1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 u8 eCurType /* Type of the new cursor */ 245 ){ 246 /* Find the memory cell that will be used to store the blob of memory 247 ** required for this VdbeCursor structure. It is convenient to use a 248 ** vdbe memory cell to manage the memory allocation required for a 249 ** VdbeCursor structure for the following reasons: 250 ** 251 ** * Sometimes cursor numbers are used for a couple of different 252 ** purposes in a vdbe program. The different uses might require 253 ** different sized allocations. Memory cells provide growable 254 ** allocations. 255 ** 256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 257 ** be freed lazily via the sqlite3_release_memory() API. This 258 ** minimizes the number of malloc calls made by the system. 259 ** 260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 263 */ 264 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 265 266 int nByte; 267 VdbeCursor *pCx = 0; 268 nByte = 269 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 270 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 271 272 assert( iCur>=0 && iCur<p->nCursor ); 273 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 274 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 275 p->apCsr[iCur] = 0; 276 } 277 278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 279 ** the pMem used to hold space for the cursor has enough storage available 280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 281 ** to hold cursors, it is faster to in-line the logic. */ 282 assert( pMem->flags==MEM_Undefined ); 283 assert( (pMem->flags & MEM_Dyn)==0 ); 284 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 285 if( pMem->szMalloc<nByte ){ 286 if( pMem->szMalloc>0 ){ 287 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 288 } 289 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 290 if( pMem->zMalloc==0 ){ 291 pMem->szMalloc = 0; 292 return 0; 293 } 294 pMem->szMalloc = nByte; 295 } 296 297 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 298 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 299 pCx->eCurType = eCurType; 300 pCx->nField = nField; 301 pCx->aOffset = &pCx->aType[nField]; 302 if( eCurType==CURTYPE_BTREE ){ 303 pCx->uc.pCursor = (BtCursor*) 304 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 305 sqlite3BtreeCursorZero(pCx->uc.pCursor); 306 } 307 return pCx; 308 } 309 310 /* 311 ** The string in pRec is known to look like an integer and to have a 312 ** floating point value of rValue. Return true and set *piValue to the 313 ** integer value if the string is in range to be an integer. Otherwise, 314 ** return false. 315 */ 316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 317 i64 iValue = (double)rValue; 318 if( sqlite3RealSameAsInt(rValue,iValue) ){ 319 *piValue = iValue; 320 return 1; 321 } 322 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 323 } 324 325 /* 326 ** Try to convert a value into a numeric representation if we can 327 ** do so without loss of information. In other words, if the string 328 ** looks like a number, convert it into a number. If it does not 329 ** look like a number, leave it alone. 330 ** 331 ** If the bTryForInt flag is true, then extra effort is made to give 332 ** an integer representation. Strings that look like floating point 333 ** values but which have no fractional component (example: '48.00') 334 ** will have a MEM_Int representation when bTryForInt is true. 335 ** 336 ** If bTryForInt is false, then if the input string contains a decimal 337 ** point or exponential notation, the result is only MEM_Real, even 338 ** if there is an exact integer representation of the quantity. 339 */ 340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 341 double rValue; 342 u8 enc = pRec->enc; 343 int rc; 344 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 345 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 346 if( rc<=0 ) return; 347 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 348 pRec->flags |= MEM_Int; 349 }else{ 350 pRec->u.r = rValue; 351 pRec->flags |= MEM_Real; 352 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 353 } 354 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 355 ** string representation after computing a numeric equivalent, because the 356 ** string representation might not be the canonical representation for the 357 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 358 pRec->flags &= ~MEM_Str; 359 } 360 361 /* 362 ** Processing is determine by the affinity parameter: 363 ** 364 ** SQLITE_AFF_INTEGER: 365 ** SQLITE_AFF_REAL: 366 ** SQLITE_AFF_NUMERIC: 367 ** Try to convert pRec to an integer representation or a 368 ** floating-point representation if an integer representation 369 ** is not possible. Note that the integer representation is 370 ** always preferred, even if the affinity is REAL, because 371 ** an integer representation is more space efficient on disk. 372 ** 373 ** SQLITE_AFF_TEXT: 374 ** Convert pRec to a text representation. 375 ** 376 ** SQLITE_AFF_BLOB: 377 ** SQLITE_AFF_NONE: 378 ** No-op. pRec is unchanged. 379 */ 380 static void applyAffinity( 381 Mem *pRec, /* The value to apply affinity to */ 382 char affinity, /* The affinity to be applied */ 383 u8 enc /* Use this text encoding */ 384 ){ 385 if( affinity>=SQLITE_AFF_NUMERIC ){ 386 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 387 || affinity==SQLITE_AFF_NUMERIC ); 388 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 389 if( (pRec->flags & MEM_Real)==0 ){ 390 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 391 }else{ 392 sqlite3VdbeIntegerAffinity(pRec); 393 } 394 } 395 }else if( affinity==SQLITE_AFF_TEXT ){ 396 /* Only attempt the conversion to TEXT if there is an integer or real 397 ** representation (blob and NULL do not get converted) but no string 398 ** representation. It would be harmless to repeat the conversion if 399 ** there is already a string rep, but it is pointless to waste those 400 ** CPU cycles. */ 401 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 402 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 403 testcase( pRec->flags & MEM_Int ); 404 testcase( pRec->flags & MEM_Real ); 405 testcase( pRec->flags & MEM_IntReal ); 406 sqlite3VdbeMemStringify(pRec, enc, 1); 407 } 408 } 409 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 410 } 411 } 412 413 /* 414 ** Try to convert the type of a function argument or a result column 415 ** into a numeric representation. Use either INTEGER or REAL whichever 416 ** is appropriate. But only do the conversion if it is possible without 417 ** loss of information and return the revised type of the argument. 418 */ 419 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 420 int eType = sqlite3_value_type(pVal); 421 if( eType==SQLITE_TEXT ){ 422 Mem *pMem = (Mem*)pVal; 423 applyNumericAffinity(pMem, 0); 424 eType = sqlite3_value_type(pVal); 425 } 426 return eType; 427 } 428 429 /* 430 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 431 ** not the internal Mem* type. 432 */ 433 void sqlite3ValueApplyAffinity( 434 sqlite3_value *pVal, 435 u8 affinity, 436 u8 enc 437 ){ 438 applyAffinity((Mem *)pVal, affinity, enc); 439 } 440 441 /* 442 ** pMem currently only holds a string type (or maybe a BLOB that we can 443 ** interpret as a string if we want to). Compute its corresponding 444 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 445 ** accordingly. 446 */ 447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 448 int rc; 449 sqlite3_int64 ix; 450 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 451 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 452 if( ExpandBlob(pMem) ){ 453 pMem->u.i = 0; 454 return MEM_Int; 455 } 456 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 457 if( rc<=0 ){ 458 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 459 pMem->u.i = ix; 460 return MEM_Int; 461 }else{ 462 return MEM_Real; 463 } 464 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 465 pMem->u.i = ix; 466 return MEM_Int; 467 } 468 return MEM_Real; 469 } 470 471 /* 472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 473 ** none. 474 ** 475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 476 ** But it does set pMem->u.r and pMem->u.i appropriately. 477 */ 478 static u16 numericType(Mem *pMem){ 479 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 480 testcase( pMem->flags & MEM_Int ); 481 testcase( pMem->flags & MEM_Real ); 482 testcase( pMem->flags & MEM_IntReal ); 483 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 484 } 485 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 486 testcase( pMem->flags & MEM_Str ); 487 testcase( pMem->flags & MEM_Blob ); 488 return computeNumericType(pMem); 489 } 490 return 0; 491 } 492 493 #ifdef SQLITE_DEBUG 494 /* 495 ** Write a nice string representation of the contents of cell pMem 496 ** into buffer zBuf, length nBuf. 497 */ 498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 499 int f = pMem->flags; 500 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 501 if( f&MEM_Blob ){ 502 int i; 503 char c; 504 if( f & MEM_Dyn ){ 505 c = 'z'; 506 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 507 }else if( f & MEM_Static ){ 508 c = 't'; 509 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 510 }else if( f & MEM_Ephem ){ 511 c = 'e'; 512 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 513 }else{ 514 c = 's'; 515 } 516 sqlite3_str_appendf(pStr, "%cx[", c); 517 for(i=0; i<25 && i<pMem->n; i++){ 518 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 519 } 520 sqlite3_str_appendf(pStr, "|"); 521 for(i=0; i<25 && i<pMem->n; i++){ 522 char z = pMem->z[i]; 523 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 524 } 525 sqlite3_str_appendf(pStr,"]"); 526 if( f & MEM_Zero ){ 527 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 528 } 529 }else if( f & MEM_Str ){ 530 int j; 531 u8 c; 532 if( f & MEM_Dyn ){ 533 c = 'z'; 534 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 535 }else if( f & MEM_Static ){ 536 c = 't'; 537 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 538 }else if( f & MEM_Ephem ){ 539 c = 'e'; 540 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 541 }else{ 542 c = 's'; 543 } 544 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 545 for(j=0; j<25 && j<pMem->n; j++){ 546 c = pMem->z[j]; 547 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 548 } 549 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 550 } 551 } 552 #endif 553 554 #ifdef SQLITE_DEBUG 555 /* 556 ** Print the value of a register for tracing purposes: 557 */ 558 static void memTracePrint(Mem *p){ 559 if( p->flags & MEM_Undefined ){ 560 printf(" undefined"); 561 }else if( p->flags & MEM_Null ){ 562 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 563 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 564 printf(" si:%lld", p->u.i); 565 }else if( (p->flags & (MEM_IntReal))!=0 ){ 566 printf(" ir:%lld", p->u.i); 567 }else if( p->flags & MEM_Int ){ 568 printf(" i:%lld", p->u.i); 569 #ifndef SQLITE_OMIT_FLOATING_POINT 570 }else if( p->flags & MEM_Real ){ 571 printf(" r:%.17g", p->u.r); 572 #endif 573 }else if( sqlite3VdbeMemIsRowSet(p) ){ 574 printf(" (rowset)"); 575 }else{ 576 StrAccum acc; 577 char zBuf[1000]; 578 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 579 sqlite3VdbeMemPrettyPrint(p, &acc); 580 printf(" %s", sqlite3StrAccumFinish(&acc)); 581 } 582 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 583 } 584 static void registerTrace(int iReg, Mem *p){ 585 printf("R[%d] = ", iReg); 586 memTracePrint(p); 587 if( p->pScopyFrom ){ 588 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 589 } 590 printf("\n"); 591 sqlite3VdbeCheckMemInvariants(p); 592 } 593 /**/ void sqlite3PrintMem(Mem *pMem){ 594 memTracePrint(pMem); 595 printf("\n"); 596 fflush(stdout); 597 } 598 #endif 599 600 #ifdef SQLITE_DEBUG 601 /* 602 ** Show the values of all registers in the virtual machine. Used for 603 ** interactive debugging. 604 */ 605 void sqlite3VdbeRegisterDump(Vdbe *v){ 606 int i; 607 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 608 } 609 #endif /* SQLITE_DEBUG */ 610 611 612 #ifdef SQLITE_DEBUG 613 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 614 #else 615 # define REGISTER_TRACE(R,M) 616 #endif 617 618 619 #ifdef VDBE_PROFILE 620 621 /* 622 ** hwtime.h contains inline assembler code for implementing 623 ** high-performance timing routines. 624 */ 625 #include "hwtime.h" 626 627 #endif 628 629 #ifndef NDEBUG 630 /* 631 ** This function is only called from within an assert() expression. It 632 ** checks that the sqlite3.nTransaction variable is correctly set to 633 ** the number of non-transaction savepoints currently in the 634 ** linked list starting at sqlite3.pSavepoint. 635 ** 636 ** Usage: 637 ** 638 ** assert( checkSavepointCount(db) ); 639 */ 640 static int checkSavepointCount(sqlite3 *db){ 641 int n = 0; 642 Savepoint *p; 643 for(p=db->pSavepoint; p; p=p->pNext) n++; 644 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 645 return 1; 646 } 647 #endif 648 649 /* 650 ** Return the register of pOp->p2 after first preparing it to be 651 ** overwritten with an integer value. 652 */ 653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 654 sqlite3VdbeMemSetNull(pOut); 655 pOut->flags = MEM_Int; 656 return pOut; 657 } 658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 659 Mem *pOut; 660 assert( pOp->p2>0 ); 661 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 662 pOut = &p->aMem[pOp->p2]; 663 memAboutToChange(p, pOut); 664 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 665 return out2PrereleaseWithClear(pOut); 666 }else{ 667 pOut->flags = MEM_Int; 668 return pOut; 669 } 670 } 671 672 /* 673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 674 ** with pOp->p3. Return the hash. 675 */ 676 static u64 filterHash(const Mem *aMem, const Op *pOp){ 677 int i, mx; 678 u64 h = 0; 679 680 assert( pOp->p4type==P4_INT32 ); 681 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 682 const Mem *p = &aMem[i]; 683 if( p->flags & (MEM_Int|MEM_IntReal) ){ 684 h += p->u.i; 685 }else if( p->flags & MEM_Real ){ 686 h += sqlite3VdbeIntValue(p); 687 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 688 h += p->n; 689 if( p->flags & MEM_Zero ) h += p->u.nZero; 690 } 691 } 692 return h; 693 } 694 695 /* 696 ** Return the symbolic name for the data type of a pMem 697 */ 698 static const char *vdbeMemTypeName(Mem *pMem){ 699 static const char *azTypes[] = { 700 /* SQLITE_INTEGER */ "INT", 701 /* SQLITE_FLOAT */ "REAL", 702 /* SQLITE_TEXT */ "TEXT", 703 /* SQLITE_BLOB */ "BLOB", 704 /* SQLITE_NULL */ "NULL" 705 }; 706 return azTypes[sqlite3_value_type(pMem)-1]; 707 } 708 709 /* 710 ** Execute as much of a VDBE program as we can. 711 ** This is the core of sqlite3_step(). 712 */ 713 int sqlite3VdbeExec( 714 Vdbe *p /* The VDBE */ 715 ){ 716 Op *aOp = p->aOp; /* Copy of p->aOp */ 717 Op *pOp = aOp; /* Current operation */ 718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 719 Op *pOrigOp; /* Value of pOp at the top of the loop */ 720 #endif 721 #ifdef SQLITE_DEBUG 722 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 723 #endif 724 int rc = SQLITE_OK; /* Value to return */ 725 sqlite3 *db = p->db; /* The database */ 726 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 727 u8 encoding = ENC(db); /* The database encoding */ 728 int iCompare = 0; /* Result of last comparison */ 729 u64 nVmStep = 0; /* Number of virtual machine steps */ 730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 731 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 732 #endif 733 Mem *aMem = p->aMem; /* Copy of p->aMem */ 734 Mem *pIn1 = 0; /* 1st input operand */ 735 Mem *pIn2 = 0; /* 2nd input operand */ 736 Mem *pIn3 = 0; /* 3rd input operand */ 737 Mem *pOut = 0; /* Output operand */ 738 #ifdef VDBE_PROFILE 739 u64 start; /* CPU clock count at start of opcode */ 740 #endif 741 /*** INSERT STACK UNION HERE ***/ 742 743 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 744 sqlite3VdbeEnter(p); 745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 746 if( db->xProgress ){ 747 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 748 assert( 0 < db->nProgressOps ); 749 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 750 }else{ 751 nProgressLimit = LARGEST_UINT64; 752 } 753 #endif 754 if( p->rc==SQLITE_NOMEM ){ 755 /* This happens if a malloc() inside a call to sqlite3_column_text() or 756 ** sqlite3_column_text16() failed. */ 757 goto no_mem; 758 } 759 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 760 testcase( p->rc!=SQLITE_OK ); 761 p->rc = SQLITE_OK; 762 assert( p->bIsReader || p->readOnly!=0 ); 763 p->iCurrentTime = 0; 764 assert( p->explain==0 ); 765 p->pResultSet = 0; 766 db->busyHandler.nBusy = 0; 767 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 768 sqlite3VdbeIOTraceSql(p); 769 #ifdef SQLITE_DEBUG 770 sqlite3BeginBenignMalloc(); 771 if( p->pc==0 772 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 773 ){ 774 int i; 775 int once = 1; 776 sqlite3VdbePrintSql(p); 777 if( p->db->flags & SQLITE_VdbeListing ){ 778 printf("VDBE Program Listing:\n"); 779 for(i=0; i<p->nOp; i++){ 780 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 781 } 782 } 783 if( p->db->flags & SQLITE_VdbeEQP ){ 784 for(i=0; i<p->nOp; i++){ 785 if( aOp[i].opcode==OP_Explain ){ 786 if( once ) printf("VDBE Query Plan:\n"); 787 printf("%s\n", aOp[i].p4.z); 788 once = 0; 789 } 790 } 791 } 792 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 793 } 794 sqlite3EndBenignMalloc(); 795 #endif 796 for(pOp=&aOp[p->pc]; 1; pOp++){ 797 /* Errors are detected by individual opcodes, with an immediate 798 ** jumps to abort_due_to_error. */ 799 assert( rc==SQLITE_OK ); 800 801 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 802 #ifdef VDBE_PROFILE 803 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 804 #endif 805 nVmStep++; 806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 807 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 808 #endif 809 810 /* Only allow tracing if SQLITE_DEBUG is defined. 811 */ 812 #ifdef SQLITE_DEBUG 813 if( db->flags & SQLITE_VdbeTrace ){ 814 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 815 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 816 } 817 #endif 818 819 820 /* Check to see if we need to simulate an interrupt. This only happens 821 ** if we have a special test build. 822 */ 823 #ifdef SQLITE_TEST 824 if( sqlite3_interrupt_count>0 ){ 825 sqlite3_interrupt_count--; 826 if( sqlite3_interrupt_count==0 ){ 827 sqlite3_interrupt(db); 828 } 829 } 830 #endif 831 832 /* Sanity checking on other operands */ 833 #ifdef SQLITE_DEBUG 834 { 835 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 836 if( (opProperty & OPFLG_IN1)!=0 ){ 837 assert( pOp->p1>0 ); 838 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 839 assert( memIsValid(&aMem[pOp->p1]) ); 840 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 841 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 842 } 843 if( (opProperty & OPFLG_IN2)!=0 ){ 844 assert( pOp->p2>0 ); 845 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 846 assert( memIsValid(&aMem[pOp->p2]) ); 847 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 848 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 849 } 850 if( (opProperty & OPFLG_IN3)!=0 ){ 851 assert( pOp->p3>0 ); 852 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 853 assert( memIsValid(&aMem[pOp->p3]) ); 854 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 855 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 856 } 857 if( (opProperty & OPFLG_OUT2)!=0 ){ 858 assert( pOp->p2>0 ); 859 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 860 memAboutToChange(p, &aMem[pOp->p2]); 861 } 862 if( (opProperty & OPFLG_OUT3)!=0 ){ 863 assert( pOp->p3>0 ); 864 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 865 memAboutToChange(p, &aMem[pOp->p3]); 866 } 867 } 868 #endif 869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 870 pOrigOp = pOp; 871 #endif 872 873 switch( pOp->opcode ){ 874 875 /***************************************************************************** 876 ** What follows is a massive switch statement where each case implements a 877 ** separate instruction in the virtual machine. If we follow the usual 878 ** indentation conventions, each case should be indented by 6 spaces. But 879 ** that is a lot of wasted space on the left margin. So the code within 880 ** the switch statement will break with convention and be flush-left. Another 881 ** big comment (similar to this one) will mark the point in the code where 882 ** we transition back to normal indentation. 883 ** 884 ** The formatting of each case is important. The makefile for SQLite 885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 886 ** file looking for lines that begin with "case OP_". The opcodes.h files 887 ** will be filled with #defines that give unique integer values to each 888 ** opcode and the opcodes.c file is filled with an array of strings where 889 ** each string is the symbolic name for the corresponding opcode. If the 890 ** case statement is followed by a comment of the form "/# same as ... #/" 891 ** that comment is used to determine the particular value of the opcode. 892 ** 893 ** Other keywords in the comment that follows each case are used to 894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 895 ** Keywords include: in1, in2, in3, out2, out3. See 896 ** the mkopcodeh.awk script for additional information. 897 ** 898 ** Documentation about VDBE opcodes is generated by scanning this file 899 ** for lines of that contain "Opcode:". That line and all subsequent 900 ** comment lines are used in the generation of the opcode.html documentation 901 ** file. 902 ** 903 ** SUMMARY: 904 ** 905 ** Formatting is important to scripts that scan this file. 906 ** Do not deviate from the formatting style currently in use. 907 ** 908 *****************************************************************************/ 909 910 /* Opcode: Goto * P2 * * * 911 ** 912 ** An unconditional jump to address P2. 913 ** The next instruction executed will be 914 ** the one at index P2 from the beginning of 915 ** the program. 916 ** 917 ** The P1 parameter is not actually used by this opcode. However, it 918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 919 ** that this Goto is the bottom of a loop and that the lines from P2 down 920 ** to the current line should be indented for EXPLAIN output. 921 */ 922 case OP_Goto: { /* jump */ 923 924 #ifdef SQLITE_DEBUG 925 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 926 ** means we should really jump back to the preceeding OP_ReleaseReg 927 ** instruction. */ 928 if( pOp->p5 ){ 929 assert( pOp->p2 < (int)(pOp - aOp) ); 930 assert( pOp->p2 > 1 ); 931 pOp = &aOp[pOp->p2 - 2]; 932 assert( pOp[1].opcode==OP_ReleaseReg ); 933 goto check_for_interrupt; 934 } 935 #endif 936 937 jump_to_p2_and_check_for_interrupt: 938 pOp = &aOp[pOp->p2 - 1]; 939 940 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 941 ** OP_VNext, or OP_SorterNext) all jump here upon 942 ** completion. Check to see if sqlite3_interrupt() has been called 943 ** or if the progress callback needs to be invoked. 944 ** 945 ** This code uses unstructured "goto" statements and does not look clean. 946 ** But that is not due to sloppy coding habits. The code is written this 947 ** way for performance, to avoid having to run the interrupt and progress 948 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 949 ** faster according to "valgrind --tool=cachegrind" */ 950 check_for_interrupt: 951 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 953 /* Call the progress callback if it is configured and the required number 954 ** of VDBE ops have been executed (either since this invocation of 955 ** sqlite3VdbeExec() or since last time the progress callback was called). 956 ** If the progress callback returns non-zero, exit the virtual machine with 957 ** a return code SQLITE_ABORT. 958 */ 959 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 960 assert( db->nProgressOps!=0 ); 961 nProgressLimit += db->nProgressOps; 962 if( db->xProgress(db->pProgressArg) ){ 963 nProgressLimit = LARGEST_UINT64; 964 rc = SQLITE_INTERRUPT; 965 goto abort_due_to_error; 966 } 967 } 968 #endif 969 970 break; 971 } 972 973 /* Opcode: Gosub P1 P2 * * * 974 ** 975 ** Write the current address onto register P1 976 ** and then jump to address P2. 977 */ 978 case OP_Gosub: { /* jump */ 979 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 980 pIn1 = &aMem[pOp->p1]; 981 assert( VdbeMemDynamic(pIn1)==0 ); 982 memAboutToChange(p, pIn1); 983 pIn1->flags = MEM_Int; 984 pIn1->u.i = (int)(pOp-aOp); 985 REGISTER_TRACE(pOp->p1, pIn1); 986 987 /* Most jump operations do a goto to this spot in order to update 988 ** the pOp pointer. */ 989 jump_to_p2: 990 pOp = &aOp[pOp->p2 - 1]; 991 break; 992 } 993 994 /* Opcode: Return P1 * P3 * * 995 ** 996 ** Jump to the next instruction after the address in register P1. After 997 ** the jump, register P1 becomes undefined. 998 ** 999 ** P3 is not used by the byte-code engine. However, the code generator 1000 ** sets P3 to address of the associated OP_BeginSubrtn opcode, if there is 1001 ** one. 1002 */ 1003 case OP_Return: { /* in1 */ 1004 pIn1 = &aMem[pOp->p1]; 1005 assert( pIn1->flags==MEM_Int ); 1006 pOp = &aOp[pIn1->u.i]; 1007 pIn1->flags = MEM_Undefined; 1008 break; 1009 } 1010 1011 /* Opcode: InitCoroutine P1 P2 P3 * * 1012 ** 1013 ** Set up register P1 so that it will Yield to the coroutine 1014 ** located at address P3. 1015 ** 1016 ** If P2!=0 then the coroutine implementation immediately follows 1017 ** this opcode. So jump over the coroutine implementation to 1018 ** address P2. 1019 ** 1020 ** See also: EndCoroutine 1021 */ 1022 case OP_InitCoroutine: { /* jump */ 1023 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1024 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1025 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1026 pOut = &aMem[pOp->p1]; 1027 assert( !VdbeMemDynamic(pOut) ); 1028 pOut->u.i = pOp->p3 - 1; 1029 pOut->flags = MEM_Int; 1030 if( pOp->p2 ) goto jump_to_p2; 1031 break; 1032 } 1033 1034 /* Opcode: EndCoroutine P1 * * * * 1035 ** 1036 ** The instruction at the address in register P1 is a Yield. 1037 ** Jump to the P2 parameter of that Yield. 1038 ** After the jump, register P1 becomes undefined. 1039 ** 1040 ** See also: InitCoroutine 1041 */ 1042 case OP_EndCoroutine: { /* in1 */ 1043 VdbeOp *pCaller; 1044 pIn1 = &aMem[pOp->p1]; 1045 assert( pIn1->flags==MEM_Int ); 1046 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1047 pCaller = &aOp[pIn1->u.i]; 1048 assert( pCaller->opcode==OP_Yield ); 1049 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1050 pOp = &aOp[pCaller->p2 - 1]; 1051 pIn1->flags = MEM_Undefined; 1052 break; 1053 } 1054 1055 /* Opcode: Yield P1 P2 * * * 1056 ** 1057 ** Swap the program counter with the value in register P1. This 1058 ** has the effect of yielding to a coroutine. 1059 ** 1060 ** If the coroutine that is launched by this instruction ends with 1061 ** Yield or Return then continue to the next instruction. But if 1062 ** the coroutine launched by this instruction ends with 1063 ** EndCoroutine, then jump to P2 rather than continuing with the 1064 ** next instruction. 1065 ** 1066 ** See also: InitCoroutine 1067 */ 1068 case OP_Yield: { /* in1, jump */ 1069 int pcDest; 1070 pIn1 = &aMem[pOp->p1]; 1071 assert( VdbeMemDynamic(pIn1)==0 ); 1072 pIn1->flags = MEM_Int; 1073 pcDest = (int)pIn1->u.i; 1074 pIn1->u.i = (int)(pOp - aOp); 1075 REGISTER_TRACE(pOp->p1, pIn1); 1076 pOp = &aOp[pcDest]; 1077 break; 1078 } 1079 1080 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1081 ** Synopsis: if r[P3]=null halt 1082 ** 1083 ** Check the value in register P3. If it is NULL then Halt using 1084 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1085 ** value in register P3 is not NULL, then this routine is a no-op. 1086 ** The P5 parameter should be 1. 1087 */ 1088 case OP_HaltIfNull: { /* in3 */ 1089 pIn3 = &aMem[pOp->p3]; 1090 #ifdef SQLITE_DEBUG 1091 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1092 #endif 1093 if( (pIn3->flags & MEM_Null)==0 ) break; 1094 /* Fall through into OP_Halt */ 1095 /* no break */ deliberate_fall_through 1096 } 1097 1098 /* Opcode: Halt P1 P2 * P4 P5 1099 ** 1100 ** Exit immediately. All open cursors, etc are closed 1101 ** automatically. 1102 ** 1103 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1104 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1105 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1106 ** whether or not to rollback the current transaction. Do not rollback 1107 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1108 ** then back out all changes that have occurred during this execution of the 1109 ** VDBE, but do not rollback the transaction. 1110 ** 1111 ** If P4 is not null then it is an error message string. 1112 ** 1113 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1114 ** 1115 ** 0: (no change) 1116 ** 1: NOT NULL contraint failed: P4 1117 ** 2: UNIQUE constraint failed: P4 1118 ** 3: CHECK constraint failed: P4 1119 ** 4: FOREIGN KEY constraint failed: P4 1120 ** 1121 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1122 ** omitted. 1123 ** 1124 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1125 ** every program. So a jump past the last instruction of the program 1126 ** is the same as executing Halt. 1127 */ 1128 case OP_Halt: { 1129 VdbeFrame *pFrame; 1130 int pcx; 1131 1132 pcx = (int)(pOp - aOp); 1133 #ifdef SQLITE_DEBUG 1134 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1135 #endif 1136 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1137 /* Halt the sub-program. Return control to the parent frame. */ 1138 pFrame = p->pFrame; 1139 p->pFrame = pFrame->pParent; 1140 p->nFrame--; 1141 sqlite3VdbeSetChanges(db, p->nChange); 1142 pcx = sqlite3VdbeFrameRestore(pFrame); 1143 if( pOp->p2==OE_Ignore ){ 1144 /* Instruction pcx is the OP_Program that invoked the sub-program 1145 ** currently being halted. If the p2 instruction of this OP_Halt 1146 ** instruction is set to OE_Ignore, then the sub-program is throwing 1147 ** an IGNORE exception. In this case jump to the address specified 1148 ** as the p2 of the calling OP_Program. */ 1149 pcx = p->aOp[pcx].p2-1; 1150 } 1151 aOp = p->aOp; 1152 aMem = p->aMem; 1153 pOp = &aOp[pcx]; 1154 break; 1155 } 1156 p->rc = pOp->p1; 1157 p->errorAction = (u8)pOp->p2; 1158 p->pc = pcx; 1159 assert( pOp->p5<=4 ); 1160 if( p->rc ){ 1161 if( pOp->p5 ){ 1162 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1163 "FOREIGN KEY" }; 1164 testcase( pOp->p5==1 ); 1165 testcase( pOp->p5==2 ); 1166 testcase( pOp->p5==3 ); 1167 testcase( pOp->p5==4 ); 1168 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1169 if( pOp->p4.z ){ 1170 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1171 } 1172 }else{ 1173 sqlite3VdbeError(p, "%s", pOp->p4.z); 1174 } 1175 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1176 } 1177 rc = sqlite3VdbeHalt(p); 1178 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1179 if( rc==SQLITE_BUSY ){ 1180 p->rc = SQLITE_BUSY; 1181 }else{ 1182 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1183 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1184 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1185 } 1186 goto vdbe_return; 1187 } 1188 1189 /* Opcode: BeginSubrtn P1 P2 * * * 1190 ** Synopsis: r[P2]=P1 1191 ** 1192 ** Mark the beginning of a subroutine by loading the integer value P1 1193 ** into register r[P2]. The P2 register is used to store the return 1194 ** address of the subroutine call. 1195 ** 1196 ** This opcode is identical to OP_Integer. It has a different name 1197 ** only to make the byte code easier to read and verify. 1198 */ 1199 /* Opcode: Integer P1 P2 * * * 1200 ** Synopsis: r[P2]=P1 1201 ** 1202 ** The 32-bit integer value P1 is written into register P2. 1203 */ 1204 case OP_BeginSubrtn: 1205 case OP_Integer: { /* out2 */ 1206 pOut = out2Prerelease(p, pOp); 1207 pOut->u.i = pOp->p1; 1208 break; 1209 } 1210 1211 /* Opcode: Int64 * P2 * P4 * 1212 ** Synopsis: r[P2]=P4 1213 ** 1214 ** P4 is a pointer to a 64-bit integer value. 1215 ** Write that value into register P2. 1216 */ 1217 case OP_Int64: { /* out2 */ 1218 pOut = out2Prerelease(p, pOp); 1219 assert( pOp->p4.pI64!=0 ); 1220 pOut->u.i = *pOp->p4.pI64; 1221 break; 1222 } 1223 1224 #ifndef SQLITE_OMIT_FLOATING_POINT 1225 /* Opcode: Real * P2 * P4 * 1226 ** Synopsis: r[P2]=P4 1227 ** 1228 ** P4 is a pointer to a 64-bit floating point value. 1229 ** Write that value into register P2. 1230 */ 1231 case OP_Real: { /* same as TK_FLOAT, out2 */ 1232 pOut = out2Prerelease(p, pOp); 1233 pOut->flags = MEM_Real; 1234 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1235 pOut->u.r = *pOp->p4.pReal; 1236 break; 1237 } 1238 #endif 1239 1240 /* Opcode: String8 * P2 * P4 * 1241 ** Synopsis: r[P2]='P4' 1242 ** 1243 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1244 ** into a String opcode before it is executed for the first time. During 1245 ** this transformation, the length of string P4 is computed and stored 1246 ** as the P1 parameter. 1247 */ 1248 case OP_String8: { /* same as TK_STRING, out2 */ 1249 assert( pOp->p4.z!=0 ); 1250 pOut = out2Prerelease(p, pOp); 1251 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1252 1253 #ifndef SQLITE_OMIT_UTF16 1254 if( encoding!=SQLITE_UTF8 ){ 1255 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1256 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1257 if( rc ) goto too_big; 1258 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1259 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1260 assert( VdbeMemDynamic(pOut)==0 ); 1261 pOut->szMalloc = 0; 1262 pOut->flags |= MEM_Static; 1263 if( pOp->p4type==P4_DYNAMIC ){ 1264 sqlite3DbFree(db, pOp->p4.z); 1265 } 1266 pOp->p4type = P4_DYNAMIC; 1267 pOp->p4.z = pOut->z; 1268 pOp->p1 = pOut->n; 1269 } 1270 #endif 1271 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1272 goto too_big; 1273 } 1274 pOp->opcode = OP_String; 1275 assert( rc==SQLITE_OK ); 1276 /* Fall through to the next case, OP_String */ 1277 /* no break */ deliberate_fall_through 1278 } 1279 1280 /* Opcode: String P1 P2 P3 P4 P5 1281 ** Synopsis: r[P2]='P4' (len=P1) 1282 ** 1283 ** The string value P4 of length P1 (bytes) is stored in register P2. 1284 ** 1285 ** If P3 is not zero and the content of register P3 is equal to P5, then 1286 ** the datatype of the register P2 is converted to BLOB. The content is 1287 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1288 ** of a string, as if it had been CAST. In other words: 1289 ** 1290 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1291 */ 1292 case OP_String: { /* out2 */ 1293 assert( pOp->p4.z!=0 ); 1294 pOut = out2Prerelease(p, pOp); 1295 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1296 pOut->z = pOp->p4.z; 1297 pOut->n = pOp->p1; 1298 pOut->enc = encoding; 1299 UPDATE_MAX_BLOBSIZE(pOut); 1300 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1301 if( pOp->p3>0 ){ 1302 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1303 pIn3 = &aMem[pOp->p3]; 1304 assert( pIn3->flags & MEM_Int ); 1305 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1306 } 1307 #endif 1308 break; 1309 } 1310 1311 /* Opcode: Null P1 P2 P3 * * 1312 ** Synopsis: r[P2..P3]=NULL 1313 ** 1314 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1315 ** NULL into register P3 and every register in between P2 and P3. If P3 1316 ** is less than P2 (typically P3 is zero) then only register P2 is 1317 ** set to NULL. 1318 ** 1319 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1320 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1321 ** OP_Ne or OP_Eq. 1322 */ 1323 case OP_Null: { /* out2 */ 1324 int cnt; 1325 u16 nullFlag; 1326 pOut = out2Prerelease(p, pOp); 1327 cnt = pOp->p3-pOp->p2; 1328 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1329 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1330 pOut->n = 0; 1331 #ifdef SQLITE_DEBUG 1332 pOut->uTemp = 0; 1333 #endif 1334 while( cnt>0 ){ 1335 pOut++; 1336 memAboutToChange(p, pOut); 1337 sqlite3VdbeMemSetNull(pOut); 1338 pOut->flags = nullFlag; 1339 pOut->n = 0; 1340 cnt--; 1341 } 1342 break; 1343 } 1344 1345 /* Opcode: SoftNull P1 * * * * 1346 ** Synopsis: r[P1]=NULL 1347 ** 1348 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1349 ** instruction, but do not free any string or blob memory associated with 1350 ** the register, so that if the value was a string or blob that was 1351 ** previously copied using OP_SCopy, the copies will continue to be valid. 1352 */ 1353 case OP_SoftNull: { 1354 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1355 pOut = &aMem[pOp->p1]; 1356 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1357 break; 1358 } 1359 1360 /* Opcode: Blob P1 P2 * P4 * 1361 ** Synopsis: r[P2]=P4 (len=P1) 1362 ** 1363 ** P4 points to a blob of data P1 bytes long. Store this 1364 ** blob in register P2. If P4 is a NULL pointer, then construct 1365 ** a zero-filled blob that is P1 bytes long in P2. 1366 */ 1367 case OP_Blob: { /* out2 */ 1368 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1369 pOut = out2Prerelease(p, pOp); 1370 if( pOp->p4.z==0 ){ 1371 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 1372 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 1373 }else{ 1374 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1375 } 1376 pOut->enc = encoding; 1377 UPDATE_MAX_BLOBSIZE(pOut); 1378 break; 1379 } 1380 1381 /* Opcode: Variable P1 P2 * P4 * 1382 ** Synopsis: r[P2]=parameter(P1,P4) 1383 ** 1384 ** Transfer the values of bound parameter P1 into register P2 1385 ** 1386 ** If the parameter is named, then its name appears in P4. 1387 ** The P4 value is used by sqlite3_bind_parameter_name(). 1388 */ 1389 case OP_Variable: { /* out2 */ 1390 Mem *pVar; /* Value being transferred */ 1391 1392 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1393 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1394 pVar = &p->aVar[pOp->p1 - 1]; 1395 if( sqlite3VdbeMemTooBig(pVar) ){ 1396 goto too_big; 1397 } 1398 pOut = &aMem[pOp->p2]; 1399 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1400 memcpy(pOut, pVar, MEMCELLSIZE); 1401 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1402 pOut->flags |= MEM_Static|MEM_FromBind; 1403 UPDATE_MAX_BLOBSIZE(pOut); 1404 break; 1405 } 1406 1407 /* Opcode: Move P1 P2 P3 * * 1408 ** Synopsis: r[P2@P3]=r[P1@P3] 1409 ** 1410 ** Move the P3 values in register P1..P1+P3-1 over into 1411 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1412 ** left holding a NULL. It is an error for register ranges 1413 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1414 ** for P3 to be less than 1. 1415 */ 1416 case OP_Move: { 1417 int n; /* Number of registers left to copy */ 1418 int p1; /* Register to copy from */ 1419 int p2; /* Register to copy to */ 1420 1421 n = pOp->p3; 1422 p1 = pOp->p1; 1423 p2 = pOp->p2; 1424 assert( n>0 && p1>0 && p2>0 ); 1425 assert( p1+n<=p2 || p2+n<=p1 ); 1426 1427 pIn1 = &aMem[p1]; 1428 pOut = &aMem[p2]; 1429 do{ 1430 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1431 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1432 assert( memIsValid(pIn1) ); 1433 memAboutToChange(p, pOut); 1434 sqlite3VdbeMemMove(pOut, pIn1); 1435 #ifdef SQLITE_DEBUG 1436 pIn1->pScopyFrom = 0; 1437 { int i; 1438 for(i=1; i<p->nMem; i++){ 1439 if( aMem[i].pScopyFrom==pIn1 ){ 1440 aMem[i].pScopyFrom = pOut; 1441 } 1442 } 1443 } 1444 #endif 1445 Deephemeralize(pOut); 1446 REGISTER_TRACE(p2++, pOut); 1447 pIn1++; 1448 pOut++; 1449 }while( --n ); 1450 break; 1451 } 1452 1453 /* Opcode: Copy P1 P2 P3 * * 1454 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1455 ** 1456 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1457 ** 1458 ** This instruction makes a deep copy of the value. A duplicate 1459 ** is made of any string or blob constant. See also OP_SCopy. 1460 */ 1461 case OP_Copy: { 1462 int n; 1463 1464 n = pOp->p3; 1465 pIn1 = &aMem[pOp->p1]; 1466 pOut = &aMem[pOp->p2]; 1467 assert( pOut!=pIn1 ); 1468 while( 1 ){ 1469 memAboutToChange(p, pOut); 1470 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1471 Deephemeralize(pOut); 1472 #ifdef SQLITE_DEBUG 1473 pOut->pScopyFrom = 0; 1474 #endif 1475 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1476 if( (n--)==0 ) break; 1477 pOut++; 1478 pIn1++; 1479 } 1480 break; 1481 } 1482 1483 /* Opcode: SCopy P1 P2 * * * 1484 ** Synopsis: r[P2]=r[P1] 1485 ** 1486 ** Make a shallow copy of register P1 into register P2. 1487 ** 1488 ** This instruction makes a shallow copy of the value. If the value 1489 ** is a string or blob, then the copy is only a pointer to the 1490 ** original and hence if the original changes so will the copy. 1491 ** Worse, if the original is deallocated, the copy becomes invalid. 1492 ** Thus the program must guarantee that the original will not change 1493 ** during the lifetime of the copy. Use OP_Copy to make a complete 1494 ** copy. 1495 */ 1496 case OP_SCopy: { /* out2 */ 1497 pIn1 = &aMem[pOp->p1]; 1498 pOut = &aMem[pOp->p2]; 1499 assert( pOut!=pIn1 ); 1500 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1501 #ifdef SQLITE_DEBUG 1502 pOut->pScopyFrom = pIn1; 1503 pOut->mScopyFlags = pIn1->flags; 1504 #endif 1505 break; 1506 } 1507 1508 /* Opcode: IntCopy P1 P2 * * * 1509 ** Synopsis: r[P2]=r[P1] 1510 ** 1511 ** Transfer the integer value held in register P1 into register P2. 1512 ** 1513 ** This is an optimized version of SCopy that works only for integer 1514 ** values. 1515 */ 1516 case OP_IntCopy: { /* out2 */ 1517 pIn1 = &aMem[pOp->p1]; 1518 assert( (pIn1->flags & MEM_Int)!=0 ); 1519 pOut = &aMem[pOp->p2]; 1520 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1521 break; 1522 } 1523 1524 /* Opcode: FkCheck * * * * * 1525 ** 1526 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 1527 ** foreign key constraint violations. If there are no foreign key 1528 ** constraint violations, this is a no-op. 1529 ** 1530 ** FK constraint violations are also checked when the prepared statement 1531 ** exits. This opcode is used to raise foreign key constraint errors prior 1532 ** to returning results such as a row change count or the result of a 1533 ** RETURNING clause. 1534 */ 1535 case OP_FkCheck: { 1536 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1537 goto abort_due_to_error; 1538 } 1539 break; 1540 } 1541 1542 /* Opcode: ResultRow P1 P2 * * * 1543 ** Synopsis: output=r[P1@P2] 1544 ** 1545 ** The registers P1 through P1+P2-1 contain a single row of 1546 ** results. This opcode causes the sqlite3_step() call to terminate 1547 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1548 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1549 ** the result row. 1550 */ 1551 case OP_ResultRow: { 1552 Mem *pMem; 1553 int i; 1554 assert( p->nResColumn==pOp->p2 ); 1555 assert( pOp->p1>0 || CORRUPT_DB ); 1556 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1557 1558 /* Invalidate all ephemeral cursor row caches */ 1559 p->cacheCtr = (p->cacheCtr + 2)|1; 1560 1561 /* Make sure the results of the current row are \000 terminated 1562 ** and have an assigned type. The results are de-ephemeralized as 1563 ** a side effect. 1564 */ 1565 pMem = p->pResultSet = &aMem[pOp->p1]; 1566 for(i=0; i<pOp->p2; i++){ 1567 assert( memIsValid(&pMem[i]) ); 1568 Deephemeralize(&pMem[i]); 1569 assert( (pMem[i].flags & MEM_Ephem)==0 1570 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1571 sqlite3VdbeMemNulTerminate(&pMem[i]); 1572 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1573 #ifdef SQLITE_DEBUG 1574 /* The registers in the result will not be used again when the 1575 ** prepared statement restarts. This is because sqlite3_column() 1576 ** APIs might have caused type conversions of made other changes to 1577 ** the register values. Therefore, we can go ahead and break any 1578 ** OP_SCopy dependencies. */ 1579 pMem[i].pScopyFrom = 0; 1580 #endif 1581 } 1582 if( db->mallocFailed ) goto no_mem; 1583 1584 if( db->mTrace & SQLITE_TRACE_ROW ){ 1585 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1586 } 1587 1588 1589 /* Return SQLITE_ROW 1590 */ 1591 p->pc = (int)(pOp - aOp) + 1; 1592 rc = SQLITE_ROW; 1593 goto vdbe_return; 1594 } 1595 1596 /* Opcode: Concat P1 P2 P3 * * 1597 ** Synopsis: r[P3]=r[P2]+r[P1] 1598 ** 1599 ** Add the text in register P1 onto the end of the text in 1600 ** register P2 and store the result in register P3. 1601 ** If either the P1 or P2 text are NULL then store NULL in P3. 1602 ** 1603 ** P3 = P2 || P1 1604 ** 1605 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1606 ** if P3 is the same register as P2, the implementation is able 1607 ** to avoid a memcpy(). 1608 */ 1609 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1610 i64 nByte; /* Total size of the output string or blob */ 1611 u16 flags1; /* Initial flags for P1 */ 1612 u16 flags2; /* Initial flags for P2 */ 1613 1614 pIn1 = &aMem[pOp->p1]; 1615 pIn2 = &aMem[pOp->p2]; 1616 pOut = &aMem[pOp->p3]; 1617 testcase( pOut==pIn2 ); 1618 assert( pIn1!=pOut ); 1619 flags1 = pIn1->flags; 1620 testcase( flags1 & MEM_Null ); 1621 testcase( pIn2->flags & MEM_Null ); 1622 if( (flags1 | pIn2->flags) & MEM_Null ){ 1623 sqlite3VdbeMemSetNull(pOut); 1624 break; 1625 } 1626 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1627 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1628 flags1 = pIn1->flags & ~MEM_Str; 1629 }else if( (flags1 & MEM_Zero)!=0 ){ 1630 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1631 flags1 = pIn1->flags & ~MEM_Str; 1632 } 1633 flags2 = pIn2->flags; 1634 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1635 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1636 flags2 = pIn2->flags & ~MEM_Str; 1637 }else if( (flags2 & MEM_Zero)!=0 ){ 1638 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1639 flags2 = pIn2->flags & ~MEM_Str; 1640 } 1641 nByte = pIn1->n + pIn2->n; 1642 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1643 goto too_big; 1644 } 1645 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1646 goto no_mem; 1647 } 1648 MemSetTypeFlag(pOut, MEM_Str); 1649 if( pOut!=pIn2 ){ 1650 memcpy(pOut->z, pIn2->z, pIn2->n); 1651 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1652 pIn2->flags = flags2; 1653 } 1654 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1655 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1656 pIn1->flags = flags1; 1657 pOut->z[nByte]=0; 1658 pOut->z[nByte+1] = 0; 1659 pOut->z[nByte+2] = 0; 1660 pOut->flags |= MEM_Term; 1661 pOut->n = (int)nByte; 1662 pOut->enc = encoding; 1663 UPDATE_MAX_BLOBSIZE(pOut); 1664 break; 1665 } 1666 1667 /* Opcode: Add P1 P2 P3 * * 1668 ** Synopsis: r[P3]=r[P1]+r[P2] 1669 ** 1670 ** Add the value in register P1 to the value in register P2 1671 ** and store the result in register P3. 1672 ** If either input is NULL, the result is NULL. 1673 */ 1674 /* Opcode: Multiply P1 P2 P3 * * 1675 ** Synopsis: r[P3]=r[P1]*r[P2] 1676 ** 1677 ** 1678 ** Multiply the value in register P1 by the value in register P2 1679 ** and store the result in register P3. 1680 ** If either input is NULL, the result is NULL. 1681 */ 1682 /* Opcode: Subtract P1 P2 P3 * * 1683 ** Synopsis: r[P3]=r[P2]-r[P1] 1684 ** 1685 ** Subtract the value in register P1 from the value in register P2 1686 ** and store the result in register P3. 1687 ** If either input is NULL, the result is NULL. 1688 */ 1689 /* Opcode: Divide P1 P2 P3 * * 1690 ** Synopsis: r[P3]=r[P2]/r[P1] 1691 ** 1692 ** Divide the value in register P1 by the value in register P2 1693 ** and store the result in register P3 (P3=P2/P1). If the value in 1694 ** register P1 is zero, then the result is NULL. If either input is 1695 ** NULL, the result is NULL. 1696 */ 1697 /* Opcode: Remainder P1 P2 P3 * * 1698 ** Synopsis: r[P3]=r[P2]%r[P1] 1699 ** 1700 ** Compute the remainder after integer register P2 is divided by 1701 ** register P1 and store the result in register P3. 1702 ** If the value in register P1 is zero the result is NULL. 1703 ** If either operand is NULL, the result is NULL. 1704 */ 1705 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1706 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1707 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1708 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1709 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1710 u16 flags; /* Combined MEM_* flags from both inputs */ 1711 u16 type1; /* Numeric type of left operand */ 1712 u16 type2; /* Numeric type of right operand */ 1713 i64 iA; /* Integer value of left operand */ 1714 i64 iB; /* Integer value of right operand */ 1715 double rA; /* Real value of left operand */ 1716 double rB; /* Real value of right operand */ 1717 1718 pIn1 = &aMem[pOp->p1]; 1719 type1 = numericType(pIn1); 1720 pIn2 = &aMem[pOp->p2]; 1721 type2 = numericType(pIn2); 1722 pOut = &aMem[pOp->p3]; 1723 flags = pIn1->flags | pIn2->flags; 1724 if( (type1 & type2 & MEM_Int)!=0 ){ 1725 iA = pIn1->u.i; 1726 iB = pIn2->u.i; 1727 switch( pOp->opcode ){ 1728 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1729 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1730 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1731 case OP_Divide: { 1732 if( iA==0 ) goto arithmetic_result_is_null; 1733 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1734 iB /= iA; 1735 break; 1736 } 1737 default: { 1738 if( iA==0 ) goto arithmetic_result_is_null; 1739 if( iA==-1 ) iA = 1; 1740 iB %= iA; 1741 break; 1742 } 1743 } 1744 pOut->u.i = iB; 1745 MemSetTypeFlag(pOut, MEM_Int); 1746 }else if( (flags & MEM_Null)!=0 ){ 1747 goto arithmetic_result_is_null; 1748 }else{ 1749 fp_math: 1750 rA = sqlite3VdbeRealValue(pIn1); 1751 rB = sqlite3VdbeRealValue(pIn2); 1752 switch( pOp->opcode ){ 1753 case OP_Add: rB += rA; break; 1754 case OP_Subtract: rB -= rA; break; 1755 case OP_Multiply: rB *= rA; break; 1756 case OP_Divide: { 1757 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1758 if( rA==(double)0 ) goto arithmetic_result_is_null; 1759 rB /= rA; 1760 break; 1761 } 1762 default: { 1763 iA = sqlite3VdbeIntValue(pIn1); 1764 iB = sqlite3VdbeIntValue(pIn2); 1765 if( iA==0 ) goto arithmetic_result_is_null; 1766 if( iA==-1 ) iA = 1; 1767 rB = (double)(iB % iA); 1768 break; 1769 } 1770 } 1771 #ifdef SQLITE_OMIT_FLOATING_POINT 1772 pOut->u.i = rB; 1773 MemSetTypeFlag(pOut, MEM_Int); 1774 #else 1775 if( sqlite3IsNaN(rB) ){ 1776 goto arithmetic_result_is_null; 1777 } 1778 pOut->u.r = rB; 1779 MemSetTypeFlag(pOut, MEM_Real); 1780 #endif 1781 } 1782 break; 1783 1784 arithmetic_result_is_null: 1785 sqlite3VdbeMemSetNull(pOut); 1786 break; 1787 } 1788 1789 /* Opcode: CollSeq P1 * * P4 1790 ** 1791 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1792 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1793 ** be returned. This is used by the built-in min(), max() and nullif() 1794 ** functions. 1795 ** 1796 ** If P1 is not zero, then it is a register that a subsequent min() or 1797 ** max() aggregate will set to 1 if the current row is not the minimum or 1798 ** maximum. The P1 register is initialized to 0 by this instruction. 1799 ** 1800 ** The interface used by the implementation of the aforementioned functions 1801 ** to retrieve the collation sequence set by this opcode is not available 1802 ** publicly. Only built-in functions have access to this feature. 1803 */ 1804 case OP_CollSeq: { 1805 assert( pOp->p4type==P4_COLLSEQ ); 1806 if( pOp->p1 ){ 1807 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1808 } 1809 break; 1810 } 1811 1812 /* Opcode: BitAnd P1 P2 P3 * * 1813 ** Synopsis: r[P3]=r[P1]&r[P2] 1814 ** 1815 ** Take the bit-wise AND of the values in register P1 and P2 and 1816 ** store the result in register P3. 1817 ** If either input is NULL, the result is NULL. 1818 */ 1819 /* Opcode: BitOr P1 P2 P3 * * 1820 ** Synopsis: r[P3]=r[P1]|r[P2] 1821 ** 1822 ** Take the bit-wise OR of the values in register P1 and P2 and 1823 ** store the result in register P3. 1824 ** If either input is NULL, the result is NULL. 1825 */ 1826 /* Opcode: ShiftLeft P1 P2 P3 * * 1827 ** Synopsis: r[P3]=r[P2]<<r[P1] 1828 ** 1829 ** Shift the integer value in register P2 to the left by the 1830 ** number of bits specified by the integer in register P1. 1831 ** Store the result in register P3. 1832 ** If either input is NULL, the result is NULL. 1833 */ 1834 /* Opcode: ShiftRight P1 P2 P3 * * 1835 ** Synopsis: r[P3]=r[P2]>>r[P1] 1836 ** 1837 ** Shift the integer value in register P2 to the right by the 1838 ** number of bits specified by the integer in register P1. 1839 ** Store the result in register P3. 1840 ** If either input is NULL, the result is NULL. 1841 */ 1842 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1843 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1844 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1845 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1846 i64 iA; 1847 u64 uA; 1848 i64 iB; 1849 u8 op; 1850 1851 pIn1 = &aMem[pOp->p1]; 1852 pIn2 = &aMem[pOp->p2]; 1853 pOut = &aMem[pOp->p3]; 1854 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1855 sqlite3VdbeMemSetNull(pOut); 1856 break; 1857 } 1858 iA = sqlite3VdbeIntValue(pIn2); 1859 iB = sqlite3VdbeIntValue(pIn1); 1860 op = pOp->opcode; 1861 if( op==OP_BitAnd ){ 1862 iA &= iB; 1863 }else if( op==OP_BitOr ){ 1864 iA |= iB; 1865 }else if( iB!=0 ){ 1866 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1867 1868 /* If shifting by a negative amount, shift in the other direction */ 1869 if( iB<0 ){ 1870 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1871 op = 2*OP_ShiftLeft + 1 - op; 1872 iB = iB>(-64) ? -iB : 64; 1873 } 1874 1875 if( iB>=64 ){ 1876 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1877 }else{ 1878 memcpy(&uA, &iA, sizeof(uA)); 1879 if( op==OP_ShiftLeft ){ 1880 uA <<= iB; 1881 }else{ 1882 uA >>= iB; 1883 /* Sign-extend on a right shift of a negative number */ 1884 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1885 } 1886 memcpy(&iA, &uA, sizeof(iA)); 1887 } 1888 } 1889 pOut->u.i = iA; 1890 MemSetTypeFlag(pOut, MEM_Int); 1891 break; 1892 } 1893 1894 /* Opcode: AddImm P1 P2 * * * 1895 ** Synopsis: r[P1]=r[P1]+P2 1896 ** 1897 ** Add the constant P2 to the value in register P1. 1898 ** The result is always an integer. 1899 ** 1900 ** To force any register to be an integer, just add 0. 1901 */ 1902 case OP_AddImm: { /* in1 */ 1903 pIn1 = &aMem[pOp->p1]; 1904 memAboutToChange(p, pIn1); 1905 sqlite3VdbeMemIntegerify(pIn1); 1906 pIn1->u.i += pOp->p2; 1907 break; 1908 } 1909 1910 /* Opcode: MustBeInt P1 P2 * * * 1911 ** 1912 ** Force the value in register P1 to be an integer. If the value 1913 ** in P1 is not an integer and cannot be converted into an integer 1914 ** without data loss, then jump immediately to P2, or if P2==0 1915 ** raise an SQLITE_MISMATCH exception. 1916 */ 1917 case OP_MustBeInt: { /* jump, in1 */ 1918 pIn1 = &aMem[pOp->p1]; 1919 if( (pIn1->flags & MEM_Int)==0 ){ 1920 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1921 if( (pIn1->flags & MEM_Int)==0 ){ 1922 VdbeBranchTaken(1, 2); 1923 if( pOp->p2==0 ){ 1924 rc = SQLITE_MISMATCH; 1925 goto abort_due_to_error; 1926 }else{ 1927 goto jump_to_p2; 1928 } 1929 } 1930 } 1931 VdbeBranchTaken(0, 2); 1932 MemSetTypeFlag(pIn1, MEM_Int); 1933 break; 1934 } 1935 1936 #ifndef SQLITE_OMIT_FLOATING_POINT 1937 /* Opcode: RealAffinity P1 * * * * 1938 ** 1939 ** If register P1 holds an integer convert it to a real value. 1940 ** 1941 ** This opcode is used when extracting information from a column that 1942 ** has REAL affinity. Such column values may still be stored as 1943 ** integers, for space efficiency, but after extraction we want them 1944 ** to have only a real value. 1945 */ 1946 case OP_RealAffinity: { /* in1 */ 1947 pIn1 = &aMem[pOp->p1]; 1948 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1949 testcase( pIn1->flags & MEM_Int ); 1950 testcase( pIn1->flags & MEM_IntReal ); 1951 sqlite3VdbeMemRealify(pIn1); 1952 REGISTER_TRACE(pOp->p1, pIn1); 1953 } 1954 break; 1955 } 1956 #endif 1957 1958 #ifndef SQLITE_OMIT_CAST 1959 /* Opcode: Cast P1 P2 * * * 1960 ** Synopsis: affinity(r[P1]) 1961 ** 1962 ** Force the value in register P1 to be the type defined by P2. 1963 ** 1964 ** <ul> 1965 ** <li> P2=='A' → BLOB 1966 ** <li> P2=='B' → TEXT 1967 ** <li> P2=='C' → NUMERIC 1968 ** <li> P2=='D' → INTEGER 1969 ** <li> P2=='E' → REAL 1970 ** </ul> 1971 ** 1972 ** A NULL value is not changed by this routine. It remains NULL. 1973 */ 1974 case OP_Cast: { /* in1 */ 1975 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1976 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1977 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1978 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1979 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1980 testcase( pOp->p2==SQLITE_AFF_REAL ); 1981 pIn1 = &aMem[pOp->p1]; 1982 memAboutToChange(p, pIn1); 1983 rc = ExpandBlob(pIn1); 1984 if( rc ) goto abort_due_to_error; 1985 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1986 if( rc ) goto abort_due_to_error; 1987 UPDATE_MAX_BLOBSIZE(pIn1); 1988 REGISTER_TRACE(pOp->p1, pIn1); 1989 break; 1990 } 1991 #endif /* SQLITE_OMIT_CAST */ 1992 1993 /* Opcode: Eq P1 P2 P3 P4 P5 1994 ** Synopsis: IF r[P3]==r[P1] 1995 ** 1996 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1997 ** jump to address P2. 1998 ** 1999 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2000 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2001 ** to coerce both inputs according to this affinity before the 2002 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2003 ** affinity is used. Note that the affinity conversions are stored 2004 ** back into the input registers P1 and P3. So this opcode can cause 2005 ** persistent changes to registers P1 and P3. 2006 ** 2007 ** Once any conversions have taken place, and neither value is NULL, 2008 ** the values are compared. If both values are blobs then memcmp() is 2009 ** used to determine the results of the comparison. If both values 2010 ** are text, then the appropriate collating function specified in 2011 ** P4 is used to do the comparison. If P4 is not specified then 2012 ** memcmp() is used to compare text string. If both values are 2013 ** numeric, then a numeric comparison is used. If the two values 2014 ** are of different types, then numbers are considered less than 2015 ** strings and strings are considered less than blobs. 2016 ** 2017 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 2018 ** true or false and is never NULL. If both operands are NULL then the result 2019 ** of comparison is true. If either operand is NULL then the result is false. 2020 ** If neither operand is NULL the result is the same as it would be if 2021 ** the SQLITE_NULLEQ flag were omitted from P5. 2022 ** 2023 ** This opcode saves the result of comparison for use by the new 2024 ** OP_Jump opcode. 2025 */ 2026 /* Opcode: Ne P1 P2 P3 P4 P5 2027 ** Synopsis: IF r[P3]!=r[P1] 2028 ** 2029 ** This works just like the Eq opcode except that the jump is taken if 2030 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 2031 ** additional information. 2032 */ 2033 /* Opcode: Lt P1 P2 P3 P4 P5 2034 ** Synopsis: IF r[P3]<r[P1] 2035 ** 2036 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 2037 ** jump to address P2. 2038 ** 2039 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2040 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2041 ** bit is clear then fall through if either operand is NULL. 2042 ** 2043 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2044 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2045 ** to coerce both inputs according to this affinity before the 2046 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2047 ** affinity is used. Note that the affinity conversions are stored 2048 ** back into the input registers P1 and P3. So this opcode can cause 2049 ** persistent changes to registers P1 and P3. 2050 ** 2051 ** Once any conversions have taken place, and neither value is NULL, 2052 ** the values are compared. If both values are blobs then memcmp() is 2053 ** used to determine the results of the comparison. If both values 2054 ** are text, then the appropriate collating function specified in 2055 ** P4 is used to do the comparison. If P4 is not specified then 2056 ** memcmp() is used to compare text string. If both values are 2057 ** numeric, then a numeric comparison is used. If the two values 2058 ** are of different types, then numbers are considered less than 2059 ** strings and strings are considered less than blobs. 2060 ** 2061 ** This opcode saves the result of comparison for use by the new 2062 ** OP_Jump opcode. 2063 */ 2064 /* Opcode: Le P1 P2 P3 P4 P5 2065 ** Synopsis: IF r[P3]<=r[P1] 2066 ** 2067 ** This works just like the Lt opcode except that the jump is taken if 2068 ** the content of register P3 is less than or equal to the content of 2069 ** register P1. See the Lt opcode for additional information. 2070 */ 2071 /* Opcode: Gt P1 P2 P3 P4 P5 2072 ** Synopsis: IF r[P3]>r[P1] 2073 ** 2074 ** This works just like the Lt opcode except that the jump is taken if 2075 ** the content of register P3 is greater than the content of 2076 ** register P1. See the Lt opcode for additional information. 2077 */ 2078 /* Opcode: Ge P1 P2 P3 P4 P5 2079 ** Synopsis: IF r[P3]>=r[P1] 2080 ** 2081 ** This works just like the Lt opcode except that the jump is taken if 2082 ** the content of register P3 is greater than or equal to the content of 2083 ** register P1. See the Lt opcode for additional information. 2084 */ 2085 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2086 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2087 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2088 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2089 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2090 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2091 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2092 char affinity; /* Affinity to use for comparison */ 2093 u16 flags1; /* Copy of initial value of pIn1->flags */ 2094 u16 flags3; /* Copy of initial value of pIn3->flags */ 2095 2096 pIn1 = &aMem[pOp->p1]; 2097 pIn3 = &aMem[pOp->p3]; 2098 flags1 = pIn1->flags; 2099 flags3 = pIn3->flags; 2100 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2101 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2102 /* Common case of comparison of two integers */ 2103 if( pIn3->u.i > pIn1->u.i ){ 2104 iCompare = +1; 2105 if( sqlite3aGTb[pOp->opcode] ){ 2106 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2107 goto jump_to_p2; 2108 } 2109 }else if( pIn3->u.i < pIn1->u.i ){ 2110 iCompare = -1; 2111 if( sqlite3aLTb[pOp->opcode] ){ 2112 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2113 goto jump_to_p2; 2114 } 2115 }else{ 2116 iCompare = 0; 2117 if( sqlite3aEQb[pOp->opcode] ){ 2118 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2119 goto jump_to_p2; 2120 } 2121 } 2122 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2123 break; 2124 } 2125 if( (flags1 | flags3)&MEM_Null ){ 2126 /* One or both operands are NULL */ 2127 if( pOp->p5 & SQLITE_NULLEQ ){ 2128 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2129 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2130 ** or not both operands are null. 2131 */ 2132 assert( (flags1 & MEM_Cleared)==0 ); 2133 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2134 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2135 if( (flags1&flags3&MEM_Null)!=0 2136 && (flags3&MEM_Cleared)==0 2137 ){ 2138 res = 0; /* Operands are equal */ 2139 }else{ 2140 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2141 } 2142 }else{ 2143 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2144 ** then the result is always NULL. 2145 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2146 */ 2147 iCompare = 1; /* Operands are not equal */ 2148 VdbeBranchTaken(2,3); 2149 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2150 goto jump_to_p2; 2151 } 2152 break; 2153 } 2154 }else{ 2155 /* Neither operand is NULL and we couldn't do the special high-speed 2156 ** integer comparison case. So do a general-case comparison. */ 2157 affinity = pOp->p5 & SQLITE_AFF_MASK; 2158 if( affinity>=SQLITE_AFF_NUMERIC ){ 2159 if( (flags1 | flags3)&MEM_Str ){ 2160 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2161 applyNumericAffinity(pIn1,0); 2162 testcase( flags3==pIn3->flags ); 2163 flags3 = pIn3->flags; 2164 } 2165 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2166 applyNumericAffinity(pIn3,0); 2167 } 2168 } 2169 }else if( affinity==SQLITE_AFF_TEXT ){ 2170 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2171 testcase( pIn1->flags & MEM_Int ); 2172 testcase( pIn1->flags & MEM_Real ); 2173 testcase( pIn1->flags & MEM_IntReal ); 2174 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2175 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2176 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2177 if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str; 2178 } 2179 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2180 testcase( pIn3->flags & MEM_Int ); 2181 testcase( pIn3->flags & MEM_Real ); 2182 testcase( pIn3->flags & MEM_IntReal ); 2183 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2184 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2185 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2186 } 2187 } 2188 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2189 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2190 } 2191 2192 /* At this point, res is negative, zero, or positive if reg[P1] is 2193 ** less than, equal to, or greater than reg[P3], respectively. Compute 2194 ** the answer to this operator in res2, depending on what the comparison 2195 ** operator actually is. The next block of code depends on the fact 2196 ** that the 6 comparison operators are consecutive integers in this 2197 ** order: NE, EQ, GT, LE, LT, GE */ 2198 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2199 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2200 if( res<0 ){ 2201 res2 = sqlite3aLTb[pOp->opcode]; 2202 }else if( res==0 ){ 2203 res2 = sqlite3aEQb[pOp->opcode]; 2204 }else{ 2205 res2 = sqlite3aGTb[pOp->opcode]; 2206 } 2207 iCompare = res; 2208 2209 /* Undo any changes made by applyAffinity() to the input registers. */ 2210 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2211 pIn3->flags = flags3; 2212 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2213 pIn1->flags = flags1; 2214 2215 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2216 if( res2 ){ 2217 goto jump_to_p2; 2218 } 2219 break; 2220 } 2221 2222 /* Opcode: ElseEq * P2 * * * 2223 ** 2224 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2225 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2226 ** opcodes are allowed to occur between this instruction and the previous 2227 ** OP_Lt or OP_Gt. 2228 ** 2229 ** If result of an OP_Eq comparison on the same two operands as the 2230 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2231 ** If the result of an OP_Eq comparison on the two previous 2232 ** operands would have been false or NULL, then fall through. 2233 */ 2234 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2235 2236 #ifdef SQLITE_DEBUG 2237 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2238 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2239 int iAddr; 2240 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2241 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2242 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2243 break; 2244 } 2245 #endif /* SQLITE_DEBUG */ 2246 VdbeBranchTaken(iCompare==0, 2); 2247 if( iCompare==0 ) goto jump_to_p2; 2248 break; 2249 } 2250 2251 2252 /* Opcode: Permutation * * * P4 * 2253 ** 2254 ** Set the permutation used by the OP_Compare operator in the next 2255 ** instruction. The permutation is stored in the P4 operand. 2256 ** 2257 ** The permutation is only valid until the next OP_Compare that has 2258 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2259 ** occur immediately prior to the OP_Compare. 2260 ** 2261 ** The first integer in the P4 integer array is the length of the array 2262 ** and does not become part of the permutation. 2263 */ 2264 case OP_Permutation: { 2265 assert( pOp->p4type==P4_INTARRAY ); 2266 assert( pOp->p4.ai ); 2267 assert( pOp[1].opcode==OP_Compare ); 2268 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2269 break; 2270 } 2271 2272 /* Opcode: Compare P1 P2 P3 P4 P5 2273 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2274 ** 2275 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2276 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2277 ** the comparison for use by the next OP_Jump instruct. 2278 ** 2279 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2280 ** determined by the most recent OP_Permutation operator. If the 2281 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2282 ** order. 2283 ** 2284 ** P4 is a KeyInfo structure that defines collating sequences and sort 2285 ** orders for the comparison. The permutation applies to registers 2286 ** only. The KeyInfo elements are used sequentially. 2287 ** 2288 ** The comparison is a sort comparison, so NULLs compare equal, 2289 ** NULLs are less than numbers, numbers are less than strings, 2290 ** and strings are less than blobs. 2291 */ 2292 case OP_Compare: { 2293 int n; 2294 int i; 2295 int p1; 2296 int p2; 2297 const KeyInfo *pKeyInfo; 2298 u32 idx; 2299 CollSeq *pColl; /* Collating sequence to use on this term */ 2300 int bRev; /* True for DESCENDING sort order */ 2301 u32 *aPermute; /* The permutation */ 2302 2303 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2304 aPermute = 0; 2305 }else{ 2306 assert( pOp>aOp ); 2307 assert( pOp[-1].opcode==OP_Permutation ); 2308 assert( pOp[-1].p4type==P4_INTARRAY ); 2309 aPermute = pOp[-1].p4.ai + 1; 2310 assert( aPermute!=0 ); 2311 } 2312 n = pOp->p3; 2313 pKeyInfo = pOp->p4.pKeyInfo; 2314 assert( n>0 ); 2315 assert( pKeyInfo!=0 ); 2316 p1 = pOp->p1; 2317 p2 = pOp->p2; 2318 #ifdef SQLITE_DEBUG 2319 if( aPermute ){ 2320 int k, mx = 0; 2321 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2322 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2323 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2324 }else{ 2325 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2326 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2327 } 2328 #endif /* SQLITE_DEBUG */ 2329 for(i=0; i<n; i++){ 2330 idx = aPermute ? aPermute[i] : (u32)i; 2331 assert( memIsValid(&aMem[p1+idx]) ); 2332 assert( memIsValid(&aMem[p2+idx]) ); 2333 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2334 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2335 assert( i<pKeyInfo->nKeyField ); 2336 pColl = pKeyInfo->aColl[i]; 2337 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2338 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2339 if( iCompare ){ 2340 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2341 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2342 ){ 2343 iCompare = -iCompare; 2344 } 2345 if( bRev ) iCompare = -iCompare; 2346 break; 2347 } 2348 } 2349 break; 2350 } 2351 2352 /* Opcode: Jump P1 P2 P3 * * 2353 ** 2354 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2355 ** in the most recent OP_Compare instruction the P1 vector was less than 2356 ** equal to, or greater than the P2 vector, respectively. 2357 */ 2358 case OP_Jump: { /* jump */ 2359 if( iCompare<0 ){ 2360 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2361 }else if( iCompare==0 ){ 2362 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2363 }else{ 2364 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2365 } 2366 break; 2367 } 2368 2369 /* Opcode: And P1 P2 P3 * * 2370 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2371 ** 2372 ** Take the logical AND of the values in registers P1 and P2 and 2373 ** write the result into register P3. 2374 ** 2375 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2376 ** the other input is NULL. A NULL and true or two NULLs give 2377 ** a NULL output. 2378 */ 2379 /* Opcode: Or P1 P2 P3 * * 2380 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2381 ** 2382 ** Take the logical OR of the values in register P1 and P2 and 2383 ** store the answer in register P3. 2384 ** 2385 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2386 ** even if the other input is NULL. A NULL and false or two NULLs 2387 ** give a NULL output. 2388 */ 2389 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2390 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2391 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2392 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2393 2394 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2395 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2396 if( pOp->opcode==OP_And ){ 2397 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2398 v1 = and_logic[v1*3+v2]; 2399 }else{ 2400 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2401 v1 = or_logic[v1*3+v2]; 2402 } 2403 pOut = &aMem[pOp->p3]; 2404 if( v1==2 ){ 2405 MemSetTypeFlag(pOut, MEM_Null); 2406 }else{ 2407 pOut->u.i = v1; 2408 MemSetTypeFlag(pOut, MEM_Int); 2409 } 2410 break; 2411 } 2412 2413 /* Opcode: IsTrue P1 P2 P3 P4 * 2414 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2415 ** 2416 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2417 ** IS NOT FALSE operators. 2418 ** 2419 ** Interpret the value in register P1 as a boolean value. Store that 2420 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2421 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2422 ** is 1. 2423 ** 2424 ** The logic is summarized like this: 2425 ** 2426 ** <ul> 2427 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2428 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2429 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2430 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2431 ** </ul> 2432 */ 2433 case OP_IsTrue: { /* in1, out2 */ 2434 assert( pOp->p4type==P4_INT32 ); 2435 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2436 assert( pOp->p3==0 || pOp->p3==1 ); 2437 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2438 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2439 break; 2440 } 2441 2442 /* Opcode: Not P1 P2 * * * 2443 ** Synopsis: r[P2]= !r[P1] 2444 ** 2445 ** Interpret the value in register P1 as a boolean value. Store the 2446 ** boolean complement in register P2. If the value in register P1 is 2447 ** NULL, then a NULL is stored in P2. 2448 */ 2449 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2450 pIn1 = &aMem[pOp->p1]; 2451 pOut = &aMem[pOp->p2]; 2452 if( (pIn1->flags & MEM_Null)==0 ){ 2453 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2454 }else{ 2455 sqlite3VdbeMemSetNull(pOut); 2456 } 2457 break; 2458 } 2459 2460 /* Opcode: BitNot P1 P2 * * * 2461 ** Synopsis: r[P2]= ~r[P1] 2462 ** 2463 ** Interpret the content of register P1 as an integer. Store the 2464 ** ones-complement of the P1 value into register P2. If P1 holds 2465 ** a NULL then store a NULL in P2. 2466 */ 2467 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2468 pIn1 = &aMem[pOp->p1]; 2469 pOut = &aMem[pOp->p2]; 2470 sqlite3VdbeMemSetNull(pOut); 2471 if( (pIn1->flags & MEM_Null)==0 ){ 2472 pOut->flags = MEM_Int; 2473 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2474 } 2475 break; 2476 } 2477 2478 /* Opcode: Once P1 P2 * * * 2479 ** 2480 ** Fall through to the next instruction the first time this opcode is 2481 ** encountered on each invocation of the byte-code program. Jump to P2 2482 ** on the second and all subsequent encounters during the same invocation. 2483 ** 2484 ** Top-level programs determine first invocation by comparing the P1 2485 ** operand against the P1 operand on the OP_Init opcode at the beginning 2486 ** of the program. If the P1 values differ, then fall through and make 2487 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2488 ** the same then take the jump. 2489 ** 2490 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2491 ** whether or not the jump should be taken. The bitmask is necessary 2492 ** because the self-altering code trick does not work for recursive 2493 ** triggers. 2494 */ 2495 case OP_Once: { /* jump */ 2496 u32 iAddr; /* Address of this instruction */ 2497 assert( p->aOp[0].opcode==OP_Init ); 2498 if( p->pFrame ){ 2499 iAddr = (int)(pOp - p->aOp); 2500 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2501 VdbeBranchTaken(1, 2); 2502 goto jump_to_p2; 2503 } 2504 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2505 }else{ 2506 if( p->aOp[0].p1==pOp->p1 ){ 2507 VdbeBranchTaken(1, 2); 2508 goto jump_to_p2; 2509 } 2510 } 2511 VdbeBranchTaken(0, 2); 2512 pOp->p1 = p->aOp[0].p1; 2513 break; 2514 } 2515 2516 /* Opcode: If P1 P2 P3 * * 2517 ** 2518 ** Jump to P2 if the value in register P1 is true. The value 2519 ** is considered true if it is numeric and non-zero. If the value 2520 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2521 */ 2522 case OP_If: { /* jump, in1 */ 2523 int c; 2524 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2525 VdbeBranchTaken(c!=0, 2); 2526 if( c ) goto jump_to_p2; 2527 break; 2528 } 2529 2530 /* Opcode: IfNot P1 P2 P3 * * 2531 ** 2532 ** Jump to P2 if the value in register P1 is False. The value 2533 ** is considered false if it has a numeric value of zero. If the value 2534 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2535 */ 2536 case OP_IfNot: { /* jump, in1 */ 2537 int c; 2538 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2539 VdbeBranchTaken(c!=0, 2); 2540 if( c ) goto jump_to_p2; 2541 break; 2542 } 2543 2544 /* Opcode: IsNull P1 P2 * * * 2545 ** Synopsis: if r[P1]==NULL goto P2 2546 ** 2547 ** Jump to P2 if the value in register P1 is NULL. 2548 */ 2549 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2550 pIn1 = &aMem[pOp->p1]; 2551 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2552 if( (pIn1->flags & MEM_Null)!=0 ){ 2553 goto jump_to_p2; 2554 } 2555 break; 2556 } 2557 2558 /* Opcode: IsNullOrType P1 P2 P3 * * 2559 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2 2560 ** 2561 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3. 2562 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT, 2563 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT. 2564 */ 2565 case OP_IsNullOrType: { /* jump, in1 */ 2566 int doTheJump; 2567 pIn1 = &aMem[pOp->p1]; 2568 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3; 2569 VdbeBranchTaken( doTheJump, 2); 2570 if( doTheJump ) goto jump_to_p2; 2571 break; 2572 } 2573 2574 /* Opcode: ZeroOrNull P1 P2 P3 * * 2575 ** Synopsis: r[P2] = 0 OR NULL 2576 ** 2577 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2578 ** register P2. If either registers P1 or P3 are NULL then put 2579 ** a NULL in register P2. 2580 */ 2581 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2582 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2583 || (aMem[pOp->p3].flags & MEM_Null)!=0 2584 ){ 2585 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2586 }else{ 2587 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2588 } 2589 break; 2590 } 2591 2592 /* Opcode: NotNull P1 P2 * * * 2593 ** Synopsis: if r[P1]!=NULL goto P2 2594 ** 2595 ** Jump to P2 if the value in register P1 is not NULL. 2596 */ 2597 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2598 pIn1 = &aMem[pOp->p1]; 2599 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2600 if( (pIn1->flags & MEM_Null)==0 ){ 2601 goto jump_to_p2; 2602 } 2603 break; 2604 } 2605 2606 /* Opcode: IfNullRow P1 P2 P3 * * 2607 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2608 ** 2609 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2610 ** If it is, then set register P3 to NULL and jump immediately to P2. 2611 ** If P1 is not on a NULL row, then fall through without making any 2612 ** changes. 2613 */ 2614 case OP_IfNullRow: { /* jump */ 2615 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2616 assert( p->apCsr[pOp->p1]!=0 ); 2617 if( p->apCsr[pOp->p1]->nullRow ){ 2618 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2619 goto jump_to_p2; 2620 } 2621 break; 2622 } 2623 2624 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2625 /* Opcode: Offset P1 P2 P3 * * 2626 ** Synopsis: r[P3] = sqlite_offset(P1) 2627 ** 2628 ** Store in register r[P3] the byte offset into the database file that is the 2629 ** start of the payload for the record at which that cursor P1 is currently 2630 ** pointing. 2631 ** 2632 ** P2 is the column number for the argument to the sqlite_offset() function. 2633 ** This opcode does not use P2 itself, but the P2 value is used by the 2634 ** code generator. The P1, P2, and P3 operands to this opcode are the 2635 ** same as for OP_Column. 2636 ** 2637 ** This opcode is only available if SQLite is compiled with the 2638 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2639 */ 2640 case OP_Offset: { /* out3 */ 2641 VdbeCursor *pC; /* The VDBE cursor */ 2642 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2643 pC = p->apCsr[pOp->p1]; 2644 pOut = &p->aMem[pOp->p3]; 2645 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2646 sqlite3VdbeMemSetNull(pOut); 2647 }else{ 2648 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2649 } 2650 break; 2651 } 2652 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2653 2654 /* Opcode: Column P1 P2 P3 P4 P5 2655 ** Synopsis: r[P3]=PX 2656 ** 2657 ** Interpret the data that cursor P1 points to as a structure built using 2658 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2659 ** information about the format of the data.) Extract the P2-th column 2660 ** from this record. If there are less that (P2+1) 2661 ** values in the record, extract a NULL. 2662 ** 2663 ** The value extracted is stored in register P3. 2664 ** 2665 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2666 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2667 ** the result. 2668 ** 2669 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2670 ** the result is guaranteed to only be used as the argument of a length() 2671 ** or typeof() function, respectively. The loading of large blobs can be 2672 ** skipped for length() and all content loading can be skipped for typeof(). 2673 */ 2674 case OP_Column: { 2675 u32 p2; /* column number to retrieve */ 2676 VdbeCursor *pC; /* The VDBE cursor */ 2677 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 2678 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2679 int len; /* The length of the serialized data for the column */ 2680 int i; /* Loop counter */ 2681 Mem *pDest; /* Where to write the extracted value */ 2682 Mem sMem; /* For storing the record being decoded */ 2683 const u8 *zData; /* Part of the record being decoded */ 2684 const u8 *zHdr; /* Next unparsed byte of the header */ 2685 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2686 u64 offset64; /* 64-bit offset */ 2687 u32 t; /* A type code from the record header */ 2688 Mem *pReg; /* PseudoTable input register */ 2689 2690 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2691 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2692 pC = p->apCsr[pOp->p1]; 2693 p2 = (u32)pOp->p2; 2694 2695 op_column_restart: 2696 assert( pC!=0 ); 2697 assert( p2<(u32)pC->nField ); 2698 aOffset = pC->aOffset; 2699 assert( aOffset==pC->aType+pC->nField ); 2700 assert( pC->eCurType!=CURTYPE_VTAB ); 2701 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2702 assert( pC->eCurType!=CURTYPE_SORTER ); 2703 2704 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2705 if( pC->nullRow ){ 2706 if( pC->eCurType==CURTYPE_PSEUDO ){ 2707 /* For the special case of as pseudo-cursor, the seekResult field 2708 ** identifies the register that holds the record */ 2709 assert( pC->seekResult>0 ); 2710 pReg = &aMem[pC->seekResult]; 2711 assert( pReg->flags & MEM_Blob ); 2712 assert( memIsValid(pReg) ); 2713 pC->payloadSize = pC->szRow = pReg->n; 2714 pC->aRow = (u8*)pReg->z; 2715 }else{ 2716 pDest = &aMem[pOp->p3]; 2717 memAboutToChange(p, pDest); 2718 sqlite3VdbeMemSetNull(pDest); 2719 goto op_column_out; 2720 } 2721 }else{ 2722 pCrsr = pC->uc.pCursor; 2723 if( pC->deferredMoveto ){ 2724 u32 iMap; 2725 assert( !pC->isEphemeral ); 2726 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 2727 pC = pC->pAltCursor; 2728 p2 = iMap - 1; 2729 goto op_column_restart; 2730 } 2731 rc = sqlite3VdbeFinishMoveto(pC); 2732 if( rc ) goto abort_due_to_error; 2733 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 2734 rc = sqlite3VdbeHandleMovedCursor(pC); 2735 if( rc ) goto abort_due_to_error; 2736 goto op_column_restart; 2737 } 2738 assert( pC->eCurType==CURTYPE_BTREE ); 2739 assert( pCrsr ); 2740 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2741 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2742 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2743 assert( pC->szRow<=pC->payloadSize ); 2744 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2745 } 2746 pC->cacheStatus = p->cacheCtr; 2747 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2748 pC->nHdrParsed = 0; 2749 2750 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2751 /* pC->aRow does not have to hold the entire row, but it does at least 2752 ** need to cover the header of the record. If pC->aRow does not contain 2753 ** the complete header, then set it to zero, forcing the header to be 2754 ** dynamically allocated. */ 2755 pC->aRow = 0; 2756 pC->szRow = 0; 2757 2758 /* Make sure a corrupt database has not given us an oversize header. 2759 ** Do this now to avoid an oversize memory allocation. 2760 ** 2761 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2762 ** types use so much data space that there can only be 4096 and 32 of 2763 ** them, respectively. So the maximum header length results from a 2764 ** 3-byte type for each of the maximum of 32768 columns plus three 2765 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2766 */ 2767 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2768 goto op_column_corrupt; 2769 } 2770 }else{ 2771 /* This is an optimization. By skipping over the first few tests 2772 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2773 ** measurable performance gain. 2774 ** 2775 ** This branch is taken even if aOffset[0]==0. Such a record is never 2776 ** generated by SQLite, and could be considered corruption, but we 2777 ** accept it for historical reasons. When aOffset[0]==0, the code this 2778 ** branch jumps to reads past the end of the record, but never more 2779 ** than a few bytes. Even if the record occurs at the end of the page 2780 ** content area, the "page header" comes after the page content and so 2781 ** this overread is harmless. Similar overreads can occur for a corrupt 2782 ** database file. 2783 */ 2784 zData = pC->aRow; 2785 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2786 testcase( aOffset[0]==0 ); 2787 goto op_column_read_header; 2788 } 2789 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 2790 rc = sqlite3VdbeHandleMovedCursor(pC); 2791 if( rc ) goto abort_due_to_error; 2792 goto op_column_restart; 2793 } 2794 2795 /* Make sure at least the first p2+1 entries of the header have been 2796 ** parsed and valid information is in aOffset[] and pC->aType[]. 2797 */ 2798 if( pC->nHdrParsed<=p2 ){ 2799 /* If there is more header available for parsing in the record, try 2800 ** to extract additional fields up through the p2+1-th field 2801 */ 2802 if( pC->iHdrOffset<aOffset[0] ){ 2803 /* Make sure zData points to enough of the record to cover the header. */ 2804 if( pC->aRow==0 ){ 2805 memset(&sMem, 0, sizeof(sMem)); 2806 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2807 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2808 zData = (u8*)sMem.z; 2809 }else{ 2810 zData = pC->aRow; 2811 } 2812 2813 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2814 op_column_read_header: 2815 i = pC->nHdrParsed; 2816 offset64 = aOffset[i]; 2817 zHdr = zData + pC->iHdrOffset; 2818 zEndHdr = zData + aOffset[0]; 2819 testcase( zHdr>=zEndHdr ); 2820 do{ 2821 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2822 zHdr++; 2823 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2824 }else{ 2825 zHdr += sqlite3GetVarint32(zHdr, &t); 2826 pC->aType[i] = t; 2827 offset64 += sqlite3VdbeSerialTypeLen(t); 2828 } 2829 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2830 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2831 2832 /* The record is corrupt if any of the following are true: 2833 ** (1) the bytes of the header extend past the declared header size 2834 ** (2) the entire header was used but not all data was used 2835 ** (3) the end of the data extends beyond the end of the record. 2836 */ 2837 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2838 || (offset64 > pC->payloadSize) 2839 ){ 2840 if( aOffset[0]==0 ){ 2841 i = 0; 2842 zHdr = zEndHdr; 2843 }else{ 2844 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2845 goto op_column_corrupt; 2846 } 2847 } 2848 2849 pC->nHdrParsed = i; 2850 pC->iHdrOffset = (u32)(zHdr - zData); 2851 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2852 }else{ 2853 t = 0; 2854 } 2855 2856 /* If after trying to extract new entries from the header, nHdrParsed is 2857 ** still not up to p2, that means that the record has fewer than p2 2858 ** columns. So the result will be either the default value or a NULL. 2859 */ 2860 if( pC->nHdrParsed<=p2 ){ 2861 pDest = &aMem[pOp->p3]; 2862 memAboutToChange(p, pDest); 2863 if( pOp->p4type==P4_MEM ){ 2864 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2865 }else{ 2866 sqlite3VdbeMemSetNull(pDest); 2867 } 2868 goto op_column_out; 2869 } 2870 }else{ 2871 t = pC->aType[p2]; 2872 } 2873 2874 /* Extract the content for the p2+1-th column. Control can only 2875 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2876 ** all valid. 2877 */ 2878 assert( p2<pC->nHdrParsed ); 2879 assert( rc==SQLITE_OK ); 2880 pDest = &aMem[pOp->p3]; 2881 memAboutToChange(p, pDest); 2882 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2883 if( VdbeMemDynamic(pDest) ){ 2884 sqlite3VdbeMemSetNull(pDest); 2885 } 2886 assert( t==pC->aType[p2] ); 2887 if( pC->szRow>=aOffset[p2+1] ){ 2888 /* This is the common case where the desired content fits on the original 2889 ** page - where the content is not on an overflow page */ 2890 zData = pC->aRow + aOffset[p2]; 2891 if( t<12 ){ 2892 sqlite3VdbeSerialGet(zData, t, pDest); 2893 }else{ 2894 /* If the column value is a string, we need a persistent value, not 2895 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2896 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2897 */ 2898 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2899 pDest->n = len = (t-12)/2; 2900 pDest->enc = encoding; 2901 if( pDest->szMalloc < len+2 ){ 2902 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2903 pDest->flags = MEM_Null; 2904 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2905 }else{ 2906 pDest->z = pDest->zMalloc; 2907 } 2908 memcpy(pDest->z, zData, len); 2909 pDest->z[len] = 0; 2910 pDest->z[len+1] = 0; 2911 pDest->flags = aFlag[t&1]; 2912 } 2913 }else{ 2914 pDest->enc = encoding; 2915 /* This branch happens only when content is on overflow pages */ 2916 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2917 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2918 || (len = sqlite3VdbeSerialTypeLen(t))==0 2919 ){ 2920 /* Content is irrelevant for 2921 ** 1. the typeof() function, 2922 ** 2. the length(X) function if X is a blob, and 2923 ** 3. if the content length is zero. 2924 ** So we might as well use bogus content rather than reading 2925 ** content from disk. 2926 ** 2927 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2928 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2929 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2930 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2931 ** and it begins with a bunch of zeros. 2932 */ 2933 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2934 }else{ 2935 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2936 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2937 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2938 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2939 pDest->flags &= ~MEM_Ephem; 2940 } 2941 } 2942 2943 op_column_out: 2944 UPDATE_MAX_BLOBSIZE(pDest); 2945 REGISTER_TRACE(pOp->p3, pDest); 2946 break; 2947 2948 op_column_corrupt: 2949 if( aOp[0].p3>0 ){ 2950 pOp = &aOp[aOp[0].p3-1]; 2951 break; 2952 }else{ 2953 rc = SQLITE_CORRUPT_BKPT; 2954 goto abort_due_to_error; 2955 } 2956 } 2957 2958 /* Opcode: TypeCheck P1 P2 P3 P4 * 2959 ** Synopsis: typecheck(r[P1@P2]) 2960 ** 2961 ** Apply affinities to the range of P2 registers beginning with P1. 2962 ** Take the affinities from the Table object in P4. If any value 2963 ** cannot be coerced into the correct type, then raise an error. 2964 ** 2965 ** This opcode is similar to OP_Affinity except that this opcode 2966 ** forces the register type to the Table column type. This is used 2967 ** to implement "strict affinity". 2968 ** 2969 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 2970 ** is zero. When P3 is non-zero, no type checking occurs for 2971 ** static generated columns. Virtual columns are computed at query time 2972 ** and so they are never checked. 2973 ** 2974 ** Preconditions: 2975 ** 2976 ** <ul> 2977 ** <li> P2 should be the number of non-virtual columns in the 2978 ** table of P4. 2979 ** <li> Table P4 should be a STRICT table. 2980 ** </ul> 2981 ** 2982 ** If any precondition is false, an assertion fault occurs. 2983 */ 2984 case OP_TypeCheck: { 2985 Table *pTab; 2986 Column *aCol; 2987 int i; 2988 2989 assert( pOp->p4type==P4_TABLE ); 2990 pTab = pOp->p4.pTab; 2991 assert( pTab->tabFlags & TF_Strict ); 2992 assert( pTab->nNVCol==pOp->p2 ); 2993 aCol = pTab->aCol; 2994 pIn1 = &aMem[pOp->p1]; 2995 for(i=0; i<pTab->nCol; i++){ 2996 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 2997 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 2998 if( pOp->p3 ){ pIn1++; continue; } 2999 } 3000 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 3001 applyAffinity(pIn1, aCol[i].affinity, encoding); 3002 if( (pIn1->flags & MEM_Null)==0 ){ 3003 switch( aCol[i].eCType ){ 3004 case COLTYPE_BLOB: { 3005 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 3006 break; 3007 } 3008 case COLTYPE_INTEGER: 3009 case COLTYPE_INT: { 3010 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 3011 break; 3012 } 3013 case COLTYPE_TEXT: { 3014 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 3015 break; 3016 } 3017 case COLTYPE_REAL: { 3018 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 3019 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal ); 3020 if( pIn1->flags & MEM_Int ){ 3021 /* When applying REAL affinity, if the result is still an MEM_Int 3022 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3023 ** so that we keep the high-resolution integer value but know that 3024 ** the type really wants to be REAL. */ 3025 testcase( pIn1->u.i==140737488355328LL ); 3026 testcase( pIn1->u.i==140737488355327LL ); 3027 testcase( pIn1->u.i==-140737488355328LL ); 3028 testcase( pIn1->u.i==-140737488355329LL ); 3029 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 3030 pIn1->flags |= MEM_IntReal; 3031 pIn1->flags &= ~MEM_Int; 3032 }else{ 3033 pIn1->u.r = (double)pIn1->u.i; 3034 pIn1->flags |= MEM_Real; 3035 pIn1->flags &= ~MEM_Int; 3036 } 3037 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 3038 goto vdbe_type_error; 3039 } 3040 break; 3041 } 3042 default: { 3043 /* COLTYPE_ANY. Accept anything. */ 3044 break; 3045 } 3046 } 3047 } 3048 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3049 pIn1++; 3050 } 3051 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 3052 break; 3053 3054 vdbe_type_error: 3055 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 3056 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 3057 pTab->zName, aCol[i].zCnName); 3058 rc = SQLITE_CONSTRAINT_DATATYPE; 3059 goto abort_due_to_error; 3060 } 3061 3062 /* Opcode: Affinity P1 P2 * P4 * 3063 ** Synopsis: affinity(r[P1@P2]) 3064 ** 3065 ** Apply affinities to a range of P2 registers starting with P1. 3066 ** 3067 ** P4 is a string that is P2 characters long. The N-th character of the 3068 ** string indicates the column affinity that should be used for the N-th 3069 ** memory cell in the range. 3070 */ 3071 case OP_Affinity: { 3072 const char *zAffinity; /* The affinity to be applied */ 3073 3074 zAffinity = pOp->p4.z; 3075 assert( zAffinity!=0 ); 3076 assert( pOp->p2>0 ); 3077 assert( zAffinity[pOp->p2]==0 ); 3078 pIn1 = &aMem[pOp->p1]; 3079 while( 1 /*exit-by-break*/ ){ 3080 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3081 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3082 applyAffinity(pIn1, zAffinity[0], encoding); 3083 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3084 /* When applying REAL affinity, if the result is still an MEM_Int 3085 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3086 ** so that we keep the high-resolution integer value but know that 3087 ** the type really wants to be REAL. */ 3088 testcase( pIn1->u.i==140737488355328LL ); 3089 testcase( pIn1->u.i==140737488355327LL ); 3090 testcase( pIn1->u.i==-140737488355328LL ); 3091 testcase( pIn1->u.i==-140737488355329LL ); 3092 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3093 pIn1->flags |= MEM_IntReal; 3094 pIn1->flags &= ~MEM_Int; 3095 }else{ 3096 pIn1->u.r = (double)pIn1->u.i; 3097 pIn1->flags |= MEM_Real; 3098 pIn1->flags &= ~MEM_Int; 3099 } 3100 } 3101 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3102 zAffinity++; 3103 if( zAffinity[0]==0 ) break; 3104 pIn1++; 3105 } 3106 break; 3107 } 3108 3109 /* Opcode: MakeRecord P1 P2 P3 P4 * 3110 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3111 ** 3112 ** Convert P2 registers beginning with P1 into the [record format] 3113 ** use as a data record in a database table or as a key 3114 ** in an index. The OP_Column opcode can decode the record later. 3115 ** 3116 ** P4 may be a string that is P2 characters long. The N-th character of the 3117 ** string indicates the column affinity that should be used for the N-th 3118 ** field of the index key. 3119 ** 3120 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3121 ** macros defined in sqliteInt.h. 3122 ** 3123 ** If P4 is NULL then all index fields have the affinity BLOB. 3124 ** 3125 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3126 ** compile-time option is enabled: 3127 ** 3128 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3129 ** of the right-most table that can be null-trimmed. 3130 ** 3131 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3132 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3133 ** accept no-change records with serial_type 10. This value is 3134 ** only used inside an assert() and does not affect the end result. 3135 */ 3136 case OP_MakeRecord: { 3137 Mem *pRec; /* The new record */ 3138 u64 nData; /* Number of bytes of data space */ 3139 int nHdr; /* Number of bytes of header space */ 3140 i64 nByte; /* Data space required for this record */ 3141 i64 nZero; /* Number of zero bytes at the end of the record */ 3142 int nVarint; /* Number of bytes in a varint */ 3143 u32 serial_type; /* Type field */ 3144 Mem *pData0; /* First field to be combined into the record */ 3145 Mem *pLast; /* Last field of the record */ 3146 int nField; /* Number of fields in the record */ 3147 char *zAffinity; /* The affinity string for the record */ 3148 u32 len; /* Length of a field */ 3149 u8 *zHdr; /* Where to write next byte of the header */ 3150 u8 *zPayload; /* Where to write next byte of the payload */ 3151 3152 /* Assuming the record contains N fields, the record format looks 3153 ** like this: 3154 ** 3155 ** ------------------------------------------------------------------------ 3156 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3157 ** ------------------------------------------------------------------------ 3158 ** 3159 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3160 ** and so forth. 3161 ** 3162 ** Each type field is a varint representing the serial type of the 3163 ** corresponding data element (see sqlite3VdbeSerialType()). The 3164 ** hdr-size field is also a varint which is the offset from the beginning 3165 ** of the record to data0. 3166 */ 3167 nData = 0; /* Number of bytes of data space */ 3168 nHdr = 0; /* Number of bytes of header space */ 3169 nZero = 0; /* Number of zero bytes at the end of the record */ 3170 nField = pOp->p1; 3171 zAffinity = pOp->p4.z; 3172 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3173 pData0 = &aMem[nField]; 3174 nField = pOp->p2; 3175 pLast = &pData0[nField-1]; 3176 3177 /* Identify the output register */ 3178 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3179 pOut = &aMem[pOp->p3]; 3180 memAboutToChange(p, pOut); 3181 3182 /* Apply the requested affinity to all inputs 3183 */ 3184 assert( pData0<=pLast ); 3185 if( zAffinity ){ 3186 pRec = pData0; 3187 do{ 3188 applyAffinity(pRec, zAffinity[0], encoding); 3189 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3190 pRec->flags |= MEM_IntReal; 3191 pRec->flags &= ~(MEM_Int); 3192 } 3193 REGISTER_TRACE((int)(pRec-aMem), pRec); 3194 zAffinity++; 3195 pRec++; 3196 assert( zAffinity[0]==0 || pRec<=pLast ); 3197 }while( zAffinity[0] ); 3198 } 3199 3200 #ifdef SQLITE_ENABLE_NULL_TRIM 3201 /* NULLs can be safely trimmed from the end of the record, as long as 3202 ** as the schema format is 2 or more and none of the omitted columns 3203 ** have a non-NULL default value. Also, the record must be left with 3204 ** at least one field. If P5>0 then it will be one more than the 3205 ** index of the right-most column with a non-NULL default value */ 3206 if( pOp->p5 ){ 3207 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3208 pLast--; 3209 nField--; 3210 } 3211 } 3212 #endif 3213 3214 /* Loop through the elements that will make up the record to figure 3215 ** out how much space is required for the new record. After this loop, 3216 ** the Mem.uTemp field of each term should hold the serial-type that will 3217 ** be used for that term in the generated record: 3218 ** 3219 ** Mem.uTemp value type 3220 ** --------------- --------------- 3221 ** 0 NULL 3222 ** 1 1-byte signed integer 3223 ** 2 2-byte signed integer 3224 ** 3 3-byte signed integer 3225 ** 4 4-byte signed integer 3226 ** 5 6-byte signed integer 3227 ** 6 8-byte signed integer 3228 ** 7 IEEE float 3229 ** 8 Integer constant 0 3230 ** 9 Integer constant 1 3231 ** 10,11 reserved for expansion 3232 ** N>=12 and even BLOB 3233 ** N>=13 and odd text 3234 ** 3235 ** The following additional values are computed: 3236 ** nHdr Number of bytes needed for the record header 3237 ** nData Number of bytes of data space needed for the record 3238 ** nZero Zero bytes at the end of the record 3239 */ 3240 pRec = pLast; 3241 do{ 3242 assert( memIsValid(pRec) ); 3243 if( pRec->flags & MEM_Null ){ 3244 if( pRec->flags & MEM_Zero ){ 3245 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3246 ** table methods that never invoke sqlite3_result_xxxxx() while 3247 ** computing an unchanging column value in an UPDATE statement. 3248 ** Give such values a special internal-use-only serial-type of 10 3249 ** so that they can be passed through to xUpdate and have 3250 ** a true sqlite3_value_nochange(). */ 3251 #ifndef SQLITE_ENABLE_NULL_TRIM 3252 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3253 #endif 3254 pRec->uTemp = 10; 3255 }else{ 3256 pRec->uTemp = 0; 3257 } 3258 nHdr++; 3259 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3260 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3261 i64 i = pRec->u.i; 3262 u64 uu; 3263 testcase( pRec->flags & MEM_Int ); 3264 testcase( pRec->flags & MEM_IntReal ); 3265 if( i<0 ){ 3266 uu = ~i; 3267 }else{ 3268 uu = i; 3269 } 3270 nHdr++; 3271 testcase( uu==127 ); testcase( uu==128 ); 3272 testcase( uu==32767 ); testcase( uu==32768 ); 3273 testcase( uu==8388607 ); testcase( uu==8388608 ); 3274 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 3275 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3276 if( uu<=127 ){ 3277 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 3278 pRec->uTemp = 8+(u32)uu; 3279 }else{ 3280 nData++; 3281 pRec->uTemp = 1; 3282 } 3283 }else if( uu<=32767 ){ 3284 nData += 2; 3285 pRec->uTemp = 2; 3286 }else if( uu<=8388607 ){ 3287 nData += 3; 3288 pRec->uTemp = 3; 3289 }else if( uu<=2147483647 ){ 3290 nData += 4; 3291 pRec->uTemp = 4; 3292 }else if( uu<=140737488355327LL ){ 3293 nData += 6; 3294 pRec->uTemp = 5; 3295 }else{ 3296 nData += 8; 3297 if( pRec->flags & MEM_IntReal ){ 3298 /* If the value is IntReal and is going to take up 8 bytes to store 3299 ** as an integer, then we might as well make it an 8-byte floating 3300 ** point value */ 3301 pRec->u.r = (double)pRec->u.i; 3302 pRec->flags &= ~MEM_IntReal; 3303 pRec->flags |= MEM_Real; 3304 pRec->uTemp = 7; 3305 }else{ 3306 pRec->uTemp = 6; 3307 } 3308 } 3309 }else if( pRec->flags & MEM_Real ){ 3310 nHdr++; 3311 nData += 8; 3312 pRec->uTemp = 7; 3313 }else{ 3314 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3315 assert( pRec->n>=0 ); 3316 len = (u32)pRec->n; 3317 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3318 if( pRec->flags & MEM_Zero ){ 3319 serial_type += pRec->u.nZero*2; 3320 if( nData ){ 3321 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3322 len += pRec->u.nZero; 3323 }else{ 3324 nZero += pRec->u.nZero; 3325 } 3326 } 3327 nData += len; 3328 nHdr += sqlite3VarintLen(serial_type); 3329 pRec->uTemp = serial_type; 3330 } 3331 if( pRec==pData0 ) break; 3332 pRec--; 3333 }while(1); 3334 3335 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3336 ** which determines the total number of bytes in the header. The varint 3337 ** value is the size of the header in bytes including the size varint 3338 ** itself. */ 3339 testcase( nHdr==126 ); 3340 testcase( nHdr==127 ); 3341 if( nHdr<=126 ){ 3342 /* The common case */ 3343 nHdr += 1; 3344 }else{ 3345 /* Rare case of a really large header */ 3346 nVarint = sqlite3VarintLen(nHdr); 3347 nHdr += nVarint; 3348 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3349 } 3350 nByte = nHdr+nData; 3351 3352 /* Make sure the output register has a buffer large enough to store 3353 ** the new record. The output register (pOp->p3) is not allowed to 3354 ** be one of the input registers (because the following call to 3355 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3356 */ 3357 if( nByte+nZero<=pOut->szMalloc ){ 3358 /* The output register is already large enough to hold the record. 3359 ** No error checks or buffer enlargement is required */ 3360 pOut->z = pOut->zMalloc; 3361 }else{ 3362 /* Need to make sure that the output is not too big and then enlarge 3363 ** the output register to hold the full result */ 3364 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3365 goto too_big; 3366 } 3367 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3368 goto no_mem; 3369 } 3370 } 3371 pOut->n = (int)nByte; 3372 pOut->flags = MEM_Blob; 3373 if( nZero ){ 3374 pOut->u.nZero = nZero; 3375 pOut->flags |= MEM_Zero; 3376 } 3377 UPDATE_MAX_BLOBSIZE(pOut); 3378 zHdr = (u8 *)pOut->z; 3379 zPayload = zHdr + nHdr; 3380 3381 /* Write the record */ 3382 zHdr += putVarint32(zHdr, nHdr); 3383 assert( pData0<=pLast ); 3384 pRec = pData0; 3385 do{ 3386 serial_type = pRec->uTemp; 3387 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3388 ** additional varints, one per column. */ 3389 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3390 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3391 ** immediately follow the header. */ 3392 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3393 }while( (++pRec)<=pLast ); 3394 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3395 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3396 3397 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3398 REGISTER_TRACE(pOp->p3, pOut); 3399 break; 3400 } 3401 3402 /* Opcode: Count P1 P2 P3 * * 3403 ** Synopsis: r[P2]=count() 3404 ** 3405 ** Store the number of entries (an integer value) in the table or index 3406 ** opened by cursor P1 in register P2. 3407 ** 3408 ** If P3==0, then an exact count is obtained, which involves visiting 3409 ** every btree page of the table. But if P3 is non-zero, an estimate 3410 ** is returned based on the current cursor position. 3411 */ 3412 case OP_Count: { /* out2 */ 3413 i64 nEntry; 3414 BtCursor *pCrsr; 3415 3416 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3417 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3418 assert( pCrsr ); 3419 if( pOp->p3 ){ 3420 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3421 }else{ 3422 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3423 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3424 if( rc ) goto abort_due_to_error; 3425 } 3426 pOut = out2Prerelease(p, pOp); 3427 pOut->u.i = nEntry; 3428 goto check_for_interrupt; 3429 } 3430 3431 /* Opcode: Savepoint P1 * * P4 * 3432 ** 3433 ** Open, release or rollback the savepoint named by parameter P4, depending 3434 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3435 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3436 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3437 */ 3438 case OP_Savepoint: { 3439 int p1; /* Value of P1 operand */ 3440 char *zName; /* Name of savepoint */ 3441 int nName; 3442 Savepoint *pNew; 3443 Savepoint *pSavepoint; 3444 Savepoint *pTmp; 3445 int iSavepoint; 3446 int ii; 3447 3448 p1 = pOp->p1; 3449 zName = pOp->p4.z; 3450 3451 /* Assert that the p1 parameter is valid. Also that if there is no open 3452 ** transaction, then there cannot be any savepoints. 3453 */ 3454 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3455 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3456 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3457 assert( checkSavepointCount(db) ); 3458 assert( p->bIsReader ); 3459 3460 if( p1==SAVEPOINT_BEGIN ){ 3461 if( db->nVdbeWrite>0 ){ 3462 /* A new savepoint cannot be created if there are active write 3463 ** statements (i.e. open read/write incremental blob handles). 3464 */ 3465 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3466 rc = SQLITE_BUSY; 3467 }else{ 3468 nName = sqlite3Strlen30(zName); 3469 3470 #ifndef SQLITE_OMIT_VIRTUALTABLE 3471 /* This call is Ok even if this savepoint is actually a transaction 3472 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3473 ** If this is a transaction savepoint being opened, it is guaranteed 3474 ** that the db->aVTrans[] array is empty. */ 3475 assert( db->autoCommit==0 || db->nVTrans==0 ); 3476 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3477 db->nStatement+db->nSavepoint); 3478 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3479 #endif 3480 3481 /* Create a new savepoint structure. */ 3482 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3483 if( pNew ){ 3484 pNew->zName = (char *)&pNew[1]; 3485 memcpy(pNew->zName, zName, nName+1); 3486 3487 /* If there is no open transaction, then mark this as a special 3488 ** "transaction savepoint". */ 3489 if( db->autoCommit ){ 3490 db->autoCommit = 0; 3491 db->isTransactionSavepoint = 1; 3492 }else{ 3493 db->nSavepoint++; 3494 } 3495 3496 /* Link the new savepoint into the database handle's list. */ 3497 pNew->pNext = db->pSavepoint; 3498 db->pSavepoint = pNew; 3499 pNew->nDeferredCons = db->nDeferredCons; 3500 pNew->nDeferredImmCons = db->nDeferredImmCons; 3501 } 3502 } 3503 }else{ 3504 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3505 iSavepoint = 0; 3506 3507 /* Find the named savepoint. If there is no such savepoint, then an 3508 ** an error is returned to the user. */ 3509 for( 3510 pSavepoint = db->pSavepoint; 3511 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3512 pSavepoint = pSavepoint->pNext 3513 ){ 3514 iSavepoint++; 3515 } 3516 if( !pSavepoint ){ 3517 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3518 rc = SQLITE_ERROR; 3519 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3520 /* It is not possible to release (commit) a savepoint if there are 3521 ** active write statements. 3522 */ 3523 sqlite3VdbeError(p, "cannot release savepoint - " 3524 "SQL statements in progress"); 3525 rc = SQLITE_BUSY; 3526 }else{ 3527 3528 /* Determine whether or not this is a transaction savepoint. If so, 3529 ** and this is a RELEASE command, then the current transaction 3530 ** is committed. 3531 */ 3532 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3533 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3534 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3535 goto vdbe_return; 3536 } 3537 db->autoCommit = 1; 3538 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3539 p->pc = (int)(pOp - aOp); 3540 db->autoCommit = 0; 3541 p->rc = rc = SQLITE_BUSY; 3542 goto vdbe_return; 3543 } 3544 rc = p->rc; 3545 if( rc ){ 3546 db->autoCommit = 0; 3547 }else{ 3548 db->isTransactionSavepoint = 0; 3549 } 3550 }else{ 3551 int isSchemaChange; 3552 iSavepoint = db->nSavepoint - iSavepoint - 1; 3553 if( p1==SAVEPOINT_ROLLBACK ){ 3554 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3555 for(ii=0; ii<db->nDb; ii++){ 3556 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3557 SQLITE_ABORT_ROLLBACK, 3558 isSchemaChange==0); 3559 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3560 } 3561 }else{ 3562 assert( p1==SAVEPOINT_RELEASE ); 3563 isSchemaChange = 0; 3564 } 3565 for(ii=0; ii<db->nDb; ii++){ 3566 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3567 if( rc!=SQLITE_OK ){ 3568 goto abort_due_to_error; 3569 } 3570 } 3571 if( isSchemaChange ){ 3572 sqlite3ExpirePreparedStatements(db, 0); 3573 sqlite3ResetAllSchemasOfConnection(db); 3574 db->mDbFlags |= DBFLAG_SchemaChange; 3575 } 3576 } 3577 if( rc ) goto abort_due_to_error; 3578 3579 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3580 ** savepoints nested inside of the savepoint being operated on. */ 3581 while( db->pSavepoint!=pSavepoint ){ 3582 pTmp = db->pSavepoint; 3583 db->pSavepoint = pTmp->pNext; 3584 sqlite3DbFree(db, pTmp); 3585 db->nSavepoint--; 3586 } 3587 3588 /* If it is a RELEASE, then destroy the savepoint being operated on 3589 ** too. If it is a ROLLBACK TO, then set the number of deferred 3590 ** constraint violations present in the database to the value stored 3591 ** when the savepoint was created. */ 3592 if( p1==SAVEPOINT_RELEASE ){ 3593 assert( pSavepoint==db->pSavepoint ); 3594 db->pSavepoint = pSavepoint->pNext; 3595 sqlite3DbFree(db, pSavepoint); 3596 if( !isTransaction ){ 3597 db->nSavepoint--; 3598 } 3599 }else{ 3600 assert( p1==SAVEPOINT_ROLLBACK ); 3601 db->nDeferredCons = pSavepoint->nDeferredCons; 3602 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3603 } 3604 3605 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3606 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3607 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3608 } 3609 } 3610 } 3611 if( rc ) goto abort_due_to_error; 3612 3613 break; 3614 } 3615 3616 /* Opcode: AutoCommit P1 P2 * * * 3617 ** 3618 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3619 ** back any currently active btree transactions. If there are any active 3620 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3621 ** there are active writing VMs or active VMs that use shared cache. 3622 ** 3623 ** This instruction causes the VM to halt. 3624 */ 3625 case OP_AutoCommit: { 3626 int desiredAutoCommit; 3627 int iRollback; 3628 3629 desiredAutoCommit = pOp->p1; 3630 iRollback = pOp->p2; 3631 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3632 assert( desiredAutoCommit==1 || iRollback==0 ); 3633 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3634 assert( p->bIsReader ); 3635 3636 if( desiredAutoCommit!=db->autoCommit ){ 3637 if( iRollback ){ 3638 assert( desiredAutoCommit==1 ); 3639 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3640 db->autoCommit = 1; 3641 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3642 /* If this instruction implements a COMMIT and other VMs are writing 3643 ** return an error indicating that the other VMs must complete first. 3644 */ 3645 sqlite3VdbeError(p, "cannot commit transaction - " 3646 "SQL statements in progress"); 3647 rc = SQLITE_BUSY; 3648 goto abort_due_to_error; 3649 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3650 goto vdbe_return; 3651 }else{ 3652 db->autoCommit = (u8)desiredAutoCommit; 3653 } 3654 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3655 p->pc = (int)(pOp - aOp); 3656 db->autoCommit = (u8)(1-desiredAutoCommit); 3657 p->rc = rc = SQLITE_BUSY; 3658 goto vdbe_return; 3659 } 3660 sqlite3CloseSavepoints(db); 3661 if( p->rc==SQLITE_OK ){ 3662 rc = SQLITE_DONE; 3663 }else{ 3664 rc = SQLITE_ERROR; 3665 } 3666 goto vdbe_return; 3667 }else{ 3668 sqlite3VdbeError(p, 3669 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3670 (iRollback)?"cannot rollback - no transaction is active": 3671 "cannot commit - no transaction is active")); 3672 3673 rc = SQLITE_ERROR; 3674 goto abort_due_to_error; 3675 } 3676 /*NOTREACHED*/ assert(0); 3677 } 3678 3679 /* Opcode: Transaction P1 P2 P3 P4 P5 3680 ** 3681 ** Begin a transaction on database P1 if a transaction is not already 3682 ** active. 3683 ** If P2 is non-zero, then a write-transaction is started, or if a 3684 ** read-transaction is already active, it is upgraded to a write-transaction. 3685 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3686 ** then an exclusive transaction is started. 3687 ** 3688 ** P1 is the index of the database file on which the transaction is 3689 ** started. Index 0 is the main database file and index 1 is the 3690 ** file used for temporary tables. Indices of 2 or more are used for 3691 ** attached databases. 3692 ** 3693 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3694 ** true (this flag is set if the Vdbe may modify more than one row and may 3695 ** throw an ABORT exception), a statement transaction may also be opened. 3696 ** More specifically, a statement transaction is opened iff the database 3697 ** connection is currently not in autocommit mode, or if there are other 3698 ** active statements. A statement transaction allows the changes made by this 3699 ** VDBE to be rolled back after an error without having to roll back the 3700 ** entire transaction. If no error is encountered, the statement transaction 3701 ** will automatically commit when the VDBE halts. 3702 ** 3703 ** If P5!=0 then this opcode also checks the schema cookie against P3 3704 ** and the schema generation counter against P4. 3705 ** The cookie changes its value whenever the database schema changes. 3706 ** This operation is used to detect when that the cookie has changed 3707 ** and that the current process needs to reread the schema. If the schema 3708 ** cookie in P3 differs from the schema cookie in the database header or 3709 ** if the schema generation counter in P4 differs from the current 3710 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3711 ** halts. The sqlite3_step() wrapper function might then reprepare the 3712 ** statement and rerun it from the beginning. 3713 */ 3714 case OP_Transaction: { 3715 Btree *pBt; 3716 int iMeta = 0; 3717 3718 assert( p->bIsReader ); 3719 assert( p->readOnly==0 || pOp->p2==0 ); 3720 assert( pOp->p2>=0 && pOp->p2<=2 ); 3721 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3722 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3723 assert( rc==SQLITE_OK ); 3724 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3725 if( db->flags & SQLITE_QueryOnly ){ 3726 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3727 rc = SQLITE_READONLY; 3728 }else{ 3729 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3730 ** transaction */ 3731 rc = SQLITE_CORRUPT; 3732 } 3733 goto abort_due_to_error; 3734 } 3735 pBt = db->aDb[pOp->p1].pBt; 3736 3737 if( pBt ){ 3738 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3739 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3740 testcase( rc==SQLITE_BUSY_RECOVERY ); 3741 if( rc!=SQLITE_OK ){ 3742 if( (rc&0xff)==SQLITE_BUSY ){ 3743 p->pc = (int)(pOp - aOp); 3744 p->rc = rc; 3745 goto vdbe_return; 3746 } 3747 goto abort_due_to_error; 3748 } 3749 3750 if( p->usesStmtJournal 3751 && pOp->p2 3752 && (db->autoCommit==0 || db->nVdbeRead>1) 3753 ){ 3754 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3755 if( p->iStatement==0 ){ 3756 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3757 db->nStatement++; 3758 p->iStatement = db->nSavepoint + db->nStatement; 3759 } 3760 3761 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3762 if( rc==SQLITE_OK ){ 3763 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3764 } 3765 3766 /* Store the current value of the database handles deferred constraint 3767 ** counter. If the statement transaction needs to be rolled back, 3768 ** the value of this counter needs to be restored too. */ 3769 p->nStmtDefCons = db->nDeferredCons; 3770 p->nStmtDefImmCons = db->nDeferredImmCons; 3771 } 3772 } 3773 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3774 if( rc==SQLITE_OK 3775 && pOp->p5 3776 && (iMeta!=pOp->p3 3777 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3778 ){ 3779 /* 3780 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3781 ** version is checked to ensure that the schema has not changed since the 3782 ** SQL statement was prepared. 3783 */ 3784 sqlite3DbFree(db, p->zErrMsg); 3785 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3786 /* If the schema-cookie from the database file matches the cookie 3787 ** stored with the in-memory representation of the schema, do 3788 ** not reload the schema from the database file. 3789 ** 3790 ** If virtual-tables are in use, this is not just an optimization. 3791 ** Often, v-tables store their data in other SQLite tables, which 3792 ** are queried from within xNext() and other v-table methods using 3793 ** prepared queries. If such a query is out-of-date, we do not want to 3794 ** discard the database schema, as the user code implementing the 3795 ** v-table would have to be ready for the sqlite3_vtab structure itself 3796 ** to be invalidated whenever sqlite3_step() is called from within 3797 ** a v-table method. 3798 */ 3799 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3800 sqlite3ResetOneSchema(db, pOp->p1); 3801 } 3802 p->expired = 1; 3803 rc = SQLITE_SCHEMA; 3804 } 3805 if( rc ) goto abort_due_to_error; 3806 break; 3807 } 3808 3809 /* Opcode: ReadCookie P1 P2 P3 * * 3810 ** 3811 ** Read cookie number P3 from database P1 and write it into register P2. 3812 ** P3==1 is the schema version. P3==2 is the database format. 3813 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3814 ** the main database file and P1==1 is the database file used to store 3815 ** temporary tables. 3816 ** 3817 ** There must be a read-lock on the database (either a transaction 3818 ** must be started or there must be an open cursor) before 3819 ** executing this instruction. 3820 */ 3821 case OP_ReadCookie: { /* out2 */ 3822 int iMeta; 3823 int iDb; 3824 int iCookie; 3825 3826 assert( p->bIsReader ); 3827 iDb = pOp->p1; 3828 iCookie = pOp->p3; 3829 assert( pOp->p3<SQLITE_N_BTREE_META ); 3830 assert( iDb>=0 && iDb<db->nDb ); 3831 assert( db->aDb[iDb].pBt!=0 ); 3832 assert( DbMaskTest(p->btreeMask, iDb) ); 3833 3834 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3835 pOut = out2Prerelease(p, pOp); 3836 pOut->u.i = iMeta; 3837 break; 3838 } 3839 3840 /* Opcode: SetCookie P1 P2 P3 * P5 3841 ** 3842 ** Write the integer value P3 into cookie number P2 of database P1. 3843 ** P2==1 is the schema version. P2==2 is the database format. 3844 ** P2==3 is the recommended pager cache 3845 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3846 ** database file used to store temporary tables. 3847 ** 3848 ** A transaction must be started before executing this opcode. 3849 ** 3850 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3851 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3852 ** has P5 set to 1, so that the internal schema version will be different 3853 ** from the database schema version, resulting in a schema reset. 3854 */ 3855 case OP_SetCookie: { 3856 Db *pDb; 3857 3858 sqlite3VdbeIncrWriteCounter(p, 0); 3859 assert( pOp->p2<SQLITE_N_BTREE_META ); 3860 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3861 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3862 assert( p->readOnly==0 ); 3863 pDb = &db->aDb[pOp->p1]; 3864 assert( pDb->pBt!=0 ); 3865 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3866 /* See note about index shifting on OP_ReadCookie */ 3867 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3868 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3869 /* When the schema cookie changes, record the new cookie internally */ 3870 pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5; 3871 db->mDbFlags |= DBFLAG_SchemaChange; 3872 sqlite3FkClearTriggerCache(db, pOp->p1); 3873 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3874 /* Record changes in the file format */ 3875 pDb->pSchema->file_format = pOp->p3; 3876 } 3877 if( pOp->p1==1 ){ 3878 /* Invalidate all prepared statements whenever the TEMP database 3879 ** schema is changed. Ticket #1644 */ 3880 sqlite3ExpirePreparedStatements(db, 0); 3881 p->expired = 0; 3882 } 3883 if( rc ) goto abort_due_to_error; 3884 break; 3885 } 3886 3887 /* Opcode: OpenRead P1 P2 P3 P4 P5 3888 ** Synopsis: root=P2 iDb=P3 3889 ** 3890 ** Open a read-only cursor for the database table whose root page is 3891 ** P2 in a database file. The database file is determined by P3. 3892 ** P3==0 means the main database, P3==1 means the database used for 3893 ** temporary tables, and P3>1 means used the corresponding attached 3894 ** database. Give the new cursor an identifier of P1. The P1 3895 ** values need not be contiguous but all P1 values should be small integers. 3896 ** It is an error for P1 to be negative. 3897 ** 3898 ** Allowed P5 bits: 3899 ** <ul> 3900 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3901 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3902 ** of OP_SeekLE/OP_IdxLT) 3903 ** </ul> 3904 ** 3905 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3906 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3907 ** object, then table being opened must be an [index b-tree] where the 3908 ** KeyInfo object defines the content and collating 3909 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3910 ** value, then the table being opened must be a [table b-tree] with a 3911 ** number of columns no less than the value of P4. 3912 ** 3913 ** See also: OpenWrite, ReopenIdx 3914 */ 3915 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3916 ** Synopsis: root=P2 iDb=P3 3917 ** 3918 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3919 ** checks to see if the cursor on P1 is already open on the same 3920 ** b-tree and if it is this opcode becomes a no-op. In other words, 3921 ** if the cursor is already open, do not reopen it. 3922 ** 3923 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3924 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3925 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3926 ** number. 3927 ** 3928 ** Allowed P5 bits: 3929 ** <ul> 3930 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3931 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3932 ** of OP_SeekLE/OP_IdxLT) 3933 ** </ul> 3934 ** 3935 ** See also: OP_OpenRead, OP_OpenWrite 3936 */ 3937 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3938 ** Synopsis: root=P2 iDb=P3 3939 ** 3940 ** Open a read/write cursor named P1 on the table or index whose root 3941 ** page is P2 (or whose root page is held in register P2 if the 3942 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3943 ** 3944 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3945 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3946 ** object, then table being opened must be an [index b-tree] where the 3947 ** KeyInfo object defines the content and collating 3948 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3949 ** value, then the table being opened must be a [table b-tree] with a 3950 ** number of columns no less than the value of P4. 3951 ** 3952 ** Allowed P5 bits: 3953 ** <ul> 3954 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3955 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3956 ** of OP_SeekLE/OP_IdxLT) 3957 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3958 ** and subsequently delete entries in an index btree. This is a 3959 ** hint to the storage engine that the storage engine is allowed to 3960 ** ignore. The hint is not used by the official SQLite b*tree storage 3961 ** engine, but is used by COMDB2. 3962 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3963 ** as the root page, not the value of P2 itself. 3964 ** </ul> 3965 ** 3966 ** This instruction works like OpenRead except that it opens the cursor 3967 ** in read/write mode. 3968 ** 3969 ** See also: OP_OpenRead, OP_ReopenIdx 3970 */ 3971 case OP_ReopenIdx: { 3972 int nField; 3973 KeyInfo *pKeyInfo; 3974 u32 p2; 3975 int iDb; 3976 int wrFlag; 3977 Btree *pX; 3978 VdbeCursor *pCur; 3979 Db *pDb; 3980 3981 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3982 assert( pOp->p4type==P4_KEYINFO ); 3983 pCur = p->apCsr[pOp->p1]; 3984 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3985 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3986 assert( pCur->eCurType==CURTYPE_BTREE ); 3987 sqlite3BtreeClearCursor(pCur->uc.pCursor); 3988 goto open_cursor_set_hints; 3989 } 3990 /* If the cursor is not currently open or is open on a different 3991 ** index, then fall through into OP_OpenRead to force a reopen */ 3992 case OP_OpenRead: 3993 case OP_OpenWrite: 3994 3995 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3996 assert( p->bIsReader ); 3997 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3998 || p->readOnly==0 ); 3999 4000 if( p->expired==1 ){ 4001 rc = SQLITE_ABORT_ROLLBACK; 4002 goto abort_due_to_error; 4003 } 4004 4005 nField = 0; 4006 pKeyInfo = 0; 4007 p2 = (u32)pOp->p2; 4008 iDb = pOp->p3; 4009 assert( iDb>=0 && iDb<db->nDb ); 4010 assert( DbMaskTest(p->btreeMask, iDb) ); 4011 pDb = &db->aDb[iDb]; 4012 pX = pDb->pBt; 4013 assert( pX!=0 ); 4014 if( pOp->opcode==OP_OpenWrite ){ 4015 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 4016 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 4017 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4018 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 4019 p->minWriteFileFormat = pDb->pSchema->file_format; 4020 } 4021 }else{ 4022 wrFlag = 0; 4023 } 4024 if( pOp->p5 & OPFLAG_P2ISREG ){ 4025 assert( p2>0 ); 4026 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 4027 assert( pOp->opcode==OP_OpenWrite ); 4028 pIn2 = &aMem[p2]; 4029 assert( memIsValid(pIn2) ); 4030 assert( (pIn2->flags & MEM_Int)!=0 ); 4031 sqlite3VdbeMemIntegerify(pIn2); 4032 p2 = (int)pIn2->u.i; 4033 /* The p2 value always comes from a prior OP_CreateBtree opcode and 4034 ** that opcode will always set the p2 value to 2 or more or else fail. 4035 ** If there were a failure, the prepared statement would have halted 4036 ** before reaching this instruction. */ 4037 assert( p2>=2 ); 4038 } 4039 if( pOp->p4type==P4_KEYINFO ){ 4040 pKeyInfo = pOp->p4.pKeyInfo; 4041 assert( pKeyInfo->enc==ENC(db) ); 4042 assert( pKeyInfo->db==db ); 4043 nField = pKeyInfo->nAllField; 4044 }else if( pOp->p4type==P4_INT32 ){ 4045 nField = pOp->p4.i; 4046 } 4047 assert( pOp->p1>=0 ); 4048 assert( nField>=0 ); 4049 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 4050 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 4051 if( pCur==0 ) goto no_mem; 4052 pCur->iDb = iDb; 4053 pCur->nullRow = 1; 4054 pCur->isOrdered = 1; 4055 pCur->pgnoRoot = p2; 4056 #ifdef SQLITE_DEBUG 4057 pCur->wrFlag = wrFlag; 4058 #endif 4059 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4060 pCur->pKeyInfo = pKeyInfo; 4061 /* Set the VdbeCursor.isTable variable. Previous versions of 4062 ** SQLite used to check if the root-page flags were sane at this point 4063 ** and report database corruption if they were not, but this check has 4064 ** since moved into the btree layer. */ 4065 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4066 4067 open_cursor_set_hints: 4068 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4069 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4070 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4071 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4072 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4073 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4074 if( rc ) goto abort_due_to_error; 4075 break; 4076 } 4077 4078 /* Opcode: OpenDup P1 P2 * * * 4079 ** 4080 ** Open a new cursor P1 that points to the same ephemeral table as 4081 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4082 ** opcode. Only ephemeral cursors may be duplicated. 4083 ** 4084 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4085 */ 4086 case OP_OpenDup: { 4087 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4088 VdbeCursor *pCx; /* The new cursor */ 4089 4090 pOrig = p->apCsr[pOp->p2]; 4091 assert( pOrig ); 4092 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4093 4094 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 4095 if( pCx==0 ) goto no_mem; 4096 pCx->nullRow = 1; 4097 pCx->isEphemeral = 1; 4098 pCx->pKeyInfo = pOrig->pKeyInfo; 4099 pCx->isTable = pOrig->isTable; 4100 pCx->pgnoRoot = pOrig->pgnoRoot; 4101 pCx->isOrdered = pOrig->isOrdered; 4102 pCx->ub.pBtx = pOrig->ub.pBtx; 4103 pCx->hasBeenDuped = 1; 4104 pOrig->hasBeenDuped = 1; 4105 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4106 pCx->pKeyInfo, pCx->uc.pCursor); 4107 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4108 ** opened for a database. Since there is already an open cursor when this 4109 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4110 assert( rc==SQLITE_OK ); 4111 break; 4112 } 4113 4114 4115 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4116 ** Synopsis: nColumn=P2 4117 ** 4118 ** Open a new cursor P1 to a transient table. 4119 ** The cursor is always opened read/write even if 4120 ** the main database is read-only. The ephemeral 4121 ** table is deleted automatically when the cursor is closed. 4122 ** 4123 ** If the cursor P1 is already opened on an ephemeral table, the table 4124 ** is cleared (all content is erased). 4125 ** 4126 ** P2 is the number of columns in the ephemeral table. 4127 ** The cursor points to a BTree table if P4==0 and to a BTree index 4128 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4129 ** that defines the format of keys in the index. 4130 ** 4131 ** The P5 parameter can be a mask of the BTREE_* flags defined 4132 ** in btree.h. These flags control aspects of the operation of 4133 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4134 ** added automatically. 4135 ** 4136 ** If P3 is positive, then reg[P3] is modified slightly so that it 4137 ** can be used as zero-length data for OP_Insert. This is an optimization 4138 ** that avoids an extra OP_Blob opcode to initialize that register. 4139 */ 4140 /* Opcode: OpenAutoindex P1 P2 * P4 * 4141 ** Synopsis: nColumn=P2 4142 ** 4143 ** This opcode works the same as OP_OpenEphemeral. It has a 4144 ** different name to distinguish its use. Tables created using 4145 ** by this opcode will be used for automatically created transient 4146 ** indices in joins. 4147 */ 4148 case OP_OpenAutoindex: 4149 case OP_OpenEphemeral: { 4150 VdbeCursor *pCx; 4151 KeyInfo *pKeyInfo; 4152 4153 static const int vfsFlags = 4154 SQLITE_OPEN_READWRITE | 4155 SQLITE_OPEN_CREATE | 4156 SQLITE_OPEN_EXCLUSIVE | 4157 SQLITE_OPEN_DELETEONCLOSE | 4158 SQLITE_OPEN_TRANSIENT_DB; 4159 assert( pOp->p1>=0 ); 4160 assert( pOp->p2>=0 ); 4161 if( pOp->p3>0 ){ 4162 /* Make register reg[P3] into a value that can be used as the data 4163 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4164 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4165 assert( pOp->opcode==OP_OpenEphemeral ); 4166 assert( aMem[pOp->p3].flags & MEM_Null ); 4167 aMem[pOp->p3].n = 0; 4168 aMem[pOp->p3].z = ""; 4169 } 4170 pCx = p->apCsr[pOp->p1]; 4171 if( pCx && !pCx->hasBeenDuped && ALWAYS(pOp->p2<=pCx->nField) ){ 4172 /* If the ephermeral table is already open and has no duplicates from 4173 ** OP_OpenDup, then erase all existing content so that the table is 4174 ** empty again, rather than creating a new table. */ 4175 assert( pCx->isEphemeral ); 4176 pCx->seqCount = 0; 4177 pCx->cacheStatus = CACHE_STALE; 4178 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 4179 }else{ 4180 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 4181 if( pCx==0 ) goto no_mem; 4182 pCx->isEphemeral = 1; 4183 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 4184 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4185 vfsFlags); 4186 if( rc==SQLITE_OK ){ 4187 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 4188 if( rc==SQLITE_OK ){ 4189 /* If a transient index is required, create it by calling 4190 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4191 ** opening it. If a transient table is required, just use the 4192 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4193 */ 4194 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4195 assert( pOp->p4type==P4_KEYINFO ); 4196 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 4197 BTREE_BLOBKEY | pOp->p5); 4198 if( rc==SQLITE_OK ){ 4199 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4200 assert( pKeyInfo->db==db ); 4201 assert( pKeyInfo->enc==ENC(db) ); 4202 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4203 pKeyInfo, pCx->uc.pCursor); 4204 } 4205 pCx->isTable = 0; 4206 }else{ 4207 pCx->pgnoRoot = SCHEMA_ROOT; 4208 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4209 0, pCx->uc.pCursor); 4210 pCx->isTable = 1; 4211 } 4212 } 4213 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4214 if( rc ){ 4215 sqlite3BtreeClose(pCx->ub.pBtx); 4216 } 4217 } 4218 } 4219 if( rc ) goto abort_due_to_error; 4220 pCx->nullRow = 1; 4221 break; 4222 } 4223 4224 /* Opcode: SorterOpen P1 P2 P3 P4 * 4225 ** 4226 ** This opcode works like OP_OpenEphemeral except that it opens 4227 ** a transient index that is specifically designed to sort large 4228 ** tables using an external merge-sort algorithm. 4229 ** 4230 ** If argument P3 is non-zero, then it indicates that the sorter may 4231 ** assume that a stable sort considering the first P3 fields of each 4232 ** key is sufficient to produce the required results. 4233 */ 4234 case OP_SorterOpen: { 4235 VdbeCursor *pCx; 4236 4237 assert( pOp->p1>=0 ); 4238 assert( pOp->p2>=0 ); 4239 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 4240 if( pCx==0 ) goto no_mem; 4241 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4242 assert( pCx->pKeyInfo->db==db ); 4243 assert( pCx->pKeyInfo->enc==ENC(db) ); 4244 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4245 if( rc ) goto abort_due_to_error; 4246 break; 4247 } 4248 4249 /* Opcode: SequenceTest P1 P2 * * * 4250 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4251 ** 4252 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4253 ** to P2. Regardless of whether or not the jump is taken, increment the 4254 ** the sequence value. 4255 */ 4256 case OP_SequenceTest: { 4257 VdbeCursor *pC; 4258 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4259 pC = p->apCsr[pOp->p1]; 4260 assert( isSorter(pC) ); 4261 if( (pC->seqCount++)==0 ){ 4262 goto jump_to_p2; 4263 } 4264 break; 4265 } 4266 4267 /* Opcode: OpenPseudo P1 P2 P3 * * 4268 ** Synopsis: P3 columns in r[P2] 4269 ** 4270 ** Open a new cursor that points to a fake table that contains a single 4271 ** row of data. The content of that one row is the content of memory 4272 ** register P2. In other words, cursor P1 becomes an alias for the 4273 ** MEM_Blob content contained in register P2. 4274 ** 4275 ** A pseudo-table created by this opcode is used to hold a single 4276 ** row output from the sorter so that the row can be decomposed into 4277 ** individual columns using the OP_Column opcode. The OP_Column opcode 4278 ** is the only cursor opcode that works with a pseudo-table. 4279 ** 4280 ** P3 is the number of fields in the records that will be stored by 4281 ** the pseudo-table. 4282 */ 4283 case OP_OpenPseudo: { 4284 VdbeCursor *pCx; 4285 4286 assert( pOp->p1>=0 ); 4287 assert( pOp->p3>=0 ); 4288 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 4289 if( pCx==0 ) goto no_mem; 4290 pCx->nullRow = 1; 4291 pCx->seekResult = pOp->p2; 4292 pCx->isTable = 1; 4293 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4294 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4295 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4296 ** which is a performance optimization */ 4297 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4298 assert( pOp->p5==0 ); 4299 break; 4300 } 4301 4302 /* Opcode: Close P1 * * * * 4303 ** 4304 ** Close a cursor previously opened as P1. If P1 is not 4305 ** currently open, this instruction is a no-op. 4306 */ 4307 case OP_Close: { 4308 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4309 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4310 p->apCsr[pOp->p1] = 0; 4311 break; 4312 } 4313 4314 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4315 /* Opcode: ColumnsUsed P1 * * P4 * 4316 ** 4317 ** This opcode (which only exists if SQLite was compiled with 4318 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4319 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4320 ** (P4_INT64) in which the first 63 bits are one for each of the 4321 ** first 63 columns of the table or index that are actually used 4322 ** by the cursor. The high-order bit is set if any column after 4323 ** the 64th is used. 4324 */ 4325 case OP_ColumnsUsed: { 4326 VdbeCursor *pC; 4327 pC = p->apCsr[pOp->p1]; 4328 assert( pC->eCurType==CURTYPE_BTREE ); 4329 pC->maskUsed = *(u64*)pOp->p4.pI64; 4330 break; 4331 } 4332 #endif 4333 4334 /* Opcode: SeekGE P1 P2 P3 P4 * 4335 ** Synopsis: key=r[P3@P4] 4336 ** 4337 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4338 ** use the value in register P3 as the key. If cursor P1 refers 4339 ** to an SQL index, then P3 is the first in an array of P4 registers 4340 ** that are used as an unpacked index key. 4341 ** 4342 ** Reposition cursor P1 so that it points to the smallest entry that 4343 ** is greater than or equal to the key value. If there are no records 4344 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4345 ** 4346 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4347 ** opcode will either land on a record that exactly matches the key, or 4348 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4349 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4350 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4351 ** IdxGT opcode will be used on subsequent loop iterations. The 4352 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4353 ** is an equality search. 4354 ** 4355 ** This opcode leaves the cursor configured to move in forward order, 4356 ** from the beginning toward the end. In other words, the cursor is 4357 ** configured to use Next, not Prev. 4358 ** 4359 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4360 */ 4361 /* Opcode: SeekGT P1 P2 P3 P4 * 4362 ** Synopsis: key=r[P3@P4] 4363 ** 4364 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4365 ** use the value in register P3 as a key. If cursor P1 refers 4366 ** to an SQL index, then P3 is the first in an array of P4 registers 4367 ** that are used as an unpacked index key. 4368 ** 4369 ** Reposition cursor P1 so that it points to the smallest entry that 4370 ** is greater than the key value. If there are no records greater than 4371 ** the key and P2 is not zero, then jump to P2. 4372 ** 4373 ** This opcode leaves the cursor configured to move in forward order, 4374 ** from the beginning toward the end. In other words, the cursor is 4375 ** configured to use Next, not Prev. 4376 ** 4377 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4378 */ 4379 /* Opcode: SeekLT P1 P2 P3 P4 * 4380 ** Synopsis: key=r[P3@P4] 4381 ** 4382 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4383 ** use the value in register P3 as a key. If cursor P1 refers 4384 ** to an SQL index, then P3 is the first in an array of P4 registers 4385 ** that are used as an unpacked index key. 4386 ** 4387 ** Reposition cursor P1 so that it points to the largest entry that 4388 ** is less than the key value. If there are no records less than 4389 ** the key and P2 is not zero, then jump to P2. 4390 ** 4391 ** This opcode leaves the cursor configured to move in reverse order, 4392 ** from the end toward the beginning. In other words, the cursor is 4393 ** configured to use Prev, not Next. 4394 ** 4395 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4396 */ 4397 /* Opcode: SeekLE P1 P2 P3 P4 * 4398 ** Synopsis: key=r[P3@P4] 4399 ** 4400 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4401 ** use the value in register P3 as a key. If cursor P1 refers 4402 ** to an SQL index, then P3 is the first in an array of P4 registers 4403 ** that are used as an unpacked index key. 4404 ** 4405 ** Reposition cursor P1 so that it points to the largest entry that 4406 ** is less than or equal to the key value. If there are no records 4407 ** less than or equal to the key and P2 is not zero, then jump to P2. 4408 ** 4409 ** This opcode leaves the cursor configured to move in reverse order, 4410 ** from the end toward the beginning. In other words, the cursor is 4411 ** configured to use Prev, not Next. 4412 ** 4413 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4414 ** opcode will either land on a record that exactly matches the key, or 4415 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4416 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4417 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4418 ** IdxGE opcode will be used on subsequent loop iterations. The 4419 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4420 ** is an equality search. 4421 ** 4422 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4423 */ 4424 case OP_SeekLT: /* jump, in3, group */ 4425 case OP_SeekLE: /* jump, in3, group */ 4426 case OP_SeekGE: /* jump, in3, group */ 4427 case OP_SeekGT: { /* jump, in3, group */ 4428 int res; /* Comparison result */ 4429 int oc; /* Opcode */ 4430 VdbeCursor *pC; /* The cursor to seek */ 4431 UnpackedRecord r; /* The key to seek for */ 4432 int nField; /* Number of columns or fields in the key */ 4433 i64 iKey; /* The rowid we are to seek to */ 4434 int eqOnly; /* Only interested in == results */ 4435 4436 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4437 assert( pOp->p2!=0 ); 4438 pC = p->apCsr[pOp->p1]; 4439 assert( pC!=0 ); 4440 assert( pC->eCurType==CURTYPE_BTREE ); 4441 assert( OP_SeekLE == OP_SeekLT+1 ); 4442 assert( OP_SeekGE == OP_SeekLT+2 ); 4443 assert( OP_SeekGT == OP_SeekLT+3 ); 4444 assert( pC->isOrdered ); 4445 assert( pC->uc.pCursor!=0 ); 4446 oc = pOp->opcode; 4447 eqOnly = 0; 4448 pC->nullRow = 0; 4449 #ifdef SQLITE_DEBUG 4450 pC->seekOp = pOp->opcode; 4451 #endif 4452 4453 pC->deferredMoveto = 0; 4454 pC->cacheStatus = CACHE_STALE; 4455 if( pC->isTable ){ 4456 u16 flags3, newType; 4457 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4458 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4459 || CORRUPT_DB ); 4460 4461 /* The input value in P3 might be of any type: integer, real, string, 4462 ** blob, or NULL. But it needs to be an integer before we can do 4463 ** the seek, so convert it. */ 4464 pIn3 = &aMem[pOp->p3]; 4465 flags3 = pIn3->flags; 4466 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4467 applyNumericAffinity(pIn3, 0); 4468 } 4469 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4470 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4471 pIn3->flags = flags3; /* But convert the type back to its original */ 4472 4473 /* If the P3 value could not be converted into an integer without 4474 ** loss of information, then special processing is required... */ 4475 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4476 int c; 4477 if( (newType & MEM_Real)==0 ){ 4478 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4479 VdbeBranchTaken(1,2); 4480 goto jump_to_p2; 4481 }else{ 4482 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4483 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4484 goto seek_not_found; 4485 } 4486 } 4487 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4488 4489 /* If the approximation iKey is larger than the actual real search 4490 ** term, substitute >= for > and < for <=. e.g. if the search term 4491 ** is 4.9 and the integer approximation 5: 4492 ** 4493 ** (x > 4.9) -> (x >= 5) 4494 ** (x <= 4.9) -> (x < 5) 4495 */ 4496 if( c>0 ){ 4497 assert( OP_SeekGE==(OP_SeekGT-1) ); 4498 assert( OP_SeekLT==(OP_SeekLE-1) ); 4499 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4500 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4501 } 4502 4503 /* If the approximation iKey is smaller than the actual real search 4504 ** term, substitute <= for < and > for >=. */ 4505 else if( c<0 ){ 4506 assert( OP_SeekLE==(OP_SeekLT+1) ); 4507 assert( OP_SeekGT==(OP_SeekGE+1) ); 4508 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4509 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4510 } 4511 } 4512 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4513 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4514 if( rc!=SQLITE_OK ){ 4515 goto abort_due_to_error; 4516 } 4517 }else{ 4518 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4519 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4520 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4521 ** with the same key. 4522 */ 4523 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4524 eqOnly = 1; 4525 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4526 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4527 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4528 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4529 assert( pOp[1].p1==pOp[0].p1 ); 4530 assert( pOp[1].p2==pOp[0].p2 ); 4531 assert( pOp[1].p3==pOp[0].p3 ); 4532 assert( pOp[1].p4.i==pOp[0].p4.i ); 4533 } 4534 4535 nField = pOp->p4.i; 4536 assert( pOp->p4type==P4_INT32 ); 4537 assert( nField>0 ); 4538 r.pKeyInfo = pC->pKeyInfo; 4539 r.nField = (u16)nField; 4540 4541 /* The next line of code computes as follows, only faster: 4542 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4543 ** r.default_rc = -1; 4544 ** }else{ 4545 ** r.default_rc = +1; 4546 ** } 4547 */ 4548 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4549 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4550 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4551 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4552 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4553 4554 r.aMem = &aMem[pOp->p3]; 4555 #ifdef SQLITE_DEBUG 4556 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4557 #endif 4558 r.eqSeen = 0; 4559 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4560 if( rc!=SQLITE_OK ){ 4561 goto abort_due_to_error; 4562 } 4563 if( eqOnly && r.eqSeen==0 ){ 4564 assert( res!=0 ); 4565 goto seek_not_found; 4566 } 4567 } 4568 #ifdef SQLITE_TEST 4569 sqlite3_search_count++; 4570 #endif 4571 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4572 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4573 res = 0; 4574 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4575 if( rc!=SQLITE_OK ){ 4576 if( rc==SQLITE_DONE ){ 4577 rc = SQLITE_OK; 4578 res = 1; 4579 }else{ 4580 goto abort_due_to_error; 4581 } 4582 } 4583 }else{ 4584 res = 0; 4585 } 4586 }else{ 4587 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4588 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4589 res = 0; 4590 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4591 if( rc!=SQLITE_OK ){ 4592 if( rc==SQLITE_DONE ){ 4593 rc = SQLITE_OK; 4594 res = 1; 4595 }else{ 4596 goto abort_due_to_error; 4597 } 4598 } 4599 }else{ 4600 /* res might be negative because the table is empty. Check to 4601 ** see if this is the case. 4602 */ 4603 res = sqlite3BtreeEof(pC->uc.pCursor); 4604 } 4605 } 4606 seek_not_found: 4607 assert( pOp->p2>0 ); 4608 VdbeBranchTaken(res!=0,2); 4609 if( res ){ 4610 goto jump_to_p2; 4611 }else if( eqOnly ){ 4612 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4613 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4614 } 4615 break; 4616 } 4617 4618 4619 /* Opcode: SeekScan P1 P2 * * * 4620 ** Synopsis: Scan-ahead up to P1 rows 4621 ** 4622 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4623 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4624 ** checked by assert() statements. 4625 ** 4626 ** This opcode uses the P1 through P4 operands of the subsequent 4627 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4628 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4629 ** the P1 and P2 operands of this opcode are also used, and are called 4630 ** This.P1 and This.P2. 4631 ** 4632 ** This opcode helps to optimize IN operators on a multi-column index 4633 ** where the IN operator is on the later terms of the index by avoiding 4634 ** unnecessary seeks on the btree, substituting steps to the next row 4635 ** of the b-tree instead. A correct answer is obtained if this opcode 4636 ** is omitted or is a no-op. 4637 ** 4638 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4639 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4640 ** to. Call this SeekGE.P4/P5 row the "target". 4641 ** 4642 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4643 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4644 ** 4645 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4646 ** might be the target row, or it might be near and slightly before the 4647 ** target row. This opcode attempts to position the cursor on the target 4648 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4649 ** between 0 and This.P1 times. 4650 ** 4651 ** There are three possible outcomes from this opcode:<ol> 4652 ** 4653 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4654 ** is earlier in the btree than the target row, then fall through 4655 ** into the subsquence OP_SeekGE opcode. 4656 ** 4657 ** <li> If the cursor is successfully moved to the target row by 0 or more 4658 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4659 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4660 ** 4661 ** <li> If the cursor ends up past the target row (indicating the the target 4662 ** row does not exist in the btree) then jump to SeekOP.P2. 4663 ** </ol> 4664 */ 4665 case OP_SeekScan: { 4666 VdbeCursor *pC; 4667 int res; 4668 int nStep; 4669 UnpackedRecord r; 4670 4671 assert( pOp[1].opcode==OP_SeekGE ); 4672 4673 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4674 ** follows the OP_SeekGE. */ 4675 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4676 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4677 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4678 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4679 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4680 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4681 4682 assert( pOp->p1>0 ); 4683 pC = p->apCsr[pOp[1].p1]; 4684 assert( pC!=0 ); 4685 assert( pC->eCurType==CURTYPE_BTREE ); 4686 assert( !pC->isTable ); 4687 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4688 #ifdef SQLITE_DEBUG 4689 if( db->flags&SQLITE_VdbeTrace ){ 4690 printf("... cursor not valid - fall through\n"); 4691 } 4692 #endif 4693 break; 4694 } 4695 nStep = pOp->p1; 4696 assert( nStep>=1 ); 4697 r.pKeyInfo = pC->pKeyInfo; 4698 r.nField = (u16)pOp[1].p4.i; 4699 r.default_rc = 0; 4700 r.aMem = &aMem[pOp[1].p3]; 4701 #ifdef SQLITE_DEBUG 4702 { 4703 int i; 4704 for(i=0; i<r.nField; i++){ 4705 assert( memIsValid(&r.aMem[i]) ); 4706 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4707 } 4708 } 4709 #endif 4710 res = 0; /* Not needed. Only used to silence a warning. */ 4711 while(1){ 4712 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4713 if( rc ) goto abort_due_to_error; 4714 if( res>0 ){ 4715 seekscan_search_fail: 4716 #ifdef SQLITE_DEBUG 4717 if( db->flags&SQLITE_VdbeTrace ){ 4718 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4719 } 4720 #endif 4721 VdbeBranchTaken(1,3); 4722 pOp++; 4723 goto jump_to_p2; 4724 } 4725 if( res==0 ){ 4726 #ifdef SQLITE_DEBUG 4727 if( db->flags&SQLITE_VdbeTrace ){ 4728 printf("... %d steps and then success\n", pOp->p1 - nStep); 4729 } 4730 #endif 4731 VdbeBranchTaken(2,3); 4732 goto jump_to_p2; 4733 break; 4734 } 4735 if( nStep<=0 ){ 4736 #ifdef SQLITE_DEBUG 4737 if( db->flags&SQLITE_VdbeTrace ){ 4738 printf("... fall through after %d steps\n", pOp->p1); 4739 } 4740 #endif 4741 VdbeBranchTaken(0,3); 4742 break; 4743 } 4744 nStep--; 4745 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4746 if( rc ){ 4747 if( rc==SQLITE_DONE ){ 4748 rc = SQLITE_OK; 4749 goto seekscan_search_fail; 4750 }else{ 4751 goto abort_due_to_error; 4752 } 4753 } 4754 } 4755 4756 break; 4757 } 4758 4759 4760 /* Opcode: SeekHit P1 P2 P3 * * 4761 ** Synopsis: set P2<=seekHit<=P3 4762 ** 4763 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4764 ** so that it is no less than P2 and no greater than P3. 4765 ** 4766 ** The seekHit integer represents the maximum of terms in an index for which 4767 ** there is known to be at least one match. If the seekHit value is smaller 4768 ** than the total number of equality terms in an index lookup, then the 4769 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4770 ** early, thus saving work. This is part of the IN-early-out optimization. 4771 ** 4772 ** P1 must be a valid b-tree cursor. 4773 */ 4774 case OP_SeekHit: { 4775 VdbeCursor *pC; 4776 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4777 pC = p->apCsr[pOp->p1]; 4778 assert( pC!=0 ); 4779 assert( pOp->p3>=pOp->p2 ); 4780 if( pC->seekHit<pOp->p2 ){ 4781 #ifdef SQLITE_DEBUG 4782 if( db->flags&SQLITE_VdbeTrace ){ 4783 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4784 } 4785 #endif 4786 pC->seekHit = pOp->p2; 4787 }else if( pC->seekHit>pOp->p3 ){ 4788 #ifdef SQLITE_DEBUG 4789 if( db->flags&SQLITE_VdbeTrace ){ 4790 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4791 } 4792 #endif 4793 pC->seekHit = pOp->p3; 4794 } 4795 break; 4796 } 4797 4798 /* Opcode: IfNotOpen P1 P2 * * * 4799 ** Synopsis: if( !csr[P1] ) goto P2 4800 ** 4801 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4802 */ 4803 case OP_IfNotOpen: { /* jump */ 4804 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4805 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4806 if( !p->apCsr[pOp->p1] ){ 4807 goto jump_to_p2_and_check_for_interrupt; 4808 } 4809 break; 4810 } 4811 4812 /* Opcode: Found P1 P2 P3 P4 * 4813 ** Synopsis: key=r[P3@P4] 4814 ** 4815 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4816 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4817 ** record. 4818 ** 4819 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4820 ** is a prefix of any entry in P1 then a jump is made to P2 and 4821 ** P1 is left pointing at the matching entry. 4822 ** 4823 ** This operation leaves the cursor in a state where it can be 4824 ** advanced in the forward direction. The Next instruction will work, 4825 ** but not the Prev instruction. 4826 ** 4827 ** See also: NotFound, NoConflict, NotExists. SeekGe 4828 */ 4829 /* Opcode: NotFound P1 P2 P3 P4 * 4830 ** Synopsis: key=r[P3@P4] 4831 ** 4832 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4833 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4834 ** record. 4835 ** 4836 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4837 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4838 ** does contain an entry whose prefix matches the P3/P4 record then control 4839 ** falls through to the next instruction and P1 is left pointing at the 4840 ** matching entry. 4841 ** 4842 ** This operation leaves the cursor in a state where it cannot be 4843 ** advanced in either direction. In other words, the Next and Prev 4844 ** opcodes do not work after this operation. 4845 ** 4846 ** See also: Found, NotExists, NoConflict, IfNoHope 4847 */ 4848 /* Opcode: IfNoHope P1 P2 P3 P4 * 4849 ** Synopsis: key=r[P3@P4] 4850 ** 4851 ** Register P3 is the first of P4 registers that form an unpacked 4852 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4853 ** In other words, the operands to this opcode are the same as the 4854 ** operands to OP_NotFound and OP_IdxGT. 4855 ** 4856 ** This opcode is an optimization attempt only. If this opcode always 4857 ** falls through, the correct answer is still obtained, but extra works 4858 ** is performed. 4859 ** 4860 ** A value of N in the seekHit flag of cursor P1 means that there exists 4861 ** a key P3:N that will match some record in the index. We want to know 4862 ** if it is possible for a record P3:P4 to match some record in the 4863 ** index. If it is not possible, we can skips some work. So if seekHit 4864 ** is less than P4, attempt to find out if a match is possible by running 4865 ** OP_NotFound. 4866 ** 4867 ** This opcode is used in IN clause processing for a multi-column key. 4868 ** If an IN clause is attached to an element of the key other than the 4869 ** left-most element, and if there are no matches on the most recent 4870 ** seek over the whole key, then it might be that one of the key element 4871 ** to the left is prohibiting a match, and hence there is "no hope" of 4872 ** any match regardless of how many IN clause elements are checked. 4873 ** In such a case, we abandon the IN clause search early, using this 4874 ** opcode. The opcode name comes from the fact that the 4875 ** jump is taken if there is "no hope" of achieving a match. 4876 ** 4877 ** See also: NotFound, SeekHit 4878 */ 4879 /* Opcode: NoConflict P1 P2 P3 P4 * 4880 ** Synopsis: key=r[P3@P4] 4881 ** 4882 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4883 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4884 ** record. 4885 ** 4886 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4887 ** contains any NULL value, jump immediately to P2. If all terms of the 4888 ** record are not-NULL then a check is done to determine if any row in the 4889 ** P1 index btree has a matching key prefix. If there are no matches, jump 4890 ** immediately to P2. If there is a match, fall through and leave the P1 4891 ** cursor pointing to the matching row. 4892 ** 4893 ** This opcode is similar to OP_NotFound with the exceptions that the 4894 ** branch is always taken if any part of the search key input is NULL. 4895 ** 4896 ** This operation leaves the cursor in a state where it cannot be 4897 ** advanced in either direction. In other words, the Next and Prev 4898 ** opcodes do not work after this operation. 4899 ** 4900 ** See also: NotFound, Found, NotExists 4901 */ 4902 case OP_IfNoHope: { /* jump, in3 */ 4903 VdbeCursor *pC; 4904 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4905 pC = p->apCsr[pOp->p1]; 4906 assert( pC!=0 ); 4907 #ifdef SQLITE_DEBUG 4908 if( db->flags&SQLITE_VdbeTrace ){ 4909 printf("seekHit is %d\n", pC->seekHit); 4910 } 4911 #endif 4912 if( pC->seekHit>=pOp->p4.i ) break; 4913 /* Fall through into OP_NotFound */ 4914 /* no break */ deliberate_fall_through 4915 } 4916 case OP_NoConflict: /* jump, in3 */ 4917 case OP_NotFound: /* jump, in3 */ 4918 case OP_Found: { /* jump, in3 */ 4919 int alreadyExists; 4920 int takeJump; 4921 int ii; 4922 VdbeCursor *pC; 4923 int res; 4924 UnpackedRecord *pFree; 4925 UnpackedRecord *pIdxKey; 4926 UnpackedRecord r; 4927 4928 #ifdef SQLITE_TEST 4929 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4930 #endif 4931 4932 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4933 assert( pOp->p4type==P4_INT32 ); 4934 pC = p->apCsr[pOp->p1]; 4935 assert( pC!=0 ); 4936 #ifdef SQLITE_DEBUG 4937 pC->seekOp = pOp->opcode; 4938 #endif 4939 pIn3 = &aMem[pOp->p3]; 4940 assert( pC->eCurType==CURTYPE_BTREE ); 4941 assert( pC->uc.pCursor!=0 ); 4942 assert( pC->isTable==0 ); 4943 if( pOp->p4.i>0 ){ 4944 r.pKeyInfo = pC->pKeyInfo; 4945 r.nField = (u16)pOp->p4.i; 4946 r.aMem = pIn3; 4947 #ifdef SQLITE_DEBUG 4948 for(ii=0; ii<r.nField; ii++){ 4949 assert( memIsValid(&r.aMem[ii]) ); 4950 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4951 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4952 } 4953 #endif 4954 pIdxKey = &r; 4955 pFree = 0; 4956 }else{ 4957 assert( pIn3->flags & MEM_Blob ); 4958 rc = ExpandBlob(pIn3); 4959 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4960 if( rc ) goto no_mem; 4961 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4962 if( pIdxKey==0 ) goto no_mem; 4963 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4964 } 4965 pIdxKey->default_rc = 0; 4966 takeJump = 0; 4967 if( pOp->opcode==OP_NoConflict ){ 4968 /* For the OP_NoConflict opcode, take the jump if any of the 4969 ** input fields are NULL, since any key with a NULL will not 4970 ** conflict */ 4971 for(ii=0; ii<pIdxKey->nField; ii++){ 4972 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4973 takeJump = 1; 4974 break; 4975 } 4976 } 4977 } 4978 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &res); 4979 if( pFree ) sqlite3DbFreeNN(db, pFree); 4980 if( rc!=SQLITE_OK ){ 4981 goto abort_due_to_error; 4982 } 4983 pC->seekResult = res; 4984 alreadyExists = (res==0); 4985 pC->nullRow = 1-alreadyExists; 4986 pC->deferredMoveto = 0; 4987 pC->cacheStatus = CACHE_STALE; 4988 if( pOp->opcode==OP_Found ){ 4989 VdbeBranchTaken(alreadyExists!=0,2); 4990 if( alreadyExists ) goto jump_to_p2; 4991 }else{ 4992 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4993 if( takeJump || !alreadyExists ) goto jump_to_p2; 4994 if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i; 4995 } 4996 break; 4997 } 4998 4999 /* Opcode: SeekRowid P1 P2 P3 * * 5000 ** Synopsis: intkey=r[P3] 5001 ** 5002 ** P1 is the index of a cursor open on an SQL table btree (with integer 5003 ** keys). If register P3 does not contain an integer or if P1 does not 5004 ** contain a record with rowid P3 then jump immediately to P2. 5005 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 5006 ** a record with rowid P3 then 5007 ** leave the cursor pointing at that record and fall through to the next 5008 ** instruction. 5009 ** 5010 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 5011 ** the P3 register must be guaranteed to contain an integer value. With this 5012 ** opcode, register P3 might not contain an integer. 5013 ** 5014 ** The OP_NotFound opcode performs the same operation on index btrees 5015 ** (with arbitrary multi-value keys). 5016 ** 5017 ** This opcode leaves the cursor in a state where it cannot be advanced 5018 ** in either direction. In other words, the Next and Prev opcodes will 5019 ** not work following this opcode. 5020 ** 5021 ** See also: Found, NotFound, NoConflict, SeekRowid 5022 */ 5023 /* Opcode: NotExists P1 P2 P3 * * 5024 ** Synopsis: intkey=r[P3] 5025 ** 5026 ** P1 is the index of a cursor open on an SQL table btree (with integer 5027 ** keys). P3 is an integer rowid. If P1 does not contain a record with 5028 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 5029 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 5030 ** leave the cursor pointing at that record and fall through to the next 5031 ** instruction. 5032 ** 5033 ** The OP_SeekRowid opcode performs the same operation but also allows the 5034 ** P3 register to contain a non-integer value, in which case the jump is 5035 ** always taken. This opcode requires that P3 always contain an integer. 5036 ** 5037 ** The OP_NotFound opcode performs the same operation on index btrees 5038 ** (with arbitrary multi-value keys). 5039 ** 5040 ** This opcode leaves the cursor in a state where it cannot be advanced 5041 ** in either direction. In other words, the Next and Prev opcodes will 5042 ** not work following this opcode. 5043 ** 5044 ** See also: Found, NotFound, NoConflict, SeekRowid 5045 */ 5046 case OP_SeekRowid: { /* jump, in3 */ 5047 VdbeCursor *pC; 5048 BtCursor *pCrsr; 5049 int res; 5050 u64 iKey; 5051 5052 pIn3 = &aMem[pOp->p3]; 5053 testcase( pIn3->flags & MEM_Int ); 5054 testcase( pIn3->flags & MEM_IntReal ); 5055 testcase( pIn3->flags & MEM_Real ); 5056 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 5057 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5058 /* If pIn3->u.i does not contain an integer, compute iKey as the 5059 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5060 ** into an integer without loss of information. Take care to avoid 5061 ** changing the datatype of pIn3, however, as it is used by other 5062 ** parts of the prepared statement. */ 5063 Mem x = pIn3[0]; 5064 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5065 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5066 iKey = x.u.i; 5067 goto notExistsWithKey; 5068 } 5069 /* Fall through into OP_NotExists */ 5070 /* no break */ deliberate_fall_through 5071 case OP_NotExists: /* jump, in3 */ 5072 pIn3 = &aMem[pOp->p3]; 5073 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5074 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5075 iKey = pIn3->u.i; 5076 notExistsWithKey: 5077 pC = p->apCsr[pOp->p1]; 5078 assert( pC!=0 ); 5079 #ifdef SQLITE_DEBUG 5080 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5081 #endif 5082 assert( pC->isTable ); 5083 assert( pC->eCurType==CURTYPE_BTREE ); 5084 pCrsr = pC->uc.pCursor; 5085 assert( pCrsr!=0 ); 5086 res = 0; 5087 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5088 assert( rc==SQLITE_OK || res==0 ); 5089 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5090 pC->nullRow = 0; 5091 pC->cacheStatus = CACHE_STALE; 5092 pC->deferredMoveto = 0; 5093 VdbeBranchTaken(res!=0,2); 5094 pC->seekResult = res; 5095 if( res!=0 ){ 5096 assert( rc==SQLITE_OK ); 5097 if( pOp->p2==0 ){ 5098 rc = SQLITE_CORRUPT_BKPT; 5099 }else{ 5100 goto jump_to_p2; 5101 } 5102 } 5103 if( rc ) goto abort_due_to_error; 5104 break; 5105 } 5106 5107 /* Opcode: Sequence P1 P2 * * * 5108 ** Synopsis: r[P2]=cursor[P1].ctr++ 5109 ** 5110 ** Find the next available sequence number for cursor P1. 5111 ** Write the sequence number into register P2. 5112 ** The sequence number on the cursor is incremented after this 5113 ** instruction. 5114 */ 5115 case OP_Sequence: { /* out2 */ 5116 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5117 assert( p->apCsr[pOp->p1]!=0 ); 5118 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5119 pOut = out2Prerelease(p, pOp); 5120 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5121 break; 5122 } 5123 5124 5125 /* Opcode: NewRowid P1 P2 P3 * * 5126 ** Synopsis: r[P2]=rowid 5127 ** 5128 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5129 ** The record number is not previously used as a key in the database 5130 ** table that cursor P1 points to. The new record number is written 5131 ** written to register P2. 5132 ** 5133 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5134 ** the largest previously generated record number. No new record numbers are 5135 ** allowed to be less than this value. When this value reaches its maximum, 5136 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5137 ** generated record number. This P3 mechanism is used to help implement the 5138 ** AUTOINCREMENT feature. 5139 */ 5140 case OP_NewRowid: { /* out2 */ 5141 i64 v; /* The new rowid */ 5142 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5143 int res; /* Result of an sqlite3BtreeLast() */ 5144 int cnt; /* Counter to limit the number of searches */ 5145 #ifndef SQLITE_OMIT_AUTOINCREMENT 5146 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5147 VdbeFrame *pFrame; /* Root frame of VDBE */ 5148 #endif 5149 5150 v = 0; 5151 res = 0; 5152 pOut = out2Prerelease(p, pOp); 5153 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5154 pC = p->apCsr[pOp->p1]; 5155 assert( pC!=0 ); 5156 assert( pC->isTable ); 5157 assert( pC->eCurType==CURTYPE_BTREE ); 5158 assert( pC->uc.pCursor!=0 ); 5159 { 5160 /* The next rowid or record number (different terms for the same 5161 ** thing) is obtained in a two-step algorithm. 5162 ** 5163 ** First we attempt to find the largest existing rowid and add one 5164 ** to that. But if the largest existing rowid is already the maximum 5165 ** positive integer, we have to fall through to the second 5166 ** probabilistic algorithm 5167 ** 5168 ** The second algorithm is to select a rowid at random and see if 5169 ** it already exists in the table. If it does not exist, we have 5170 ** succeeded. If the random rowid does exist, we select a new one 5171 ** and try again, up to 100 times. 5172 */ 5173 assert( pC->isTable ); 5174 5175 #ifdef SQLITE_32BIT_ROWID 5176 # define MAX_ROWID 0x7fffffff 5177 #else 5178 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5179 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5180 ** to provide the constant while making all compilers happy. 5181 */ 5182 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5183 #endif 5184 5185 if( !pC->useRandomRowid ){ 5186 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5187 if( rc!=SQLITE_OK ){ 5188 goto abort_due_to_error; 5189 } 5190 if( res ){ 5191 v = 1; /* IMP: R-61914-48074 */ 5192 }else{ 5193 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5194 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5195 if( v>=MAX_ROWID ){ 5196 pC->useRandomRowid = 1; 5197 }else{ 5198 v++; /* IMP: R-29538-34987 */ 5199 } 5200 } 5201 } 5202 5203 #ifndef SQLITE_OMIT_AUTOINCREMENT 5204 if( pOp->p3 ){ 5205 /* Assert that P3 is a valid memory cell. */ 5206 assert( pOp->p3>0 ); 5207 if( p->pFrame ){ 5208 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5209 /* Assert that P3 is a valid memory cell. */ 5210 assert( pOp->p3<=pFrame->nMem ); 5211 pMem = &pFrame->aMem[pOp->p3]; 5212 }else{ 5213 /* Assert that P3 is a valid memory cell. */ 5214 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5215 pMem = &aMem[pOp->p3]; 5216 memAboutToChange(p, pMem); 5217 } 5218 assert( memIsValid(pMem) ); 5219 5220 REGISTER_TRACE(pOp->p3, pMem); 5221 sqlite3VdbeMemIntegerify(pMem); 5222 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5223 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5224 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5225 goto abort_due_to_error; 5226 } 5227 if( v<pMem->u.i+1 ){ 5228 v = pMem->u.i + 1; 5229 } 5230 pMem->u.i = v; 5231 } 5232 #endif 5233 if( pC->useRandomRowid ){ 5234 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5235 ** largest possible integer (9223372036854775807) then the database 5236 ** engine starts picking positive candidate ROWIDs at random until 5237 ** it finds one that is not previously used. */ 5238 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5239 ** an AUTOINCREMENT table. */ 5240 cnt = 0; 5241 do{ 5242 sqlite3_randomness(sizeof(v), &v); 5243 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5244 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5245 0, &res))==SQLITE_OK) 5246 && (res==0) 5247 && (++cnt<100)); 5248 if( rc ) goto abort_due_to_error; 5249 if( res==0 ){ 5250 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5251 goto abort_due_to_error; 5252 } 5253 assert( v>0 ); /* EV: R-40812-03570 */ 5254 } 5255 pC->deferredMoveto = 0; 5256 pC->cacheStatus = CACHE_STALE; 5257 } 5258 pOut->u.i = v; 5259 break; 5260 } 5261 5262 /* Opcode: Insert P1 P2 P3 P4 P5 5263 ** Synopsis: intkey=r[P3] data=r[P2] 5264 ** 5265 ** Write an entry into the table of cursor P1. A new entry is 5266 ** created if it doesn't already exist or the data for an existing 5267 ** entry is overwritten. The data is the value MEM_Blob stored in register 5268 ** number P2. The key is stored in register P3. The key must 5269 ** be a MEM_Int. 5270 ** 5271 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5272 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5273 ** then rowid is stored for subsequent return by the 5274 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5275 ** 5276 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5277 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5278 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5279 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5280 ** 5281 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5282 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5283 ** is part of an INSERT operation. The difference is only important to 5284 ** the update hook. 5285 ** 5286 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5287 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5288 ** following a successful insert. 5289 ** 5290 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5291 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5292 ** and register P2 becomes ephemeral. If the cursor is changed, the 5293 ** value of register P2 will then change. Make sure this does not 5294 ** cause any problems.) 5295 ** 5296 ** This instruction only works on tables. The equivalent instruction 5297 ** for indices is OP_IdxInsert. 5298 */ 5299 case OP_Insert: { 5300 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5301 Mem *pKey; /* MEM cell holding key for the record */ 5302 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5303 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5304 const char *zDb; /* database name - used by the update hook */ 5305 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5306 BtreePayload x; /* Payload to be inserted */ 5307 5308 pData = &aMem[pOp->p2]; 5309 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5310 assert( memIsValid(pData) ); 5311 pC = p->apCsr[pOp->p1]; 5312 assert( pC!=0 ); 5313 assert( pC->eCurType==CURTYPE_BTREE ); 5314 assert( pC->deferredMoveto==0 ); 5315 assert( pC->uc.pCursor!=0 ); 5316 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5317 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5318 REGISTER_TRACE(pOp->p2, pData); 5319 sqlite3VdbeIncrWriteCounter(p, pC); 5320 5321 pKey = &aMem[pOp->p3]; 5322 assert( pKey->flags & MEM_Int ); 5323 assert( memIsValid(pKey) ); 5324 REGISTER_TRACE(pOp->p3, pKey); 5325 x.nKey = pKey->u.i; 5326 5327 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5328 assert( pC->iDb>=0 ); 5329 zDb = db->aDb[pC->iDb].zDbSName; 5330 pTab = pOp->p4.pTab; 5331 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5332 }else{ 5333 pTab = 0; 5334 zDb = 0; 5335 } 5336 5337 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5338 /* Invoke the pre-update hook, if any */ 5339 if( pTab ){ 5340 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5341 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5342 } 5343 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5344 /* Prevent post-update hook from running in cases when it should not */ 5345 pTab = 0; 5346 } 5347 } 5348 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5349 #endif 5350 5351 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5352 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5353 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5354 x.pData = pData->z; 5355 x.nData = pData->n; 5356 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5357 if( pData->flags & MEM_Zero ){ 5358 x.nZero = pData->u.nZero; 5359 }else{ 5360 x.nZero = 0; 5361 } 5362 x.pKey = 0; 5363 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5364 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5365 seekResult 5366 ); 5367 pC->deferredMoveto = 0; 5368 pC->cacheStatus = CACHE_STALE; 5369 5370 /* Invoke the update-hook if required. */ 5371 if( rc ) goto abort_due_to_error; 5372 if( pTab ){ 5373 assert( db->xUpdateCallback!=0 ); 5374 assert( pTab->aCol!=0 ); 5375 db->xUpdateCallback(db->pUpdateArg, 5376 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5377 zDb, pTab->zName, x.nKey); 5378 } 5379 break; 5380 } 5381 5382 /* Opcode: RowCell P1 P2 P3 * * 5383 ** 5384 ** P1 and P2 are both open cursors. Both must be opened on the same type 5385 ** of table - intkey or index. This opcode is used as part of copying 5386 ** the current row from P2 into P1. If the cursors are opened on intkey 5387 ** tables, register P3 contains the rowid to use with the new record in 5388 ** P1. If they are opened on index tables, P3 is not used. 5389 ** 5390 ** This opcode must be followed by either an Insert or InsertIdx opcode 5391 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5392 */ 5393 case OP_RowCell: { 5394 VdbeCursor *pDest; /* Cursor to write to */ 5395 VdbeCursor *pSrc; /* Cursor to read from */ 5396 i64 iKey; /* Rowid value to insert with */ 5397 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5398 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5399 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5400 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5401 pDest = p->apCsr[pOp->p1]; 5402 pSrc = p->apCsr[pOp->p2]; 5403 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5404 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5405 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5406 break; 5407 }; 5408 5409 /* Opcode: Delete P1 P2 P3 P4 P5 5410 ** 5411 ** Delete the record at which the P1 cursor is currently pointing. 5412 ** 5413 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5414 ** the cursor will be left pointing at either the next or the previous 5415 ** record in the table. If it is left pointing at the next record, then 5416 ** the next Next instruction will be a no-op. As a result, in this case 5417 ** it is ok to delete a record from within a Next loop. If 5418 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5419 ** left in an undefined state. 5420 ** 5421 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5422 ** delete one of several associated with deleting a table row and all its 5423 ** associated index entries. Exactly one of those deletes is the "primary" 5424 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5425 ** marked with the AUXDELETE flag. 5426 ** 5427 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5428 ** change count is incremented (otherwise not). 5429 ** 5430 ** P1 must not be pseudo-table. It has to be a real table with 5431 ** multiple rows. 5432 ** 5433 ** If P4 is not NULL then it points to a Table object. In this case either 5434 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5435 ** have been positioned using OP_NotFound prior to invoking this opcode in 5436 ** this case. Specifically, if one is configured, the pre-update hook is 5437 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5438 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5439 ** 5440 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5441 ** of the memory cell that contains the value that the rowid of the row will 5442 ** be set to by the update. 5443 */ 5444 case OP_Delete: { 5445 VdbeCursor *pC; 5446 const char *zDb; 5447 Table *pTab; 5448 int opflags; 5449 5450 opflags = pOp->p2; 5451 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5452 pC = p->apCsr[pOp->p1]; 5453 assert( pC!=0 ); 5454 assert( pC->eCurType==CURTYPE_BTREE ); 5455 assert( pC->uc.pCursor!=0 ); 5456 assert( pC->deferredMoveto==0 ); 5457 sqlite3VdbeIncrWriteCounter(p, pC); 5458 5459 #ifdef SQLITE_DEBUG 5460 if( pOp->p4type==P4_TABLE 5461 && HasRowid(pOp->p4.pTab) 5462 && pOp->p5==0 5463 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5464 ){ 5465 /* If p5 is zero, the seek operation that positioned the cursor prior to 5466 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5467 ** the row that is being deleted */ 5468 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5469 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5470 } 5471 #endif 5472 5473 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5474 ** the name of the db to pass as to it. Also set local pTab to a copy 5475 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5476 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5477 ** VdbeCursor.movetoTarget to the current rowid. */ 5478 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5479 assert( pC->iDb>=0 ); 5480 assert( pOp->p4.pTab!=0 ); 5481 zDb = db->aDb[pC->iDb].zDbSName; 5482 pTab = pOp->p4.pTab; 5483 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5484 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5485 } 5486 }else{ 5487 zDb = 0; 5488 pTab = 0; 5489 } 5490 5491 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5492 /* Invoke the pre-update-hook if required. */ 5493 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5494 if( db->xPreUpdateCallback && pTab ){ 5495 assert( !(opflags & OPFLAG_ISUPDATE) 5496 || HasRowid(pTab)==0 5497 || (aMem[pOp->p3].flags & MEM_Int) 5498 ); 5499 sqlite3VdbePreUpdateHook(p, pC, 5500 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5501 zDb, pTab, pC->movetoTarget, 5502 pOp->p3, -1 5503 ); 5504 } 5505 if( opflags & OPFLAG_ISNOOP ) break; 5506 #endif 5507 5508 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5509 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5510 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5511 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5512 5513 #ifdef SQLITE_DEBUG 5514 if( p->pFrame==0 ){ 5515 if( pC->isEphemeral==0 5516 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5517 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5518 ){ 5519 nExtraDelete++; 5520 } 5521 if( pOp->p2 & OPFLAG_NCHANGE ){ 5522 nExtraDelete--; 5523 } 5524 } 5525 #endif 5526 5527 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5528 pC->cacheStatus = CACHE_STALE; 5529 pC->seekResult = 0; 5530 if( rc ) goto abort_due_to_error; 5531 5532 /* Invoke the update-hook if required. */ 5533 if( opflags & OPFLAG_NCHANGE ){ 5534 p->nChange++; 5535 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5536 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5537 pC->movetoTarget); 5538 assert( pC->iDb>=0 ); 5539 } 5540 } 5541 5542 break; 5543 } 5544 /* Opcode: ResetCount * * * * * 5545 ** 5546 ** The value of the change counter is copied to the database handle 5547 ** change counter (returned by subsequent calls to sqlite3_changes()). 5548 ** Then the VMs internal change counter resets to 0. 5549 ** This is used by trigger programs. 5550 */ 5551 case OP_ResetCount: { 5552 sqlite3VdbeSetChanges(db, p->nChange); 5553 p->nChange = 0; 5554 break; 5555 } 5556 5557 /* Opcode: SorterCompare P1 P2 P3 P4 5558 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5559 ** 5560 ** P1 is a sorter cursor. This instruction compares a prefix of the 5561 ** record blob in register P3 against a prefix of the entry that 5562 ** the sorter cursor currently points to. Only the first P4 fields 5563 ** of r[P3] and the sorter record are compared. 5564 ** 5565 ** If either P3 or the sorter contains a NULL in one of their significant 5566 ** fields (not counting the P4 fields at the end which are ignored) then 5567 ** the comparison is assumed to be equal. 5568 ** 5569 ** Fall through to next instruction if the two records compare equal to 5570 ** each other. Jump to P2 if they are different. 5571 */ 5572 case OP_SorterCompare: { 5573 VdbeCursor *pC; 5574 int res; 5575 int nKeyCol; 5576 5577 pC = p->apCsr[pOp->p1]; 5578 assert( isSorter(pC) ); 5579 assert( pOp->p4type==P4_INT32 ); 5580 pIn3 = &aMem[pOp->p3]; 5581 nKeyCol = pOp->p4.i; 5582 res = 0; 5583 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5584 VdbeBranchTaken(res!=0,2); 5585 if( rc ) goto abort_due_to_error; 5586 if( res ) goto jump_to_p2; 5587 break; 5588 }; 5589 5590 /* Opcode: SorterData P1 P2 P3 * * 5591 ** Synopsis: r[P2]=data 5592 ** 5593 ** Write into register P2 the current sorter data for sorter cursor P1. 5594 ** Then clear the column header cache on cursor P3. 5595 ** 5596 ** This opcode is normally use to move a record out of the sorter and into 5597 ** a register that is the source for a pseudo-table cursor created using 5598 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5599 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5600 ** us from having to issue a separate NullRow instruction to clear that cache. 5601 */ 5602 case OP_SorterData: { 5603 VdbeCursor *pC; 5604 5605 pOut = &aMem[pOp->p2]; 5606 pC = p->apCsr[pOp->p1]; 5607 assert( isSorter(pC) ); 5608 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5609 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5610 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5611 if( rc ) goto abort_due_to_error; 5612 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5613 break; 5614 } 5615 5616 /* Opcode: RowData P1 P2 P3 * * 5617 ** Synopsis: r[P2]=data 5618 ** 5619 ** Write into register P2 the complete row content for the row at 5620 ** which cursor P1 is currently pointing. 5621 ** There is no interpretation of the data. 5622 ** It is just copied onto the P2 register exactly as 5623 ** it is found in the database file. 5624 ** 5625 ** If cursor P1 is an index, then the content is the key of the row. 5626 ** If cursor P2 is a table, then the content extracted is the data. 5627 ** 5628 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5629 ** of a real table, not a pseudo-table. 5630 ** 5631 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5632 ** into the database page. That means that the content of the output 5633 ** register will be invalidated as soon as the cursor moves - including 5634 ** moves caused by other cursors that "save" the current cursors 5635 ** position in order that they can write to the same table. If P3==0 5636 ** then a copy of the data is made into memory. P3!=0 is faster, but 5637 ** P3==0 is safer. 5638 ** 5639 ** If P3!=0 then the content of the P2 register is unsuitable for use 5640 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5641 ** The P2 register content is invalidated by opcodes like OP_Function or 5642 ** by any use of another cursor pointing to the same table. 5643 */ 5644 case OP_RowData: { 5645 VdbeCursor *pC; 5646 BtCursor *pCrsr; 5647 u32 n; 5648 5649 pOut = out2Prerelease(p, pOp); 5650 5651 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5652 pC = p->apCsr[pOp->p1]; 5653 assert( pC!=0 ); 5654 assert( pC->eCurType==CURTYPE_BTREE ); 5655 assert( isSorter(pC)==0 ); 5656 assert( pC->nullRow==0 ); 5657 assert( pC->uc.pCursor!=0 ); 5658 pCrsr = pC->uc.pCursor; 5659 5660 /* The OP_RowData opcodes always follow OP_NotExists or 5661 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5662 ** that might invalidate the cursor. 5663 ** If this where not the case, on of the following assert()s 5664 ** would fail. Should this ever change (because of changes in the code 5665 ** generator) then the fix would be to insert a call to 5666 ** sqlite3VdbeCursorMoveto(). 5667 */ 5668 assert( pC->deferredMoveto==0 ); 5669 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5670 5671 n = sqlite3BtreePayloadSize(pCrsr); 5672 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5673 goto too_big; 5674 } 5675 testcase( n==0 ); 5676 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5677 if( rc ) goto abort_due_to_error; 5678 if( !pOp->p3 ) Deephemeralize(pOut); 5679 UPDATE_MAX_BLOBSIZE(pOut); 5680 REGISTER_TRACE(pOp->p2, pOut); 5681 break; 5682 } 5683 5684 /* Opcode: Rowid P1 P2 * * * 5685 ** Synopsis: r[P2]=rowid 5686 ** 5687 ** Store in register P2 an integer which is the key of the table entry that 5688 ** P1 is currently point to. 5689 ** 5690 ** P1 can be either an ordinary table or a virtual table. There used to 5691 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5692 ** one opcode now works for both table types. 5693 */ 5694 case OP_Rowid: { /* out2 */ 5695 VdbeCursor *pC; 5696 i64 v; 5697 sqlite3_vtab *pVtab; 5698 const sqlite3_module *pModule; 5699 5700 pOut = out2Prerelease(p, pOp); 5701 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5702 pC = p->apCsr[pOp->p1]; 5703 assert( pC!=0 ); 5704 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5705 if( pC->nullRow ){ 5706 pOut->flags = MEM_Null; 5707 break; 5708 }else if( pC->deferredMoveto ){ 5709 v = pC->movetoTarget; 5710 #ifndef SQLITE_OMIT_VIRTUALTABLE 5711 }else if( pC->eCurType==CURTYPE_VTAB ){ 5712 assert( pC->uc.pVCur!=0 ); 5713 pVtab = pC->uc.pVCur->pVtab; 5714 pModule = pVtab->pModule; 5715 assert( pModule->xRowid ); 5716 rc = pModule->xRowid(pC->uc.pVCur, &v); 5717 sqlite3VtabImportErrmsg(p, pVtab); 5718 if( rc ) goto abort_due_to_error; 5719 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5720 }else{ 5721 assert( pC->eCurType==CURTYPE_BTREE ); 5722 assert( pC->uc.pCursor!=0 ); 5723 rc = sqlite3VdbeCursorRestore(pC); 5724 if( rc ) goto abort_due_to_error; 5725 if( pC->nullRow ){ 5726 pOut->flags = MEM_Null; 5727 break; 5728 } 5729 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5730 } 5731 pOut->u.i = v; 5732 break; 5733 } 5734 5735 /* Opcode: NullRow P1 * * * * 5736 ** 5737 ** Move the cursor P1 to a null row. Any OP_Column operations 5738 ** that occur while the cursor is on the null row will always 5739 ** write a NULL. 5740 ** 5741 ** Or, if P1 is a Pseudo-Cursor (a cursor opened using OP_OpenPseudo) 5742 ** just reset the cache for that cursor. This causes the row of 5743 ** content held by the pseudo-cursor to be reparsed. 5744 */ 5745 case OP_NullRow: { 5746 VdbeCursor *pC; 5747 5748 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5749 pC = p->apCsr[pOp->p1]; 5750 assert( pC!=0 ); 5751 pC->nullRow = 1; 5752 pC->cacheStatus = CACHE_STALE; 5753 if( pC->eCurType==CURTYPE_BTREE ){ 5754 assert( pC->uc.pCursor!=0 ); 5755 sqlite3BtreeClearCursor(pC->uc.pCursor); 5756 } 5757 #ifdef SQLITE_DEBUG 5758 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5759 #endif 5760 break; 5761 } 5762 5763 /* Opcode: SeekEnd P1 * * * * 5764 ** 5765 ** Position cursor P1 at the end of the btree for the purpose of 5766 ** appending a new entry onto the btree. 5767 ** 5768 ** It is assumed that the cursor is used only for appending and so 5769 ** if the cursor is valid, then the cursor must already be pointing 5770 ** at the end of the btree and so no changes are made to 5771 ** the cursor. 5772 */ 5773 /* Opcode: Last P1 P2 * * * 5774 ** 5775 ** The next use of the Rowid or Column or Prev instruction for P1 5776 ** will refer to the last entry in the database table or index. 5777 ** If the table or index is empty and P2>0, then jump immediately to P2. 5778 ** If P2 is 0 or if the table or index is not empty, fall through 5779 ** to the following instruction. 5780 ** 5781 ** This opcode leaves the cursor configured to move in reverse order, 5782 ** from the end toward the beginning. In other words, the cursor is 5783 ** configured to use Prev, not Next. 5784 */ 5785 case OP_SeekEnd: 5786 case OP_Last: { /* jump */ 5787 VdbeCursor *pC; 5788 BtCursor *pCrsr; 5789 int res; 5790 5791 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5792 pC = p->apCsr[pOp->p1]; 5793 assert( pC!=0 ); 5794 assert( pC->eCurType==CURTYPE_BTREE ); 5795 pCrsr = pC->uc.pCursor; 5796 res = 0; 5797 assert( pCrsr!=0 ); 5798 #ifdef SQLITE_DEBUG 5799 pC->seekOp = pOp->opcode; 5800 #endif 5801 if( pOp->opcode==OP_SeekEnd ){ 5802 assert( pOp->p2==0 ); 5803 pC->seekResult = -1; 5804 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5805 break; 5806 } 5807 } 5808 rc = sqlite3BtreeLast(pCrsr, &res); 5809 pC->nullRow = (u8)res; 5810 pC->deferredMoveto = 0; 5811 pC->cacheStatus = CACHE_STALE; 5812 if( rc ) goto abort_due_to_error; 5813 if( pOp->p2>0 ){ 5814 VdbeBranchTaken(res!=0,2); 5815 if( res ) goto jump_to_p2; 5816 } 5817 break; 5818 } 5819 5820 /* Opcode: IfSmaller P1 P2 P3 * * 5821 ** 5822 ** Estimate the number of rows in the table P1. Jump to P2 if that 5823 ** estimate is less than approximately 2**(0.1*P3). 5824 */ 5825 case OP_IfSmaller: { /* jump */ 5826 VdbeCursor *pC; 5827 BtCursor *pCrsr; 5828 int res; 5829 i64 sz; 5830 5831 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5832 pC = p->apCsr[pOp->p1]; 5833 assert( pC!=0 ); 5834 pCrsr = pC->uc.pCursor; 5835 assert( pCrsr ); 5836 rc = sqlite3BtreeFirst(pCrsr, &res); 5837 if( rc ) goto abort_due_to_error; 5838 if( res==0 ){ 5839 sz = sqlite3BtreeRowCountEst(pCrsr); 5840 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5841 } 5842 VdbeBranchTaken(res!=0,2); 5843 if( res ) goto jump_to_p2; 5844 break; 5845 } 5846 5847 5848 /* Opcode: SorterSort P1 P2 * * * 5849 ** 5850 ** After all records have been inserted into the Sorter object 5851 ** identified by P1, invoke this opcode to actually do the sorting. 5852 ** Jump to P2 if there are no records to be sorted. 5853 ** 5854 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5855 ** for Sorter objects. 5856 */ 5857 /* Opcode: Sort P1 P2 * * * 5858 ** 5859 ** This opcode does exactly the same thing as OP_Rewind except that 5860 ** it increments an undocumented global variable used for testing. 5861 ** 5862 ** Sorting is accomplished by writing records into a sorting index, 5863 ** then rewinding that index and playing it back from beginning to 5864 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5865 ** rewinding so that the global variable will be incremented and 5866 ** regression tests can determine whether or not the optimizer is 5867 ** correctly optimizing out sorts. 5868 */ 5869 case OP_SorterSort: /* jump */ 5870 case OP_Sort: { /* jump */ 5871 #ifdef SQLITE_TEST 5872 sqlite3_sort_count++; 5873 sqlite3_search_count--; 5874 #endif 5875 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5876 /* Fall through into OP_Rewind */ 5877 /* no break */ deliberate_fall_through 5878 } 5879 /* Opcode: Rewind P1 P2 * * * 5880 ** 5881 ** The next use of the Rowid or Column or Next instruction for P1 5882 ** will refer to the first entry in the database table or index. 5883 ** If the table or index is empty, jump immediately to P2. 5884 ** If the table or index is not empty, fall through to the following 5885 ** instruction. 5886 ** 5887 ** This opcode leaves the cursor configured to move in forward order, 5888 ** from the beginning toward the end. In other words, the cursor is 5889 ** configured to use Next, not Prev. 5890 */ 5891 case OP_Rewind: { /* jump */ 5892 VdbeCursor *pC; 5893 BtCursor *pCrsr; 5894 int res; 5895 5896 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5897 assert( pOp->p5==0 ); 5898 pC = p->apCsr[pOp->p1]; 5899 assert( pC!=0 ); 5900 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5901 res = 1; 5902 #ifdef SQLITE_DEBUG 5903 pC->seekOp = OP_Rewind; 5904 #endif 5905 if( isSorter(pC) ){ 5906 rc = sqlite3VdbeSorterRewind(pC, &res); 5907 }else{ 5908 assert( pC->eCurType==CURTYPE_BTREE ); 5909 pCrsr = pC->uc.pCursor; 5910 assert( pCrsr ); 5911 rc = sqlite3BtreeFirst(pCrsr, &res); 5912 pC->deferredMoveto = 0; 5913 pC->cacheStatus = CACHE_STALE; 5914 } 5915 if( rc ) goto abort_due_to_error; 5916 pC->nullRow = (u8)res; 5917 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5918 VdbeBranchTaken(res!=0,2); 5919 if( res ) goto jump_to_p2; 5920 break; 5921 } 5922 5923 /* Opcode: Next P1 P2 P3 * P5 5924 ** 5925 ** Advance cursor P1 so that it points to the next key/data pair in its 5926 ** table or index. If there are no more key/value pairs then fall through 5927 ** to the following instruction. But if the cursor advance was successful, 5928 ** jump immediately to P2. 5929 ** 5930 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5931 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5932 ** to follow SeekLT, SeekLE, or OP_Last. 5933 ** 5934 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5935 ** been opened prior to this opcode or the program will segfault. 5936 ** 5937 ** The P3 value is a hint to the btree implementation. If P3==1, that 5938 ** means P1 is an SQL index and that this instruction could have been 5939 ** omitted if that index had been unique. P3 is usually 0. P3 is 5940 ** always either 0 or 1. 5941 ** 5942 ** If P5 is positive and the jump is taken, then event counter 5943 ** number P5-1 in the prepared statement is incremented. 5944 ** 5945 ** See also: Prev 5946 */ 5947 /* Opcode: Prev P1 P2 P3 * P5 5948 ** 5949 ** Back up cursor P1 so that it points to the previous key/data pair in its 5950 ** table or index. If there is no previous key/value pairs then fall through 5951 ** to the following instruction. But if the cursor backup was successful, 5952 ** jump immediately to P2. 5953 ** 5954 ** 5955 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5956 ** OP_Last opcode used to position the cursor. Prev is not allowed 5957 ** to follow SeekGT, SeekGE, or OP_Rewind. 5958 ** 5959 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5960 ** not open then the behavior is undefined. 5961 ** 5962 ** The P3 value is a hint to the btree implementation. If P3==1, that 5963 ** means P1 is an SQL index and that this instruction could have been 5964 ** omitted if that index had been unique. P3 is usually 0. P3 is 5965 ** always either 0 or 1. 5966 ** 5967 ** If P5 is positive and the jump is taken, then event counter 5968 ** number P5-1 in the prepared statement is incremented. 5969 */ 5970 /* Opcode: SorterNext P1 P2 * * P5 5971 ** 5972 ** This opcode works just like OP_Next except that P1 must be a 5973 ** sorter object for which the OP_SorterSort opcode has been 5974 ** invoked. This opcode advances the cursor to the next sorted 5975 ** record, or jumps to P2 if there are no more sorted records. 5976 */ 5977 case OP_SorterNext: { /* jump */ 5978 VdbeCursor *pC; 5979 5980 pC = p->apCsr[pOp->p1]; 5981 assert( isSorter(pC) ); 5982 rc = sqlite3VdbeSorterNext(db, pC); 5983 goto next_tail; 5984 5985 case OP_Prev: /* jump */ 5986 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5987 assert( pOp->p5<ArraySize(p->aCounter) ); 5988 pC = p->apCsr[pOp->p1]; 5989 assert( pC!=0 ); 5990 assert( pC->deferredMoveto==0 ); 5991 assert( pC->eCurType==CURTYPE_BTREE ); 5992 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5993 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5994 || pC->seekOp==OP_NullRow); 5995 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 5996 goto next_tail; 5997 5998 case OP_Next: /* jump */ 5999 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6000 assert( pOp->p5<ArraySize(p->aCounter) ); 6001 pC = p->apCsr[pOp->p1]; 6002 assert( pC!=0 ); 6003 assert( pC->deferredMoveto==0 ); 6004 assert( pC->eCurType==CURTYPE_BTREE ); 6005 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 6006 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 6007 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 6008 || pC->seekOp==OP_IfNoHope); 6009 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 6010 6011 next_tail: 6012 pC->cacheStatus = CACHE_STALE; 6013 VdbeBranchTaken(rc==SQLITE_OK,2); 6014 if( rc==SQLITE_OK ){ 6015 pC->nullRow = 0; 6016 p->aCounter[pOp->p5]++; 6017 #ifdef SQLITE_TEST 6018 sqlite3_search_count++; 6019 #endif 6020 goto jump_to_p2_and_check_for_interrupt; 6021 } 6022 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6023 rc = SQLITE_OK; 6024 pC->nullRow = 1; 6025 goto check_for_interrupt; 6026 } 6027 6028 /* Opcode: IdxInsert P1 P2 P3 P4 P5 6029 ** Synopsis: key=r[P2] 6030 ** 6031 ** Register P2 holds an SQL index key made using the 6032 ** MakeRecord instructions. This opcode writes that key 6033 ** into the index P1. Data for the entry is nil. 6034 ** 6035 ** If P4 is not zero, then it is the number of values in the unpacked 6036 ** key of reg(P2). In that case, P3 is the index of the first register 6037 ** for the unpacked key. The availability of the unpacked key can sometimes 6038 ** be an optimization. 6039 ** 6040 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 6041 ** that this insert is likely to be an append. 6042 ** 6043 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 6044 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 6045 ** then the change counter is unchanged. 6046 ** 6047 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 6048 ** run faster by avoiding an unnecessary seek on cursor P1. However, 6049 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 6050 ** seeks on the cursor or if the most recent seek used a key equivalent 6051 ** to P2. 6052 ** 6053 ** This instruction only works for indices. The equivalent instruction 6054 ** for tables is OP_Insert. 6055 */ 6056 case OP_IdxInsert: { /* in2 */ 6057 VdbeCursor *pC; 6058 BtreePayload x; 6059 6060 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6061 pC = p->apCsr[pOp->p1]; 6062 sqlite3VdbeIncrWriteCounter(p, pC); 6063 assert( pC!=0 ); 6064 assert( !isSorter(pC) ); 6065 pIn2 = &aMem[pOp->p2]; 6066 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6067 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6068 assert( pC->eCurType==CURTYPE_BTREE ); 6069 assert( pC->isTable==0 ); 6070 rc = ExpandBlob(pIn2); 6071 if( rc ) goto abort_due_to_error; 6072 x.nKey = pIn2->n; 6073 x.pKey = pIn2->z; 6074 x.aMem = aMem + pOp->p3; 6075 x.nMem = (u16)pOp->p4.i; 6076 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6077 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6078 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6079 ); 6080 assert( pC->deferredMoveto==0 ); 6081 pC->cacheStatus = CACHE_STALE; 6082 if( rc) goto abort_due_to_error; 6083 break; 6084 } 6085 6086 /* Opcode: SorterInsert P1 P2 * * * 6087 ** Synopsis: key=r[P2] 6088 ** 6089 ** Register P2 holds an SQL index key made using the 6090 ** MakeRecord instructions. This opcode writes that key 6091 ** into the sorter P1. Data for the entry is nil. 6092 */ 6093 case OP_SorterInsert: { /* in2 */ 6094 VdbeCursor *pC; 6095 6096 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6097 pC = p->apCsr[pOp->p1]; 6098 sqlite3VdbeIncrWriteCounter(p, pC); 6099 assert( pC!=0 ); 6100 assert( isSorter(pC) ); 6101 pIn2 = &aMem[pOp->p2]; 6102 assert( pIn2->flags & MEM_Blob ); 6103 assert( pC->isTable==0 ); 6104 rc = ExpandBlob(pIn2); 6105 if( rc ) goto abort_due_to_error; 6106 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6107 if( rc) goto abort_due_to_error; 6108 break; 6109 } 6110 6111 /* Opcode: IdxDelete P1 P2 P3 * P5 6112 ** Synopsis: key=r[P2@P3] 6113 ** 6114 ** The content of P3 registers starting at register P2 form 6115 ** an unpacked index key. This opcode removes that entry from the 6116 ** index opened by cursor P1. 6117 ** 6118 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6119 ** if no matching index entry is found. This happens when running 6120 ** an UPDATE or DELETE statement and the index entry to be updated 6121 ** or deleted is not found. For some uses of IdxDelete 6122 ** (example: the EXCEPT operator) it does not matter that no matching 6123 ** entry is found. For those cases, P5 is zero. Also, do not raise 6124 ** this (self-correcting and non-critical) error if in writable_schema mode. 6125 */ 6126 case OP_IdxDelete: { 6127 VdbeCursor *pC; 6128 BtCursor *pCrsr; 6129 int res; 6130 UnpackedRecord r; 6131 6132 assert( pOp->p3>0 ); 6133 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6134 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6135 pC = p->apCsr[pOp->p1]; 6136 assert( pC!=0 ); 6137 assert( pC->eCurType==CURTYPE_BTREE ); 6138 sqlite3VdbeIncrWriteCounter(p, pC); 6139 pCrsr = pC->uc.pCursor; 6140 assert( pCrsr!=0 ); 6141 r.pKeyInfo = pC->pKeyInfo; 6142 r.nField = (u16)pOp->p3; 6143 r.default_rc = 0; 6144 r.aMem = &aMem[pOp->p2]; 6145 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6146 if( rc ) goto abort_due_to_error; 6147 if( res==0 ){ 6148 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6149 if( rc ) goto abort_due_to_error; 6150 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6151 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6152 goto abort_due_to_error; 6153 } 6154 assert( pC->deferredMoveto==0 ); 6155 pC->cacheStatus = CACHE_STALE; 6156 pC->seekResult = 0; 6157 break; 6158 } 6159 6160 /* Opcode: DeferredSeek P1 * P3 P4 * 6161 ** Synopsis: Move P3 to P1.rowid if needed 6162 ** 6163 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6164 ** table. This opcode does a deferred seek of the P3 table cursor 6165 ** to the row that corresponds to the current row of P1. 6166 ** 6167 ** This is a deferred seek. Nothing actually happens until 6168 ** the cursor is used to read a record. That way, if no reads 6169 ** occur, no unnecessary I/O happens. 6170 ** 6171 ** P4 may be an array of integers (type P4_INTARRAY) containing 6172 ** one entry for each column in the P3 table. If array entry a(i) 6173 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6174 ** equivalent to performing the deferred seek and then reading column i 6175 ** from P1. This information is stored in P3 and used to redirect 6176 ** reads against P3 over to P1, thus possibly avoiding the need to 6177 ** seek and read cursor P3. 6178 */ 6179 /* Opcode: IdxRowid P1 P2 * * * 6180 ** Synopsis: r[P2]=rowid 6181 ** 6182 ** Write into register P2 an integer which is the last entry in the record at 6183 ** the end of the index key pointed to by cursor P1. This integer should be 6184 ** the rowid of the table entry to which this index entry points. 6185 ** 6186 ** See also: Rowid, MakeRecord. 6187 */ 6188 case OP_DeferredSeek: 6189 case OP_IdxRowid: { /* out2 */ 6190 VdbeCursor *pC; /* The P1 index cursor */ 6191 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6192 i64 rowid; /* Rowid that P1 current points to */ 6193 6194 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6195 pC = p->apCsr[pOp->p1]; 6196 assert( pC!=0 ); 6197 assert( pC->eCurType==CURTYPE_BTREE ); 6198 assert( pC->uc.pCursor!=0 ); 6199 assert( pC->isTable==0 ); 6200 assert( pC->deferredMoveto==0 ); 6201 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6202 6203 /* The IdxRowid and Seek opcodes are combined because of the commonality 6204 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6205 rc = sqlite3VdbeCursorRestore(pC); 6206 6207 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 6208 ** out from under the cursor. That will never happens for an IdxRowid 6209 ** or Seek opcode */ 6210 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 6211 6212 if( !pC->nullRow ){ 6213 rowid = 0; /* Not needed. Only used to silence a warning. */ 6214 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6215 if( rc!=SQLITE_OK ){ 6216 goto abort_due_to_error; 6217 } 6218 if( pOp->opcode==OP_DeferredSeek ){ 6219 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6220 pTabCur = p->apCsr[pOp->p3]; 6221 assert( pTabCur!=0 ); 6222 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6223 assert( pTabCur->uc.pCursor!=0 ); 6224 assert( pTabCur->isTable ); 6225 pTabCur->nullRow = 0; 6226 pTabCur->movetoTarget = rowid; 6227 pTabCur->deferredMoveto = 1; 6228 pTabCur->cacheStatus = CACHE_STALE; 6229 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6230 assert( !pTabCur->isEphemeral ); 6231 pTabCur->ub.aAltMap = pOp->p4.ai; 6232 assert( !pC->isEphemeral ); 6233 pTabCur->pAltCursor = pC; 6234 }else{ 6235 pOut = out2Prerelease(p, pOp); 6236 pOut->u.i = rowid; 6237 } 6238 }else{ 6239 assert( pOp->opcode==OP_IdxRowid ); 6240 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6241 } 6242 break; 6243 } 6244 6245 /* Opcode: FinishSeek P1 * * * * 6246 ** 6247 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6248 ** seek operation now, without further delay. If the cursor seek has 6249 ** already occurred, this instruction is a no-op. 6250 */ 6251 case OP_FinishSeek: { 6252 VdbeCursor *pC; /* The P1 index cursor */ 6253 6254 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6255 pC = p->apCsr[pOp->p1]; 6256 if( pC->deferredMoveto ){ 6257 rc = sqlite3VdbeFinishMoveto(pC); 6258 if( rc ) goto abort_due_to_error; 6259 } 6260 break; 6261 } 6262 6263 /* Opcode: IdxGE P1 P2 P3 P4 * 6264 ** Synopsis: key=r[P3@P4] 6265 ** 6266 ** The P4 register values beginning with P3 form an unpacked index 6267 ** key that omits the PRIMARY KEY. Compare this key value against the index 6268 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6269 ** fields at the end. 6270 ** 6271 ** If the P1 index entry is greater than or equal to the key value 6272 ** then jump to P2. Otherwise fall through to the next instruction. 6273 */ 6274 /* Opcode: IdxGT P1 P2 P3 P4 * 6275 ** Synopsis: key=r[P3@P4] 6276 ** 6277 ** The P4 register values beginning with P3 form an unpacked index 6278 ** key that omits the PRIMARY KEY. Compare this key value against the index 6279 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6280 ** fields at the end. 6281 ** 6282 ** If the P1 index entry is greater than the key value 6283 ** then jump to P2. Otherwise fall through to the next instruction. 6284 */ 6285 /* Opcode: IdxLT P1 P2 P3 P4 * 6286 ** Synopsis: key=r[P3@P4] 6287 ** 6288 ** The P4 register values beginning with P3 form an unpacked index 6289 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6290 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6291 ** ROWID on the P1 index. 6292 ** 6293 ** If the P1 index entry is less than the key value then jump to P2. 6294 ** Otherwise fall through to the next instruction. 6295 */ 6296 /* Opcode: IdxLE P1 P2 P3 P4 * 6297 ** Synopsis: key=r[P3@P4] 6298 ** 6299 ** The P4 register values beginning with P3 form an unpacked index 6300 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6301 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6302 ** ROWID on the P1 index. 6303 ** 6304 ** If the P1 index entry is less than or equal to the key value then jump 6305 ** to P2. Otherwise fall through to the next instruction. 6306 */ 6307 case OP_IdxLE: /* jump */ 6308 case OP_IdxGT: /* jump */ 6309 case OP_IdxLT: /* jump */ 6310 case OP_IdxGE: { /* jump */ 6311 VdbeCursor *pC; 6312 int res; 6313 UnpackedRecord r; 6314 6315 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6316 pC = p->apCsr[pOp->p1]; 6317 assert( pC!=0 ); 6318 assert( pC->isOrdered ); 6319 assert( pC->eCurType==CURTYPE_BTREE ); 6320 assert( pC->uc.pCursor!=0); 6321 assert( pC->deferredMoveto==0 ); 6322 assert( pOp->p4type==P4_INT32 ); 6323 r.pKeyInfo = pC->pKeyInfo; 6324 r.nField = (u16)pOp->p4.i; 6325 if( pOp->opcode<OP_IdxLT ){ 6326 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6327 r.default_rc = -1; 6328 }else{ 6329 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6330 r.default_rc = 0; 6331 } 6332 r.aMem = &aMem[pOp->p3]; 6333 #ifdef SQLITE_DEBUG 6334 { 6335 int i; 6336 for(i=0; i<r.nField; i++){ 6337 assert( memIsValid(&r.aMem[i]) ); 6338 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6339 } 6340 } 6341 #endif 6342 6343 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6344 { 6345 i64 nCellKey = 0; 6346 BtCursor *pCur; 6347 Mem m; 6348 6349 assert( pC->eCurType==CURTYPE_BTREE ); 6350 pCur = pC->uc.pCursor; 6351 assert( sqlite3BtreeCursorIsValid(pCur) ); 6352 nCellKey = sqlite3BtreePayloadSize(pCur); 6353 /* nCellKey will always be between 0 and 0xffffffff because of the way 6354 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6355 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6356 rc = SQLITE_CORRUPT_BKPT; 6357 goto abort_due_to_error; 6358 } 6359 sqlite3VdbeMemInit(&m, db, 0); 6360 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6361 if( rc ) goto abort_due_to_error; 6362 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6363 sqlite3VdbeMemReleaseMalloc(&m); 6364 } 6365 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6366 6367 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6368 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6369 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6370 res = -res; 6371 }else{ 6372 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6373 res++; 6374 } 6375 VdbeBranchTaken(res>0,2); 6376 assert( rc==SQLITE_OK ); 6377 if( res>0 ) goto jump_to_p2; 6378 break; 6379 } 6380 6381 /* Opcode: Destroy P1 P2 P3 * * 6382 ** 6383 ** Delete an entire database table or index whose root page in the database 6384 ** file is given by P1. 6385 ** 6386 ** The table being destroyed is in the main database file if P3==0. If 6387 ** P3==1 then the table to be clear is in the auxiliary database file 6388 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6389 ** 6390 ** If AUTOVACUUM is enabled then it is possible that another root page 6391 ** might be moved into the newly deleted root page in order to keep all 6392 ** root pages contiguous at the beginning of the database. The former 6393 ** value of the root page that moved - its value before the move occurred - 6394 ** is stored in register P2. If no page movement was required (because the 6395 ** table being dropped was already the last one in the database) then a 6396 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6397 ** is stored in register P2. 6398 ** 6399 ** This opcode throws an error if there are any active reader VMs when 6400 ** it is invoked. This is done to avoid the difficulty associated with 6401 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6402 ** database. This error is thrown even if the database is not an AUTOVACUUM 6403 ** db in order to avoid introducing an incompatibility between autovacuum 6404 ** and non-autovacuum modes. 6405 ** 6406 ** See also: Clear 6407 */ 6408 case OP_Destroy: { /* out2 */ 6409 int iMoved; 6410 int iDb; 6411 6412 sqlite3VdbeIncrWriteCounter(p, 0); 6413 assert( p->readOnly==0 ); 6414 assert( pOp->p1>1 ); 6415 pOut = out2Prerelease(p, pOp); 6416 pOut->flags = MEM_Null; 6417 if( db->nVdbeRead > db->nVDestroy+1 ){ 6418 rc = SQLITE_LOCKED; 6419 p->errorAction = OE_Abort; 6420 goto abort_due_to_error; 6421 }else{ 6422 iDb = pOp->p3; 6423 assert( DbMaskTest(p->btreeMask, iDb) ); 6424 iMoved = 0; /* Not needed. Only to silence a warning. */ 6425 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6426 pOut->flags = MEM_Int; 6427 pOut->u.i = iMoved; 6428 if( rc ) goto abort_due_to_error; 6429 #ifndef SQLITE_OMIT_AUTOVACUUM 6430 if( iMoved!=0 ){ 6431 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6432 /* All OP_Destroy operations occur on the same btree */ 6433 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6434 resetSchemaOnFault = iDb+1; 6435 } 6436 #endif 6437 } 6438 break; 6439 } 6440 6441 /* Opcode: Clear P1 P2 P3 6442 ** 6443 ** Delete all contents of the database table or index whose root page 6444 ** in the database file is given by P1. But, unlike Destroy, do not 6445 ** remove the table or index from the database file. 6446 ** 6447 ** The table being clear is in the main database file if P2==0. If 6448 ** P2==1 then the table to be clear is in the auxiliary database file 6449 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6450 ** 6451 ** If the P3 value is non-zero, then the row change count is incremented 6452 ** by the number of rows in the table being cleared. If P3 is greater 6453 ** than zero, then the value stored in register P3 is also incremented 6454 ** by the number of rows in the table being cleared. 6455 ** 6456 ** See also: Destroy 6457 */ 6458 case OP_Clear: { 6459 i64 nChange; 6460 6461 sqlite3VdbeIncrWriteCounter(p, 0); 6462 nChange = 0; 6463 assert( p->readOnly==0 ); 6464 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6465 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6466 if( pOp->p3 ){ 6467 p->nChange += nChange; 6468 if( pOp->p3>0 ){ 6469 assert( memIsValid(&aMem[pOp->p3]) ); 6470 memAboutToChange(p, &aMem[pOp->p3]); 6471 aMem[pOp->p3].u.i += nChange; 6472 } 6473 } 6474 if( rc ) goto abort_due_to_error; 6475 break; 6476 } 6477 6478 /* Opcode: ResetSorter P1 * * * * 6479 ** 6480 ** Delete all contents from the ephemeral table or sorter 6481 ** that is open on cursor P1. 6482 ** 6483 ** This opcode only works for cursors used for sorting and 6484 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6485 */ 6486 case OP_ResetSorter: { 6487 VdbeCursor *pC; 6488 6489 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6490 pC = p->apCsr[pOp->p1]; 6491 assert( pC!=0 ); 6492 if( isSorter(pC) ){ 6493 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6494 }else{ 6495 assert( pC->eCurType==CURTYPE_BTREE ); 6496 assert( pC->isEphemeral ); 6497 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6498 if( rc ) goto abort_due_to_error; 6499 } 6500 break; 6501 } 6502 6503 /* Opcode: CreateBtree P1 P2 P3 * * 6504 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6505 ** 6506 ** Allocate a new b-tree in the main database file if P1==0 or in the 6507 ** TEMP database file if P1==1 or in an attached database if 6508 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6509 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6510 ** The root page number of the new b-tree is stored in register P2. 6511 */ 6512 case OP_CreateBtree: { /* out2 */ 6513 Pgno pgno; 6514 Db *pDb; 6515 6516 sqlite3VdbeIncrWriteCounter(p, 0); 6517 pOut = out2Prerelease(p, pOp); 6518 pgno = 0; 6519 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6520 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6521 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6522 assert( p->readOnly==0 ); 6523 pDb = &db->aDb[pOp->p1]; 6524 assert( pDb->pBt!=0 ); 6525 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6526 if( rc ) goto abort_due_to_error; 6527 pOut->u.i = pgno; 6528 break; 6529 } 6530 6531 /* Opcode: SqlExec * * * P4 * 6532 ** 6533 ** Run the SQL statement or statements specified in the P4 string. 6534 */ 6535 case OP_SqlExec: { 6536 sqlite3VdbeIncrWriteCounter(p, 0); 6537 db->nSqlExec++; 6538 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6539 db->nSqlExec--; 6540 if( rc ) goto abort_due_to_error; 6541 break; 6542 } 6543 6544 /* Opcode: ParseSchema P1 * * P4 * 6545 ** 6546 ** Read and parse all entries from the schema table of database P1 6547 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6548 ** entire schema for P1 is reparsed. 6549 ** 6550 ** This opcode invokes the parser to create a new virtual machine, 6551 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6552 */ 6553 case OP_ParseSchema: { 6554 int iDb; 6555 const char *zSchema; 6556 char *zSql; 6557 InitData initData; 6558 6559 /* Any prepared statement that invokes this opcode will hold mutexes 6560 ** on every btree. This is a prerequisite for invoking 6561 ** sqlite3InitCallback(). 6562 */ 6563 #ifdef SQLITE_DEBUG 6564 for(iDb=0; iDb<db->nDb; iDb++){ 6565 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6566 } 6567 #endif 6568 6569 iDb = pOp->p1; 6570 assert( iDb>=0 && iDb<db->nDb ); 6571 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6572 || db->mallocFailed 6573 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6574 6575 #ifndef SQLITE_OMIT_ALTERTABLE 6576 if( pOp->p4.z==0 ){ 6577 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6578 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6579 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6580 db->mDbFlags |= DBFLAG_SchemaChange; 6581 p->expired = 0; 6582 }else 6583 #endif 6584 { 6585 zSchema = LEGACY_SCHEMA_TABLE; 6586 initData.db = db; 6587 initData.iDb = iDb; 6588 initData.pzErrMsg = &p->zErrMsg; 6589 initData.mInitFlags = 0; 6590 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6591 zSql = sqlite3MPrintf(db, 6592 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6593 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6594 if( zSql==0 ){ 6595 rc = SQLITE_NOMEM_BKPT; 6596 }else{ 6597 assert( db->init.busy==0 ); 6598 db->init.busy = 1; 6599 initData.rc = SQLITE_OK; 6600 initData.nInitRow = 0; 6601 assert( !db->mallocFailed ); 6602 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6603 if( rc==SQLITE_OK ) rc = initData.rc; 6604 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6605 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6606 ** at least one SQL statement. Any less than that indicates that 6607 ** the sqlite_schema table is corrupt. */ 6608 rc = SQLITE_CORRUPT_BKPT; 6609 } 6610 sqlite3DbFreeNN(db, zSql); 6611 db->init.busy = 0; 6612 } 6613 } 6614 if( rc ){ 6615 sqlite3ResetAllSchemasOfConnection(db); 6616 if( rc==SQLITE_NOMEM ){ 6617 goto no_mem; 6618 } 6619 goto abort_due_to_error; 6620 } 6621 break; 6622 } 6623 6624 #if !defined(SQLITE_OMIT_ANALYZE) 6625 /* Opcode: LoadAnalysis P1 * * * * 6626 ** 6627 ** Read the sqlite_stat1 table for database P1 and load the content 6628 ** of that table into the internal index hash table. This will cause 6629 ** the analysis to be used when preparing all subsequent queries. 6630 */ 6631 case OP_LoadAnalysis: { 6632 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6633 rc = sqlite3AnalysisLoad(db, pOp->p1); 6634 if( rc ) goto abort_due_to_error; 6635 break; 6636 } 6637 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6638 6639 /* Opcode: DropTable P1 * * P4 * 6640 ** 6641 ** Remove the internal (in-memory) data structures that describe 6642 ** the table named P4 in database P1. This is called after a table 6643 ** is dropped from disk (using the Destroy opcode) in order to keep 6644 ** the internal representation of the 6645 ** schema consistent with what is on disk. 6646 */ 6647 case OP_DropTable: { 6648 sqlite3VdbeIncrWriteCounter(p, 0); 6649 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6650 break; 6651 } 6652 6653 /* Opcode: DropIndex P1 * * P4 * 6654 ** 6655 ** Remove the internal (in-memory) data structures that describe 6656 ** the index named P4 in database P1. This is called after an index 6657 ** is dropped from disk (using the Destroy opcode) 6658 ** in order to keep the internal representation of the 6659 ** schema consistent with what is on disk. 6660 */ 6661 case OP_DropIndex: { 6662 sqlite3VdbeIncrWriteCounter(p, 0); 6663 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6664 break; 6665 } 6666 6667 /* Opcode: DropTrigger P1 * * P4 * 6668 ** 6669 ** Remove the internal (in-memory) data structures that describe 6670 ** the trigger named P4 in database P1. This is called after a trigger 6671 ** is dropped from disk (using the Destroy opcode) in order to keep 6672 ** the internal representation of the 6673 ** schema consistent with what is on disk. 6674 */ 6675 case OP_DropTrigger: { 6676 sqlite3VdbeIncrWriteCounter(p, 0); 6677 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6678 break; 6679 } 6680 6681 6682 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6683 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6684 ** 6685 ** Do an analysis of the currently open database. Store in 6686 ** register P1 the text of an error message describing any problems. 6687 ** If no problems are found, store a NULL in register P1. 6688 ** 6689 ** The register P3 contains one less than the maximum number of allowed errors. 6690 ** At most reg(P3) errors will be reported. 6691 ** In other words, the analysis stops as soon as reg(P1) errors are 6692 ** seen. Reg(P1) is updated with the number of errors remaining. 6693 ** 6694 ** The root page numbers of all tables in the database are integers 6695 ** stored in P4_INTARRAY argument. 6696 ** 6697 ** If P5 is not zero, the check is done on the auxiliary database 6698 ** file, not the main database file. 6699 ** 6700 ** This opcode is used to implement the integrity_check pragma. 6701 */ 6702 case OP_IntegrityCk: { 6703 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6704 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6705 int nErr; /* Number of errors reported */ 6706 char *z; /* Text of the error report */ 6707 Mem *pnErr; /* Register keeping track of errors remaining */ 6708 6709 assert( p->bIsReader ); 6710 nRoot = pOp->p2; 6711 aRoot = pOp->p4.ai; 6712 assert( nRoot>0 ); 6713 assert( aRoot[0]==(Pgno)nRoot ); 6714 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6715 pnErr = &aMem[pOp->p3]; 6716 assert( (pnErr->flags & MEM_Int)!=0 ); 6717 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6718 pIn1 = &aMem[pOp->p1]; 6719 assert( pOp->p5<db->nDb ); 6720 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6721 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6722 (int)pnErr->u.i+1, &nErr); 6723 sqlite3VdbeMemSetNull(pIn1); 6724 if( nErr==0 ){ 6725 assert( z==0 ); 6726 }else if( z==0 ){ 6727 goto no_mem; 6728 }else{ 6729 pnErr->u.i -= nErr-1; 6730 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6731 } 6732 UPDATE_MAX_BLOBSIZE(pIn1); 6733 sqlite3VdbeChangeEncoding(pIn1, encoding); 6734 goto check_for_interrupt; 6735 } 6736 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6737 6738 /* Opcode: RowSetAdd P1 P2 * * * 6739 ** Synopsis: rowset(P1)=r[P2] 6740 ** 6741 ** Insert the integer value held by register P2 into a RowSet object 6742 ** held in register P1. 6743 ** 6744 ** An assertion fails if P2 is not an integer. 6745 */ 6746 case OP_RowSetAdd: { /* in1, in2 */ 6747 pIn1 = &aMem[pOp->p1]; 6748 pIn2 = &aMem[pOp->p2]; 6749 assert( (pIn2->flags & MEM_Int)!=0 ); 6750 if( (pIn1->flags & MEM_Blob)==0 ){ 6751 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6752 } 6753 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6754 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6755 break; 6756 } 6757 6758 /* Opcode: RowSetRead P1 P2 P3 * * 6759 ** Synopsis: r[P3]=rowset(P1) 6760 ** 6761 ** Extract the smallest value from the RowSet object in P1 6762 ** and put that value into register P3. 6763 ** Or, if RowSet object P1 is initially empty, leave P3 6764 ** unchanged and jump to instruction P2. 6765 */ 6766 case OP_RowSetRead: { /* jump, in1, out3 */ 6767 i64 val; 6768 6769 pIn1 = &aMem[pOp->p1]; 6770 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6771 if( (pIn1->flags & MEM_Blob)==0 6772 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6773 ){ 6774 /* The boolean index is empty */ 6775 sqlite3VdbeMemSetNull(pIn1); 6776 VdbeBranchTaken(1,2); 6777 goto jump_to_p2_and_check_for_interrupt; 6778 }else{ 6779 /* A value was pulled from the index */ 6780 VdbeBranchTaken(0,2); 6781 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6782 } 6783 goto check_for_interrupt; 6784 } 6785 6786 /* Opcode: RowSetTest P1 P2 P3 P4 6787 ** Synopsis: if r[P3] in rowset(P1) goto P2 6788 ** 6789 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6790 ** contains a RowSet object and that RowSet object contains 6791 ** the value held in P3, jump to register P2. Otherwise, insert the 6792 ** integer in P3 into the RowSet and continue on to the 6793 ** next opcode. 6794 ** 6795 ** The RowSet object is optimized for the case where sets of integers 6796 ** are inserted in distinct phases, which each set contains no duplicates. 6797 ** Each set is identified by a unique P4 value. The first set 6798 ** must have P4==0, the final set must have P4==-1, and for all other sets 6799 ** must have P4>0. 6800 ** 6801 ** This allows optimizations: (a) when P4==0 there is no need to test 6802 ** the RowSet object for P3, as it is guaranteed not to contain it, 6803 ** (b) when P4==-1 there is no need to insert the value, as it will 6804 ** never be tested for, and (c) when a value that is part of set X is 6805 ** inserted, there is no need to search to see if the same value was 6806 ** previously inserted as part of set X (only if it was previously 6807 ** inserted as part of some other set). 6808 */ 6809 case OP_RowSetTest: { /* jump, in1, in3 */ 6810 int iSet; 6811 int exists; 6812 6813 pIn1 = &aMem[pOp->p1]; 6814 pIn3 = &aMem[pOp->p3]; 6815 iSet = pOp->p4.i; 6816 assert( pIn3->flags&MEM_Int ); 6817 6818 /* If there is anything other than a rowset object in memory cell P1, 6819 ** delete it now and initialize P1 with an empty rowset 6820 */ 6821 if( (pIn1->flags & MEM_Blob)==0 ){ 6822 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6823 } 6824 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6825 assert( pOp->p4type==P4_INT32 ); 6826 assert( iSet==-1 || iSet>=0 ); 6827 if( iSet ){ 6828 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6829 VdbeBranchTaken(exists!=0,2); 6830 if( exists ) goto jump_to_p2; 6831 } 6832 if( iSet>=0 ){ 6833 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6834 } 6835 break; 6836 } 6837 6838 6839 #ifndef SQLITE_OMIT_TRIGGER 6840 6841 /* Opcode: Program P1 P2 P3 P4 P5 6842 ** 6843 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6844 ** 6845 ** P1 contains the address of the memory cell that contains the first memory 6846 ** cell in an array of values used as arguments to the sub-program. P2 6847 ** contains the address to jump to if the sub-program throws an IGNORE 6848 ** exception using the RAISE() function. Register P3 contains the address 6849 ** of a memory cell in this (the parent) VM that is used to allocate the 6850 ** memory required by the sub-vdbe at runtime. 6851 ** 6852 ** P4 is a pointer to the VM containing the trigger program. 6853 ** 6854 ** If P5 is non-zero, then recursive program invocation is enabled. 6855 */ 6856 case OP_Program: { /* jump */ 6857 int nMem; /* Number of memory registers for sub-program */ 6858 int nByte; /* Bytes of runtime space required for sub-program */ 6859 Mem *pRt; /* Register to allocate runtime space */ 6860 Mem *pMem; /* Used to iterate through memory cells */ 6861 Mem *pEnd; /* Last memory cell in new array */ 6862 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6863 SubProgram *pProgram; /* Sub-program to execute */ 6864 void *t; /* Token identifying trigger */ 6865 6866 pProgram = pOp->p4.pProgram; 6867 pRt = &aMem[pOp->p3]; 6868 assert( pProgram->nOp>0 ); 6869 6870 /* If the p5 flag is clear, then recursive invocation of triggers is 6871 ** disabled for backwards compatibility (p5 is set if this sub-program 6872 ** is really a trigger, not a foreign key action, and the flag set 6873 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6874 ** 6875 ** It is recursive invocation of triggers, at the SQL level, that is 6876 ** disabled. In some cases a single trigger may generate more than one 6877 ** SubProgram (if the trigger may be executed with more than one different 6878 ** ON CONFLICT algorithm). SubProgram structures associated with a 6879 ** single trigger all have the same value for the SubProgram.token 6880 ** variable. */ 6881 if( pOp->p5 ){ 6882 t = pProgram->token; 6883 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6884 if( pFrame ) break; 6885 } 6886 6887 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6888 rc = SQLITE_ERROR; 6889 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6890 goto abort_due_to_error; 6891 } 6892 6893 /* Register pRt is used to store the memory required to save the state 6894 ** of the current program, and the memory required at runtime to execute 6895 ** the trigger program. If this trigger has been fired before, then pRt 6896 ** is already allocated. Otherwise, it must be initialized. */ 6897 if( (pRt->flags&MEM_Blob)==0 ){ 6898 /* SubProgram.nMem is set to the number of memory cells used by the 6899 ** program stored in SubProgram.aOp. As well as these, one memory 6900 ** cell is required for each cursor used by the program. Set local 6901 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6902 */ 6903 nMem = pProgram->nMem + pProgram->nCsr; 6904 assert( nMem>0 ); 6905 if( pProgram->nCsr==0 ) nMem++; 6906 nByte = ROUND8(sizeof(VdbeFrame)) 6907 + nMem * sizeof(Mem) 6908 + pProgram->nCsr * sizeof(VdbeCursor*) 6909 + (pProgram->nOp + 7)/8; 6910 pFrame = sqlite3DbMallocZero(db, nByte); 6911 if( !pFrame ){ 6912 goto no_mem; 6913 } 6914 sqlite3VdbeMemRelease(pRt); 6915 pRt->flags = MEM_Blob|MEM_Dyn; 6916 pRt->z = (char*)pFrame; 6917 pRt->n = nByte; 6918 pRt->xDel = sqlite3VdbeFrameMemDel; 6919 6920 pFrame->v = p; 6921 pFrame->nChildMem = nMem; 6922 pFrame->nChildCsr = pProgram->nCsr; 6923 pFrame->pc = (int)(pOp - aOp); 6924 pFrame->aMem = p->aMem; 6925 pFrame->nMem = p->nMem; 6926 pFrame->apCsr = p->apCsr; 6927 pFrame->nCursor = p->nCursor; 6928 pFrame->aOp = p->aOp; 6929 pFrame->nOp = p->nOp; 6930 pFrame->token = pProgram->token; 6931 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6932 pFrame->anExec = p->anExec; 6933 #endif 6934 #ifdef SQLITE_DEBUG 6935 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6936 #endif 6937 6938 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6939 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6940 pMem->flags = MEM_Undefined; 6941 pMem->db = db; 6942 } 6943 }else{ 6944 pFrame = (VdbeFrame*)pRt->z; 6945 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6946 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6947 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6948 assert( pProgram->nCsr==pFrame->nChildCsr ); 6949 assert( (int)(pOp - aOp)==pFrame->pc ); 6950 } 6951 6952 p->nFrame++; 6953 pFrame->pParent = p->pFrame; 6954 pFrame->lastRowid = db->lastRowid; 6955 pFrame->nChange = p->nChange; 6956 pFrame->nDbChange = p->db->nChange; 6957 assert( pFrame->pAuxData==0 ); 6958 pFrame->pAuxData = p->pAuxData; 6959 p->pAuxData = 0; 6960 p->nChange = 0; 6961 p->pFrame = pFrame; 6962 p->aMem = aMem = VdbeFrameMem(pFrame); 6963 p->nMem = pFrame->nChildMem; 6964 p->nCursor = (u16)pFrame->nChildCsr; 6965 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6966 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6967 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6968 p->aOp = aOp = pProgram->aOp; 6969 p->nOp = pProgram->nOp; 6970 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6971 p->anExec = 0; 6972 #endif 6973 #ifdef SQLITE_DEBUG 6974 /* Verify that second and subsequent executions of the same trigger do not 6975 ** try to reuse register values from the first use. */ 6976 { 6977 int i; 6978 for(i=0; i<p->nMem; i++){ 6979 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6980 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6981 } 6982 } 6983 #endif 6984 pOp = &aOp[-1]; 6985 goto check_for_interrupt; 6986 } 6987 6988 /* Opcode: Param P1 P2 * * * 6989 ** 6990 ** This opcode is only ever present in sub-programs called via the 6991 ** OP_Program instruction. Copy a value currently stored in a memory 6992 ** cell of the calling (parent) frame to cell P2 in the current frames 6993 ** address space. This is used by trigger programs to access the new.* 6994 ** and old.* values. 6995 ** 6996 ** The address of the cell in the parent frame is determined by adding 6997 ** the value of the P1 argument to the value of the P1 argument to the 6998 ** calling OP_Program instruction. 6999 */ 7000 case OP_Param: { /* out2 */ 7001 VdbeFrame *pFrame; 7002 Mem *pIn; 7003 pOut = out2Prerelease(p, pOp); 7004 pFrame = p->pFrame; 7005 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 7006 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 7007 break; 7008 } 7009 7010 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 7011 7012 #ifndef SQLITE_OMIT_FOREIGN_KEY 7013 /* Opcode: FkCounter P1 P2 * * * 7014 ** Synopsis: fkctr[P1]+=P2 7015 ** 7016 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 7017 ** If P1 is non-zero, the database constraint counter is incremented 7018 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 7019 ** statement counter is incremented (immediate foreign key constraints). 7020 */ 7021 case OP_FkCounter: { 7022 if( db->flags & SQLITE_DeferFKs ){ 7023 db->nDeferredImmCons += pOp->p2; 7024 }else if( pOp->p1 ){ 7025 db->nDeferredCons += pOp->p2; 7026 }else{ 7027 p->nFkConstraint += pOp->p2; 7028 } 7029 break; 7030 } 7031 7032 /* Opcode: FkIfZero P1 P2 * * * 7033 ** Synopsis: if fkctr[P1]==0 goto P2 7034 ** 7035 ** This opcode tests if a foreign key constraint-counter is currently zero. 7036 ** If so, jump to instruction P2. Otherwise, fall through to the next 7037 ** instruction. 7038 ** 7039 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 7040 ** is zero (the one that counts deferred constraint violations). If P1 is 7041 ** zero, the jump is taken if the statement constraint-counter is zero 7042 ** (immediate foreign key constraint violations). 7043 */ 7044 case OP_FkIfZero: { /* jump */ 7045 if( pOp->p1 ){ 7046 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 7047 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7048 }else{ 7049 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 7050 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7051 } 7052 break; 7053 } 7054 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 7055 7056 #ifndef SQLITE_OMIT_AUTOINCREMENT 7057 /* Opcode: MemMax P1 P2 * * * 7058 ** Synopsis: r[P1]=max(r[P1],r[P2]) 7059 ** 7060 ** P1 is a register in the root frame of this VM (the root frame is 7061 ** different from the current frame if this instruction is being executed 7062 ** within a sub-program). Set the value of register P1 to the maximum of 7063 ** its current value and the value in register P2. 7064 ** 7065 ** This instruction throws an error if the memory cell is not initially 7066 ** an integer. 7067 */ 7068 case OP_MemMax: { /* in2 */ 7069 VdbeFrame *pFrame; 7070 if( p->pFrame ){ 7071 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7072 pIn1 = &pFrame->aMem[pOp->p1]; 7073 }else{ 7074 pIn1 = &aMem[pOp->p1]; 7075 } 7076 assert( memIsValid(pIn1) ); 7077 sqlite3VdbeMemIntegerify(pIn1); 7078 pIn2 = &aMem[pOp->p2]; 7079 sqlite3VdbeMemIntegerify(pIn2); 7080 if( pIn1->u.i<pIn2->u.i){ 7081 pIn1->u.i = pIn2->u.i; 7082 } 7083 break; 7084 } 7085 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7086 7087 /* Opcode: IfPos P1 P2 P3 * * 7088 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7089 ** 7090 ** Register P1 must contain an integer. 7091 ** If the value of register P1 is 1 or greater, subtract P3 from the 7092 ** value in P1 and jump to P2. 7093 ** 7094 ** If the initial value of register P1 is less than 1, then the 7095 ** value is unchanged and control passes through to the next instruction. 7096 */ 7097 case OP_IfPos: { /* jump, in1 */ 7098 pIn1 = &aMem[pOp->p1]; 7099 assert( pIn1->flags&MEM_Int ); 7100 VdbeBranchTaken( pIn1->u.i>0, 2); 7101 if( pIn1->u.i>0 ){ 7102 pIn1->u.i -= pOp->p3; 7103 goto jump_to_p2; 7104 } 7105 break; 7106 } 7107 7108 /* Opcode: OffsetLimit P1 P2 P3 * * 7109 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7110 ** 7111 ** This opcode performs a commonly used computation associated with 7112 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 7113 ** holds the offset counter. The opcode computes the combined value 7114 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7115 ** value computed is the total number of rows that will need to be 7116 ** visited in order to complete the query. 7117 ** 7118 ** If r[P3] is zero or negative, that means there is no OFFSET 7119 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7120 ** 7121 ** if r[P1] is zero or negative, that means there is no LIMIT 7122 ** and r[P2] is set to -1. 7123 ** 7124 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7125 */ 7126 case OP_OffsetLimit: { /* in1, out2, in3 */ 7127 i64 x; 7128 pIn1 = &aMem[pOp->p1]; 7129 pIn3 = &aMem[pOp->p3]; 7130 pOut = out2Prerelease(p, pOp); 7131 assert( pIn1->flags & MEM_Int ); 7132 assert( pIn3->flags & MEM_Int ); 7133 x = pIn1->u.i; 7134 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7135 /* If the LIMIT is less than or equal to zero, loop forever. This 7136 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7137 ** also loop forever. This is undocumented. In fact, one could argue 7138 ** that the loop should terminate. But assuming 1 billion iterations 7139 ** per second (far exceeding the capabilities of any current hardware) 7140 ** it would take nearly 300 years to actually reach the limit. So 7141 ** looping forever is a reasonable approximation. */ 7142 pOut->u.i = -1; 7143 }else{ 7144 pOut->u.i = x; 7145 } 7146 break; 7147 } 7148 7149 /* Opcode: IfNotZero P1 P2 * * * 7150 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7151 ** 7152 ** Register P1 must contain an integer. If the content of register P1 is 7153 ** initially greater than zero, then decrement the value in register P1. 7154 ** If it is non-zero (negative or positive) and then also jump to P2. 7155 ** If register P1 is initially zero, leave it unchanged and fall through. 7156 */ 7157 case OP_IfNotZero: { /* jump, in1 */ 7158 pIn1 = &aMem[pOp->p1]; 7159 assert( pIn1->flags&MEM_Int ); 7160 VdbeBranchTaken(pIn1->u.i<0, 2); 7161 if( pIn1->u.i ){ 7162 if( pIn1->u.i>0 ) pIn1->u.i--; 7163 goto jump_to_p2; 7164 } 7165 break; 7166 } 7167 7168 /* Opcode: DecrJumpZero P1 P2 * * * 7169 ** Synopsis: if (--r[P1])==0 goto P2 7170 ** 7171 ** Register P1 must hold an integer. Decrement the value in P1 7172 ** and jump to P2 if the new value is exactly zero. 7173 */ 7174 case OP_DecrJumpZero: { /* jump, in1 */ 7175 pIn1 = &aMem[pOp->p1]; 7176 assert( pIn1->flags&MEM_Int ); 7177 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7178 VdbeBranchTaken(pIn1->u.i==0, 2); 7179 if( pIn1->u.i==0 ) goto jump_to_p2; 7180 break; 7181 } 7182 7183 7184 /* Opcode: AggStep * P2 P3 P4 P5 7185 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7186 ** 7187 ** Execute the xStep function for an aggregate. 7188 ** The function has P5 arguments. P4 is a pointer to the 7189 ** FuncDef structure that specifies the function. Register P3 is the 7190 ** accumulator. 7191 ** 7192 ** The P5 arguments are taken from register P2 and its 7193 ** successors. 7194 */ 7195 /* Opcode: AggInverse * P2 P3 P4 P5 7196 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7197 ** 7198 ** Execute the xInverse function for an aggregate. 7199 ** The function has P5 arguments. P4 is a pointer to the 7200 ** FuncDef structure that specifies the function. Register P3 is the 7201 ** accumulator. 7202 ** 7203 ** The P5 arguments are taken from register P2 and its 7204 ** successors. 7205 */ 7206 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7207 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7208 ** 7209 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7210 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7211 ** FuncDef structure that specifies the function. Register P3 is the 7212 ** accumulator. 7213 ** 7214 ** The P5 arguments are taken from register P2 and its 7215 ** successors. 7216 ** 7217 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7218 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7219 ** the opcode is changed. In this way, the initialization of the 7220 ** sqlite3_context only happens once, instead of on each call to the 7221 ** step function. 7222 */ 7223 case OP_AggInverse: 7224 case OP_AggStep: { 7225 int n; 7226 sqlite3_context *pCtx; 7227 7228 assert( pOp->p4type==P4_FUNCDEF ); 7229 n = pOp->p5; 7230 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7231 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7232 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7233 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7234 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7235 if( pCtx==0 ) goto no_mem; 7236 pCtx->pMem = 0; 7237 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7238 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7239 pCtx->pFunc = pOp->p4.pFunc; 7240 pCtx->iOp = (int)(pOp - aOp); 7241 pCtx->pVdbe = p; 7242 pCtx->skipFlag = 0; 7243 pCtx->isError = 0; 7244 pCtx->argc = n; 7245 pOp->p4type = P4_FUNCCTX; 7246 pOp->p4.pCtx = pCtx; 7247 7248 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7249 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7250 7251 pOp->opcode = OP_AggStep1; 7252 /* Fall through into OP_AggStep */ 7253 /* no break */ deliberate_fall_through 7254 } 7255 case OP_AggStep1: { 7256 int i; 7257 sqlite3_context *pCtx; 7258 Mem *pMem; 7259 7260 assert( pOp->p4type==P4_FUNCCTX ); 7261 pCtx = pOp->p4.pCtx; 7262 pMem = &aMem[pOp->p3]; 7263 7264 #ifdef SQLITE_DEBUG 7265 if( pOp->p1 ){ 7266 /* This is an OP_AggInverse call. Verify that xStep has always 7267 ** been called at least once prior to any xInverse call. */ 7268 assert( pMem->uTemp==0x1122e0e3 ); 7269 }else{ 7270 /* This is an OP_AggStep call. Mark it as such. */ 7271 pMem->uTemp = 0x1122e0e3; 7272 } 7273 #endif 7274 7275 /* If this function is inside of a trigger, the register array in aMem[] 7276 ** might change from one evaluation to the next. The next block of code 7277 ** checks to see if the register array has changed, and if so it 7278 ** reinitializes the relavant parts of the sqlite3_context object */ 7279 if( pCtx->pMem != pMem ){ 7280 pCtx->pMem = pMem; 7281 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7282 } 7283 7284 #ifdef SQLITE_DEBUG 7285 for(i=0; i<pCtx->argc; i++){ 7286 assert( memIsValid(pCtx->argv[i]) ); 7287 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7288 } 7289 #endif 7290 7291 pMem->n++; 7292 assert( pCtx->pOut->flags==MEM_Null ); 7293 assert( pCtx->isError==0 ); 7294 assert( pCtx->skipFlag==0 ); 7295 #ifndef SQLITE_OMIT_WINDOWFUNC 7296 if( pOp->p1 ){ 7297 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7298 }else 7299 #endif 7300 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7301 7302 if( pCtx->isError ){ 7303 if( pCtx->isError>0 ){ 7304 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7305 rc = pCtx->isError; 7306 } 7307 if( pCtx->skipFlag ){ 7308 assert( pOp[-1].opcode==OP_CollSeq ); 7309 i = pOp[-1].p1; 7310 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7311 pCtx->skipFlag = 0; 7312 } 7313 sqlite3VdbeMemRelease(pCtx->pOut); 7314 pCtx->pOut->flags = MEM_Null; 7315 pCtx->isError = 0; 7316 if( rc ) goto abort_due_to_error; 7317 } 7318 assert( pCtx->pOut->flags==MEM_Null ); 7319 assert( pCtx->skipFlag==0 ); 7320 break; 7321 } 7322 7323 /* Opcode: AggFinal P1 P2 * P4 * 7324 ** Synopsis: accum=r[P1] N=P2 7325 ** 7326 ** P1 is the memory location that is the accumulator for an aggregate 7327 ** or window function. Execute the finalizer function 7328 ** for an aggregate and store the result in P1. 7329 ** 7330 ** P2 is the number of arguments that the step function takes and 7331 ** P4 is a pointer to the FuncDef for this function. The P2 7332 ** argument is not used by this opcode. It is only there to disambiguate 7333 ** functions that can take varying numbers of arguments. The 7334 ** P4 argument is only needed for the case where 7335 ** the step function was not previously called. 7336 */ 7337 /* Opcode: AggValue * P2 P3 P4 * 7338 ** Synopsis: r[P3]=value N=P2 7339 ** 7340 ** Invoke the xValue() function and store the result in register P3. 7341 ** 7342 ** P2 is the number of arguments that the step function takes and 7343 ** P4 is a pointer to the FuncDef for this function. The P2 7344 ** argument is not used by this opcode. It is only there to disambiguate 7345 ** functions that can take varying numbers of arguments. The 7346 ** P4 argument is only needed for the case where 7347 ** the step function was not previously called. 7348 */ 7349 case OP_AggValue: 7350 case OP_AggFinal: { 7351 Mem *pMem; 7352 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7353 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7354 pMem = &aMem[pOp->p1]; 7355 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7356 #ifndef SQLITE_OMIT_WINDOWFUNC 7357 if( pOp->p3 ){ 7358 memAboutToChange(p, &aMem[pOp->p3]); 7359 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7360 pMem = &aMem[pOp->p3]; 7361 }else 7362 #endif 7363 { 7364 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7365 } 7366 7367 if( rc ){ 7368 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7369 goto abort_due_to_error; 7370 } 7371 sqlite3VdbeChangeEncoding(pMem, encoding); 7372 UPDATE_MAX_BLOBSIZE(pMem); 7373 if( sqlite3VdbeMemTooBig(pMem) ){ 7374 goto too_big; 7375 } 7376 break; 7377 } 7378 7379 #ifndef SQLITE_OMIT_WAL 7380 /* Opcode: Checkpoint P1 P2 P3 * * 7381 ** 7382 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7383 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7384 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7385 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7386 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7387 ** in the WAL that have been checkpointed after the checkpoint 7388 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7389 ** mem[P3+2] are initialized to -1. 7390 */ 7391 case OP_Checkpoint: { 7392 int i; /* Loop counter */ 7393 int aRes[3]; /* Results */ 7394 Mem *pMem; /* Write results here */ 7395 7396 assert( p->readOnly==0 ); 7397 aRes[0] = 0; 7398 aRes[1] = aRes[2] = -1; 7399 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7400 || pOp->p2==SQLITE_CHECKPOINT_FULL 7401 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7402 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7403 ); 7404 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7405 if( rc ){ 7406 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7407 rc = SQLITE_OK; 7408 aRes[0] = 1; 7409 } 7410 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7411 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7412 } 7413 break; 7414 }; 7415 #endif 7416 7417 #ifndef SQLITE_OMIT_PRAGMA 7418 /* Opcode: JournalMode P1 P2 P3 * * 7419 ** 7420 ** Change the journal mode of database P1 to P3. P3 must be one of the 7421 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7422 ** modes (delete, truncate, persist, off and memory), this is a simple 7423 ** operation. No IO is required. 7424 ** 7425 ** If changing into or out of WAL mode the procedure is more complicated. 7426 ** 7427 ** Write a string containing the final journal-mode to register P2. 7428 */ 7429 case OP_JournalMode: { /* out2 */ 7430 Btree *pBt; /* Btree to change journal mode of */ 7431 Pager *pPager; /* Pager associated with pBt */ 7432 int eNew; /* New journal mode */ 7433 int eOld; /* The old journal mode */ 7434 #ifndef SQLITE_OMIT_WAL 7435 const char *zFilename; /* Name of database file for pPager */ 7436 #endif 7437 7438 pOut = out2Prerelease(p, pOp); 7439 eNew = pOp->p3; 7440 assert( eNew==PAGER_JOURNALMODE_DELETE 7441 || eNew==PAGER_JOURNALMODE_TRUNCATE 7442 || eNew==PAGER_JOURNALMODE_PERSIST 7443 || eNew==PAGER_JOURNALMODE_OFF 7444 || eNew==PAGER_JOURNALMODE_MEMORY 7445 || eNew==PAGER_JOURNALMODE_WAL 7446 || eNew==PAGER_JOURNALMODE_QUERY 7447 ); 7448 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7449 assert( p->readOnly==0 ); 7450 7451 pBt = db->aDb[pOp->p1].pBt; 7452 pPager = sqlite3BtreePager(pBt); 7453 eOld = sqlite3PagerGetJournalMode(pPager); 7454 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7455 assert( sqlite3BtreeHoldsMutex(pBt) ); 7456 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7457 7458 #ifndef SQLITE_OMIT_WAL 7459 zFilename = sqlite3PagerFilename(pPager, 1); 7460 7461 /* Do not allow a transition to journal_mode=WAL for a database 7462 ** in temporary storage or if the VFS does not support shared memory 7463 */ 7464 if( eNew==PAGER_JOURNALMODE_WAL 7465 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7466 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7467 ){ 7468 eNew = eOld; 7469 } 7470 7471 if( (eNew!=eOld) 7472 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7473 ){ 7474 if( !db->autoCommit || db->nVdbeRead>1 ){ 7475 rc = SQLITE_ERROR; 7476 sqlite3VdbeError(p, 7477 "cannot change %s wal mode from within a transaction", 7478 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7479 ); 7480 goto abort_due_to_error; 7481 }else{ 7482 7483 if( eOld==PAGER_JOURNALMODE_WAL ){ 7484 /* If leaving WAL mode, close the log file. If successful, the call 7485 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7486 ** file. An EXCLUSIVE lock may still be held on the database file 7487 ** after a successful return. 7488 */ 7489 rc = sqlite3PagerCloseWal(pPager, db); 7490 if( rc==SQLITE_OK ){ 7491 sqlite3PagerSetJournalMode(pPager, eNew); 7492 } 7493 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7494 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7495 ** as an intermediate */ 7496 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7497 } 7498 7499 /* Open a transaction on the database file. Regardless of the journal 7500 ** mode, this transaction always uses a rollback journal. 7501 */ 7502 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7503 if( rc==SQLITE_OK ){ 7504 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7505 } 7506 } 7507 } 7508 #endif /* ifndef SQLITE_OMIT_WAL */ 7509 7510 if( rc ) eNew = eOld; 7511 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7512 7513 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7514 pOut->z = (char *)sqlite3JournalModename(eNew); 7515 pOut->n = sqlite3Strlen30(pOut->z); 7516 pOut->enc = SQLITE_UTF8; 7517 sqlite3VdbeChangeEncoding(pOut, encoding); 7518 if( rc ) goto abort_due_to_error; 7519 break; 7520 }; 7521 #endif /* SQLITE_OMIT_PRAGMA */ 7522 7523 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7524 /* Opcode: Vacuum P1 P2 * * * 7525 ** 7526 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7527 ** for an attached database. The "temp" database may not be vacuumed. 7528 ** 7529 ** If P2 is not zero, then it is a register holding a string which is 7530 ** the file into which the result of vacuum should be written. When 7531 ** P2 is zero, the vacuum overwrites the original database. 7532 */ 7533 case OP_Vacuum: { 7534 assert( p->readOnly==0 ); 7535 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7536 pOp->p2 ? &aMem[pOp->p2] : 0); 7537 if( rc ) goto abort_due_to_error; 7538 break; 7539 } 7540 #endif 7541 7542 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7543 /* Opcode: IncrVacuum P1 P2 * * * 7544 ** 7545 ** Perform a single step of the incremental vacuum procedure on 7546 ** the P1 database. If the vacuum has finished, jump to instruction 7547 ** P2. Otherwise, fall through to the next instruction. 7548 */ 7549 case OP_IncrVacuum: { /* jump */ 7550 Btree *pBt; 7551 7552 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7553 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7554 assert( p->readOnly==0 ); 7555 pBt = db->aDb[pOp->p1].pBt; 7556 rc = sqlite3BtreeIncrVacuum(pBt); 7557 VdbeBranchTaken(rc==SQLITE_DONE,2); 7558 if( rc ){ 7559 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7560 rc = SQLITE_OK; 7561 goto jump_to_p2; 7562 } 7563 break; 7564 } 7565 #endif 7566 7567 /* Opcode: Expire P1 P2 * * * 7568 ** 7569 ** Cause precompiled statements to expire. When an expired statement 7570 ** is executed using sqlite3_step() it will either automatically 7571 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7572 ** or it will fail with SQLITE_SCHEMA. 7573 ** 7574 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7575 ** then only the currently executing statement is expired. 7576 ** 7577 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7578 ** then running SQL statements are allowed to continue to run to completion. 7579 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7580 ** that might help the statement run faster but which does not affect the 7581 ** correctness of operation. 7582 */ 7583 case OP_Expire: { 7584 assert( pOp->p2==0 || pOp->p2==1 ); 7585 if( !pOp->p1 ){ 7586 sqlite3ExpirePreparedStatements(db, pOp->p2); 7587 }else{ 7588 p->expired = pOp->p2+1; 7589 } 7590 break; 7591 } 7592 7593 /* Opcode: CursorLock P1 * * * * 7594 ** 7595 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7596 ** written by an other cursor. 7597 */ 7598 case OP_CursorLock: { 7599 VdbeCursor *pC; 7600 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7601 pC = p->apCsr[pOp->p1]; 7602 assert( pC!=0 ); 7603 assert( pC->eCurType==CURTYPE_BTREE ); 7604 sqlite3BtreeCursorPin(pC->uc.pCursor); 7605 break; 7606 } 7607 7608 /* Opcode: CursorUnlock P1 * * * * 7609 ** 7610 ** Unlock the btree to which cursor P1 is pointing so that it can be 7611 ** written by other cursors. 7612 */ 7613 case OP_CursorUnlock: { 7614 VdbeCursor *pC; 7615 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7616 pC = p->apCsr[pOp->p1]; 7617 assert( pC!=0 ); 7618 assert( pC->eCurType==CURTYPE_BTREE ); 7619 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7620 break; 7621 } 7622 7623 #ifndef SQLITE_OMIT_SHARED_CACHE 7624 /* Opcode: TableLock P1 P2 P3 P4 * 7625 ** Synopsis: iDb=P1 root=P2 write=P3 7626 ** 7627 ** Obtain a lock on a particular table. This instruction is only used when 7628 ** the shared-cache feature is enabled. 7629 ** 7630 ** P1 is the index of the database in sqlite3.aDb[] of the database 7631 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7632 ** a write lock if P3==1. 7633 ** 7634 ** P2 contains the root-page of the table to lock. 7635 ** 7636 ** P4 contains a pointer to the name of the table being locked. This is only 7637 ** used to generate an error message if the lock cannot be obtained. 7638 */ 7639 case OP_TableLock: { 7640 u8 isWriteLock = (u8)pOp->p3; 7641 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7642 int p1 = pOp->p1; 7643 assert( p1>=0 && p1<db->nDb ); 7644 assert( DbMaskTest(p->btreeMask, p1) ); 7645 assert( isWriteLock==0 || isWriteLock==1 ); 7646 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7647 if( rc ){ 7648 if( (rc&0xFF)==SQLITE_LOCKED ){ 7649 const char *z = pOp->p4.z; 7650 sqlite3VdbeError(p, "database table is locked: %s", z); 7651 } 7652 goto abort_due_to_error; 7653 } 7654 } 7655 break; 7656 } 7657 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7658 7659 #ifndef SQLITE_OMIT_VIRTUALTABLE 7660 /* Opcode: VBegin * * * P4 * 7661 ** 7662 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7663 ** xBegin method for that table. 7664 ** 7665 ** Also, whether or not P4 is set, check that this is not being called from 7666 ** within a callback to a virtual table xSync() method. If it is, the error 7667 ** code will be set to SQLITE_LOCKED. 7668 */ 7669 case OP_VBegin: { 7670 VTable *pVTab; 7671 pVTab = pOp->p4.pVtab; 7672 rc = sqlite3VtabBegin(db, pVTab); 7673 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7674 if( rc ) goto abort_due_to_error; 7675 break; 7676 } 7677 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7678 7679 #ifndef SQLITE_OMIT_VIRTUALTABLE 7680 /* Opcode: VCreate P1 P2 * * * 7681 ** 7682 ** P2 is a register that holds the name of a virtual table in database 7683 ** P1. Call the xCreate method for that table. 7684 */ 7685 case OP_VCreate: { 7686 Mem sMem; /* For storing the record being decoded */ 7687 const char *zTab; /* Name of the virtual table */ 7688 7689 memset(&sMem, 0, sizeof(sMem)); 7690 sMem.db = db; 7691 /* Because P2 is always a static string, it is impossible for the 7692 ** sqlite3VdbeMemCopy() to fail */ 7693 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7694 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7695 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7696 assert( rc==SQLITE_OK ); 7697 zTab = (const char*)sqlite3_value_text(&sMem); 7698 assert( zTab || db->mallocFailed ); 7699 if( zTab ){ 7700 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7701 } 7702 sqlite3VdbeMemRelease(&sMem); 7703 if( rc ) goto abort_due_to_error; 7704 break; 7705 } 7706 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7707 7708 #ifndef SQLITE_OMIT_VIRTUALTABLE 7709 /* Opcode: VDestroy P1 * * P4 * 7710 ** 7711 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7712 ** of that table. 7713 */ 7714 case OP_VDestroy: { 7715 db->nVDestroy++; 7716 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7717 db->nVDestroy--; 7718 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7719 if( rc ) goto abort_due_to_error; 7720 break; 7721 } 7722 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7723 7724 #ifndef SQLITE_OMIT_VIRTUALTABLE 7725 /* Opcode: VOpen P1 * * P4 * 7726 ** 7727 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7728 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7729 ** table and stores that cursor in P1. 7730 */ 7731 case OP_VOpen: { 7732 VdbeCursor *pCur; 7733 sqlite3_vtab_cursor *pVCur; 7734 sqlite3_vtab *pVtab; 7735 const sqlite3_module *pModule; 7736 7737 assert( p->bIsReader ); 7738 pCur = 0; 7739 pVCur = 0; 7740 pVtab = pOp->p4.pVtab->pVtab; 7741 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7742 rc = SQLITE_LOCKED; 7743 goto abort_due_to_error; 7744 } 7745 pModule = pVtab->pModule; 7746 rc = pModule->xOpen(pVtab, &pVCur); 7747 sqlite3VtabImportErrmsg(p, pVtab); 7748 if( rc ) goto abort_due_to_error; 7749 7750 /* Initialize sqlite3_vtab_cursor base class */ 7751 pVCur->pVtab = pVtab; 7752 7753 /* Initialize vdbe cursor object */ 7754 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 7755 if( pCur ){ 7756 pCur->uc.pVCur = pVCur; 7757 pVtab->nRef++; 7758 }else{ 7759 assert( db->mallocFailed ); 7760 pModule->xClose(pVCur); 7761 goto no_mem; 7762 } 7763 break; 7764 } 7765 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7766 7767 #ifndef SQLITE_OMIT_VIRTUALTABLE 7768 /* Opcode: VInitIn P1 P2 P3 * * 7769 ** Synopsis: r[P2]=ValueList(P1,P3) 7770 ** 7771 ** Set register P2 to be a pointer to a ValueList object for cursor P1 7772 ** with cache register P3 and output register P3+1. This ValueList object 7773 ** can be used as the first argument to sqlite3_vtab_in_first() and 7774 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 7775 ** cursor. Register P3 is used to hold the values returned by 7776 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 7777 */ 7778 case OP_VInitIn: { /* out2 */ 7779 VdbeCursor *pC; /* The cursor containing the RHS values */ 7780 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 7781 7782 pC = p->apCsr[pOp->p1]; 7783 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 7784 if( pRhs==0 ) goto no_mem; 7785 pRhs->pCsr = pC->uc.pCursor; 7786 pRhs->pOut = &aMem[pOp->p3]; 7787 pOut = out2Prerelease(p, pOp); 7788 pOut->flags = MEM_Null; 7789 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free); 7790 break; 7791 } 7792 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7793 7794 7795 #ifndef SQLITE_OMIT_VIRTUALTABLE 7796 /* Opcode: VFilter P1 P2 P3 P4 * 7797 ** Synopsis: iplan=r[P3] zplan='P4' 7798 ** 7799 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7800 ** the filtered result set is empty. 7801 ** 7802 ** P4 is either NULL or a string that was generated by the xBestIndex 7803 ** method of the module. The interpretation of the P4 string is left 7804 ** to the module implementation. 7805 ** 7806 ** This opcode invokes the xFilter method on the virtual table specified 7807 ** by P1. The integer query plan parameter to xFilter is stored in register 7808 ** P3. Register P3+1 stores the argc parameter to be passed to the 7809 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7810 ** additional parameters which are passed to 7811 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7812 ** 7813 ** A jump is made to P2 if the result set after filtering would be empty. 7814 */ 7815 case OP_VFilter: { /* jump */ 7816 int nArg; 7817 int iQuery; 7818 const sqlite3_module *pModule; 7819 Mem *pQuery; 7820 Mem *pArgc; 7821 sqlite3_vtab_cursor *pVCur; 7822 sqlite3_vtab *pVtab; 7823 VdbeCursor *pCur; 7824 int res; 7825 int i; 7826 Mem **apArg; 7827 7828 pQuery = &aMem[pOp->p3]; 7829 pArgc = &pQuery[1]; 7830 pCur = p->apCsr[pOp->p1]; 7831 assert( memIsValid(pQuery) ); 7832 REGISTER_TRACE(pOp->p3, pQuery); 7833 assert( pCur!=0 ); 7834 assert( pCur->eCurType==CURTYPE_VTAB ); 7835 pVCur = pCur->uc.pVCur; 7836 pVtab = pVCur->pVtab; 7837 pModule = pVtab->pModule; 7838 7839 /* Grab the index number and argc parameters */ 7840 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7841 nArg = (int)pArgc->u.i; 7842 iQuery = (int)pQuery->u.i; 7843 7844 /* Invoke the xFilter method */ 7845 apArg = p->apArg; 7846 for(i = 0; i<nArg; i++){ 7847 apArg[i] = &pArgc[i+1]; 7848 } 7849 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7850 sqlite3VtabImportErrmsg(p, pVtab); 7851 if( rc ) goto abort_due_to_error; 7852 res = pModule->xEof(pVCur); 7853 pCur->nullRow = 0; 7854 VdbeBranchTaken(res!=0,2); 7855 if( res ) goto jump_to_p2; 7856 break; 7857 } 7858 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7859 7860 #ifndef SQLITE_OMIT_VIRTUALTABLE 7861 /* Opcode: VColumn P1 P2 P3 * P5 7862 ** Synopsis: r[P3]=vcolumn(P2) 7863 ** 7864 ** Store in register P3 the value of the P2-th column of 7865 ** the current row of the virtual-table of cursor P1. 7866 ** 7867 ** If the VColumn opcode is being used to fetch the value of 7868 ** an unchanging column during an UPDATE operation, then the P5 7869 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7870 ** function to return true inside the xColumn method of the virtual 7871 ** table implementation. The P5 column might also contain other 7872 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7873 ** unused by OP_VColumn. 7874 */ 7875 case OP_VColumn: { 7876 sqlite3_vtab *pVtab; 7877 const sqlite3_module *pModule; 7878 Mem *pDest; 7879 sqlite3_context sContext; 7880 7881 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7882 assert( pCur!=0 ); 7883 assert( pCur->eCurType==CURTYPE_VTAB ); 7884 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7885 pDest = &aMem[pOp->p3]; 7886 memAboutToChange(p, pDest); 7887 if( pCur->nullRow ){ 7888 sqlite3VdbeMemSetNull(pDest); 7889 break; 7890 } 7891 pVtab = pCur->uc.pVCur->pVtab; 7892 pModule = pVtab->pModule; 7893 assert( pModule->xColumn ); 7894 memset(&sContext, 0, sizeof(sContext)); 7895 sContext.pOut = pDest; 7896 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7897 if( pOp->p5 & OPFLAG_NOCHNG ){ 7898 sqlite3VdbeMemSetNull(pDest); 7899 pDest->flags = MEM_Null|MEM_Zero; 7900 pDest->u.nZero = 0; 7901 }else{ 7902 MemSetTypeFlag(pDest, MEM_Null); 7903 } 7904 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7905 sqlite3VtabImportErrmsg(p, pVtab); 7906 if( sContext.isError>0 ){ 7907 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7908 rc = sContext.isError; 7909 } 7910 sqlite3VdbeChangeEncoding(pDest, encoding); 7911 REGISTER_TRACE(pOp->p3, pDest); 7912 UPDATE_MAX_BLOBSIZE(pDest); 7913 7914 if( sqlite3VdbeMemTooBig(pDest) ){ 7915 goto too_big; 7916 } 7917 if( rc ) goto abort_due_to_error; 7918 break; 7919 } 7920 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7921 7922 #ifndef SQLITE_OMIT_VIRTUALTABLE 7923 /* Opcode: VNext P1 P2 * * * 7924 ** 7925 ** Advance virtual table P1 to the next row in its result set and 7926 ** jump to instruction P2. Or, if the virtual table has reached 7927 ** the end of its result set, then fall through to the next instruction. 7928 */ 7929 case OP_VNext: { /* jump */ 7930 sqlite3_vtab *pVtab; 7931 const sqlite3_module *pModule; 7932 int res; 7933 VdbeCursor *pCur; 7934 7935 pCur = p->apCsr[pOp->p1]; 7936 assert( pCur!=0 ); 7937 assert( pCur->eCurType==CURTYPE_VTAB ); 7938 if( pCur->nullRow ){ 7939 break; 7940 } 7941 pVtab = pCur->uc.pVCur->pVtab; 7942 pModule = pVtab->pModule; 7943 assert( pModule->xNext ); 7944 7945 /* Invoke the xNext() method of the module. There is no way for the 7946 ** underlying implementation to return an error if one occurs during 7947 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7948 ** data is available) and the error code returned when xColumn or 7949 ** some other method is next invoked on the save virtual table cursor. 7950 */ 7951 rc = pModule->xNext(pCur->uc.pVCur); 7952 sqlite3VtabImportErrmsg(p, pVtab); 7953 if( rc ) goto abort_due_to_error; 7954 res = pModule->xEof(pCur->uc.pVCur); 7955 VdbeBranchTaken(!res,2); 7956 if( !res ){ 7957 /* If there is data, jump to P2 */ 7958 goto jump_to_p2_and_check_for_interrupt; 7959 } 7960 goto check_for_interrupt; 7961 } 7962 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7963 7964 #ifndef SQLITE_OMIT_VIRTUALTABLE 7965 /* Opcode: VRename P1 * * P4 * 7966 ** 7967 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7968 ** This opcode invokes the corresponding xRename method. The value 7969 ** in register P1 is passed as the zName argument to the xRename method. 7970 */ 7971 case OP_VRename: { 7972 sqlite3_vtab *pVtab; 7973 Mem *pName; 7974 int isLegacy; 7975 7976 isLegacy = (db->flags & SQLITE_LegacyAlter); 7977 db->flags |= SQLITE_LegacyAlter; 7978 pVtab = pOp->p4.pVtab->pVtab; 7979 pName = &aMem[pOp->p1]; 7980 assert( pVtab->pModule->xRename ); 7981 assert( memIsValid(pName) ); 7982 assert( p->readOnly==0 ); 7983 REGISTER_TRACE(pOp->p1, pName); 7984 assert( pName->flags & MEM_Str ); 7985 testcase( pName->enc==SQLITE_UTF8 ); 7986 testcase( pName->enc==SQLITE_UTF16BE ); 7987 testcase( pName->enc==SQLITE_UTF16LE ); 7988 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7989 if( rc ) goto abort_due_to_error; 7990 rc = pVtab->pModule->xRename(pVtab, pName->z); 7991 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7992 sqlite3VtabImportErrmsg(p, pVtab); 7993 p->expired = 0; 7994 if( rc ) goto abort_due_to_error; 7995 break; 7996 } 7997 #endif 7998 7999 #ifndef SQLITE_OMIT_VIRTUALTABLE 8000 /* Opcode: VUpdate P1 P2 P3 P4 P5 8001 ** Synopsis: data=r[P3@P2] 8002 ** 8003 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8004 ** This opcode invokes the corresponding xUpdate method. P2 values 8005 ** are contiguous memory cells starting at P3 to pass to the xUpdate 8006 ** invocation. The value in register (P3+P2-1) corresponds to the 8007 ** p2th element of the argv array passed to xUpdate. 8008 ** 8009 ** The xUpdate method will do a DELETE or an INSERT or both. 8010 ** The argv[0] element (which corresponds to memory cell P3) 8011 ** is the rowid of a row to delete. If argv[0] is NULL then no 8012 ** deletion occurs. The argv[1] element is the rowid of the new 8013 ** row. This can be NULL to have the virtual table select the new 8014 ** rowid for itself. The subsequent elements in the array are 8015 ** the values of columns in the new row. 8016 ** 8017 ** If P2==1 then no insert is performed. argv[0] is the rowid of 8018 ** a row to delete. 8019 ** 8020 ** P1 is a boolean flag. If it is set to true and the xUpdate call 8021 ** is successful, then the value returned by sqlite3_last_insert_rowid() 8022 ** is set to the value of the rowid for the row just inserted. 8023 ** 8024 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 8025 ** apply in the case of a constraint failure on an insert or update. 8026 */ 8027 case OP_VUpdate: { 8028 sqlite3_vtab *pVtab; 8029 const sqlite3_module *pModule; 8030 int nArg; 8031 int i; 8032 sqlite_int64 rowid = 0; 8033 Mem **apArg; 8034 Mem *pX; 8035 8036 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 8037 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 8038 ); 8039 assert( p->readOnly==0 ); 8040 if( db->mallocFailed ) goto no_mem; 8041 sqlite3VdbeIncrWriteCounter(p, 0); 8042 pVtab = pOp->p4.pVtab->pVtab; 8043 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 8044 rc = SQLITE_LOCKED; 8045 goto abort_due_to_error; 8046 } 8047 pModule = pVtab->pModule; 8048 nArg = pOp->p2; 8049 assert( pOp->p4type==P4_VTAB ); 8050 if( ALWAYS(pModule->xUpdate) ){ 8051 u8 vtabOnConflict = db->vtabOnConflict; 8052 apArg = p->apArg; 8053 pX = &aMem[pOp->p3]; 8054 for(i=0; i<nArg; i++){ 8055 assert( memIsValid(pX) ); 8056 memAboutToChange(p, pX); 8057 apArg[i] = pX; 8058 pX++; 8059 } 8060 db->vtabOnConflict = pOp->p5; 8061 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 8062 db->vtabOnConflict = vtabOnConflict; 8063 sqlite3VtabImportErrmsg(p, pVtab); 8064 if( rc==SQLITE_OK && pOp->p1 ){ 8065 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 8066 db->lastRowid = rowid; 8067 } 8068 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 8069 if( pOp->p5==OE_Ignore ){ 8070 rc = SQLITE_OK; 8071 }else{ 8072 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 8073 } 8074 }else{ 8075 p->nChange++; 8076 } 8077 if( rc ) goto abort_due_to_error; 8078 } 8079 break; 8080 } 8081 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8082 8083 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8084 /* Opcode: Pagecount P1 P2 * * * 8085 ** 8086 ** Write the current number of pages in database P1 to memory cell P2. 8087 */ 8088 case OP_Pagecount: { /* out2 */ 8089 pOut = out2Prerelease(p, pOp); 8090 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8091 break; 8092 } 8093 #endif 8094 8095 8096 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8097 /* Opcode: MaxPgcnt P1 P2 P3 * * 8098 ** 8099 ** Try to set the maximum page count for database P1 to the value in P3. 8100 ** Do not let the maximum page count fall below the current page count and 8101 ** do not change the maximum page count value if P3==0. 8102 ** 8103 ** Store the maximum page count after the change in register P2. 8104 */ 8105 case OP_MaxPgcnt: { /* out2 */ 8106 unsigned int newMax; 8107 Btree *pBt; 8108 8109 pOut = out2Prerelease(p, pOp); 8110 pBt = db->aDb[pOp->p1].pBt; 8111 newMax = 0; 8112 if( pOp->p3 ){ 8113 newMax = sqlite3BtreeLastPage(pBt); 8114 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8115 } 8116 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8117 break; 8118 } 8119 #endif 8120 8121 /* Opcode: Function P1 P2 P3 P4 * 8122 ** Synopsis: r[P3]=func(r[P2@NP]) 8123 ** 8124 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8125 ** contains a pointer to the function to be run) with arguments taken 8126 ** from register P2 and successors. The number of arguments is in 8127 ** the sqlite3_context object that P4 points to. 8128 ** The result of the function is stored 8129 ** in register P3. Register P3 must not be one of the function inputs. 8130 ** 8131 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8132 ** function was determined to be constant at compile time. If the first 8133 ** argument was constant then bit 0 of P1 is set. This is used to determine 8134 ** whether meta data associated with a user function argument using the 8135 ** sqlite3_set_auxdata() API may be safely retained until the next 8136 ** invocation of this opcode. 8137 ** 8138 ** See also: AggStep, AggFinal, PureFunc 8139 */ 8140 /* Opcode: PureFunc P1 P2 P3 P4 * 8141 ** Synopsis: r[P3]=func(r[P2@NP]) 8142 ** 8143 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8144 ** contains a pointer to the function to be run) with arguments taken 8145 ** from register P2 and successors. The number of arguments is in 8146 ** the sqlite3_context object that P4 points to. 8147 ** The result of the function is stored 8148 ** in register P3. Register P3 must not be one of the function inputs. 8149 ** 8150 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8151 ** function was determined to be constant at compile time. If the first 8152 ** argument was constant then bit 0 of P1 is set. This is used to determine 8153 ** whether meta data associated with a user function argument using the 8154 ** sqlite3_set_auxdata() API may be safely retained until the next 8155 ** invocation of this opcode. 8156 ** 8157 ** This opcode works exactly like OP_Function. The only difference is in 8158 ** its name. This opcode is used in places where the function must be 8159 ** purely non-deterministic. Some built-in date/time functions can be 8160 ** either determinitic of non-deterministic, depending on their arguments. 8161 ** When those function are used in a non-deterministic way, they will check 8162 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8163 ** if they were, they throw an error. 8164 ** 8165 ** See also: AggStep, AggFinal, Function 8166 */ 8167 case OP_PureFunc: /* group */ 8168 case OP_Function: { /* group */ 8169 int i; 8170 sqlite3_context *pCtx; 8171 8172 assert( pOp->p4type==P4_FUNCCTX ); 8173 pCtx = pOp->p4.pCtx; 8174 8175 /* If this function is inside of a trigger, the register array in aMem[] 8176 ** might change from one evaluation to the next. The next block of code 8177 ** checks to see if the register array has changed, and if so it 8178 ** reinitializes the relavant parts of the sqlite3_context object */ 8179 pOut = &aMem[pOp->p3]; 8180 if( pCtx->pOut != pOut ){ 8181 pCtx->pVdbe = p; 8182 pCtx->pOut = pOut; 8183 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8184 } 8185 assert( pCtx->pVdbe==p ); 8186 8187 memAboutToChange(p, pOut); 8188 #ifdef SQLITE_DEBUG 8189 for(i=0; i<pCtx->argc; i++){ 8190 assert( memIsValid(pCtx->argv[i]) ); 8191 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8192 } 8193 #endif 8194 MemSetTypeFlag(pOut, MEM_Null); 8195 assert( pCtx->isError==0 ); 8196 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8197 8198 /* If the function returned an error, throw an exception */ 8199 if( pCtx->isError ){ 8200 if( pCtx->isError>0 ){ 8201 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8202 rc = pCtx->isError; 8203 } 8204 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8205 pCtx->isError = 0; 8206 if( rc ) goto abort_due_to_error; 8207 } 8208 8209 /* Copy the result of the function into register P3 */ 8210 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 8211 sqlite3VdbeChangeEncoding(pOut, encoding); 8212 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 8213 } 8214 8215 REGISTER_TRACE(pOp->p3, pOut); 8216 UPDATE_MAX_BLOBSIZE(pOut); 8217 break; 8218 } 8219 8220 /* Opcode: FilterAdd P1 * P3 P4 * 8221 ** Synopsis: filter(P1) += key(P3@P4) 8222 ** 8223 ** Compute a hash on the P4 registers starting with r[P3] and 8224 ** add that hash to the bloom filter contained in r[P1]. 8225 */ 8226 case OP_FilterAdd: { 8227 u64 h; 8228 8229 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8230 pIn1 = &aMem[pOp->p1]; 8231 assert( pIn1->flags & MEM_Blob ); 8232 assert( pIn1->n>0 ); 8233 h = filterHash(aMem, pOp); 8234 #ifdef SQLITE_DEBUG 8235 if( db->flags&SQLITE_VdbeTrace ){ 8236 int ii; 8237 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8238 registerTrace(ii, &aMem[ii]); 8239 } 8240 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8241 } 8242 #endif 8243 h %= pIn1->n; 8244 pIn1->z[h/8] |= 1<<(h&7); 8245 break; 8246 } 8247 8248 /* Opcode: Filter P1 P2 P3 P4 * 8249 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 8250 ** 8251 ** Compute a hash on the key contained in the P4 registers starting 8252 ** with r[P3]. Check to see if that hash is found in the 8253 ** bloom filter hosted by register P1. If it is not present then 8254 ** maybe jump to P2. Otherwise fall through. 8255 ** 8256 ** False negatives are harmless. It is always safe to fall through, 8257 ** even if the value is in the bloom filter. A false negative causes 8258 ** more CPU cycles to be used, but it should still yield the correct 8259 ** answer. However, an incorrect answer may well arise from a 8260 ** false positive - if the jump is taken when it should fall through. 8261 */ 8262 case OP_Filter: { /* jump */ 8263 u64 h; 8264 8265 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8266 pIn1 = &aMem[pOp->p1]; 8267 assert( (pIn1->flags & MEM_Blob)!=0 ); 8268 assert( pIn1->n >= 1 ); 8269 h = filterHash(aMem, pOp); 8270 #ifdef SQLITE_DEBUG 8271 if( db->flags&SQLITE_VdbeTrace ){ 8272 int ii; 8273 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8274 registerTrace(ii, &aMem[ii]); 8275 } 8276 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8277 } 8278 #endif 8279 h %= pIn1->n; 8280 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 8281 VdbeBranchTaken(1, 2); 8282 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 8283 goto jump_to_p2; 8284 }else{ 8285 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 8286 VdbeBranchTaken(0, 2); 8287 } 8288 break; 8289 } 8290 8291 /* Opcode: Trace P1 P2 * P4 * 8292 ** 8293 ** Write P4 on the statement trace output if statement tracing is 8294 ** enabled. 8295 ** 8296 ** Operand P1 must be 0x7fffffff and P2 must positive. 8297 */ 8298 /* Opcode: Init P1 P2 P3 P4 * 8299 ** Synopsis: Start at P2 8300 ** 8301 ** Programs contain a single instance of this opcode as the very first 8302 ** opcode. 8303 ** 8304 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8305 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8306 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8307 ** 8308 ** If P2 is not zero, jump to instruction P2. 8309 ** 8310 ** Increment the value of P1 so that OP_Once opcodes will jump the 8311 ** first time they are evaluated for this run. 8312 ** 8313 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8314 ** error is encountered. 8315 */ 8316 case OP_Trace: 8317 case OP_Init: { /* jump */ 8318 int i; 8319 #ifndef SQLITE_OMIT_TRACE 8320 char *zTrace; 8321 #endif 8322 8323 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8324 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8325 ** 8326 ** This assert() provides evidence for: 8327 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8328 ** would have been returned by the legacy sqlite3_trace() interface by 8329 ** using the X argument when X begins with "--" and invoking 8330 ** sqlite3_expanded_sql(P) otherwise. 8331 */ 8332 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8333 8334 /* OP_Init is always instruction 0 */ 8335 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8336 8337 #ifndef SQLITE_OMIT_TRACE 8338 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8339 && !p->doingRerun 8340 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8341 ){ 8342 #ifndef SQLITE_OMIT_DEPRECATED 8343 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8344 char *z = sqlite3VdbeExpandSql(p, zTrace); 8345 db->trace.xLegacy(db->pTraceArg, z); 8346 sqlite3_free(z); 8347 }else 8348 #endif 8349 if( db->nVdbeExec>1 ){ 8350 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8351 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8352 sqlite3DbFree(db, z); 8353 }else{ 8354 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8355 } 8356 } 8357 #ifdef SQLITE_USE_FCNTL_TRACE 8358 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8359 if( zTrace ){ 8360 int j; 8361 for(j=0; j<db->nDb; j++){ 8362 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8363 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8364 } 8365 } 8366 #endif /* SQLITE_USE_FCNTL_TRACE */ 8367 #ifdef SQLITE_DEBUG 8368 if( (db->flags & SQLITE_SqlTrace)!=0 8369 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8370 ){ 8371 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8372 } 8373 #endif /* SQLITE_DEBUG */ 8374 #endif /* SQLITE_OMIT_TRACE */ 8375 assert( pOp->p2>0 ); 8376 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8377 if( pOp->opcode==OP_Trace ) break; 8378 for(i=1; i<p->nOp; i++){ 8379 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8380 } 8381 pOp->p1 = 0; 8382 } 8383 pOp->p1++; 8384 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8385 goto jump_to_p2; 8386 } 8387 8388 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8389 /* Opcode: CursorHint P1 * * P4 * 8390 ** 8391 ** Provide a hint to cursor P1 that it only needs to return rows that 8392 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8393 ** to values currently held in registers. TK_COLUMN terms in the P4 8394 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8395 */ 8396 case OP_CursorHint: { 8397 VdbeCursor *pC; 8398 8399 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8400 assert( pOp->p4type==P4_EXPR ); 8401 pC = p->apCsr[pOp->p1]; 8402 if( pC ){ 8403 assert( pC->eCurType==CURTYPE_BTREE ); 8404 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8405 pOp->p4.pExpr, aMem); 8406 } 8407 break; 8408 } 8409 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8410 8411 #ifdef SQLITE_DEBUG 8412 /* Opcode: Abortable * * * * * 8413 ** 8414 ** Verify that an Abort can happen. Assert if an Abort at this point 8415 ** might cause database corruption. This opcode only appears in debugging 8416 ** builds. 8417 ** 8418 ** An Abort is safe if either there have been no writes, or if there is 8419 ** an active statement journal. 8420 */ 8421 case OP_Abortable: { 8422 sqlite3VdbeAssertAbortable(p); 8423 break; 8424 } 8425 #endif 8426 8427 #ifdef SQLITE_DEBUG 8428 /* Opcode: ReleaseReg P1 P2 P3 * P5 8429 ** Synopsis: release r[P1@P2] mask P3 8430 ** 8431 ** Release registers from service. Any content that was in the 8432 ** the registers is unreliable after this opcode completes. 8433 ** 8434 ** The registers released will be the P2 registers starting at P1, 8435 ** except if bit ii of P3 set, then do not release register P1+ii. 8436 ** In other words, P3 is a mask of registers to preserve. 8437 ** 8438 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8439 ** that if the content of the released register was set using OP_SCopy, 8440 ** a change to the value of the source register for the OP_SCopy will no longer 8441 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8442 ** 8443 ** If P5 is set, then all released registers have their type set 8444 ** to MEM_Undefined so that any subsequent attempt to read the released 8445 ** register (before it is reinitialized) will generate an assertion fault. 8446 ** 8447 ** P5 ought to be set on every call to this opcode. 8448 ** However, there are places in the code generator will release registers 8449 ** before their are used, under the (valid) assumption that the registers 8450 ** will not be reallocated for some other purpose before they are used and 8451 ** hence are safe to release. 8452 ** 8453 ** This opcode is only available in testing and debugging builds. It is 8454 ** not generated for release builds. The purpose of this opcode is to help 8455 ** validate the generated bytecode. This opcode does not actually contribute 8456 ** to computing an answer. 8457 */ 8458 case OP_ReleaseReg: { 8459 Mem *pMem; 8460 int i; 8461 u32 constMask; 8462 assert( pOp->p1>0 ); 8463 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8464 pMem = &aMem[pOp->p1]; 8465 constMask = pOp->p3; 8466 for(i=0; i<pOp->p2; i++, pMem++){ 8467 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8468 pMem->pScopyFrom = 0; 8469 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8470 } 8471 } 8472 break; 8473 } 8474 #endif 8475 8476 /* Opcode: Noop * * * * * 8477 ** 8478 ** Do nothing. This instruction is often useful as a jump 8479 ** destination. 8480 */ 8481 /* 8482 ** The magic Explain opcode are only inserted when explain==2 (which 8483 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8484 ** This opcode records information from the optimizer. It is the 8485 ** the same as a no-op. This opcodesnever appears in a real VM program. 8486 */ 8487 default: { /* This is really OP_Noop, OP_Explain */ 8488 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8489 8490 break; 8491 } 8492 8493 /***************************************************************************** 8494 ** The cases of the switch statement above this line should all be indented 8495 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8496 ** readability. From this point on down, the normal indentation rules are 8497 ** restored. 8498 *****************************************************************************/ 8499 } 8500 8501 #ifdef VDBE_PROFILE 8502 { 8503 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8504 if( endTime>start ) pOrigOp->cycles += endTime - start; 8505 pOrigOp->cnt++; 8506 } 8507 #endif 8508 8509 /* The following code adds nothing to the actual functionality 8510 ** of the program. It is only here for testing and debugging. 8511 ** On the other hand, it does burn CPU cycles every time through 8512 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8513 */ 8514 #ifndef NDEBUG 8515 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8516 8517 #ifdef SQLITE_DEBUG 8518 if( db->flags & SQLITE_VdbeTrace ){ 8519 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8520 if( rc!=0 ) printf("rc=%d\n",rc); 8521 if( opProperty & (OPFLG_OUT2) ){ 8522 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8523 } 8524 if( opProperty & OPFLG_OUT3 ){ 8525 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8526 } 8527 if( opProperty==0xff ){ 8528 /* Never happens. This code exists to avoid a harmless linkage 8529 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8530 ** used. */ 8531 sqlite3VdbeRegisterDump(p); 8532 } 8533 } 8534 #endif /* SQLITE_DEBUG */ 8535 #endif /* NDEBUG */ 8536 } /* The end of the for(;;) loop the loops through opcodes */ 8537 8538 /* If we reach this point, it means that execution is finished with 8539 ** an error of some kind. 8540 */ 8541 abort_due_to_error: 8542 if( db->mallocFailed ){ 8543 rc = SQLITE_NOMEM_BKPT; 8544 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8545 rc = SQLITE_CORRUPT_BKPT; 8546 } 8547 assert( rc ); 8548 #ifdef SQLITE_DEBUG 8549 if( db->flags & SQLITE_VdbeTrace ){ 8550 const char *zTrace = p->zSql; 8551 if( zTrace==0 ){ 8552 if( aOp[0].opcode==OP_Trace ){ 8553 zTrace = aOp[0].p4.z; 8554 } 8555 if( zTrace==0 ) zTrace = "???"; 8556 } 8557 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8558 } 8559 #endif 8560 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8561 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8562 } 8563 p->rc = rc; 8564 sqlite3SystemError(db, rc); 8565 testcase( sqlite3GlobalConfig.xLog!=0 ); 8566 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8567 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8568 sqlite3VdbeHalt(p); 8569 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8570 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8571 db->flags |= SQLITE_CorruptRdOnly; 8572 } 8573 rc = SQLITE_ERROR; 8574 if( resetSchemaOnFault>0 ){ 8575 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8576 } 8577 8578 /* This is the only way out of this procedure. We have to 8579 ** release the mutexes on btrees that were acquired at the 8580 ** top. */ 8581 vdbe_return: 8582 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8583 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8584 nProgressLimit += db->nProgressOps; 8585 if( db->xProgress(db->pProgressArg) ){ 8586 nProgressLimit = LARGEST_UINT64; 8587 rc = SQLITE_INTERRUPT; 8588 goto abort_due_to_error; 8589 } 8590 } 8591 #endif 8592 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8593 sqlite3VdbeLeave(p); 8594 assert( rc!=SQLITE_OK || nExtraDelete==0 8595 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8596 ); 8597 return rc; 8598 8599 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8600 ** is encountered. 8601 */ 8602 too_big: 8603 sqlite3VdbeError(p, "string or blob too big"); 8604 rc = SQLITE_TOOBIG; 8605 goto abort_due_to_error; 8606 8607 /* Jump to here if a malloc() fails. 8608 */ 8609 no_mem: 8610 sqlite3OomFault(db); 8611 sqlite3VdbeError(p, "out of memory"); 8612 rc = SQLITE_NOMEM_BKPT; 8613 goto abort_due_to_error; 8614 8615 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8616 ** flag. 8617 */ 8618 abort_due_to_interrupt: 8619 assert( AtomicLoad(&db->u1.isInterrupted) ); 8620 rc = SQLITE_INTERRUPT; 8621 goto abort_due_to_error; 8622 } 8623