG 6810 if( db->flags & SQLITE_VdbeTrace ){ 6811 if( rc!=0 ) printf("rc=%d\n",rc); 6812 if( pOrigOp->opflags & (OPFLG_OUT2) ){ 6813 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 6814 } 6815 if( pOrigOp->opflags & OPFLG_OUT3 ){ 6816 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 6817 } 6818 } 6819 #endif /* SQLITE_DEBUG */ 6820 #endif /* NDEBUG */ 6821 } /* The end of the for(;;) loop the loops through opcodes */ 6822 6823 /* If we reach this point, it means that execution is finished with 6824 ** an error of some kind. 6825 */ 6826 abort_due_to_error: 6827 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 6828 assert( rc ); 6829 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 6830 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 6831 } 6832 p->rc = rc; 6833 testcase( sqlite3GlobalConfig.xLog!=0 ); 6834 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6835 (int)(pOp - aOp), p->zSql, p->zErrMsg); 6836 sqlite3VdbeHalt(p); 6837 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 6838 rc = SQLITE_ERROR; 6839 if( resetSchemaOnFault>0 ){ 6840 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6841 } 6842 6843 /* This is the only way out of this procedure. We have to 6844 ** release the mutexes on btrees that were acquired at the 6845 ** top. */ 6846 vdbe_return: 6847 db->lastRowid = lastRowid; 6848 testcase( nVmStep>0 ); 6849 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 6850 sqlite3VdbeLeave(p); 6851 assert( rc!=SQLITE_OK || nExtraDelete==0 6852 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 6853 ); 6854 return rc; 6855 6856 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6857 ** is encountered. 6858 */ 6859 too_big: 6860 sqlite3VdbeError(p, "string or blob too big"); 6861 rc = SQLITE_TOOBIG; 6862 goto abort_due_to_error; 6863 6864 /* Jump to here if a malloc() fails. 6865 */ 6866 no_mem: 6867 sqlite3OomFault(db); 6868 sqlite3VdbeError(p, "out of memory"); 6869 rc = SQLITE_NOMEM_BKPT; 6870 goto abort_due_to_error; 6871 6872 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6873 ** flag. 6874 */ 6875 abort_due_to_interrupt: 6876 assert( db->u1.isInterrupted ); 6877 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 6878 p->rc = rc; 6879 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 6880 goto abort_due_to_error; 6881 } 6882