xref: /sqlite-3.40.0/src/vdbe.c (revision 79d5bc80)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   int iDb,              /* Database the cursor belongs to, or -1 */
245   u8 eCurType           /* Type of the new cursor */
246 ){
247   /* Find the memory cell that will be used to store the blob of memory
248   ** required for this VdbeCursor structure. It is convenient to use a
249   ** vdbe memory cell to manage the memory allocation required for a
250   ** VdbeCursor structure for the following reasons:
251   **
252   **   * Sometimes cursor numbers are used for a couple of different
253   **     purposes in a vdbe program. The different uses might require
254   **     different sized allocations. Memory cells provide growable
255   **     allocations.
256   **
257   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
258   **     be freed lazily via the sqlite3_release_memory() API. This
259   **     minimizes the number of malloc calls made by the system.
260   **
261   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
262   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
263   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
264   */
265   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
266 
267   int nByte;
268   VdbeCursor *pCx = 0;
269   nByte =
270       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
271       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
272 
273   assert( iCur>=0 && iCur<p->nCursor );
274   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
275     /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag
276     ** is clear. Otherwise, if this is an ephemeral cursor created by
277     ** OP_OpenDup, the cursor will not be closed and will still be part
278     ** of a BtShared.pCursor list.  */
279     if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0;
280     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
281     p->apCsr[iCur] = 0;
282   }
283   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
284     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
285     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
286     pCx->eCurType = eCurType;
287     pCx->iDb = iDb;
288     pCx->nField = nField;
289     pCx->aOffset = &pCx->aType[nField];
290     if( eCurType==CURTYPE_BTREE ){
291       pCx->uc.pCursor = (BtCursor*)
292           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
293       sqlite3BtreeCursorZero(pCx->uc.pCursor);
294     }
295   }
296   return pCx;
297 }
298 
299 /*
300 ** The string in pRec is known to look like an integer and to have a
301 ** floating point value of rValue.  Return true and set *piValue to the
302 ** integer value if the string is in range to be an integer.  Otherwise,
303 ** return false.
304 */
305 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
306   i64 iValue = (double)rValue;
307   if( sqlite3RealSameAsInt(rValue,iValue) ){
308     *piValue = iValue;
309     return 1;
310   }
311   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
312 }
313 
314 /*
315 ** Try to convert a value into a numeric representation if we can
316 ** do so without loss of information.  In other words, if the string
317 ** looks like a number, convert it into a number.  If it does not
318 ** look like a number, leave it alone.
319 **
320 ** If the bTryForInt flag is true, then extra effort is made to give
321 ** an integer representation.  Strings that look like floating point
322 ** values but which have no fractional component (example: '48.00')
323 ** will have a MEM_Int representation when bTryForInt is true.
324 **
325 ** If bTryForInt is false, then if the input string contains a decimal
326 ** point or exponential notation, the result is only MEM_Real, even
327 ** if there is an exact integer representation of the quantity.
328 */
329 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
330   double rValue;
331   u8 enc = pRec->enc;
332   int rc;
333   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
334   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
335   if( rc<=0 ) return;
336   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
337     pRec->flags |= MEM_Int;
338   }else{
339     pRec->u.r = rValue;
340     pRec->flags |= MEM_Real;
341     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
342   }
343   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
344   ** string representation after computing a numeric equivalent, because the
345   ** string representation might not be the canonical representation for the
346   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
347   pRec->flags &= ~MEM_Str;
348 }
349 
350 /*
351 ** Processing is determine by the affinity parameter:
352 **
353 ** SQLITE_AFF_INTEGER:
354 ** SQLITE_AFF_REAL:
355 ** SQLITE_AFF_NUMERIC:
356 **    Try to convert pRec to an integer representation or a
357 **    floating-point representation if an integer representation
358 **    is not possible.  Note that the integer representation is
359 **    always preferred, even if the affinity is REAL, because
360 **    an integer representation is more space efficient on disk.
361 **
362 ** SQLITE_AFF_TEXT:
363 **    Convert pRec to a text representation.
364 **
365 ** SQLITE_AFF_BLOB:
366 ** SQLITE_AFF_NONE:
367 **    No-op.  pRec is unchanged.
368 */
369 static void applyAffinity(
370   Mem *pRec,          /* The value to apply affinity to */
371   char affinity,      /* The affinity to be applied */
372   u8 enc              /* Use this text encoding */
373 ){
374   if( affinity>=SQLITE_AFF_NUMERIC ){
375     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
376              || affinity==SQLITE_AFF_NUMERIC );
377     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
378       if( (pRec->flags & MEM_Real)==0 ){
379         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
380       }else{
381         sqlite3VdbeIntegerAffinity(pRec);
382       }
383     }
384   }else if( affinity==SQLITE_AFF_TEXT ){
385     /* Only attempt the conversion to TEXT if there is an integer or real
386     ** representation (blob and NULL do not get converted) but no string
387     ** representation.  It would be harmless to repeat the conversion if
388     ** there is already a string rep, but it is pointless to waste those
389     ** CPU cycles. */
390     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
391       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
392         testcase( pRec->flags & MEM_Int );
393         testcase( pRec->flags & MEM_Real );
394         testcase( pRec->flags & MEM_IntReal );
395         sqlite3VdbeMemStringify(pRec, enc, 1);
396       }
397     }
398     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
399   }
400 }
401 
402 /*
403 ** Try to convert the type of a function argument or a result column
404 ** into a numeric representation.  Use either INTEGER or REAL whichever
405 ** is appropriate.  But only do the conversion if it is possible without
406 ** loss of information and return the revised type of the argument.
407 */
408 int sqlite3_value_numeric_type(sqlite3_value *pVal){
409   int eType = sqlite3_value_type(pVal);
410   if( eType==SQLITE_TEXT ){
411     Mem *pMem = (Mem*)pVal;
412     applyNumericAffinity(pMem, 0);
413     eType = sqlite3_value_type(pVal);
414   }
415   return eType;
416 }
417 
418 /*
419 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
420 ** not the internal Mem* type.
421 */
422 void sqlite3ValueApplyAffinity(
423   sqlite3_value *pVal,
424   u8 affinity,
425   u8 enc
426 ){
427   applyAffinity((Mem *)pVal, affinity, enc);
428 }
429 
430 /*
431 ** pMem currently only holds a string type (or maybe a BLOB that we can
432 ** interpret as a string if we want to).  Compute its corresponding
433 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
434 ** accordingly.
435 */
436 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
437   int rc;
438   sqlite3_int64 ix;
439   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
440   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
441   ExpandBlob(pMem);
442   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
443   if( rc<=0 ){
444     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
445       pMem->u.i = ix;
446       return MEM_Int;
447     }else{
448       return MEM_Real;
449     }
450   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
451     pMem->u.i = ix;
452     return MEM_Int;
453   }
454   return MEM_Real;
455 }
456 
457 /*
458 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
459 ** none.
460 **
461 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
462 ** But it does set pMem->u.r and pMem->u.i appropriately.
463 */
464 static u16 numericType(Mem *pMem){
465   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
466     testcase( pMem->flags & MEM_Int );
467     testcase( pMem->flags & MEM_Real );
468     testcase( pMem->flags & MEM_IntReal );
469     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
470   }
471   if( pMem->flags & (MEM_Str|MEM_Blob) ){
472     testcase( pMem->flags & MEM_Str );
473     testcase( pMem->flags & MEM_Blob );
474     return computeNumericType(pMem);
475   }
476   return 0;
477 }
478 
479 #ifdef SQLITE_DEBUG
480 /*
481 ** Write a nice string representation of the contents of cell pMem
482 ** into buffer zBuf, length nBuf.
483 */
484 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
485   char *zCsr = zBuf;
486   int f = pMem->flags;
487 
488   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
489 
490   if( f&MEM_Blob ){
491     int i;
492     char c;
493     if( f & MEM_Dyn ){
494       c = 'z';
495       assert( (f & (MEM_Static|MEM_Ephem))==0 );
496     }else if( f & MEM_Static ){
497       c = 't';
498       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
499     }else if( f & MEM_Ephem ){
500       c = 'e';
501       assert( (f & (MEM_Static|MEM_Dyn))==0 );
502     }else{
503       c = 's';
504     }
505     *(zCsr++) = c;
506     *(zCsr++) = 'x';
507     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
508     zCsr += sqlite3Strlen30(zCsr);
509     for(i=0; i<25 && i<pMem->n; i++){
510       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
511       zCsr += sqlite3Strlen30(zCsr);
512     }
513     *zCsr++ = '|';
514     for(i=0; i<25 && i<pMem->n; i++){
515       char z = pMem->z[i];
516       if( z<32 || z>126 ) *zCsr++ = '.';
517       else *zCsr++ = z;
518     }
519     *(zCsr++) = ']';
520     if( f & MEM_Zero ){
521       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
522       zCsr += sqlite3Strlen30(zCsr);
523     }
524     *zCsr = '\0';
525   }else if( f & MEM_Str ){
526     int j, k;
527     zBuf[0] = ' ';
528     if( f & MEM_Dyn ){
529       zBuf[1] = 'z';
530       assert( (f & (MEM_Static|MEM_Ephem))==0 );
531     }else if( f & MEM_Static ){
532       zBuf[1] = 't';
533       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
534     }else if( f & MEM_Ephem ){
535       zBuf[1] = 'e';
536       assert( (f & (MEM_Static|MEM_Dyn))==0 );
537     }else{
538       zBuf[1] = 's';
539     }
540     k = 2;
541     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
542     k += sqlite3Strlen30(&zBuf[k]);
543     zBuf[k++] = '[';
544     for(j=0; j<25 && j<pMem->n; j++){
545       u8 c = pMem->z[j];
546       if( c>=0x20 && c<0x7f ){
547         zBuf[k++] = c;
548       }else{
549         zBuf[k++] = '.';
550       }
551     }
552     zBuf[k++] = ']';
553     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
554     k += sqlite3Strlen30(&zBuf[k]);
555     zBuf[k++] = 0;
556   }
557 }
558 #endif
559 
560 #ifdef SQLITE_DEBUG
561 /*
562 ** Print the value of a register for tracing purposes:
563 */
564 static void memTracePrint(Mem *p){
565   if( p->flags & MEM_Undefined ){
566     printf(" undefined");
567   }else if( p->flags & MEM_Null ){
568     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
569   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
570     printf(" si:%lld", p->u.i);
571   }else if( (p->flags & (MEM_IntReal))!=0 ){
572     printf(" ir:%lld", p->u.i);
573   }else if( p->flags & MEM_Int ){
574     printf(" i:%lld", p->u.i);
575 #ifndef SQLITE_OMIT_FLOATING_POINT
576   }else if( p->flags & MEM_Real ){
577     printf(" r:%.17g", p->u.r);
578 #endif
579   }else if( sqlite3VdbeMemIsRowSet(p) ){
580     printf(" (rowset)");
581   }else{
582     char zBuf[200];
583     sqlite3VdbeMemPrettyPrint(p, zBuf);
584     printf(" %s", zBuf);
585   }
586   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
587 }
588 static void registerTrace(int iReg, Mem *p){
589   printf("R[%d] = ", iReg);
590   memTracePrint(p);
591   if( p->pScopyFrom ){
592     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
593   }
594   printf("\n");
595   sqlite3VdbeCheckMemInvariants(p);
596 }
597 #endif
598 
599 #ifdef SQLITE_DEBUG
600 /*
601 ** Show the values of all registers in the virtual machine.  Used for
602 ** interactive debugging.
603 */
604 void sqlite3VdbeRegisterDump(Vdbe *v){
605   int i;
606   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
607 }
608 #endif /* SQLITE_DEBUG */
609 
610 
611 #ifdef SQLITE_DEBUG
612 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
613 #else
614 #  define REGISTER_TRACE(R,M)
615 #endif
616 
617 
618 #ifdef VDBE_PROFILE
619 
620 /*
621 ** hwtime.h contains inline assembler code for implementing
622 ** high-performance timing routines.
623 */
624 #include "hwtime.h"
625 
626 #endif
627 
628 #ifndef NDEBUG
629 /*
630 ** This function is only called from within an assert() expression. It
631 ** checks that the sqlite3.nTransaction variable is correctly set to
632 ** the number of non-transaction savepoints currently in the
633 ** linked list starting at sqlite3.pSavepoint.
634 **
635 ** Usage:
636 **
637 **     assert( checkSavepointCount(db) );
638 */
639 static int checkSavepointCount(sqlite3 *db){
640   int n = 0;
641   Savepoint *p;
642   for(p=db->pSavepoint; p; p=p->pNext) n++;
643   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
644   return 1;
645 }
646 #endif
647 
648 /*
649 ** Return the register of pOp->p2 after first preparing it to be
650 ** overwritten with an integer value.
651 */
652 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
653   sqlite3VdbeMemSetNull(pOut);
654   pOut->flags = MEM_Int;
655   return pOut;
656 }
657 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
658   Mem *pOut;
659   assert( pOp->p2>0 );
660   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
661   pOut = &p->aMem[pOp->p2];
662   memAboutToChange(p, pOut);
663   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
664     return out2PrereleaseWithClear(pOut);
665   }else{
666     pOut->flags = MEM_Int;
667     return pOut;
668   }
669 }
670 
671 
672 /*
673 ** Execute as much of a VDBE program as we can.
674 ** This is the core of sqlite3_step().
675 */
676 int sqlite3VdbeExec(
677   Vdbe *p                    /* The VDBE */
678 ){
679   Op *aOp = p->aOp;          /* Copy of p->aOp */
680   Op *pOp = aOp;             /* Current operation */
681 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
682   Op *pOrigOp;               /* Value of pOp at the top of the loop */
683 #endif
684 #ifdef SQLITE_DEBUG
685   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
686 #endif
687   int rc = SQLITE_OK;        /* Value to return */
688   sqlite3 *db = p->db;       /* The database */
689   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
690   u8 encoding = ENC(db);     /* The database encoding */
691   int iCompare = 0;          /* Result of last comparison */
692   unsigned nVmStep = 0;      /* Number of virtual machine steps */
693 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
694   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
695 #endif
696   Mem *aMem = p->aMem;       /* Copy of p->aMem */
697   Mem *pIn1 = 0;             /* 1st input operand */
698   Mem *pIn2 = 0;             /* 2nd input operand */
699   Mem *pIn3 = 0;             /* 3rd input operand */
700   Mem *pOut = 0;             /* Output operand */
701 #ifdef VDBE_PROFILE
702   u64 start;                 /* CPU clock count at start of opcode */
703 #endif
704   /*** INSERT STACK UNION HERE ***/
705 
706   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
707   sqlite3VdbeEnter(p);
708 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
709   if( db->xProgress ){
710     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
711     assert( 0 < db->nProgressOps );
712     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
713   }else{
714     nProgressLimit = 0xffffffff;
715   }
716 #endif
717   if( p->rc==SQLITE_NOMEM ){
718     /* This happens if a malloc() inside a call to sqlite3_column_text() or
719     ** sqlite3_column_text16() failed.  */
720     goto no_mem;
721   }
722   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
723   assert( p->bIsReader || p->readOnly!=0 );
724   p->iCurrentTime = 0;
725   assert( p->explain==0 );
726   p->pResultSet = 0;
727   db->busyHandler.nBusy = 0;
728   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
729   sqlite3VdbeIOTraceSql(p);
730 #ifdef SQLITE_DEBUG
731   sqlite3BeginBenignMalloc();
732   if( p->pc==0
733    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
734   ){
735     int i;
736     int once = 1;
737     sqlite3VdbePrintSql(p);
738     if( p->db->flags & SQLITE_VdbeListing ){
739       printf("VDBE Program Listing:\n");
740       for(i=0; i<p->nOp; i++){
741         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
742       }
743     }
744     if( p->db->flags & SQLITE_VdbeEQP ){
745       for(i=0; i<p->nOp; i++){
746         if( aOp[i].opcode==OP_Explain ){
747           if( once ) printf("VDBE Query Plan:\n");
748           printf("%s\n", aOp[i].p4.z);
749           once = 0;
750         }
751       }
752     }
753     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
754   }
755   sqlite3EndBenignMalloc();
756 #endif
757   for(pOp=&aOp[p->pc]; 1; pOp++){
758     /* Errors are detected by individual opcodes, with an immediate
759     ** jumps to abort_due_to_error. */
760     assert( rc==SQLITE_OK );
761 
762     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
763 #ifdef VDBE_PROFILE
764     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
765 #endif
766     nVmStep++;
767 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
768     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
769 #endif
770 
771     /* Only allow tracing if SQLITE_DEBUG is defined.
772     */
773 #ifdef SQLITE_DEBUG
774     if( db->flags & SQLITE_VdbeTrace ){
775       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
776       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
777     }
778 #endif
779 
780 
781     /* Check to see if we need to simulate an interrupt.  This only happens
782     ** if we have a special test build.
783     */
784 #ifdef SQLITE_TEST
785     if( sqlite3_interrupt_count>0 ){
786       sqlite3_interrupt_count--;
787       if( sqlite3_interrupt_count==0 ){
788         sqlite3_interrupt(db);
789       }
790     }
791 #endif
792 
793     /* Sanity checking on other operands */
794 #ifdef SQLITE_DEBUG
795     {
796       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
797       if( (opProperty & OPFLG_IN1)!=0 ){
798         assert( pOp->p1>0 );
799         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
800         assert( memIsValid(&aMem[pOp->p1]) );
801         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
802         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
803       }
804       if( (opProperty & OPFLG_IN2)!=0 ){
805         assert( pOp->p2>0 );
806         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
807         assert( memIsValid(&aMem[pOp->p2]) );
808         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
809         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
810       }
811       if( (opProperty & OPFLG_IN3)!=0 ){
812         assert( pOp->p3>0 );
813         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
814         assert( memIsValid(&aMem[pOp->p3]) );
815         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
816         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
817       }
818       if( (opProperty & OPFLG_OUT2)!=0 ){
819         assert( pOp->p2>0 );
820         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
821         memAboutToChange(p, &aMem[pOp->p2]);
822       }
823       if( (opProperty & OPFLG_OUT3)!=0 ){
824         assert( pOp->p3>0 );
825         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
826         memAboutToChange(p, &aMem[pOp->p3]);
827       }
828     }
829 #endif
830 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
831     pOrigOp = pOp;
832 #endif
833 
834     switch( pOp->opcode ){
835 
836 /*****************************************************************************
837 ** What follows is a massive switch statement where each case implements a
838 ** separate instruction in the virtual machine.  If we follow the usual
839 ** indentation conventions, each case should be indented by 6 spaces.  But
840 ** that is a lot of wasted space on the left margin.  So the code within
841 ** the switch statement will break with convention and be flush-left. Another
842 ** big comment (similar to this one) will mark the point in the code where
843 ** we transition back to normal indentation.
844 **
845 ** The formatting of each case is important.  The makefile for SQLite
846 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
847 ** file looking for lines that begin with "case OP_".  The opcodes.h files
848 ** will be filled with #defines that give unique integer values to each
849 ** opcode and the opcodes.c file is filled with an array of strings where
850 ** each string is the symbolic name for the corresponding opcode.  If the
851 ** case statement is followed by a comment of the form "/# same as ... #/"
852 ** that comment is used to determine the particular value of the opcode.
853 **
854 ** Other keywords in the comment that follows each case are used to
855 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
856 ** Keywords include: in1, in2, in3, out2, out3.  See
857 ** the mkopcodeh.awk script for additional information.
858 **
859 ** Documentation about VDBE opcodes is generated by scanning this file
860 ** for lines of that contain "Opcode:".  That line and all subsequent
861 ** comment lines are used in the generation of the opcode.html documentation
862 ** file.
863 **
864 ** SUMMARY:
865 **
866 **     Formatting is important to scripts that scan this file.
867 **     Do not deviate from the formatting style currently in use.
868 **
869 *****************************************************************************/
870 
871 /* Opcode:  Goto * P2 * * *
872 **
873 ** An unconditional jump to address P2.
874 ** The next instruction executed will be
875 ** the one at index P2 from the beginning of
876 ** the program.
877 **
878 ** The P1 parameter is not actually used by this opcode.  However, it
879 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
880 ** that this Goto is the bottom of a loop and that the lines from P2 down
881 ** to the current line should be indented for EXPLAIN output.
882 */
883 case OP_Goto: {             /* jump */
884 
885 #ifdef SQLITE_DEBUG
886   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
887   ** means we should really jump back to the preceeding OP_ReleaseReg
888   ** instruction. */
889   if( pOp->p5 ){
890     assert( pOp->p2 < (int)(pOp - aOp) );
891     assert( pOp->p2 > 1 );
892     pOp = &aOp[pOp->p2 - 2];
893     assert( pOp[1].opcode==OP_ReleaseReg );
894     goto check_for_interrupt;
895   }
896 #endif
897 
898 jump_to_p2_and_check_for_interrupt:
899   pOp = &aOp[pOp->p2 - 1];
900 
901   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
902   ** OP_VNext, or OP_SorterNext) all jump here upon
903   ** completion.  Check to see if sqlite3_interrupt() has been called
904   ** or if the progress callback needs to be invoked.
905   **
906   ** This code uses unstructured "goto" statements and does not look clean.
907   ** But that is not due to sloppy coding habits. The code is written this
908   ** way for performance, to avoid having to run the interrupt and progress
909   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
910   ** faster according to "valgrind --tool=cachegrind" */
911 check_for_interrupt:
912   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
913 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
914   /* Call the progress callback if it is configured and the required number
915   ** of VDBE ops have been executed (either since this invocation of
916   ** sqlite3VdbeExec() or since last time the progress callback was called).
917   ** If the progress callback returns non-zero, exit the virtual machine with
918   ** a return code SQLITE_ABORT.
919   */
920   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
921     assert( db->nProgressOps!=0 );
922     nProgressLimit += db->nProgressOps;
923     if( db->xProgress(db->pProgressArg) ){
924       nProgressLimit = 0xffffffff;
925       rc = SQLITE_INTERRUPT;
926       goto abort_due_to_error;
927     }
928   }
929 #endif
930 
931   break;
932 }
933 
934 /* Opcode:  Gosub P1 P2 * * *
935 **
936 ** Write the current address onto register P1
937 ** and then jump to address P2.
938 */
939 case OP_Gosub: {            /* jump */
940   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
941   pIn1 = &aMem[pOp->p1];
942   assert( VdbeMemDynamic(pIn1)==0 );
943   memAboutToChange(p, pIn1);
944   pIn1->flags = MEM_Int;
945   pIn1->u.i = (int)(pOp-aOp);
946   REGISTER_TRACE(pOp->p1, pIn1);
947 
948   /* Most jump operations do a goto to this spot in order to update
949   ** the pOp pointer. */
950 jump_to_p2:
951   pOp = &aOp[pOp->p2 - 1];
952   break;
953 }
954 
955 /* Opcode:  Return P1 * * * *
956 **
957 ** Jump to the next instruction after the address in register P1.  After
958 ** the jump, register P1 becomes undefined.
959 */
960 case OP_Return: {           /* in1 */
961   pIn1 = &aMem[pOp->p1];
962   assert( pIn1->flags==MEM_Int );
963   pOp = &aOp[pIn1->u.i];
964   pIn1->flags = MEM_Undefined;
965   break;
966 }
967 
968 /* Opcode: InitCoroutine P1 P2 P3 * *
969 **
970 ** Set up register P1 so that it will Yield to the coroutine
971 ** located at address P3.
972 **
973 ** If P2!=0 then the coroutine implementation immediately follows
974 ** this opcode.  So jump over the coroutine implementation to
975 ** address P2.
976 **
977 ** See also: EndCoroutine
978 */
979 case OP_InitCoroutine: {     /* jump */
980   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
981   assert( pOp->p2>=0 && pOp->p2<p->nOp );
982   assert( pOp->p3>=0 && pOp->p3<p->nOp );
983   pOut = &aMem[pOp->p1];
984   assert( !VdbeMemDynamic(pOut) );
985   pOut->u.i = pOp->p3 - 1;
986   pOut->flags = MEM_Int;
987   if( pOp->p2 ) goto jump_to_p2;
988   break;
989 }
990 
991 /* Opcode:  EndCoroutine P1 * * * *
992 **
993 ** The instruction at the address in register P1 is a Yield.
994 ** Jump to the P2 parameter of that Yield.
995 ** After the jump, register P1 becomes undefined.
996 **
997 ** See also: InitCoroutine
998 */
999 case OP_EndCoroutine: {           /* in1 */
1000   VdbeOp *pCaller;
1001   pIn1 = &aMem[pOp->p1];
1002   assert( pIn1->flags==MEM_Int );
1003   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1004   pCaller = &aOp[pIn1->u.i];
1005   assert( pCaller->opcode==OP_Yield );
1006   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1007   pOp = &aOp[pCaller->p2 - 1];
1008   pIn1->flags = MEM_Undefined;
1009   break;
1010 }
1011 
1012 /* Opcode:  Yield P1 P2 * * *
1013 **
1014 ** Swap the program counter with the value in register P1.  This
1015 ** has the effect of yielding to a coroutine.
1016 **
1017 ** If the coroutine that is launched by this instruction ends with
1018 ** Yield or Return then continue to the next instruction.  But if
1019 ** the coroutine launched by this instruction ends with
1020 ** EndCoroutine, then jump to P2 rather than continuing with the
1021 ** next instruction.
1022 **
1023 ** See also: InitCoroutine
1024 */
1025 case OP_Yield: {            /* in1, jump */
1026   int pcDest;
1027   pIn1 = &aMem[pOp->p1];
1028   assert( VdbeMemDynamic(pIn1)==0 );
1029   pIn1->flags = MEM_Int;
1030   pcDest = (int)pIn1->u.i;
1031   pIn1->u.i = (int)(pOp - aOp);
1032   REGISTER_TRACE(pOp->p1, pIn1);
1033   pOp = &aOp[pcDest];
1034   break;
1035 }
1036 
1037 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1038 ** Synopsis: if r[P3]=null halt
1039 **
1040 ** Check the value in register P3.  If it is NULL then Halt using
1041 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1042 ** value in register P3 is not NULL, then this routine is a no-op.
1043 ** The P5 parameter should be 1.
1044 */
1045 case OP_HaltIfNull: {      /* in3 */
1046   pIn3 = &aMem[pOp->p3];
1047 #ifdef SQLITE_DEBUG
1048   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1049 #endif
1050   if( (pIn3->flags & MEM_Null)==0 ) break;
1051   /* Fall through into OP_Halt */
1052 }
1053 
1054 /* Opcode:  Halt P1 P2 * P4 P5
1055 **
1056 ** Exit immediately.  All open cursors, etc are closed
1057 ** automatically.
1058 **
1059 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1060 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1061 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1062 ** whether or not to rollback the current transaction.  Do not rollback
1063 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1064 ** then back out all changes that have occurred during this execution of the
1065 ** VDBE, but do not rollback the transaction.
1066 **
1067 ** If P4 is not null then it is an error message string.
1068 **
1069 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1070 **
1071 **    0:  (no change)
1072 **    1:  NOT NULL contraint failed: P4
1073 **    2:  UNIQUE constraint failed: P4
1074 **    3:  CHECK constraint failed: P4
1075 **    4:  FOREIGN KEY constraint failed: P4
1076 **
1077 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1078 ** omitted.
1079 **
1080 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1081 ** every program.  So a jump past the last instruction of the program
1082 ** is the same as executing Halt.
1083 */
1084 case OP_Halt: {
1085   VdbeFrame *pFrame;
1086   int pcx;
1087 
1088   pcx = (int)(pOp - aOp);
1089 #ifdef SQLITE_DEBUG
1090   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1091 #endif
1092   if( pOp->p1==SQLITE_OK && p->pFrame ){
1093     /* Halt the sub-program. Return control to the parent frame. */
1094     pFrame = p->pFrame;
1095     p->pFrame = pFrame->pParent;
1096     p->nFrame--;
1097     sqlite3VdbeSetChanges(db, p->nChange);
1098     pcx = sqlite3VdbeFrameRestore(pFrame);
1099     if( pOp->p2==OE_Ignore ){
1100       /* Instruction pcx is the OP_Program that invoked the sub-program
1101       ** currently being halted. If the p2 instruction of this OP_Halt
1102       ** instruction is set to OE_Ignore, then the sub-program is throwing
1103       ** an IGNORE exception. In this case jump to the address specified
1104       ** as the p2 of the calling OP_Program.  */
1105       pcx = p->aOp[pcx].p2-1;
1106     }
1107     aOp = p->aOp;
1108     aMem = p->aMem;
1109     pOp = &aOp[pcx];
1110     break;
1111   }
1112   p->rc = pOp->p1;
1113   p->errorAction = (u8)pOp->p2;
1114   p->pc = pcx;
1115   assert( pOp->p5<=4 );
1116   if( p->rc ){
1117     if( pOp->p5 ){
1118       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1119                                              "FOREIGN KEY" };
1120       testcase( pOp->p5==1 );
1121       testcase( pOp->p5==2 );
1122       testcase( pOp->p5==3 );
1123       testcase( pOp->p5==4 );
1124       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1125       if( pOp->p4.z ){
1126         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1127       }
1128     }else{
1129       sqlite3VdbeError(p, "%s", pOp->p4.z);
1130     }
1131     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1132   }
1133   rc = sqlite3VdbeHalt(p);
1134   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1135   if( rc==SQLITE_BUSY ){
1136     p->rc = SQLITE_BUSY;
1137   }else{
1138     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1139     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1140     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1141   }
1142   goto vdbe_return;
1143 }
1144 
1145 /* Opcode: Integer P1 P2 * * *
1146 ** Synopsis: r[P2]=P1
1147 **
1148 ** The 32-bit integer value P1 is written into register P2.
1149 */
1150 case OP_Integer: {         /* out2 */
1151   pOut = out2Prerelease(p, pOp);
1152   pOut->u.i = pOp->p1;
1153   break;
1154 }
1155 
1156 /* Opcode: Int64 * P2 * P4 *
1157 ** Synopsis: r[P2]=P4
1158 **
1159 ** P4 is a pointer to a 64-bit integer value.
1160 ** Write that value into register P2.
1161 */
1162 case OP_Int64: {           /* out2 */
1163   pOut = out2Prerelease(p, pOp);
1164   assert( pOp->p4.pI64!=0 );
1165   pOut->u.i = *pOp->p4.pI64;
1166   break;
1167 }
1168 
1169 #ifndef SQLITE_OMIT_FLOATING_POINT
1170 /* Opcode: Real * P2 * P4 *
1171 ** Synopsis: r[P2]=P4
1172 **
1173 ** P4 is a pointer to a 64-bit floating point value.
1174 ** Write that value into register P2.
1175 */
1176 case OP_Real: {            /* same as TK_FLOAT, out2 */
1177   pOut = out2Prerelease(p, pOp);
1178   pOut->flags = MEM_Real;
1179   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1180   pOut->u.r = *pOp->p4.pReal;
1181   break;
1182 }
1183 #endif
1184 
1185 /* Opcode: String8 * P2 * P4 *
1186 ** Synopsis: r[P2]='P4'
1187 **
1188 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1189 ** into a String opcode before it is executed for the first time.  During
1190 ** this transformation, the length of string P4 is computed and stored
1191 ** as the P1 parameter.
1192 */
1193 case OP_String8: {         /* same as TK_STRING, out2 */
1194   assert( pOp->p4.z!=0 );
1195   pOut = out2Prerelease(p, pOp);
1196   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1197 
1198 #ifndef SQLITE_OMIT_UTF16
1199   if( encoding!=SQLITE_UTF8 ){
1200     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1201     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1202     if( rc ) goto too_big;
1203     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1204     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1205     assert( VdbeMemDynamic(pOut)==0 );
1206     pOut->szMalloc = 0;
1207     pOut->flags |= MEM_Static;
1208     if( pOp->p4type==P4_DYNAMIC ){
1209       sqlite3DbFree(db, pOp->p4.z);
1210     }
1211     pOp->p4type = P4_DYNAMIC;
1212     pOp->p4.z = pOut->z;
1213     pOp->p1 = pOut->n;
1214   }
1215 #endif
1216   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1217     goto too_big;
1218   }
1219   pOp->opcode = OP_String;
1220   assert( rc==SQLITE_OK );
1221   /* Fall through to the next case, OP_String */
1222 }
1223 
1224 /* Opcode: String P1 P2 P3 P4 P5
1225 ** Synopsis: r[P2]='P4' (len=P1)
1226 **
1227 ** The string value P4 of length P1 (bytes) is stored in register P2.
1228 **
1229 ** If P3 is not zero and the content of register P3 is equal to P5, then
1230 ** the datatype of the register P2 is converted to BLOB.  The content is
1231 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1232 ** of a string, as if it had been CAST.  In other words:
1233 **
1234 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1235 */
1236 case OP_String: {          /* out2 */
1237   assert( pOp->p4.z!=0 );
1238   pOut = out2Prerelease(p, pOp);
1239   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1240   pOut->z = pOp->p4.z;
1241   pOut->n = pOp->p1;
1242   pOut->enc = encoding;
1243   UPDATE_MAX_BLOBSIZE(pOut);
1244 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1245   if( pOp->p3>0 ){
1246     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1247     pIn3 = &aMem[pOp->p3];
1248     assert( pIn3->flags & MEM_Int );
1249     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1250   }
1251 #endif
1252   break;
1253 }
1254 
1255 /* Opcode: Null P1 P2 P3 * *
1256 ** Synopsis: r[P2..P3]=NULL
1257 **
1258 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1259 ** NULL into register P3 and every register in between P2 and P3.  If P3
1260 ** is less than P2 (typically P3 is zero) then only register P2 is
1261 ** set to NULL.
1262 **
1263 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1264 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1265 ** OP_Ne or OP_Eq.
1266 */
1267 case OP_Null: {           /* out2 */
1268   int cnt;
1269   u16 nullFlag;
1270   pOut = out2Prerelease(p, pOp);
1271   cnt = pOp->p3-pOp->p2;
1272   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1273   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1274   pOut->n = 0;
1275 #ifdef SQLITE_DEBUG
1276   pOut->uTemp = 0;
1277 #endif
1278   while( cnt>0 ){
1279     pOut++;
1280     memAboutToChange(p, pOut);
1281     sqlite3VdbeMemSetNull(pOut);
1282     pOut->flags = nullFlag;
1283     pOut->n = 0;
1284     cnt--;
1285   }
1286   break;
1287 }
1288 
1289 /* Opcode: SoftNull P1 * * * *
1290 ** Synopsis: r[P1]=NULL
1291 **
1292 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1293 ** instruction, but do not free any string or blob memory associated with
1294 ** the register, so that if the value was a string or blob that was
1295 ** previously copied using OP_SCopy, the copies will continue to be valid.
1296 */
1297 case OP_SoftNull: {
1298   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1299   pOut = &aMem[pOp->p1];
1300   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1301   break;
1302 }
1303 
1304 /* Opcode: Blob P1 P2 * P4 *
1305 ** Synopsis: r[P2]=P4 (len=P1)
1306 **
1307 ** P4 points to a blob of data P1 bytes long.  Store this
1308 ** blob in register P2.
1309 */
1310 case OP_Blob: {                /* out2 */
1311   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1312   pOut = out2Prerelease(p, pOp);
1313   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1314   pOut->enc = encoding;
1315   UPDATE_MAX_BLOBSIZE(pOut);
1316   break;
1317 }
1318 
1319 /* Opcode: Variable P1 P2 * P4 *
1320 ** Synopsis: r[P2]=parameter(P1,P4)
1321 **
1322 ** Transfer the values of bound parameter P1 into register P2
1323 **
1324 ** If the parameter is named, then its name appears in P4.
1325 ** The P4 value is used by sqlite3_bind_parameter_name().
1326 */
1327 case OP_Variable: {            /* out2 */
1328   Mem *pVar;       /* Value being transferred */
1329 
1330   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1331   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1332   pVar = &p->aVar[pOp->p1 - 1];
1333   if( sqlite3VdbeMemTooBig(pVar) ){
1334     goto too_big;
1335   }
1336   pOut = &aMem[pOp->p2];
1337   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1338   memcpy(pOut, pVar, MEMCELLSIZE);
1339   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1340   pOut->flags |= MEM_Static|MEM_FromBind;
1341   UPDATE_MAX_BLOBSIZE(pOut);
1342   break;
1343 }
1344 
1345 /* Opcode: Move P1 P2 P3 * *
1346 ** Synopsis: r[P2@P3]=r[P1@P3]
1347 **
1348 ** Move the P3 values in register P1..P1+P3-1 over into
1349 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1350 ** left holding a NULL.  It is an error for register ranges
1351 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1352 ** for P3 to be less than 1.
1353 */
1354 case OP_Move: {
1355   int n;           /* Number of registers left to copy */
1356   int p1;          /* Register to copy from */
1357   int p2;          /* Register to copy to */
1358 
1359   n = pOp->p3;
1360   p1 = pOp->p1;
1361   p2 = pOp->p2;
1362   assert( n>0 && p1>0 && p2>0 );
1363   assert( p1+n<=p2 || p2+n<=p1 );
1364 
1365   pIn1 = &aMem[p1];
1366   pOut = &aMem[p2];
1367   do{
1368     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1369     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1370     assert( memIsValid(pIn1) );
1371     memAboutToChange(p, pOut);
1372     sqlite3VdbeMemMove(pOut, pIn1);
1373 #ifdef SQLITE_DEBUG
1374     pIn1->pScopyFrom = 0;
1375     { int i;
1376       for(i=1; i<p->nMem; i++){
1377         if( aMem[i].pScopyFrom==pIn1 ){
1378           aMem[i].pScopyFrom = pOut;
1379         }
1380       }
1381     }
1382 #endif
1383     Deephemeralize(pOut);
1384     REGISTER_TRACE(p2++, pOut);
1385     pIn1++;
1386     pOut++;
1387   }while( --n );
1388   break;
1389 }
1390 
1391 /* Opcode: Copy P1 P2 P3 * *
1392 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1393 **
1394 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1395 **
1396 ** This instruction makes a deep copy of the value.  A duplicate
1397 ** is made of any string or blob constant.  See also OP_SCopy.
1398 */
1399 case OP_Copy: {
1400   int n;
1401 
1402   n = pOp->p3;
1403   pIn1 = &aMem[pOp->p1];
1404   pOut = &aMem[pOp->p2];
1405   assert( pOut!=pIn1 );
1406   while( 1 ){
1407     memAboutToChange(p, pOut);
1408     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1409     Deephemeralize(pOut);
1410 #ifdef SQLITE_DEBUG
1411     pOut->pScopyFrom = 0;
1412 #endif
1413     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1414     if( (n--)==0 ) break;
1415     pOut++;
1416     pIn1++;
1417   }
1418   break;
1419 }
1420 
1421 /* Opcode: SCopy P1 P2 * * *
1422 ** Synopsis: r[P2]=r[P1]
1423 **
1424 ** Make a shallow copy of register P1 into register P2.
1425 **
1426 ** This instruction makes a shallow copy of the value.  If the value
1427 ** is a string or blob, then the copy is only a pointer to the
1428 ** original and hence if the original changes so will the copy.
1429 ** Worse, if the original is deallocated, the copy becomes invalid.
1430 ** Thus the program must guarantee that the original will not change
1431 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1432 ** copy.
1433 */
1434 case OP_SCopy: {            /* out2 */
1435   pIn1 = &aMem[pOp->p1];
1436   pOut = &aMem[pOp->p2];
1437   assert( pOut!=pIn1 );
1438   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1439 #ifdef SQLITE_DEBUG
1440   pOut->pScopyFrom = pIn1;
1441   pOut->mScopyFlags = pIn1->flags;
1442 #endif
1443   break;
1444 }
1445 
1446 /* Opcode: IntCopy P1 P2 * * *
1447 ** Synopsis: r[P2]=r[P1]
1448 **
1449 ** Transfer the integer value held in register P1 into register P2.
1450 **
1451 ** This is an optimized version of SCopy that works only for integer
1452 ** values.
1453 */
1454 case OP_IntCopy: {            /* out2 */
1455   pIn1 = &aMem[pOp->p1];
1456   assert( (pIn1->flags & MEM_Int)!=0 );
1457   pOut = &aMem[pOp->p2];
1458   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1459   break;
1460 }
1461 
1462 /* Opcode: ResultRow P1 P2 * * *
1463 ** Synopsis: output=r[P1@P2]
1464 **
1465 ** The registers P1 through P1+P2-1 contain a single row of
1466 ** results. This opcode causes the sqlite3_step() call to terminate
1467 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1468 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1469 ** the result row.
1470 */
1471 case OP_ResultRow: {
1472   Mem *pMem;
1473   int i;
1474   assert( p->nResColumn==pOp->p2 );
1475   assert( pOp->p1>0 );
1476   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1477 
1478   /* If this statement has violated immediate foreign key constraints, do
1479   ** not return the number of rows modified. And do not RELEASE the statement
1480   ** transaction. It needs to be rolled back.  */
1481   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1482     assert( db->flags&SQLITE_CountRows );
1483     assert( p->usesStmtJournal );
1484     goto abort_due_to_error;
1485   }
1486 
1487   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1488   ** DML statements invoke this opcode to return the number of rows
1489   ** modified to the user. This is the only way that a VM that
1490   ** opens a statement transaction may invoke this opcode.
1491   **
1492   ** In case this is such a statement, close any statement transaction
1493   ** opened by this VM before returning control to the user. This is to
1494   ** ensure that statement-transactions are always nested, not overlapping.
1495   ** If the open statement-transaction is not closed here, then the user
1496   ** may step another VM that opens its own statement transaction. This
1497   ** may lead to overlapping statement transactions.
1498   **
1499   ** The statement transaction is never a top-level transaction.  Hence
1500   ** the RELEASE call below can never fail.
1501   */
1502   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1503   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1504   assert( rc==SQLITE_OK );
1505 
1506   /* Invalidate all ephemeral cursor row caches */
1507   p->cacheCtr = (p->cacheCtr + 2)|1;
1508 
1509   /* Make sure the results of the current row are \000 terminated
1510   ** and have an assigned type.  The results are de-ephemeralized as
1511   ** a side effect.
1512   */
1513   pMem = p->pResultSet = &aMem[pOp->p1];
1514   for(i=0; i<pOp->p2; i++){
1515     assert( memIsValid(&pMem[i]) );
1516     Deephemeralize(&pMem[i]);
1517     assert( (pMem[i].flags & MEM_Ephem)==0
1518             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1519     sqlite3VdbeMemNulTerminate(&pMem[i]);
1520     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1521 #ifdef SQLITE_DEBUG
1522     /* The registers in the result will not be used again when the
1523     ** prepared statement restarts.  This is because sqlite3_column()
1524     ** APIs might have caused type conversions of made other changes to
1525     ** the register values.  Therefore, we can go ahead and break any
1526     ** OP_SCopy dependencies. */
1527     pMem[i].pScopyFrom = 0;
1528 #endif
1529   }
1530   if( db->mallocFailed ) goto no_mem;
1531 
1532   if( db->mTrace & SQLITE_TRACE_ROW ){
1533     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1534   }
1535 
1536 
1537   /* Return SQLITE_ROW
1538   */
1539   p->pc = (int)(pOp - aOp) + 1;
1540   rc = SQLITE_ROW;
1541   goto vdbe_return;
1542 }
1543 
1544 /* Opcode: Concat P1 P2 P3 * *
1545 ** Synopsis: r[P3]=r[P2]+r[P1]
1546 **
1547 ** Add the text in register P1 onto the end of the text in
1548 ** register P2 and store the result in register P3.
1549 ** If either the P1 or P2 text are NULL then store NULL in P3.
1550 **
1551 **   P3 = P2 || P1
1552 **
1553 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1554 ** if P3 is the same register as P2, the implementation is able
1555 ** to avoid a memcpy().
1556 */
1557 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1558   i64 nByte;          /* Total size of the output string or blob */
1559   u16 flags1;         /* Initial flags for P1 */
1560   u16 flags2;         /* Initial flags for P2 */
1561 
1562   pIn1 = &aMem[pOp->p1];
1563   pIn2 = &aMem[pOp->p2];
1564   pOut = &aMem[pOp->p3];
1565   testcase( pIn1==pIn2 );
1566   testcase( pOut==pIn2 );
1567   assert( pIn1!=pOut );
1568   flags1 = pIn1->flags;
1569   testcase( flags1 & MEM_Null );
1570   testcase( pIn2->flags & MEM_Null );
1571   if( (flags1 | pIn2->flags) & MEM_Null ){
1572     sqlite3VdbeMemSetNull(pOut);
1573     break;
1574   }
1575   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1576     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1577     flags1 = pIn1->flags & ~MEM_Str;
1578   }else if( (flags1 & MEM_Zero)!=0 ){
1579     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1580     flags1 = pIn1->flags & ~MEM_Str;
1581   }
1582   flags2 = pIn2->flags;
1583   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1584     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1585     flags2 = pIn2->flags & ~MEM_Str;
1586   }else if( (flags2 & MEM_Zero)!=0 ){
1587     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1588     flags2 = pIn2->flags & ~MEM_Str;
1589   }
1590   nByte = pIn1->n + pIn2->n;
1591   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1592     goto too_big;
1593   }
1594   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1595     goto no_mem;
1596   }
1597   MemSetTypeFlag(pOut, MEM_Str);
1598   if( pOut!=pIn2 ){
1599     memcpy(pOut->z, pIn2->z, pIn2->n);
1600     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1601     pIn2->flags = flags2;
1602   }
1603   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1604   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1605   pIn1->flags = flags1;
1606   pOut->z[nByte]=0;
1607   pOut->z[nByte+1] = 0;
1608   pOut->z[nByte+2] = 0;
1609   pOut->flags |= MEM_Term;
1610   pOut->n = (int)nByte;
1611   pOut->enc = encoding;
1612   UPDATE_MAX_BLOBSIZE(pOut);
1613   break;
1614 }
1615 
1616 /* Opcode: Add P1 P2 P3 * *
1617 ** Synopsis: r[P3]=r[P1]+r[P2]
1618 **
1619 ** Add the value in register P1 to the value in register P2
1620 ** and store the result in register P3.
1621 ** If either input is NULL, the result is NULL.
1622 */
1623 /* Opcode: Multiply P1 P2 P3 * *
1624 ** Synopsis: r[P3]=r[P1]*r[P2]
1625 **
1626 **
1627 ** Multiply the value in register P1 by the value in register P2
1628 ** and store the result in register P3.
1629 ** If either input is NULL, the result is NULL.
1630 */
1631 /* Opcode: Subtract P1 P2 P3 * *
1632 ** Synopsis: r[P3]=r[P2]-r[P1]
1633 **
1634 ** Subtract the value in register P1 from the value in register P2
1635 ** and store the result in register P3.
1636 ** If either input is NULL, the result is NULL.
1637 */
1638 /* Opcode: Divide P1 P2 P3 * *
1639 ** Synopsis: r[P3]=r[P2]/r[P1]
1640 **
1641 ** Divide the value in register P1 by the value in register P2
1642 ** and store the result in register P3 (P3=P2/P1). If the value in
1643 ** register P1 is zero, then the result is NULL. If either input is
1644 ** NULL, the result is NULL.
1645 */
1646 /* Opcode: Remainder P1 P2 P3 * *
1647 ** Synopsis: r[P3]=r[P2]%r[P1]
1648 **
1649 ** Compute the remainder after integer register P2 is divided by
1650 ** register P1 and store the result in register P3.
1651 ** If the value in register P1 is zero the result is NULL.
1652 ** If either operand is NULL, the result is NULL.
1653 */
1654 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1655 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1656 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1657 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1658 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1659   u16 flags;      /* Combined MEM_* flags from both inputs */
1660   u16 type1;      /* Numeric type of left operand */
1661   u16 type2;      /* Numeric type of right operand */
1662   i64 iA;         /* Integer value of left operand */
1663   i64 iB;         /* Integer value of right operand */
1664   double rA;      /* Real value of left operand */
1665   double rB;      /* Real value of right operand */
1666 
1667   pIn1 = &aMem[pOp->p1];
1668   type1 = numericType(pIn1);
1669   pIn2 = &aMem[pOp->p2];
1670   type2 = numericType(pIn2);
1671   pOut = &aMem[pOp->p3];
1672   flags = pIn1->flags | pIn2->flags;
1673   if( (type1 & type2 & MEM_Int)!=0 ){
1674     iA = pIn1->u.i;
1675     iB = pIn2->u.i;
1676     switch( pOp->opcode ){
1677       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1678       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1679       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1680       case OP_Divide: {
1681         if( iA==0 ) goto arithmetic_result_is_null;
1682         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1683         iB /= iA;
1684         break;
1685       }
1686       default: {
1687         if( iA==0 ) goto arithmetic_result_is_null;
1688         if( iA==-1 ) iA = 1;
1689         iB %= iA;
1690         break;
1691       }
1692     }
1693     pOut->u.i = iB;
1694     MemSetTypeFlag(pOut, MEM_Int);
1695   }else if( (flags & MEM_Null)!=0 ){
1696     goto arithmetic_result_is_null;
1697   }else{
1698 fp_math:
1699     rA = sqlite3VdbeRealValue(pIn1);
1700     rB = sqlite3VdbeRealValue(pIn2);
1701     switch( pOp->opcode ){
1702       case OP_Add:         rB += rA;       break;
1703       case OP_Subtract:    rB -= rA;       break;
1704       case OP_Multiply:    rB *= rA;       break;
1705       case OP_Divide: {
1706         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1707         if( rA==(double)0 ) goto arithmetic_result_is_null;
1708         rB /= rA;
1709         break;
1710       }
1711       default: {
1712         iA = sqlite3VdbeIntValue(pIn1);
1713         iB = sqlite3VdbeIntValue(pIn2);
1714         if( iA==0 ) goto arithmetic_result_is_null;
1715         if( iA==-1 ) iA = 1;
1716         rB = (double)(iB % iA);
1717         break;
1718       }
1719     }
1720 #ifdef SQLITE_OMIT_FLOATING_POINT
1721     pOut->u.i = rB;
1722     MemSetTypeFlag(pOut, MEM_Int);
1723 #else
1724     if( sqlite3IsNaN(rB) ){
1725       goto arithmetic_result_is_null;
1726     }
1727     pOut->u.r = rB;
1728     MemSetTypeFlag(pOut, MEM_Real);
1729 #endif
1730   }
1731   break;
1732 
1733 arithmetic_result_is_null:
1734   sqlite3VdbeMemSetNull(pOut);
1735   break;
1736 }
1737 
1738 /* Opcode: CollSeq P1 * * P4
1739 **
1740 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1741 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1742 ** be returned. This is used by the built-in min(), max() and nullif()
1743 ** functions.
1744 **
1745 ** If P1 is not zero, then it is a register that a subsequent min() or
1746 ** max() aggregate will set to 1 if the current row is not the minimum or
1747 ** maximum.  The P1 register is initialized to 0 by this instruction.
1748 **
1749 ** The interface used by the implementation of the aforementioned functions
1750 ** to retrieve the collation sequence set by this opcode is not available
1751 ** publicly.  Only built-in functions have access to this feature.
1752 */
1753 case OP_CollSeq: {
1754   assert( pOp->p4type==P4_COLLSEQ );
1755   if( pOp->p1 ){
1756     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1757   }
1758   break;
1759 }
1760 
1761 /* Opcode: BitAnd P1 P2 P3 * *
1762 ** Synopsis: r[P3]=r[P1]&r[P2]
1763 **
1764 ** Take the bit-wise AND of the values in register P1 and P2 and
1765 ** store the result in register P3.
1766 ** If either input is NULL, the result is NULL.
1767 */
1768 /* Opcode: BitOr P1 P2 P3 * *
1769 ** Synopsis: r[P3]=r[P1]|r[P2]
1770 **
1771 ** Take the bit-wise OR of the values in register P1 and P2 and
1772 ** store the result in register P3.
1773 ** If either input is NULL, the result is NULL.
1774 */
1775 /* Opcode: ShiftLeft P1 P2 P3 * *
1776 ** Synopsis: r[P3]=r[P2]<<r[P1]
1777 **
1778 ** Shift the integer value in register P2 to the left by the
1779 ** number of bits specified by the integer in register P1.
1780 ** Store the result in register P3.
1781 ** If either input is NULL, the result is NULL.
1782 */
1783 /* Opcode: ShiftRight P1 P2 P3 * *
1784 ** Synopsis: r[P3]=r[P2]>>r[P1]
1785 **
1786 ** Shift the integer value in register P2 to the right by the
1787 ** number of bits specified by the integer in register P1.
1788 ** Store the result in register P3.
1789 ** If either input is NULL, the result is NULL.
1790 */
1791 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1792 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1793 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1794 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1795   i64 iA;
1796   u64 uA;
1797   i64 iB;
1798   u8 op;
1799 
1800   pIn1 = &aMem[pOp->p1];
1801   pIn2 = &aMem[pOp->p2];
1802   pOut = &aMem[pOp->p3];
1803   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1804     sqlite3VdbeMemSetNull(pOut);
1805     break;
1806   }
1807   iA = sqlite3VdbeIntValue(pIn2);
1808   iB = sqlite3VdbeIntValue(pIn1);
1809   op = pOp->opcode;
1810   if( op==OP_BitAnd ){
1811     iA &= iB;
1812   }else if( op==OP_BitOr ){
1813     iA |= iB;
1814   }else if( iB!=0 ){
1815     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1816 
1817     /* If shifting by a negative amount, shift in the other direction */
1818     if( iB<0 ){
1819       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1820       op = 2*OP_ShiftLeft + 1 - op;
1821       iB = iB>(-64) ? -iB : 64;
1822     }
1823 
1824     if( iB>=64 ){
1825       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1826     }else{
1827       memcpy(&uA, &iA, sizeof(uA));
1828       if( op==OP_ShiftLeft ){
1829         uA <<= iB;
1830       }else{
1831         uA >>= iB;
1832         /* Sign-extend on a right shift of a negative number */
1833         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1834       }
1835       memcpy(&iA, &uA, sizeof(iA));
1836     }
1837   }
1838   pOut->u.i = iA;
1839   MemSetTypeFlag(pOut, MEM_Int);
1840   break;
1841 }
1842 
1843 /* Opcode: AddImm  P1 P2 * * *
1844 ** Synopsis: r[P1]=r[P1]+P2
1845 **
1846 ** Add the constant P2 to the value in register P1.
1847 ** The result is always an integer.
1848 **
1849 ** To force any register to be an integer, just add 0.
1850 */
1851 case OP_AddImm: {            /* in1 */
1852   pIn1 = &aMem[pOp->p1];
1853   memAboutToChange(p, pIn1);
1854   sqlite3VdbeMemIntegerify(pIn1);
1855   pIn1->u.i += pOp->p2;
1856   break;
1857 }
1858 
1859 /* Opcode: MustBeInt P1 P2 * * *
1860 **
1861 ** Force the value in register P1 to be an integer.  If the value
1862 ** in P1 is not an integer and cannot be converted into an integer
1863 ** without data loss, then jump immediately to P2, or if P2==0
1864 ** raise an SQLITE_MISMATCH exception.
1865 */
1866 case OP_MustBeInt: {            /* jump, in1 */
1867   pIn1 = &aMem[pOp->p1];
1868   if( (pIn1->flags & MEM_Int)==0 ){
1869     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1870     if( (pIn1->flags & MEM_Int)==0 ){
1871       VdbeBranchTaken(1, 2);
1872       if( pOp->p2==0 ){
1873         rc = SQLITE_MISMATCH;
1874         goto abort_due_to_error;
1875       }else{
1876         goto jump_to_p2;
1877       }
1878     }
1879   }
1880   VdbeBranchTaken(0, 2);
1881   MemSetTypeFlag(pIn1, MEM_Int);
1882   break;
1883 }
1884 
1885 #ifndef SQLITE_OMIT_FLOATING_POINT
1886 /* Opcode: RealAffinity P1 * * * *
1887 **
1888 ** If register P1 holds an integer convert it to a real value.
1889 **
1890 ** This opcode is used when extracting information from a column that
1891 ** has REAL affinity.  Such column values may still be stored as
1892 ** integers, for space efficiency, but after extraction we want them
1893 ** to have only a real value.
1894 */
1895 case OP_RealAffinity: {                  /* in1 */
1896   pIn1 = &aMem[pOp->p1];
1897   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1898     testcase( pIn1->flags & MEM_Int );
1899     testcase( pIn1->flags & MEM_IntReal );
1900     sqlite3VdbeMemRealify(pIn1);
1901     REGISTER_TRACE(pOp->p1, pIn1);
1902   }
1903   break;
1904 }
1905 #endif
1906 
1907 #ifndef SQLITE_OMIT_CAST
1908 /* Opcode: Cast P1 P2 * * *
1909 ** Synopsis: affinity(r[P1])
1910 **
1911 ** Force the value in register P1 to be the type defined by P2.
1912 **
1913 ** <ul>
1914 ** <li> P2=='A' &rarr; BLOB
1915 ** <li> P2=='B' &rarr; TEXT
1916 ** <li> P2=='C' &rarr; NUMERIC
1917 ** <li> P2=='D' &rarr; INTEGER
1918 ** <li> P2=='E' &rarr; REAL
1919 ** </ul>
1920 **
1921 ** A NULL value is not changed by this routine.  It remains NULL.
1922 */
1923 case OP_Cast: {                  /* in1 */
1924   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1925   testcase( pOp->p2==SQLITE_AFF_TEXT );
1926   testcase( pOp->p2==SQLITE_AFF_BLOB );
1927   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1928   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1929   testcase( pOp->p2==SQLITE_AFF_REAL );
1930   pIn1 = &aMem[pOp->p1];
1931   memAboutToChange(p, pIn1);
1932   rc = ExpandBlob(pIn1);
1933   if( rc ) goto abort_due_to_error;
1934   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1935   if( rc ) goto abort_due_to_error;
1936   UPDATE_MAX_BLOBSIZE(pIn1);
1937   REGISTER_TRACE(pOp->p1, pIn1);
1938   break;
1939 }
1940 #endif /* SQLITE_OMIT_CAST */
1941 
1942 /* Opcode: Eq P1 P2 P3 P4 P5
1943 ** Synopsis: IF r[P3]==r[P1]
1944 **
1945 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1946 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1947 ** store the result of comparison in register P2.
1948 **
1949 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1950 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1951 ** to coerce both inputs according to this affinity before the
1952 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1953 ** affinity is used. Note that the affinity conversions are stored
1954 ** back into the input registers P1 and P3.  So this opcode can cause
1955 ** persistent changes to registers P1 and P3.
1956 **
1957 ** Once any conversions have taken place, and neither value is NULL,
1958 ** the values are compared. If both values are blobs then memcmp() is
1959 ** used to determine the results of the comparison.  If both values
1960 ** are text, then the appropriate collating function specified in
1961 ** P4 is used to do the comparison.  If P4 is not specified then
1962 ** memcmp() is used to compare text string.  If both values are
1963 ** numeric, then a numeric comparison is used. If the two values
1964 ** are of different types, then numbers are considered less than
1965 ** strings and strings are considered less than blobs.
1966 **
1967 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1968 ** true or false and is never NULL.  If both operands are NULL then the result
1969 ** of comparison is true.  If either operand is NULL then the result is false.
1970 ** If neither operand is NULL the result is the same as it would be if
1971 ** the SQLITE_NULLEQ flag were omitted from P5.
1972 **
1973 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1974 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1975 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1976 */
1977 /* Opcode: Ne P1 P2 P3 P4 P5
1978 ** Synopsis: IF r[P3]!=r[P1]
1979 **
1980 ** This works just like the Eq opcode except that the jump is taken if
1981 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1982 ** additional information.
1983 **
1984 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1985 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1986 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1987 */
1988 /* Opcode: Lt P1 P2 P3 P4 P5
1989 ** Synopsis: IF r[P3]<r[P1]
1990 **
1991 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1992 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1993 ** the result of comparison (0 or 1 or NULL) into register P2.
1994 **
1995 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1996 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1997 ** bit is clear then fall through if either operand is NULL.
1998 **
1999 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2000 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2001 ** to coerce both inputs according to this affinity before the
2002 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2003 ** affinity is used. Note that the affinity conversions are stored
2004 ** back into the input registers P1 and P3.  So this opcode can cause
2005 ** persistent changes to registers P1 and P3.
2006 **
2007 ** Once any conversions have taken place, and neither value is NULL,
2008 ** the values are compared. If both values are blobs then memcmp() is
2009 ** used to determine the results of the comparison.  If both values
2010 ** are text, then the appropriate collating function specified in
2011 ** P4 is  used to do the comparison.  If P4 is not specified then
2012 ** memcmp() is used to compare text string.  If both values are
2013 ** numeric, then a numeric comparison is used. If the two values
2014 ** are of different types, then numbers are considered less than
2015 ** strings and strings are considered less than blobs.
2016 */
2017 /* Opcode: Le P1 P2 P3 P4 P5
2018 ** Synopsis: IF r[P3]<=r[P1]
2019 **
2020 ** This works just like the Lt opcode except that the jump is taken if
2021 ** the content of register P3 is less than or equal to the content of
2022 ** register P1.  See the Lt opcode for additional information.
2023 */
2024 /* Opcode: Gt P1 P2 P3 P4 P5
2025 ** Synopsis: IF r[P3]>r[P1]
2026 **
2027 ** This works just like the Lt opcode except that the jump is taken if
2028 ** the content of register P3 is greater than the content of
2029 ** register P1.  See the Lt opcode for additional information.
2030 */
2031 /* Opcode: Ge P1 P2 P3 P4 P5
2032 ** Synopsis: IF r[P3]>=r[P1]
2033 **
2034 ** This works just like the Lt opcode except that the jump is taken if
2035 ** the content of register P3 is greater than or equal to the content of
2036 ** register P1.  See the Lt opcode for additional information.
2037 */
2038 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2039 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2040 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2041 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2042 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2043 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2044   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2045   char affinity;      /* Affinity to use for comparison */
2046   u16 flags1;         /* Copy of initial value of pIn1->flags */
2047   u16 flags3;         /* Copy of initial value of pIn3->flags */
2048 
2049   pIn1 = &aMem[pOp->p1];
2050   pIn3 = &aMem[pOp->p3];
2051   flags1 = pIn1->flags;
2052   flags3 = pIn3->flags;
2053   if( (flags1 | flags3)&MEM_Null ){
2054     /* One or both operands are NULL */
2055     if( pOp->p5 & SQLITE_NULLEQ ){
2056       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2057       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2058       ** or not both operands are null.
2059       */
2060       assert( (flags1 & MEM_Cleared)==0 );
2061       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2062       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2063       if( (flags1&flags3&MEM_Null)!=0
2064        && (flags3&MEM_Cleared)==0
2065       ){
2066         res = 0;  /* Operands are equal */
2067       }else{
2068         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2069       }
2070     }else{
2071       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2072       ** then the result is always NULL.
2073       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2074       */
2075       if( pOp->p5 & SQLITE_STOREP2 ){
2076         pOut = &aMem[pOp->p2];
2077         iCompare = 1;    /* Operands are not equal */
2078         memAboutToChange(p, pOut);
2079         MemSetTypeFlag(pOut, MEM_Null);
2080         REGISTER_TRACE(pOp->p2, pOut);
2081       }else{
2082         VdbeBranchTaken(2,3);
2083         if( pOp->p5 & SQLITE_JUMPIFNULL ){
2084           goto jump_to_p2;
2085         }
2086       }
2087       break;
2088     }
2089   }else{
2090     /* Neither operand is NULL.  Do a comparison. */
2091     affinity = pOp->p5 & SQLITE_AFF_MASK;
2092     if( affinity>=SQLITE_AFF_NUMERIC ){
2093       if( (flags1 | flags3)&MEM_Str ){
2094         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2095           applyNumericAffinity(pIn1,0);
2096           testcase( flags3!=pIn3->flags );
2097           flags3 = pIn3->flags;
2098         }
2099         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2100           applyNumericAffinity(pIn3,0);
2101         }
2102       }
2103       /* Handle the common case of integer comparison here, as an
2104       ** optimization, to avoid a call to sqlite3MemCompare() */
2105       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2106         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2107         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2108         res = 0;
2109         goto compare_op;
2110       }
2111     }else if( affinity==SQLITE_AFF_TEXT ){
2112       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2113         testcase( pIn1->flags & MEM_Int );
2114         testcase( pIn1->flags & MEM_Real );
2115         testcase( pIn1->flags & MEM_IntReal );
2116         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2117         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2118         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2119         if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2120       }
2121       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2122         testcase( pIn3->flags & MEM_Int );
2123         testcase( pIn3->flags & MEM_Real );
2124         testcase( pIn3->flags & MEM_IntReal );
2125         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2126         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2127         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2128       }
2129     }
2130     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2131     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2132   }
2133 compare_op:
2134   /* At this point, res is negative, zero, or positive if reg[P1] is
2135   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2136   ** the answer to this operator in res2, depending on what the comparison
2137   ** operator actually is.  The next block of code depends on the fact
2138   ** that the 6 comparison operators are consecutive integers in this
2139   ** order:  NE, EQ, GT, LE, LT, GE */
2140   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2141   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2142   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
2143     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
2144     res2 = aLTb[pOp->opcode - OP_Ne];
2145   }else if( res==0 ){
2146     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
2147     res2 = aEQb[pOp->opcode - OP_Ne];
2148   }else{
2149     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
2150     res2 = aGTb[pOp->opcode - OP_Ne];
2151   }
2152 
2153   /* Undo any changes made by applyAffinity() to the input registers. */
2154   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2155   pIn3->flags = flags3;
2156   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2157   pIn1->flags = flags1;
2158 
2159   if( pOp->p5 & SQLITE_STOREP2 ){
2160     pOut = &aMem[pOp->p2];
2161     iCompare = res;
2162     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2163       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2164       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2165       ** is only used in contexts where either:
2166       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2167       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2168       ** Therefore it is not necessary to check the content of r[P2] for
2169       ** NULL. */
2170       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2171       assert( res2==0 || res2==1 );
2172       testcase( res2==0 && pOp->opcode==OP_Eq );
2173       testcase( res2==1 && pOp->opcode==OP_Eq );
2174       testcase( res2==0 && pOp->opcode==OP_Ne );
2175       testcase( res2==1 && pOp->opcode==OP_Ne );
2176       if( (pOp->opcode==OP_Eq)==res2 ) break;
2177     }
2178     memAboutToChange(p, pOut);
2179     MemSetTypeFlag(pOut, MEM_Int);
2180     pOut->u.i = res2;
2181     REGISTER_TRACE(pOp->p2, pOut);
2182   }else{
2183     VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2184     if( res2 ){
2185       goto jump_to_p2;
2186     }
2187   }
2188   break;
2189 }
2190 
2191 /* Opcode: ElseNotEq * P2 * * *
2192 **
2193 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2194 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2195 ** opcodes are allowed to occur between this instruction and the previous
2196 ** OP_Lt or OP_Gt.  Furthermore, the prior OP_Lt or OP_Gt must have the
2197 ** SQLITE_STOREP2 bit set in the P5 field.
2198 **
2199 ** If result of an OP_Eq comparison on the same two operands as the
2200 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then
2201 ** jump to P2.  If the result of an OP_Eq comparison on the two previous
2202 ** operands would have been true (1), then fall through.
2203 */
2204 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2205 
2206 #ifdef SQLITE_DEBUG
2207   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2208   ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening
2209   ** OP_ReleaseReg opcodes */
2210   int iAddr;
2211   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2212     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2213     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2214     assert( aOp[iAddr].p5 & SQLITE_STOREP2 );
2215     break;
2216   }
2217 #endif /* SQLITE_DEBUG */
2218   VdbeBranchTaken(iCompare!=0, 2);
2219   if( iCompare!=0 ) goto jump_to_p2;
2220   break;
2221 }
2222 
2223 
2224 /* Opcode: Permutation * * * P4 *
2225 **
2226 ** Set the permutation used by the OP_Compare operator in the next
2227 ** instruction.  The permutation is stored in the P4 operand.
2228 **
2229 ** The permutation is only valid until the next OP_Compare that has
2230 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2231 ** occur immediately prior to the OP_Compare.
2232 **
2233 ** The first integer in the P4 integer array is the length of the array
2234 ** and does not become part of the permutation.
2235 */
2236 case OP_Permutation: {
2237   assert( pOp->p4type==P4_INTARRAY );
2238   assert( pOp->p4.ai );
2239   assert( pOp[1].opcode==OP_Compare );
2240   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2241   break;
2242 }
2243 
2244 /* Opcode: Compare P1 P2 P3 P4 P5
2245 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2246 **
2247 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2248 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2249 ** the comparison for use by the next OP_Jump instruct.
2250 **
2251 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2252 ** determined by the most recent OP_Permutation operator.  If the
2253 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2254 ** order.
2255 **
2256 ** P4 is a KeyInfo structure that defines collating sequences and sort
2257 ** orders for the comparison.  The permutation applies to registers
2258 ** only.  The KeyInfo elements are used sequentially.
2259 **
2260 ** The comparison is a sort comparison, so NULLs compare equal,
2261 ** NULLs are less than numbers, numbers are less than strings,
2262 ** and strings are less than blobs.
2263 */
2264 case OP_Compare: {
2265   int n;
2266   int i;
2267   int p1;
2268   int p2;
2269   const KeyInfo *pKeyInfo;
2270   int idx;
2271   CollSeq *pColl;    /* Collating sequence to use on this term */
2272   int bRev;          /* True for DESCENDING sort order */
2273   int *aPermute;     /* The permutation */
2274 
2275   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2276     aPermute = 0;
2277   }else{
2278     assert( pOp>aOp );
2279     assert( pOp[-1].opcode==OP_Permutation );
2280     assert( pOp[-1].p4type==P4_INTARRAY );
2281     aPermute = pOp[-1].p4.ai + 1;
2282     assert( aPermute!=0 );
2283   }
2284   n = pOp->p3;
2285   pKeyInfo = pOp->p4.pKeyInfo;
2286   assert( n>0 );
2287   assert( pKeyInfo!=0 );
2288   p1 = pOp->p1;
2289   p2 = pOp->p2;
2290 #ifdef SQLITE_DEBUG
2291   if( aPermute ){
2292     int k, mx = 0;
2293     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2294     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2295     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2296   }else{
2297     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2298     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2299   }
2300 #endif /* SQLITE_DEBUG */
2301   for(i=0; i<n; i++){
2302     idx = aPermute ? aPermute[i] : i;
2303     assert( memIsValid(&aMem[p1+idx]) );
2304     assert( memIsValid(&aMem[p2+idx]) );
2305     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2306     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2307     assert( i<pKeyInfo->nKeyField );
2308     pColl = pKeyInfo->aColl[i];
2309     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2310     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2311     if( iCompare ){
2312       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2313        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2314       ){
2315         iCompare = -iCompare;
2316       }
2317       if( bRev ) iCompare = -iCompare;
2318       break;
2319     }
2320   }
2321   break;
2322 }
2323 
2324 /* Opcode: Jump P1 P2 P3 * *
2325 **
2326 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2327 ** in the most recent OP_Compare instruction the P1 vector was less than
2328 ** equal to, or greater than the P2 vector, respectively.
2329 */
2330 case OP_Jump: {             /* jump */
2331   if( iCompare<0 ){
2332     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2333   }else if( iCompare==0 ){
2334     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2335   }else{
2336     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2337   }
2338   break;
2339 }
2340 
2341 /* Opcode: And P1 P2 P3 * *
2342 ** Synopsis: r[P3]=(r[P1] && r[P2])
2343 **
2344 ** Take the logical AND of the values in registers P1 and P2 and
2345 ** write the result into register P3.
2346 **
2347 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2348 ** the other input is NULL.  A NULL and true or two NULLs give
2349 ** a NULL output.
2350 */
2351 /* Opcode: Or P1 P2 P3 * *
2352 ** Synopsis: r[P3]=(r[P1] || r[P2])
2353 **
2354 ** Take the logical OR of the values in register P1 and P2 and
2355 ** store the answer in register P3.
2356 **
2357 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2358 ** even if the other input is NULL.  A NULL and false or two NULLs
2359 ** give a NULL output.
2360 */
2361 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2362 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2363   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2364   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2365 
2366   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2367   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2368   if( pOp->opcode==OP_And ){
2369     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2370     v1 = and_logic[v1*3+v2];
2371   }else{
2372     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2373     v1 = or_logic[v1*3+v2];
2374   }
2375   pOut = &aMem[pOp->p3];
2376   if( v1==2 ){
2377     MemSetTypeFlag(pOut, MEM_Null);
2378   }else{
2379     pOut->u.i = v1;
2380     MemSetTypeFlag(pOut, MEM_Int);
2381   }
2382   break;
2383 }
2384 
2385 /* Opcode: IsTrue P1 P2 P3 P4 *
2386 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2387 **
2388 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2389 ** IS NOT FALSE operators.
2390 **
2391 ** Interpret the value in register P1 as a boolean value.  Store that
2392 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2393 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2394 ** is 1.
2395 **
2396 ** The logic is summarized like this:
2397 **
2398 ** <ul>
2399 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2400 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2401 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2402 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2403 ** </ul>
2404 */
2405 case OP_IsTrue: {               /* in1, out2 */
2406   assert( pOp->p4type==P4_INT32 );
2407   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2408   assert( pOp->p3==0 || pOp->p3==1 );
2409   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2410       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2411   break;
2412 }
2413 
2414 /* Opcode: Not P1 P2 * * *
2415 ** Synopsis: r[P2]= !r[P1]
2416 **
2417 ** Interpret the value in register P1 as a boolean value.  Store the
2418 ** boolean complement in register P2.  If the value in register P1 is
2419 ** NULL, then a NULL is stored in P2.
2420 */
2421 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2422   pIn1 = &aMem[pOp->p1];
2423   pOut = &aMem[pOp->p2];
2424   if( (pIn1->flags & MEM_Null)==0 ){
2425     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2426   }else{
2427     sqlite3VdbeMemSetNull(pOut);
2428   }
2429   break;
2430 }
2431 
2432 /* Opcode: BitNot P1 P2 * * *
2433 ** Synopsis: r[P2]= ~r[P1]
2434 **
2435 ** Interpret the content of register P1 as an integer.  Store the
2436 ** ones-complement of the P1 value into register P2.  If P1 holds
2437 ** a NULL then store a NULL in P2.
2438 */
2439 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2440   pIn1 = &aMem[pOp->p1];
2441   pOut = &aMem[pOp->p2];
2442   sqlite3VdbeMemSetNull(pOut);
2443   if( (pIn1->flags & MEM_Null)==0 ){
2444     pOut->flags = MEM_Int;
2445     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2446   }
2447   break;
2448 }
2449 
2450 /* Opcode: Once P1 P2 * * *
2451 **
2452 ** Fall through to the next instruction the first time this opcode is
2453 ** encountered on each invocation of the byte-code program.  Jump to P2
2454 ** on the second and all subsequent encounters during the same invocation.
2455 **
2456 ** Top-level programs determine first invocation by comparing the P1
2457 ** operand against the P1 operand on the OP_Init opcode at the beginning
2458 ** of the program.  If the P1 values differ, then fall through and make
2459 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2460 ** the same then take the jump.
2461 **
2462 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2463 ** whether or not the jump should be taken.  The bitmask is necessary
2464 ** because the self-altering code trick does not work for recursive
2465 ** triggers.
2466 */
2467 case OP_Once: {             /* jump */
2468   u32 iAddr;                /* Address of this instruction */
2469   assert( p->aOp[0].opcode==OP_Init );
2470   if( p->pFrame ){
2471     iAddr = (int)(pOp - p->aOp);
2472     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2473       VdbeBranchTaken(1, 2);
2474       goto jump_to_p2;
2475     }
2476     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2477   }else{
2478     if( p->aOp[0].p1==pOp->p1 ){
2479       VdbeBranchTaken(1, 2);
2480       goto jump_to_p2;
2481     }
2482   }
2483   VdbeBranchTaken(0, 2);
2484   pOp->p1 = p->aOp[0].p1;
2485   break;
2486 }
2487 
2488 /* Opcode: If P1 P2 P3 * *
2489 **
2490 ** Jump to P2 if the value in register P1 is true.  The value
2491 ** is considered true if it is numeric and non-zero.  If the value
2492 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2493 */
2494 case OP_If:  {               /* jump, in1 */
2495   int c;
2496   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2497   VdbeBranchTaken(c!=0, 2);
2498   if( c ) goto jump_to_p2;
2499   break;
2500 }
2501 
2502 /* Opcode: IfNot P1 P2 P3 * *
2503 **
2504 ** Jump to P2 if the value in register P1 is False.  The value
2505 ** is considered false if it has a numeric value of zero.  If the value
2506 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2507 */
2508 case OP_IfNot: {            /* jump, in1 */
2509   int c;
2510   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2511   VdbeBranchTaken(c!=0, 2);
2512   if( c ) goto jump_to_p2;
2513   break;
2514 }
2515 
2516 /* Opcode: IsNull P1 P2 * * *
2517 ** Synopsis: if r[P1]==NULL goto P2
2518 **
2519 ** Jump to P2 if the value in register P1 is NULL.
2520 */
2521 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2522   pIn1 = &aMem[pOp->p1];
2523   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2524   if( (pIn1->flags & MEM_Null)!=0 ){
2525     goto jump_to_p2;
2526   }
2527   break;
2528 }
2529 
2530 /* Opcode: NotNull P1 P2 * * *
2531 ** Synopsis: if r[P1]!=NULL goto P2
2532 **
2533 ** Jump to P2 if the value in register P1 is not NULL.
2534 */
2535 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2536   pIn1 = &aMem[pOp->p1];
2537   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2538   if( (pIn1->flags & MEM_Null)==0 ){
2539     goto jump_to_p2;
2540   }
2541   break;
2542 }
2543 
2544 /* Opcode: IfNullRow P1 P2 P3 * *
2545 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2546 **
2547 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2548 ** If it is, then set register P3 to NULL and jump immediately to P2.
2549 ** If P1 is not on a NULL row, then fall through without making any
2550 ** changes.
2551 */
2552 case OP_IfNullRow: {         /* jump */
2553   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2554   assert( p->apCsr[pOp->p1]!=0 );
2555   if( p->apCsr[pOp->p1]->nullRow ){
2556     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2557     goto jump_to_p2;
2558   }
2559   break;
2560 }
2561 
2562 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2563 /* Opcode: Offset P1 P2 P3 * *
2564 ** Synopsis: r[P3] = sqlite_offset(P1)
2565 **
2566 ** Store in register r[P3] the byte offset into the database file that is the
2567 ** start of the payload for the record at which that cursor P1 is currently
2568 ** pointing.
2569 **
2570 ** P2 is the column number for the argument to the sqlite_offset() function.
2571 ** This opcode does not use P2 itself, but the P2 value is used by the
2572 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2573 ** same as for OP_Column.
2574 **
2575 ** This opcode is only available if SQLite is compiled with the
2576 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2577 */
2578 case OP_Offset: {          /* out3 */
2579   VdbeCursor *pC;    /* The VDBE cursor */
2580   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2581   pC = p->apCsr[pOp->p1];
2582   pOut = &p->aMem[pOp->p3];
2583   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2584     sqlite3VdbeMemSetNull(pOut);
2585   }else{
2586     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2587   }
2588   break;
2589 }
2590 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2591 
2592 /* Opcode: Column P1 P2 P3 P4 P5
2593 ** Synopsis: r[P3]=PX
2594 **
2595 ** Interpret the data that cursor P1 points to as a structure built using
2596 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2597 ** information about the format of the data.)  Extract the P2-th column
2598 ** from this record.  If there are less that (P2+1)
2599 ** values in the record, extract a NULL.
2600 **
2601 ** The value extracted is stored in register P3.
2602 **
2603 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2604 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2605 ** the result.
2606 **
2607 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2608 ** the result is guaranteed to only be used as the argument of a length()
2609 ** or typeof() function, respectively.  The loading of large blobs can be
2610 ** skipped for length() and all content loading can be skipped for typeof().
2611 */
2612 case OP_Column: {
2613   int p2;            /* column number to retrieve */
2614   VdbeCursor *pC;    /* The VDBE cursor */
2615   BtCursor *pCrsr;   /* The BTree cursor */
2616   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2617   int len;           /* The length of the serialized data for the column */
2618   int i;             /* Loop counter */
2619   Mem *pDest;        /* Where to write the extracted value */
2620   Mem sMem;          /* For storing the record being decoded */
2621   const u8 *zData;   /* Part of the record being decoded */
2622   const u8 *zHdr;    /* Next unparsed byte of the header */
2623   const u8 *zEndHdr; /* Pointer to first byte after the header */
2624   u64 offset64;      /* 64-bit offset */
2625   u32 t;             /* A type code from the record header */
2626   Mem *pReg;         /* PseudoTable input register */
2627 
2628   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2629   pC = p->apCsr[pOp->p1];
2630   assert( pC!=0 );
2631   p2 = pOp->p2;
2632 
2633   /* If the cursor cache is stale (meaning it is not currently point at
2634   ** the correct row) then bring it up-to-date by doing the necessary
2635   ** B-Tree seek. */
2636   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2637   if( rc ) goto abort_due_to_error;
2638 
2639   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2640   pDest = &aMem[pOp->p3];
2641   memAboutToChange(p, pDest);
2642   assert( pC!=0 );
2643   assert( p2<pC->nField );
2644   aOffset = pC->aOffset;
2645   assert( pC->eCurType!=CURTYPE_VTAB );
2646   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2647   assert( pC->eCurType!=CURTYPE_SORTER );
2648 
2649   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2650     if( pC->nullRow ){
2651       if( pC->eCurType==CURTYPE_PSEUDO ){
2652         /* For the special case of as pseudo-cursor, the seekResult field
2653         ** identifies the register that holds the record */
2654         assert( pC->seekResult>0 );
2655         pReg = &aMem[pC->seekResult];
2656         assert( pReg->flags & MEM_Blob );
2657         assert( memIsValid(pReg) );
2658         pC->payloadSize = pC->szRow = pReg->n;
2659         pC->aRow = (u8*)pReg->z;
2660       }else{
2661         sqlite3VdbeMemSetNull(pDest);
2662         goto op_column_out;
2663       }
2664     }else{
2665       pCrsr = pC->uc.pCursor;
2666       assert( pC->eCurType==CURTYPE_BTREE );
2667       assert( pCrsr );
2668       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2669       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2670       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2671       assert( pC->szRow<=pC->payloadSize );
2672       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2673       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2674         goto too_big;
2675       }
2676     }
2677     pC->cacheStatus = p->cacheCtr;
2678     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2679     pC->nHdrParsed = 0;
2680 
2681 
2682     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2683       /* pC->aRow does not have to hold the entire row, but it does at least
2684       ** need to cover the header of the record.  If pC->aRow does not contain
2685       ** the complete header, then set it to zero, forcing the header to be
2686       ** dynamically allocated. */
2687       pC->aRow = 0;
2688       pC->szRow = 0;
2689 
2690       /* Make sure a corrupt database has not given us an oversize header.
2691       ** Do this now to avoid an oversize memory allocation.
2692       **
2693       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2694       ** types use so much data space that there can only be 4096 and 32 of
2695       ** them, respectively.  So the maximum header length results from a
2696       ** 3-byte type for each of the maximum of 32768 columns plus three
2697       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2698       */
2699       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2700         goto op_column_corrupt;
2701       }
2702     }else{
2703       /* This is an optimization.  By skipping over the first few tests
2704       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2705       ** measurable performance gain.
2706       **
2707       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2708       ** generated by SQLite, and could be considered corruption, but we
2709       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2710       ** branch jumps to reads past the end of the record, but never more
2711       ** than a few bytes.  Even if the record occurs at the end of the page
2712       ** content area, the "page header" comes after the page content and so
2713       ** this overread is harmless.  Similar overreads can occur for a corrupt
2714       ** database file.
2715       */
2716       zData = pC->aRow;
2717       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2718       testcase( aOffset[0]==0 );
2719       goto op_column_read_header;
2720     }
2721   }
2722 
2723   /* Make sure at least the first p2+1 entries of the header have been
2724   ** parsed and valid information is in aOffset[] and pC->aType[].
2725   */
2726   if( pC->nHdrParsed<=p2 ){
2727     /* If there is more header available for parsing in the record, try
2728     ** to extract additional fields up through the p2+1-th field
2729     */
2730     if( pC->iHdrOffset<aOffset[0] ){
2731       /* Make sure zData points to enough of the record to cover the header. */
2732       if( pC->aRow==0 ){
2733         memset(&sMem, 0, sizeof(sMem));
2734         rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2735         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2736         zData = (u8*)sMem.z;
2737       }else{
2738         zData = pC->aRow;
2739       }
2740 
2741       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2742     op_column_read_header:
2743       i = pC->nHdrParsed;
2744       offset64 = aOffset[i];
2745       zHdr = zData + pC->iHdrOffset;
2746       zEndHdr = zData + aOffset[0];
2747       testcase( zHdr>=zEndHdr );
2748       do{
2749         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2750           zHdr++;
2751           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2752         }else{
2753           zHdr += sqlite3GetVarint32(zHdr, &t);
2754           pC->aType[i] = t;
2755           offset64 += sqlite3VdbeSerialTypeLen(t);
2756         }
2757         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2758       }while( i<=p2 && zHdr<zEndHdr );
2759 
2760       /* The record is corrupt if any of the following are true:
2761       ** (1) the bytes of the header extend past the declared header size
2762       ** (2) the entire header was used but not all data was used
2763       ** (3) the end of the data extends beyond the end of the record.
2764       */
2765       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2766        || (offset64 > pC->payloadSize)
2767       ){
2768         if( aOffset[0]==0 ){
2769           i = 0;
2770           zHdr = zEndHdr;
2771         }else{
2772           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2773           goto op_column_corrupt;
2774         }
2775       }
2776 
2777       pC->nHdrParsed = i;
2778       pC->iHdrOffset = (u32)(zHdr - zData);
2779       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2780     }else{
2781       t = 0;
2782     }
2783 
2784     /* If after trying to extract new entries from the header, nHdrParsed is
2785     ** still not up to p2, that means that the record has fewer than p2
2786     ** columns.  So the result will be either the default value or a NULL.
2787     */
2788     if( pC->nHdrParsed<=p2 ){
2789       if( pOp->p4type==P4_MEM ){
2790         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2791       }else{
2792         sqlite3VdbeMemSetNull(pDest);
2793       }
2794       goto op_column_out;
2795     }
2796   }else{
2797     t = pC->aType[p2];
2798   }
2799 
2800   /* Extract the content for the p2+1-th column.  Control can only
2801   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2802   ** all valid.
2803   */
2804   assert( p2<pC->nHdrParsed );
2805   assert( rc==SQLITE_OK );
2806   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2807   if( VdbeMemDynamic(pDest) ){
2808     sqlite3VdbeMemSetNull(pDest);
2809   }
2810   assert( t==pC->aType[p2] );
2811   if( pC->szRow>=aOffset[p2+1] ){
2812     /* This is the common case where the desired content fits on the original
2813     ** page - where the content is not on an overflow page */
2814     zData = pC->aRow + aOffset[p2];
2815     if( t<12 ){
2816       sqlite3VdbeSerialGet(zData, t, pDest);
2817     }else{
2818       /* If the column value is a string, we need a persistent value, not
2819       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2820       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2821       */
2822       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2823       pDest->n = len = (t-12)/2;
2824       pDest->enc = encoding;
2825       if( pDest->szMalloc < len+2 ){
2826         pDest->flags = MEM_Null;
2827         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2828       }else{
2829         pDest->z = pDest->zMalloc;
2830       }
2831       memcpy(pDest->z, zData, len);
2832       pDest->z[len] = 0;
2833       pDest->z[len+1] = 0;
2834       pDest->flags = aFlag[t&1];
2835     }
2836   }else{
2837     pDest->enc = encoding;
2838     /* This branch happens only when content is on overflow pages */
2839     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2840           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2841      || (len = sqlite3VdbeSerialTypeLen(t))==0
2842     ){
2843       /* Content is irrelevant for
2844       **    1. the typeof() function,
2845       **    2. the length(X) function if X is a blob, and
2846       **    3. if the content length is zero.
2847       ** So we might as well use bogus content rather than reading
2848       ** content from disk.
2849       **
2850       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2851       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2852       ** read up to 16. So 16 bytes of bogus content is supplied.
2853       */
2854       static u8 aZero[16];  /* This is the bogus content */
2855       sqlite3VdbeSerialGet(aZero, t, pDest);
2856     }else{
2857       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2858       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2859       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2860       pDest->flags &= ~MEM_Ephem;
2861     }
2862   }
2863 
2864 op_column_out:
2865   UPDATE_MAX_BLOBSIZE(pDest);
2866   REGISTER_TRACE(pOp->p3, pDest);
2867   break;
2868 
2869 op_column_corrupt:
2870   if( aOp[0].p3>0 ){
2871     pOp = &aOp[aOp[0].p3-1];
2872     break;
2873   }else{
2874     rc = SQLITE_CORRUPT_BKPT;
2875     goto abort_due_to_error;
2876   }
2877 }
2878 
2879 /* Opcode: Affinity P1 P2 * P4 *
2880 ** Synopsis: affinity(r[P1@P2])
2881 **
2882 ** Apply affinities to a range of P2 registers starting with P1.
2883 **
2884 ** P4 is a string that is P2 characters long. The N-th character of the
2885 ** string indicates the column affinity that should be used for the N-th
2886 ** memory cell in the range.
2887 */
2888 case OP_Affinity: {
2889   const char *zAffinity;   /* The affinity to be applied */
2890 
2891   zAffinity = pOp->p4.z;
2892   assert( zAffinity!=0 );
2893   assert( pOp->p2>0 );
2894   assert( zAffinity[pOp->p2]==0 );
2895   pIn1 = &aMem[pOp->p1];
2896   while( 1 /*exit-by-break*/ ){
2897     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2898     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
2899     applyAffinity(pIn1, zAffinity[0], encoding);
2900     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
2901       /* When applying REAL affinity, if the result is still an MEM_Int
2902       ** that will fit in 6 bytes, then change the type to MEM_IntReal
2903       ** so that we keep the high-resolution integer value but know that
2904       ** the type really wants to be REAL. */
2905       testcase( pIn1->u.i==140737488355328LL );
2906       testcase( pIn1->u.i==140737488355327LL );
2907       testcase( pIn1->u.i==-140737488355328LL );
2908       testcase( pIn1->u.i==-140737488355329LL );
2909       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
2910         pIn1->flags |= MEM_IntReal;
2911         pIn1->flags &= ~MEM_Int;
2912       }else{
2913         pIn1->u.r = (double)pIn1->u.i;
2914         pIn1->flags |= MEM_Real;
2915         pIn1->flags &= ~MEM_Int;
2916       }
2917     }
2918     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
2919     zAffinity++;
2920     if( zAffinity[0]==0 ) break;
2921     pIn1++;
2922   }
2923   break;
2924 }
2925 
2926 /* Opcode: MakeRecord P1 P2 P3 P4 *
2927 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2928 **
2929 ** Convert P2 registers beginning with P1 into the [record format]
2930 ** use as a data record in a database table or as a key
2931 ** in an index.  The OP_Column opcode can decode the record later.
2932 **
2933 ** P4 may be a string that is P2 characters long.  The N-th character of the
2934 ** string indicates the column affinity that should be used for the N-th
2935 ** field of the index key.
2936 **
2937 ** The mapping from character to affinity is given by the SQLITE_AFF_
2938 ** macros defined in sqliteInt.h.
2939 **
2940 ** If P4 is NULL then all index fields have the affinity BLOB.
2941 */
2942 case OP_MakeRecord: {
2943   Mem *pRec;             /* The new record */
2944   u64 nData;             /* Number of bytes of data space */
2945   int nHdr;              /* Number of bytes of header space */
2946   i64 nByte;             /* Data space required for this record */
2947   i64 nZero;             /* Number of zero bytes at the end of the record */
2948   int nVarint;           /* Number of bytes in a varint */
2949   u32 serial_type;       /* Type field */
2950   Mem *pData0;           /* First field to be combined into the record */
2951   Mem *pLast;            /* Last field of the record */
2952   int nField;            /* Number of fields in the record */
2953   char *zAffinity;       /* The affinity string for the record */
2954   int file_format;       /* File format to use for encoding */
2955   u32 len;               /* Length of a field */
2956   u8 *zHdr;              /* Where to write next byte of the header */
2957   u8 *zPayload;          /* Where to write next byte of the payload */
2958 
2959   /* Assuming the record contains N fields, the record format looks
2960   ** like this:
2961   **
2962   ** ------------------------------------------------------------------------
2963   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2964   ** ------------------------------------------------------------------------
2965   **
2966   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2967   ** and so forth.
2968   **
2969   ** Each type field is a varint representing the serial type of the
2970   ** corresponding data element (see sqlite3VdbeSerialType()). The
2971   ** hdr-size field is also a varint which is the offset from the beginning
2972   ** of the record to data0.
2973   */
2974   nData = 0;         /* Number of bytes of data space */
2975   nHdr = 0;          /* Number of bytes of header space */
2976   nZero = 0;         /* Number of zero bytes at the end of the record */
2977   nField = pOp->p1;
2978   zAffinity = pOp->p4.z;
2979   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2980   pData0 = &aMem[nField];
2981   nField = pOp->p2;
2982   pLast = &pData0[nField-1];
2983   file_format = p->minWriteFileFormat;
2984 
2985   /* Identify the output register */
2986   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2987   pOut = &aMem[pOp->p3];
2988   memAboutToChange(p, pOut);
2989 
2990   /* Apply the requested affinity to all inputs
2991   */
2992   assert( pData0<=pLast );
2993   if( zAffinity ){
2994     pRec = pData0;
2995     do{
2996       applyAffinity(pRec, zAffinity[0], encoding);
2997       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
2998         pRec->flags |= MEM_IntReal;
2999         pRec->flags &= ~(MEM_Int);
3000       }
3001       REGISTER_TRACE((int)(pRec-aMem), pRec);
3002       zAffinity++;
3003       pRec++;
3004       assert( zAffinity[0]==0 || pRec<=pLast );
3005     }while( zAffinity[0] );
3006   }
3007 
3008 #ifdef SQLITE_ENABLE_NULL_TRIM
3009   /* NULLs can be safely trimmed from the end of the record, as long as
3010   ** as the schema format is 2 or more and none of the omitted columns
3011   ** have a non-NULL default value.  Also, the record must be left with
3012   ** at least one field.  If P5>0 then it will be one more than the
3013   ** index of the right-most column with a non-NULL default value */
3014   if( pOp->p5 ){
3015     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3016       pLast--;
3017       nField--;
3018     }
3019   }
3020 #endif
3021 
3022   /* Loop through the elements that will make up the record to figure
3023   ** out how much space is required for the new record.  After this loop,
3024   ** the Mem.uTemp field of each term should hold the serial-type that will
3025   ** be used for that term in the generated record:
3026   **
3027   **   Mem.uTemp value    type
3028   **   ---------------    ---------------
3029   **      0               NULL
3030   **      1               1-byte signed integer
3031   **      2               2-byte signed integer
3032   **      3               3-byte signed integer
3033   **      4               4-byte signed integer
3034   **      5               6-byte signed integer
3035   **      6               8-byte signed integer
3036   **      7               IEEE float
3037   **      8               Integer constant 0
3038   **      9               Integer constant 1
3039   **     10,11            reserved for expansion
3040   **    N>=12 and even    BLOB
3041   **    N>=13 and odd     text
3042   **
3043   ** The following additional values are computed:
3044   **     nHdr        Number of bytes needed for the record header
3045   **     nData       Number of bytes of data space needed for the record
3046   **     nZero       Zero bytes at the end of the record
3047   */
3048   pRec = pLast;
3049   do{
3050     assert( memIsValid(pRec) );
3051     if( pRec->flags & MEM_Null ){
3052       if( pRec->flags & MEM_Zero ){
3053         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3054         ** table methods that never invoke sqlite3_result_xxxxx() while
3055         ** computing an unchanging column value in an UPDATE statement.
3056         ** Give such values a special internal-use-only serial-type of 10
3057         ** so that they can be passed through to xUpdate and have
3058         ** a true sqlite3_value_nochange(). */
3059         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3060         pRec->uTemp = 10;
3061       }else{
3062         pRec->uTemp = 0;
3063       }
3064       nHdr++;
3065     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3066       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3067       i64 i = pRec->u.i;
3068       u64 uu;
3069       testcase( pRec->flags & MEM_Int );
3070       testcase( pRec->flags & MEM_IntReal );
3071       if( i<0 ){
3072         uu = ~i;
3073       }else{
3074         uu = i;
3075       }
3076       nHdr++;
3077       testcase( uu==127 );               testcase( uu==128 );
3078       testcase( uu==32767 );             testcase( uu==32768 );
3079       testcase( uu==8388607 );           testcase( uu==8388608 );
3080       testcase( uu==2147483647 );        testcase( uu==2147483648 );
3081       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3082       if( uu<=127 ){
3083         if( (i&1)==i && file_format>=4 ){
3084           pRec->uTemp = 8+(u32)uu;
3085         }else{
3086           nData++;
3087           pRec->uTemp = 1;
3088         }
3089       }else if( uu<=32767 ){
3090         nData += 2;
3091         pRec->uTemp = 2;
3092       }else if( uu<=8388607 ){
3093         nData += 3;
3094         pRec->uTemp = 3;
3095       }else if( uu<=2147483647 ){
3096         nData += 4;
3097         pRec->uTemp = 4;
3098       }else if( uu<=140737488355327LL ){
3099         nData += 6;
3100         pRec->uTemp = 5;
3101       }else{
3102         nData += 8;
3103         if( pRec->flags & MEM_IntReal ){
3104           /* If the value is IntReal and is going to take up 8 bytes to store
3105           ** as an integer, then we might as well make it an 8-byte floating
3106           ** point value */
3107           pRec->u.r = (double)pRec->u.i;
3108           pRec->flags &= ~MEM_IntReal;
3109           pRec->flags |= MEM_Real;
3110           pRec->uTemp = 7;
3111         }else{
3112           pRec->uTemp = 6;
3113         }
3114       }
3115     }else if( pRec->flags & MEM_Real ){
3116       nHdr++;
3117       nData += 8;
3118       pRec->uTemp = 7;
3119     }else{
3120       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3121       assert( pRec->n>=0 );
3122       len = (u32)pRec->n;
3123       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3124       if( pRec->flags & MEM_Zero ){
3125         serial_type += pRec->u.nZero*2;
3126         if( nData ){
3127           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3128           len += pRec->u.nZero;
3129         }else{
3130           nZero += pRec->u.nZero;
3131         }
3132       }
3133       nData += len;
3134       nHdr += sqlite3VarintLen(serial_type);
3135       pRec->uTemp = serial_type;
3136     }
3137     if( pRec==pData0 ) break;
3138     pRec--;
3139   }while(1);
3140 
3141   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3142   ** which determines the total number of bytes in the header. The varint
3143   ** value is the size of the header in bytes including the size varint
3144   ** itself. */
3145   testcase( nHdr==126 );
3146   testcase( nHdr==127 );
3147   if( nHdr<=126 ){
3148     /* The common case */
3149     nHdr += 1;
3150   }else{
3151     /* Rare case of a really large header */
3152     nVarint = sqlite3VarintLen(nHdr);
3153     nHdr += nVarint;
3154     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3155   }
3156   nByte = nHdr+nData;
3157 
3158   /* Make sure the output register has a buffer large enough to store
3159   ** the new record. The output register (pOp->p3) is not allowed to
3160   ** be one of the input registers (because the following call to
3161   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3162   */
3163   if( nByte+nZero<=pOut->szMalloc ){
3164     /* The output register is already large enough to hold the record.
3165     ** No error checks or buffer enlargement is required */
3166     pOut->z = pOut->zMalloc;
3167   }else{
3168     /* Need to make sure that the output is not too big and then enlarge
3169     ** the output register to hold the full result */
3170     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3171       goto too_big;
3172     }
3173     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3174       goto no_mem;
3175     }
3176   }
3177   pOut->n = (int)nByte;
3178   pOut->flags = MEM_Blob;
3179   if( nZero ){
3180     pOut->u.nZero = nZero;
3181     pOut->flags |= MEM_Zero;
3182   }
3183   UPDATE_MAX_BLOBSIZE(pOut);
3184   zHdr = (u8 *)pOut->z;
3185   zPayload = zHdr + nHdr;
3186 
3187   /* Write the record */
3188   zHdr += putVarint32(zHdr, nHdr);
3189   assert( pData0<=pLast );
3190   pRec = pData0;
3191   do{
3192     serial_type = pRec->uTemp;
3193     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3194     ** additional varints, one per column. */
3195     zHdr += putVarint32(zHdr, serial_type);            /* serial type */
3196     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
3197     ** immediately follow the header. */
3198     zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */
3199   }while( (++pRec)<=pLast );
3200   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3201   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3202 
3203   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3204   REGISTER_TRACE(pOp->p3, pOut);
3205   break;
3206 }
3207 
3208 /* Opcode: Count P1 P2 * * *
3209 ** Synopsis: r[P2]=count()
3210 **
3211 ** Store the number of entries (an integer value) in the table or index
3212 ** opened by cursor P1 in register P2
3213 */
3214 #ifndef SQLITE_OMIT_BTREECOUNT
3215 case OP_Count: {         /* out2 */
3216   i64 nEntry;
3217   BtCursor *pCrsr;
3218 
3219   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3220   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3221   assert( pCrsr );
3222   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3223   rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3224   if( rc ) goto abort_due_to_error;
3225   pOut = out2Prerelease(p, pOp);
3226   pOut->u.i = nEntry;
3227   goto check_for_interrupt;
3228 }
3229 #endif
3230 
3231 /* Opcode: Savepoint P1 * * P4 *
3232 **
3233 ** Open, release or rollback the savepoint named by parameter P4, depending
3234 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3235 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3236 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3237 */
3238 case OP_Savepoint: {
3239   int p1;                         /* Value of P1 operand */
3240   char *zName;                    /* Name of savepoint */
3241   int nName;
3242   Savepoint *pNew;
3243   Savepoint *pSavepoint;
3244   Savepoint *pTmp;
3245   int iSavepoint;
3246   int ii;
3247 
3248   p1 = pOp->p1;
3249   zName = pOp->p4.z;
3250 
3251   /* Assert that the p1 parameter is valid. Also that if there is no open
3252   ** transaction, then there cannot be any savepoints.
3253   */
3254   assert( db->pSavepoint==0 || db->autoCommit==0 );
3255   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3256   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3257   assert( checkSavepointCount(db) );
3258   assert( p->bIsReader );
3259 
3260   if( p1==SAVEPOINT_BEGIN ){
3261     if( db->nVdbeWrite>0 ){
3262       /* A new savepoint cannot be created if there are active write
3263       ** statements (i.e. open read/write incremental blob handles).
3264       */
3265       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3266       rc = SQLITE_BUSY;
3267     }else{
3268       nName = sqlite3Strlen30(zName);
3269 
3270 #ifndef SQLITE_OMIT_VIRTUALTABLE
3271       /* This call is Ok even if this savepoint is actually a transaction
3272       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3273       ** If this is a transaction savepoint being opened, it is guaranteed
3274       ** that the db->aVTrans[] array is empty.  */
3275       assert( db->autoCommit==0 || db->nVTrans==0 );
3276       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3277                                 db->nStatement+db->nSavepoint);
3278       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3279 #endif
3280 
3281       /* Create a new savepoint structure. */
3282       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3283       if( pNew ){
3284         pNew->zName = (char *)&pNew[1];
3285         memcpy(pNew->zName, zName, nName+1);
3286 
3287         /* If there is no open transaction, then mark this as a special
3288         ** "transaction savepoint". */
3289         if( db->autoCommit ){
3290           db->autoCommit = 0;
3291           db->isTransactionSavepoint = 1;
3292         }else{
3293           db->nSavepoint++;
3294         }
3295 
3296         /* Link the new savepoint into the database handle's list. */
3297         pNew->pNext = db->pSavepoint;
3298         db->pSavepoint = pNew;
3299         pNew->nDeferredCons = db->nDeferredCons;
3300         pNew->nDeferredImmCons = db->nDeferredImmCons;
3301       }
3302     }
3303   }else{
3304     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3305     iSavepoint = 0;
3306 
3307     /* Find the named savepoint. If there is no such savepoint, then an
3308     ** an error is returned to the user.  */
3309     for(
3310       pSavepoint = db->pSavepoint;
3311       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3312       pSavepoint = pSavepoint->pNext
3313     ){
3314       iSavepoint++;
3315     }
3316     if( !pSavepoint ){
3317       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3318       rc = SQLITE_ERROR;
3319     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3320       /* It is not possible to release (commit) a savepoint if there are
3321       ** active write statements.
3322       */
3323       sqlite3VdbeError(p, "cannot release savepoint - "
3324                           "SQL statements in progress");
3325       rc = SQLITE_BUSY;
3326     }else{
3327 
3328       /* Determine whether or not this is a transaction savepoint. If so,
3329       ** and this is a RELEASE command, then the current transaction
3330       ** is committed.
3331       */
3332       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3333       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3334         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3335           goto vdbe_return;
3336         }
3337         db->autoCommit = 1;
3338         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3339           p->pc = (int)(pOp - aOp);
3340           db->autoCommit = 0;
3341           p->rc = rc = SQLITE_BUSY;
3342           goto vdbe_return;
3343         }
3344         rc = p->rc;
3345         if( rc ){
3346           db->autoCommit = 0;
3347         }else{
3348           db->isTransactionSavepoint = 0;
3349         }
3350       }else{
3351         int isSchemaChange;
3352         iSavepoint = db->nSavepoint - iSavepoint - 1;
3353         if( p1==SAVEPOINT_ROLLBACK ){
3354           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3355           for(ii=0; ii<db->nDb; ii++){
3356             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3357                                        SQLITE_ABORT_ROLLBACK,
3358                                        isSchemaChange==0);
3359             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3360           }
3361         }else{
3362           assert( p1==SAVEPOINT_RELEASE );
3363           isSchemaChange = 0;
3364         }
3365         for(ii=0; ii<db->nDb; ii++){
3366           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3367           if( rc!=SQLITE_OK ){
3368             goto abort_due_to_error;
3369           }
3370         }
3371         if( isSchemaChange ){
3372           sqlite3ExpirePreparedStatements(db, 0);
3373           sqlite3ResetAllSchemasOfConnection(db);
3374           db->mDbFlags |= DBFLAG_SchemaChange;
3375         }
3376       }
3377       if( rc ) goto abort_due_to_error;
3378 
3379       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3380       ** savepoints nested inside of the savepoint being operated on. */
3381       while( db->pSavepoint!=pSavepoint ){
3382         pTmp = db->pSavepoint;
3383         db->pSavepoint = pTmp->pNext;
3384         sqlite3DbFree(db, pTmp);
3385         db->nSavepoint--;
3386       }
3387 
3388       /* If it is a RELEASE, then destroy the savepoint being operated on
3389       ** too. If it is a ROLLBACK TO, then set the number of deferred
3390       ** constraint violations present in the database to the value stored
3391       ** when the savepoint was created.  */
3392       if( p1==SAVEPOINT_RELEASE ){
3393         assert( pSavepoint==db->pSavepoint );
3394         db->pSavepoint = pSavepoint->pNext;
3395         sqlite3DbFree(db, pSavepoint);
3396         if( !isTransaction ){
3397           db->nSavepoint--;
3398         }
3399       }else{
3400         assert( p1==SAVEPOINT_ROLLBACK );
3401         db->nDeferredCons = pSavepoint->nDeferredCons;
3402         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3403       }
3404 
3405       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3406         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3407         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3408       }
3409     }
3410   }
3411   if( rc ) goto abort_due_to_error;
3412 
3413   break;
3414 }
3415 
3416 /* Opcode: AutoCommit P1 P2 * * *
3417 **
3418 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3419 ** back any currently active btree transactions. If there are any active
3420 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3421 ** there are active writing VMs or active VMs that use shared cache.
3422 **
3423 ** This instruction causes the VM to halt.
3424 */
3425 case OP_AutoCommit: {
3426   int desiredAutoCommit;
3427   int iRollback;
3428 
3429   desiredAutoCommit = pOp->p1;
3430   iRollback = pOp->p2;
3431   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3432   assert( desiredAutoCommit==1 || iRollback==0 );
3433   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3434   assert( p->bIsReader );
3435 
3436   if( desiredAutoCommit!=db->autoCommit ){
3437     if( iRollback ){
3438       assert( desiredAutoCommit==1 );
3439       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3440       db->autoCommit = 1;
3441     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3442       /* If this instruction implements a COMMIT and other VMs are writing
3443       ** return an error indicating that the other VMs must complete first.
3444       */
3445       sqlite3VdbeError(p, "cannot commit transaction - "
3446                           "SQL statements in progress");
3447       rc = SQLITE_BUSY;
3448       goto abort_due_to_error;
3449     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3450       goto vdbe_return;
3451     }else{
3452       db->autoCommit = (u8)desiredAutoCommit;
3453     }
3454     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3455       p->pc = (int)(pOp - aOp);
3456       db->autoCommit = (u8)(1-desiredAutoCommit);
3457       p->rc = rc = SQLITE_BUSY;
3458       goto vdbe_return;
3459     }
3460     sqlite3CloseSavepoints(db);
3461     if( p->rc==SQLITE_OK ){
3462       rc = SQLITE_DONE;
3463     }else{
3464       rc = SQLITE_ERROR;
3465     }
3466     goto vdbe_return;
3467   }else{
3468     sqlite3VdbeError(p,
3469         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3470         (iRollback)?"cannot rollback - no transaction is active":
3471                    "cannot commit - no transaction is active"));
3472 
3473     rc = SQLITE_ERROR;
3474     goto abort_due_to_error;
3475   }
3476   /*NOTREACHED*/ assert(0);
3477 }
3478 
3479 /* Opcode: Transaction P1 P2 P3 P4 P5
3480 **
3481 ** Begin a transaction on database P1 if a transaction is not already
3482 ** active.
3483 ** If P2 is non-zero, then a write-transaction is started, or if a
3484 ** read-transaction is already active, it is upgraded to a write-transaction.
3485 ** If P2 is zero, then a read-transaction is started.
3486 **
3487 ** P1 is the index of the database file on which the transaction is
3488 ** started.  Index 0 is the main database file and index 1 is the
3489 ** file used for temporary tables.  Indices of 2 or more are used for
3490 ** attached databases.
3491 **
3492 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3493 ** true (this flag is set if the Vdbe may modify more than one row and may
3494 ** throw an ABORT exception), a statement transaction may also be opened.
3495 ** More specifically, a statement transaction is opened iff the database
3496 ** connection is currently not in autocommit mode, or if there are other
3497 ** active statements. A statement transaction allows the changes made by this
3498 ** VDBE to be rolled back after an error without having to roll back the
3499 ** entire transaction. If no error is encountered, the statement transaction
3500 ** will automatically commit when the VDBE halts.
3501 **
3502 ** If P5!=0 then this opcode also checks the schema cookie against P3
3503 ** and the schema generation counter against P4.
3504 ** The cookie changes its value whenever the database schema changes.
3505 ** This operation is used to detect when that the cookie has changed
3506 ** and that the current process needs to reread the schema.  If the schema
3507 ** cookie in P3 differs from the schema cookie in the database header or
3508 ** if the schema generation counter in P4 differs from the current
3509 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3510 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3511 ** statement and rerun it from the beginning.
3512 */
3513 case OP_Transaction: {
3514   Btree *pBt;
3515   int iMeta = 0;
3516 
3517   assert( p->bIsReader );
3518   assert( p->readOnly==0 || pOp->p2==0 );
3519   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3520   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3521   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3522     rc = SQLITE_READONLY;
3523     goto abort_due_to_error;
3524   }
3525   pBt = db->aDb[pOp->p1].pBt;
3526 
3527   if( pBt ){
3528     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3529     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3530     testcase( rc==SQLITE_BUSY_RECOVERY );
3531     if( rc!=SQLITE_OK ){
3532       if( (rc&0xff)==SQLITE_BUSY ){
3533         p->pc = (int)(pOp - aOp);
3534         p->rc = rc;
3535         goto vdbe_return;
3536       }
3537       goto abort_due_to_error;
3538     }
3539 
3540     if( p->usesStmtJournal
3541      && pOp->p2
3542      && (db->autoCommit==0 || db->nVdbeRead>1)
3543     ){
3544       assert( sqlite3BtreeIsInTrans(pBt) );
3545       if( p->iStatement==0 ){
3546         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3547         db->nStatement++;
3548         p->iStatement = db->nSavepoint + db->nStatement;
3549       }
3550 
3551       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3552       if( rc==SQLITE_OK ){
3553         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3554       }
3555 
3556       /* Store the current value of the database handles deferred constraint
3557       ** counter. If the statement transaction needs to be rolled back,
3558       ** the value of this counter needs to be restored too.  */
3559       p->nStmtDefCons = db->nDeferredCons;
3560       p->nStmtDefImmCons = db->nDeferredImmCons;
3561     }
3562   }
3563   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3564   if( pOp->p5
3565    && (iMeta!=pOp->p3
3566       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3567   ){
3568     /*
3569     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3570     ** version is checked to ensure that the schema has not changed since the
3571     ** SQL statement was prepared.
3572     */
3573     sqlite3DbFree(db, p->zErrMsg);
3574     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3575     /* If the schema-cookie from the database file matches the cookie
3576     ** stored with the in-memory representation of the schema, do
3577     ** not reload the schema from the database file.
3578     **
3579     ** If virtual-tables are in use, this is not just an optimization.
3580     ** Often, v-tables store their data in other SQLite tables, which
3581     ** are queried from within xNext() and other v-table methods using
3582     ** prepared queries. If such a query is out-of-date, we do not want to
3583     ** discard the database schema, as the user code implementing the
3584     ** v-table would have to be ready for the sqlite3_vtab structure itself
3585     ** to be invalidated whenever sqlite3_step() is called from within
3586     ** a v-table method.
3587     */
3588     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3589       sqlite3ResetOneSchema(db, pOp->p1);
3590     }
3591     p->expired = 1;
3592     rc = SQLITE_SCHEMA;
3593   }
3594   if( rc ) goto abort_due_to_error;
3595   break;
3596 }
3597 
3598 /* Opcode: ReadCookie P1 P2 P3 * *
3599 **
3600 ** Read cookie number P3 from database P1 and write it into register P2.
3601 ** P3==1 is the schema version.  P3==2 is the database format.
3602 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3603 ** the main database file and P1==1 is the database file used to store
3604 ** temporary tables.
3605 **
3606 ** There must be a read-lock on the database (either a transaction
3607 ** must be started or there must be an open cursor) before
3608 ** executing this instruction.
3609 */
3610 case OP_ReadCookie: {               /* out2 */
3611   int iMeta;
3612   int iDb;
3613   int iCookie;
3614 
3615   assert( p->bIsReader );
3616   iDb = pOp->p1;
3617   iCookie = pOp->p3;
3618   assert( pOp->p3<SQLITE_N_BTREE_META );
3619   assert( iDb>=0 && iDb<db->nDb );
3620   assert( db->aDb[iDb].pBt!=0 );
3621   assert( DbMaskTest(p->btreeMask, iDb) );
3622 
3623   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3624   pOut = out2Prerelease(p, pOp);
3625   pOut->u.i = iMeta;
3626   break;
3627 }
3628 
3629 /* Opcode: SetCookie P1 P2 P3 * *
3630 **
3631 ** Write the integer value P3 into cookie number P2 of database P1.
3632 ** P2==1 is the schema version.  P2==2 is the database format.
3633 ** P2==3 is the recommended pager cache
3634 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3635 ** database file used to store temporary tables.
3636 **
3637 ** A transaction must be started before executing this opcode.
3638 */
3639 case OP_SetCookie: {
3640   Db *pDb;
3641 
3642   sqlite3VdbeIncrWriteCounter(p, 0);
3643   assert( pOp->p2<SQLITE_N_BTREE_META );
3644   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3645   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3646   assert( p->readOnly==0 );
3647   pDb = &db->aDb[pOp->p1];
3648   assert( pDb->pBt!=0 );
3649   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3650   /* See note about index shifting on OP_ReadCookie */
3651   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3652   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3653     /* When the schema cookie changes, record the new cookie internally */
3654     pDb->pSchema->schema_cookie = pOp->p3;
3655     db->mDbFlags |= DBFLAG_SchemaChange;
3656   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3657     /* Record changes in the file format */
3658     pDb->pSchema->file_format = pOp->p3;
3659   }
3660   if( pOp->p1==1 ){
3661     /* Invalidate all prepared statements whenever the TEMP database
3662     ** schema is changed.  Ticket #1644 */
3663     sqlite3ExpirePreparedStatements(db, 0);
3664     p->expired = 0;
3665   }
3666   if( rc ) goto abort_due_to_error;
3667   break;
3668 }
3669 
3670 /* Opcode: OpenRead P1 P2 P3 P4 P5
3671 ** Synopsis: root=P2 iDb=P3
3672 **
3673 ** Open a read-only cursor for the database table whose root page is
3674 ** P2 in a database file.  The database file is determined by P3.
3675 ** P3==0 means the main database, P3==1 means the database used for
3676 ** temporary tables, and P3>1 means used the corresponding attached
3677 ** database.  Give the new cursor an identifier of P1.  The P1
3678 ** values need not be contiguous but all P1 values should be small integers.
3679 ** It is an error for P1 to be negative.
3680 **
3681 ** Allowed P5 bits:
3682 ** <ul>
3683 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3684 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3685 **       of OP_SeekLE/OP_IdxGT)
3686 ** </ul>
3687 **
3688 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3689 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3690 ** object, then table being opened must be an [index b-tree] where the
3691 ** KeyInfo object defines the content and collating
3692 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3693 ** value, then the table being opened must be a [table b-tree] with a
3694 ** number of columns no less than the value of P4.
3695 **
3696 ** See also: OpenWrite, ReopenIdx
3697 */
3698 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3699 ** Synopsis: root=P2 iDb=P3
3700 **
3701 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3702 ** checks to see if the cursor on P1 is already open on the same
3703 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3704 ** if the cursor is already open, do not reopen it.
3705 **
3706 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3707 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3708 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3709 ** number.
3710 **
3711 ** Allowed P5 bits:
3712 ** <ul>
3713 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3714 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3715 **       of OP_SeekLE/OP_IdxGT)
3716 ** </ul>
3717 **
3718 ** See also: OP_OpenRead, OP_OpenWrite
3719 */
3720 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3721 ** Synopsis: root=P2 iDb=P3
3722 **
3723 ** Open a read/write cursor named P1 on the table or index whose root
3724 ** page is P2 (or whose root page is held in register P2 if the
3725 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3726 **
3727 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3728 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3729 ** object, then table being opened must be an [index b-tree] where the
3730 ** KeyInfo object defines the content and collating
3731 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3732 ** value, then the table being opened must be a [table b-tree] with a
3733 ** number of columns no less than the value of P4.
3734 **
3735 ** Allowed P5 bits:
3736 ** <ul>
3737 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3738 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3739 **       of OP_SeekLE/OP_IdxGT)
3740 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3741 **       and subsequently delete entries in an index btree.  This is a
3742 **       hint to the storage engine that the storage engine is allowed to
3743 **       ignore.  The hint is not used by the official SQLite b*tree storage
3744 **       engine, but is used by COMDB2.
3745 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3746 **       as the root page, not the value of P2 itself.
3747 ** </ul>
3748 **
3749 ** This instruction works like OpenRead except that it opens the cursor
3750 ** in read/write mode.
3751 **
3752 ** See also: OP_OpenRead, OP_ReopenIdx
3753 */
3754 case OP_ReopenIdx: {
3755   int nField;
3756   KeyInfo *pKeyInfo;
3757   int p2;
3758   int iDb;
3759   int wrFlag;
3760   Btree *pX;
3761   VdbeCursor *pCur;
3762   Db *pDb;
3763 
3764   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3765   assert( pOp->p4type==P4_KEYINFO );
3766   pCur = p->apCsr[pOp->p1];
3767   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3768     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3769     goto open_cursor_set_hints;
3770   }
3771   /* If the cursor is not currently open or is open on a different
3772   ** index, then fall through into OP_OpenRead to force a reopen */
3773 case OP_OpenRead:
3774 case OP_OpenWrite:
3775 
3776   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3777   assert( p->bIsReader );
3778   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3779           || p->readOnly==0 );
3780 
3781   if( p->expired==1 ){
3782     rc = SQLITE_ABORT_ROLLBACK;
3783     goto abort_due_to_error;
3784   }
3785 
3786   nField = 0;
3787   pKeyInfo = 0;
3788   p2 = pOp->p2;
3789   iDb = pOp->p3;
3790   assert( iDb>=0 && iDb<db->nDb );
3791   assert( DbMaskTest(p->btreeMask, iDb) );
3792   pDb = &db->aDb[iDb];
3793   pX = pDb->pBt;
3794   assert( pX!=0 );
3795   if( pOp->opcode==OP_OpenWrite ){
3796     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3797     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3798     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3799     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3800       p->minWriteFileFormat = pDb->pSchema->file_format;
3801     }
3802   }else{
3803     wrFlag = 0;
3804   }
3805   if( pOp->p5 & OPFLAG_P2ISREG ){
3806     assert( p2>0 );
3807     assert( p2<=(p->nMem+1 - p->nCursor) );
3808     assert( pOp->opcode==OP_OpenWrite );
3809     pIn2 = &aMem[p2];
3810     assert( memIsValid(pIn2) );
3811     assert( (pIn2->flags & MEM_Int)!=0 );
3812     sqlite3VdbeMemIntegerify(pIn2);
3813     p2 = (int)pIn2->u.i;
3814     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3815     ** that opcode will always set the p2 value to 2 or more or else fail.
3816     ** If there were a failure, the prepared statement would have halted
3817     ** before reaching this instruction. */
3818     assert( p2>=2 );
3819   }
3820   if( pOp->p4type==P4_KEYINFO ){
3821     pKeyInfo = pOp->p4.pKeyInfo;
3822     assert( pKeyInfo->enc==ENC(db) );
3823     assert( pKeyInfo->db==db );
3824     nField = pKeyInfo->nAllField;
3825   }else if( pOp->p4type==P4_INT32 ){
3826     nField = pOp->p4.i;
3827   }
3828   assert( pOp->p1>=0 );
3829   assert( nField>=0 );
3830   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3831   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3832   if( pCur==0 ) goto no_mem;
3833   pCur->nullRow = 1;
3834   pCur->isOrdered = 1;
3835   pCur->pgnoRoot = p2;
3836 #ifdef SQLITE_DEBUG
3837   pCur->wrFlag = wrFlag;
3838 #endif
3839   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3840   pCur->pKeyInfo = pKeyInfo;
3841   /* Set the VdbeCursor.isTable variable. Previous versions of
3842   ** SQLite used to check if the root-page flags were sane at this point
3843   ** and report database corruption if they were not, but this check has
3844   ** since moved into the btree layer.  */
3845   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3846 
3847 open_cursor_set_hints:
3848   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3849   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3850   testcase( pOp->p5 & OPFLAG_BULKCSR );
3851 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3852   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3853 #endif
3854   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3855                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3856   if( rc ) goto abort_due_to_error;
3857   break;
3858 }
3859 
3860 /* Opcode: OpenDup P1 P2 * * *
3861 **
3862 ** Open a new cursor P1 that points to the same ephemeral table as
3863 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3864 ** opcode.  Only ephemeral cursors may be duplicated.
3865 **
3866 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3867 */
3868 case OP_OpenDup: {
3869   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3870   VdbeCursor *pCx;      /* The new cursor */
3871 
3872   pOrig = p->apCsr[pOp->p2];
3873   assert( pOrig );
3874   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3875 
3876   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3877   if( pCx==0 ) goto no_mem;
3878   pCx->nullRow = 1;
3879   pCx->isEphemeral = 1;
3880   pCx->pKeyInfo = pOrig->pKeyInfo;
3881   pCx->isTable = pOrig->isTable;
3882   pCx->pgnoRoot = pOrig->pgnoRoot;
3883   pCx->isOrdered = pOrig->isOrdered;
3884   rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3885                           pCx->pKeyInfo, pCx->uc.pCursor);
3886   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3887   ** opened for a database.  Since there is already an open cursor when this
3888   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3889   assert( rc==SQLITE_OK );
3890   break;
3891 }
3892 
3893 
3894 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3895 ** Synopsis: nColumn=P2
3896 **
3897 ** Open a new cursor P1 to a transient table.
3898 ** The cursor is always opened read/write even if
3899 ** the main database is read-only.  The ephemeral
3900 ** table is deleted automatically when the cursor is closed.
3901 **
3902 ** If the cursor P1 is already opened on an ephemeral table, the table
3903 ** is cleared (all content is erased).
3904 **
3905 ** P2 is the number of columns in the ephemeral table.
3906 ** The cursor points to a BTree table if P4==0 and to a BTree index
3907 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3908 ** that defines the format of keys in the index.
3909 **
3910 ** The P5 parameter can be a mask of the BTREE_* flags defined
3911 ** in btree.h.  These flags control aspects of the operation of
3912 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3913 ** added automatically.
3914 */
3915 /* Opcode: OpenAutoindex P1 P2 * P4 *
3916 ** Synopsis: nColumn=P2
3917 **
3918 ** This opcode works the same as OP_OpenEphemeral.  It has a
3919 ** different name to distinguish its use.  Tables created using
3920 ** by this opcode will be used for automatically created transient
3921 ** indices in joins.
3922 */
3923 case OP_OpenAutoindex:
3924 case OP_OpenEphemeral: {
3925   VdbeCursor *pCx;
3926   KeyInfo *pKeyInfo;
3927 
3928   static const int vfsFlags =
3929       SQLITE_OPEN_READWRITE |
3930       SQLITE_OPEN_CREATE |
3931       SQLITE_OPEN_EXCLUSIVE |
3932       SQLITE_OPEN_DELETEONCLOSE |
3933       SQLITE_OPEN_TRANSIENT_DB;
3934   assert( pOp->p1>=0 );
3935   assert( pOp->p2>=0 );
3936   pCx = p->apCsr[pOp->p1];
3937   if( pCx ){
3938     /* If the ephermeral table is already open, erase all existing content
3939     ** so that the table is empty again, rather than creating a new table. */
3940     assert( pCx->isEphemeral );
3941     pCx->seqCount = 0;
3942     pCx->cacheStatus = CACHE_STALE;
3943     if( pCx->pBtx ){
3944       rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0);
3945     }
3946   }else{
3947     pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3948     if( pCx==0 ) goto no_mem;
3949     pCx->isEphemeral = 1;
3950     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3951                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
3952                           vfsFlags);
3953     if( rc==SQLITE_OK ){
3954       rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
3955     }
3956     if( rc==SQLITE_OK ){
3957       /* If a transient index is required, create it by calling
3958       ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3959       ** opening it. If a transient table is required, just use the
3960       ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3961       */
3962       if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3963         assert( pOp->p4type==P4_KEYINFO );
3964         rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot,
3965                                      BTREE_BLOBKEY | pOp->p5);
3966         if( rc==SQLITE_OK ){
3967           assert( pCx->pgnoRoot==MASTER_ROOT+1 );
3968           assert( pKeyInfo->db==db );
3969           assert( pKeyInfo->enc==ENC(db) );
3970           rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3971                                   pKeyInfo, pCx->uc.pCursor);
3972         }
3973         pCx->isTable = 0;
3974       }else{
3975         pCx->pgnoRoot = MASTER_ROOT;
3976         rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3977                                 0, pCx->uc.pCursor);
3978         pCx->isTable = 1;
3979       }
3980     }
3981     pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3982   }
3983   if( rc ) goto abort_due_to_error;
3984   pCx->nullRow = 1;
3985   break;
3986 }
3987 
3988 /* Opcode: SorterOpen P1 P2 P3 P4 *
3989 **
3990 ** This opcode works like OP_OpenEphemeral except that it opens
3991 ** a transient index that is specifically designed to sort large
3992 ** tables using an external merge-sort algorithm.
3993 **
3994 ** If argument P3 is non-zero, then it indicates that the sorter may
3995 ** assume that a stable sort considering the first P3 fields of each
3996 ** key is sufficient to produce the required results.
3997 */
3998 case OP_SorterOpen: {
3999   VdbeCursor *pCx;
4000 
4001   assert( pOp->p1>=0 );
4002   assert( pOp->p2>=0 );
4003   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
4004   if( pCx==0 ) goto no_mem;
4005   pCx->pKeyInfo = pOp->p4.pKeyInfo;
4006   assert( pCx->pKeyInfo->db==db );
4007   assert( pCx->pKeyInfo->enc==ENC(db) );
4008   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4009   if( rc ) goto abort_due_to_error;
4010   break;
4011 }
4012 
4013 /* Opcode: SequenceTest P1 P2 * * *
4014 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4015 **
4016 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4017 ** to P2. Regardless of whether or not the jump is taken, increment the
4018 ** the sequence value.
4019 */
4020 case OP_SequenceTest: {
4021   VdbeCursor *pC;
4022   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4023   pC = p->apCsr[pOp->p1];
4024   assert( isSorter(pC) );
4025   if( (pC->seqCount++)==0 ){
4026     goto jump_to_p2;
4027   }
4028   break;
4029 }
4030 
4031 /* Opcode: OpenPseudo P1 P2 P3 * *
4032 ** Synopsis: P3 columns in r[P2]
4033 **
4034 ** Open a new cursor that points to a fake table that contains a single
4035 ** row of data.  The content of that one row is the content of memory
4036 ** register P2.  In other words, cursor P1 becomes an alias for the
4037 ** MEM_Blob content contained in register P2.
4038 **
4039 ** A pseudo-table created by this opcode is used to hold a single
4040 ** row output from the sorter so that the row can be decomposed into
4041 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4042 ** is the only cursor opcode that works with a pseudo-table.
4043 **
4044 ** P3 is the number of fields in the records that will be stored by
4045 ** the pseudo-table.
4046 */
4047 case OP_OpenPseudo: {
4048   VdbeCursor *pCx;
4049 
4050   assert( pOp->p1>=0 );
4051   assert( pOp->p3>=0 );
4052   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
4053   if( pCx==0 ) goto no_mem;
4054   pCx->nullRow = 1;
4055   pCx->seekResult = pOp->p2;
4056   pCx->isTable = 1;
4057   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4058   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4059   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4060   ** which is a performance optimization */
4061   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4062   assert( pOp->p5==0 );
4063   break;
4064 }
4065 
4066 /* Opcode: Close P1 * * * *
4067 **
4068 ** Close a cursor previously opened as P1.  If P1 is not
4069 ** currently open, this instruction is a no-op.
4070 */
4071 case OP_Close: {
4072   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4073   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4074   p->apCsr[pOp->p1] = 0;
4075   break;
4076 }
4077 
4078 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4079 /* Opcode: ColumnsUsed P1 * * P4 *
4080 **
4081 ** This opcode (which only exists if SQLite was compiled with
4082 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4083 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4084 ** (P4_INT64) in which the first 63 bits are one for each of the
4085 ** first 63 columns of the table or index that are actually used
4086 ** by the cursor.  The high-order bit is set if any column after
4087 ** the 64th is used.
4088 */
4089 case OP_ColumnsUsed: {
4090   VdbeCursor *pC;
4091   pC = p->apCsr[pOp->p1];
4092   assert( pC->eCurType==CURTYPE_BTREE );
4093   pC->maskUsed = *(u64*)pOp->p4.pI64;
4094   break;
4095 }
4096 #endif
4097 
4098 /* Opcode: SeekGE P1 P2 P3 P4 *
4099 ** Synopsis: key=r[P3@P4]
4100 **
4101 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4102 ** use the value in register P3 as the key.  If cursor P1 refers
4103 ** to an SQL index, then P3 is the first in an array of P4 registers
4104 ** that are used as an unpacked index key.
4105 **
4106 ** Reposition cursor P1 so that  it points to the smallest entry that
4107 ** is greater than or equal to the key value. If there are no records
4108 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4109 **
4110 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4111 ** opcode will always land on a record that equally equals the key, or
4112 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
4113 ** opcode must be followed by an IdxLE opcode with the same arguments.
4114 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
4115 ** IdxLE opcode will be used on subsequent loop iterations.
4116 **
4117 ** This opcode leaves the cursor configured to move in forward order,
4118 ** from the beginning toward the end.  In other words, the cursor is
4119 ** configured to use Next, not Prev.
4120 **
4121 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4122 */
4123 /* Opcode: SeekGT P1 P2 P3 P4 *
4124 ** Synopsis: key=r[P3@P4]
4125 **
4126 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4127 ** use the value in register P3 as a key. If cursor P1 refers
4128 ** to an SQL index, then P3 is the first in an array of P4 registers
4129 ** that are used as an unpacked index key.
4130 **
4131 ** Reposition cursor P1 so that  it points to the smallest entry that
4132 ** is greater than the key value. If there are no records greater than
4133 ** the key and P2 is not zero, then jump to P2.
4134 **
4135 ** This opcode leaves the cursor configured to move in forward order,
4136 ** from the beginning toward the end.  In other words, the cursor is
4137 ** configured to use Next, not Prev.
4138 **
4139 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4140 */
4141 /* Opcode: SeekLT P1 P2 P3 P4 *
4142 ** Synopsis: key=r[P3@P4]
4143 **
4144 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4145 ** use the value in register P3 as a key. If cursor P1 refers
4146 ** to an SQL index, then P3 is the first in an array of P4 registers
4147 ** that are used as an unpacked index key.
4148 **
4149 ** Reposition cursor P1 so that  it points to the largest entry that
4150 ** is less than the key value. If there are no records less than
4151 ** the key and P2 is not zero, then jump to P2.
4152 **
4153 ** This opcode leaves the cursor configured to move in reverse order,
4154 ** from the end toward the beginning.  In other words, the cursor is
4155 ** configured to use Prev, not Next.
4156 **
4157 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4158 */
4159 /* Opcode: SeekLE P1 P2 P3 P4 *
4160 ** Synopsis: key=r[P3@P4]
4161 **
4162 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4163 ** use the value in register P3 as a key. If cursor P1 refers
4164 ** to an SQL index, then P3 is the first in an array of P4 registers
4165 ** that are used as an unpacked index key.
4166 **
4167 ** Reposition cursor P1 so that it points to the largest entry that
4168 ** is less than or equal to the key value. If there are no records
4169 ** less than or equal to the key and P2 is not zero, then jump to P2.
4170 **
4171 ** This opcode leaves the cursor configured to move in reverse order,
4172 ** from the end toward the beginning.  In other words, the cursor is
4173 ** configured to use Prev, not Next.
4174 **
4175 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4176 ** opcode will always land on a record that equally equals the key, or
4177 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
4178 ** opcode must be followed by an IdxGE opcode with the same arguments.
4179 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4180 ** IdxGE opcode will be used on subsequent loop iterations.
4181 **
4182 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4183 */
4184 case OP_SeekLT:         /* jump, in3, group */
4185 case OP_SeekLE:         /* jump, in3, group */
4186 case OP_SeekGE:         /* jump, in3, group */
4187 case OP_SeekGT: {       /* jump, in3, group */
4188   int res;           /* Comparison result */
4189   int oc;            /* Opcode */
4190   VdbeCursor *pC;    /* The cursor to seek */
4191   UnpackedRecord r;  /* The key to seek for */
4192   int nField;        /* Number of columns or fields in the key */
4193   i64 iKey;          /* The rowid we are to seek to */
4194   int eqOnly;        /* Only interested in == results */
4195 
4196   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4197   assert( pOp->p2!=0 );
4198   pC = p->apCsr[pOp->p1];
4199   assert( pC!=0 );
4200   assert( pC->eCurType==CURTYPE_BTREE );
4201   assert( OP_SeekLE == OP_SeekLT+1 );
4202   assert( OP_SeekGE == OP_SeekLT+2 );
4203   assert( OP_SeekGT == OP_SeekLT+3 );
4204   assert( pC->isOrdered );
4205   assert( pC->uc.pCursor!=0 );
4206   oc = pOp->opcode;
4207   eqOnly = 0;
4208   pC->nullRow = 0;
4209 #ifdef SQLITE_DEBUG
4210   pC->seekOp = pOp->opcode;
4211 #endif
4212 
4213   pC->deferredMoveto = 0;
4214   pC->cacheStatus = CACHE_STALE;
4215   if( pC->isTable ){
4216     u16 flags3, newType;
4217     /* The BTREE_SEEK_EQ flag is only set on index cursors */
4218     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4219               || CORRUPT_DB );
4220 
4221     /* The input value in P3 might be of any type: integer, real, string,
4222     ** blob, or NULL.  But it needs to be an integer before we can do
4223     ** the seek, so convert it. */
4224     pIn3 = &aMem[pOp->p3];
4225     flags3 = pIn3->flags;
4226     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4227       applyNumericAffinity(pIn3, 0);
4228     }
4229     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4230     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4231     pIn3->flags = flags3;  /* But convert the type back to its original */
4232 
4233     /* If the P3 value could not be converted into an integer without
4234     ** loss of information, then special processing is required... */
4235     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4236       if( (newType & MEM_Real)==0 ){
4237         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4238           VdbeBranchTaken(1,2);
4239           goto jump_to_p2;
4240         }else{
4241           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4242           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4243           goto seek_not_found;
4244         }
4245       }else
4246 
4247       /* If the approximation iKey is larger than the actual real search
4248       ** term, substitute >= for > and < for <=. e.g. if the search term
4249       ** is 4.9 and the integer approximation 5:
4250       **
4251       **        (x >  4.9)    ->     (x >= 5)
4252       **        (x <= 4.9)    ->     (x <  5)
4253       */
4254       if( pIn3->u.r<(double)iKey ){
4255         assert( OP_SeekGE==(OP_SeekGT-1) );
4256         assert( OP_SeekLT==(OP_SeekLE-1) );
4257         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4258         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4259       }
4260 
4261       /* If the approximation iKey is smaller than the actual real search
4262       ** term, substitute <= for < and > for >=.  */
4263       else if( pIn3->u.r>(double)iKey ){
4264         assert( OP_SeekLE==(OP_SeekLT+1) );
4265         assert( OP_SeekGT==(OP_SeekGE+1) );
4266         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4267         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4268       }
4269     }
4270     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
4271     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4272     if( rc!=SQLITE_OK ){
4273       goto abort_due_to_error;
4274     }
4275   }else{
4276     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
4277     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
4278     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
4279     */
4280     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4281       eqOnly = 1;
4282       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4283       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4284       assert( pOp[1].p1==pOp[0].p1 );
4285       assert( pOp[1].p2==pOp[0].p2 );
4286       assert( pOp[1].p3==pOp[0].p3 );
4287       assert( pOp[1].p4.i==pOp[0].p4.i );
4288     }
4289 
4290     nField = pOp->p4.i;
4291     assert( pOp->p4type==P4_INT32 );
4292     assert( nField>0 );
4293     r.pKeyInfo = pC->pKeyInfo;
4294     r.nField = (u16)nField;
4295 
4296     /* The next line of code computes as follows, only faster:
4297     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4298     **     r.default_rc = -1;
4299     **   }else{
4300     **     r.default_rc = +1;
4301     **   }
4302     */
4303     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4304     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4305     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4306     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4307     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4308 
4309     r.aMem = &aMem[pOp->p3];
4310 #ifdef SQLITE_DEBUG
4311     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4312 #endif
4313     r.eqSeen = 0;
4314     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
4315     if( rc!=SQLITE_OK ){
4316       goto abort_due_to_error;
4317     }
4318     if( eqOnly && r.eqSeen==0 ){
4319       assert( res!=0 );
4320       goto seek_not_found;
4321     }
4322   }
4323 #ifdef SQLITE_TEST
4324   sqlite3_search_count++;
4325 #endif
4326   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4327     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4328       res = 0;
4329       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4330       if( rc!=SQLITE_OK ){
4331         if( rc==SQLITE_DONE ){
4332           rc = SQLITE_OK;
4333           res = 1;
4334         }else{
4335           goto abort_due_to_error;
4336         }
4337       }
4338     }else{
4339       res = 0;
4340     }
4341   }else{
4342     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4343     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4344       res = 0;
4345       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4346       if( rc!=SQLITE_OK ){
4347         if( rc==SQLITE_DONE ){
4348           rc = SQLITE_OK;
4349           res = 1;
4350         }else{
4351           goto abort_due_to_error;
4352         }
4353       }
4354     }else{
4355       /* res might be negative because the table is empty.  Check to
4356       ** see if this is the case.
4357       */
4358       res = sqlite3BtreeEof(pC->uc.pCursor);
4359     }
4360   }
4361 seek_not_found:
4362   assert( pOp->p2>0 );
4363   VdbeBranchTaken(res!=0,2);
4364   if( res ){
4365     goto jump_to_p2;
4366   }else if( eqOnly ){
4367     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4368     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4369   }
4370   break;
4371 }
4372 
4373 /* Opcode: SeekHit P1 P2 * * *
4374 ** Synopsis: seekHit=P2
4375 **
4376 ** Set the seekHit flag on cursor P1 to the value in P2.
4377 ** The seekHit flag is used by the IfNoHope opcode.
4378 **
4379 ** P1 must be a valid b-tree cursor.  P2 must be a boolean value,
4380 ** either 0 or 1.
4381 */
4382 case OP_SeekHit: {
4383   VdbeCursor *pC;
4384   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4385   pC = p->apCsr[pOp->p1];
4386   assert( pC!=0 );
4387   assert( pOp->p2==0 || pOp->p2==1 );
4388   pC->seekHit = pOp->p2 & 1;
4389   break;
4390 }
4391 
4392 /* Opcode: Found P1 P2 P3 P4 *
4393 ** Synopsis: key=r[P3@P4]
4394 **
4395 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4396 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4397 ** record.
4398 **
4399 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4400 ** is a prefix of any entry in P1 then a jump is made to P2 and
4401 ** P1 is left pointing at the matching entry.
4402 **
4403 ** This operation leaves the cursor in a state where it can be
4404 ** advanced in the forward direction.  The Next instruction will work,
4405 ** but not the Prev instruction.
4406 **
4407 ** See also: NotFound, NoConflict, NotExists. SeekGe
4408 */
4409 /* Opcode: NotFound P1 P2 P3 P4 *
4410 ** Synopsis: key=r[P3@P4]
4411 **
4412 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4413 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4414 ** record.
4415 **
4416 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4417 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4418 ** does contain an entry whose prefix matches the P3/P4 record then control
4419 ** falls through to the next instruction and P1 is left pointing at the
4420 ** matching entry.
4421 **
4422 ** This operation leaves the cursor in a state where it cannot be
4423 ** advanced in either direction.  In other words, the Next and Prev
4424 ** opcodes do not work after this operation.
4425 **
4426 ** See also: Found, NotExists, NoConflict, IfNoHope
4427 */
4428 /* Opcode: IfNoHope P1 P2 P3 P4 *
4429 ** Synopsis: key=r[P3@P4]
4430 **
4431 ** Register P3 is the first of P4 registers that form an unpacked
4432 ** record.
4433 **
4434 ** Cursor P1 is on an index btree.  If the seekHit flag is set on P1, then
4435 ** this opcode is a no-op.  But if the seekHit flag of P1 is clear, then
4436 ** check to see if there is any entry in P1 that matches the
4437 ** prefix identified by P3 and P4.  If no entry matches the prefix,
4438 ** jump to P2.  Otherwise fall through.
4439 **
4440 ** This opcode behaves like OP_NotFound if the seekHit
4441 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set.
4442 **
4443 ** This opcode is used in IN clause processing for a multi-column key.
4444 ** If an IN clause is attached to an element of the key other than the
4445 ** left-most element, and if there are no matches on the most recent
4446 ** seek over the whole key, then it might be that one of the key element
4447 ** to the left is prohibiting a match, and hence there is "no hope" of
4448 ** any match regardless of how many IN clause elements are checked.
4449 ** In such a case, we abandon the IN clause search early, using this
4450 ** opcode.  The opcode name comes from the fact that the
4451 ** jump is taken if there is "no hope" of achieving a match.
4452 **
4453 ** See also: NotFound, SeekHit
4454 */
4455 /* Opcode: NoConflict P1 P2 P3 P4 *
4456 ** Synopsis: key=r[P3@P4]
4457 **
4458 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4459 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4460 ** record.
4461 **
4462 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4463 ** contains any NULL value, jump immediately to P2.  If all terms of the
4464 ** record are not-NULL then a check is done to determine if any row in the
4465 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4466 ** immediately to P2.  If there is a match, fall through and leave the P1
4467 ** cursor pointing to the matching row.
4468 **
4469 ** This opcode is similar to OP_NotFound with the exceptions that the
4470 ** branch is always taken if any part of the search key input is NULL.
4471 **
4472 ** This operation leaves the cursor in a state where it cannot be
4473 ** advanced in either direction.  In other words, the Next and Prev
4474 ** opcodes do not work after this operation.
4475 **
4476 ** See also: NotFound, Found, NotExists
4477 */
4478 case OP_IfNoHope: {     /* jump, in3 */
4479   VdbeCursor *pC;
4480   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4481   pC = p->apCsr[pOp->p1];
4482   assert( pC!=0 );
4483   if( pC->seekHit ) break;
4484   /* Fall through into OP_NotFound */
4485 }
4486 case OP_NoConflict:     /* jump, in3 */
4487 case OP_NotFound:       /* jump, in3 */
4488 case OP_Found: {        /* jump, in3 */
4489   int alreadyExists;
4490   int takeJump;
4491   int ii;
4492   VdbeCursor *pC;
4493   int res;
4494   UnpackedRecord *pFree;
4495   UnpackedRecord *pIdxKey;
4496   UnpackedRecord r;
4497 
4498 #ifdef SQLITE_TEST
4499   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4500 #endif
4501 
4502   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4503   assert( pOp->p4type==P4_INT32 );
4504   pC = p->apCsr[pOp->p1];
4505   assert( pC!=0 );
4506 #ifdef SQLITE_DEBUG
4507   pC->seekOp = pOp->opcode;
4508 #endif
4509   pIn3 = &aMem[pOp->p3];
4510   assert( pC->eCurType==CURTYPE_BTREE );
4511   assert( pC->uc.pCursor!=0 );
4512   assert( pC->isTable==0 );
4513   if( pOp->p4.i>0 ){
4514     r.pKeyInfo = pC->pKeyInfo;
4515     r.nField = (u16)pOp->p4.i;
4516     r.aMem = pIn3;
4517 #ifdef SQLITE_DEBUG
4518     for(ii=0; ii<r.nField; ii++){
4519       assert( memIsValid(&r.aMem[ii]) );
4520       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4521       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4522     }
4523 #endif
4524     pIdxKey = &r;
4525     pFree = 0;
4526   }else{
4527     assert( pIn3->flags & MEM_Blob );
4528     rc = ExpandBlob(pIn3);
4529     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4530     if( rc ) goto no_mem;
4531     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4532     if( pIdxKey==0 ) goto no_mem;
4533     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4534   }
4535   pIdxKey->default_rc = 0;
4536   takeJump = 0;
4537   if( pOp->opcode==OP_NoConflict ){
4538     /* For the OP_NoConflict opcode, take the jump if any of the
4539     ** input fields are NULL, since any key with a NULL will not
4540     ** conflict */
4541     for(ii=0; ii<pIdxKey->nField; ii++){
4542       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4543         takeJump = 1;
4544         break;
4545       }
4546     }
4547   }
4548   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4549   if( pFree ) sqlite3DbFreeNN(db, pFree);
4550   if( rc!=SQLITE_OK ){
4551     goto abort_due_to_error;
4552   }
4553   pC->seekResult = res;
4554   alreadyExists = (res==0);
4555   pC->nullRow = 1-alreadyExists;
4556   pC->deferredMoveto = 0;
4557   pC->cacheStatus = CACHE_STALE;
4558   if( pOp->opcode==OP_Found ){
4559     VdbeBranchTaken(alreadyExists!=0,2);
4560     if( alreadyExists ) goto jump_to_p2;
4561   }else{
4562     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4563     if( takeJump || !alreadyExists ) goto jump_to_p2;
4564   }
4565   break;
4566 }
4567 
4568 /* Opcode: SeekRowid P1 P2 P3 * *
4569 ** Synopsis: intkey=r[P3]
4570 **
4571 ** P1 is the index of a cursor open on an SQL table btree (with integer
4572 ** keys).  If register P3 does not contain an integer or if P1 does not
4573 ** contain a record with rowid P3 then jump immediately to P2.
4574 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4575 ** a record with rowid P3 then
4576 ** leave the cursor pointing at that record and fall through to the next
4577 ** instruction.
4578 **
4579 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4580 ** the P3 register must be guaranteed to contain an integer value.  With this
4581 ** opcode, register P3 might not contain an integer.
4582 **
4583 ** The OP_NotFound opcode performs the same operation on index btrees
4584 ** (with arbitrary multi-value keys).
4585 **
4586 ** This opcode leaves the cursor in a state where it cannot be advanced
4587 ** in either direction.  In other words, the Next and Prev opcodes will
4588 ** not work following this opcode.
4589 **
4590 ** See also: Found, NotFound, NoConflict, SeekRowid
4591 */
4592 /* Opcode: NotExists P1 P2 P3 * *
4593 ** Synopsis: intkey=r[P3]
4594 **
4595 ** P1 is the index of a cursor open on an SQL table btree (with integer
4596 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4597 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4598 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4599 ** leave the cursor pointing at that record and fall through to the next
4600 ** instruction.
4601 **
4602 ** The OP_SeekRowid opcode performs the same operation but also allows the
4603 ** P3 register to contain a non-integer value, in which case the jump is
4604 ** always taken.  This opcode requires that P3 always contain an integer.
4605 **
4606 ** The OP_NotFound opcode performs the same operation on index btrees
4607 ** (with arbitrary multi-value keys).
4608 **
4609 ** This opcode leaves the cursor in a state where it cannot be advanced
4610 ** in either direction.  In other words, the Next and Prev opcodes will
4611 ** not work following this opcode.
4612 **
4613 ** See also: Found, NotFound, NoConflict, SeekRowid
4614 */
4615 case OP_SeekRowid: {        /* jump, in3 */
4616   VdbeCursor *pC;
4617   BtCursor *pCrsr;
4618   int res;
4619   u64 iKey;
4620 
4621   pIn3 = &aMem[pOp->p3];
4622   testcase( pIn3->flags & MEM_Int );
4623   testcase( pIn3->flags & MEM_IntReal );
4624   testcase( pIn3->flags & MEM_Real );
4625   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
4626   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
4627     /* If pIn3->u.i does not contain an integer, compute iKey as the
4628     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
4629     ** into an integer without loss of information.  Take care to avoid
4630     ** changing the datatype of pIn3, however, as it is used by other
4631     ** parts of the prepared statement. */
4632     Mem x = pIn3[0];
4633     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
4634     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
4635     iKey = x.u.i;
4636     goto notExistsWithKey;
4637   }
4638   /* Fall through into OP_NotExists */
4639 case OP_NotExists:          /* jump, in3 */
4640   pIn3 = &aMem[pOp->p3];
4641   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
4642   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4643   iKey = pIn3->u.i;
4644 notExistsWithKey:
4645   pC = p->apCsr[pOp->p1];
4646   assert( pC!=0 );
4647 #ifdef SQLITE_DEBUG
4648   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
4649 #endif
4650   assert( pC->isTable );
4651   assert( pC->eCurType==CURTYPE_BTREE );
4652   pCrsr = pC->uc.pCursor;
4653   assert( pCrsr!=0 );
4654   res = 0;
4655   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4656   assert( rc==SQLITE_OK || res==0 );
4657   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4658   pC->nullRow = 0;
4659   pC->cacheStatus = CACHE_STALE;
4660   pC->deferredMoveto = 0;
4661   VdbeBranchTaken(res!=0,2);
4662   pC->seekResult = res;
4663   if( res!=0 ){
4664     assert( rc==SQLITE_OK );
4665     if( pOp->p2==0 ){
4666       rc = SQLITE_CORRUPT_BKPT;
4667     }else{
4668       goto jump_to_p2;
4669     }
4670   }
4671   if( rc ) goto abort_due_to_error;
4672   break;
4673 }
4674 
4675 /* Opcode: Sequence P1 P2 * * *
4676 ** Synopsis: r[P2]=cursor[P1].ctr++
4677 **
4678 ** Find the next available sequence number for cursor P1.
4679 ** Write the sequence number into register P2.
4680 ** The sequence number on the cursor is incremented after this
4681 ** instruction.
4682 */
4683 case OP_Sequence: {           /* out2 */
4684   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4685   assert( p->apCsr[pOp->p1]!=0 );
4686   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4687   pOut = out2Prerelease(p, pOp);
4688   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4689   break;
4690 }
4691 
4692 
4693 /* Opcode: NewRowid P1 P2 P3 * *
4694 ** Synopsis: r[P2]=rowid
4695 **
4696 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4697 ** The record number is not previously used as a key in the database
4698 ** table that cursor P1 points to.  The new record number is written
4699 ** written to register P2.
4700 **
4701 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4702 ** the largest previously generated record number. No new record numbers are
4703 ** allowed to be less than this value. When this value reaches its maximum,
4704 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4705 ** generated record number. This P3 mechanism is used to help implement the
4706 ** AUTOINCREMENT feature.
4707 */
4708 case OP_NewRowid: {           /* out2 */
4709   i64 v;                 /* The new rowid */
4710   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4711   int res;               /* Result of an sqlite3BtreeLast() */
4712   int cnt;               /* Counter to limit the number of searches */
4713   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4714   VdbeFrame *pFrame;     /* Root frame of VDBE */
4715 
4716   v = 0;
4717   res = 0;
4718   pOut = out2Prerelease(p, pOp);
4719   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4720   pC = p->apCsr[pOp->p1];
4721   assert( pC!=0 );
4722   assert( pC->isTable );
4723   assert( pC->eCurType==CURTYPE_BTREE );
4724   assert( pC->uc.pCursor!=0 );
4725   {
4726     /* The next rowid or record number (different terms for the same
4727     ** thing) is obtained in a two-step algorithm.
4728     **
4729     ** First we attempt to find the largest existing rowid and add one
4730     ** to that.  But if the largest existing rowid is already the maximum
4731     ** positive integer, we have to fall through to the second
4732     ** probabilistic algorithm
4733     **
4734     ** The second algorithm is to select a rowid at random and see if
4735     ** it already exists in the table.  If it does not exist, we have
4736     ** succeeded.  If the random rowid does exist, we select a new one
4737     ** and try again, up to 100 times.
4738     */
4739     assert( pC->isTable );
4740 
4741 #ifdef SQLITE_32BIT_ROWID
4742 #   define MAX_ROWID 0x7fffffff
4743 #else
4744     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4745     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4746     ** to provide the constant while making all compilers happy.
4747     */
4748 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4749 #endif
4750 
4751     if( !pC->useRandomRowid ){
4752       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4753       if( rc!=SQLITE_OK ){
4754         goto abort_due_to_error;
4755       }
4756       if( res ){
4757         v = 1;   /* IMP: R-61914-48074 */
4758       }else{
4759         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4760         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4761         if( v>=MAX_ROWID ){
4762           pC->useRandomRowid = 1;
4763         }else{
4764           v++;   /* IMP: R-29538-34987 */
4765         }
4766       }
4767     }
4768 
4769 #ifndef SQLITE_OMIT_AUTOINCREMENT
4770     if( pOp->p3 ){
4771       /* Assert that P3 is a valid memory cell. */
4772       assert( pOp->p3>0 );
4773       if( p->pFrame ){
4774         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4775         /* Assert that P3 is a valid memory cell. */
4776         assert( pOp->p3<=pFrame->nMem );
4777         pMem = &pFrame->aMem[pOp->p3];
4778       }else{
4779         /* Assert that P3 is a valid memory cell. */
4780         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4781         pMem = &aMem[pOp->p3];
4782         memAboutToChange(p, pMem);
4783       }
4784       assert( memIsValid(pMem) );
4785 
4786       REGISTER_TRACE(pOp->p3, pMem);
4787       sqlite3VdbeMemIntegerify(pMem);
4788       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4789       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4790         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4791         goto abort_due_to_error;
4792       }
4793       if( v<pMem->u.i+1 ){
4794         v = pMem->u.i + 1;
4795       }
4796       pMem->u.i = v;
4797     }
4798 #endif
4799     if( pC->useRandomRowid ){
4800       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4801       ** largest possible integer (9223372036854775807) then the database
4802       ** engine starts picking positive candidate ROWIDs at random until
4803       ** it finds one that is not previously used. */
4804       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4805                              ** an AUTOINCREMENT table. */
4806       cnt = 0;
4807       do{
4808         sqlite3_randomness(sizeof(v), &v);
4809         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4810       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4811                                                  0, &res))==SQLITE_OK)
4812             && (res==0)
4813             && (++cnt<100));
4814       if( rc ) goto abort_due_to_error;
4815       if( res==0 ){
4816         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4817         goto abort_due_to_error;
4818       }
4819       assert( v>0 );  /* EV: R-40812-03570 */
4820     }
4821     pC->deferredMoveto = 0;
4822     pC->cacheStatus = CACHE_STALE;
4823   }
4824   pOut->u.i = v;
4825   break;
4826 }
4827 
4828 /* Opcode: Insert P1 P2 P3 P4 P5
4829 ** Synopsis: intkey=r[P3] data=r[P2]
4830 **
4831 ** Write an entry into the table of cursor P1.  A new entry is
4832 ** created if it doesn't already exist or the data for an existing
4833 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4834 ** number P2. The key is stored in register P3. The key must
4835 ** be a MEM_Int.
4836 **
4837 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4838 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4839 ** then rowid is stored for subsequent return by the
4840 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4841 **
4842 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4843 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4844 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4845 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4846 **
4847 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4848 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4849 ** is part of an INSERT operation.  The difference is only important to
4850 ** the update hook.
4851 **
4852 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4853 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4854 ** following a successful insert.
4855 **
4856 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4857 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4858 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4859 ** value of register P2 will then change.  Make sure this does not
4860 ** cause any problems.)
4861 **
4862 ** This instruction only works on tables.  The equivalent instruction
4863 ** for indices is OP_IdxInsert.
4864 */
4865 case OP_Insert: {
4866   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4867   Mem *pKey;        /* MEM cell holding key  for the record */
4868   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4869   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4870   const char *zDb;  /* database name - used by the update hook */
4871   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4872   BtreePayload x;   /* Payload to be inserted */
4873 
4874   pData = &aMem[pOp->p2];
4875   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4876   assert( memIsValid(pData) );
4877   pC = p->apCsr[pOp->p1];
4878   assert( pC!=0 );
4879   assert( pC->eCurType==CURTYPE_BTREE );
4880   assert( pC->deferredMoveto==0 );
4881   assert( pC->uc.pCursor!=0 );
4882   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4883   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4884   REGISTER_TRACE(pOp->p2, pData);
4885   sqlite3VdbeIncrWriteCounter(p, pC);
4886 
4887   pKey = &aMem[pOp->p3];
4888   assert( pKey->flags & MEM_Int );
4889   assert( memIsValid(pKey) );
4890   REGISTER_TRACE(pOp->p3, pKey);
4891   x.nKey = pKey->u.i;
4892 
4893   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4894     assert( pC->iDb>=0 );
4895     zDb = db->aDb[pC->iDb].zDbSName;
4896     pTab = pOp->p4.pTab;
4897     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4898   }else{
4899     pTab = 0;
4900     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4901   }
4902 
4903 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4904   /* Invoke the pre-update hook, if any */
4905   if( pTab ){
4906     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4907       sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4908     }
4909     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4910       /* Prevent post-update hook from running in cases when it should not */
4911       pTab = 0;
4912     }
4913   }
4914   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4915 #endif
4916 
4917   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4918   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4919   assert( pData->flags & (MEM_Blob|MEM_Str) );
4920   x.pData = pData->z;
4921   x.nData = pData->n;
4922   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4923   if( pData->flags & MEM_Zero ){
4924     x.nZero = pData->u.nZero;
4925   }else{
4926     x.nZero = 0;
4927   }
4928   x.pKey = 0;
4929   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4930       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4931   );
4932   pC->deferredMoveto = 0;
4933   pC->cacheStatus = CACHE_STALE;
4934 
4935   /* Invoke the update-hook if required. */
4936   if( rc ) goto abort_due_to_error;
4937   if( pTab ){
4938     assert( db->xUpdateCallback!=0 );
4939     assert( pTab->aCol!=0 );
4940     db->xUpdateCallback(db->pUpdateArg,
4941            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4942            zDb, pTab->zName, x.nKey);
4943   }
4944   break;
4945 }
4946 
4947 /* Opcode: Delete P1 P2 P3 P4 P5
4948 **
4949 ** Delete the record at which the P1 cursor is currently pointing.
4950 **
4951 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4952 ** the cursor will be left pointing at  either the next or the previous
4953 ** record in the table. If it is left pointing at the next record, then
4954 ** the next Next instruction will be a no-op. As a result, in this case
4955 ** it is ok to delete a record from within a Next loop. If
4956 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4957 ** left in an undefined state.
4958 **
4959 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4960 ** delete one of several associated with deleting a table row and all its
4961 ** associated index entries.  Exactly one of those deletes is the "primary"
4962 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4963 ** marked with the AUXDELETE flag.
4964 **
4965 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4966 ** change count is incremented (otherwise not).
4967 **
4968 ** P1 must not be pseudo-table.  It has to be a real table with
4969 ** multiple rows.
4970 **
4971 ** If P4 is not NULL then it points to a Table object. In this case either
4972 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4973 ** have been positioned using OP_NotFound prior to invoking this opcode in
4974 ** this case. Specifically, if one is configured, the pre-update hook is
4975 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4976 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4977 **
4978 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4979 ** of the memory cell that contains the value that the rowid of the row will
4980 ** be set to by the update.
4981 */
4982 case OP_Delete: {
4983   VdbeCursor *pC;
4984   const char *zDb;
4985   Table *pTab;
4986   int opflags;
4987 
4988   opflags = pOp->p2;
4989   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4990   pC = p->apCsr[pOp->p1];
4991   assert( pC!=0 );
4992   assert( pC->eCurType==CURTYPE_BTREE );
4993   assert( pC->uc.pCursor!=0 );
4994   assert( pC->deferredMoveto==0 );
4995   sqlite3VdbeIncrWriteCounter(p, pC);
4996 
4997 #ifdef SQLITE_DEBUG
4998   if( pOp->p4type==P4_TABLE
4999    && HasRowid(pOp->p4.pTab)
5000    && pOp->p5==0
5001    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5002   ){
5003     /* If p5 is zero, the seek operation that positioned the cursor prior to
5004     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5005     ** the row that is being deleted */
5006     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5007     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5008   }
5009 #endif
5010 
5011   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5012   ** the name of the db to pass as to it. Also set local pTab to a copy
5013   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5014   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5015   ** VdbeCursor.movetoTarget to the current rowid.  */
5016   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5017     assert( pC->iDb>=0 );
5018     assert( pOp->p4.pTab!=0 );
5019     zDb = db->aDb[pC->iDb].zDbSName;
5020     pTab = pOp->p4.pTab;
5021     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5022       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5023     }
5024   }else{
5025     zDb = 0;   /* Not needed.  Silence a compiler warning. */
5026     pTab = 0;  /* Not needed.  Silence a compiler warning. */
5027   }
5028 
5029 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5030   /* Invoke the pre-update-hook if required. */
5031   if( db->xPreUpdateCallback && pOp->p4.pTab ){
5032     assert( !(opflags & OPFLAG_ISUPDATE)
5033          || HasRowid(pTab)==0
5034          || (aMem[pOp->p3].flags & MEM_Int)
5035     );
5036     sqlite3VdbePreUpdateHook(p, pC,
5037         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5038         zDb, pTab, pC->movetoTarget,
5039         pOp->p3
5040     );
5041   }
5042   if( opflags & OPFLAG_ISNOOP ) break;
5043 #endif
5044 
5045   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5046   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5047   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5048   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5049 
5050 #ifdef SQLITE_DEBUG
5051   if( p->pFrame==0 ){
5052     if( pC->isEphemeral==0
5053         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5054         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5055       ){
5056       nExtraDelete++;
5057     }
5058     if( pOp->p2 & OPFLAG_NCHANGE ){
5059       nExtraDelete--;
5060     }
5061   }
5062 #endif
5063 
5064   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5065   pC->cacheStatus = CACHE_STALE;
5066   pC->seekResult = 0;
5067   if( rc ) goto abort_due_to_error;
5068 
5069   /* Invoke the update-hook if required. */
5070   if( opflags & OPFLAG_NCHANGE ){
5071     p->nChange++;
5072     if( db->xUpdateCallback && HasRowid(pTab) ){
5073       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5074           pC->movetoTarget);
5075       assert( pC->iDb>=0 );
5076     }
5077   }
5078 
5079   break;
5080 }
5081 /* Opcode: ResetCount * * * * *
5082 **
5083 ** The value of the change counter is copied to the database handle
5084 ** change counter (returned by subsequent calls to sqlite3_changes()).
5085 ** Then the VMs internal change counter resets to 0.
5086 ** This is used by trigger programs.
5087 */
5088 case OP_ResetCount: {
5089   sqlite3VdbeSetChanges(db, p->nChange);
5090   p->nChange = 0;
5091   break;
5092 }
5093 
5094 /* Opcode: SorterCompare P1 P2 P3 P4
5095 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5096 **
5097 ** P1 is a sorter cursor. This instruction compares a prefix of the
5098 ** record blob in register P3 against a prefix of the entry that
5099 ** the sorter cursor currently points to.  Only the first P4 fields
5100 ** of r[P3] and the sorter record are compared.
5101 **
5102 ** If either P3 or the sorter contains a NULL in one of their significant
5103 ** fields (not counting the P4 fields at the end which are ignored) then
5104 ** the comparison is assumed to be equal.
5105 **
5106 ** Fall through to next instruction if the two records compare equal to
5107 ** each other.  Jump to P2 if they are different.
5108 */
5109 case OP_SorterCompare: {
5110   VdbeCursor *pC;
5111   int res;
5112   int nKeyCol;
5113 
5114   pC = p->apCsr[pOp->p1];
5115   assert( isSorter(pC) );
5116   assert( pOp->p4type==P4_INT32 );
5117   pIn3 = &aMem[pOp->p3];
5118   nKeyCol = pOp->p4.i;
5119   res = 0;
5120   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5121   VdbeBranchTaken(res!=0,2);
5122   if( rc ) goto abort_due_to_error;
5123   if( res ) goto jump_to_p2;
5124   break;
5125 };
5126 
5127 /* Opcode: SorterData P1 P2 P3 * *
5128 ** Synopsis: r[P2]=data
5129 **
5130 ** Write into register P2 the current sorter data for sorter cursor P1.
5131 ** Then clear the column header cache on cursor P3.
5132 **
5133 ** This opcode is normally use to move a record out of the sorter and into
5134 ** a register that is the source for a pseudo-table cursor created using
5135 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5136 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5137 ** us from having to issue a separate NullRow instruction to clear that cache.
5138 */
5139 case OP_SorterData: {
5140   VdbeCursor *pC;
5141 
5142   pOut = &aMem[pOp->p2];
5143   pC = p->apCsr[pOp->p1];
5144   assert( isSorter(pC) );
5145   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5146   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5147   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5148   if( rc ) goto abort_due_to_error;
5149   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5150   break;
5151 }
5152 
5153 /* Opcode: RowData P1 P2 P3 * *
5154 ** Synopsis: r[P2]=data
5155 **
5156 ** Write into register P2 the complete row content for the row at
5157 ** which cursor P1 is currently pointing.
5158 ** There is no interpretation of the data.
5159 ** It is just copied onto the P2 register exactly as
5160 ** it is found in the database file.
5161 **
5162 ** If cursor P1 is an index, then the content is the key of the row.
5163 ** If cursor P2 is a table, then the content extracted is the data.
5164 **
5165 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5166 ** of a real table, not a pseudo-table.
5167 **
5168 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5169 ** into the database page.  That means that the content of the output
5170 ** register will be invalidated as soon as the cursor moves - including
5171 ** moves caused by other cursors that "save" the current cursors
5172 ** position in order that they can write to the same table.  If P3==0
5173 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5174 ** P3==0 is safer.
5175 **
5176 ** If P3!=0 then the content of the P2 register is unsuitable for use
5177 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5178 ** The P2 register content is invalidated by opcodes like OP_Function or
5179 ** by any use of another cursor pointing to the same table.
5180 */
5181 case OP_RowData: {
5182   VdbeCursor *pC;
5183   BtCursor *pCrsr;
5184   u32 n;
5185 
5186   pOut = out2Prerelease(p, pOp);
5187 
5188   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5189   pC = p->apCsr[pOp->p1];
5190   assert( pC!=0 );
5191   assert( pC->eCurType==CURTYPE_BTREE );
5192   assert( isSorter(pC)==0 );
5193   assert( pC->nullRow==0 );
5194   assert( pC->uc.pCursor!=0 );
5195   pCrsr = pC->uc.pCursor;
5196 
5197   /* The OP_RowData opcodes always follow OP_NotExists or
5198   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5199   ** that might invalidate the cursor.
5200   ** If this where not the case, on of the following assert()s
5201   ** would fail.  Should this ever change (because of changes in the code
5202   ** generator) then the fix would be to insert a call to
5203   ** sqlite3VdbeCursorMoveto().
5204   */
5205   assert( pC->deferredMoveto==0 );
5206   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5207 #if 0  /* Not required due to the previous to assert() statements */
5208   rc = sqlite3VdbeCursorMoveto(pC);
5209   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5210 #endif
5211 
5212   n = sqlite3BtreePayloadSize(pCrsr);
5213   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5214     goto too_big;
5215   }
5216   testcase( n==0 );
5217   rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
5218   if( rc ) goto abort_due_to_error;
5219   if( !pOp->p3 ) Deephemeralize(pOut);
5220   UPDATE_MAX_BLOBSIZE(pOut);
5221   REGISTER_TRACE(pOp->p2, pOut);
5222   break;
5223 }
5224 
5225 /* Opcode: Rowid P1 P2 * * *
5226 ** Synopsis: r[P2]=rowid
5227 **
5228 ** Store in register P2 an integer which is the key of the table entry that
5229 ** P1 is currently point to.
5230 **
5231 ** P1 can be either an ordinary table or a virtual table.  There used to
5232 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5233 ** one opcode now works for both table types.
5234 */
5235 case OP_Rowid: {                 /* out2 */
5236   VdbeCursor *pC;
5237   i64 v;
5238   sqlite3_vtab *pVtab;
5239   const sqlite3_module *pModule;
5240 
5241   pOut = out2Prerelease(p, pOp);
5242   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5243   pC = p->apCsr[pOp->p1];
5244   assert( pC!=0 );
5245   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5246   if( pC->nullRow ){
5247     pOut->flags = MEM_Null;
5248     break;
5249   }else if( pC->deferredMoveto ){
5250     v = pC->movetoTarget;
5251 #ifndef SQLITE_OMIT_VIRTUALTABLE
5252   }else if( pC->eCurType==CURTYPE_VTAB ){
5253     assert( pC->uc.pVCur!=0 );
5254     pVtab = pC->uc.pVCur->pVtab;
5255     pModule = pVtab->pModule;
5256     assert( pModule->xRowid );
5257     rc = pModule->xRowid(pC->uc.pVCur, &v);
5258     sqlite3VtabImportErrmsg(p, pVtab);
5259     if( rc ) goto abort_due_to_error;
5260 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5261   }else{
5262     assert( pC->eCurType==CURTYPE_BTREE );
5263     assert( pC->uc.pCursor!=0 );
5264     rc = sqlite3VdbeCursorRestore(pC);
5265     if( rc ) goto abort_due_to_error;
5266     if( pC->nullRow ){
5267       pOut->flags = MEM_Null;
5268       break;
5269     }
5270     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5271   }
5272   pOut->u.i = v;
5273   break;
5274 }
5275 
5276 /* Opcode: NullRow P1 * * * *
5277 **
5278 ** Move the cursor P1 to a null row.  Any OP_Column operations
5279 ** that occur while the cursor is on the null row will always
5280 ** write a NULL.
5281 */
5282 case OP_NullRow: {
5283   VdbeCursor *pC;
5284 
5285   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5286   pC = p->apCsr[pOp->p1];
5287   assert( pC!=0 );
5288   pC->nullRow = 1;
5289   pC->cacheStatus = CACHE_STALE;
5290   if( pC->eCurType==CURTYPE_BTREE ){
5291     assert( pC->uc.pCursor!=0 );
5292     sqlite3BtreeClearCursor(pC->uc.pCursor);
5293   }
5294 #ifdef SQLITE_DEBUG
5295   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5296 #endif
5297   break;
5298 }
5299 
5300 /* Opcode: SeekEnd P1 * * * *
5301 **
5302 ** Position cursor P1 at the end of the btree for the purpose of
5303 ** appending a new entry onto the btree.
5304 **
5305 ** It is assumed that the cursor is used only for appending and so
5306 ** if the cursor is valid, then the cursor must already be pointing
5307 ** at the end of the btree and so no changes are made to
5308 ** the cursor.
5309 */
5310 /* Opcode: Last P1 P2 * * *
5311 **
5312 ** The next use of the Rowid or Column or Prev instruction for P1
5313 ** will refer to the last entry in the database table or index.
5314 ** If the table or index is empty and P2>0, then jump immediately to P2.
5315 ** If P2 is 0 or if the table or index is not empty, fall through
5316 ** to the following instruction.
5317 **
5318 ** This opcode leaves the cursor configured to move in reverse order,
5319 ** from the end toward the beginning.  In other words, the cursor is
5320 ** configured to use Prev, not Next.
5321 */
5322 case OP_SeekEnd:
5323 case OP_Last: {        /* jump */
5324   VdbeCursor *pC;
5325   BtCursor *pCrsr;
5326   int res;
5327 
5328   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5329   pC = p->apCsr[pOp->p1];
5330   assert( pC!=0 );
5331   assert( pC->eCurType==CURTYPE_BTREE );
5332   pCrsr = pC->uc.pCursor;
5333   res = 0;
5334   assert( pCrsr!=0 );
5335 #ifdef SQLITE_DEBUG
5336   pC->seekOp = pOp->opcode;
5337 #endif
5338   if( pOp->opcode==OP_SeekEnd ){
5339     assert( pOp->p2==0 );
5340     pC->seekResult = -1;
5341     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5342       break;
5343     }
5344   }
5345   rc = sqlite3BtreeLast(pCrsr, &res);
5346   pC->nullRow = (u8)res;
5347   pC->deferredMoveto = 0;
5348   pC->cacheStatus = CACHE_STALE;
5349   if( rc ) goto abort_due_to_error;
5350   if( pOp->p2>0 ){
5351     VdbeBranchTaken(res!=0,2);
5352     if( res ) goto jump_to_p2;
5353   }
5354   break;
5355 }
5356 
5357 /* Opcode: IfSmaller P1 P2 P3 * *
5358 **
5359 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5360 ** estimate is less than approximately 2**(0.1*P3).
5361 */
5362 case OP_IfSmaller: {        /* jump */
5363   VdbeCursor *pC;
5364   BtCursor *pCrsr;
5365   int res;
5366   i64 sz;
5367 
5368   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5369   pC = p->apCsr[pOp->p1];
5370   assert( pC!=0 );
5371   pCrsr = pC->uc.pCursor;
5372   assert( pCrsr );
5373   rc = sqlite3BtreeFirst(pCrsr, &res);
5374   if( rc ) goto abort_due_to_error;
5375   if( res==0 ){
5376     sz = sqlite3BtreeRowCountEst(pCrsr);
5377     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5378   }
5379   VdbeBranchTaken(res!=0,2);
5380   if( res ) goto jump_to_p2;
5381   break;
5382 }
5383 
5384 
5385 /* Opcode: SorterSort P1 P2 * * *
5386 **
5387 ** After all records have been inserted into the Sorter object
5388 ** identified by P1, invoke this opcode to actually do the sorting.
5389 ** Jump to P2 if there are no records to be sorted.
5390 **
5391 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5392 ** for Sorter objects.
5393 */
5394 /* Opcode: Sort P1 P2 * * *
5395 **
5396 ** This opcode does exactly the same thing as OP_Rewind except that
5397 ** it increments an undocumented global variable used for testing.
5398 **
5399 ** Sorting is accomplished by writing records into a sorting index,
5400 ** then rewinding that index and playing it back from beginning to
5401 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5402 ** rewinding so that the global variable will be incremented and
5403 ** regression tests can determine whether or not the optimizer is
5404 ** correctly optimizing out sorts.
5405 */
5406 case OP_SorterSort:    /* jump */
5407 case OP_Sort: {        /* jump */
5408 #ifdef SQLITE_TEST
5409   sqlite3_sort_count++;
5410   sqlite3_search_count--;
5411 #endif
5412   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5413   /* Fall through into OP_Rewind */
5414 }
5415 /* Opcode: Rewind P1 P2 * * *
5416 **
5417 ** The next use of the Rowid or Column or Next instruction for P1
5418 ** will refer to the first entry in the database table or index.
5419 ** If the table or index is empty, jump immediately to P2.
5420 ** If the table or index is not empty, fall through to the following
5421 ** instruction.
5422 **
5423 ** This opcode leaves the cursor configured to move in forward order,
5424 ** from the beginning toward the end.  In other words, the cursor is
5425 ** configured to use Next, not Prev.
5426 */
5427 case OP_Rewind: {        /* jump */
5428   VdbeCursor *pC;
5429   BtCursor *pCrsr;
5430   int res;
5431 
5432   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5433   assert( pOp->p5==0 );
5434   pC = p->apCsr[pOp->p1];
5435   assert( pC!=0 );
5436   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5437   res = 1;
5438 #ifdef SQLITE_DEBUG
5439   pC->seekOp = OP_Rewind;
5440 #endif
5441   if( isSorter(pC) ){
5442     rc = sqlite3VdbeSorterRewind(pC, &res);
5443   }else{
5444     assert( pC->eCurType==CURTYPE_BTREE );
5445     pCrsr = pC->uc.pCursor;
5446     assert( pCrsr );
5447     rc = sqlite3BtreeFirst(pCrsr, &res);
5448     pC->deferredMoveto = 0;
5449     pC->cacheStatus = CACHE_STALE;
5450   }
5451   if( rc ) goto abort_due_to_error;
5452   pC->nullRow = (u8)res;
5453   assert( pOp->p2>0 && pOp->p2<p->nOp );
5454   VdbeBranchTaken(res!=0,2);
5455   if( res ) goto jump_to_p2;
5456   break;
5457 }
5458 
5459 /* Opcode: Next P1 P2 P3 P4 P5
5460 **
5461 ** Advance cursor P1 so that it points to the next key/data pair in its
5462 ** table or index.  If there are no more key/value pairs then fall through
5463 ** to the following instruction.  But if the cursor advance was successful,
5464 ** jump immediately to P2.
5465 **
5466 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5467 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5468 ** to follow SeekLT, SeekLE, or OP_Last.
5469 **
5470 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5471 ** been opened prior to this opcode or the program will segfault.
5472 **
5473 ** The P3 value is a hint to the btree implementation. If P3==1, that
5474 ** means P1 is an SQL index and that this instruction could have been
5475 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5476 ** always either 0 or 1.
5477 **
5478 ** P4 is always of type P4_ADVANCE. The function pointer points to
5479 ** sqlite3BtreeNext().
5480 **
5481 ** If P5 is positive and the jump is taken, then event counter
5482 ** number P5-1 in the prepared statement is incremented.
5483 **
5484 ** See also: Prev
5485 */
5486 /* Opcode: Prev P1 P2 P3 P4 P5
5487 **
5488 ** Back up cursor P1 so that it points to the previous key/data pair in its
5489 ** table or index.  If there is no previous key/value pairs then fall through
5490 ** to the following instruction.  But if the cursor backup was successful,
5491 ** jump immediately to P2.
5492 **
5493 **
5494 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5495 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5496 ** to follow SeekGT, SeekGE, or OP_Rewind.
5497 **
5498 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5499 ** not open then the behavior is undefined.
5500 **
5501 ** The P3 value is a hint to the btree implementation. If P3==1, that
5502 ** means P1 is an SQL index and that this instruction could have been
5503 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5504 ** always either 0 or 1.
5505 **
5506 ** P4 is always of type P4_ADVANCE. The function pointer points to
5507 ** sqlite3BtreePrevious().
5508 **
5509 ** If P5 is positive and the jump is taken, then event counter
5510 ** number P5-1 in the prepared statement is incremented.
5511 */
5512 /* Opcode: SorterNext P1 P2 * * P5
5513 **
5514 ** This opcode works just like OP_Next except that P1 must be a
5515 ** sorter object for which the OP_SorterSort opcode has been
5516 ** invoked.  This opcode advances the cursor to the next sorted
5517 ** record, or jumps to P2 if there are no more sorted records.
5518 */
5519 case OP_SorterNext: {  /* jump */
5520   VdbeCursor *pC;
5521 
5522   pC = p->apCsr[pOp->p1];
5523   assert( isSorter(pC) );
5524   rc = sqlite3VdbeSorterNext(db, pC);
5525   goto next_tail;
5526 case OP_Prev:          /* jump */
5527 case OP_Next:          /* jump */
5528   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5529   assert( pOp->p5<ArraySize(p->aCounter) );
5530   pC = p->apCsr[pOp->p1];
5531   assert( pC!=0 );
5532   assert( pC->deferredMoveto==0 );
5533   assert( pC->eCurType==CURTYPE_BTREE );
5534   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5535   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5536 
5537   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5538   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5539   assert( pOp->opcode!=OP_Next
5540        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5541        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5542        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
5543        || pC->seekOp==OP_IfNoHope);
5544   assert( pOp->opcode!=OP_Prev
5545        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5546        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
5547        || pC->seekOp==OP_NullRow);
5548 
5549   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5550 next_tail:
5551   pC->cacheStatus = CACHE_STALE;
5552   VdbeBranchTaken(rc==SQLITE_OK,2);
5553   if( rc==SQLITE_OK ){
5554     pC->nullRow = 0;
5555     p->aCounter[pOp->p5]++;
5556 #ifdef SQLITE_TEST
5557     sqlite3_search_count++;
5558 #endif
5559     goto jump_to_p2_and_check_for_interrupt;
5560   }
5561   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5562   rc = SQLITE_OK;
5563   pC->nullRow = 1;
5564   goto check_for_interrupt;
5565 }
5566 
5567 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5568 ** Synopsis: key=r[P2]
5569 **
5570 ** Register P2 holds an SQL index key made using the
5571 ** MakeRecord instructions.  This opcode writes that key
5572 ** into the index P1.  Data for the entry is nil.
5573 **
5574 ** If P4 is not zero, then it is the number of values in the unpacked
5575 ** key of reg(P2).  In that case, P3 is the index of the first register
5576 ** for the unpacked key.  The availability of the unpacked key can sometimes
5577 ** be an optimization.
5578 **
5579 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5580 ** that this insert is likely to be an append.
5581 **
5582 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5583 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5584 ** then the change counter is unchanged.
5585 **
5586 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5587 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5588 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5589 ** seeks on the cursor or if the most recent seek used a key equivalent
5590 ** to P2.
5591 **
5592 ** This instruction only works for indices.  The equivalent instruction
5593 ** for tables is OP_Insert.
5594 */
5595 /* Opcode: SorterInsert P1 P2 * * *
5596 ** Synopsis: key=r[P2]
5597 **
5598 ** Register P2 holds an SQL index key made using the
5599 ** MakeRecord instructions.  This opcode writes that key
5600 ** into the sorter P1.  Data for the entry is nil.
5601 */
5602 case OP_SorterInsert:       /* in2 */
5603 case OP_IdxInsert: {        /* in2 */
5604   VdbeCursor *pC;
5605   BtreePayload x;
5606 
5607   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5608   pC = p->apCsr[pOp->p1];
5609   sqlite3VdbeIncrWriteCounter(p, pC);
5610   assert( pC!=0 );
5611   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5612   pIn2 = &aMem[pOp->p2];
5613   assert( pIn2->flags & MEM_Blob );
5614   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5615   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5616   assert( pC->isTable==0 );
5617   rc = ExpandBlob(pIn2);
5618   if( rc ) goto abort_due_to_error;
5619   if( pOp->opcode==OP_SorterInsert ){
5620     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5621   }else{
5622     x.nKey = pIn2->n;
5623     x.pKey = pIn2->z;
5624     x.aMem = aMem + pOp->p3;
5625     x.nMem = (u16)pOp->p4.i;
5626     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5627          (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5628         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5629         );
5630     assert( pC->deferredMoveto==0 );
5631     pC->cacheStatus = CACHE_STALE;
5632   }
5633   if( rc) goto abort_due_to_error;
5634   break;
5635 }
5636 
5637 /* Opcode: IdxDelete P1 P2 P3 * *
5638 ** Synopsis: key=r[P2@P3]
5639 **
5640 ** The content of P3 registers starting at register P2 form
5641 ** an unpacked index key. This opcode removes that entry from the
5642 ** index opened by cursor P1.
5643 */
5644 case OP_IdxDelete: {
5645   VdbeCursor *pC;
5646   BtCursor *pCrsr;
5647   int res;
5648   UnpackedRecord r;
5649 
5650   assert( pOp->p3>0 );
5651   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5652   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5653   pC = p->apCsr[pOp->p1];
5654   assert( pC!=0 );
5655   assert( pC->eCurType==CURTYPE_BTREE );
5656   sqlite3VdbeIncrWriteCounter(p, pC);
5657   pCrsr = pC->uc.pCursor;
5658   assert( pCrsr!=0 );
5659   assert( pOp->p5==0 );
5660   r.pKeyInfo = pC->pKeyInfo;
5661   r.nField = (u16)pOp->p3;
5662   r.default_rc = 0;
5663   r.aMem = &aMem[pOp->p2];
5664   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5665   if( rc ) goto abort_due_to_error;
5666   if( res==0 ){
5667     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5668     if( rc ) goto abort_due_to_error;
5669   }
5670   assert( pC->deferredMoveto==0 );
5671   pC->cacheStatus = CACHE_STALE;
5672   pC->seekResult = 0;
5673   break;
5674 }
5675 
5676 /* Opcode: DeferredSeek P1 * P3 P4 *
5677 ** Synopsis: Move P3 to P1.rowid if needed
5678 **
5679 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5680 ** table.  This opcode does a deferred seek of the P3 table cursor
5681 ** to the row that corresponds to the current row of P1.
5682 **
5683 ** This is a deferred seek.  Nothing actually happens until
5684 ** the cursor is used to read a record.  That way, if no reads
5685 ** occur, no unnecessary I/O happens.
5686 **
5687 ** P4 may be an array of integers (type P4_INTARRAY) containing
5688 ** one entry for each column in the P3 table.  If array entry a(i)
5689 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5690 ** equivalent to performing the deferred seek and then reading column i
5691 ** from P1.  This information is stored in P3 and used to redirect
5692 ** reads against P3 over to P1, thus possibly avoiding the need to
5693 ** seek and read cursor P3.
5694 */
5695 /* Opcode: IdxRowid P1 P2 * * *
5696 ** Synopsis: r[P2]=rowid
5697 **
5698 ** Write into register P2 an integer which is the last entry in the record at
5699 ** the end of the index key pointed to by cursor P1.  This integer should be
5700 ** the rowid of the table entry to which this index entry points.
5701 **
5702 ** See also: Rowid, MakeRecord.
5703 */
5704 case OP_DeferredSeek:
5705 case OP_IdxRowid: {           /* out2 */
5706   VdbeCursor *pC;             /* The P1 index cursor */
5707   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5708   i64 rowid;                  /* Rowid that P1 current points to */
5709 
5710   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5711   pC = p->apCsr[pOp->p1];
5712   assert( pC!=0 );
5713   assert( pC->eCurType==CURTYPE_BTREE );
5714   assert( pC->uc.pCursor!=0 );
5715   assert( pC->isTable==0 );
5716   assert( pC->deferredMoveto==0 );
5717   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5718 
5719   /* The IdxRowid and Seek opcodes are combined because of the commonality
5720   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5721   rc = sqlite3VdbeCursorRestore(pC);
5722 
5723   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5724   ** out from under the cursor.  That will never happens for an IdxRowid
5725   ** or Seek opcode */
5726   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5727 
5728   if( !pC->nullRow ){
5729     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5730     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5731     if( rc!=SQLITE_OK ){
5732       goto abort_due_to_error;
5733     }
5734     if( pOp->opcode==OP_DeferredSeek ){
5735       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5736       pTabCur = p->apCsr[pOp->p3];
5737       assert( pTabCur!=0 );
5738       assert( pTabCur->eCurType==CURTYPE_BTREE );
5739       assert( pTabCur->uc.pCursor!=0 );
5740       assert( pTabCur->isTable );
5741       pTabCur->nullRow = 0;
5742       pTabCur->movetoTarget = rowid;
5743       pTabCur->deferredMoveto = 1;
5744       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5745       pTabCur->aAltMap = pOp->p4.ai;
5746       pTabCur->pAltCursor = pC;
5747     }else{
5748       pOut = out2Prerelease(p, pOp);
5749       pOut->u.i = rowid;
5750     }
5751   }else{
5752     assert( pOp->opcode==OP_IdxRowid );
5753     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5754   }
5755   break;
5756 }
5757 
5758 /* Opcode: FinishSeek P1 * * * *
5759 **
5760 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
5761 ** seek operation now, without further delay.  If the cursor seek has
5762 ** already occurred, this instruction is a no-op.
5763 */
5764 case OP_FinishSeek: {
5765   VdbeCursor *pC;             /* The P1 index cursor */
5766 
5767   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5768   pC = p->apCsr[pOp->p1];
5769   if( pC->deferredMoveto ){
5770     rc = sqlite3VdbeFinishMoveto(pC);
5771     if( rc ) goto abort_due_to_error;
5772   }
5773   break;
5774 }
5775 
5776 /* Opcode: IdxGE P1 P2 P3 P4 P5
5777 ** Synopsis: key=r[P3@P4]
5778 **
5779 ** The P4 register values beginning with P3 form an unpacked index
5780 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5781 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5782 ** fields at the end.
5783 **
5784 ** If the P1 index entry is greater than or equal to the key value
5785 ** then jump to P2.  Otherwise fall through to the next instruction.
5786 */
5787 /* Opcode: IdxGT P1 P2 P3 P4 P5
5788 ** Synopsis: key=r[P3@P4]
5789 **
5790 ** The P4 register values beginning with P3 form an unpacked index
5791 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5792 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5793 ** fields at the end.
5794 **
5795 ** If the P1 index entry is greater than the key value
5796 ** then jump to P2.  Otherwise fall through to the next instruction.
5797 */
5798 /* Opcode: IdxLT P1 P2 P3 P4 P5
5799 ** Synopsis: key=r[P3@P4]
5800 **
5801 ** The P4 register values beginning with P3 form an unpacked index
5802 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5803 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5804 ** ROWID on the P1 index.
5805 **
5806 ** If the P1 index entry is less than the key value then jump to P2.
5807 ** Otherwise fall through to the next instruction.
5808 */
5809 /* Opcode: IdxLE P1 P2 P3 P4 P5
5810 ** Synopsis: key=r[P3@P4]
5811 **
5812 ** The P4 register values beginning with P3 form an unpacked index
5813 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5814 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5815 ** ROWID on the P1 index.
5816 **
5817 ** If the P1 index entry is less than or equal to the key value then jump
5818 ** to P2. Otherwise fall through to the next instruction.
5819 */
5820 case OP_IdxLE:          /* jump */
5821 case OP_IdxGT:          /* jump */
5822 case OP_IdxLT:          /* jump */
5823 case OP_IdxGE:  {       /* jump */
5824   VdbeCursor *pC;
5825   int res;
5826   UnpackedRecord r;
5827 
5828   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5829   pC = p->apCsr[pOp->p1];
5830   assert( pC!=0 );
5831   assert( pC->isOrdered );
5832   assert( pC->eCurType==CURTYPE_BTREE );
5833   assert( pC->uc.pCursor!=0);
5834   assert( pC->deferredMoveto==0 );
5835   assert( pOp->p5==0 || pOp->p5==1 );
5836   assert( pOp->p4type==P4_INT32 );
5837   r.pKeyInfo = pC->pKeyInfo;
5838   r.nField = (u16)pOp->p4.i;
5839   if( pOp->opcode<OP_IdxLT ){
5840     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5841     r.default_rc = -1;
5842   }else{
5843     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5844     r.default_rc = 0;
5845   }
5846   r.aMem = &aMem[pOp->p3];
5847 #ifdef SQLITE_DEBUG
5848   {
5849     int i;
5850     for(i=0; i<r.nField; i++){
5851       assert( memIsValid(&r.aMem[i]) );
5852       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
5853     }
5854   }
5855 #endif
5856   res = 0;  /* Not needed.  Only used to silence a warning. */
5857   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5858   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5859   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5860     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5861     res = -res;
5862   }else{
5863     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5864     res++;
5865   }
5866   VdbeBranchTaken(res>0,2);
5867   if( rc ) goto abort_due_to_error;
5868   if( res>0 ) goto jump_to_p2;
5869   break;
5870 }
5871 
5872 /* Opcode: Destroy P1 P2 P3 * *
5873 **
5874 ** Delete an entire database table or index whose root page in the database
5875 ** file is given by P1.
5876 **
5877 ** The table being destroyed is in the main database file if P3==0.  If
5878 ** P3==1 then the table to be clear is in the auxiliary database file
5879 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5880 **
5881 ** If AUTOVACUUM is enabled then it is possible that another root page
5882 ** might be moved into the newly deleted root page in order to keep all
5883 ** root pages contiguous at the beginning of the database.  The former
5884 ** value of the root page that moved - its value before the move occurred -
5885 ** is stored in register P2. If no page movement was required (because the
5886 ** table being dropped was already the last one in the database) then a
5887 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5888 ** is stored in register P2.
5889 **
5890 ** This opcode throws an error if there are any active reader VMs when
5891 ** it is invoked. This is done to avoid the difficulty associated with
5892 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5893 ** database. This error is thrown even if the database is not an AUTOVACUUM
5894 ** db in order to avoid introducing an incompatibility between autovacuum
5895 ** and non-autovacuum modes.
5896 **
5897 ** See also: Clear
5898 */
5899 case OP_Destroy: {     /* out2 */
5900   int iMoved;
5901   int iDb;
5902 
5903   sqlite3VdbeIncrWriteCounter(p, 0);
5904   assert( p->readOnly==0 );
5905   assert( pOp->p1>1 );
5906   pOut = out2Prerelease(p, pOp);
5907   pOut->flags = MEM_Null;
5908   if( db->nVdbeRead > db->nVDestroy+1 ){
5909     rc = SQLITE_LOCKED;
5910     p->errorAction = OE_Abort;
5911     goto abort_due_to_error;
5912   }else{
5913     iDb = pOp->p3;
5914     assert( DbMaskTest(p->btreeMask, iDb) );
5915     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5916     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5917     pOut->flags = MEM_Int;
5918     pOut->u.i = iMoved;
5919     if( rc ) goto abort_due_to_error;
5920 #ifndef SQLITE_OMIT_AUTOVACUUM
5921     if( iMoved!=0 ){
5922       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5923       /* All OP_Destroy operations occur on the same btree */
5924       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5925       resetSchemaOnFault = iDb+1;
5926     }
5927 #endif
5928   }
5929   break;
5930 }
5931 
5932 /* Opcode: Clear P1 P2 P3
5933 **
5934 ** Delete all contents of the database table or index whose root page
5935 ** in the database file is given by P1.  But, unlike Destroy, do not
5936 ** remove the table or index from the database file.
5937 **
5938 ** The table being clear is in the main database file if P2==0.  If
5939 ** P2==1 then the table to be clear is in the auxiliary database file
5940 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5941 **
5942 ** If the P3 value is non-zero, then the table referred to must be an
5943 ** intkey table (an SQL table, not an index). In this case the row change
5944 ** count is incremented by the number of rows in the table being cleared.
5945 ** If P3 is greater than zero, then the value stored in register P3 is
5946 ** also incremented by the number of rows in the table being cleared.
5947 **
5948 ** See also: Destroy
5949 */
5950 case OP_Clear: {
5951   int nChange;
5952 
5953   sqlite3VdbeIncrWriteCounter(p, 0);
5954   nChange = 0;
5955   assert( p->readOnly==0 );
5956   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5957   rc = sqlite3BtreeClearTable(
5958       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5959   );
5960   if( pOp->p3 ){
5961     p->nChange += nChange;
5962     if( pOp->p3>0 ){
5963       assert( memIsValid(&aMem[pOp->p3]) );
5964       memAboutToChange(p, &aMem[pOp->p3]);
5965       aMem[pOp->p3].u.i += nChange;
5966     }
5967   }
5968   if( rc ) goto abort_due_to_error;
5969   break;
5970 }
5971 
5972 /* Opcode: ResetSorter P1 * * * *
5973 **
5974 ** Delete all contents from the ephemeral table or sorter
5975 ** that is open on cursor P1.
5976 **
5977 ** This opcode only works for cursors used for sorting and
5978 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5979 */
5980 case OP_ResetSorter: {
5981   VdbeCursor *pC;
5982 
5983   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5984   pC = p->apCsr[pOp->p1];
5985   assert( pC!=0 );
5986   if( isSorter(pC) ){
5987     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5988   }else{
5989     assert( pC->eCurType==CURTYPE_BTREE );
5990     assert( pC->isEphemeral );
5991     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5992     if( rc ) goto abort_due_to_error;
5993   }
5994   break;
5995 }
5996 
5997 /* Opcode: CreateBtree P1 P2 P3 * *
5998 ** Synopsis: r[P2]=root iDb=P1 flags=P3
5999 **
6000 ** Allocate a new b-tree in the main database file if P1==0 or in the
6001 ** TEMP database file if P1==1 or in an attached database if
6002 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6003 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6004 ** The root page number of the new b-tree is stored in register P2.
6005 */
6006 case OP_CreateBtree: {          /* out2 */
6007   int pgno;
6008   Db *pDb;
6009 
6010   sqlite3VdbeIncrWriteCounter(p, 0);
6011   pOut = out2Prerelease(p, pOp);
6012   pgno = 0;
6013   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6014   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6015   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6016   assert( p->readOnly==0 );
6017   pDb = &db->aDb[pOp->p1];
6018   assert( pDb->pBt!=0 );
6019   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6020   if( rc ) goto abort_due_to_error;
6021   pOut->u.i = pgno;
6022   break;
6023 }
6024 
6025 /* Opcode: SqlExec * * * P4 *
6026 **
6027 ** Run the SQL statement or statements specified in the P4 string.
6028 */
6029 case OP_SqlExec: {
6030   sqlite3VdbeIncrWriteCounter(p, 0);
6031   db->nSqlExec++;
6032   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6033   db->nSqlExec--;
6034   if( rc ) goto abort_due_to_error;
6035   break;
6036 }
6037 
6038 /* Opcode: ParseSchema P1 * * P4 *
6039 **
6040 ** Read and parse all entries from the SQLITE_MASTER table of database P1
6041 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6042 ** entire schema for P1 is reparsed.
6043 **
6044 ** This opcode invokes the parser to create a new virtual machine,
6045 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6046 */
6047 case OP_ParseSchema: {
6048   int iDb;
6049   const char *zMaster;
6050   char *zSql;
6051   InitData initData;
6052 
6053   /* Any prepared statement that invokes this opcode will hold mutexes
6054   ** on every btree.  This is a prerequisite for invoking
6055   ** sqlite3InitCallback().
6056   */
6057 #ifdef SQLITE_DEBUG
6058   for(iDb=0; iDb<db->nDb; iDb++){
6059     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6060   }
6061 #endif
6062 
6063   iDb = pOp->p1;
6064   assert( iDb>=0 && iDb<db->nDb );
6065   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
6066 
6067 #ifndef SQLITE_OMIT_ALTERTABLE
6068   if( pOp->p4.z==0 ){
6069     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6070     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6071     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable);
6072     db->mDbFlags |= DBFLAG_SchemaChange;
6073     p->expired = 0;
6074   }else
6075 #endif
6076   {
6077     zMaster = MASTER_NAME;
6078     initData.db = db;
6079     initData.iDb = iDb;
6080     initData.pzErrMsg = &p->zErrMsg;
6081     initData.mInitFlags = 0;
6082     zSql = sqlite3MPrintf(db,
6083        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6084        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
6085     if( zSql==0 ){
6086       rc = SQLITE_NOMEM_BKPT;
6087     }else{
6088       assert( db->init.busy==0 );
6089       db->init.busy = 1;
6090       initData.rc = SQLITE_OK;
6091       initData.nInitRow = 0;
6092       assert( !db->mallocFailed );
6093       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6094       if( rc==SQLITE_OK ) rc = initData.rc;
6095       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6096         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6097         ** at least one SQL statement. Any less than that indicates that
6098         ** the sqlite_master table is corrupt. */
6099         rc = SQLITE_CORRUPT_BKPT;
6100       }
6101       sqlite3DbFreeNN(db, zSql);
6102       db->init.busy = 0;
6103     }
6104   }
6105   if( rc ){
6106     sqlite3ResetAllSchemasOfConnection(db);
6107     if( rc==SQLITE_NOMEM ){
6108       goto no_mem;
6109     }
6110     goto abort_due_to_error;
6111   }
6112   break;
6113 }
6114 
6115 #if !defined(SQLITE_OMIT_ANALYZE)
6116 /* Opcode: LoadAnalysis P1 * * * *
6117 **
6118 ** Read the sqlite_stat1 table for database P1 and load the content
6119 ** of that table into the internal index hash table.  This will cause
6120 ** the analysis to be used when preparing all subsequent queries.
6121 */
6122 case OP_LoadAnalysis: {
6123   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6124   rc = sqlite3AnalysisLoad(db, pOp->p1);
6125   if( rc ) goto abort_due_to_error;
6126   break;
6127 }
6128 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6129 
6130 /* Opcode: DropTable P1 * * P4 *
6131 **
6132 ** Remove the internal (in-memory) data structures that describe
6133 ** the table named P4 in database P1.  This is called after a table
6134 ** is dropped from disk (using the Destroy opcode) in order to keep
6135 ** the internal representation of the
6136 ** schema consistent with what is on disk.
6137 */
6138 case OP_DropTable: {
6139   sqlite3VdbeIncrWriteCounter(p, 0);
6140   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6141   break;
6142 }
6143 
6144 /* Opcode: DropIndex P1 * * P4 *
6145 **
6146 ** Remove the internal (in-memory) data structures that describe
6147 ** the index named P4 in database P1.  This is called after an index
6148 ** is dropped from disk (using the Destroy opcode)
6149 ** in order to keep the internal representation of the
6150 ** schema consistent with what is on disk.
6151 */
6152 case OP_DropIndex: {
6153   sqlite3VdbeIncrWriteCounter(p, 0);
6154   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6155   break;
6156 }
6157 
6158 /* Opcode: DropTrigger P1 * * P4 *
6159 **
6160 ** Remove the internal (in-memory) data structures that describe
6161 ** the trigger named P4 in database P1.  This is called after a trigger
6162 ** is dropped from disk (using the Destroy opcode) in order to keep
6163 ** the internal representation of the
6164 ** schema consistent with what is on disk.
6165 */
6166 case OP_DropTrigger: {
6167   sqlite3VdbeIncrWriteCounter(p, 0);
6168   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6169   break;
6170 }
6171 
6172 
6173 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6174 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6175 **
6176 ** Do an analysis of the currently open database.  Store in
6177 ** register P1 the text of an error message describing any problems.
6178 ** If no problems are found, store a NULL in register P1.
6179 **
6180 ** The register P3 contains one less than the maximum number of allowed errors.
6181 ** At most reg(P3) errors will be reported.
6182 ** In other words, the analysis stops as soon as reg(P1) errors are
6183 ** seen.  Reg(P1) is updated with the number of errors remaining.
6184 **
6185 ** The root page numbers of all tables in the database are integers
6186 ** stored in P4_INTARRAY argument.
6187 **
6188 ** If P5 is not zero, the check is done on the auxiliary database
6189 ** file, not the main database file.
6190 **
6191 ** This opcode is used to implement the integrity_check pragma.
6192 */
6193 case OP_IntegrityCk: {
6194   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6195   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
6196   int nErr;       /* Number of errors reported */
6197   char *z;        /* Text of the error report */
6198   Mem *pnErr;     /* Register keeping track of errors remaining */
6199 
6200   assert( p->bIsReader );
6201   nRoot = pOp->p2;
6202   aRoot = pOp->p4.ai;
6203   assert( nRoot>0 );
6204   assert( aRoot[0]==nRoot );
6205   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6206   pnErr = &aMem[pOp->p3];
6207   assert( (pnErr->flags & MEM_Int)!=0 );
6208   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6209   pIn1 = &aMem[pOp->p1];
6210   assert( pOp->p5<db->nDb );
6211   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6212   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6213                                  (int)pnErr->u.i+1, &nErr);
6214   sqlite3VdbeMemSetNull(pIn1);
6215   if( nErr==0 ){
6216     assert( z==0 );
6217   }else if( z==0 ){
6218     goto no_mem;
6219   }else{
6220     pnErr->u.i -= nErr-1;
6221     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6222   }
6223   UPDATE_MAX_BLOBSIZE(pIn1);
6224   sqlite3VdbeChangeEncoding(pIn1, encoding);
6225   goto check_for_interrupt;
6226 }
6227 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6228 
6229 /* Opcode: RowSetAdd P1 P2 * * *
6230 ** Synopsis: rowset(P1)=r[P2]
6231 **
6232 ** Insert the integer value held by register P2 into a RowSet object
6233 ** held in register P1.
6234 **
6235 ** An assertion fails if P2 is not an integer.
6236 */
6237 case OP_RowSetAdd: {       /* in1, in2 */
6238   pIn1 = &aMem[pOp->p1];
6239   pIn2 = &aMem[pOp->p2];
6240   assert( (pIn2->flags & MEM_Int)!=0 );
6241   if( (pIn1->flags & MEM_Blob)==0 ){
6242     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6243   }
6244   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6245   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6246   break;
6247 }
6248 
6249 /* Opcode: RowSetRead P1 P2 P3 * *
6250 ** Synopsis: r[P3]=rowset(P1)
6251 **
6252 ** Extract the smallest value from the RowSet object in P1
6253 ** and put that value into register P3.
6254 ** Or, if RowSet object P1 is initially empty, leave P3
6255 ** unchanged and jump to instruction P2.
6256 */
6257 case OP_RowSetRead: {       /* jump, in1, out3 */
6258   i64 val;
6259 
6260   pIn1 = &aMem[pOp->p1];
6261   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6262   if( (pIn1->flags & MEM_Blob)==0
6263    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6264   ){
6265     /* The boolean index is empty */
6266     sqlite3VdbeMemSetNull(pIn1);
6267     VdbeBranchTaken(1,2);
6268     goto jump_to_p2_and_check_for_interrupt;
6269   }else{
6270     /* A value was pulled from the index */
6271     VdbeBranchTaken(0,2);
6272     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6273   }
6274   goto check_for_interrupt;
6275 }
6276 
6277 /* Opcode: RowSetTest P1 P2 P3 P4
6278 ** Synopsis: if r[P3] in rowset(P1) goto P2
6279 **
6280 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6281 ** contains a RowSet object and that RowSet object contains
6282 ** the value held in P3, jump to register P2. Otherwise, insert the
6283 ** integer in P3 into the RowSet and continue on to the
6284 ** next opcode.
6285 **
6286 ** The RowSet object is optimized for the case where sets of integers
6287 ** are inserted in distinct phases, which each set contains no duplicates.
6288 ** Each set is identified by a unique P4 value. The first set
6289 ** must have P4==0, the final set must have P4==-1, and for all other sets
6290 ** must have P4>0.
6291 **
6292 ** This allows optimizations: (a) when P4==0 there is no need to test
6293 ** the RowSet object for P3, as it is guaranteed not to contain it,
6294 ** (b) when P4==-1 there is no need to insert the value, as it will
6295 ** never be tested for, and (c) when a value that is part of set X is
6296 ** inserted, there is no need to search to see if the same value was
6297 ** previously inserted as part of set X (only if it was previously
6298 ** inserted as part of some other set).
6299 */
6300 case OP_RowSetTest: {                     /* jump, in1, in3 */
6301   int iSet;
6302   int exists;
6303 
6304   pIn1 = &aMem[pOp->p1];
6305   pIn3 = &aMem[pOp->p3];
6306   iSet = pOp->p4.i;
6307   assert( pIn3->flags&MEM_Int );
6308 
6309   /* If there is anything other than a rowset object in memory cell P1,
6310   ** delete it now and initialize P1 with an empty rowset
6311   */
6312   if( (pIn1->flags & MEM_Blob)==0 ){
6313     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6314   }
6315   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6316   assert( pOp->p4type==P4_INT32 );
6317   assert( iSet==-1 || iSet>=0 );
6318   if( iSet ){
6319     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6320     VdbeBranchTaken(exists!=0,2);
6321     if( exists ) goto jump_to_p2;
6322   }
6323   if( iSet>=0 ){
6324     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6325   }
6326   break;
6327 }
6328 
6329 
6330 #ifndef SQLITE_OMIT_TRIGGER
6331 
6332 /* Opcode: Program P1 P2 P3 P4 P5
6333 **
6334 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6335 **
6336 ** P1 contains the address of the memory cell that contains the first memory
6337 ** cell in an array of values used as arguments to the sub-program. P2
6338 ** contains the address to jump to if the sub-program throws an IGNORE
6339 ** exception using the RAISE() function. Register P3 contains the address
6340 ** of a memory cell in this (the parent) VM that is used to allocate the
6341 ** memory required by the sub-vdbe at runtime.
6342 **
6343 ** P4 is a pointer to the VM containing the trigger program.
6344 **
6345 ** If P5 is non-zero, then recursive program invocation is enabled.
6346 */
6347 case OP_Program: {        /* jump */
6348   int nMem;               /* Number of memory registers for sub-program */
6349   int nByte;              /* Bytes of runtime space required for sub-program */
6350   Mem *pRt;               /* Register to allocate runtime space */
6351   Mem *pMem;              /* Used to iterate through memory cells */
6352   Mem *pEnd;              /* Last memory cell in new array */
6353   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6354   SubProgram *pProgram;   /* Sub-program to execute */
6355   void *t;                /* Token identifying trigger */
6356 
6357   pProgram = pOp->p4.pProgram;
6358   pRt = &aMem[pOp->p3];
6359   assert( pProgram->nOp>0 );
6360 
6361   /* If the p5 flag is clear, then recursive invocation of triggers is
6362   ** disabled for backwards compatibility (p5 is set if this sub-program
6363   ** is really a trigger, not a foreign key action, and the flag set
6364   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6365   **
6366   ** It is recursive invocation of triggers, at the SQL level, that is
6367   ** disabled. In some cases a single trigger may generate more than one
6368   ** SubProgram (if the trigger may be executed with more than one different
6369   ** ON CONFLICT algorithm). SubProgram structures associated with a
6370   ** single trigger all have the same value for the SubProgram.token
6371   ** variable.  */
6372   if( pOp->p5 ){
6373     t = pProgram->token;
6374     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6375     if( pFrame ) break;
6376   }
6377 
6378   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6379     rc = SQLITE_ERROR;
6380     sqlite3VdbeError(p, "too many levels of trigger recursion");
6381     goto abort_due_to_error;
6382   }
6383 
6384   /* Register pRt is used to store the memory required to save the state
6385   ** of the current program, and the memory required at runtime to execute
6386   ** the trigger program. If this trigger has been fired before, then pRt
6387   ** is already allocated. Otherwise, it must be initialized.  */
6388   if( (pRt->flags&MEM_Blob)==0 ){
6389     /* SubProgram.nMem is set to the number of memory cells used by the
6390     ** program stored in SubProgram.aOp. As well as these, one memory
6391     ** cell is required for each cursor used by the program. Set local
6392     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6393     */
6394     nMem = pProgram->nMem + pProgram->nCsr;
6395     assert( nMem>0 );
6396     if( pProgram->nCsr==0 ) nMem++;
6397     nByte = ROUND8(sizeof(VdbeFrame))
6398               + nMem * sizeof(Mem)
6399               + pProgram->nCsr * sizeof(VdbeCursor*)
6400               + (pProgram->nOp + 7)/8;
6401     pFrame = sqlite3DbMallocZero(db, nByte);
6402     if( !pFrame ){
6403       goto no_mem;
6404     }
6405     sqlite3VdbeMemRelease(pRt);
6406     pRt->flags = MEM_Blob|MEM_Dyn;
6407     pRt->z = (char*)pFrame;
6408     pRt->n = nByte;
6409     pRt->xDel = sqlite3VdbeFrameMemDel;
6410 
6411     pFrame->v = p;
6412     pFrame->nChildMem = nMem;
6413     pFrame->nChildCsr = pProgram->nCsr;
6414     pFrame->pc = (int)(pOp - aOp);
6415     pFrame->aMem = p->aMem;
6416     pFrame->nMem = p->nMem;
6417     pFrame->apCsr = p->apCsr;
6418     pFrame->nCursor = p->nCursor;
6419     pFrame->aOp = p->aOp;
6420     pFrame->nOp = p->nOp;
6421     pFrame->token = pProgram->token;
6422 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6423     pFrame->anExec = p->anExec;
6424 #endif
6425 #ifdef SQLITE_DEBUG
6426     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
6427 #endif
6428 
6429     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6430     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6431       pMem->flags = MEM_Undefined;
6432       pMem->db = db;
6433     }
6434   }else{
6435     pFrame = (VdbeFrame*)pRt->z;
6436     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
6437     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6438         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6439     assert( pProgram->nCsr==pFrame->nChildCsr );
6440     assert( (int)(pOp - aOp)==pFrame->pc );
6441   }
6442 
6443   p->nFrame++;
6444   pFrame->pParent = p->pFrame;
6445   pFrame->lastRowid = db->lastRowid;
6446   pFrame->nChange = p->nChange;
6447   pFrame->nDbChange = p->db->nChange;
6448   assert( pFrame->pAuxData==0 );
6449   pFrame->pAuxData = p->pAuxData;
6450   p->pAuxData = 0;
6451   p->nChange = 0;
6452   p->pFrame = pFrame;
6453   p->aMem = aMem = VdbeFrameMem(pFrame);
6454   p->nMem = pFrame->nChildMem;
6455   p->nCursor = (u16)pFrame->nChildCsr;
6456   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6457   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6458   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6459   p->aOp = aOp = pProgram->aOp;
6460   p->nOp = pProgram->nOp;
6461 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6462   p->anExec = 0;
6463 #endif
6464 #ifdef SQLITE_DEBUG
6465   /* Verify that second and subsequent executions of the same trigger do not
6466   ** try to reuse register values from the first use. */
6467   {
6468     int i;
6469     for(i=0; i<p->nMem; i++){
6470       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
6471       aMem[i].flags |= MEM_Undefined; /* Cause a fault if this reg is reused */
6472     }
6473   }
6474 #endif
6475   pOp = &aOp[-1];
6476   goto check_for_interrupt;
6477 }
6478 
6479 /* Opcode: Param P1 P2 * * *
6480 **
6481 ** This opcode is only ever present in sub-programs called via the
6482 ** OP_Program instruction. Copy a value currently stored in a memory
6483 ** cell of the calling (parent) frame to cell P2 in the current frames
6484 ** address space. This is used by trigger programs to access the new.*
6485 ** and old.* values.
6486 **
6487 ** The address of the cell in the parent frame is determined by adding
6488 ** the value of the P1 argument to the value of the P1 argument to the
6489 ** calling OP_Program instruction.
6490 */
6491 case OP_Param: {           /* out2 */
6492   VdbeFrame *pFrame;
6493   Mem *pIn;
6494   pOut = out2Prerelease(p, pOp);
6495   pFrame = p->pFrame;
6496   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6497   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6498   break;
6499 }
6500 
6501 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6502 
6503 #ifndef SQLITE_OMIT_FOREIGN_KEY
6504 /* Opcode: FkCounter P1 P2 * * *
6505 ** Synopsis: fkctr[P1]+=P2
6506 **
6507 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6508 ** If P1 is non-zero, the database constraint counter is incremented
6509 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6510 ** statement counter is incremented (immediate foreign key constraints).
6511 */
6512 case OP_FkCounter: {
6513   if( db->flags & SQLITE_DeferFKs ){
6514     db->nDeferredImmCons += pOp->p2;
6515   }else if( pOp->p1 ){
6516     db->nDeferredCons += pOp->p2;
6517   }else{
6518     p->nFkConstraint += pOp->p2;
6519   }
6520   break;
6521 }
6522 
6523 /* Opcode: FkIfZero P1 P2 * * *
6524 ** Synopsis: if fkctr[P1]==0 goto P2
6525 **
6526 ** This opcode tests if a foreign key constraint-counter is currently zero.
6527 ** If so, jump to instruction P2. Otherwise, fall through to the next
6528 ** instruction.
6529 **
6530 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6531 ** is zero (the one that counts deferred constraint violations). If P1 is
6532 ** zero, the jump is taken if the statement constraint-counter is zero
6533 ** (immediate foreign key constraint violations).
6534 */
6535 case OP_FkIfZero: {         /* jump */
6536   if( pOp->p1 ){
6537     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
6538     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6539   }else{
6540     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
6541     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6542   }
6543   break;
6544 }
6545 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6546 
6547 #ifndef SQLITE_OMIT_AUTOINCREMENT
6548 /* Opcode: MemMax P1 P2 * * *
6549 ** Synopsis: r[P1]=max(r[P1],r[P2])
6550 **
6551 ** P1 is a register in the root frame of this VM (the root frame is
6552 ** different from the current frame if this instruction is being executed
6553 ** within a sub-program). Set the value of register P1 to the maximum of
6554 ** its current value and the value in register P2.
6555 **
6556 ** This instruction throws an error if the memory cell is not initially
6557 ** an integer.
6558 */
6559 case OP_MemMax: {        /* in2 */
6560   VdbeFrame *pFrame;
6561   if( p->pFrame ){
6562     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6563     pIn1 = &pFrame->aMem[pOp->p1];
6564   }else{
6565     pIn1 = &aMem[pOp->p1];
6566   }
6567   assert( memIsValid(pIn1) );
6568   sqlite3VdbeMemIntegerify(pIn1);
6569   pIn2 = &aMem[pOp->p2];
6570   sqlite3VdbeMemIntegerify(pIn2);
6571   if( pIn1->u.i<pIn2->u.i){
6572     pIn1->u.i = pIn2->u.i;
6573   }
6574   break;
6575 }
6576 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6577 
6578 /* Opcode: IfPos P1 P2 P3 * *
6579 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6580 **
6581 ** Register P1 must contain an integer.
6582 ** If the value of register P1 is 1 or greater, subtract P3 from the
6583 ** value in P1 and jump to P2.
6584 **
6585 ** If the initial value of register P1 is less than 1, then the
6586 ** value is unchanged and control passes through to the next instruction.
6587 */
6588 case OP_IfPos: {        /* jump, in1 */
6589   pIn1 = &aMem[pOp->p1];
6590   assert( pIn1->flags&MEM_Int );
6591   VdbeBranchTaken( pIn1->u.i>0, 2);
6592   if( pIn1->u.i>0 ){
6593     pIn1->u.i -= pOp->p3;
6594     goto jump_to_p2;
6595   }
6596   break;
6597 }
6598 
6599 /* Opcode: OffsetLimit P1 P2 P3 * *
6600 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6601 **
6602 ** This opcode performs a commonly used computation associated with
6603 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6604 ** holds the offset counter.  The opcode computes the combined value
6605 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6606 ** value computed is the total number of rows that will need to be
6607 ** visited in order to complete the query.
6608 **
6609 ** If r[P3] is zero or negative, that means there is no OFFSET
6610 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6611 **
6612 ** if r[P1] is zero or negative, that means there is no LIMIT
6613 ** and r[P2] is set to -1.
6614 **
6615 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6616 */
6617 case OP_OffsetLimit: {    /* in1, out2, in3 */
6618   i64 x;
6619   pIn1 = &aMem[pOp->p1];
6620   pIn3 = &aMem[pOp->p3];
6621   pOut = out2Prerelease(p, pOp);
6622   assert( pIn1->flags & MEM_Int );
6623   assert( pIn3->flags & MEM_Int );
6624   x = pIn1->u.i;
6625   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6626     /* If the LIMIT is less than or equal to zero, loop forever.  This
6627     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6628     ** also loop forever.  This is undocumented.  In fact, one could argue
6629     ** that the loop should terminate.  But assuming 1 billion iterations
6630     ** per second (far exceeding the capabilities of any current hardware)
6631     ** it would take nearly 300 years to actually reach the limit.  So
6632     ** looping forever is a reasonable approximation. */
6633     pOut->u.i = -1;
6634   }else{
6635     pOut->u.i = x;
6636   }
6637   break;
6638 }
6639 
6640 /* Opcode: IfNotZero P1 P2 * * *
6641 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6642 **
6643 ** Register P1 must contain an integer.  If the content of register P1 is
6644 ** initially greater than zero, then decrement the value in register P1.
6645 ** If it is non-zero (negative or positive) and then also jump to P2.
6646 ** If register P1 is initially zero, leave it unchanged and fall through.
6647 */
6648 case OP_IfNotZero: {        /* jump, in1 */
6649   pIn1 = &aMem[pOp->p1];
6650   assert( pIn1->flags&MEM_Int );
6651   VdbeBranchTaken(pIn1->u.i<0, 2);
6652   if( pIn1->u.i ){
6653      if( pIn1->u.i>0 ) pIn1->u.i--;
6654      goto jump_to_p2;
6655   }
6656   break;
6657 }
6658 
6659 /* Opcode: DecrJumpZero P1 P2 * * *
6660 ** Synopsis: if (--r[P1])==0 goto P2
6661 **
6662 ** Register P1 must hold an integer.  Decrement the value in P1
6663 ** and jump to P2 if the new value is exactly zero.
6664 */
6665 case OP_DecrJumpZero: {      /* jump, in1 */
6666   pIn1 = &aMem[pOp->p1];
6667   assert( pIn1->flags&MEM_Int );
6668   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6669   VdbeBranchTaken(pIn1->u.i==0, 2);
6670   if( pIn1->u.i==0 ) goto jump_to_p2;
6671   break;
6672 }
6673 
6674 
6675 /* Opcode: AggStep * P2 P3 P4 P5
6676 ** Synopsis: accum=r[P3] step(r[P2@P5])
6677 **
6678 ** Execute the xStep function for an aggregate.
6679 ** The function has P5 arguments.  P4 is a pointer to the
6680 ** FuncDef structure that specifies the function.  Register P3 is the
6681 ** accumulator.
6682 **
6683 ** The P5 arguments are taken from register P2 and its
6684 ** successors.
6685 */
6686 /* Opcode: AggInverse * P2 P3 P4 P5
6687 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
6688 **
6689 ** Execute the xInverse function for an aggregate.
6690 ** The function has P5 arguments.  P4 is a pointer to the
6691 ** FuncDef structure that specifies the function.  Register P3 is the
6692 ** accumulator.
6693 **
6694 ** The P5 arguments are taken from register P2 and its
6695 ** successors.
6696 */
6697 /* Opcode: AggStep1 P1 P2 P3 P4 P5
6698 ** Synopsis: accum=r[P3] step(r[P2@P5])
6699 **
6700 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6701 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
6702 ** FuncDef structure that specifies the function.  Register P3 is the
6703 ** accumulator.
6704 **
6705 ** The P5 arguments are taken from register P2 and its
6706 ** successors.
6707 **
6708 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6709 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6710 ** the opcode is changed.  In this way, the initialization of the
6711 ** sqlite3_context only happens once, instead of on each call to the
6712 ** step function.
6713 */
6714 case OP_AggInverse:
6715 case OP_AggStep: {
6716   int n;
6717   sqlite3_context *pCtx;
6718 
6719   assert( pOp->p4type==P4_FUNCDEF );
6720   n = pOp->p5;
6721   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6722   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6723   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6724   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6725                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
6726   if( pCtx==0 ) goto no_mem;
6727   pCtx->pMem = 0;
6728   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6729   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
6730   pCtx->pFunc = pOp->p4.pFunc;
6731   pCtx->iOp = (int)(pOp - aOp);
6732   pCtx->pVdbe = p;
6733   pCtx->skipFlag = 0;
6734   pCtx->isError = 0;
6735   pCtx->argc = n;
6736   pOp->p4type = P4_FUNCCTX;
6737   pOp->p4.pCtx = pCtx;
6738 
6739   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
6740   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
6741 
6742   pOp->opcode = OP_AggStep1;
6743   /* Fall through into OP_AggStep */
6744 }
6745 case OP_AggStep1: {
6746   int i;
6747   sqlite3_context *pCtx;
6748   Mem *pMem;
6749 
6750   assert( pOp->p4type==P4_FUNCCTX );
6751   pCtx = pOp->p4.pCtx;
6752   pMem = &aMem[pOp->p3];
6753 
6754 #ifdef SQLITE_DEBUG
6755   if( pOp->p1 ){
6756     /* This is an OP_AggInverse call.  Verify that xStep has always
6757     ** been called at least once prior to any xInverse call. */
6758     assert( pMem->uTemp==0x1122e0e3 );
6759   }else{
6760     /* This is an OP_AggStep call.  Mark it as such. */
6761     pMem->uTemp = 0x1122e0e3;
6762   }
6763 #endif
6764 
6765   /* If this function is inside of a trigger, the register array in aMem[]
6766   ** might change from one evaluation to the next.  The next block of code
6767   ** checks to see if the register array has changed, and if so it
6768   ** reinitializes the relavant parts of the sqlite3_context object */
6769   if( pCtx->pMem != pMem ){
6770     pCtx->pMem = pMem;
6771     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6772   }
6773 
6774 #ifdef SQLITE_DEBUG
6775   for(i=0; i<pCtx->argc; i++){
6776     assert( memIsValid(pCtx->argv[i]) );
6777     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6778   }
6779 #endif
6780 
6781   pMem->n++;
6782   assert( pCtx->pOut->flags==MEM_Null );
6783   assert( pCtx->isError==0 );
6784   assert( pCtx->skipFlag==0 );
6785 #ifndef SQLITE_OMIT_WINDOWFUNC
6786   if( pOp->p1 ){
6787     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6788   }else
6789 #endif
6790   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6791 
6792   if( pCtx->isError ){
6793     if( pCtx->isError>0 ){
6794       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
6795       rc = pCtx->isError;
6796     }
6797     if( pCtx->skipFlag ){
6798       assert( pOp[-1].opcode==OP_CollSeq );
6799       i = pOp[-1].p1;
6800       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6801       pCtx->skipFlag = 0;
6802     }
6803     sqlite3VdbeMemRelease(pCtx->pOut);
6804     pCtx->pOut->flags = MEM_Null;
6805     pCtx->isError = 0;
6806     if( rc ) goto abort_due_to_error;
6807   }
6808   assert( pCtx->pOut->flags==MEM_Null );
6809   assert( pCtx->skipFlag==0 );
6810   break;
6811 }
6812 
6813 /* Opcode: AggFinal P1 P2 * P4 *
6814 ** Synopsis: accum=r[P1] N=P2
6815 **
6816 ** P1 is the memory location that is the accumulator for an aggregate
6817 ** or window function.  Execute the finalizer function
6818 ** for an aggregate and store the result in P1.
6819 **
6820 ** P2 is the number of arguments that the step function takes and
6821 ** P4 is a pointer to the FuncDef for this function.  The P2
6822 ** argument is not used by this opcode.  It is only there to disambiguate
6823 ** functions that can take varying numbers of arguments.  The
6824 ** P4 argument is only needed for the case where
6825 ** the step function was not previously called.
6826 */
6827 /* Opcode: AggValue * P2 P3 P4 *
6828 ** Synopsis: r[P3]=value N=P2
6829 **
6830 ** Invoke the xValue() function and store the result in register P3.
6831 **
6832 ** P2 is the number of arguments that the step function takes and
6833 ** P4 is a pointer to the FuncDef for this function.  The P2
6834 ** argument is not used by this opcode.  It is only there to disambiguate
6835 ** functions that can take varying numbers of arguments.  The
6836 ** P4 argument is only needed for the case where
6837 ** the step function was not previously called.
6838 */
6839 case OP_AggValue:
6840 case OP_AggFinal: {
6841   Mem *pMem;
6842   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6843   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
6844   pMem = &aMem[pOp->p1];
6845   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6846 #ifndef SQLITE_OMIT_WINDOWFUNC
6847   if( pOp->p3 ){
6848     memAboutToChange(p, &aMem[pOp->p3]);
6849     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
6850     pMem = &aMem[pOp->p3];
6851   }else
6852 #endif
6853   {
6854     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6855   }
6856 
6857   if( rc ){
6858     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6859     goto abort_due_to_error;
6860   }
6861   sqlite3VdbeChangeEncoding(pMem, encoding);
6862   UPDATE_MAX_BLOBSIZE(pMem);
6863   if( sqlite3VdbeMemTooBig(pMem) ){
6864     goto too_big;
6865   }
6866   break;
6867 }
6868 
6869 #ifndef SQLITE_OMIT_WAL
6870 /* Opcode: Checkpoint P1 P2 P3 * *
6871 **
6872 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6873 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6874 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6875 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6876 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6877 ** in the WAL that have been checkpointed after the checkpoint
6878 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6879 ** mem[P3+2] are initialized to -1.
6880 */
6881 case OP_Checkpoint: {
6882   int i;                          /* Loop counter */
6883   int aRes[3];                    /* Results */
6884   Mem *pMem;                      /* Write results here */
6885 
6886   assert( p->readOnly==0 );
6887   aRes[0] = 0;
6888   aRes[1] = aRes[2] = -1;
6889   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6890        || pOp->p2==SQLITE_CHECKPOINT_FULL
6891        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6892        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6893   );
6894   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6895   if( rc ){
6896     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6897     rc = SQLITE_OK;
6898     aRes[0] = 1;
6899   }
6900   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6901     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6902   }
6903   break;
6904 };
6905 #endif
6906 
6907 #ifndef SQLITE_OMIT_PRAGMA
6908 /* Opcode: JournalMode P1 P2 P3 * *
6909 **
6910 ** Change the journal mode of database P1 to P3. P3 must be one of the
6911 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6912 ** modes (delete, truncate, persist, off and memory), this is a simple
6913 ** operation. No IO is required.
6914 **
6915 ** If changing into or out of WAL mode the procedure is more complicated.
6916 **
6917 ** Write a string containing the final journal-mode to register P2.
6918 */
6919 case OP_JournalMode: {    /* out2 */
6920   Btree *pBt;                     /* Btree to change journal mode of */
6921   Pager *pPager;                  /* Pager associated with pBt */
6922   int eNew;                       /* New journal mode */
6923   int eOld;                       /* The old journal mode */
6924 #ifndef SQLITE_OMIT_WAL
6925   const char *zFilename;          /* Name of database file for pPager */
6926 #endif
6927 
6928   pOut = out2Prerelease(p, pOp);
6929   eNew = pOp->p3;
6930   assert( eNew==PAGER_JOURNALMODE_DELETE
6931        || eNew==PAGER_JOURNALMODE_TRUNCATE
6932        || eNew==PAGER_JOURNALMODE_PERSIST
6933        || eNew==PAGER_JOURNALMODE_OFF
6934        || eNew==PAGER_JOURNALMODE_MEMORY
6935        || eNew==PAGER_JOURNALMODE_WAL
6936        || eNew==PAGER_JOURNALMODE_QUERY
6937   );
6938   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6939   assert( p->readOnly==0 );
6940 
6941   pBt = db->aDb[pOp->p1].pBt;
6942   pPager = sqlite3BtreePager(pBt);
6943   eOld = sqlite3PagerGetJournalMode(pPager);
6944   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6945   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6946 
6947 #ifndef SQLITE_OMIT_WAL
6948   zFilename = sqlite3PagerFilename(pPager, 1);
6949 
6950   /* Do not allow a transition to journal_mode=WAL for a database
6951   ** in temporary storage or if the VFS does not support shared memory
6952   */
6953   if( eNew==PAGER_JOURNALMODE_WAL
6954    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6955        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6956   ){
6957     eNew = eOld;
6958   }
6959 
6960   if( (eNew!=eOld)
6961    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6962   ){
6963     if( !db->autoCommit || db->nVdbeRead>1 ){
6964       rc = SQLITE_ERROR;
6965       sqlite3VdbeError(p,
6966           "cannot change %s wal mode from within a transaction",
6967           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6968       );
6969       goto abort_due_to_error;
6970     }else{
6971 
6972       if( eOld==PAGER_JOURNALMODE_WAL ){
6973         /* If leaving WAL mode, close the log file. If successful, the call
6974         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6975         ** file. An EXCLUSIVE lock may still be held on the database file
6976         ** after a successful return.
6977         */
6978         rc = sqlite3PagerCloseWal(pPager, db);
6979         if( rc==SQLITE_OK ){
6980           sqlite3PagerSetJournalMode(pPager, eNew);
6981         }
6982       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6983         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6984         ** as an intermediate */
6985         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6986       }
6987 
6988       /* Open a transaction on the database file. Regardless of the journal
6989       ** mode, this transaction always uses a rollback journal.
6990       */
6991       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6992       if( rc==SQLITE_OK ){
6993         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6994       }
6995     }
6996   }
6997 #endif /* ifndef SQLITE_OMIT_WAL */
6998 
6999   if( rc ) eNew = eOld;
7000   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7001 
7002   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7003   pOut->z = (char *)sqlite3JournalModename(eNew);
7004   pOut->n = sqlite3Strlen30(pOut->z);
7005   pOut->enc = SQLITE_UTF8;
7006   sqlite3VdbeChangeEncoding(pOut, encoding);
7007   if( rc ) goto abort_due_to_error;
7008   break;
7009 };
7010 #endif /* SQLITE_OMIT_PRAGMA */
7011 
7012 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7013 /* Opcode: Vacuum P1 P2 * * *
7014 **
7015 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7016 ** for an attached database.  The "temp" database may not be vacuumed.
7017 **
7018 ** If P2 is not zero, then it is a register holding a string which is
7019 ** the file into which the result of vacuum should be written.  When
7020 ** P2 is zero, the vacuum overwrites the original database.
7021 */
7022 case OP_Vacuum: {
7023   assert( p->readOnly==0 );
7024   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7025                         pOp->p2 ? &aMem[pOp->p2] : 0);
7026   if( rc ) goto abort_due_to_error;
7027   break;
7028 }
7029 #endif
7030 
7031 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7032 /* Opcode: IncrVacuum P1 P2 * * *
7033 **
7034 ** Perform a single step of the incremental vacuum procedure on
7035 ** the P1 database. If the vacuum has finished, jump to instruction
7036 ** P2. Otherwise, fall through to the next instruction.
7037 */
7038 case OP_IncrVacuum: {        /* jump */
7039   Btree *pBt;
7040 
7041   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7042   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7043   assert( p->readOnly==0 );
7044   pBt = db->aDb[pOp->p1].pBt;
7045   rc = sqlite3BtreeIncrVacuum(pBt);
7046   VdbeBranchTaken(rc==SQLITE_DONE,2);
7047   if( rc ){
7048     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7049     rc = SQLITE_OK;
7050     goto jump_to_p2;
7051   }
7052   break;
7053 }
7054 #endif
7055 
7056 /* Opcode: Expire P1 P2 * * *
7057 **
7058 ** Cause precompiled statements to expire.  When an expired statement
7059 ** is executed using sqlite3_step() it will either automatically
7060 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7061 ** or it will fail with SQLITE_SCHEMA.
7062 **
7063 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7064 ** then only the currently executing statement is expired.
7065 **
7066 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7067 ** then running SQL statements are allowed to continue to run to completion.
7068 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7069 ** that might help the statement run faster but which does not affect the
7070 ** correctness of operation.
7071 */
7072 case OP_Expire: {
7073   assert( pOp->p2==0 || pOp->p2==1 );
7074   if( !pOp->p1 ){
7075     sqlite3ExpirePreparedStatements(db, pOp->p2);
7076   }else{
7077     p->expired = pOp->p2+1;
7078   }
7079   break;
7080 }
7081 
7082 /* Opcode: CursorLock P1 * * * *
7083 **
7084 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7085 ** written by an other cursor.
7086 */
7087 case OP_CursorLock: {
7088   VdbeCursor *pC;
7089   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7090   pC = p->apCsr[pOp->p1];
7091   assert( pC!=0 );
7092   assert( pC->eCurType==CURTYPE_BTREE );
7093   sqlite3BtreeCursorPin(pC->uc.pCursor);
7094   break;
7095 }
7096 
7097 /* Opcode: CursorUnlock P1 * * * *
7098 **
7099 ** Unlock the btree to which cursor P1 is pointing so that it can be
7100 ** written by other cursors.
7101 */
7102 case OP_CursorUnlock: {
7103   VdbeCursor *pC;
7104   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7105   pC = p->apCsr[pOp->p1];
7106   assert( pC!=0 );
7107   assert( pC->eCurType==CURTYPE_BTREE );
7108   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7109   break;
7110 }
7111 
7112 #ifndef SQLITE_OMIT_SHARED_CACHE
7113 /* Opcode: TableLock P1 P2 P3 P4 *
7114 ** Synopsis: iDb=P1 root=P2 write=P3
7115 **
7116 ** Obtain a lock on a particular table. This instruction is only used when
7117 ** the shared-cache feature is enabled.
7118 **
7119 ** P1 is the index of the database in sqlite3.aDb[] of the database
7120 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7121 ** a write lock if P3==1.
7122 **
7123 ** P2 contains the root-page of the table to lock.
7124 **
7125 ** P4 contains a pointer to the name of the table being locked. This is only
7126 ** used to generate an error message if the lock cannot be obtained.
7127 */
7128 case OP_TableLock: {
7129   u8 isWriteLock = (u8)pOp->p3;
7130   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7131     int p1 = pOp->p1;
7132     assert( p1>=0 && p1<db->nDb );
7133     assert( DbMaskTest(p->btreeMask, p1) );
7134     assert( isWriteLock==0 || isWriteLock==1 );
7135     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7136     if( rc ){
7137       if( (rc&0xFF)==SQLITE_LOCKED ){
7138         const char *z = pOp->p4.z;
7139         sqlite3VdbeError(p, "database table is locked: %s", z);
7140       }
7141       goto abort_due_to_error;
7142     }
7143   }
7144   break;
7145 }
7146 #endif /* SQLITE_OMIT_SHARED_CACHE */
7147 
7148 #ifndef SQLITE_OMIT_VIRTUALTABLE
7149 /* Opcode: VBegin * * * P4 *
7150 **
7151 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7152 ** xBegin method for that table.
7153 **
7154 ** Also, whether or not P4 is set, check that this is not being called from
7155 ** within a callback to a virtual table xSync() method. If it is, the error
7156 ** code will be set to SQLITE_LOCKED.
7157 */
7158 case OP_VBegin: {
7159   VTable *pVTab;
7160   pVTab = pOp->p4.pVtab;
7161   rc = sqlite3VtabBegin(db, pVTab);
7162   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7163   if( rc ) goto abort_due_to_error;
7164   break;
7165 }
7166 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7167 
7168 #ifndef SQLITE_OMIT_VIRTUALTABLE
7169 /* Opcode: VCreate P1 P2 * * *
7170 **
7171 ** P2 is a register that holds the name of a virtual table in database
7172 ** P1. Call the xCreate method for that table.
7173 */
7174 case OP_VCreate: {
7175   Mem sMem;          /* For storing the record being decoded */
7176   const char *zTab;  /* Name of the virtual table */
7177 
7178   memset(&sMem, 0, sizeof(sMem));
7179   sMem.db = db;
7180   /* Because P2 is always a static string, it is impossible for the
7181   ** sqlite3VdbeMemCopy() to fail */
7182   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7183   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7184   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7185   assert( rc==SQLITE_OK );
7186   zTab = (const char*)sqlite3_value_text(&sMem);
7187   assert( zTab || db->mallocFailed );
7188   if( zTab ){
7189     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7190   }
7191   sqlite3VdbeMemRelease(&sMem);
7192   if( rc ) goto abort_due_to_error;
7193   break;
7194 }
7195 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7196 
7197 #ifndef SQLITE_OMIT_VIRTUALTABLE
7198 /* Opcode: VDestroy P1 * * P4 *
7199 **
7200 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7201 ** of that table.
7202 */
7203 case OP_VDestroy: {
7204   db->nVDestroy++;
7205   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7206   db->nVDestroy--;
7207   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7208   if( rc ) goto abort_due_to_error;
7209   break;
7210 }
7211 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7212 
7213 #ifndef SQLITE_OMIT_VIRTUALTABLE
7214 /* Opcode: VOpen P1 * * P4 *
7215 **
7216 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7217 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7218 ** table and stores that cursor in P1.
7219 */
7220 case OP_VOpen: {
7221   VdbeCursor *pCur;
7222   sqlite3_vtab_cursor *pVCur;
7223   sqlite3_vtab *pVtab;
7224   const sqlite3_module *pModule;
7225 
7226   assert( p->bIsReader );
7227   pCur = 0;
7228   pVCur = 0;
7229   pVtab = pOp->p4.pVtab->pVtab;
7230   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7231     rc = SQLITE_LOCKED;
7232     goto abort_due_to_error;
7233   }
7234   pModule = pVtab->pModule;
7235   rc = pModule->xOpen(pVtab, &pVCur);
7236   sqlite3VtabImportErrmsg(p, pVtab);
7237   if( rc ) goto abort_due_to_error;
7238 
7239   /* Initialize sqlite3_vtab_cursor base class */
7240   pVCur->pVtab = pVtab;
7241 
7242   /* Initialize vdbe cursor object */
7243   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
7244   if( pCur ){
7245     pCur->uc.pVCur = pVCur;
7246     pVtab->nRef++;
7247   }else{
7248     assert( db->mallocFailed );
7249     pModule->xClose(pVCur);
7250     goto no_mem;
7251   }
7252   break;
7253 }
7254 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7255 
7256 #ifndef SQLITE_OMIT_VIRTUALTABLE
7257 /* Opcode: VFilter P1 P2 P3 P4 *
7258 ** Synopsis: iplan=r[P3] zplan='P4'
7259 **
7260 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7261 ** the filtered result set is empty.
7262 **
7263 ** P4 is either NULL or a string that was generated by the xBestIndex
7264 ** method of the module.  The interpretation of the P4 string is left
7265 ** to the module implementation.
7266 **
7267 ** This opcode invokes the xFilter method on the virtual table specified
7268 ** by P1.  The integer query plan parameter to xFilter is stored in register
7269 ** P3. Register P3+1 stores the argc parameter to be passed to the
7270 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7271 ** additional parameters which are passed to
7272 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7273 **
7274 ** A jump is made to P2 if the result set after filtering would be empty.
7275 */
7276 case OP_VFilter: {   /* jump */
7277   int nArg;
7278   int iQuery;
7279   const sqlite3_module *pModule;
7280   Mem *pQuery;
7281   Mem *pArgc;
7282   sqlite3_vtab_cursor *pVCur;
7283   sqlite3_vtab *pVtab;
7284   VdbeCursor *pCur;
7285   int res;
7286   int i;
7287   Mem **apArg;
7288 
7289   pQuery = &aMem[pOp->p3];
7290   pArgc = &pQuery[1];
7291   pCur = p->apCsr[pOp->p1];
7292   assert( memIsValid(pQuery) );
7293   REGISTER_TRACE(pOp->p3, pQuery);
7294   assert( pCur->eCurType==CURTYPE_VTAB );
7295   pVCur = pCur->uc.pVCur;
7296   pVtab = pVCur->pVtab;
7297   pModule = pVtab->pModule;
7298 
7299   /* Grab the index number and argc parameters */
7300   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7301   nArg = (int)pArgc->u.i;
7302   iQuery = (int)pQuery->u.i;
7303 
7304   /* Invoke the xFilter method */
7305   res = 0;
7306   apArg = p->apArg;
7307   for(i = 0; i<nArg; i++){
7308     apArg[i] = &pArgc[i+1];
7309   }
7310   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7311   sqlite3VtabImportErrmsg(p, pVtab);
7312   if( rc ) goto abort_due_to_error;
7313   res = pModule->xEof(pVCur);
7314   pCur->nullRow = 0;
7315   VdbeBranchTaken(res!=0,2);
7316   if( res ) goto jump_to_p2;
7317   break;
7318 }
7319 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7320 
7321 #ifndef SQLITE_OMIT_VIRTUALTABLE
7322 /* Opcode: VColumn P1 P2 P3 * P5
7323 ** Synopsis: r[P3]=vcolumn(P2)
7324 **
7325 ** Store in register P3 the value of the P2-th column of
7326 ** the current row of the virtual-table of cursor P1.
7327 **
7328 ** If the VColumn opcode is being used to fetch the value of
7329 ** an unchanging column during an UPDATE operation, then the P5
7330 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7331 ** function to return true inside the xColumn method of the virtual
7332 ** table implementation.  The P5 column might also contain other
7333 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7334 ** unused by OP_VColumn.
7335 */
7336 case OP_VColumn: {
7337   sqlite3_vtab *pVtab;
7338   const sqlite3_module *pModule;
7339   Mem *pDest;
7340   sqlite3_context sContext;
7341 
7342   VdbeCursor *pCur = p->apCsr[pOp->p1];
7343   assert( pCur->eCurType==CURTYPE_VTAB );
7344   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7345   pDest = &aMem[pOp->p3];
7346   memAboutToChange(p, pDest);
7347   if( pCur->nullRow ){
7348     sqlite3VdbeMemSetNull(pDest);
7349     break;
7350   }
7351   pVtab = pCur->uc.pVCur->pVtab;
7352   pModule = pVtab->pModule;
7353   assert( pModule->xColumn );
7354   memset(&sContext, 0, sizeof(sContext));
7355   sContext.pOut = pDest;
7356   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7357   if( pOp->p5 & OPFLAG_NOCHNG ){
7358     sqlite3VdbeMemSetNull(pDest);
7359     pDest->flags = MEM_Null|MEM_Zero;
7360     pDest->u.nZero = 0;
7361   }else{
7362     MemSetTypeFlag(pDest, MEM_Null);
7363   }
7364   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7365   sqlite3VtabImportErrmsg(p, pVtab);
7366   if( sContext.isError>0 ){
7367     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7368     rc = sContext.isError;
7369   }
7370   sqlite3VdbeChangeEncoding(pDest, encoding);
7371   REGISTER_TRACE(pOp->p3, pDest);
7372   UPDATE_MAX_BLOBSIZE(pDest);
7373 
7374   if( sqlite3VdbeMemTooBig(pDest) ){
7375     goto too_big;
7376   }
7377   if( rc ) goto abort_due_to_error;
7378   break;
7379 }
7380 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7381 
7382 #ifndef SQLITE_OMIT_VIRTUALTABLE
7383 /* Opcode: VNext P1 P2 * * *
7384 **
7385 ** Advance virtual table P1 to the next row in its result set and
7386 ** jump to instruction P2.  Or, if the virtual table has reached
7387 ** the end of its result set, then fall through to the next instruction.
7388 */
7389 case OP_VNext: {   /* jump */
7390   sqlite3_vtab *pVtab;
7391   const sqlite3_module *pModule;
7392   int res;
7393   VdbeCursor *pCur;
7394 
7395   res = 0;
7396   pCur = p->apCsr[pOp->p1];
7397   assert( pCur->eCurType==CURTYPE_VTAB );
7398   if( pCur->nullRow ){
7399     break;
7400   }
7401   pVtab = pCur->uc.pVCur->pVtab;
7402   pModule = pVtab->pModule;
7403   assert( pModule->xNext );
7404 
7405   /* Invoke the xNext() method of the module. There is no way for the
7406   ** underlying implementation to return an error if one occurs during
7407   ** xNext(). Instead, if an error occurs, true is returned (indicating that
7408   ** data is available) and the error code returned when xColumn or
7409   ** some other method is next invoked on the save virtual table cursor.
7410   */
7411   rc = pModule->xNext(pCur->uc.pVCur);
7412   sqlite3VtabImportErrmsg(p, pVtab);
7413   if( rc ) goto abort_due_to_error;
7414   res = pModule->xEof(pCur->uc.pVCur);
7415   VdbeBranchTaken(!res,2);
7416   if( !res ){
7417     /* If there is data, jump to P2 */
7418     goto jump_to_p2_and_check_for_interrupt;
7419   }
7420   goto check_for_interrupt;
7421 }
7422 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7423 
7424 #ifndef SQLITE_OMIT_VIRTUALTABLE
7425 /* Opcode: VRename P1 * * P4 *
7426 **
7427 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7428 ** This opcode invokes the corresponding xRename method. The value
7429 ** in register P1 is passed as the zName argument to the xRename method.
7430 */
7431 case OP_VRename: {
7432   sqlite3_vtab *pVtab;
7433   Mem *pName;
7434   int isLegacy;
7435 
7436   isLegacy = (db->flags & SQLITE_LegacyAlter);
7437   db->flags |= SQLITE_LegacyAlter;
7438   pVtab = pOp->p4.pVtab->pVtab;
7439   pName = &aMem[pOp->p1];
7440   assert( pVtab->pModule->xRename );
7441   assert( memIsValid(pName) );
7442   assert( p->readOnly==0 );
7443   REGISTER_TRACE(pOp->p1, pName);
7444   assert( pName->flags & MEM_Str );
7445   testcase( pName->enc==SQLITE_UTF8 );
7446   testcase( pName->enc==SQLITE_UTF16BE );
7447   testcase( pName->enc==SQLITE_UTF16LE );
7448   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7449   if( rc ) goto abort_due_to_error;
7450   rc = pVtab->pModule->xRename(pVtab, pName->z);
7451   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
7452   sqlite3VtabImportErrmsg(p, pVtab);
7453   p->expired = 0;
7454   if( rc ) goto abort_due_to_error;
7455   break;
7456 }
7457 #endif
7458 
7459 #ifndef SQLITE_OMIT_VIRTUALTABLE
7460 /* Opcode: VUpdate P1 P2 P3 P4 P5
7461 ** Synopsis: data=r[P3@P2]
7462 **
7463 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7464 ** This opcode invokes the corresponding xUpdate method. P2 values
7465 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7466 ** invocation. The value in register (P3+P2-1) corresponds to the
7467 ** p2th element of the argv array passed to xUpdate.
7468 **
7469 ** The xUpdate method will do a DELETE or an INSERT or both.
7470 ** The argv[0] element (which corresponds to memory cell P3)
7471 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7472 ** deletion occurs.  The argv[1] element is the rowid of the new
7473 ** row.  This can be NULL to have the virtual table select the new
7474 ** rowid for itself.  The subsequent elements in the array are
7475 ** the values of columns in the new row.
7476 **
7477 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7478 ** a row to delete.
7479 **
7480 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7481 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7482 ** is set to the value of the rowid for the row just inserted.
7483 **
7484 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7485 ** apply in the case of a constraint failure on an insert or update.
7486 */
7487 case OP_VUpdate: {
7488   sqlite3_vtab *pVtab;
7489   const sqlite3_module *pModule;
7490   int nArg;
7491   int i;
7492   sqlite_int64 rowid;
7493   Mem **apArg;
7494   Mem *pX;
7495 
7496   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7497        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7498   );
7499   assert( p->readOnly==0 );
7500   if( db->mallocFailed ) goto no_mem;
7501   sqlite3VdbeIncrWriteCounter(p, 0);
7502   pVtab = pOp->p4.pVtab->pVtab;
7503   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7504     rc = SQLITE_LOCKED;
7505     goto abort_due_to_error;
7506   }
7507   pModule = pVtab->pModule;
7508   nArg = pOp->p2;
7509   assert( pOp->p4type==P4_VTAB );
7510   if( ALWAYS(pModule->xUpdate) ){
7511     u8 vtabOnConflict = db->vtabOnConflict;
7512     apArg = p->apArg;
7513     pX = &aMem[pOp->p3];
7514     for(i=0; i<nArg; i++){
7515       assert( memIsValid(pX) );
7516       memAboutToChange(p, pX);
7517       apArg[i] = pX;
7518       pX++;
7519     }
7520     db->vtabOnConflict = pOp->p5;
7521     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
7522     db->vtabOnConflict = vtabOnConflict;
7523     sqlite3VtabImportErrmsg(p, pVtab);
7524     if( rc==SQLITE_OK && pOp->p1 ){
7525       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
7526       db->lastRowid = rowid;
7527     }
7528     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
7529       if( pOp->p5==OE_Ignore ){
7530         rc = SQLITE_OK;
7531       }else{
7532         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7533       }
7534     }else{
7535       p->nChange++;
7536     }
7537     if( rc ) goto abort_due_to_error;
7538   }
7539   break;
7540 }
7541 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7542 
7543 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7544 /* Opcode: Pagecount P1 P2 * * *
7545 **
7546 ** Write the current number of pages in database P1 to memory cell P2.
7547 */
7548 case OP_Pagecount: {            /* out2 */
7549   pOut = out2Prerelease(p, pOp);
7550   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
7551   break;
7552 }
7553 #endif
7554 
7555 
7556 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7557 /* Opcode: MaxPgcnt P1 P2 P3 * *
7558 **
7559 ** Try to set the maximum page count for database P1 to the value in P3.
7560 ** Do not let the maximum page count fall below the current page count and
7561 ** do not change the maximum page count value if P3==0.
7562 **
7563 ** Store the maximum page count after the change in register P2.
7564 */
7565 case OP_MaxPgcnt: {            /* out2 */
7566   unsigned int newMax;
7567   Btree *pBt;
7568 
7569   pOut = out2Prerelease(p, pOp);
7570   pBt = db->aDb[pOp->p1].pBt;
7571   newMax = 0;
7572   if( pOp->p3 ){
7573     newMax = sqlite3BtreeLastPage(pBt);
7574     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
7575   }
7576   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
7577   break;
7578 }
7579 #endif
7580 
7581 /* Opcode: Function P1 P2 P3 P4 *
7582 ** Synopsis: r[P3]=func(r[P2@P5])
7583 **
7584 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7585 ** contains a pointer to the function to be run) with arguments taken
7586 ** from register P2 and successors.  The number of arguments is in
7587 ** the sqlite3_context object that P4 points to.
7588 ** The result of the function is stored
7589 ** in register P3.  Register P3 must not be one of the function inputs.
7590 **
7591 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7592 ** function was determined to be constant at compile time. If the first
7593 ** argument was constant then bit 0 of P1 is set. This is used to determine
7594 ** whether meta data associated with a user function argument using the
7595 ** sqlite3_set_auxdata() API may be safely retained until the next
7596 ** invocation of this opcode.
7597 **
7598 ** See also: AggStep, AggFinal, PureFunc
7599 */
7600 /* Opcode: PureFunc P1 P2 P3 P4 *
7601 ** Synopsis: r[P3]=func(r[P2@P5])
7602 **
7603 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7604 ** contains a pointer to the function to be run) with arguments taken
7605 ** from register P2 and successors.  The number of arguments is in
7606 ** the sqlite3_context object that P4 points to.
7607 ** The result of the function is stored
7608 ** in register P3.  Register P3 must not be one of the function inputs.
7609 **
7610 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7611 ** function was determined to be constant at compile time. If the first
7612 ** argument was constant then bit 0 of P1 is set. This is used to determine
7613 ** whether meta data associated with a user function argument using the
7614 ** sqlite3_set_auxdata() API may be safely retained until the next
7615 ** invocation of this opcode.
7616 **
7617 ** This opcode works exactly like OP_Function.  The only difference is in
7618 ** its name.  This opcode is used in places where the function must be
7619 ** purely non-deterministic.  Some built-in date/time functions can be
7620 ** either determinitic of non-deterministic, depending on their arguments.
7621 ** When those function are used in a non-deterministic way, they will check
7622 ** to see if they were called using OP_PureFunc instead of OP_Function, and
7623 ** if they were, they throw an error.
7624 **
7625 ** See also: AggStep, AggFinal, Function
7626 */
7627 case OP_PureFunc:              /* group */
7628 case OP_Function: {            /* group */
7629   int i;
7630   sqlite3_context *pCtx;
7631 
7632   assert( pOp->p4type==P4_FUNCCTX );
7633   pCtx = pOp->p4.pCtx;
7634 
7635   /* If this function is inside of a trigger, the register array in aMem[]
7636   ** might change from one evaluation to the next.  The next block of code
7637   ** checks to see if the register array has changed, and if so it
7638   ** reinitializes the relavant parts of the sqlite3_context object */
7639   pOut = &aMem[pOp->p3];
7640   if( pCtx->pOut != pOut ){
7641     pCtx->pVdbe = p;
7642     pCtx->pOut = pOut;
7643     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7644   }
7645   assert( pCtx->pVdbe==p );
7646 
7647   memAboutToChange(p, pOut);
7648 #ifdef SQLITE_DEBUG
7649   for(i=0; i<pCtx->argc; i++){
7650     assert( memIsValid(pCtx->argv[i]) );
7651     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7652   }
7653 #endif
7654   MemSetTypeFlag(pOut, MEM_Null);
7655   assert( pCtx->isError==0 );
7656   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7657 
7658   /* If the function returned an error, throw an exception */
7659   if( pCtx->isError ){
7660     if( pCtx->isError>0 ){
7661       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7662       rc = pCtx->isError;
7663     }
7664     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7665     pCtx->isError = 0;
7666     if( rc ) goto abort_due_to_error;
7667   }
7668 
7669   /* Copy the result of the function into register P3 */
7670   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7671     sqlite3VdbeChangeEncoding(pOut, encoding);
7672     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7673   }
7674 
7675   REGISTER_TRACE(pOp->p3, pOut);
7676   UPDATE_MAX_BLOBSIZE(pOut);
7677   break;
7678 }
7679 
7680 /* Opcode: Trace P1 P2 * P4 *
7681 **
7682 ** Write P4 on the statement trace output if statement tracing is
7683 ** enabled.
7684 **
7685 ** Operand P1 must be 0x7fffffff and P2 must positive.
7686 */
7687 /* Opcode: Init P1 P2 P3 P4 *
7688 ** Synopsis: Start at P2
7689 **
7690 ** Programs contain a single instance of this opcode as the very first
7691 ** opcode.
7692 **
7693 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7694 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7695 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7696 **
7697 ** If P2 is not zero, jump to instruction P2.
7698 **
7699 ** Increment the value of P1 so that OP_Once opcodes will jump the
7700 ** first time they are evaluated for this run.
7701 **
7702 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7703 ** error is encountered.
7704 */
7705 case OP_Trace:
7706 case OP_Init: {          /* jump */
7707   int i;
7708 #ifndef SQLITE_OMIT_TRACE
7709   char *zTrace;
7710 #endif
7711 
7712   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7713   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7714   **
7715   ** This assert() provides evidence for:
7716   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7717   ** would have been returned by the legacy sqlite3_trace() interface by
7718   ** using the X argument when X begins with "--" and invoking
7719   ** sqlite3_expanded_sql(P) otherwise.
7720   */
7721   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7722 
7723   /* OP_Init is always instruction 0 */
7724   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
7725 
7726 #ifndef SQLITE_OMIT_TRACE
7727   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7728    && !p->doingRerun
7729    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7730   ){
7731 #ifndef SQLITE_OMIT_DEPRECATED
7732     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7733       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7734       char *z = sqlite3VdbeExpandSql(p, zTrace);
7735       x(db->pTraceArg, z);
7736       sqlite3_free(z);
7737     }else
7738 #endif
7739     if( db->nVdbeExec>1 ){
7740       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7741       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7742       sqlite3DbFree(db, z);
7743     }else{
7744       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7745     }
7746   }
7747 #ifdef SQLITE_USE_FCNTL_TRACE
7748   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7749   if( zTrace ){
7750     int j;
7751     for(j=0; j<db->nDb; j++){
7752       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7753       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7754     }
7755   }
7756 #endif /* SQLITE_USE_FCNTL_TRACE */
7757 #ifdef SQLITE_DEBUG
7758   if( (db->flags & SQLITE_SqlTrace)!=0
7759    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7760   ){
7761     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7762   }
7763 #endif /* SQLITE_DEBUG */
7764 #endif /* SQLITE_OMIT_TRACE */
7765   assert( pOp->p2>0 );
7766   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7767     if( pOp->opcode==OP_Trace ) break;
7768     for(i=1; i<p->nOp; i++){
7769       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7770     }
7771     pOp->p1 = 0;
7772   }
7773   pOp->p1++;
7774   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7775   goto jump_to_p2;
7776 }
7777 
7778 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7779 /* Opcode: CursorHint P1 * * P4 *
7780 **
7781 ** Provide a hint to cursor P1 that it only needs to return rows that
7782 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7783 ** to values currently held in registers.  TK_COLUMN terms in the P4
7784 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7785 */
7786 case OP_CursorHint: {
7787   VdbeCursor *pC;
7788 
7789   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7790   assert( pOp->p4type==P4_EXPR );
7791   pC = p->apCsr[pOp->p1];
7792   if( pC ){
7793     assert( pC->eCurType==CURTYPE_BTREE );
7794     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7795                            pOp->p4.pExpr, aMem);
7796   }
7797   break;
7798 }
7799 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7800 
7801 #ifdef SQLITE_DEBUG
7802 /* Opcode:  Abortable   * * * * *
7803 **
7804 ** Verify that an Abort can happen.  Assert if an Abort at this point
7805 ** might cause database corruption.  This opcode only appears in debugging
7806 ** builds.
7807 **
7808 ** An Abort is safe if either there have been no writes, or if there is
7809 ** an active statement journal.
7810 */
7811 case OP_Abortable: {
7812   sqlite3VdbeAssertAbortable(p);
7813   break;
7814 }
7815 #endif
7816 
7817 #ifdef SQLITE_DEBUG
7818 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
7819 ** Synopsis: release r[P1@P2] mask P3
7820 **
7821 ** Release registers from service.  Any content that was in the
7822 ** the registers is unreliable after this opcode completes.
7823 **
7824 ** The registers released will be the P2 registers starting at P1,
7825 ** except if bit ii of P3 set, then do not release register P1+ii.
7826 ** In other words, P3 is a mask of registers to preserve.
7827 **
7828 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
7829 ** that if the content of the released register was set using OP_SCopy,
7830 ** a change to the value of the source register for the OP_SCopy will no longer
7831 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
7832 **
7833 ** If P5 is set, then all released registers have their type set
7834 ** to MEM_Undefined so that any subsequent attempt to read the released
7835 ** register (before it is reinitialized) will generate an assertion fault.
7836 **
7837 ** P5 ought to be set on every call to this opcode.
7838 ** However, there are places in the code generator will release registers
7839 ** before their are used, under the (valid) assumption that the registers
7840 ** will not be reallocated for some other purpose before they are used and
7841 ** hence are safe to release.
7842 **
7843 ** This opcode is only available in testing and debugging builds.  It is
7844 ** not generated for release builds.  The purpose of this opcode is to help
7845 ** validate the generated bytecode.  This opcode does not actually contribute
7846 ** to computing an answer.
7847 */
7848 case OP_ReleaseReg: {
7849   Mem *pMem;
7850   int i;
7851   u32 constMask;
7852   assert( pOp->p1>0 );
7853   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
7854   pMem = &aMem[pOp->p1];
7855   constMask = pOp->p3;
7856   for(i=0; i<pOp->p2; i++, pMem++){
7857     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
7858       pMem->pScopyFrom = 0;
7859       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
7860     }
7861   }
7862   break;
7863 }
7864 #endif
7865 
7866 /* Opcode: Noop * * * * *
7867 **
7868 ** Do nothing.  This instruction is often useful as a jump
7869 ** destination.
7870 */
7871 /*
7872 ** The magic Explain opcode are only inserted when explain==2 (which
7873 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7874 ** This opcode records information from the optimizer.  It is the
7875 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7876 */
7877 default: {          /* This is really OP_Noop, OP_Explain */
7878   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7879 
7880   break;
7881 }
7882 
7883 /*****************************************************************************
7884 ** The cases of the switch statement above this line should all be indented
7885 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7886 ** readability.  From this point on down, the normal indentation rules are
7887 ** restored.
7888 *****************************************************************************/
7889     }
7890 
7891 #ifdef VDBE_PROFILE
7892     {
7893       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
7894       if( endTime>start ) pOrigOp->cycles += endTime - start;
7895       pOrigOp->cnt++;
7896     }
7897 #endif
7898 
7899     /* The following code adds nothing to the actual functionality
7900     ** of the program.  It is only here for testing and debugging.
7901     ** On the other hand, it does burn CPU cycles every time through
7902     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7903     */
7904 #ifndef NDEBUG
7905     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7906 
7907 #ifdef SQLITE_DEBUG
7908     if( db->flags & SQLITE_VdbeTrace ){
7909       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7910       if( rc!=0 ) printf("rc=%d\n",rc);
7911       if( opProperty & (OPFLG_OUT2) ){
7912         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7913       }
7914       if( opProperty & OPFLG_OUT3 ){
7915         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7916       }
7917     }
7918 #endif  /* SQLITE_DEBUG */
7919 #endif  /* NDEBUG */
7920   }  /* The end of the for(;;) loop the loops through opcodes */
7921 
7922   /* If we reach this point, it means that execution is finished with
7923   ** an error of some kind.
7924   */
7925 abort_due_to_error:
7926   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7927   assert( rc );
7928   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7929     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7930   }
7931   p->rc = rc;
7932   sqlite3SystemError(db, rc);
7933   testcase( sqlite3GlobalConfig.xLog!=0 );
7934   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7935                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7936   sqlite3VdbeHalt(p);
7937   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7938   rc = SQLITE_ERROR;
7939   if( resetSchemaOnFault>0 ){
7940     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7941   }
7942 
7943   /* This is the only way out of this procedure.  We have to
7944   ** release the mutexes on btrees that were acquired at the
7945   ** top. */
7946 vdbe_return:
7947 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
7948   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
7949     nProgressLimit += db->nProgressOps;
7950     if( db->xProgress(db->pProgressArg) ){
7951       nProgressLimit = 0xffffffff;
7952       rc = SQLITE_INTERRUPT;
7953       goto abort_due_to_error;
7954     }
7955   }
7956 #endif
7957   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7958   sqlite3VdbeLeave(p);
7959   assert( rc!=SQLITE_OK || nExtraDelete==0
7960        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7961   );
7962   return rc;
7963 
7964   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7965   ** is encountered.
7966   */
7967 too_big:
7968   sqlite3VdbeError(p, "string or blob too big");
7969   rc = SQLITE_TOOBIG;
7970   goto abort_due_to_error;
7971 
7972   /* Jump to here if a malloc() fails.
7973   */
7974 no_mem:
7975   sqlite3OomFault(db);
7976   sqlite3VdbeError(p, "out of memory");
7977   rc = SQLITE_NOMEM_BKPT;
7978   goto abort_due_to_error;
7979 
7980   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7981   ** flag.
7982   */
7983 abort_due_to_interrupt:
7984   assert( db->u1.isInterrupted );
7985   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7986   p->rc = rc;
7987   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7988   goto abort_due_to_error;
7989 }
7990