xref: /sqlite-3.40.0/src/vdbe.c (revision 6a657b24)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** The next global variable is incremented each time the OP_Found opcode
91 ** is executed. This is used to test whether or not the foreign key
92 ** operation implemented using OP_FkIsZero is working. This variable
93 ** has no function other than to help verify the correct operation of the
94 ** library.
95 */
96 #ifdef SQLITE_TEST
97 int sqlite3_found_count = 0;
98 #endif
99 
100 /*
101 ** Test a register to see if it exceeds the current maximum blob size.
102 ** If it does, record the new maximum blob size.
103 */
104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
105 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
106 #else
107 # define UPDATE_MAX_BLOBSIZE(P)
108 #endif
109 
110 /*
111 ** Invoke the VDBE coverage callback, if that callback is defined.  This
112 ** feature is used for test suite validation only and does not appear an
113 ** production builds.
114 **
115 ** M is an integer, 2 or 3, that indices how many different ways the
116 ** branch can go.  It is usually 2.  "I" is the direction the branch
117 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
118 ** second alternative branch is taken.
119 **
120 ** iSrcLine is the source code line (from the __LINE__ macro) that
121 ** generated the VDBE instruction.  This instrumentation assumes that all
122 ** source code is in a single file (the amalgamation).  Special values 1
123 ** and 2 for the iSrcLine parameter mean that this particular branch is
124 ** always taken or never taken, respectively.
125 */
126 #if !defined(SQLITE_VDBE_COVERAGE)
127 # define VdbeBranchTaken(I,M)
128 #else
129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132       M = iSrcLine;
133       /* Assert the truth of VdbeCoverageAlwaysTaken() and
134       ** VdbeCoverageNeverTaken() */
135       assert( (M & I)==I );
136     }else{
137       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
138       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139                                       iSrcLine,I,M);
140     }
141   }
142 #endif
143 
144 /*
145 ** Convert the given register into a string if it isn't one
146 ** already. Return non-zero if a malloc() fails.
147 */
148 #define Stringify(P, enc) \
149    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
150      { goto no_mem; }
151 
152 /*
153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
154 ** a pointer to a dynamically allocated string where some other entity
155 ** is responsible for deallocating that string.  Because the register
156 ** does not control the string, it might be deleted without the register
157 ** knowing it.
158 **
159 ** This routine converts an ephemeral string into a dynamically allocated
160 ** string that the register itself controls.  In other words, it
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
162 */
163 #define Deephemeralize(P) \
164    if( ((P)->flags&MEM_Ephem)!=0 \
165        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
166 
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
168 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
169 
170 /*
171 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
172 ** if we run out of memory.
173 */
174 static VdbeCursor *allocateCursor(
175   Vdbe *p,              /* The virtual machine */
176   int iCur,             /* Index of the new VdbeCursor */
177   int nField,           /* Number of fields in the table or index */
178   int iDb,              /* Database the cursor belongs to, or -1 */
179   u8 eCurType           /* Type of the new cursor */
180 ){
181   /* Find the memory cell that will be used to store the blob of memory
182   ** required for this VdbeCursor structure. It is convenient to use a
183   ** vdbe memory cell to manage the memory allocation required for a
184   ** VdbeCursor structure for the following reasons:
185   **
186   **   * Sometimes cursor numbers are used for a couple of different
187   **     purposes in a vdbe program. The different uses might require
188   **     different sized allocations. Memory cells provide growable
189   **     allocations.
190   **
191   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192   **     be freed lazily via the sqlite3_release_memory() API. This
193   **     minimizes the number of malloc calls made by the system.
194   **
195   ** Memory cells for cursors are allocated at the top of the address
196   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198   */
199   Mem *pMem = &p->aMem[p->nMem-iCur];
200 
201   int nByte;
202   VdbeCursor *pCx = 0;
203   nByte =
204       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
206 
207   assert( iCur<p->nCursor );
208   if( p->apCsr[iCur] ){
209     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
210     p->apCsr[iCur] = 0;
211   }
212   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
213     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
214     memset(pCx, 0, sizeof(VdbeCursor));
215     pCx->eCurType = eCurType;
216     pCx->iDb = iDb;
217     pCx->nField = nField;
218     pCx->aOffset = &pCx->aType[nField];
219     if( eCurType==CURTYPE_BTREE ){
220       pCx->uc.pCursor = (BtCursor*)
221           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
222       sqlite3BtreeCursorZero(pCx->uc.pCursor);
223     }
224   }
225   return pCx;
226 }
227 
228 /*
229 ** Try to convert a value into a numeric representation if we can
230 ** do so without loss of information.  In other words, if the string
231 ** looks like a number, convert it into a number.  If it does not
232 ** look like a number, leave it alone.
233 **
234 ** If the bTryForInt flag is true, then extra effort is made to give
235 ** an integer representation.  Strings that look like floating point
236 ** values but which have no fractional component (example: '48.00')
237 ** will have a MEM_Int representation when bTryForInt is true.
238 **
239 ** If bTryForInt is false, then if the input string contains a decimal
240 ** point or exponential notation, the result is only MEM_Real, even
241 ** if there is an exact integer representation of the quantity.
242 */
243 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
244   double rValue;
245   i64 iValue;
246   u8 enc = pRec->enc;
247   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
248   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
249   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
250     pRec->u.i = iValue;
251     pRec->flags |= MEM_Int;
252   }else{
253     pRec->u.r = rValue;
254     pRec->flags |= MEM_Real;
255     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
256   }
257 }
258 
259 /*
260 ** Processing is determine by the affinity parameter:
261 **
262 ** SQLITE_AFF_INTEGER:
263 ** SQLITE_AFF_REAL:
264 ** SQLITE_AFF_NUMERIC:
265 **    Try to convert pRec to an integer representation or a
266 **    floating-point representation if an integer representation
267 **    is not possible.  Note that the integer representation is
268 **    always preferred, even if the affinity is REAL, because
269 **    an integer representation is more space efficient on disk.
270 **
271 ** SQLITE_AFF_TEXT:
272 **    Convert pRec to a text representation.
273 **
274 ** SQLITE_AFF_BLOB:
275 **    No-op.  pRec is unchanged.
276 */
277 static void applyAffinity(
278   Mem *pRec,          /* The value to apply affinity to */
279   char affinity,      /* The affinity to be applied */
280   u8 enc              /* Use this text encoding */
281 ){
282   if( affinity>=SQLITE_AFF_NUMERIC ){
283     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
284              || affinity==SQLITE_AFF_NUMERIC );
285     if( (pRec->flags & MEM_Int)==0 ){
286       if( (pRec->flags & MEM_Real)==0 ){
287         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
288       }else{
289         sqlite3VdbeIntegerAffinity(pRec);
290       }
291     }
292   }else if( affinity==SQLITE_AFF_TEXT ){
293     /* Only attempt the conversion to TEXT if there is an integer or real
294     ** representation (blob and NULL do not get converted) but no string
295     ** representation.
296     */
297     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
298       sqlite3VdbeMemStringify(pRec, enc, 1);
299     }
300     pRec->flags &= ~(MEM_Real|MEM_Int);
301   }
302 }
303 
304 /*
305 ** Try to convert the type of a function argument or a result column
306 ** into a numeric representation.  Use either INTEGER or REAL whichever
307 ** is appropriate.  But only do the conversion if it is possible without
308 ** loss of information and return the revised type of the argument.
309 */
310 int sqlite3_value_numeric_type(sqlite3_value *pVal){
311   int eType = sqlite3_value_type(pVal);
312   if( eType==SQLITE_TEXT ){
313     Mem *pMem = (Mem*)pVal;
314     applyNumericAffinity(pMem, 0);
315     eType = sqlite3_value_type(pVal);
316   }
317   return eType;
318 }
319 
320 /*
321 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
322 ** not the internal Mem* type.
323 */
324 void sqlite3ValueApplyAffinity(
325   sqlite3_value *pVal,
326   u8 affinity,
327   u8 enc
328 ){
329   applyAffinity((Mem *)pVal, affinity, enc);
330 }
331 
332 /*
333 ** pMem currently only holds a string type (or maybe a BLOB that we can
334 ** interpret as a string if we want to).  Compute its corresponding
335 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
336 ** accordingly.
337 */
338 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
339   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
340   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
341   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
342     return 0;
343   }
344   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
345     return MEM_Int;
346   }
347   return MEM_Real;
348 }
349 
350 /*
351 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
352 ** none.
353 **
354 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
355 ** But it does set pMem->u.r and pMem->u.i appropriately.
356 */
357 static u16 numericType(Mem *pMem){
358   if( pMem->flags & (MEM_Int|MEM_Real) ){
359     return pMem->flags & (MEM_Int|MEM_Real);
360   }
361   if( pMem->flags & (MEM_Str|MEM_Blob) ){
362     return computeNumericType(pMem);
363   }
364   return 0;
365 }
366 
367 #ifdef SQLITE_DEBUG
368 /*
369 ** Write a nice string representation of the contents of cell pMem
370 ** into buffer zBuf, length nBuf.
371 */
372 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
373   char *zCsr = zBuf;
374   int f = pMem->flags;
375 
376   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
377 
378   if( f&MEM_Blob ){
379     int i;
380     char c;
381     if( f & MEM_Dyn ){
382       c = 'z';
383       assert( (f & (MEM_Static|MEM_Ephem))==0 );
384     }else if( f & MEM_Static ){
385       c = 't';
386       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
387     }else if( f & MEM_Ephem ){
388       c = 'e';
389       assert( (f & (MEM_Static|MEM_Dyn))==0 );
390     }else{
391       c = 's';
392     }
393 
394     sqlite3_snprintf(100, zCsr, "%c", c);
395     zCsr += sqlite3Strlen30(zCsr);
396     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
397     zCsr += sqlite3Strlen30(zCsr);
398     for(i=0; i<16 && i<pMem->n; i++){
399       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
400       zCsr += sqlite3Strlen30(zCsr);
401     }
402     for(i=0; i<16 && i<pMem->n; i++){
403       char z = pMem->z[i];
404       if( z<32 || z>126 ) *zCsr++ = '.';
405       else *zCsr++ = z;
406     }
407 
408     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
409     zCsr += sqlite3Strlen30(zCsr);
410     if( f & MEM_Zero ){
411       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
412       zCsr += sqlite3Strlen30(zCsr);
413     }
414     *zCsr = '\0';
415   }else if( f & MEM_Str ){
416     int j, k;
417     zBuf[0] = ' ';
418     if( f & MEM_Dyn ){
419       zBuf[1] = 'z';
420       assert( (f & (MEM_Static|MEM_Ephem))==0 );
421     }else if( f & MEM_Static ){
422       zBuf[1] = 't';
423       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
424     }else if( f & MEM_Ephem ){
425       zBuf[1] = 'e';
426       assert( (f & (MEM_Static|MEM_Dyn))==0 );
427     }else{
428       zBuf[1] = 's';
429     }
430     k = 2;
431     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
432     k += sqlite3Strlen30(&zBuf[k]);
433     zBuf[k++] = '[';
434     for(j=0; j<15 && j<pMem->n; j++){
435       u8 c = pMem->z[j];
436       if( c>=0x20 && c<0x7f ){
437         zBuf[k++] = c;
438       }else{
439         zBuf[k++] = '.';
440       }
441     }
442     zBuf[k++] = ']';
443     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
444     k += sqlite3Strlen30(&zBuf[k]);
445     zBuf[k++] = 0;
446   }
447 }
448 #endif
449 
450 #ifdef SQLITE_DEBUG
451 /*
452 ** Print the value of a register for tracing purposes:
453 */
454 static void memTracePrint(Mem *p){
455   if( p->flags & MEM_Undefined ){
456     printf(" undefined");
457   }else if( p->flags & MEM_Null ){
458     printf(" NULL");
459   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
460     printf(" si:%lld", p->u.i);
461   }else if( p->flags & MEM_Int ){
462     printf(" i:%lld", p->u.i);
463 #ifndef SQLITE_OMIT_FLOATING_POINT
464   }else if( p->flags & MEM_Real ){
465     printf(" r:%g", p->u.r);
466 #endif
467   }else if( p->flags & MEM_RowSet ){
468     printf(" (rowset)");
469   }else{
470     char zBuf[200];
471     sqlite3VdbeMemPrettyPrint(p, zBuf);
472     printf(" %s", zBuf);
473   }
474 }
475 static void registerTrace(int iReg, Mem *p){
476   printf("REG[%d] = ", iReg);
477   memTracePrint(p);
478   printf("\n");
479 }
480 #endif
481 
482 #ifdef SQLITE_DEBUG
483 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
484 #else
485 #  define REGISTER_TRACE(R,M)
486 #endif
487 
488 
489 #ifdef VDBE_PROFILE
490 
491 /*
492 ** hwtime.h contains inline assembler code for implementing
493 ** high-performance timing routines.
494 */
495 #include "hwtime.h"
496 
497 #endif
498 
499 #ifndef NDEBUG
500 /*
501 ** This function is only called from within an assert() expression. It
502 ** checks that the sqlite3.nTransaction variable is correctly set to
503 ** the number of non-transaction savepoints currently in the
504 ** linked list starting at sqlite3.pSavepoint.
505 **
506 ** Usage:
507 **
508 **     assert( checkSavepointCount(db) );
509 */
510 static int checkSavepointCount(sqlite3 *db){
511   int n = 0;
512   Savepoint *p;
513   for(p=db->pSavepoint; p; p=p->pNext) n++;
514   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
515   return 1;
516 }
517 #endif
518 
519 /*
520 ** Return the register of pOp->p2 after first preparing it to be
521 ** overwritten with an integer value.
522 */
523 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
524   sqlite3VdbeMemSetNull(pOut);
525   pOut->flags = MEM_Int;
526   return pOut;
527 }
528 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
529   Mem *pOut;
530   assert( pOp->p2>0 );
531   assert( pOp->p2<=(p->nMem-p->nCursor) );
532   pOut = &p->aMem[pOp->p2];
533   memAboutToChange(p, pOut);
534   if( VdbeMemDynamic(pOut) ){
535     return out2PrereleaseWithClear(pOut);
536   }else{
537     pOut->flags = MEM_Int;
538     return pOut;
539   }
540 }
541 
542 
543 /*
544 ** Execute as much of a VDBE program as we can.
545 ** This is the core of sqlite3_step().
546 */
547 int sqlite3VdbeExec(
548   Vdbe *p                    /* The VDBE */
549 ){
550   Op *aOp = p->aOp;          /* Copy of p->aOp */
551   Op *pOp = aOp;             /* Current operation */
552 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
553   Op *pOrigOp;               /* Value of pOp at the top of the loop */
554 #endif
555   int rc = SQLITE_OK;        /* Value to return */
556   sqlite3 *db = p->db;       /* The database */
557   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
558   u8 encoding = ENC(db);     /* The database encoding */
559   int iCompare = 0;          /* Result of last OP_Compare operation */
560   unsigned nVmStep = 0;      /* Number of virtual machine steps */
561 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
562   unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
563 #endif
564   Mem *aMem = p->aMem;       /* Copy of p->aMem */
565   Mem *pIn1 = 0;             /* 1st input operand */
566   Mem *pIn2 = 0;             /* 2nd input operand */
567   Mem *pIn3 = 0;             /* 3rd input operand */
568   Mem *pOut = 0;             /* Output operand */
569   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
570   i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
571 #ifdef VDBE_PROFILE
572   u64 start;                 /* CPU clock count at start of opcode */
573 #endif
574   /*** INSERT STACK UNION HERE ***/
575 
576   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
577   sqlite3VdbeEnter(p);
578   if( p->rc==SQLITE_NOMEM ){
579     /* This happens if a malloc() inside a call to sqlite3_column_text() or
580     ** sqlite3_column_text16() failed.  */
581     goto no_mem;
582   }
583   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
584   assert( p->bIsReader || p->readOnly!=0 );
585   p->rc = SQLITE_OK;
586   p->iCurrentTime = 0;
587   assert( p->explain==0 );
588   p->pResultSet = 0;
589   db->busyHandler.nBusy = 0;
590   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
591   sqlite3VdbeIOTraceSql(p);
592 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
593   if( db->xProgress ){
594     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
595     assert( 0 < db->nProgressOps );
596     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
597   }
598 #endif
599 #ifdef SQLITE_DEBUG
600   sqlite3BeginBenignMalloc();
601   if( p->pc==0
602    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
603   ){
604     int i;
605     int once = 1;
606     sqlite3VdbePrintSql(p);
607     if( p->db->flags & SQLITE_VdbeListing ){
608       printf("VDBE Program Listing:\n");
609       for(i=0; i<p->nOp; i++){
610         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
611       }
612     }
613     if( p->db->flags & SQLITE_VdbeEQP ){
614       for(i=0; i<p->nOp; i++){
615         if( aOp[i].opcode==OP_Explain ){
616           if( once ) printf("VDBE Query Plan:\n");
617           printf("%s\n", aOp[i].p4.z);
618           once = 0;
619         }
620       }
621     }
622     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
623   }
624   sqlite3EndBenignMalloc();
625 #endif
626   for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
627     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
628     if( db->mallocFailed ) goto no_mem;
629 #ifdef VDBE_PROFILE
630     start = sqlite3Hwtime();
631 #endif
632     nVmStep++;
633 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
634     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
635 #endif
636 
637     /* Only allow tracing if SQLITE_DEBUG is defined.
638     */
639 #ifdef SQLITE_DEBUG
640     if( db->flags & SQLITE_VdbeTrace ){
641       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
642     }
643 #endif
644 
645 
646     /* Check to see if we need to simulate an interrupt.  This only happens
647     ** if we have a special test build.
648     */
649 #ifdef SQLITE_TEST
650     if( sqlite3_interrupt_count>0 ){
651       sqlite3_interrupt_count--;
652       if( sqlite3_interrupt_count==0 ){
653         sqlite3_interrupt(db);
654       }
655     }
656 #endif
657 
658     /* Sanity checking on other operands */
659 #ifdef SQLITE_DEBUG
660     assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
661     if( (pOp->opflags & OPFLG_IN1)!=0 ){
662       assert( pOp->p1>0 );
663       assert( pOp->p1<=(p->nMem-p->nCursor) );
664       assert( memIsValid(&aMem[pOp->p1]) );
665       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
666       REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
667     }
668     if( (pOp->opflags & OPFLG_IN2)!=0 ){
669       assert( pOp->p2>0 );
670       assert( pOp->p2<=(p->nMem-p->nCursor) );
671       assert( memIsValid(&aMem[pOp->p2]) );
672       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
673       REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
674     }
675     if( (pOp->opflags & OPFLG_IN3)!=0 ){
676       assert( pOp->p3>0 );
677       assert( pOp->p3<=(p->nMem-p->nCursor) );
678       assert( memIsValid(&aMem[pOp->p3]) );
679       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
680       REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
681     }
682     if( (pOp->opflags & OPFLG_OUT2)!=0 ){
683       assert( pOp->p2>0 );
684       assert( pOp->p2<=(p->nMem-p->nCursor) );
685       memAboutToChange(p, &aMem[pOp->p2]);
686     }
687     if( (pOp->opflags & OPFLG_OUT3)!=0 ){
688       assert( pOp->p3>0 );
689       assert( pOp->p3<=(p->nMem-p->nCursor) );
690       memAboutToChange(p, &aMem[pOp->p3]);
691     }
692 #endif
693 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
694     pOrigOp = pOp;
695 #endif
696 
697     switch( pOp->opcode ){
698 
699 /*****************************************************************************
700 ** What follows is a massive switch statement where each case implements a
701 ** separate instruction in the virtual machine.  If we follow the usual
702 ** indentation conventions, each case should be indented by 6 spaces.  But
703 ** that is a lot of wasted space on the left margin.  So the code within
704 ** the switch statement will break with convention and be flush-left. Another
705 ** big comment (similar to this one) will mark the point in the code where
706 ** we transition back to normal indentation.
707 **
708 ** The formatting of each case is important.  The makefile for SQLite
709 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
710 ** file looking for lines that begin with "case OP_".  The opcodes.h files
711 ** will be filled with #defines that give unique integer values to each
712 ** opcode and the opcodes.c file is filled with an array of strings where
713 ** each string is the symbolic name for the corresponding opcode.  If the
714 ** case statement is followed by a comment of the form "/# same as ... #/"
715 ** that comment is used to determine the particular value of the opcode.
716 **
717 ** Other keywords in the comment that follows each case are used to
718 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
719 ** Keywords include: in1, in2, in3, out2, out3.  See
720 ** the mkopcodeh.awk script for additional information.
721 **
722 ** Documentation about VDBE opcodes is generated by scanning this file
723 ** for lines of that contain "Opcode:".  That line and all subsequent
724 ** comment lines are used in the generation of the opcode.html documentation
725 ** file.
726 **
727 ** SUMMARY:
728 **
729 **     Formatting is important to scripts that scan this file.
730 **     Do not deviate from the formatting style currently in use.
731 **
732 *****************************************************************************/
733 
734 /* Opcode:  Goto * P2 * * *
735 **
736 ** An unconditional jump to address P2.
737 ** The next instruction executed will be
738 ** the one at index P2 from the beginning of
739 ** the program.
740 **
741 ** The P1 parameter is not actually used by this opcode.  However, it
742 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
743 ** that this Goto is the bottom of a loop and that the lines from P2 down
744 ** to the current line should be indented for EXPLAIN output.
745 */
746 case OP_Goto: {             /* jump */
747 jump_to_p2_and_check_for_interrupt:
748   pOp = &aOp[pOp->p2 - 1];
749 
750   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
751   ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
752   ** completion.  Check to see if sqlite3_interrupt() has been called
753   ** or if the progress callback needs to be invoked.
754   **
755   ** This code uses unstructured "goto" statements and does not look clean.
756   ** But that is not due to sloppy coding habits. The code is written this
757   ** way for performance, to avoid having to run the interrupt and progress
758   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
759   ** faster according to "valgrind --tool=cachegrind" */
760 check_for_interrupt:
761   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
762 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
763   /* Call the progress callback if it is configured and the required number
764   ** of VDBE ops have been executed (either since this invocation of
765   ** sqlite3VdbeExec() or since last time the progress callback was called).
766   ** If the progress callback returns non-zero, exit the virtual machine with
767   ** a return code SQLITE_ABORT.
768   */
769   if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
770     assert( db->nProgressOps!=0 );
771     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
772     if( db->xProgress(db->pProgressArg) ){
773       rc = SQLITE_INTERRUPT;
774       goto vdbe_error_halt;
775     }
776   }
777 #endif
778 
779   break;
780 }
781 
782 /* Opcode:  Gosub P1 P2 * * *
783 **
784 ** Write the current address onto register P1
785 ** and then jump to address P2.
786 */
787 case OP_Gosub: {            /* jump */
788   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
789   pIn1 = &aMem[pOp->p1];
790   assert( VdbeMemDynamic(pIn1)==0 );
791   memAboutToChange(p, pIn1);
792   pIn1->flags = MEM_Int;
793   pIn1->u.i = (int)(pOp-aOp);
794   REGISTER_TRACE(pOp->p1, pIn1);
795 
796   /* Most jump operations do a goto to this spot in order to update
797   ** the pOp pointer. */
798 jump_to_p2:
799   pOp = &aOp[pOp->p2 - 1];
800   break;
801 }
802 
803 /* Opcode:  Return P1 * * * *
804 **
805 ** Jump to the next instruction after the address in register P1.  After
806 ** the jump, register P1 becomes undefined.
807 */
808 case OP_Return: {           /* in1 */
809   pIn1 = &aMem[pOp->p1];
810   assert( pIn1->flags==MEM_Int );
811   pOp = &aOp[pIn1->u.i];
812   pIn1->flags = MEM_Undefined;
813   break;
814 }
815 
816 /* Opcode: InitCoroutine P1 P2 P3 * *
817 **
818 ** Set up register P1 so that it will Yield to the coroutine
819 ** located at address P3.
820 **
821 ** If P2!=0 then the coroutine implementation immediately follows
822 ** this opcode.  So jump over the coroutine implementation to
823 ** address P2.
824 **
825 ** See also: EndCoroutine
826 */
827 case OP_InitCoroutine: {     /* jump */
828   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem-p->nCursor) );
829   assert( pOp->p2>=0 && pOp->p2<p->nOp );
830   assert( pOp->p3>=0 && pOp->p3<p->nOp );
831   pOut = &aMem[pOp->p1];
832   assert( !VdbeMemDynamic(pOut) );
833   pOut->u.i = pOp->p3 - 1;
834   pOut->flags = MEM_Int;
835   if( pOp->p2 ) goto jump_to_p2;
836   break;
837 }
838 
839 /* Opcode:  EndCoroutine P1 * * * *
840 **
841 ** The instruction at the address in register P1 is a Yield.
842 ** Jump to the P2 parameter of that Yield.
843 ** After the jump, register P1 becomes undefined.
844 **
845 ** See also: InitCoroutine
846 */
847 case OP_EndCoroutine: {           /* in1 */
848   VdbeOp *pCaller;
849   pIn1 = &aMem[pOp->p1];
850   assert( pIn1->flags==MEM_Int );
851   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
852   pCaller = &aOp[pIn1->u.i];
853   assert( pCaller->opcode==OP_Yield );
854   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
855   pOp = &aOp[pCaller->p2 - 1];
856   pIn1->flags = MEM_Undefined;
857   break;
858 }
859 
860 /* Opcode:  Yield P1 P2 * * *
861 **
862 ** Swap the program counter with the value in register P1.  This
863 ** has the effect of yielding to a coroutine.
864 **
865 ** If the coroutine that is launched by this instruction ends with
866 ** Yield or Return then continue to the next instruction.  But if
867 ** the coroutine launched by this instruction ends with
868 ** EndCoroutine, then jump to P2 rather than continuing with the
869 ** next instruction.
870 **
871 ** See also: InitCoroutine
872 */
873 case OP_Yield: {            /* in1, jump */
874   int pcDest;
875   pIn1 = &aMem[pOp->p1];
876   assert( VdbeMemDynamic(pIn1)==0 );
877   pIn1->flags = MEM_Int;
878   pcDest = (int)pIn1->u.i;
879   pIn1->u.i = (int)(pOp - aOp);
880   REGISTER_TRACE(pOp->p1, pIn1);
881   pOp = &aOp[pcDest];
882   break;
883 }
884 
885 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
886 ** Synopsis:  if r[P3]=null halt
887 **
888 ** Check the value in register P3.  If it is NULL then Halt using
889 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
890 ** value in register P3 is not NULL, then this routine is a no-op.
891 ** The P5 parameter should be 1.
892 */
893 case OP_HaltIfNull: {      /* in3 */
894   pIn3 = &aMem[pOp->p3];
895   if( (pIn3->flags & MEM_Null)==0 ) break;
896   /* Fall through into OP_Halt */
897 }
898 
899 /* Opcode:  Halt P1 P2 * P4 P5
900 **
901 ** Exit immediately.  All open cursors, etc are closed
902 ** automatically.
903 **
904 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
905 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
906 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
907 ** whether or not to rollback the current transaction.  Do not rollback
908 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
909 ** then back out all changes that have occurred during this execution of the
910 ** VDBE, but do not rollback the transaction.
911 **
912 ** If P4 is not null then it is an error message string.
913 **
914 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
915 **
916 **    0:  (no change)
917 **    1:  NOT NULL contraint failed: P4
918 **    2:  UNIQUE constraint failed: P4
919 **    3:  CHECK constraint failed: P4
920 **    4:  FOREIGN KEY constraint failed: P4
921 **
922 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
923 ** omitted.
924 **
925 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
926 ** every program.  So a jump past the last instruction of the program
927 ** is the same as executing Halt.
928 */
929 case OP_Halt: {
930   const char *zType;
931   const char *zLogFmt;
932   VdbeFrame *pFrame;
933   int pcx;
934 
935   pcx = (int)(pOp - aOp);
936   if( pOp->p1==SQLITE_OK && p->pFrame ){
937     /* Halt the sub-program. Return control to the parent frame. */
938     pFrame = p->pFrame;
939     p->pFrame = pFrame->pParent;
940     p->nFrame--;
941     sqlite3VdbeSetChanges(db, p->nChange);
942     pcx = sqlite3VdbeFrameRestore(pFrame);
943     lastRowid = db->lastRowid;
944     if( pOp->p2==OE_Ignore ){
945       /* Instruction pcx is the OP_Program that invoked the sub-program
946       ** currently being halted. If the p2 instruction of this OP_Halt
947       ** instruction is set to OE_Ignore, then the sub-program is throwing
948       ** an IGNORE exception. In this case jump to the address specified
949       ** as the p2 of the calling OP_Program.  */
950       pcx = p->aOp[pcx].p2-1;
951     }
952     aOp = p->aOp;
953     aMem = p->aMem;
954     pOp = &aOp[pcx];
955     break;
956   }
957   p->rc = pOp->p1;
958   p->errorAction = (u8)pOp->p2;
959   p->pc = pcx;
960   if( p->rc ){
961     if( pOp->p5 ){
962       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
963                                              "FOREIGN KEY" };
964       assert( pOp->p5>=1 && pOp->p5<=4 );
965       testcase( pOp->p5==1 );
966       testcase( pOp->p5==2 );
967       testcase( pOp->p5==3 );
968       testcase( pOp->p5==4 );
969       zType = azType[pOp->p5-1];
970     }else{
971       zType = 0;
972     }
973     assert( zType!=0 || pOp->p4.z!=0 );
974     zLogFmt = "abort at %d in [%s]: %s";
975     if( zType && pOp->p4.z ){
976       sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
977     }else if( pOp->p4.z ){
978       sqlite3VdbeError(p, "%s", pOp->p4.z);
979     }else{
980       sqlite3VdbeError(p, "%s constraint failed", zType);
981     }
982     sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
983   }
984   rc = sqlite3VdbeHalt(p);
985   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
986   if( rc==SQLITE_BUSY ){
987     p->rc = rc = SQLITE_BUSY;
988   }else{
989     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
990     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
991     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
992   }
993   goto vdbe_return;
994 }
995 
996 /* Opcode: Integer P1 P2 * * *
997 ** Synopsis: r[P2]=P1
998 **
999 ** The 32-bit integer value P1 is written into register P2.
1000 */
1001 case OP_Integer: {         /* out2 */
1002   pOut = out2Prerelease(p, pOp);
1003   pOut->u.i = pOp->p1;
1004   break;
1005 }
1006 
1007 /* Opcode: Int64 * P2 * P4 *
1008 ** Synopsis: r[P2]=P4
1009 **
1010 ** P4 is a pointer to a 64-bit integer value.
1011 ** Write that value into register P2.
1012 */
1013 case OP_Int64: {           /* out2 */
1014   pOut = out2Prerelease(p, pOp);
1015   assert( pOp->p4.pI64!=0 );
1016   pOut->u.i = *pOp->p4.pI64;
1017   break;
1018 }
1019 
1020 #ifndef SQLITE_OMIT_FLOATING_POINT
1021 /* Opcode: Real * P2 * P4 *
1022 ** Synopsis: r[P2]=P4
1023 **
1024 ** P4 is a pointer to a 64-bit floating point value.
1025 ** Write that value into register P2.
1026 */
1027 case OP_Real: {            /* same as TK_FLOAT, out2 */
1028   pOut = out2Prerelease(p, pOp);
1029   pOut->flags = MEM_Real;
1030   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1031   pOut->u.r = *pOp->p4.pReal;
1032   break;
1033 }
1034 #endif
1035 
1036 /* Opcode: String8 * P2 * P4 *
1037 ** Synopsis: r[P2]='P4'
1038 **
1039 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1040 ** into a String opcode before it is executed for the first time.  During
1041 ** this transformation, the length of string P4 is computed and stored
1042 ** as the P1 parameter.
1043 */
1044 case OP_String8: {         /* same as TK_STRING, out2 */
1045   assert( pOp->p4.z!=0 );
1046   pOut = out2Prerelease(p, pOp);
1047   pOp->opcode = OP_String;
1048   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1049 
1050 #ifndef SQLITE_OMIT_UTF16
1051   if( encoding!=SQLITE_UTF8 ){
1052     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1053     if( rc==SQLITE_TOOBIG ) goto too_big;
1054     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1055     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1056     assert( VdbeMemDynamic(pOut)==0 );
1057     pOut->szMalloc = 0;
1058     pOut->flags |= MEM_Static;
1059     if( pOp->p4type==P4_DYNAMIC ){
1060       sqlite3DbFree(db, pOp->p4.z);
1061     }
1062     pOp->p4type = P4_DYNAMIC;
1063     pOp->p4.z = pOut->z;
1064     pOp->p1 = pOut->n;
1065   }
1066 #endif
1067   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1068     goto too_big;
1069   }
1070   /* Fall through to the next case, OP_String */
1071 }
1072 
1073 /* Opcode: String P1 P2 P3 P4 P5
1074 ** Synopsis: r[P2]='P4' (len=P1)
1075 **
1076 ** The string value P4 of length P1 (bytes) is stored in register P2.
1077 **
1078 ** If P5!=0 and the content of register P3 is greater than zero, then
1079 ** the datatype of the register P2 is converted to BLOB.  The content is
1080 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1081 ** of a string, as if it had been CAST.
1082 */
1083 case OP_String: {          /* out2 */
1084   assert( pOp->p4.z!=0 );
1085   pOut = out2Prerelease(p, pOp);
1086   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1087   pOut->z = pOp->p4.z;
1088   pOut->n = pOp->p1;
1089   pOut->enc = encoding;
1090   UPDATE_MAX_BLOBSIZE(pOut);
1091 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1092   if( pOp->p5 ){
1093     assert( pOp->p3>0 );
1094     assert( pOp->p3<=(p->nMem-p->nCursor) );
1095     pIn3 = &aMem[pOp->p3];
1096     assert( pIn3->flags & MEM_Int );
1097     if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1098   }
1099 #endif
1100   break;
1101 }
1102 
1103 /* Opcode: Null P1 P2 P3 * *
1104 ** Synopsis:  r[P2..P3]=NULL
1105 **
1106 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1107 ** NULL into register P3 and every register in between P2 and P3.  If P3
1108 ** is less than P2 (typically P3 is zero) then only register P2 is
1109 ** set to NULL.
1110 **
1111 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1112 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1113 ** OP_Ne or OP_Eq.
1114 */
1115 case OP_Null: {           /* out2 */
1116   int cnt;
1117   u16 nullFlag;
1118   pOut = out2Prerelease(p, pOp);
1119   cnt = pOp->p3-pOp->p2;
1120   assert( pOp->p3<=(p->nMem-p->nCursor) );
1121   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1122   while( cnt>0 ){
1123     pOut++;
1124     memAboutToChange(p, pOut);
1125     sqlite3VdbeMemSetNull(pOut);
1126     pOut->flags = nullFlag;
1127     cnt--;
1128   }
1129   break;
1130 }
1131 
1132 /* Opcode: SoftNull P1 * * * *
1133 ** Synopsis:  r[P1]=NULL
1134 **
1135 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1136 ** instruction, but do not free any string or blob memory associated with
1137 ** the register, so that if the value was a string or blob that was
1138 ** previously copied using OP_SCopy, the copies will continue to be valid.
1139 */
1140 case OP_SoftNull: {
1141   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1142   pOut = &aMem[pOp->p1];
1143   pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1144   break;
1145 }
1146 
1147 /* Opcode: Blob P1 P2 * P4 *
1148 ** Synopsis: r[P2]=P4 (len=P1)
1149 **
1150 ** P4 points to a blob of data P1 bytes long.  Store this
1151 ** blob in register P2.
1152 */
1153 case OP_Blob: {                /* out2 */
1154   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1155   pOut = out2Prerelease(p, pOp);
1156   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1157   pOut->enc = encoding;
1158   UPDATE_MAX_BLOBSIZE(pOut);
1159   break;
1160 }
1161 
1162 /* Opcode: Variable P1 P2 * P4 *
1163 ** Synopsis: r[P2]=parameter(P1,P4)
1164 **
1165 ** Transfer the values of bound parameter P1 into register P2
1166 **
1167 ** If the parameter is named, then its name appears in P4.
1168 ** The P4 value is used by sqlite3_bind_parameter_name().
1169 */
1170 case OP_Variable: {            /* out2 */
1171   Mem *pVar;       /* Value being transferred */
1172 
1173   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1174   assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1175   pVar = &p->aVar[pOp->p1 - 1];
1176   if( sqlite3VdbeMemTooBig(pVar) ){
1177     goto too_big;
1178   }
1179   pOut = out2Prerelease(p, pOp);
1180   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1181   UPDATE_MAX_BLOBSIZE(pOut);
1182   break;
1183 }
1184 
1185 /* Opcode: Move P1 P2 P3 * *
1186 ** Synopsis:  r[P2@P3]=r[P1@P3]
1187 **
1188 ** Move the P3 values in register P1..P1+P3-1 over into
1189 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1190 ** left holding a NULL.  It is an error for register ranges
1191 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1192 ** for P3 to be less than 1.
1193 */
1194 case OP_Move: {
1195   int n;           /* Number of registers left to copy */
1196   int p1;          /* Register to copy from */
1197   int p2;          /* Register to copy to */
1198 
1199   n = pOp->p3;
1200   p1 = pOp->p1;
1201   p2 = pOp->p2;
1202   assert( n>0 && p1>0 && p2>0 );
1203   assert( p1+n<=p2 || p2+n<=p1 );
1204 
1205   pIn1 = &aMem[p1];
1206   pOut = &aMem[p2];
1207   do{
1208     assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1209     assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
1210     assert( memIsValid(pIn1) );
1211     memAboutToChange(p, pOut);
1212     sqlite3VdbeMemMove(pOut, pIn1);
1213 #ifdef SQLITE_DEBUG
1214     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1215       pOut->pScopyFrom += pOp->p2 - p1;
1216     }
1217 #endif
1218     Deephemeralize(pOut);
1219     REGISTER_TRACE(p2++, pOut);
1220     pIn1++;
1221     pOut++;
1222   }while( --n );
1223   break;
1224 }
1225 
1226 /* Opcode: Copy P1 P2 P3 * *
1227 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1228 **
1229 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1230 **
1231 ** This instruction makes a deep copy of the value.  A duplicate
1232 ** is made of any string or blob constant.  See also OP_SCopy.
1233 */
1234 case OP_Copy: {
1235   int n;
1236 
1237   n = pOp->p3;
1238   pIn1 = &aMem[pOp->p1];
1239   pOut = &aMem[pOp->p2];
1240   assert( pOut!=pIn1 );
1241   while( 1 ){
1242     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1243     Deephemeralize(pOut);
1244 #ifdef SQLITE_DEBUG
1245     pOut->pScopyFrom = 0;
1246 #endif
1247     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1248     if( (n--)==0 ) break;
1249     pOut++;
1250     pIn1++;
1251   }
1252   break;
1253 }
1254 
1255 /* Opcode: SCopy P1 P2 * * *
1256 ** Synopsis: r[P2]=r[P1]
1257 **
1258 ** Make a shallow copy of register P1 into register P2.
1259 **
1260 ** This instruction makes a shallow copy of the value.  If the value
1261 ** is a string or blob, then the copy is only a pointer to the
1262 ** original and hence if the original changes so will the copy.
1263 ** Worse, if the original is deallocated, the copy becomes invalid.
1264 ** Thus the program must guarantee that the original will not change
1265 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1266 ** copy.
1267 */
1268 case OP_SCopy: {            /* out2 */
1269   pIn1 = &aMem[pOp->p1];
1270   pOut = &aMem[pOp->p2];
1271   assert( pOut!=pIn1 );
1272   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1273 #ifdef SQLITE_DEBUG
1274   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1275 #endif
1276   break;
1277 }
1278 
1279 /* Opcode: IntCopy P1 P2 * * *
1280 ** Synopsis: r[P2]=r[P1]
1281 **
1282 ** Transfer the integer value held in register P1 into register P2.
1283 **
1284 ** This is an optimized version of SCopy that works only for integer
1285 ** values.
1286 */
1287 case OP_IntCopy: {            /* out2 */
1288   pIn1 = &aMem[pOp->p1];
1289   assert( (pIn1->flags & MEM_Int)!=0 );
1290   pOut = &aMem[pOp->p2];
1291   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1292   break;
1293 }
1294 
1295 /* Opcode: ResultRow P1 P2 * * *
1296 ** Synopsis:  output=r[P1@P2]
1297 **
1298 ** The registers P1 through P1+P2-1 contain a single row of
1299 ** results. This opcode causes the sqlite3_step() call to terminate
1300 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1301 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1302 ** the result row.
1303 */
1304 case OP_ResultRow: {
1305   Mem *pMem;
1306   int i;
1307   assert( p->nResColumn==pOp->p2 );
1308   assert( pOp->p1>0 );
1309   assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
1310 
1311 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1312   /* Run the progress counter just before returning.
1313   */
1314   if( db->xProgress!=0
1315    && nVmStep>=nProgressLimit
1316    && db->xProgress(db->pProgressArg)!=0
1317   ){
1318     rc = SQLITE_INTERRUPT;
1319     goto vdbe_error_halt;
1320   }
1321 #endif
1322 
1323   /* If this statement has violated immediate foreign key constraints, do
1324   ** not return the number of rows modified. And do not RELEASE the statement
1325   ** transaction. It needs to be rolled back.  */
1326   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1327     assert( db->flags&SQLITE_CountRows );
1328     assert( p->usesStmtJournal );
1329     break;
1330   }
1331 
1332   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1333   ** DML statements invoke this opcode to return the number of rows
1334   ** modified to the user. This is the only way that a VM that
1335   ** opens a statement transaction may invoke this opcode.
1336   **
1337   ** In case this is such a statement, close any statement transaction
1338   ** opened by this VM before returning control to the user. This is to
1339   ** ensure that statement-transactions are always nested, not overlapping.
1340   ** If the open statement-transaction is not closed here, then the user
1341   ** may step another VM that opens its own statement transaction. This
1342   ** may lead to overlapping statement transactions.
1343   **
1344   ** The statement transaction is never a top-level transaction.  Hence
1345   ** the RELEASE call below can never fail.
1346   */
1347   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1348   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1349   if( NEVER(rc!=SQLITE_OK) ){
1350     break;
1351   }
1352 
1353   /* Invalidate all ephemeral cursor row caches */
1354   p->cacheCtr = (p->cacheCtr + 2)|1;
1355 
1356   /* Make sure the results of the current row are \000 terminated
1357   ** and have an assigned type.  The results are de-ephemeralized as
1358   ** a side effect.
1359   */
1360   pMem = p->pResultSet = &aMem[pOp->p1];
1361   for(i=0; i<pOp->p2; i++){
1362     assert( memIsValid(&pMem[i]) );
1363     Deephemeralize(&pMem[i]);
1364     assert( (pMem[i].flags & MEM_Ephem)==0
1365             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1366     sqlite3VdbeMemNulTerminate(&pMem[i]);
1367     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1368   }
1369   if( db->mallocFailed ) goto no_mem;
1370 
1371   /* Return SQLITE_ROW
1372   */
1373   p->pc = (int)(pOp - aOp) + 1;
1374   rc = SQLITE_ROW;
1375   goto vdbe_return;
1376 }
1377 
1378 /* Opcode: Concat P1 P2 P3 * *
1379 ** Synopsis: r[P3]=r[P2]+r[P1]
1380 **
1381 ** Add the text in register P1 onto the end of the text in
1382 ** register P2 and store the result in register P3.
1383 ** If either the P1 or P2 text are NULL then store NULL in P3.
1384 **
1385 **   P3 = P2 || P1
1386 **
1387 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1388 ** if P3 is the same register as P2, the implementation is able
1389 ** to avoid a memcpy().
1390 */
1391 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1392   i64 nByte;
1393 
1394   pIn1 = &aMem[pOp->p1];
1395   pIn2 = &aMem[pOp->p2];
1396   pOut = &aMem[pOp->p3];
1397   assert( pIn1!=pOut );
1398   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1399     sqlite3VdbeMemSetNull(pOut);
1400     break;
1401   }
1402   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1403   Stringify(pIn1, encoding);
1404   Stringify(pIn2, encoding);
1405   nByte = pIn1->n + pIn2->n;
1406   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1407     goto too_big;
1408   }
1409   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1410     goto no_mem;
1411   }
1412   MemSetTypeFlag(pOut, MEM_Str);
1413   if( pOut!=pIn2 ){
1414     memcpy(pOut->z, pIn2->z, pIn2->n);
1415   }
1416   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1417   pOut->z[nByte]=0;
1418   pOut->z[nByte+1] = 0;
1419   pOut->flags |= MEM_Term;
1420   pOut->n = (int)nByte;
1421   pOut->enc = encoding;
1422   UPDATE_MAX_BLOBSIZE(pOut);
1423   break;
1424 }
1425 
1426 /* Opcode: Add P1 P2 P3 * *
1427 ** Synopsis:  r[P3]=r[P1]+r[P2]
1428 **
1429 ** Add the value in register P1 to the value in register P2
1430 ** and store the result in register P3.
1431 ** If either input is NULL, the result is NULL.
1432 */
1433 /* Opcode: Multiply P1 P2 P3 * *
1434 ** Synopsis:  r[P3]=r[P1]*r[P2]
1435 **
1436 **
1437 ** Multiply the value in register P1 by the value in register P2
1438 ** and store the result in register P3.
1439 ** If either input is NULL, the result is NULL.
1440 */
1441 /* Opcode: Subtract P1 P2 P3 * *
1442 ** Synopsis:  r[P3]=r[P2]-r[P1]
1443 **
1444 ** Subtract the value in register P1 from the value in register P2
1445 ** and store the result in register P3.
1446 ** If either input is NULL, the result is NULL.
1447 */
1448 /* Opcode: Divide P1 P2 P3 * *
1449 ** Synopsis:  r[P3]=r[P2]/r[P1]
1450 **
1451 ** Divide the value in register P1 by the value in register P2
1452 ** and store the result in register P3 (P3=P2/P1). If the value in
1453 ** register P1 is zero, then the result is NULL. If either input is
1454 ** NULL, the result is NULL.
1455 */
1456 /* Opcode: Remainder P1 P2 P3 * *
1457 ** Synopsis:  r[P3]=r[P2]%r[P1]
1458 **
1459 ** Compute the remainder after integer register P2 is divided by
1460 ** register P1 and store the result in register P3.
1461 ** If the value in register P1 is zero the result is NULL.
1462 ** If either operand is NULL, the result is NULL.
1463 */
1464 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1465 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1466 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1467 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1468 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1469   char bIntint;   /* Started out as two integer operands */
1470   u16 flags;      /* Combined MEM_* flags from both inputs */
1471   u16 type1;      /* Numeric type of left operand */
1472   u16 type2;      /* Numeric type of right operand */
1473   i64 iA;         /* Integer value of left operand */
1474   i64 iB;         /* Integer value of right operand */
1475   double rA;      /* Real value of left operand */
1476   double rB;      /* Real value of right operand */
1477 
1478   pIn1 = &aMem[pOp->p1];
1479   type1 = numericType(pIn1);
1480   pIn2 = &aMem[pOp->p2];
1481   type2 = numericType(pIn2);
1482   pOut = &aMem[pOp->p3];
1483   flags = pIn1->flags | pIn2->flags;
1484   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1485   if( (type1 & type2 & MEM_Int)!=0 ){
1486     iA = pIn1->u.i;
1487     iB = pIn2->u.i;
1488     bIntint = 1;
1489     switch( pOp->opcode ){
1490       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1491       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1492       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1493       case OP_Divide: {
1494         if( iA==0 ) goto arithmetic_result_is_null;
1495         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1496         iB /= iA;
1497         break;
1498       }
1499       default: {
1500         if( iA==0 ) goto arithmetic_result_is_null;
1501         if( iA==-1 ) iA = 1;
1502         iB %= iA;
1503         break;
1504       }
1505     }
1506     pOut->u.i = iB;
1507     MemSetTypeFlag(pOut, MEM_Int);
1508   }else{
1509     bIntint = 0;
1510 fp_math:
1511     rA = sqlite3VdbeRealValue(pIn1);
1512     rB = sqlite3VdbeRealValue(pIn2);
1513     switch( pOp->opcode ){
1514       case OP_Add:         rB += rA;       break;
1515       case OP_Subtract:    rB -= rA;       break;
1516       case OP_Multiply:    rB *= rA;       break;
1517       case OP_Divide: {
1518         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1519         if( rA==(double)0 ) goto arithmetic_result_is_null;
1520         rB /= rA;
1521         break;
1522       }
1523       default: {
1524         iA = (i64)rA;
1525         iB = (i64)rB;
1526         if( iA==0 ) goto arithmetic_result_is_null;
1527         if( iA==-1 ) iA = 1;
1528         rB = (double)(iB % iA);
1529         break;
1530       }
1531     }
1532 #ifdef SQLITE_OMIT_FLOATING_POINT
1533     pOut->u.i = rB;
1534     MemSetTypeFlag(pOut, MEM_Int);
1535 #else
1536     if( sqlite3IsNaN(rB) ){
1537       goto arithmetic_result_is_null;
1538     }
1539     pOut->u.r = rB;
1540     MemSetTypeFlag(pOut, MEM_Real);
1541     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1542       sqlite3VdbeIntegerAffinity(pOut);
1543     }
1544 #endif
1545   }
1546   break;
1547 
1548 arithmetic_result_is_null:
1549   sqlite3VdbeMemSetNull(pOut);
1550   break;
1551 }
1552 
1553 /* Opcode: CollSeq P1 * * P4
1554 **
1555 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1556 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1557 ** be returned. This is used by the built-in min(), max() and nullif()
1558 ** functions.
1559 **
1560 ** If P1 is not zero, then it is a register that a subsequent min() or
1561 ** max() aggregate will set to 1 if the current row is not the minimum or
1562 ** maximum.  The P1 register is initialized to 0 by this instruction.
1563 **
1564 ** The interface used by the implementation of the aforementioned functions
1565 ** to retrieve the collation sequence set by this opcode is not available
1566 ** publicly.  Only built-in functions have access to this feature.
1567 */
1568 case OP_CollSeq: {
1569   assert( pOp->p4type==P4_COLLSEQ );
1570   if( pOp->p1 ){
1571     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1572   }
1573   break;
1574 }
1575 
1576 /* Opcode: Function0 P1 P2 P3 P4 P5
1577 ** Synopsis: r[P3]=func(r[P2@P5])
1578 **
1579 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1580 ** defines the function) with P5 arguments taken from register P2 and
1581 ** successors.  The result of the function is stored in register P3.
1582 ** Register P3 must not be one of the function inputs.
1583 **
1584 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1585 ** function was determined to be constant at compile time. If the first
1586 ** argument was constant then bit 0 of P1 is set. This is used to determine
1587 ** whether meta data associated with a user function argument using the
1588 ** sqlite3_set_auxdata() API may be safely retained until the next
1589 ** invocation of this opcode.
1590 **
1591 ** See also: Function, AggStep, AggFinal
1592 */
1593 /* Opcode: Function P1 P2 P3 P4 P5
1594 ** Synopsis: r[P3]=func(r[P2@P5])
1595 **
1596 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1597 ** contains a pointer to the function to be run) with P5 arguments taken
1598 ** from register P2 and successors.  The result of the function is stored
1599 ** in register P3.  Register P3 must not be one of the function inputs.
1600 **
1601 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1602 ** function was determined to be constant at compile time. If the first
1603 ** argument was constant then bit 0 of P1 is set. This is used to determine
1604 ** whether meta data associated with a user function argument using the
1605 ** sqlite3_set_auxdata() API may be safely retained until the next
1606 ** invocation of this opcode.
1607 **
1608 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1609 ** to a FuncDef object.  But on first evaluation, the P4 operand is
1610 ** automatically converted into an sqlite3_context object and the operation
1611 ** changed to this OP_Function opcode.  In this way, the initialization of
1612 ** the sqlite3_context object occurs only once, rather than once for each
1613 ** evaluation of the function.
1614 **
1615 ** See also: Function0, AggStep, AggFinal
1616 */
1617 case OP_Function0: {
1618   int n;
1619   sqlite3_context *pCtx;
1620 
1621   assert( pOp->p4type==P4_FUNCDEF );
1622   n = pOp->p5;
1623   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1624   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
1625   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1626   pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1627   if( pCtx==0 ) goto no_mem;
1628   pCtx->pOut = 0;
1629   pCtx->pFunc = pOp->p4.pFunc;
1630   pCtx->iOp = (int)(pOp - aOp);
1631   pCtx->pVdbe = p;
1632   pCtx->argc = n;
1633   pOp->p4type = P4_FUNCCTX;
1634   pOp->p4.pCtx = pCtx;
1635   pOp->opcode = OP_Function;
1636   /* Fall through into OP_Function */
1637 }
1638 case OP_Function: {
1639   int i;
1640   sqlite3_context *pCtx;
1641 
1642   assert( pOp->p4type==P4_FUNCCTX );
1643   pCtx = pOp->p4.pCtx;
1644 
1645   /* If this function is inside of a trigger, the register array in aMem[]
1646   ** might change from one evaluation to the next.  The next block of code
1647   ** checks to see if the register array has changed, and if so it
1648   ** reinitializes the relavant parts of the sqlite3_context object */
1649   pOut = &aMem[pOp->p3];
1650   if( pCtx->pOut != pOut ){
1651     pCtx->pOut = pOut;
1652     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1653   }
1654 
1655   memAboutToChange(p, pCtx->pOut);
1656 #ifdef SQLITE_DEBUG
1657   for(i=0; i<pCtx->argc; i++){
1658     assert( memIsValid(pCtx->argv[i]) );
1659     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1660   }
1661 #endif
1662   MemSetTypeFlag(pCtx->pOut, MEM_Null);
1663   pCtx->fErrorOrAux = 0;
1664   db->lastRowid = lastRowid;
1665   (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */
1666   lastRowid = db->lastRowid;  /* Remember rowid changes made by xFunc */
1667 
1668   /* If the function returned an error, throw an exception */
1669   if( pCtx->fErrorOrAux ){
1670     if( pCtx->isError ){
1671       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1672       rc = pCtx->isError;
1673     }
1674     sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1);
1675   }
1676 
1677   /* Copy the result of the function into register P3 */
1678   if( pOut->flags & (MEM_Str|MEM_Blob) ){
1679     sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1680     if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1681   }
1682 
1683   REGISTER_TRACE(pOp->p3, pCtx->pOut);
1684   UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1685   break;
1686 }
1687 
1688 /* Opcode: BitAnd P1 P2 P3 * *
1689 ** Synopsis:  r[P3]=r[P1]&r[P2]
1690 **
1691 ** Take the bit-wise AND of the values in register P1 and P2 and
1692 ** store the result in register P3.
1693 ** If either input is NULL, the result is NULL.
1694 */
1695 /* Opcode: BitOr P1 P2 P3 * *
1696 ** Synopsis:  r[P3]=r[P1]|r[P2]
1697 **
1698 ** Take the bit-wise OR of the values in register P1 and P2 and
1699 ** store the result in register P3.
1700 ** If either input is NULL, the result is NULL.
1701 */
1702 /* Opcode: ShiftLeft P1 P2 P3 * *
1703 ** Synopsis:  r[P3]=r[P2]<<r[P1]
1704 **
1705 ** Shift the integer value in register P2 to the left by the
1706 ** number of bits specified by the integer in register P1.
1707 ** Store the result in register P3.
1708 ** If either input is NULL, the result is NULL.
1709 */
1710 /* Opcode: ShiftRight P1 P2 P3 * *
1711 ** Synopsis:  r[P3]=r[P2]>>r[P1]
1712 **
1713 ** Shift the integer value in register P2 to the right by the
1714 ** number of bits specified by the integer in register P1.
1715 ** Store the result in register P3.
1716 ** If either input is NULL, the result is NULL.
1717 */
1718 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1719 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1720 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1721 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1722   i64 iA;
1723   u64 uA;
1724   i64 iB;
1725   u8 op;
1726 
1727   pIn1 = &aMem[pOp->p1];
1728   pIn2 = &aMem[pOp->p2];
1729   pOut = &aMem[pOp->p3];
1730   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1731     sqlite3VdbeMemSetNull(pOut);
1732     break;
1733   }
1734   iA = sqlite3VdbeIntValue(pIn2);
1735   iB = sqlite3VdbeIntValue(pIn1);
1736   op = pOp->opcode;
1737   if( op==OP_BitAnd ){
1738     iA &= iB;
1739   }else if( op==OP_BitOr ){
1740     iA |= iB;
1741   }else if( iB!=0 ){
1742     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1743 
1744     /* If shifting by a negative amount, shift in the other direction */
1745     if( iB<0 ){
1746       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1747       op = 2*OP_ShiftLeft + 1 - op;
1748       iB = iB>(-64) ? -iB : 64;
1749     }
1750 
1751     if( iB>=64 ){
1752       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1753     }else{
1754       memcpy(&uA, &iA, sizeof(uA));
1755       if( op==OP_ShiftLeft ){
1756         uA <<= iB;
1757       }else{
1758         uA >>= iB;
1759         /* Sign-extend on a right shift of a negative number */
1760         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1761       }
1762       memcpy(&iA, &uA, sizeof(iA));
1763     }
1764   }
1765   pOut->u.i = iA;
1766   MemSetTypeFlag(pOut, MEM_Int);
1767   break;
1768 }
1769 
1770 /* Opcode: AddImm  P1 P2 * * *
1771 ** Synopsis:  r[P1]=r[P1]+P2
1772 **
1773 ** Add the constant P2 to the value in register P1.
1774 ** The result is always an integer.
1775 **
1776 ** To force any register to be an integer, just add 0.
1777 */
1778 case OP_AddImm: {            /* in1 */
1779   pIn1 = &aMem[pOp->p1];
1780   memAboutToChange(p, pIn1);
1781   sqlite3VdbeMemIntegerify(pIn1);
1782   pIn1->u.i += pOp->p2;
1783   break;
1784 }
1785 
1786 /* Opcode: MustBeInt P1 P2 * * *
1787 **
1788 ** Force the value in register P1 to be an integer.  If the value
1789 ** in P1 is not an integer and cannot be converted into an integer
1790 ** without data loss, then jump immediately to P2, or if P2==0
1791 ** raise an SQLITE_MISMATCH exception.
1792 */
1793 case OP_MustBeInt: {            /* jump, in1 */
1794   pIn1 = &aMem[pOp->p1];
1795   if( (pIn1->flags & MEM_Int)==0 ){
1796     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1797     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1798     if( (pIn1->flags & MEM_Int)==0 ){
1799       if( pOp->p2==0 ){
1800         rc = SQLITE_MISMATCH;
1801         goto abort_due_to_error;
1802       }else{
1803         goto jump_to_p2;
1804       }
1805     }
1806   }
1807   MemSetTypeFlag(pIn1, MEM_Int);
1808   break;
1809 }
1810 
1811 #ifndef SQLITE_OMIT_FLOATING_POINT
1812 /* Opcode: RealAffinity P1 * * * *
1813 **
1814 ** If register P1 holds an integer convert it to a real value.
1815 **
1816 ** This opcode is used when extracting information from a column that
1817 ** has REAL affinity.  Such column values may still be stored as
1818 ** integers, for space efficiency, but after extraction we want them
1819 ** to have only a real value.
1820 */
1821 case OP_RealAffinity: {                  /* in1 */
1822   pIn1 = &aMem[pOp->p1];
1823   if( pIn1->flags & MEM_Int ){
1824     sqlite3VdbeMemRealify(pIn1);
1825   }
1826   break;
1827 }
1828 #endif
1829 
1830 #ifndef SQLITE_OMIT_CAST
1831 /* Opcode: Cast P1 P2 * * *
1832 ** Synopsis: affinity(r[P1])
1833 **
1834 ** Force the value in register P1 to be the type defined by P2.
1835 **
1836 ** <ul>
1837 ** <li value="97"> TEXT
1838 ** <li value="98"> BLOB
1839 ** <li value="99"> NUMERIC
1840 ** <li value="100"> INTEGER
1841 ** <li value="101"> REAL
1842 ** </ul>
1843 **
1844 ** A NULL value is not changed by this routine.  It remains NULL.
1845 */
1846 case OP_Cast: {                  /* in1 */
1847   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1848   testcase( pOp->p2==SQLITE_AFF_TEXT );
1849   testcase( pOp->p2==SQLITE_AFF_BLOB );
1850   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1851   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1852   testcase( pOp->p2==SQLITE_AFF_REAL );
1853   pIn1 = &aMem[pOp->p1];
1854   memAboutToChange(p, pIn1);
1855   rc = ExpandBlob(pIn1);
1856   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1857   UPDATE_MAX_BLOBSIZE(pIn1);
1858   break;
1859 }
1860 #endif /* SQLITE_OMIT_CAST */
1861 
1862 /* Opcode: Lt P1 P2 P3 P4 P5
1863 ** Synopsis: if r[P1]<r[P3] goto P2
1864 **
1865 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1866 ** jump to address P2.
1867 **
1868 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1869 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
1870 ** bit is clear then fall through if either operand is NULL.
1871 **
1872 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1873 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1874 ** to coerce both inputs according to this affinity before the
1875 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1876 ** affinity is used. Note that the affinity conversions are stored
1877 ** back into the input registers P1 and P3.  So this opcode can cause
1878 ** persistent changes to registers P1 and P3.
1879 **
1880 ** Once any conversions have taken place, and neither value is NULL,
1881 ** the values are compared. If both values are blobs then memcmp() is
1882 ** used to determine the results of the comparison.  If both values
1883 ** are text, then the appropriate collating function specified in
1884 ** P4 is  used to do the comparison.  If P4 is not specified then
1885 ** memcmp() is used to compare text string.  If both values are
1886 ** numeric, then a numeric comparison is used. If the two values
1887 ** are of different types, then numbers are considered less than
1888 ** strings and strings are considered less than blobs.
1889 **
1890 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
1891 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1892 **
1893 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1894 ** equal to one another, provided that they do not have their MEM_Cleared
1895 ** bit set.
1896 */
1897 /* Opcode: Ne P1 P2 P3 P4 P5
1898 ** Synopsis: if r[P1]!=r[P3] goto P2
1899 **
1900 ** This works just like the Lt opcode except that the jump is taken if
1901 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
1902 ** additional information.
1903 **
1904 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1905 ** true or false and is never NULL.  If both operands are NULL then the result
1906 ** of comparison is false.  If either operand is NULL then the result is true.
1907 ** If neither operand is NULL the result is the same as it would be if
1908 ** the SQLITE_NULLEQ flag were omitted from P5.
1909 */
1910 /* Opcode: Eq P1 P2 P3 P4 P5
1911 ** Synopsis: if r[P1]==r[P3] goto P2
1912 **
1913 ** This works just like the Lt opcode except that the jump is taken if
1914 ** the operands in registers P1 and P3 are equal.
1915 ** See the Lt opcode for additional information.
1916 **
1917 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1918 ** true or false and is never NULL.  If both operands are NULL then the result
1919 ** of comparison is true.  If either operand is NULL then the result is false.
1920 ** If neither operand is NULL the result is the same as it would be if
1921 ** the SQLITE_NULLEQ flag were omitted from P5.
1922 */
1923 /* Opcode: Le P1 P2 P3 P4 P5
1924 ** Synopsis: if r[P1]<=r[P3] goto P2
1925 **
1926 ** This works just like the Lt opcode except that the jump is taken if
1927 ** the content of register P3 is less than or equal to the content of
1928 ** register P1.  See the Lt opcode for additional information.
1929 */
1930 /* Opcode: Gt P1 P2 P3 P4 P5
1931 ** Synopsis: if r[P1]>r[P3] goto P2
1932 **
1933 ** This works just like the Lt opcode except that the jump is taken if
1934 ** the content of register P3 is greater than the content of
1935 ** register P1.  See the Lt opcode for additional information.
1936 */
1937 /* Opcode: Ge P1 P2 P3 P4 P5
1938 ** Synopsis: if r[P1]>=r[P3] goto P2
1939 **
1940 ** This works just like the Lt opcode except that the jump is taken if
1941 ** the content of register P3 is greater than or equal to the content of
1942 ** register P1.  See the Lt opcode for additional information.
1943 */
1944 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1945 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1946 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1947 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1948 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1949 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1950   int res;            /* Result of the comparison of pIn1 against pIn3 */
1951   char affinity;      /* Affinity to use for comparison */
1952   u16 flags1;         /* Copy of initial value of pIn1->flags */
1953   u16 flags3;         /* Copy of initial value of pIn3->flags */
1954 
1955   pIn1 = &aMem[pOp->p1];
1956   pIn3 = &aMem[pOp->p3];
1957   flags1 = pIn1->flags;
1958   flags3 = pIn3->flags;
1959   if( (flags1 | flags3)&MEM_Null ){
1960     /* One or both operands are NULL */
1961     if( pOp->p5 & SQLITE_NULLEQ ){
1962       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1963       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1964       ** or not both operands are null.
1965       */
1966       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1967       assert( (flags1 & MEM_Cleared)==0 );
1968       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1969       if( (flags1&MEM_Null)!=0
1970        && (flags3&MEM_Null)!=0
1971        && (flags3&MEM_Cleared)==0
1972       ){
1973         res = 0;  /* Results are equal */
1974       }else{
1975         res = 1;  /* Results are not equal */
1976       }
1977     }else{
1978       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1979       ** then the result is always NULL.
1980       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1981       */
1982       if( pOp->p5 & SQLITE_STOREP2 ){
1983         pOut = &aMem[pOp->p2];
1984         memAboutToChange(p, pOut);
1985         MemSetTypeFlag(pOut, MEM_Null);
1986         REGISTER_TRACE(pOp->p2, pOut);
1987       }else{
1988         VdbeBranchTaken(2,3);
1989         if( pOp->p5 & SQLITE_JUMPIFNULL ){
1990           goto jump_to_p2;
1991         }
1992       }
1993       break;
1994     }
1995   }else{
1996     /* Neither operand is NULL.  Do a comparison. */
1997     affinity = pOp->p5 & SQLITE_AFF_MASK;
1998     if( affinity>=SQLITE_AFF_NUMERIC ){
1999       if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2000         applyNumericAffinity(pIn1,0);
2001       }
2002       if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2003         applyNumericAffinity(pIn3,0);
2004       }
2005     }else if( affinity==SQLITE_AFF_TEXT ){
2006       if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
2007         testcase( pIn1->flags & MEM_Int );
2008         testcase( pIn1->flags & MEM_Real );
2009         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2010         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2011         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2012       }
2013       if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
2014         testcase( pIn3->flags & MEM_Int );
2015         testcase( pIn3->flags & MEM_Real );
2016         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2017         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2018         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2019       }
2020     }
2021     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2022     if( flags1 & MEM_Zero ){
2023       sqlite3VdbeMemExpandBlob(pIn1);
2024       flags1 &= ~MEM_Zero;
2025     }
2026     if( flags3 & MEM_Zero ){
2027       sqlite3VdbeMemExpandBlob(pIn3);
2028       flags3 &= ~MEM_Zero;
2029     }
2030     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2031   }
2032   switch( pOp->opcode ){
2033     case OP_Eq:    res = res==0;     break;
2034     case OP_Ne:    res = res!=0;     break;
2035     case OP_Lt:    res = res<0;      break;
2036     case OP_Le:    res = res<=0;     break;
2037     case OP_Gt:    res = res>0;      break;
2038     default:       res = res>=0;     break;
2039   }
2040 
2041   /* Undo any changes made by applyAffinity() to the input registers. */
2042   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2043   pIn1->flags = flags1;
2044   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2045   pIn3->flags = flags3;
2046 
2047   if( pOp->p5 & SQLITE_STOREP2 ){
2048     pOut = &aMem[pOp->p2];
2049     memAboutToChange(p, pOut);
2050     MemSetTypeFlag(pOut, MEM_Int);
2051     pOut->u.i = res;
2052     REGISTER_TRACE(pOp->p2, pOut);
2053   }else{
2054     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2055     if( res ){
2056       goto jump_to_p2;
2057     }
2058   }
2059   break;
2060 }
2061 
2062 /* Opcode: Permutation * * * P4 *
2063 **
2064 ** Set the permutation used by the OP_Compare operator to be the array
2065 ** of integers in P4.
2066 **
2067 ** The permutation is only valid until the next OP_Compare that has
2068 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2069 ** occur immediately prior to the OP_Compare.
2070 */
2071 case OP_Permutation: {
2072   assert( pOp->p4type==P4_INTARRAY );
2073   assert( pOp->p4.ai );
2074   aPermute = pOp->p4.ai;
2075   break;
2076 }
2077 
2078 /* Opcode: Compare P1 P2 P3 P4 P5
2079 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2080 **
2081 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2082 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2083 ** the comparison for use by the next OP_Jump instruct.
2084 **
2085 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2086 ** determined by the most recent OP_Permutation operator.  If the
2087 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2088 ** order.
2089 **
2090 ** P4 is a KeyInfo structure that defines collating sequences and sort
2091 ** orders for the comparison.  The permutation applies to registers
2092 ** only.  The KeyInfo elements are used sequentially.
2093 **
2094 ** The comparison is a sort comparison, so NULLs compare equal,
2095 ** NULLs are less than numbers, numbers are less than strings,
2096 ** and strings are less than blobs.
2097 */
2098 case OP_Compare: {
2099   int n;
2100   int i;
2101   int p1;
2102   int p2;
2103   const KeyInfo *pKeyInfo;
2104   int idx;
2105   CollSeq *pColl;    /* Collating sequence to use on this term */
2106   int bRev;          /* True for DESCENDING sort order */
2107 
2108   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
2109   n = pOp->p3;
2110   pKeyInfo = pOp->p4.pKeyInfo;
2111   assert( n>0 );
2112   assert( pKeyInfo!=0 );
2113   p1 = pOp->p1;
2114   p2 = pOp->p2;
2115 #if SQLITE_DEBUG
2116   if( aPermute ){
2117     int k, mx = 0;
2118     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2119     assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2120     assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
2121   }else{
2122     assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2123     assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
2124   }
2125 #endif /* SQLITE_DEBUG */
2126   for(i=0; i<n; i++){
2127     idx = aPermute ? aPermute[i] : i;
2128     assert( memIsValid(&aMem[p1+idx]) );
2129     assert( memIsValid(&aMem[p2+idx]) );
2130     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2131     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2132     assert( i<pKeyInfo->nField );
2133     pColl = pKeyInfo->aColl[i];
2134     bRev = pKeyInfo->aSortOrder[i];
2135     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2136     if( iCompare ){
2137       if( bRev ) iCompare = -iCompare;
2138       break;
2139     }
2140   }
2141   aPermute = 0;
2142   break;
2143 }
2144 
2145 /* Opcode: Jump P1 P2 P3 * *
2146 **
2147 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2148 ** in the most recent OP_Compare instruction the P1 vector was less than
2149 ** equal to, or greater than the P2 vector, respectively.
2150 */
2151 case OP_Jump: {             /* jump */
2152   if( iCompare<0 ){
2153     VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2154   }else if( iCompare==0 ){
2155     VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2156   }else{
2157     VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2158   }
2159   break;
2160 }
2161 
2162 /* Opcode: And P1 P2 P3 * *
2163 ** Synopsis: r[P3]=(r[P1] && r[P2])
2164 **
2165 ** Take the logical AND of the values in registers P1 and P2 and
2166 ** write the result into register P3.
2167 **
2168 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2169 ** the other input is NULL.  A NULL and true or two NULLs give
2170 ** a NULL output.
2171 */
2172 /* Opcode: Or P1 P2 P3 * *
2173 ** Synopsis: r[P3]=(r[P1] || r[P2])
2174 **
2175 ** Take the logical OR of the values in register P1 and P2 and
2176 ** store the answer in register P3.
2177 **
2178 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2179 ** even if the other input is NULL.  A NULL and false or two NULLs
2180 ** give a NULL output.
2181 */
2182 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2183 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2184   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2185   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2186 
2187   pIn1 = &aMem[pOp->p1];
2188   if( pIn1->flags & MEM_Null ){
2189     v1 = 2;
2190   }else{
2191     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2192   }
2193   pIn2 = &aMem[pOp->p2];
2194   if( pIn2->flags & MEM_Null ){
2195     v2 = 2;
2196   }else{
2197     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2198   }
2199   if( pOp->opcode==OP_And ){
2200     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2201     v1 = and_logic[v1*3+v2];
2202   }else{
2203     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2204     v1 = or_logic[v1*3+v2];
2205   }
2206   pOut = &aMem[pOp->p3];
2207   if( v1==2 ){
2208     MemSetTypeFlag(pOut, MEM_Null);
2209   }else{
2210     pOut->u.i = v1;
2211     MemSetTypeFlag(pOut, MEM_Int);
2212   }
2213   break;
2214 }
2215 
2216 /* Opcode: Not P1 P2 * * *
2217 ** Synopsis: r[P2]= !r[P1]
2218 **
2219 ** Interpret the value in register P1 as a boolean value.  Store the
2220 ** boolean complement in register P2.  If the value in register P1 is
2221 ** NULL, then a NULL is stored in P2.
2222 */
2223 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2224   pIn1 = &aMem[pOp->p1];
2225   pOut = &aMem[pOp->p2];
2226   sqlite3VdbeMemSetNull(pOut);
2227   if( (pIn1->flags & MEM_Null)==0 ){
2228     pOut->flags = MEM_Int;
2229     pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2230   }
2231   break;
2232 }
2233 
2234 /* Opcode: BitNot P1 P2 * * *
2235 ** Synopsis: r[P1]= ~r[P1]
2236 **
2237 ** Interpret the content of register P1 as an integer.  Store the
2238 ** ones-complement of the P1 value into register P2.  If P1 holds
2239 ** a NULL then store a NULL in P2.
2240 */
2241 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2242   pIn1 = &aMem[pOp->p1];
2243   pOut = &aMem[pOp->p2];
2244   sqlite3VdbeMemSetNull(pOut);
2245   if( (pIn1->flags & MEM_Null)==0 ){
2246     pOut->flags = MEM_Int;
2247     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2248   }
2249   break;
2250 }
2251 
2252 /* Opcode: Once P1 P2 * * *
2253 **
2254 ** Check the "once" flag number P1. If it is set, jump to instruction P2.
2255 ** Otherwise, set the flag and fall through to the next instruction.
2256 ** In other words, this opcode causes all following opcodes up through P2
2257 ** (but not including P2) to run just once and to be skipped on subsequent
2258 ** times through the loop.
2259 **
2260 ** All "once" flags are initially cleared whenever a prepared statement
2261 ** first begins to run.
2262 */
2263 case OP_Once: {             /* jump */
2264   assert( pOp->p1<p->nOnceFlag );
2265   VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
2266   if( p->aOnceFlag[pOp->p1] ){
2267     goto jump_to_p2;
2268   }else{
2269     p->aOnceFlag[pOp->p1] = 1;
2270   }
2271   break;
2272 }
2273 
2274 /* Opcode: If P1 P2 P3 * *
2275 **
2276 ** Jump to P2 if the value in register P1 is true.  The value
2277 ** is considered true if it is numeric and non-zero.  If the value
2278 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2279 */
2280 /* Opcode: IfNot P1 P2 P3 * *
2281 **
2282 ** Jump to P2 if the value in register P1 is False.  The value
2283 ** is considered false if it has a numeric value of zero.  If the value
2284 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2285 */
2286 case OP_If:                 /* jump, in1 */
2287 case OP_IfNot: {            /* jump, in1 */
2288   int c;
2289   pIn1 = &aMem[pOp->p1];
2290   if( pIn1->flags & MEM_Null ){
2291     c = pOp->p3;
2292   }else{
2293 #ifdef SQLITE_OMIT_FLOATING_POINT
2294     c = sqlite3VdbeIntValue(pIn1)!=0;
2295 #else
2296     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2297 #endif
2298     if( pOp->opcode==OP_IfNot ) c = !c;
2299   }
2300   VdbeBranchTaken(c!=0, 2);
2301   if( c ){
2302     goto jump_to_p2;
2303   }
2304   break;
2305 }
2306 
2307 /* Opcode: IsNull P1 P2 * * *
2308 ** Synopsis:  if r[P1]==NULL goto P2
2309 **
2310 ** Jump to P2 if the value in register P1 is NULL.
2311 */
2312 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2313   pIn1 = &aMem[pOp->p1];
2314   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2315   if( (pIn1->flags & MEM_Null)!=0 ){
2316     goto jump_to_p2;
2317   }
2318   break;
2319 }
2320 
2321 /* Opcode: NotNull P1 P2 * * *
2322 ** Synopsis: if r[P1]!=NULL goto P2
2323 **
2324 ** Jump to P2 if the value in register P1 is not NULL.
2325 */
2326 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2327   pIn1 = &aMem[pOp->p1];
2328   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2329   if( (pIn1->flags & MEM_Null)==0 ){
2330     goto jump_to_p2;
2331   }
2332   break;
2333 }
2334 
2335 /* Opcode: Column P1 P2 P3 P4 P5
2336 ** Synopsis:  r[P3]=PX
2337 **
2338 ** Interpret the data that cursor P1 points to as a structure built using
2339 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2340 ** information about the format of the data.)  Extract the P2-th column
2341 ** from this record.  If there are less that (P2+1)
2342 ** values in the record, extract a NULL.
2343 **
2344 ** The value extracted is stored in register P3.
2345 **
2346 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2347 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2348 ** the result.
2349 **
2350 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2351 ** then the cache of the cursor is reset prior to extracting the column.
2352 ** The first OP_Column against a pseudo-table after the value of the content
2353 ** register has changed should have this bit set.
2354 **
2355 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2356 ** the result is guaranteed to only be used as the argument of a length()
2357 ** or typeof() function, respectively.  The loading of large blobs can be
2358 ** skipped for length() and all content loading can be skipped for typeof().
2359 */
2360 case OP_Column: {
2361   i64 payloadSize64; /* Number of bytes in the record */
2362   int p2;            /* column number to retrieve */
2363   VdbeCursor *pC;    /* The VDBE cursor */
2364   BtCursor *pCrsr;   /* The BTree cursor */
2365   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2366   int len;           /* The length of the serialized data for the column */
2367   int i;             /* Loop counter */
2368   Mem *pDest;        /* Where to write the extracted value */
2369   Mem sMem;          /* For storing the record being decoded */
2370   const u8 *zData;   /* Part of the record being decoded */
2371   const u8 *zHdr;    /* Next unparsed byte of the header */
2372   const u8 *zEndHdr; /* Pointer to first byte after the header */
2373   u32 offset;        /* Offset into the data */
2374   u64 offset64;      /* 64-bit offset */
2375   u32 avail;         /* Number of bytes of available data */
2376   u32 t;             /* A type code from the record header */
2377   u16 fx;            /* pDest->flags value */
2378   Mem *pReg;         /* PseudoTable input register */
2379 
2380   p2 = pOp->p2;
2381   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2382   pDest = &aMem[pOp->p3];
2383   memAboutToChange(p, pDest);
2384   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2385   pC = p->apCsr[pOp->p1];
2386   assert( pC!=0 );
2387   assert( p2<pC->nField );
2388   aOffset = pC->aOffset;
2389   assert( pC->eCurType!=CURTYPE_VTAB );
2390   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2391   assert( pC->eCurType!=CURTYPE_SORTER );
2392   pCrsr = pC->uc.pCursor;
2393 
2394   /* If the cursor cache is stale, bring it up-to-date */
2395   rc = sqlite3VdbeCursorMoveto(pC);
2396   if( rc ) goto abort_due_to_error;
2397   if( pC->cacheStatus!=p->cacheCtr ){
2398     if( pC->nullRow ){
2399       if( pC->eCurType==CURTYPE_PSEUDO ){
2400         assert( pC->uc.pseudoTableReg>0 );
2401         pReg = &aMem[pC->uc.pseudoTableReg];
2402         assert( pReg->flags & MEM_Blob );
2403         assert( memIsValid(pReg) );
2404         pC->payloadSize = pC->szRow = avail = pReg->n;
2405         pC->aRow = (u8*)pReg->z;
2406       }else{
2407         sqlite3VdbeMemSetNull(pDest);
2408         goto op_column_out;
2409       }
2410     }else{
2411       assert( pC->eCurType==CURTYPE_BTREE );
2412       assert( pCrsr );
2413       if( pC->isTable==0 ){
2414         assert( sqlite3BtreeCursorIsValid(pCrsr) );
2415         VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2416         assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2417         /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2418         ** payload size, so it is impossible for payloadSize64 to be
2419         ** larger than 32 bits. */
2420         assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2421         pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2422         pC->payloadSize = (u32)payloadSize64;
2423       }else{
2424         assert( sqlite3BtreeCursorIsValid(pCrsr) );
2425         VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2426         assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
2427         pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
2428       }
2429       assert( avail<=65536 );  /* Maximum page size is 64KiB */
2430       if( pC->payloadSize <= (u32)avail ){
2431         pC->szRow = pC->payloadSize;
2432       }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2433         goto too_big;
2434       }else{
2435         pC->szRow = avail;
2436       }
2437     }
2438     pC->cacheStatus = p->cacheCtr;
2439     pC->iHdrOffset = getVarint32(pC->aRow, offset);
2440     pC->nHdrParsed = 0;
2441     aOffset[0] = offset;
2442 
2443 
2444     if( avail<offset ){
2445       /* pC->aRow does not have to hold the entire row, but it does at least
2446       ** need to cover the header of the record.  If pC->aRow does not contain
2447       ** the complete header, then set it to zero, forcing the header to be
2448       ** dynamically allocated. */
2449       pC->aRow = 0;
2450       pC->szRow = 0;
2451 
2452       /* Make sure a corrupt database has not given us an oversize header.
2453       ** Do this now to avoid an oversize memory allocation.
2454       **
2455       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2456       ** types use so much data space that there can only be 4096 and 32 of
2457       ** them, respectively.  So the maximum header length results from a
2458       ** 3-byte type for each of the maximum of 32768 columns plus three
2459       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2460       */
2461       if( offset > 98307 || offset > pC->payloadSize ){
2462         rc = SQLITE_CORRUPT_BKPT;
2463         goto op_column_error;
2464       }
2465     }
2466 
2467     /* The following goto is an optimization.  It can be omitted and
2468     ** everything will still work.  But OP_Column is measurably faster
2469     ** by skipping the subsequent conditional, which is always true.
2470     */
2471     assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2472     goto op_column_read_header;
2473   }
2474 
2475   /* Make sure at least the first p2+1 entries of the header have been
2476   ** parsed and valid information is in aOffset[] and pC->aType[].
2477   */
2478   if( pC->nHdrParsed<=p2 ){
2479     /* If there is more header available for parsing in the record, try
2480     ** to extract additional fields up through the p2+1-th field
2481     */
2482     op_column_read_header:
2483     if( pC->iHdrOffset<aOffset[0] ){
2484       /* Make sure zData points to enough of the record to cover the header. */
2485       if( pC->aRow==0 ){
2486         memset(&sMem, 0, sizeof(sMem));
2487         rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
2488         if( rc!=SQLITE_OK ) goto op_column_error;
2489         zData = (u8*)sMem.z;
2490       }else{
2491         zData = pC->aRow;
2492       }
2493 
2494       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2495       i = pC->nHdrParsed;
2496       offset64 = aOffset[i];
2497       zHdr = zData + pC->iHdrOffset;
2498       zEndHdr = zData + aOffset[0];
2499       assert( i<=p2 && zHdr<zEndHdr );
2500       do{
2501         if( (t = zHdr[0])<0x80 ){
2502           zHdr++;
2503           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2504         }else{
2505           zHdr += sqlite3GetVarint32(zHdr, &t);
2506           offset64 += sqlite3VdbeSerialTypeLen(t);
2507         }
2508         pC->aType[i++] = t;
2509         aOffset[i] = (u32)(offset64 & 0xffffffff);
2510       }while( i<=p2 && zHdr<zEndHdr );
2511       pC->nHdrParsed = i;
2512       pC->iHdrOffset = (u32)(zHdr - zData);
2513       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2514 
2515       /* The record is corrupt if any of the following are true:
2516       ** (1) the bytes of the header extend past the declared header size
2517       ** (2) the entire header was used but not all data was used
2518       ** (3) the end of the data extends beyond the end of the record.
2519       */
2520       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2521        || (offset64 > pC->payloadSize)
2522       ){
2523         rc = SQLITE_CORRUPT_BKPT;
2524         goto op_column_error;
2525       }
2526     }else{
2527       t = 0;
2528     }
2529 
2530     /* If after trying to extract new entries from the header, nHdrParsed is
2531     ** still not up to p2, that means that the record has fewer than p2
2532     ** columns.  So the result will be either the default value or a NULL.
2533     */
2534     if( pC->nHdrParsed<=p2 ){
2535       if( pOp->p4type==P4_MEM ){
2536         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2537       }else{
2538         sqlite3VdbeMemSetNull(pDest);
2539       }
2540       goto op_column_out;
2541     }
2542   }else{
2543     t = pC->aType[p2];
2544   }
2545 
2546   /* Extract the content for the p2+1-th column.  Control can only
2547   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2548   ** all valid.
2549   */
2550   assert( p2<pC->nHdrParsed );
2551   assert( rc==SQLITE_OK );
2552   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2553   if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
2554   assert( t==pC->aType[p2] );
2555   if( pC->szRow>=aOffset[p2+1] ){
2556     /* This is the common case where the desired content fits on the original
2557     ** page - where the content is not on an overflow page */
2558     sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
2559   }else{
2560     /* This branch happens only when content is on overflow pages */
2561     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2562           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2563      || (len = sqlite3VdbeSerialTypeLen(t))==0
2564     ){
2565       /* Content is irrelevant for
2566       **    1. the typeof() function,
2567       **    2. the length(X) function if X is a blob, and
2568       **    3. if the content length is zero.
2569       ** So we might as well use bogus content rather than reading
2570       ** content from disk.  NULL will work for the value for strings
2571       ** and blobs and whatever is in the payloadSize64 variable
2572       ** will work for everything else. */
2573       sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
2574     }else{
2575       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
2576                                    pDest);
2577       if( rc!=SQLITE_OK ){
2578         goto op_column_error;
2579       }
2580       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2581       pDest->flags &= ~MEM_Ephem;
2582     }
2583   }
2584   pDest->enc = encoding;
2585 
2586 op_column_out:
2587   /* If the column value is an ephemeral string, go ahead and persist
2588   ** that string in case the cursor moves before the column value is
2589   ** used.  The following code does the equivalent of Deephemeralize()
2590   ** but does it faster. */
2591   if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
2592     fx = pDest->flags & (MEM_Str|MEM_Blob);
2593     assert( fx!=0 );
2594     zData = (const u8*)pDest->z;
2595     len = pDest->n;
2596     if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2597     memcpy(pDest->z, zData, len);
2598     pDest->z[len] = 0;
2599     pDest->z[len+1] = 0;
2600     pDest->flags = fx|MEM_Term;
2601   }
2602 op_column_error:
2603   UPDATE_MAX_BLOBSIZE(pDest);
2604   REGISTER_TRACE(pOp->p3, pDest);
2605   break;
2606 }
2607 
2608 /* Opcode: Affinity P1 P2 * P4 *
2609 ** Synopsis: affinity(r[P1@P2])
2610 **
2611 ** Apply affinities to a range of P2 registers starting with P1.
2612 **
2613 ** P4 is a string that is P2 characters long. The nth character of the
2614 ** string indicates the column affinity that should be used for the nth
2615 ** memory cell in the range.
2616 */
2617 case OP_Affinity: {
2618   const char *zAffinity;   /* The affinity to be applied */
2619   char cAff;               /* A single character of affinity */
2620 
2621   zAffinity = pOp->p4.z;
2622   assert( zAffinity!=0 );
2623   assert( zAffinity[pOp->p2]==0 );
2624   pIn1 = &aMem[pOp->p1];
2625   while( (cAff = *(zAffinity++))!=0 ){
2626     assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
2627     assert( memIsValid(pIn1) );
2628     applyAffinity(pIn1, cAff, encoding);
2629     pIn1++;
2630   }
2631   break;
2632 }
2633 
2634 /* Opcode: MakeRecord P1 P2 P3 P4 *
2635 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2636 **
2637 ** Convert P2 registers beginning with P1 into the [record format]
2638 ** use as a data record in a database table or as a key
2639 ** in an index.  The OP_Column opcode can decode the record later.
2640 **
2641 ** P4 may be a string that is P2 characters long.  The nth character of the
2642 ** string indicates the column affinity that should be used for the nth
2643 ** field of the index key.
2644 **
2645 ** The mapping from character to affinity is given by the SQLITE_AFF_
2646 ** macros defined in sqliteInt.h.
2647 **
2648 ** If P4 is NULL then all index fields have the affinity BLOB.
2649 */
2650 case OP_MakeRecord: {
2651   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2652   Mem *pRec;             /* The new record */
2653   u64 nData;             /* Number of bytes of data space */
2654   int nHdr;              /* Number of bytes of header space */
2655   i64 nByte;             /* Data space required for this record */
2656   i64 nZero;             /* Number of zero bytes at the end of the record */
2657   int nVarint;           /* Number of bytes in a varint */
2658   u32 serial_type;       /* Type field */
2659   Mem *pData0;           /* First field to be combined into the record */
2660   Mem *pLast;            /* Last field of the record */
2661   int nField;            /* Number of fields in the record */
2662   char *zAffinity;       /* The affinity string for the record */
2663   int file_format;       /* File format to use for encoding */
2664   int i;                 /* Space used in zNewRecord[] header */
2665   int j;                 /* Space used in zNewRecord[] content */
2666   u32 len;               /* Length of a field */
2667 
2668   /* Assuming the record contains N fields, the record format looks
2669   ** like this:
2670   **
2671   ** ------------------------------------------------------------------------
2672   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2673   ** ------------------------------------------------------------------------
2674   **
2675   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2676   ** and so forth.
2677   **
2678   ** Each type field is a varint representing the serial type of the
2679   ** corresponding data element (see sqlite3VdbeSerialType()). The
2680   ** hdr-size field is also a varint which is the offset from the beginning
2681   ** of the record to data0.
2682   */
2683   nData = 0;         /* Number of bytes of data space */
2684   nHdr = 0;          /* Number of bytes of header space */
2685   nZero = 0;         /* Number of zero bytes at the end of the record */
2686   nField = pOp->p1;
2687   zAffinity = pOp->p4.z;
2688   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
2689   pData0 = &aMem[nField];
2690   nField = pOp->p2;
2691   pLast = &pData0[nField-1];
2692   file_format = p->minWriteFileFormat;
2693 
2694   /* Identify the output register */
2695   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2696   pOut = &aMem[pOp->p3];
2697   memAboutToChange(p, pOut);
2698 
2699   /* Apply the requested affinity to all inputs
2700   */
2701   assert( pData0<=pLast );
2702   if( zAffinity ){
2703     pRec = pData0;
2704     do{
2705       applyAffinity(pRec++, *(zAffinity++), encoding);
2706       assert( zAffinity[0]==0 || pRec<=pLast );
2707     }while( zAffinity[0] );
2708   }
2709 
2710   /* Loop through the elements that will make up the record to figure
2711   ** out how much space is required for the new record.
2712   */
2713   pRec = pLast;
2714   do{
2715     assert( memIsValid(pRec) );
2716     pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2717     if( pRec->flags & MEM_Zero ){
2718       if( nData ){
2719         if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2720       }else{
2721         nZero += pRec->u.nZero;
2722         len -= pRec->u.nZero;
2723       }
2724     }
2725     nData += len;
2726     testcase( serial_type==127 );
2727     testcase( serial_type==128 );
2728     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2729   }while( (--pRec)>=pData0 );
2730 
2731   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2732   ** which determines the total number of bytes in the header. The varint
2733   ** value is the size of the header in bytes including the size varint
2734   ** itself. */
2735   testcase( nHdr==126 );
2736   testcase( nHdr==127 );
2737   if( nHdr<=126 ){
2738     /* The common case */
2739     nHdr += 1;
2740   }else{
2741     /* Rare case of a really large header */
2742     nVarint = sqlite3VarintLen(nHdr);
2743     nHdr += nVarint;
2744     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2745   }
2746   nByte = nHdr+nData;
2747   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2748     goto too_big;
2749   }
2750 
2751   /* Make sure the output register has a buffer large enough to store
2752   ** the new record. The output register (pOp->p3) is not allowed to
2753   ** be one of the input registers (because the following call to
2754   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2755   */
2756   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2757     goto no_mem;
2758   }
2759   zNewRecord = (u8 *)pOut->z;
2760 
2761   /* Write the record */
2762   i = putVarint32(zNewRecord, nHdr);
2763   j = nHdr;
2764   assert( pData0<=pLast );
2765   pRec = pData0;
2766   do{
2767     serial_type = pRec->uTemp;
2768     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2769     ** additional varints, one per column. */
2770     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2771     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2772     ** immediately follow the header. */
2773     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2774   }while( (++pRec)<=pLast );
2775   assert( i==nHdr );
2776   assert( j==nByte );
2777 
2778   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2779   pOut->n = (int)nByte;
2780   pOut->flags = MEM_Blob;
2781   if( nZero ){
2782     pOut->u.nZero = nZero;
2783     pOut->flags |= MEM_Zero;
2784   }
2785   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2786   REGISTER_TRACE(pOp->p3, pOut);
2787   UPDATE_MAX_BLOBSIZE(pOut);
2788   break;
2789 }
2790 
2791 /* Opcode: Count P1 P2 * * *
2792 ** Synopsis: r[P2]=count()
2793 **
2794 ** Store the number of entries (an integer value) in the table or index
2795 ** opened by cursor P1 in register P2
2796 */
2797 #ifndef SQLITE_OMIT_BTREECOUNT
2798 case OP_Count: {         /* out2 */
2799   i64 nEntry;
2800   BtCursor *pCrsr;
2801 
2802   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2803   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2804   assert( pCrsr );
2805   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2806   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2807   pOut = out2Prerelease(p, pOp);
2808   pOut->u.i = nEntry;
2809   break;
2810 }
2811 #endif
2812 
2813 /* Opcode: Savepoint P1 * * P4 *
2814 **
2815 ** Open, release or rollback the savepoint named by parameter P4, depending
2816 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2817 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2818 */
2819 case OP_Savepoint: {
2820   int p1;                         /* Value of P1 operand */
2821   char *zName;                    /* Name of savepoint */
2822   int nName;
2823   Savepoint *pNew;
2824   Savepoint *pSavepoint;
2825   Savepoint *pTmp;
2826   int iSavepoint;
2827   int ii;
2828 
2829   p1 = pOp->p1;
2830   zName = pOp->p4.z;
2831 
2832   /* Assert that the p1 parameter is valid. Also that if there is no open
2833   ** transaction, then there cannot be any savepoints.
2834   */
2835   assert( db->pSavepoint==0 || db->autoCommit==0 );
2836   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2837   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2838   assert( checkSavepointCount(db) );
2839   assert( p->bIsReader );
2840 
2841   if( p1==SAVEPOINT_BEGIN ){
2842     if( db->nVdbeWrite>0 ){
2843       /* A new savepoint cannot be created if there are active write
2844       ** statements (i.e. open read/write incremental blob handles).
2845       */
2846       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2847       rc = SQLITE_BUSY;
2848     }else{
2849       nName = sqlite3Strlen30(zName);
2850 
2851 #ifndef SQLITE_OMIT_VIRTUALTABLE
2852       /* This call is Ok even if this savepoint is actually a transaction
2853       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2854       ** If this is a transaction savepoint being opened, it is guaranteed
2855       ** that the db->aVTrans[] array is empty.  */
2856       assert( db->autoCommit==0 || db->nVTrans==0 );
2857       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2858                                 db->nStatement+db->nSavepoint);
2859       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2860 #endif
2861 
2862       /* Create a new savepoint structure. */
2863       pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2864       if( pNew ){
2865         pNew->zName = (char *)&pNew[1];
2866         memcpy(pNew->zName, zName, nName+1);
2867 
2868         /* If there is no open transaction, then mark this as a special
2869         ** "transaction savepoint". */
2870         if( db->autoCommit ){
2871           db->autoCommit = 0;
2872           db->isTransactionSavepoint = 1;
2873         }else{
2874           db->nSavepoint++;
2875         }
2876 
2877         /* Link the new savepoint into the database handle's list. */
2878         pNew->pNext = db->pSavepoint;
2879         db->pSavepoint = pNew;
2880         pNew->nDeferredCons = db->nDeferredCons;
2881         pNew->nDeferredImmCons = db->nDeferredImmCons;
2882       }
2883     }
2884   }else{
2885     iSavepoint = 0;
2886 
2887     /* Find the named savepoint. If there is no such savepoint, then an
2888     ** an error is returned to the user.  */
2889     for(
2890       pSavepoint = db->pSavepoint;
2891       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2892       pSavepoint = pSavepoint->pNext
2893     ){
2894       iSavepoint++;
2895     }
2896     if( !pSavepoint ){
2897       sqlite3VdbeError(p, "no such savepoint: %s", zName);
2898       rc = SQLITE_ERROR;
2899     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2900       /* It is not possible to release (commit) a savepoint if there are
2901       ** active write statements.
2902       */
2903       sqlite3VdbeError(p, "cannot release savepoint - "
2904                           "SQL statements in progress");
2905       rc = SQLITE_BUSY;
2906     }else{
2907 
2908       /* Determine whether or not this is a transaction savepoint. If so,
2909       ** and this is a RELEASE command, then the current transaction
2910       ** is committed.
2911       */
2912       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2913       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2914         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2915           goto vdbe_return;
2916         }
2917         db->autoCommit = 1;
2918         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2919           p->pc = (int)(pOp - aOp);
2920           db->autoCommit = 0;
2921           p->rc = rc = SQLITE_BUSY;
2922           goto vdbe_return;
2923         }
2924         db->isTransactionSavepoint = 0;
2925         rc = p->rc;
2926       }else{
2927         int isSchemaChange;
2928         iSavepoint = db->nSavepoint - iSavepoint - 1;
2929         if( p1==SAVEPOINT_ROLLBACK ){
2930           isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
2931           for(ii=0; ii<db->nDb; ii++){
2932             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2933                                        SQLITE_ABORT_ROLLBACK,
2934                                        isSchemaChange==0);
2935             if( rc!=SQLITE_OK ) goto abort_due_to_error;
2936           }
2937         }else{
2938           isSchemaChange = 0;
2939         }
2940         for(ii=0; ii<db->nDb; ii++){
2941           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2942           if( rc!=SQLITE_OK ){
2943             goto abort_due_to_error;
2944           }
2945         }
2946         if( isSchemaChange ){
2947           sqlite3ExpirePreparedStatements(db);
2948           sqlite3ResetAllSchemasOfConnection(db);
2949           db->flags = (db->flags | SQLITE_InternChanges);
2950         }
2951       }
2952 
2953       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2954       ** savepoints nested inside of the savepoint being operated on. */
2955       while( db->pSavepoint!=pSavepoint ){
2956         pTmp = db->pSavepoint;
2957         db->pSavepoint = pTmp->pNext;
2958         sqlite3DbFree(db, pTmp);
2959         db->nSavepoint--;
2960       }
2961 
2962       /* If it is a RELEASE, then destroy the savepoint being operated on
2963       ** too. If it is a ROLLBACK TO, then set the number of deferred
2964       ** constraint violations present in the database to the value stored
2965       ** when the savepoint was created.  */
2966       if( p1==SAVEPOINT_RELEASE ){
2967         assert( pSavepoint==db->pSavepoint );
2968         db->pSavepoint = pSavepoint->pNext;
2969         sqlite3DbFree(db, pSavepoint);
2970         if( !isTransaction ){
2971           db->nSavepoint--;
2972         }
2973       }else{
2974         db->nDeferredCons = pSavepoint->nDeferredCons;
2975         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
2976       }
2977 
2978       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
2979         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2980         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2981       }
2982     }
2983   }
2984 
2985   break;
2986 }
2987 
2988 /* Opcode: AutoCommit P1 P2 * * *
2989 **
2990 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2991 ** back any currently active btree transactions. If there are any active
2992 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
2993 ** there are active writing VMs or active VMs that use shared cache.
2994 **
2995 ** This instruction causes the VM to halt.
2996 */
2997 case OP_AutoCommit: {
2998   int desiredAutoCommit;
2999   int iRollback;
3000   int turnOnAC;
3001 
3002   desiredAutoCommit = pOp->p1;
3003   iRollback = pOp->p2;
3004   turnOnAC = desiredAutoCommit && !db->autoCommit;
3005   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3006   assert( desiredAutoCommit==1 || iRollback==0 );
3007   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3008   assert( p->bIsReader );
3009 
3010   if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
3011     /* If this instruction implements a COMMIT and other VMs are writing
3012     ** return an error indicating that the other VMs must complete first.
3013     */
3014     sqlite3VdbeError(p, "cannot commit transaction - "
3015                         "SQL statements in progress");
3016     rc = SQLITE_BUSY;
3017   }else if( desiredAutoCommit!=db->autoCommit ){
3018     if( iRollback ){
3019       assert( desiredAutoCommit==1 );
3020       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3021       db->autoCommit = 1;
3022     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3023       goto vdbe_return;
3024     }else{
3025       db->autoCommit = (u8)desiredAutoCommit;
3026     }
3027     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3028       p->pc = (int)(pOp - aOp);
3029       db->autoCommit = (u8)(1-desiredAutoCommit);
3030       p->rc = rc = SQLITE_BUSY;
3031       goto vdbe_return;
3032     }
3033     assert( db->nStatement==0 );
3034     sqlite3CloseSavepoints(db);
3035     if( p->rc==SQLITE_OK ){
3036       rc = SQLITE_DONE;
3037     }else{
3038       rc = SQLITE_ERROR;
3039     }
3040     goto vdbe_return;
3041   }else{
3042     sqlite3VdbeError(p,
3043         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3044         (iRollback)?"cannot rollback - no transaction is active":
3045                    "cannot commit - no transaction is active"));
3046 
3047     rc = SQLITE_ERROR;
3048   }
3049   break;
3050 }
3051 
3052 /* Opcode: Transaction P1 P2 P3 P4 P5
3053 **
3054 ** Begin a transaction on database P1 if a transaction is not already
3055 ** active.
3056 ** If P2 is non-zero, then a write-transaction is started, or if a
3057 ** read-transaction is already active, it is upgraded to a write-transaction.
3058 ** If P2 is zero, then a read-transaction is started.
3059 **
3060 ** P1 is the index of the database file on which the transaction is
3061 ** started.  Index 0 is the main database file and index 1 is the
3062 ** file used for temporary tables.  Indices of 2 or more are used for
3063 ** attached databases.
3064 **
3065 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3066 ** true (this flag is set if the Vdbe may modify more than one row and may
3067 ** throw an ABORT exception), a statement transaction may also be opened.
3068 ** More specifically, a statement transaction is opened iff the database
3069 ** connection is currently not in autocommit mode, or if there are other
3070 ** active statements. A statement transaction allows the changes made by this
3071 ** VDBE to be rolled back after an error without having to roll back the
3072 ** entire transaction. If no error is encountered, the statement transaction
3073 ** will automatically commit when the VDBE halts.
3074 **
3075 ** If P5!=0 then this opcode also checks the schema cookie against P3
3076 ** and the schema generation counter against P4.
3077 ** The cookie changes its value whenever the database schema changes.
3078 ** This operation is used to detect when that the cookie has changed
3079 ** and that the current process needs to reread the schema.  If the schema
3080 ** cookie in P3 differs from the schema cookie in the database header or
3081 ** if the schema generation counter in P4 differs from the current
3082 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3083 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3084 ** statement and rerun it from the beginning.
3085 */
3086 case OP_Transaction: {
3087   Btree *pBt;
3088   int iMeta;
3089   int iGen;
3090 
3091   assert( p->bIsReader );
3092   assert( p->readOnly==0 || pOp->p2==0 );
3093   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3094   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3095   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3096     rc = SQLITE_READONLY;
3097     goto abort_due_to_error;
3098   }
3099   pBt = db->aDb[pOp->p1].pBt;
3100 
3101   if( pBt ){
3102     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3103     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3104     testcase( rc==SQLITE_BUSY_RECOVERY );
3105     if( (rc&0xff)==SQLITE_BUSY ){
3106       p->pc = (int)(pOp - aOp);
3107       p->rc = rc;
3108       goto vdbe_return;
3109     }
3110     if( rc!=SQLITE_OK ){
3111       goto abort_due_to_error;
3112     }
3113 
3114     if( pOp->p2 && p->usesStmtJournal
3115      && (db->autoCommit==0 || db->nVdbeRead>1)
3116     ){
3117       assert( sqlite3BtreeIsInTrans(pBt) );
3118       if( p->iStatement==0 ){
3119         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3120         db->nStatement++;
3121         p->iStatement = db->nSavepoint + db->nStatement;
3122       }
3123 
3124       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3125       if( rc==SQLITE_OK ){
3126         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3127       }
3128 
3129       /* Store the current value of the database handles deferred constraint
3130       ** counter. If the statement transaction needs to be rolled back,
3131       ** the value of this counter needs to be restored too.  */
3132       p->nStmtDefCons = db->nDeferredCons;
3133       p->nStmtDefImmCons = db->nDeferredImmCons;
3134     }
3135 
3136     /* Gather the schema version number for checking:
3137     ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3138     ** each time a query is executed to ensure that the internal cache of the
3139     ** schema used when compiling the SQL query matches the schema of the
3140     ** database against which the compiled query is actually executed.
3141     */
3142     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3143     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3144   }else{
3145     iGen = iMeta = 0;
3146   }
3147   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3148   if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3149     sqlite3DbFree(db, p->zErrMsg);
3150     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3151     /* If the schema-cookie from the database file matches the cookie
3152     ** stored with the in-memory representation of the schema, do
3153     ** not reload the schema from the database file.
3154     **
3155     ** If virtual-tables are in use, this is not just an optimization.
3156     ** Often, v-tables store their data in other SQLite tables, which
3157     ** are queried from within xNext() and other v-table methods using
3158     ** prepared queries. If such a query is out-of-date, we do not want to
3159     ** discard the database schema, as the user code implementing the
3160     ** v-table would have to be ready for the sqlite3_vtab structure itself
3161     ** to be invalidated whenever sqlite3_step() is called from within
3162     ** a v-table method.
3163     */
3164     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3165       sqlite3ResetOneSchema(db, pOp->p1);
3166     }
3167     p->expired = 1;
3168     rc = SQLITE_SCHEMA;
3169   }
3170   break;
3171 }
3172 
3173 /* Opcode: ReadCookie P1 P2 P3 * *
3174 **
3175 ** Read cookie number P3 from database P1 and write it into register P2.
3176 ** P3==1 is the schema version.  P3==2 is the database format.
3177 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3178 ** the main database file and P1==1 is the database file used to store
3179 ** temporary tables.
3180 **
3181 ** There must be a read-lock on the database (either a transaction
3182 ** must be started or there must be an open cursor) before
3183 ** executing this instruction.
3184 */
3185 case OP_ReadCookie: {               /* out2 */
3186   int iMeta;
3187   int iDb;
3188   int iCookie;
3189 
3190   assert( p->bIsReader );
3191   iDb = pOp->p1;
3192   iCookie = pOp->p3;
3193   assert( pOp->p3<SQLITE_N_BTREE_META );
3194   assert( iDb>=0 && iDb<db->nDb );
3195   assert( db->aDb[iDb].pBt!=0 );
3196   assert( DbMaskTest(p->btreeMask, iDb) );
3197 
3198   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3199   pOut = out2Prerelease(p, pOp);
3200   pOut->u.i = iMeta;
3201   break;
3202 }
3203 
3204 /* Opcode: SetCookie P1 P2 P3 * *
3205 **
3206 ** Write the content of register P3 (interpreted as an integer)
3207 ** into cookie number P2 of database P1.  P2==1 is the schema version.
3208 ** P2==2 is the database format. P2==3 is the recommended pager cache
3209 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3210 ** database file used to store temporary tables.
3211 **
3212 ** A transaction must be started before executing this opcode.
3213 */
3214 case OP_SetCookie: {       /* in3 */
3215   Db *pDb;
3216   assert( pOp->p2<SQLITE_N_BTREE_META );
3217   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3218   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3219   assert( p->readOnly==0 );
3220   pDb = &db->aDb[pOp->p1];
3221   assert( pDb->pBt!=0 );
3222   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3223   pIn3 = &aMem[pOp->p3];
3224   sqlite3VdbeMemIntegerify(pIn3);
3225   /* See note about index shifting on OP_ReadCookie */
3226   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3227   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3228     /* When the schema cookie changes, record the new cookie internally */
3229     pDb->pSchema->schema_cookie = (int)pIn3->u.i;
3230     db->flags |= SQLITE_InternChanges;
3231   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3232     /* Record changes in the file format */
3233     pDb->pSchema->file_format = (u8)pIn3->u.i;
3234   }
3235   if( pOp->p1==1 ){
3236     /* Invalidate all prepared statements whenever the TEMP database
3237     ** schema is changed.  Ticket #1644 */
3238     sqlite3ExpirePreparedStatements(db);
3239     p->expired = 0;
3240   }
3241   break;
3242 }
3243 
3244 /* Opcode: OpenRead P1 P2 P3 P4 P5
3245 ** Synopsis: root=P2 iDb=P3
3246 **
3247 ** Open a read-only cursor for the database table whose root page is
3248 ** P2 in a database file.  The database file is determined by P3.
3249 ** P3==0 means the main database, P3==1 means the database used for
3250 ** temporary tables, and P3>1 means used the corresponding attached
3251 ** database.  Give the new cursor an identifier of P1.  The P1
3252 ** values need not be contiguous but all P1 values should be small integers.
3253 ** It is an error for P1 to be negative.
3254 **
3255 ** If P5!=0 then use the content of register P2 as the root page, not
3256 ** the value of P2 itself.
3257 **
3258 ** There will be a read lock on the database whenever there is an
3259 ** open cursor.  If the database was unlocked prior to this instruction
3260 ** then a read lock is acquired as part of this instruction.  A read
3261 ** lock allows other processes to read the database but prohibits
3262 ** any other process from modifying the database.  The read lock is
3263 ** released when all cursors are closed.  If this instruction attempts
3264 ** to get a read lock but fails, the script terminates with an
3265 ** SQLITE_BUSY error code.
3266 **
3267 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3268 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3269 ** structure, then said structure defines the content and collating
3270 ** sequence of the index being opened. Otherwise, if P4 is an integer
3271 ** value, it is set to the number of columns in the table.
3272 **
3273 ** See also: OpenWrite, ReopenIdx
3274 */
3275 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3276 ** Synopsis: root=P2 iDb=P3
3277 **
3278 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3279 ** checks to see if the cursor on P1 is already open with a root page
3280 ** number of P2 and if it is this opcode becomes a no-op.  In other words,
3281 ** if the cursor is already open, do not reopen it.
3282 **
3283 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3284 ** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
3285 ** every other ReopenIdx or OpenRead for the same cursor number.
3286 **
3287 ** See the OpenRead opcode documentation for additional information.
3288 */
3289 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3290 ** Synopsis: root=P2 iDb=P3
3291 **
3292 ** Open a read/write cursor named P1 on the table or index whose root
3293 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3294 ** root page.
3295 **
3296 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3297 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3298 ** structure, then said structure defines the content and collating
3299 ** sequence of the index being opened. Otherwise, if P4 is an integer
3300 ** value, it is set to the number of columns in the table, or to the
3301 ** largest index of any column of the table that is actually used.
3302 **
3303 ** This instruction works just like OpenRead except that it opens the cursor
3304 ** in read/write mode.  For a given table, there can be one or more read-only
3305 ** cursors or a single read/write cursor but not both.
3306 **
3307 ** See also OpenRead.
3308 */
3309 case OP_ReopenIdx: {
3310   int nField;
3311   KeyInfo *pKeyInfo;
3312   int p2;
3313   int iDb;
3314   int wrFlag;
3315   Btree *pX;
3316   VdbeCursor *pCur;
3317   Db *pDb;
3318 
3319   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3320   assert( pOp->p4type==P4_KEYINFO );
3321   pCur = p->apCsr[pOp->p1];
3322   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3323     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3324     goto open_cursor_set_hints;
3325   }
3326   /* If the cursor is not currently open or is open on a different
3327   ** index, then fall through into OP_OpenRead to force a reopen */
3328 case OP_OpenRead:
3329 case OP_OpenWrite:
3330 
3331   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3332   assert( p->bIsReader );
3333   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3334           || p->readOnly==0 );
3335 
3336   if( p->expired ){
3337     rc = SQLITE_ABORT_ROLLBACK;
3338     break;
3339   }
3340 
3341   nField = 0;
3342   pKeyInfo = 0;
3343   p2 = pOp->p2;
3344   iDb = pOp->p3;
3345   assert( iDb>=0 && iDb<db->nDb );
3346   assert( DbMaskTest(p->btreeMask, iDb) );
3347   pDb = &db->aDb[iDb];
3348   pX = pDb->pBt;
3349   assert( pX!=0 );
3350   if( pOp->opcode==OP_OpenWrite ){
3351     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3352     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3353     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3354     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3355       p->minWriteFileFormat = pDb->pSchema->file_format;
3356     }
3357   }else{
3358     wrFlag = 0;
3359   }
3360   if( pOp->p5 & OPFLAG_P2ISREG ){
3361     assert( p2>0 );
3362     assert( p2<=(p->nMem-p->nCursor) );
3363     pIn2 = &aMem[p2];
3364     assert( memIsValid(pIn2) );
3365     assert( (pIn2->flags & MEM_Int)!=0 );
3366     sqlite3VdbeMemIntegerify(pIn2);
3367     p2 = (int)pIn2->u.i;
3368     /* The p2 value always comes from a prior OP_CreateTable opcode and
3369     ** that opcode will always set the p2 value to 2 or more or else fail.
3370     ** If there were a failure, the prepared statement would have halted
3371     ** before reaching this instruction. */
3372     if( NEVER(p2<2) ) {
3373       rc = SQLITE_CORRUPT_BKPT;
3374       goto abort_due_to_error;
3375     }
3376   }
3377   if( pOp->p4type==P4_KEYINFO ){
3378     pKeyInfo = pOp->p4.pKeyInfo;
3379     assert( pKeyInfo->enc==ENC(db) );
3380     assert( pKeyInfo->db==db );
3381     nField = pKeyInfo->nField+pKeyInfo->nXField;
3382   }else if( pOp->p4type==P4_INT32 ){
3383     nField = pOp->p4.i;
3384   }
3385   assert( pOp->p1>=0 );
3386   assert( nField>=0 );
3387   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3388   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3389   if( pCur==0 ) goto no_mem;
3390   pCur->nullRow = 1;
3391   pCur->isOrdered = 1;
3392   pCur->pgnoRoot = p2;
3393   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3394   pCur->pKeyInfo = pKeyInfo;
3395   /* Set the VdbeCursor.isTable variable. Previous versions of
3396   ** SQLite used to check if the root-page flags were sane at this point
3397   ** and report database corruption if they were not, but this check has
3398   ** since moved into the btree layer.  */
3399   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3400 
3401 open_cursor_set_hints:
3402   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3403   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3404   testcase( pOp->p5 & OPFLAG_BULKCSR );
3405 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3406   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3407 #endif
3408   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3409                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3410   break;
3411 }
3412 
3413 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3414 ** Synopsis: nColumn=P2
3415 **
3416 ** Open a new cursor P1 to a transient table.
3417 ** The cursor is always opened read/write even if
3418 ** the main database is read-only.  The ephemeral
3419 ** table is deleted automatically when the cursor is closed.
3420 **
3421 ** P2 is the number of columns in the ephemeral table.
3422 ** The cursor points to a BTree table if P4==0 and to a BTree index
3423 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3424 ** that defines the format of keys in the index.
3425 **
3426 ** The P5 parameter can be a mask of the BTREE_* flags defined
3427 ** in btree.h.  These flags control aspects of the operation of
3428 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3429 ** added automatically.
3430 */
3431 /* Opcode: OpenAutoindex P1 P2 * P4 *
3432 ** Synopsis: nColumn=P2
3433 **
3434 ** This opcode works the same as OP_OpenEphemeral.  It has a
3435 ** different name to distinguish its use.  Tables created using
3436 ** by this opcode will be used for automatically created transient
3437 ** indices in joins.
3438 */
3439 case OP_OpenAutoindex:
3440 case OP_OpenEphemeral: {
3441   VdbeCursor *pCx;
3442   KeyInfo *pKeyInfo;
3443 
3444   static const int vfsFlags =
3445       SQLITE_OPEN_READWRITE |
3446       SQLITE_OPEN_CREATE |
3447       SQLITE_OPEN_EXCLUSIVE |
3448       SQLITE_OPEN_DELETEONCLOSE |
3449       SQLITE_OPEN_TRANSIENT_DB;
3450   assert( pOp->p1>=0 );
3451   assert( pOp->p2>=0 );
3452   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3453   if( pCx==0 ) goto no_mem;
3454   pCx->nullRow = 1;
3455   pCx->isEphemeral = 1;
3456   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3457                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3458   if( rc==SQLITE_OK ){
3459     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3460   }
3461   if( rc==SQLITE_OK ){
3462     /* If a transient index is required, create it by calling
3463     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3464     ** opening it. If a transient table is required, just use the
3465     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3466     */
3467     if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3468       int pgno;
3469       assert( pOp->p4type==P4_KEYINFO );
3470       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3471       if( rc==SQLITE_OK ){
3472         assert( pgno==MASTER_ROOT+1 );
3473         assert( pKeyInfo->db==db );
3474         assert( pKeyInfo->enc==ENC(db) );
3475         pCx->pKeyInfo = pKeyInfo;
3476         rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3477                                 pKeyInfo, pCx->uc.pCursor);
3478       }
3479       pCx->isTable = 0;
3480     }else{
3481       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3482                               0, pCx->uc.pCursor);
3483       pCx->isTable = 1;
3484     }
3485   }
3486   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3487   break;
3488 }
3489 
3490 /* Opcode: SorterOpen P1 P2 P3 P4 *
3491 **
3492 ** This opcode works like OP_OpenEphemeral except that it opens
3493 ** a transient index that is specifically designed to sort large
3494 ** tables using an external merge-sort algorithm.
3495 **
3496 ** If argument P3 is non-zero, then it indicates that the sorter may
3497 ** assume that a stable sort considering the first P3 fields of each
3498 ** key is sufficient to produce the required results.
3499 */
3500 case OP_SorterOpen: {
3501   VdbeCursor *pCx;
3502 
3503   assert( pOp->p1>=0 );
3504   assert( pOp->p2>=0 );
3505   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3506   if( pCx==0 ) goto no_mem;
3507   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3508   assert( pCx->pKeyInfo->db==db );
3509   assert( pCx->pKeyInfo->enc==ENC(db) );
3510   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3511   break;
3512 }
3513 
3514 /* Opcode: SequenceTest P1 P2 * * *
3515 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3516 **
3517 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3518 ** to P2. Regardless of whether or not the jump is taken, increment the
3519 ** the sequence value.
3520 */
3521 case OP_SequenceTest: {
3522   VdbeCursor *pC;
3523   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3524   pC = p->apCsr[pOp->p1];
3525   assert( isSorter(pC) );
3526   if( (pC->seqCount++)==0 ){
3527     goto jump_to_p2;
3528   }
3529   break;
3530 }
3531 
3532 /* Opcode: OpenPseudo P1 P2 P3 * *
3533 ** Synopsis: P3 columns in r[P2]
3534 **
3535 ** Open a new cursor that points to a fake table that contains a single
3536 ** row of data.  The content of that one row is the content of memory
3537 ** register P2.  In other words, cursor P1 becomes an alias for the
3538 ** MEM_Blob content contained in register P2.
3539 **
3540 ** A pseudo-table created by this opcode is used to hold a single
3541 ** row output from the sorter so that the row can be decomposed into
3542 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3543 ** is the only cursor opcode that works with a pseudo-table.
3544 **
3545 ** P3 is the number of fields in the records that will be stored by
3546 ** the pseudo-table.
3547 */
3548 case OP_OpenPseudo: {
3549   VdbeCursor *pCx;
3550 
3551   assert( pOp->p1>=0 );
3552   assert( pOp->p3>=0 );
3553   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3554   if( pCx==0 ) goto no_mem;
3555   pCx->nullRow = 1;
3556   pCx->uc.pseudoTableReg = pOp->p2;
3557   pCx->isTable = 1;
3558   assert( pOp->p5==0 );
3559   break;
3560 }
3561 
3562 /* Opcode: Close P1 * * * *
3563 **
3564 ** Close a cursor previously opened as P1.  If P1 is not
3565 ** currently open, this instruction is a no-op.
3566 */
3567 case OP_Close: {
3568   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3569   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3570   p->apCsr[pOp->p1] = 0;
3571   break;
3572 }
3573 
3574 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3575 /* Opcode: ColumnsUsed P1 * * P4 *
3576 **
3577 ** This opcode (which only exists if SQLite was compiled with
3578 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3579 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3580 ** (P4_INT64) in which the first 63 bits are one for each of the
3581 ** first 63 columns of the table or index that are actually used
3582 ** by the cursor.  The high-order bit is set if any column after
3583 ** the 64th is used.
3584 */
3585 case OP_ColumnsUsed: {
3586   VdbeCursor *pC;
3587   pC = p->apCsr[pOp->p1];
3588   assert( pC->eCurType==CURTYPE_BTREE );
3589   pC->maskUsed = *(u64*)pOp->p4.pI64;
3590   break;
3591 }
3592 #endif
3593 
3594 /* Opcode: SeekGE P1 P2 P3 P4 *
3595 ** Synopsis: key=r[P3@P4]
3596 **
3597 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3598 ** use the value in register P3 as the key.  If cursor P1 refers
3599 ** to an SQL index, then P3 is the first in an array of P4 registers
3600 ** that are used as an unpacked index key.
3601 **
3602 ** Reposition cursor P1 so that  it points to the smallest entry that
3603 ** is greater than or equal to the key value. If there are no records
3604 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3605 **
3606 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3607 ** opcode will always land on a record that equally equals the key, or
3608 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3609 ** opcode must be followed by an IdxLE opcode with the same arguments.
3610 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3611 ** IdxLE opcode will be used on subsequent loop iterations.
3612 **
3613 ** This opcode leaves the cursor configured to move in forward order,
3614 ** from the beginning toward the end.  In other words, the cursor is
3615 ** configured to use Next, not Prev.
3616 **
3617 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3618 */
3619 /* Opcode: SeekGT P1 P2 P3 P4 *
3620 ** Synopsis: key=r[P3@P4]
3621 **
3622 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3623 ** use the value in register P3 as a key. If cursor P1 refers
3624 ** to an SQL index, then P3 is the first in an array of P4 registers
3625 ** that are used as an unpacked index key.
3626 **
3627 ** Reposition cursor P1 so that  it points to the smallest entry that
3628 ** is greater than the key value. If there are no records greater than
3629 ** the key and P2 is not zero, then jump to P2.
3630 **
3631 ** This opcode leaves the cursor configured to move in forward order,
3632 ** from the beginning toward the end.  In other words, the cursor is
3633 ** configured to use Next, not Prev.
3634 **
3635 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3636 */
3637 /* Opcode: SeekLT P1 P2 P3 P4 *
3638 ** Synopsis: key=r[P3@P4]
3639 **
3640 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3641 ** use the value in register P3 as a key. If cursor P1 refers
3642 ** to an SQL index, then P3 is the first in an array of P4 registers
3643 ** that are used as an unpacked index key.
3644 **
3645 ** Reposition cursor P1 so that  it points to the largest entry that
3646 ** is less than the key value. If there are no records less than
3647 ** the key and P2 is not zero, then jump to P2.
3648 **
3649 ** This opcode leaves the cursor configured to move in reverse order,
3650 ** from the end toward the beginning.  In other words, the cursor is
3651 ** configured to use Prev, not Next.
3652 **
3653 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3654 */
3655 /* Opcode: SeekLE P1 P2 P3 P4 *
3656 ** Synopsis: key=r[P3@P4]
3657 **
3658 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3659 ** use the value in register P3 as a key. If cursor P1 refers
3660 ** to an SQL index, then P3 is the first in an array of P4 registers
3661 ** that are used as an unpacked index key.
3662 **
3663 ** Reposition cursor P1 so that it points to the largest entry that
3664 ** is less than or equal to the key value. If there are no records
3665 ** less than or equal to the key and P2 is not zero, then jump to P2.
3666 **
3667 ** This opcode leaves the cursor configured to move in reverse order,
3668 ** from the end toward the beginning.  In other words, the cursor is
3669 ** configured to use Prev, not Next.
3670 **
3671 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3672 ** opcode will always land on a record that equally equals the key, or
3673 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3674 ** opcode must be followed by an IdxGE opcode with the same arguments.
3675 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3676 ** IdxGE opcode will be used on subsequent loop iterations.
3677 **
3678 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3679 */
3680 case OP_SeekLT:         /* jump, in3 */
3681 case OP_SeekLE:         /* jump, in3 */
3682 case OP_SeekGE:         /* jump, in3 */
3683 case OP_SeekGT: {       /* jump, in3 */
3684   int res;           /* Comparison result */
3685   int oc;            /* Opcode */
3686   VdbeCursor *pC;    /* The cursor to seek */
3687   UnpackedRecord r;  /* The key to seek for */
3688   int nField;        /* Number of columns or fields in the key */
3689   i64 iKey;          /* The rowid we are to seek to */
3690   int eqOnly;        /* Only interested in == results */
3691 
3692   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3693   assert( pOp->p2!=0 );
3694   pC = p->apCsr[pOp->p1];
3695   assert( pC!=0 );
3696   assert( pC->eCurType==CURTYPE_BTREE );
3697   assert( OP_SeekLE == OP_SeekLT+1 );
3698   assert( OP_SeekGE == OP_SeekLT+2 );
3699   assert( OP_SeekGT == OP_SeekLT+3 );
3700   assert( pC->isOrdered );
3701   assert( pC->uc.pCursor!=0 );
3702   oc = pOp->opcode;
3703   eqOnly = 0;
3704   pC->nullRow = 0;
3705 #ifdef SQLITE_DEBUG
3706   pC->seekOp = pOp->opcode;
3707 #endif
3708 
3709   if( pC->isTable ){
3710     /* The BTREE_SEEK_EQ flag is only set on index cursors */
3711     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
3712 
3713     /* The input value in P3 might be of any type: integer, real, string,
3714     ** blob, or NULL.  But it needs to be an integer before we can do
3715     ** the seek, so convert it. */
3716     pIn3 = &aMem[pOp->p3];
3717     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3718       applyNumericAffinity(pIn3, 0);
3719     }
3720     iKey = sqlite3VdbeIntValue(pIn3);
3721 
3722     /* If the P3 value could not be converted into an integer without
3723     ** loss of information, then special processing is required... */
3724     if( (pIn3->flags & MEM_Int)==0 ){
3725       if( (pIn3->flags & MEM_Real)==0 ){
3726         /* If the P3 value cannot be converted into any kind of a number,
3727         ** then the seek is not possible, so jump to P2 */
3728         VdbeBranchTaken(1,2); goto jump_to_p2;
3729         break;
3730       }
3731 
3732       /* If the approximation iKey is larger than the actual real search
3733       ** term, substitute >= for > and < for <=. e.g. if the search term
3734       ** is 4.9 and the integer approximation 5:
3735       **
3736       **        (x >  4.9)    ->     (x >= 5)
3737       **        (x <= 4.9)    ->     (x <  5)
3738       */
3739       if( pIn3->u.r<(double)iKey ){
3740         assert( OP_SeekGE==(OP_SeekGT-1) );
3741         assert( OP_SeekLT==(OP_SeekLE-1) );
3742         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3743         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3744       }
3745 
3746       /* If the approximation iKey is smaller than the actual real search
3747       ** term, substitute <= for < and > for >=.  */
3748       else if( pIn3->u.r>(double)iKey ){
3749         assert( OP_SeekLE==(OP_SeekLT+1) );
3750         assert( OP_SeekGT==(OP_SeekGE+1) );
3751         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3752         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3753       }
3754     }
3755     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3756     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3757     if( rc!=SQLITE_OK ){
3758       goto abort_due_to_error;
3759     }
3760   }else{
3761     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3762     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3763     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3764     */
3765     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3766       eqOnly = 1;
3767       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3768       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3769       assert( pOp[1].p1==pOp[0].p1 );
3770       assert( pOp[1].p2==pOp[0].p2 );
3771       assert( pOp[1].p3==pOp[0].p3 );
3772       assert( pOp[1].p4.i==pOp[0].p4.i );
3773     }
3774 
3775     nField = pOp->p4.i;
3776     assert( pOp->p4type==P4_INT32 );
3777     assert( nField>0 );
3778     r.pKeyInfo = pC->pKeyInfo;
3779     r.nField = (u16)nField;
3780 
3781     /* The next line of code computes as follows, only faster:
3782     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3783     **     r.default_rc = -1;
3784     **   }else{
3785     **     r.default_rc = +1;
3786     **   }
3787     */
3788     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3789     assert( oc!=OP_SeekGT || r.default_rc==-1 );
3790     assert( oc!=OP_SeekLE || r.default_rc==-1 );
3791     assert( oc!=OP_SeekGE || r.default_rc==+1 );
3792     assert( oc!=OP_SeekLT || r.default_rc==+1 );
3793 
3794     r.aMem = &aMem[pOp->p3];
3795 #ifdef SQLITE_DEBUG
3796     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3797 #endif
3798     ExpandBlob(r.aMem);
3799     r.eqSeen = 0;
3800     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3801     if( rc!=SQLITE_OK ){
3802       goto abort_due_to_error;
3803     }
3804     if( eqOnly && r.eqSeen==0 ){
3805       assert( res!=0 );
3806       goto seek_not_found;
3807     }
3808   }
3809   pC->deferredMoveto = 0;
3810   pC->cacheStatus = CACHE_STALE;
3811 #ifdef SQLITE_TEST
3812   sqlite3_search_count++;
3813 #endif
3814   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
3815     if( res<0 || (res==0 && oc==OP_SeekGT) ){
3816       res = 0;
3817       rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
3818       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3819     }else{
3820       res = 0;
3821     }
3822   }else{
3823     assert( oc==OP_SeekLT || oc==OP_SeekLE );
3824     if( res>0 || (res==0 && oc==OP_SeekLT) ){
3825       res = 0;
3826       rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
3827       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3828     }else{
3829       /* res might be negative because the table is empty.  Check to
3830       ** see if this is the case.
3831       */
3832       res = sqlite3BtreeEof(pC->uc.pCursor);
3833     }
3834   }
3835 seek_not_found:
3836   assert( pOp->p2>0 );
3837   VdbeBranchTaken(res!=0,2);
3838   if( res ){
3839     goto jump_to_p2;
3840   }else if( eqOnly ){
3841     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3842     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3843   }
3844   break;
3845 }
3846 
3847 /* Opcode: Seek P1 P2 * * *
3848 ** Synopsis:  intkey=r[P2]
3849 **
3850 ** P1 is an open table cursor and P2 is a rowid integer.  Arrange
3851 ** for P1 to move so that it points to the rowid given by P2.
3852 **
3853 ** This is actually a deferred seek.  Nothing actually happens until
3854 ** the cursor is used to read a record.  That way, if no reads
3855 ** occur, no unnecessary I/O happens.
3856 */
3857 case OP_Seek: {    /* in2 */
3858   VdbeCursor *pC;
3859 
3860   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3861   pC = p->apCsr[pOp->p1];
3862   assert( pC!=0 );
3863   assert( pC->eCurType==CURTYPE_BTREE );
3864   assert( pC->uc.pCursor!=0 );
3865   assert( pC->isTable );
3866   pC->nullRow = 0;
3867   pIn2 = &aMem[pOp->p2];
3868   pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3869   pC->deferredMoveto = 1;
3870   break;
3871 }
3872 
3873 
3874 /* Opcode: Found P1 P2 P3 P4 *
3875 ** Synopsis: key=r[P3@P4]
3876 **
3877 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3878 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3879 ** record.
3880 **
3881 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3882 ** is a prefix of any entry in P1 then a jump is made to P2 and
3883 ** P1 is left pointing at the matching entry.
3884 **
3885 ** This operation leaves the cursor in a state where it can be
3886 ** advanced in the forward direction.  The Next instruction will work,
3887 ** but not the Prev instruction.
3888 **
3889 ** See also: NotFound, NoConflict, NotExists. SeekGe
3890 */
3891 /* Opcode: NotFound P1 P2 P3 P4 *
3892 ** Synopsis: key=r[P3@P4]
3893 **
3894 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3895 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3896 ** record.
3897 **
3898 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3899 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3900 ** does contain an entry whose prefix matches the P3/P4 record then control
3901 ** falls through to the next instruction and P1 is left pointing at the
3902 ** matching entry.
3903 **
3904 ** This operation leaves the cursor in a state where it cannot be
3905 ** advanced in either direction.  In other words, the Next and Prev
3906 ** opcodes do not work after this operation.
3907 **
3908 ** See also: Found, NotExists, NoConflict
3909 */
3910 /* Opcode: NoConflict P1 P2 P3 P4 *
3911 ** Synopsis: key=r[P3@P4]
3912 **
3913 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3914 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3915 ** record.
3916 **
3917 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3918 ** contains any NULL value, jump immediately to P2.  If all terms of the
3919 ** record are not-NULL then a check is done to determine if any row in the
3920 ** P1 index btree has a matching key prefix.  If there are no matches, jump
3921 ** immediately to P2.  If there is a match, fall through and leave the P1
3922 ** cursor pointing to the matching row.
3923 **
3924 ** This opcode is similar to OP_NotFound with the exceptions that the
3925 ** branch is always taken if any part of the search key input is NULL.
3926 **
3927 ** This operation leaves the cursor in a state where it cannot be
3928 ** advanced in either direction.  In other words, the Next and Prev
3929 ** opcodes do not work after this operation.
3930 **
3931 ** See also: NotFound, Found, NotExists
3932 */
3933 case OP_NoConflict:     /* jump, in3 */
3934 case OP_NotFound:       /* jump, in3 */
3935 case OP_Found: {        /* jump, in3 */
3936   int alreadyExists;
3937   int takeJump;
3938   int ii;
3939   VdbeCursor *pC;
3940   int res;
3941   char *pFree;
3942   UnpackedRecord *pIdxKey;
3943   UnpackedRecord r;
3944   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3945 
3946 #ifdef SQLITE_TEST
3947   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3948 #endif
3949 
3950   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3951   assert( pOp->p4type==P4_INT32 );
3952   pC = p->apCsr[pOp->p1];
3953   assert( pC!=0 );
3954 #ifdef SQLITE_DEBUG
3955   pC->seekOp = pOp->opcode;
3956 #endif
3957   pIn3 = &aMem[pOp->p3];
3958   assert( pC->eCurType==CURTYPE_BTREE );
3959   assert( pC->uc.pCursor!=0 );
3960   assert( pC->isTable==0 );
3961   pFree = 0;
3962   if( pOp->p4.i>0 ){
3963     r.pKeyInfo = pC->pKeyInfo;
3964     r.nField = (u16)pOp->p4.i;
3965     r.aMem = pIn3;
3966     for(ii=0; ii<r.nField; ii++){
3967       assert( memIsValid(&r.aMem[ii]) );
3968       ExpandBlob(&r.aMem[ii]);
3969 #ifdef SQLITE_DEBUG
3970       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
3971 #endif
3972     }
3973     pIdxKey = &r;
3974   }else{
3975     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3976         pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3977     );
3978     if( pIdxKey==0 ) goto no_mem;
3979     assert( pIn3->flags & MEM_Blob );
3980     ExpandBlob(pIn3);
3981     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3982   }
3983   pIdxKey->default_rc = 0;
3984   takeJump = 0;
3985   if( pOp->opcode==OP_NoConflict ){
3986     /* For the OP_NoConflict opcode, take the jump if any of the
3987     ** input fields are NULL, since any key with a NULL will not
3988     ** conflict */
3989     for(ii=0; ii<pIdxKey->nField; ii++){
3990       if( pIdxKey->aMem[ii].flags & MEM_Null ){
3991         takeJump = 1;
3992         break;
3993       }
3994     }
3995   }
3996   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
3997   sqlite3DbFree(db, pFree);
3998   if( rc!=SQLITE_OK ){
3999     break;
4000   }
4001   pC->seekResult = res;
4002   alreadyExists = (res==0);
4003   pC->nullRow = 1-alreadyExists;
4004   pC->deferredMoveto = 0;
4005   pC->cacheStatus = CACHE_STALE;
4006   if( pOp->opcode==OP_Found ){
4007     VdbeBranchTaken(alreadyExists!=0,2);
4008     if( alreadyExists ) goto jump_to_p2;
4009   }else{
4010     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4011     if( takeJump || !alreadyExists ) goto jump_to_p2;
4012   }
4013   break;
4014 }
4015 
4016 /* Opcode: NotExists P1 P2 P3 * *
4017 ** Synopsis: intkey=r[P3]
4018 **
4019 ** P1 is the index of a cursor open on an SQL table btree (with integer
4020 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4021 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4022 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4023 ** leave the cursor pointing at that record and fall through to the next
4024 ** instruction.
4025 **
4026 ** The OP_NotFound opcode performs the same operation on index btrees
4027 ** (with arbitrary multi-value keys).
4028 **
4029 ** This opcode leaves the cursor in a state where it cannot be advanced
4030 ** in either direction.  In other words, the Next and Prev opcodes will
4031 ** not work following this opcode.
4032 **
4033 ** See also: Found, NotFound, NoConflict
4034 */
4035 case OP_NotExists: {        /* jump, in3 */
4036   VdbeCursor *pC;
4037   BtCursor *pCrsr;
4038   int res;
4039   u64 iKey;
4040 
4041   pIn3 = &aMem[pOp->p3];
4042   assert( pIn3->flags & MEM_Int );
4043   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4044   pC = p->apCsr[pOp->p1];
4045   assert( pC!=0 );
4046 #ifdef SQLITE_DEBUG
4047   pC->seekOp = 0;
4048 #endif
4049   assert( pC->isTable );
4050   assert( pC->eCurType==CURTYPE_BTREE );
4051   pCrsr = pC->uc.pCursor;
4052   assert( pCrsr!=0 );
4053   res = 0;
4054   iKey = pIn3->u.i;
4055   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4056   assert( rc==SQLITE_OK || res==0 );
4057   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4058   pC->nullRow = 0;
4059   pC->cacheStatus = CACHE_STALE;
4060   pC->deferredMoveto = 0;
4061   VdbeBranchTaken(res!=0,2);
4062   pC->seekResult = res;
4063   if( res!=0 ){
4064     assert( rc==SQLITE_OK );
4065     if( pOp->p2==0 ){
4066       rc = SQLITE_CORRUPT_BKPT;
4067     }else{
4068       goto jump_to_p2;
4069     }
4070   }
4071   break;
4072 }
4073 
4074 /* Opcode: Sequence P1 P2 * * *
4075 ** Synopsis: r[P2]=cursor[P1].ctr++
4076 **
4077 ** Find the next available sequence number for cursor P1.
4078 ** Write the sequence number into register P2.
4079 ** The sequence number on the cursor is incremented after this
4080 ** instruction.
4081 */
4082 case OP_Sequence: {           /* out2 */
4083   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4084   assert( p->apCsr[pOp->p1]!=0 );
4085   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4086   pOut = out2Prerelease(p, pOp);
4087   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4088   break;
4089 }
4090 
4091 
4092 /* Opcode: NewRowid P1 P2 P3 * *
4093 ** Synopsis: r[P2]=rowid
4094 **
4095 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4096 ** The record number is not previously used as a key in the database
4097 ** table that cursor P1 points to.  The new record number is written
4098 ** written to register P2.
4099 **
4100 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4101 ** the largest previously generated record number. No new record numbers are
4102 ** allowed to be less than this value. When this value reaches its maximum,
4103 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4104 ** generated record number. This P3 mechanism is used to help implement the
4105 ** AUTOINCREMENT feature.
4106 */
4107 case OP_NewRowid: {           /* out2 */
4108   i64 v;                 /* The new rowid */
4109   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4110   int res;               /* Result of an sqlite3BtreeLast() */
4111   int cnt;               /* Counter to limit the number of searches */
4112   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4113   VdbeFrame *pFrame;     /* Root frame of VDBE */
4114 
4115   v = 0;
4116   res = 0;
4117   pOut = out2Prerelease(p, pOp);
4118   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4119   pC = p->apCsr[pOp->p1];
4120   assert( pC!=0 );
4121   assert( pC->eCurType==CURTYPE_BTREE );
4122   assert( pC->uc.pCursor!=0 );
4123   {
4124     /* The next rowid or record number (different terms for the same
4125     ** thing) is obtained in a two-step algorithm.
4126     **
4127     ** First we attempt to find the largest existing rowid and add one
4128     ** to that.  But if the largest existing rowid is already the maximum
4129     ** positive integer, we have to fall through to the second
4130     ** probabilistic algorithm
4131     **
4132     ** The second algorithm is to select a rowid at random and see if
4133     ** it already exists in the table.  If it does not exist, we have
4134     ** succeeded.  If the random rowid does exist, we select a new one
4135     ** and try again, up to 100 times.
4136     */
4137     assert( pC->isTable );
4138 
4139 #ifdef SQLITE_32BIT_ROWID
4140 #   define MAX_ROWID 0x7fffffff
4141 #else
4142     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4143     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4144     ** to provide the constant while making all compilers happy.
4145     */
4146 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4147 #endif
4148 
4149     if( !pC->useRandomRowid ){
4150       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4151       if( rc!=SQLITE_OK ){
4152         goto abort_due_to_error;
4153       }
4154       if( res ){
4155         v = 1;   /* IMP: R-61914-48074 */
4156       }else{
4157         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4158         rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
4159         assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
4160         if( v>=MAX_ROWID ){
4161           pC->useRandomRowid = 1;
4162         }else{
4163           v++;   /* IMP: R-29538-34987 */
4164         }
4165       }
4166     }
4167 
4168 #ifndef SQLITE_OMIT_AUTOINCREMENT
4169     if( pOp->p3 ){
4170       /* Assert that P3 is a valid memory cell. */
4171       assert( pOp->p3>0 );
4172       if( p->pFrame ){
4173         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4174         /* Assert that P3 is a valid memory cell. */
4175         assert( pOp->p3<=pFrame->nMem );
4176         pMem = &pFrame->aMem[pOp->p3];
4177       }else{
4178         /* Assert that P3 is a valid memory cell. */
4179         assert( pOp->p3<=(p->nMem-p->nCursor) );
4180         pMem = &aMem[pOp->p3];
4181         memAboutToChange(p, pMem);
4182       }
4183       assert( memIsValid(pMem) );
4184 
4185       REGISTER_TRACE(pOp->p3, pMem);
4186       sqlite3VdbeMemIntegerify(pMem);
4187       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4188       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4189         rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
4190         goto abort_due_to_error;
4191       }
4192       if( v<pMem->u.i+1 ){
4193         v = pMem->u.i + 1;
4194       }
4195       pMem->u.i = v;
4196     }
4197 #endif
4198     if( pC->useRandomRowid ){
4199       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4200       ** largest possible integer (9223372036854775807) then the database
4201       ** engine starts picking positive candidate ROWIDs at random until
4202       ** it finds one that is not previously used. */
4203       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4204                              ** an AUTOINCREMENT table. */
4205       cnt = 0;
4206       do{
4207         sqlite3_randomness(sizeof(v), &v);
4208         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4209       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4210                                                  0, &res))==SQLITE_OK)
4211             && (res==0)
4212             && (++cnt<100));
4213       if( rc==SQLITE_OK && res==0 ){
4214         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4215         goto abort_due_to_error;
4216       }
4217       assert( v>0 );  /* EV: R-40812-03570 */
4218     }
4219     pC->deferredMoveto = 0;
4220     pC->cacheStatus = CACHE_STALE;
4221   }
4222   pOut->u.i = v;
4223   break;
4224 }
4225 
4226 /* Opcode: Insert P1 P2 P3 P4 P5
4227 ** Synopsis: intkey=r[P3] data=r[P2]
4228 **
4229 ** Write an entry into the table of cursor P1.  A new entry is
4230 ** created if it doesn't already exist or the data for an existing
4231 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4232 ** number P2. The key is stored in register P3. The key must
4233 ** be a MEM_Int.
4234 **
4235 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4236 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4237 ** then rowid is stored for subsequent return by the
4238 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4239 **
4240 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4241 ** the last seek operation (OP_NotExists) was a success, then this
4242 ** operation will not attempt to find the appropriate row before doing
4243 ** the insert but will instead overwrite the row that the cursor is
4244 ** currently pointing to.  Presumably, the prior OP_NotExists opcode
4245 ** has already positioned the cursor correctly.  This is an optimization
4246 ** that boosts performance by avoiding redundant seeks.
4247 **
4248 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4249 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4250 ** is part of an INSERT operation.  The difference is only important to
4251 ** the update hook.
4252 **
4253 ** Parameter P4 may point to a string containing the table-name, or
4254 ** may be NULL. If it is not NULL, then the update-hook
4255 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4256 **
4257 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4258 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4259 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4260 ** value of register P2 will then change.  Make sure this does not
4261 ** cause any problems.)
4262 **
4263 ** This instruction only works on tables.  The equivalent instruction
4264 ** for indices is OP_IdxInsert.
4265 */
4266 /* Opcode: InsertInt P1 P2 P3 P4 P5
4267 ** Synopsis:  intkey=P3 data=r[P2]
4268 **
4269 ** This works exactly like OP_Insert except that the key is the
4270 ** integer value P3, not the value of the integer stored in register P3.
4271 */
4272 case OP_Insert:
4273 case OP_InsertInt: {
4274   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4275   Mem *pKey;        /* MEM cell holding key  for the record */
4276   i64 iKey;         /* The integer ROWID or key for the record to be inserted */
4277   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4278   int nZero;        /* Number of zero-bytes to append */
4279   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4280   const char *zDb;  /* database name - used by the update hook */
4281   const char *zTbl; /* Table name - used by the opdate hook */
4282   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4283 
4284   pData = &aMem[pOp->p2];
4285   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4286   assert( memIsValid(pData) );
4287   pC = p->apCsr[pOp->p1];
4288   assert( pC!=0 );
4289   assert( pC->eCurType==CURTYPE_BTREE );
4290   assert( pC->uc.pCursor!=0 );
4291   assert( pC->isTable );
4292   REGISTER_TRACE(pOp->p2, pData);
4293 
4294   if( pOp->opcode==OP_Insert ){
4295     pKey = &aMem[pOp->p3];
4296     assert( pKey->flags & MEM_Int );
4297     assert( memIsValid(pKey) );
4298     REGISTER_TRACE(pOp->p3, pKey);
4299     iKey = pKey->u.i;
4300   }else{
4301     assert( pOp->opcode==OP_InsertInt );
4302     iKey = pOp->p3;
4303   }
4304 
4305   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4306   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4307   if( pData->flags & MEM_Null ){
4308     pData->z = 0;
4309     pData->n = 0;
4310   }else{
4311     assert( pData->flags & (MEM_Blob|MEM_Str) );
4312   }
4313   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4314   if( pData->flags & MEM_Zero ){
4315     nZero = pData->u.nZero;
4316   }else{
4317     nZero = 0;
4318   }
4319   rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey,
4320                           pData->z, pData->n, nZero,
4321                           (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4322   );
4323   pC->deferredMoveto = 0;
4324   pC->cacheStatus = CACHE_STALE;
4325 
4326   /* Invoke the update-hook if required. */
4327   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4328     zDb = db->aDb[pC->iDb].zName;
4329     zTbl = pOp->p4.z;
4330     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4331     assert( pC->isTable );
4332     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4333     assert( pC->iDb>=0 );
4334   }
4335   break;
4336 }
4337 
4338 /* Opcode: Delete P1 P2 * P4 P5
4339 **
4340 ** Delete the record at which the P1 cursor is currently pointing.
4341 **
4342 ** If the P5 parameter is non-zero, the cursor will be left pointing at
4343 ** either the next or the previous record in the table. If it is left
4344 ** pointing at the next record, then the next Next instruction will be a
4345 ** no-op. As a result, in this case it is OK to delete a record from within a
4346 ** Next loop. If P5 is zero, then the cursor is left in an undefined state.
4347 **
4348 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4349 ** incremented (otherwise not).
4350 **
4351 ** P1 must not be pseudo-table.  It has to be a real table with
4352 ** multiple rows.
4353 **
4354 ** If P4 is not NULL, then it is the name of the table that P1 is
4355 ** pointing to.  The update hook will be invoked, if it exists.
4356 ** If P4 is not NULL then the P1 cursor must have been positioned
4357 ** using OP_NotFound prior to invoking this opcode.
4358 */
4359 case OP_Delete: {
4360   VdbeCursor *pC;
4361   u8 hasUpdateCallback;
4362 
4363   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4364   pC = p->apCsr[pOp->p1];
4365   assert( pC!=0 );
4366   assert( pC->eCurType==CURTYPE_BTREE );
4367   assert( pC->uc.pCursor!=0 );
4368   assert( pC->deferredMoveto==0 );
4369 
4370   hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
4371   if( pOp->p5 && hasUpdateCallback ){
4372     sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget);
4373   }
4374 
4375 #ifdef SQLITE_DEBUG
4376   /* The seek operation that positioned the cursor prior to OP_Delete will
4377   ** have also set the pC->movetoTarget field to the rowid of the row that
4378   ** is being deleted */
4379   if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
4380     i64 iKey = 0;
4381     sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
4382     assert( pC->movetoTarget==iKey );
4383   }
4384 #endif
4385 
4386   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4387   pC->cacheStatus = CACHE_STALE;
4388 
4389   /* Invoke the update-hook if required. */
4390   if( rc==SQLITE_OK && hasUpdateCallback ){
4391     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
4392                         db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
4393     assert( pC->iDb>=0 );
4394   }
4395   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4396   break;
4397 }
4398 /* Opcode: ResetCount * * * * *
4399 **
4400 ** The value of the change counter is copied to the database handle
4401 ** change counter (returned by subsequent calls to sqlite3_changes()).
4402 ** Then the VMs internal change counter resets to 0.
4403 ** This is used by trigger programs.
4404 */
4405 case OP_ResetCount: {
4406   sqlite3VdbeSetChanges(db, p->nChange);
4407   p->nChange = 0;
4408   break;
4409 }
4410 
4411 /* Opcode: SorterCompare P1 P2 P3 P4
4412 ** Synopsis:  if key(P1)!=trim(r[P3],P4) goto P2
4413 **
4414 ** P1 is a sorter cursor. This instruction compares a prefix of the
4415 ** record blob in register P3 against a prefix of the entry that
4416 ** the sorter cursor currently points to.  Only the first P4 fields
4417 ** of r[P3] and the sorter record are compared.
4418 **
4419 ** If either P3 or the sorter contains a NULL in one of their significant
4420 ** fields (not counting the P4 fields at the end which are ignored) then
4421 ** the comparison is assumed to be equal.
4422 **
4423 ** Fall through to next instruction if the two records compare equal to
4424 ** each other.  Jump to P2 if they are different.
4425 */
4426 case OP_SorterCompare: {
4427   VdbeCursor *pC;
4428   int res;
4429   int nKeyCol;
4430 
4431   pC = p->apCsr[pOp->p1];
4432   assert( isSorter(pC) );
4433   assert( pOp->p4type==P4_INT32 );
4434   pIn3 = &aMem[pOp->p3];
4435   nKeyCol = pOp->p4.i;
4436   res = 0;
4437   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4438   VdbeBranchTaken(res!=0,2);
4439   if( res ) goto jump_to_p2;
4440   break;
4441 };
4442 
4443 /* Opcode: SorterData P1 P2 P3 * *
4444 ** Synopsis: r[P2]=data
4445 **
4446 ** Write into register P2 the current sorter data for sorter cursor P1.
4447 ** Then clear the column header cache on cursor P3.
4448 **
4449 ** This opcode is normally use to move a record out of the sorter and into
4450 ** a register that is the source for a pseudo-table cursor created using
4451 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4452 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4453 ** us from having to issue a separate NullRow instruction to clear that cache.
4454 */
4455 case OP_SorterData: {
4456   VdbeCursor *pC;
4457 
4458   pOut = &aMem[pOp->p2];
4459   pC = p->apCsr[pOp->p1];
4460   assert( isSorter(pC) );
4461   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4462   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4463   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4464   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4465   break;
4466 }
4467 
4468 /* Opcode: RowData P1 P2 * * *
4469 ** Synopsis: r[P2]=data
4470 **
4471 ** Write into register P2 the complete row data for cursor P1.
4472 ** There is no interpretation of the data.
4473 ** It is just copied onto the P2 register exactly as
4474 ** it is found in the database file.
4475 **
4476 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4477 ** of a real table, not a pseudo-table.
4478 */
4479 /* Opcode: RowKey P1 P2 * * *
4480 ** Synopsis: r[P2]=key
4481 **
4482 ** Write into register P2 the complete row key for cursor P1.
4483 ** There is no interpretation of the data.
4484 ** The key is copied onto the P2 register exactly as
4485 ** it is found in the database file.
4486 **
4487 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4488 ** of a real table, not a pseudo-table.
4489 */
4490 case OP_RowKey:
4491 case OP_RowData: {
4492   VdbeCursor *pC;
4493   BtCursor *pCrsr;
4494   u32 n;
4495   i64 n64;
4496 
4497   pOut = &aMem[pOp->p2];
4498   memAboutToChange(p, pOut);
4499 
4500   /* Note that RowKey and RowData are really exactly the same instruction */
4501   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4502   pC = p->apCsr[pOp->p1];
4503   assert( pC!=0 );
4504   assert( pC->eCurType==CURTYPE_BTREE );
4505   assert( isSorter(pC)==0 );
4506   assert( pC->isTable || pOp->opcode!=OP_RowData );
4507   assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4508   assert( pC->nullRow==0 );
4509   assert( pC->uc.pCursor!=0 );
4510   pCrsr = pC->uc.pCursor;
4511 
4512   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4513   ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4514   ** the cursor.  If this where not the case, on of the following assert()s
4515   ** would fail.  Should this ever change (because of changes in the code
4516   ** generator) then the fix would be to insert a call to
4517   ** sqlite3VdbeCursorMoveto().
4518   */
4519   assert( pC->deferredMoveto==0 );
4520   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4521 #if 0  /* Not required due to the previous to assert() statements */
4522   rc = sqlite3VdbeCursorMoveto(pC);
4523   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4524 #endif
4525 
4526   if( pC->isTable==0 ){
4527     assert( !pC->isTable );
4528     VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4529     assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
4530     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4531       goto too_big;
4532     }
4533     n = (u32)n64;
4534   }else{
4535     VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4536     assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
4537     if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4538       goto too_big;
4539     }
4540   }
4541   testcase( n==0 );
4542   if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
4543     goto no_mem;
4544   }
4545   pOut->n = n;
4546   MemSetTypeFlag(pOut, MEM_Blob);
4547   if( pC->isTable==0 ){
4548     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4549   }else{
4550     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4551   }
4552   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4553   UPDATE_MAX_BLOBSIZE(pOut);
4554   REGISTER_TRACE(pOp->p2, pOut);
4555   break;
4556 }
4557 
4558 /* Opcode: Rowid P1 P2 * * *
4559 ** Synopsis: r[P2]=rowid
4560 **
4561 ** Store in register P2 an integer which is the key of the table entry that
4562 ** P1 is currently point to.
4563 **
4564 ** P1 can be either an ordinary table or a virtual table.  There used to
4565 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4566 ** one opcode now works for both table types.
4567 */
4568 case OP_Rowid: {                 /* out2 */
4569   VdbeCursor *pC;
4570   i64 v;
4571   sqlite3_vtab *pVtab;
4572   const sqlite3_module *pModule;
4573 
4574   pOut = out2Prerelease(p, pOp);
4575   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4576   pC = p->apCsr[pOp->p1];
4577   assert( pC!=0 );
4578   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4579   if( pC->nullRow ){
4580     pOut->flags = MEM_Null;
4581     break;
4582   }else if( pC->deferredMoveto ){
4583     v = pC->movetoTarget;
4584 #ifndef SQLITE_OMIT_VIRTUALTABLE
4585   }else if( pC->eCurType==CURTYPE_VTAB ){
4586     assert( pC->uc.pVCur!=0 );
4587     pVtab = pC->uc.pVCur->pVtab;
4588     pModule = pVtab->pModule;
4589     assert( pModule->xRowid );
4590     rc = pModule->xRowid(pC->uc.pVCur, &v);
4591     sqlite3VtabImportErrmsg(p, pVtab);
4592 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4593   }else{
4594     assert( pC->eCurType==CURTYPE_BTREE );
4595     assert( pC->uc.pCursor!=0 );
4596     rc = sqlite3VdbeCursorRestore(pC);
4597     if( rc ) goto abort_due_to_error;
4598     if( pC->nullRow ){
4599       pOut->flags = MEM_Null;
4600       break;
4601     }
4602     rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
4603     assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
4604   }
4605   pOut->u.i = v;
4606   break;
4607 }
4608 
4609 /* Opcode: NullRow P1 * * * *
4610 **
4611 ** Move the cursor P1 to a null row.  Any OP_Column operations
4612 ** that occur while the cursor is on the null row will always
4613 ** write a NULL.
4614 */
4615 case OP_NullRow: {
4616   VdbeCursor *pC;
4617 
4618   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4619   pC = p->apCsr[pOp->p1];
4620   assert( pC!=0 );
4621   pC->nullRow = 1;
4622   pC->cacheStatus = CACHE_STALE;
4623   if( pC->eCurType==CURTYPE_BTREE ){
4624     assert( pC->uc.pCursor!=0 );
4625     sqlite3BtreeClearCursor(pC->uc.pCursor);
4626   }
4627   break;
4628 }
4629 
4630 /* Opcode: Last P1 P2 P3 * *
4631 **
4632 ** The next use of the Rowid or Column or Prev instruction for P1
4633 ** will refer to the last entry in the database table or index.
4634 ** If the table or index is empty and P2>0, then jump immediately to P2.
4635 ** If P2 is 0 or if the table or index is not empty, fall through
4636 ** to the following instruction.
4637 **
4638 ** This opcode leaves the cursor configured to move in reverse order,
4639 ** from the end toward the beginning.  In other words, the cursor is
4640 ** configured to use Prev, not Next.
4641 */
4642 case OP_Last: {        /* jump */
4643   VdbeCursor *pC;
4644   BtCursor *pCrsr;
4645   int res;
4646 
4647   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4648   pC = p->apCsr[pOp->p1];
4649   assert( pC!=0 );
4650   assert( pC->eCurType==CURTYPE_BTREE );
4651   pCrsr = pC->uc.pCursor;
4652   res = 0;
4653   assert( pCrsr!=0 );
4654   rc = sqlite3BtreeLast(pCrsr, &res);
4655   pC->nullRow = (u8)res;
4656   pC->deferredMoveto = 0;
4657   pC->cacheStatus = CACHE_STALE;
4658   pC->seekResult = pOp->p3;
4659 #ifdef SQLITE_DEBUG
4660   pC->seekOp = OP_Last;
4661 #endif
4662   if( pOp->p2>0 ){
4663     VdbeBranchTaken(res!=0,2);
4664     if( res ) goto jump_to_p2;
4665   }
4666   break;
4667 }
4668 
4669 
4670 /* Opcode: Sort P1 P2 * * *
4671 **
4672 ** This opcode does exactly the same thing as OP_Rewind except that
4673 ** it increments an undocumented global variable used for testing.
4674 **
4675 ** Sorting is accomplished by writing records into a sorting index,
4676 ** then rewinding that index and playing it back from beginning to
4677 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4678 ** rewinding so that the global variable will be incremented and
4679 ** regression tests can determine whether or not the optimizer is
4680 ** correctly optimizing out sorts.
4681 */
4682 case OP_SorterSort:    /* jump */
4683 case OP_Sort: {        /* jump */
4684 #ifdef SQLITE_TEST
4685   sqlite3_sort_count++;
4686   sqlite3_search_count--;
4687 #endif
4688   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4689   /* Fall through into OP_Rewind */
4690 }
4691 /* Opcode: Rewind P1 P2 * * *
4692 **
4693 ** The next use of the Rowid or Column or Next instruction for P1
4694 ** will refer to the first entry in the database table or index.
4695 ** If the table or index is empty, jump immediately to P2.
4696 ** If the table or index is not empty, fall through to the following
4697 ** instruction.
4698 **
4699 ** This opcode leaves the cursor configured to move in forward order,
4700 ** from the beginning toward the end.  In other words, the cursor is
4701 ** configured to use Next, not Prev.
4702 */
4703 case OP_Rewind: {        /* jump */
4704   VdbeCursor *pC;
4705   BtCursor *pCrsr;
4706   int res;
4707 
4708   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4709   pC = p->apCsr[pOp->p1];
4710   assert( pC!=0 );
4711   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4712   res = 1;
4713 #ifdef SQLITE_DEBUG
4714   pC->seekOp = OP_Rewind;
4715 #endif
4716   if( isSorter(pC) ){
4717     rc = sqlite3VdbeSorterRewind(pC, &res);
4718   }else{
4719     assert( pC->eCurType==CURTYPE_BTREE );
4720     pCrsr = pC->uc.pCursor;
4721     assert( pCrsr );
4722     rc = sqlite3BtreeFirst(pCrsr, &res);
4723     pC->deferredMoveto = 0;
4724     pC->cacheStatus = CACHE_STALE;
4725   }
4726   pC->nullRow = (u8)res;
4727   assert( pOp->p2>0 && pOp->p2<p->nOp );
4728   VdbeBranchTaken(res!=0,2);
4729   if( res ) goto jump_to_p2;
4730   break;
4731 }
4732 
4733 /* Opcode: Next P1 P2 P3 P4 P5
4734 **
4735 ** Advance cursor P1 so that it points to the next key/data pair in its
4736 ** table or index.  If there are no more key/value pairs then fall through
4737 ** to the following instruction.  But if the cursor advance was successful,
4738 ** jump immediately to P2.
4739 **
4740 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4741 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
4742 ** to follow SeekLT, SeekLE, or OP_Last.
4743 **
4744 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
4745 ** been opened prior to this opcode or the program will segfault.
4746 **
4747 ** The P3 value is a hint to the btree implementation. If P3==1, that
4748 ** means P1 is an SQL index and that this instruction could have been
4749 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4750 ** always either 0 or 1.
4751 **
4752 ** P4 is always of type P4_ADVANCE. The function pointer points to
4753 ** sqlite3BtreeNext().
4754 **
4755 ** If P5 is positive and the jump is taken, then event counter
4756 ** number P5-1 in the prepared statement is incremented.
4757 **
4758 ** See also: Prev, NextIfOpen
4759 */
4760 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4761 **
4762 ** This opcode works just like Next except that if cursor P1 is not
4763 ** open it behaves a no-op.
4764 */
4765 /* Opcode: Prev P1 P2 P3 P4 P5
4766 **
4767 ** Back up cursor P1 so that it points to the previous key/data pair in its
4768 ** table or index.  If there is no previous key/value pairs then fall through
4769 ** to the following instruction.  But if the cursor backup was successful,
4770 ** jump immediately to P2.
4771 **
4772 **
4773 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4774 ** OP_Last opcode used to position the cursor.  Prev is not allowed
4775 ** to follow SeekGT, SeekGE, or OP_Rewind.
4776 **
4777 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
4778 ** not open then the behavior is undefined.
4779 **
4780 ** The P3 value is a hint to the btree implementation. If P3==1, that
4781 ** means P1 is an SQL index and that this instruction could have been
4782 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4783 ** always either 0 or 1.
4784 **
4785 ** P4 is always of type P4_ADVANCE. The function pointer points to
4786 ** sqlite3BtreePrevious().
4787 **
4788 ** If P5 is positive and the jump is taken, then event counter
4789 ** number P5-1 in the prepared statement is incremented.
4790 */
4791 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4792 **
4793 ** This opcode works just like Prev except that if cursor P1 is not
4794 ** open it behaves a no-op.
4795 */
4796 case OP_SorterNext: {  /* jump */
4797   VdbeCursor *pC;
4798   int res;
4799 
4800   pC = p->apCsr[pOp->p1];
4801   assert( isSorter(pC) );
4802   res = 0;
4803   rc = sqlite3VdbeSorterNext(db, pC, &res);
4804   goto next_tail;
4805 case OP_PrevIfOpen:    /* jump */
4806 case OP_NextIfOpen:    /* jump */
4807   if( p->apCsr[pOp->p1]==0 ) break;
4808   /* Fall through */
4809 case OP_Prev:          /* jump */
4810 case OP_Next:          /* jump */
4811   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4812   assert( pOp->p5<ArraySize(p->aCounter) );
4813   pC = p->apCsr[pOp->p1];
4814   res = pOp->p3;
4815   assert( pC!=0 );
4816   assert( pC->deferredMoveto==0 );
4817   assert( pC->eCurType==CURTYPE_BTREE );
4818   assert( res==0 || (res==1 && pC->isTable==0) );
4819   testcase( res==1 );
4820   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4821   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4822   assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4823   assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4824 
4825   /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4826   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4827   assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4828        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4829        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4830   assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4831        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4832        || pC->seekOp==OP_Last );
4833 
4834   rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
4835 next_tail:
4836   pC->cacheStatus = CACHE_STALE;
4837   VdbeBranchTaken(res==0,2);
4838   if( res==0 ){
4839     pC->nullRow = 0;
4840     p->aCounter[pOp->p5]++;
4841 #ifdef SQLITE_TEST
4842     sqlite3_search_count++;
4843 #endif
4844     goto jump_to_p2_and_check_for_interrupt;
4845   }else{
4846     pC->nullRow = 1;
4847   }
4848   goto check_for_interrupt;
4849 }
4850 
4851 /* Opcode: IdxInsert P1 P2 P3 * P5
4852 ** Synopsis: key=r[P2]
4853 **
4854 ** Register P2 holds an SQL index key made using the
4855 ** MakeRecord instructions.  This opcode writes that key
4856 ** into the index P1.  Data for the entry is nil.
4857 **
4858 ** P3 is a flag that provides a hint to the b-tree layer that this
4859 ** insert is likely to be an append.
4860 **
4861 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4862 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
4863 ** then the change counter is unchanged.
4864 **
4865 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4866 ** just done a seek to the spot where the new entry is to be inserted.
4867 ** This flag avoids doing an extra seek.
4868 **
4869 ** This instruction only works for indices.  The equivalent instruction
4870 ** for tables is OP_Insert.
4871 */
4872 case OP_SorterInsert:       /* in2 */
4873 case OP_IdxInsert: {        /* in2 */
4874   VdbeCursor *pC;
4875   int nKey;
4876   const char *zKey;
4877 
4878   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4879   pC = p->apCsr[pOp->p1];
4880   assert( pC!=0 );
4881   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
4882   pIn2 = &aMem[pOp->p2];
4883   assert( pIn2->flags & MEM_Blob );
4884   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4885   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
4886   assert( pC->isTable==0 );
4887   rc = ExpandBlob(pIn2);
4888   if( rc==SQLITE_OK ){
4889     if( pOp->opcode==OP_SorterInsert ){
4890       rc = sqlite3VdbeSorterWrite(pC, pIn2);
4891     }else{
4892       nKey = pIn2->n;
4893       zKey = pIn2->z;
4894       rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3,
4895           ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4896           );
4897       assert( pC->deferredMoveto==0 );
4898       pC->cacheStatus = CACHE_STALE;
4899     }
4900   }
4901   break;
4902 }
4903 
4904 /* Opcode: IdxDelete P1 P2 P3 * *
4905 ** Synopsis: key=r[P2@P3]
4906 **
4907 ** The content of P3 registers starting at register P2 form
4908 ** an unpacked index key. This opcode removes that entry from the
4909 ** index opened by cursor P1.
4910 */
4911 case OP_IdxDelete: {
4912   VdbeCursor *pC;
4913   BtCursor *pCrsr;
4914   int res;
4915   UnpackedRecord r;
4916 
4917   assert( pOp->p3>0 );
4918   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
4919   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4920   pC = p->apCsr[pOp->p1];
4921   assert( pC!=0 );
4922   assert( pC->eCurType==CURTYPE_BTREE );
4923   pCrsr = pC->uc.pCursor;
4924   assert( pCrsr!=0 );
4925   assert( pOp->p5==0 );
4926   r.pKeyInfo = pC->pKeyInfo;
4927   r.nField = (u16)pOp->p3;
4928   r.default_rc = 0;
4929   r.aMem = &aMem[pOp->p2];
4930 #ifdef SQLITE_DEBUG
4931   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4932 #endif
4933   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4934   if( rc==SQLITE_OK && res==0 ){
4935     rc = sqlite3BtreeDelete(pCrsr, 0);
4936   }
4937   assert( pC->deferredMoveto==0 );
4938   pC->cacheStatus = CACHE_STALE;
4939   break;
4940 }
4941 
4942 /* Opcode: IdxRowid P1 P2 * * *
4943 ** Synopsis: r[P2]=rowid
4944 **
4945 ** Write into register P2 an integer which is the last entry in the record at
4946 ** the end of the index key pointed to by cursor P1.  This integer should be
4947 ** the rowid of the table entry to which this index entry points.
4948 **
4949 ** See also: Rowid, MakeRecord.
4950 */
4951 case OP_IdxRowid: {              /* out2 */
4952   BtCursor *pCrsr;
4953   VdbeCursor *pC;
4954   i64 rowid;
4955 
4956   pOut = out2Prerelease(p, pOp);
4957   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4958   pC = p->apCsr[pOp->p1];
4959   assert( pC!=0 );
4960   assert( pC->eCurType==CURTYPE_BTREE );
4961   pCrsr = pC->uc.pCursor;
4962   assert( pCrsr!=0 );
4963   pOut->flags = MEM_Null;
4964   assert( pC->isTable==0 );
4965   assert( pC->deferredMoveto==0 );
4966 
4967   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4968   ** out from under the cursor.  That will never happend for an IdxRowid
4969   ** opcode, hence the NEVER() arround the check of the return value.
4970   */
4971   rc = sqlite3VdbeCursorRestore(pC);
4972   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4973 
4974   if( !pC->nullRow ){
4975     rowid = 0;  /* Not needed.  Only used to silence a warning. */
4976     rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4977     if( rc!=SQLITE_OK ){
4978       goto abort_due_to_error;
4979     }
4980     pOut->u.i = rowid;
4981     pOut->flags = MEM_Int;
4982   }
4983   break;
4984 }
4985 
4986 /* Opcode: IdxGE P1 P2 P3 P4 P5
4987 ** Synopsis: key=r[P3@P4]
4988 **
4989 ** The P4 register values beginning with P3 form an unpacked index
4990 ** key that omits the PRIMARY KEY.  Compare this key value against the index
4991 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4992 ** fields at the end.
4993 **
4994 ** If the P1 index entry is greater than or equal to the key value
4995 ** then jump to P2.  Otherwise fall through to the next instruction.
4996 */
4997 /* Opcode: IdxGT P1 P2 P3 P4 P5
4998 ** Synopsis: key=r[P3@P4]
4999 **
5000 ** The P4 register values beginning with P3 form an unpacked index
5001 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5002 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5003 ** fields at the end.
5004 **
5005 ** If the P1 index entry is greater than the key value
5006 ** then jump to P2.  Otherwise fall through to the next instruction.
5007 */
5008 /* Opcode: IdxLT P1 P2 P3 P4 P5
5009 ** Synopsis: key=r[P3@P4]
5010 **
5011 ** The P4 register values beginning with P3 form an unpacked index
5012 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5013 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5014 ** ROWID on the P1 index.
5015 **
5016 ** If the P1 index entry is less than the key value then jump to P2.
5017 ** Otherwise fall through to the next instruction.
5018 */
5019 /* Opcode: IdxLE P1 P2 P3 P4 P5
5020 ** Synopsis: key=r[P3@P4]
5021 **
5022 ** The P4 register values beginning with P3 form an unpacked index
5023 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5024 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5025 ** ROWID on the P1 index.
5026 **
5027 ** If the P1 index entry is less than or equal to the key value then jump
5028 ** to P2. Otherwise fall through to the next instruction.
5029 */
5030 case OP_IdxLE:          /* jump */
5031 case OP_IdxGT:          /* jump */
5032 case OP_IdxLT:          /* jump */
5033 case OP_IdxGE:  {       /* jump */
5034   VdbeCursor *pC;
5035   int res;
5036   UnpackedRecord r;
5037 
5038   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5039   pC = p->apCsr[pOp->p1];
5040   assert( pC!=0 );
5041   assert( pC->isOrdered );
5042   assert( pC->eCurType==CURTYPE_BTREE );
5043   assert( pC->uc.pCursor!=0);
5044   assert( pC->deferredMoveto==0 );
5045   assert( pOp->p5==0 || pOp->p5==1 );
5046   assert( pOp->p4type==P4_INT32 );
5047   r.pKeyInfo = pC->pKeyInfo;
5048   r.nField = (u16)pOp->p4.i;
5049   if( pOp->opcode<OP_IdxLT ){
5050     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5051     r.default_rc = -1;
5052   }else{
5053     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5054     r.default_rc = 0;
5055   }
5056   r.aMem = &aMem[pOp->p3];
5057 #ifdef SQLITE_DEBUG
5058   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5059 #endif
5060   res = 0;  /* Not needed.  Only used to silence a warning. */
5061   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5062   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5063   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5064     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5065     res = -res;
5066   }else{
5067     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5068     res++;
5069   }
5070   VdbeBranchTaken(res>0,2);
5071   if( res>0 ) goto jump_to_p2;
5072   break;
5073 }
5074 
5075 /* Opcode: Destroy P1 P2 P3 * *
5076 **
5077 ** Delete an entire database table or index whose root page in the database
5078 ** file is given by P1.
5079 **
5080 ** The table being destroyed is in the main database file if P3==0.  If
5081 ** P3==1 then the table to be clear is in the auxiliary database file
5082 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5083 **
5084 ** If AUTOVACUUM is enabled then it is possible that another root page
5085 ** might be moved into the newly deleted root page in order to keep all
5086 ** root pages contiguous at the beginning of the database.  The former
5087 ** value of the root page that moved - its value before the move occurred -
5088 ** is stored in register P2.  If no page
5089 ** movement was required (because the table being dropped was already
5090 ** the last one in the database) then a zero is stored in register P2.
5091 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
5092 **
5093 ** See also: Clear
5094 */
5095 case OP_Destroy: {     /* out2 */
5096   int iMoved;
5097   int iDb;
5098 
5099   assert( p->readOnly==0 );
5100   pOut = out2Prerelease(p, pOp);
5101   pOut->flags = MEM_Null;
5102   if( db->nVdbeRead > db->nVDestroy+1 ){
5103     rc = SQLITE_LOCKED;
5104     p->errorAction = OE_Abort;
5105   }else{
5106     iDb = pOp->p3;
5107     assert( DbMaskTest(p->btreeMask, iDb) );
5108     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5109     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5110     pOut->flags = MEM_Int;
5111     pOut->u.i = iMoved;
5112 #ifndef SQLITE_OMIT_AUTOVACUUM
5113     if( rc==SQLITE_OK && iMoved!=0 ){
5114       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5115       /* All OP_Destroy operations occur on the same btree */
5116       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5117       resetSchemaOnFault = iDb+1;
5118     }
5119 #endif
5120   }
5121   break;
5122 }
5123 
5124 /* Opcode: Clear P1 P2 P3
5125 **
5126 ** Delete all contents of the database table or index whose root page
5127 ** in the database file is given by P1.  But, unlike Destroy, do not
5128 ** remove the table or index from the database file.
5129 **
5130 ** The table being clear is in the main database file if P2==0.  If
5131 ** P2==1 then the table to be clear is in the auxiliary database file
5132 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5133 **
5134 ** If the P3 value is non-zero, then the table referred to must be an
5135 ** intkey table (an SQL table, not an index). In this case the row change
5136 ** count is incremented by the number of rows in the table being cleared.
5137 ** If P3 is greater than zero, then the value stored in register P3 is
5138 ** also incremented by the number of rows in the table being cleared.
5139 **
5140 ** See also: Destroy
5141 */
5142 case OP_Clear: {
5143   int nChange;
5144 
5145   nChange = 0;
5146   assert( p->readOnly==0 );
5147   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5148   rc = sqlite3BtreeClearTable(
5149       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5150   );
5151   if( pOp->p3 ){
5152     p->nChange += nChange;
5153     if( pOp->p3>0 ){
5154       assert( memIsValid(&aMem[pOp->p3]) );
5155       memAboutToChange(p, &aMem[pOp->p3]);
5156       aMem[pOp->p3].u.i += nChange;
5157     }
5158   }
5159   break;
5160 }
5161 
5162 /* Opcode: ResetSorter P1 * * * *
5163 **
5164 ** Delete all contents from the ephemeral table or sorter
5165 ** that is open on cursor P1.
5166 **
5167 ** This opcode only works for cursors used for sorting and
5168 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5169 */
5170 case OP_ResetSorter: {
5171   VdbeCursor *pC;
5172 
5173   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5174   pC = p->apCsr[pOp->p1];
5175   assert( pC!=0 );
5176   if( isSorter(pC) ){
5177     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5178   }else{
5179     assert( pC->eCurType==CURTYPE_BTREE );
5180     assert( pC->isEphemeral );
5181     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5182   }
5183   break;
5184 }
5185 
5186 /* Opcode: CreateTable P1 P2 * * *
5187 ** Synopsis: r[P2]=root iDb=P1
5188 **
5189 ** Allocate a new table in the main database file if P1==0 or in the
5190 ** auxiliary database file if P1==1 or in an attached database if
5191 ** P1>1.  Write the root page number of the new table into
5192 ** register P2
5193 **
5194 ** The difference between a table and an index is this:  A table must
5195 ** have a 4-byte integer key and can have arbitrary data.  An index
5196 ** has an arbitrary key but no data.
5197 **
5198 ** See also: CreateIndex
5199 */
5200 /* Opcode: CreateIndex P1 P2 * * *
5201 ** Synopsis: r[P2]=root iDb=P1
5202 **
5203 ** Allocate a new index in the main database file if P1==0 or in the
5204 ** auxiliary database file if P1==1 or in an attached database if
5205 ** P1>1.  Write the root page number of the new table into
5206 ** register P2.
5207 **
5208 ** See documentation on OP_CreateTable for additional information.
5209 */
5210 case OP_CreateIndex:            /* out2 */
5211 case OP_CreateTable: {          /* out2 */
5212   int pgno;
5213   int flags;
5214   Db *pDb;
5215 
5216   pOut = out2Prerelease(p, pOp);
5217   pgno = 0;
5218   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5219   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5220   assert( p->readOnly==0 );
5221   pDb = &db->aDb[pOp->p1];
5222   assert( pDb->pBt!=0 );
5223   if( pOp->opcode==OP_CreateTable ){
5224     /* flags = BTREE_INTKEY; */
5225     flags = BTREE_INTKEY;
5226   }else{
5227     flags = BTREE_BLOBKEY;
5228   }
5229   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5230   pOut->u.i = pgno;
5231   break;
5232 }
5233 
5234 /* Opcode: ParseSchema P1 * * P4 *
5235 **
5236 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5237 ** that match the WHERE clause P4.
5238 **
5239 ** This opcode invokes the parser to create a new virtual machine,
5240 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5241 */
5242 case OP_ParseSchema: {
5243   int iDb;
5244   const char *zMaster;
5245   char *zSql;
5246   InitData initData;
5247 
5248   /* Any prepared statement that invokes this opcode will hold mutexes
5249   ** on every btree.  This is a prerequisite for invoking
5250   ** sqlite3InitCallback().
5251   */
5252 #ifdef SQLITE_DEBUG
5253   for(iDb=0; iDb<db->nDb; iDb++){
5254     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5255   }
5256 #endif
5257 
5258   iDb = pOp->p1;
5259   assert( iDb>=0 && iDb<db->nDb );
5260   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5261   /* Used to be a conditional */ {
5262     zMaster = SCHEMA_TABLE(iDb);
5263     initData.db = db;
5264     initData.iDb = pOp->p1;
5265     initData.pzErrMsg = &p->zErrMsg;
5266     zSql = sqlite3MPrintf(db,
5267        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5268        db->aDb[iDb].zName, zMaster, pOp->p4.z);
5269     if( zSql==0 ){
5270       rc = SQLITE_NOMEM;
5271     }else{
5272       assert( db->init.busy==0 );
5273       db->init.busy = 1;
5274       initData.rc = SQLITE_OK;
5275       assert( !db->mallocFailed );
5276       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5277       if( rc==SQLITE_OK ) rc = initData.rc;
5278       sqlite3DbFree(db, zSql);
5279       db->init.busy = 0;
5280     }
5281   }
5282   if( rc ) sqlite3ResetAllSchemasOfConnection(db);
5283   if( rc==SQLITE_NOMEM ){
5284     goto no_mem;
5285   }
5286   break;
5287 }
5288 
5289 #if !defined(SQLITE_OMIT_ANALYZE)
5290 /* Opcode: LoadAnalysis P1 * * * *
5291 **
5292 ** Read the sqlite_stat1 table for database P1 and load the content
5293 ** of that table into the internal index hash table.  This will cause
5294 ** the analysis to be used when preparing all subsequent queries.
5295 */
5296 case OP_LoadAnalysis: {
5297   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5298   rc = sqlite3AnalysisLoad(db, pOp->p1);
5299   break;
5300 }
5301 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5302 
5303 /* Opcode: DropTable P1 * * P4 *
5304 **
5305 ** Remove the internal (in-memory) data structures that describe
5306 ** the table named P4 in database P1.  This is called after a table
5307 ** is dropped from disk (using the Destroy opcode) in order to keep
5308 ** the internal representation of the
5309 ** schema consistent with what is on disk.
5310 */
5311 case OP_DropTable: {
5312   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5313   break;
5314 }
5315 
5316 /* Opcode: DropIndex P1 * * P4 *
5317 **
5318 ** Remove the internal (in-memory) data structures that describe
5319 ** the index named P4 in database P1.  This is called after an index
5320 ** is dropped from disk (using the Destroy opcode)
5321 ** in order to keep the internal representation of the
5322 ** schema consistent with what is on disk.
5323 */
5324 case OP_DropIndex: {
5325   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5326   break;
5327 }
5328 
5329 /* Opcode: DropTrigger P1 * * P4 *
5330 **
5331 ** Remove the internal (in-memory) data structures that describe
5332 ** the trigger named P4 in database P1.  This is called after a trigger
5333 ** is dropped from disk (using the Destroy opcode) in order to keep
5334 ** the internal representation of the
5335 ** schema consistent with what is on disk.
5336 */
5337 case OP_DropTrigger: {
5338   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5339   break;
5340 }
5341 
5342 
5343 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5344 /* Opcode: IntegrityCk P1 P2 P3 * P5
5345 **
5346 ** Do an analysis of the currently open database.  Store in
5347 ** register P1 the text of an error message describing any problems.
5348 ** If no problems are found, store a NULL in register P1.
5349 **
5350 ** The register P3 contains the maximum number of allowed errors.
5351 ** At most reg(P3) errors will be reported.
5352 ** In other words, the analysis stops as soon as reg(P1) errors are
5353 ** seen.  Reg(P1) is updated with the number of errors remaining.
5354 **
5355 ** The root page numbers of all tables in the database are integer
5356 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
5357 ** total.
5358 **
5359 ** If P5 is not zero, the check is done on the auxiliary database
5360 ** file, not the main database file.
5361 **
5362 ** This opcode is used to implement the integrity_check pragma.
5363 */
5364 case OP_IntegrityCk: {
5365   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5366   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5367   int j;          /* Loop counter */
5368   int nErr;       /* Number of errors reported */
5369   char *z;        /* Text of the error report */
5370   Mem *pnErr;     /* Register keeping track of errors remaining */
5371 
5372   assert( p->bIsReader );
5373   nRoot = pOp->p2;
5374   assert( nRoot>0 );
5375   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
5376   if( aRoot==0 ) goto no_mem;
5377   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5378   pnErr = &aMem[pOp->p3];
5379   assert( (pnErr->flags & MEM_Int)!=0 );
5380   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5381   pIn1 = &aMem[pOp->p1];
5382   for(j=0; j<nRoot; j++){
5383     aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
5384   }
5385   aRoot[j] = 0;
5386   assert( pOp->p5<db->nDb );
5387   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5388   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5389                                  (int)pnErr->u.i, &nErr);
5390   sqlite3DbFree(db, aRoot);
5391   pnErr->u.i -= nErr;
5392   sqlite3VdbeMemSetNull(pIn1);
5393   if( nErr==0 ){
5394     assert( z==0 );
5395   }else if( z==0 ){
5396     goto no_mem;
5397   }else{
5398     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5399   }
5400   UPDATE_MAX_BLOBSIZE(pIn1);
5401   sqlite3VdbeChangeEncoding(pIn1, encoding);
5402   break;
5403 }
5404 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5405 
5406 /* Opcode: RowSetAdd P1 P2 * * *
5407 ** Synopsis:  rowset(P1)=r[P2]
5408 **
5409 ** Insert the integer value held by register P2 into a boolean index
5410 ** held in register P1.
5411 **
5412 ** An assertion fails if P2 is not an integer.
5413 */
5414 case OP_RowSetAdd: {       /* in1, in2 */
5415   pIn1 = &aMem[pOp->p1];
5416   pIn2 = &aMem[pOp->p2];
5417   assert( (pIn2->flags & MEM_Int)!=0 );
5418   if( (pIn1->flags & MEM_RowSet)==0 ){
5419     sqlite3VdbeMemSetRowSet(pIn1);
5420     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5421   }
5422   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5423   break;
5424 }
5425 
5426 /* Opcode: RowSetRead P1 P2 P3 * *
5427 ** Synopsis:  r[P3]=rowset(P1)
5428 **
5429 ** Extract the smallest value from boolean index P1 and put that value into
5430 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
5431 ** unchanged and jump to instruction P2.
5432 */
5433 case OP_RowSetRead: {       /* jump, in1, out3 */
5434   i64 val;
5435 
5436   pIn1 = &aMem[pOp->p1];
5437   if( (pIn1->flags & MEM_RowSet)==0
5438    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5439   ){
5440     /* The boolean index is empty */
5441     sqlite3VdbeMemSetNull(pIn1);
5442     VdbeBranchTaken(1,2);
5443     goto jump_to_p2_and_check_for_interrupt;
5444   }else{
5445     /* A value was pulled from the index */
5446     VdbeBranchTaken(0,2);
5447     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5448   }
5449   goto check_for_interrupt;
5450 }
5451 
5452 /* Opcode: RowSetTest P1 P2 P3 P4
5453 ** Synopsis: if r[P3] in rowset(P1) goto P2
5454 **
5455 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5456 ** contains a RowSet object and that RowSet object contains
5457 ** the value held in P3, jump to register P2. Otherwise, insert the
5458 ** integer in P3 into the RowSet and continue on to the
5459 ** next opcode.
5460 **
5461 ** The RowSet object is optimized for the case where successive sets
5462 ** of integers, where each set contains no duplicates. Each set
5463 ** of values is identified by a unique P4 value. The first set
5464 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
5465 ** non-negative.  For non-negative values of P4 only the lower 4
5466 ** bits are significant.
5467 **
5468 ** This allows optimizations: (a) when P4==0 there is no need to test
5469 ** the rowset object for P3, as it is guaranteed not to contain it,
5470 ** (b) when P4==-1 there is no need to insert the value, as it will
5471 ** never be tested for, and (c) when a value that is part of set X is
5472 ** inserted, there is no need to search to see if the same value was
5473 ** previously inserted as part of set X (only if it was previously
5474 ** inserted as part of some other set).
5475 */
5476 case OP_RowSetTest: {                     /* jump, in1, in3 */
5477   int iSet;
5478   int exists;
5479 
5480   pIn1 = &aMem[pOp->p1];
5481   pIn3 = &aMem[pOp->p3];
5482   iSet = pOp->p4.i;
5483   assert( pIn3->flags&MEM_Int );
5484 
5485   /* If there is anything other than a rowset object in memory cell P1,
5486   ** delete it now and initialize P1 with an empty rowset
5487   */
5488   if( (pIn1->flags & MEM_RowSet)==0 ){
5489     sqlite3VdbeMemSetRowSet(pIn1);
5490     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5491   }
5492 
5493   assert( pOp->p4type==P4_INT32 );
5494   assert( iSet==-1 || iSet>=0 );
5495   if( iSet ){
5496     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5497     VdbeBranchTaken(exists!=0,2);
5498     if( exists ) goto jump_to_p2;
5499   }
5500   if( iSet>=0 ){
5501     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5502   }
5503   break;
5504 }
5505 
5506 
5507 #ifndef SQLITE_OMIT_TRIGGER
5508 
5509 /* Opcode: Program P1 P2 P3 P4 P5
5510 **
5511 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5512 **
5513 ** P1 contains the address of the memory cell that contains the first memory
5514 ** cell in an array of values used as arguments to the sub-program. P2
5515 ** contains the address to jump to if the sub-program throws an IGNORE
5516 ** exception using the RAISE() function. Register P3 contains the address
5517 ** of a memory cell in this (the parent) VM that is used to allocate the
5518 ** memory required by the sub-vdbe at runtime.
5519 **
5520 ** P4 is a pointer to the VM containing the trigger program.
5521 **
5522 ** If P5 is non-zero, then recursive program invocation is enabled.
5523 */
5524 case OP_Program: {        /* jump */
5525   int nMem;               /* Number of memory registers for sub-program */
5526   int nByte;              /* Bytes of runtime space required for sub-program */
5527   Mem *pRt;               /* Register to allocate runtime space */
5528   Mem *pMem;              /* Used to iterate through memory cells */
5529   Mem *pEnd;              /* Last memory cell in new array */
5530   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5531   SubProgram *pProgram;   /* Sub-program to execute */
5532   void *t;                /* Token identifying trigger */
5533 
5534   pProgram = pOp->p4.pProgram;
5535   pRt = &aMem[pOp->p3];
5536   assert( pProgram->nOp>0 );
5537 
5538   /* If the p5 flag is clear, then recursive invocation of triggers is
5539   ** disabled for backwards compatibility (p5 is set if this sub-program
5540   ** is really a trigger, not a foreign key action, and the flag set
5541   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5542   **
5543   ** It is recursive invocation of triggers, at the SQL level, that is
5544   ** disabled. In some cases a single trigger may generate more than one
5545   ** SubProgram (if the trigger may be executed with more than one different
5546   ** ON CONFLICT algorithm). SubProgram structures associated with a
5547   ** single trigger all have the same value for the SubProgram.token
5548   ** variable.  */
5549   if( pOp->p5 ){
5550     t = pProgram->token;
5551     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5552     if( pFrame ) break;
5553   }
5554 
5555   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5556     rc = SQLITE_ERROR;
5557     sqlite3VdbeError(p, "too many levels of trigger recursion");
5558     break;
5559   }
5560 
5561   /* Register pRt is used to store the memory required to save the state
5562   ** of the current program, and the memory required at runtime to execute
5563   ** the trigger program. If this trigger has been fired before, then pRt
5564   ** is already allocated. Otherwise, it must be initialized.  */
5565   if( (pRt->flags&MEM_Frame)==0 ){
5566     /* SubProgram.nMem is set to the number of memory cells used by the
5567     ** program stored in SubProgram.aOp. As well as these, one memory
5568     ** cell is required for each cursor used by the program. Set local
5569     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5570     */
5571     nMem = pProgram->nMem + pProgram->nCsr;
5572     nByte = ROUND8(sizeof(VdbeFrame))
5573               + nMem * sizeof(Mem)
5574               + pProgram->nCsr * sizeof(VdbeCursor *)
5575               + pProgram->nOnce * sizeof(u8);
5576     pFrame = sqlite3DbMallocZero(db, nByte);
5577     if( !pFrame ){
5578       goto no_mem;
5579     }
5580     sqlite3VdbeMemRelease(pRt);
5581     pRt->flags = MEM_Frame;
5582     pRt->u.pFrame = pFrame;
5583 
5584     pFrame->v = p;
5585     pFrame->nChildMem = nMem;
5586     pFrame->nChildCsr = pProgram->nCsr;
5587     pFrame->pc = (int)(pOp - aOp);
5588     pFrame->aMem = p->aMem;
5589     pFrame->nMem = p->nMem;
5590     pFrame->apCsr = p->apCsr;
5591     pFrame->nCursor = p->nCursor;
5592     pFrame->aOp = p->aOp;
5593     pFrame->nOp = p->nOp;
5594     pFrame->token = pProgram->token;
5595     pFrame->aOnceFlag = p->aOnceFlag;
5596     pFrame->nOnceFlag = p->nOnceFlag;
5597 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5598     pFrame->anExec = p->anExec;
5599 #endif
5600 
5601     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5602     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5603       pMem->flags = MEM_Undefined;
5604       pMem->db = db;
5605     }
5606   }else{
5607     pFrame = pRt->u.pFrame;
5608     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5609     assert( pProgram->nCsr==pFrame->nChildCsr );
5610     assert( (int)(pOp - aOp)==pFrame->pc );
5611   }
5612 
5613   p->nFrame++;
5614   pFrame->pParent = p->pFrame;
5615   pFrame->lastRowid = lastRowid;
5616   pFrame->nChange = p->nChange;
5617   pFrame->nDbChange = p->db->nChange;
5618   p->nChange = 0;
5619   p->pFrame = pFrame;
5620   p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5621   p->nMem = pFrame->nChildMem;
5622   p->nCursor = (u16)pFrame->nChildCsr;
5623   p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5624   p->aOp = aOp = pProgram->aOp;
5625   p->nOp = pProgram->nOp;
5626   p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5627   p->nOnceFlag = pProgram->nOnce;
5628 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5629   p->anExec = 0;
5630 #endif
5631   pOp = &aOp[-1];
5632   memset(p->aOnceFlag, 0, p->nOnceFlag);
5633 
5634   break;
5635 }
5636 
5637 /* Opcode: Param P1 P2 * * *
5638 **
5639 ** This opcode is only ever present in sub-programs called via the
5640 ** OP_Program instruction. Copy a value currently stored in a memory
5641 ** cell of the calling (parent) frame to cell P2 in the current frames
5642 ** address space. This is used by trigger programs to access the new.*
5643 ** and old.* values.
5644 **
5645 ** The address of the cell in the parent frame is determined by adding
5646 ** the value of the P1 argument to the value of the P1 argument to the
5647 ** calling OP_Program instruction.
5648 */
5649 case OP_Param: {           /* out2 */
5650   VdbeFrame *pFrame;
5651   Mem *pIn;
5652   pOut = out2Prerelease(p, pOp);
5653   pFrame = p->pFrame;
5654   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5655   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5656   break;
5657 }
5658 
5659 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5660 
5661 #ifndef SQLITE_OMIT_FOREIGN_KEY
5662 /* Opcode: FkCounter P1 P2 * * *
5663 ** Synopsis: fkctr[P1]+=P2
5664 **
5665 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5666 ** If P1 is non-zero, the database constraint counter is incremented
5667 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5668 ** statement counter is incremented (immediate foreign key constraints).
5669 */
5670 case OP_FkCounter: {
5671   if( db->flags & SQLITE_DeferFKs ){
5672     db->nDeferredImmCons += pOp->p2;
5673   }else if( pOp->p1 ){
5674     db->nDeferredCons += pOp->p2;
5675   }else{
5676     p->nFkConstraint += pOp->p2;
5677   }
5678   break;
5679 }
5680 
5681 /* Opcode: FkIfZero P1 P2 * * *
5682 ** Synopsis: if fkctr[P1]==0 goto P2
5683 **
5684 ** This opcode tests if a foreign key constraint-counter is currently zero.
5685 ** If so, jump to instruction P2. Otherwise, fall through to the next
5686 ** instruction.
5687 **
5688 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5689 ** is zero (the one that counts deferred constraint violations). If P1 is
5690 ** zero, the jump is taken if the statement constraint-counter is zero
5691 ** (immediate foreign key constraint violations).
5692 */
5693 case OP_FkIfZero: {         /* jump */
5694   if( pOp->p1 ){
5695     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5696     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5697   }else{
5698     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5699     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5700   }
5701   break;
5702 }
5703 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5704 
5705 #ifndef SQLITE_OMIT_AUTOINCREMENT
5706 /* Opcode: MemMax P1 P2 * * *
5707 ** Synopsis: r[P1]=max(r[P1],r[P2])
5708 **
5709 ** P1 is a register in the root frame of this VM (the root frame is
5710 ** different from the current frame if this instruction is being executed
5711 ** within a sub-program). Set the value of register P1 to the maximum of
5712 ** its current value and the value in register P2.
5713 **
5714 ** This instruction throws an error if the memory cell is not initially
5715 ** an integer.
5716 */
5717 case OP_MemMax: {        /* in2 */
5718   VdbeFrame *pFrame;
5719   if( p->pFrame ){
5720     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5721     pIn1 = &pFrame->aMem[pOp->p1];
5722   }else{
5723     pIn1 = &aMem[pOp->p1];
5724   }
5725   assert( memIsValid(pIn1) );
5726   sqlite3VdbeMemIntegerify(pIn1);
5727   pIn2 = &aMem[pOp->p2];
5728   sqlite3VdbeMemIntegerify(pIn2);
5729   if( pIn1->u.i<pIn2->u.i){
5730     pIn1->u.i = pIn2->u.i;
5731   }
5732   break;
5733 }
5734 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5735 
5736 /* Opcode: IfPos P1 P2 P3 * *
5737 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
5738 **
5739 ** Register P1 must contain an integer.
5740 ** If the value of register P1 is 1 or greater, subtract P3 from the
5741 ** value in P1 and jump to P2.
5742 **
5743 ** If the initial value of register P1 is less than 1, then the
5744 ** value is unchanged and control passes through to the next instruction.
5745 */
5746 case OP_IfPos: {        /* jump, in1 */
5747   pIn1 = &aMem[pOp->p1];
5748   assert( pIn1->flags&MEM_Int );
5749   VdbeBranchTaken( pIn1->u.i>0, 2);
5750   if( pIn1->u.i>0 ){
5751     pIn1->u.i -= pOp->p3;
5752     goto jump_to_p2;
5753   }
5754   break;
5755 }
5756 
5757 /* Opcode: SetIfNotPos P1 P2 P3 * *
5758 ** Synopsis: if r[P1]<=0 then r[P2]=P3
5759 **
5760 ** Register P1 must contain an integer.
5761 ** If the value of register P1 is not positive (if it is less than 1) then
5762 ** set the value of register P2 to be the integer P3.
5763 */
5764 case OP_SetIfNotPos: {        /* in1, in2 */
5765   pIn1 = &aMem[pOp->p1];
5766   assert( pIn1->flags&MEM_Int );
5767   if( pIn1->u.i<=0 ){
5768     pOut = out2Prerelease(p, pOp);
5769     pOut->u.i = pOp->p3;
5770   }
5771   break;
5772 }
5773 
5774 /* Opcode: IfNotZero P1 P2 P3 * *
5775 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
5776 **
5777 ** Register P1 must contain an integer.  If the content of register P1 is
5778 ** initially nonzero, then subtract P3 from the value in register P1 and
5779 ** jump to P2.  If register P1 is initially zero, leave it unchanged
5780 ** and fall through.
5781 */
5782 case OP_IfNotZero: {        /* jump, in1 */
5783   pIn1 = &aMem[pOp->p1];
5784   assert( pIn1->flags&MEM_Int );
5785   VdbeBranchTaken(pIn1->u.i<0, 2);
5786   if( pIn1->u.i ){
5787      pIn1->u.i -= pOp->p3;
5788      goto jump_to_p2;
5789   }
5790   break;
5791 }
5792 
5793 /* Opcode: DecrJumpZero P1 P2 * * *
5794 ** Synopsis: if (--r[P1])==0 goto P2
5795 **
5796 ** Register P1 must hold an integer.  Decrement the value in register P1
5797 ** then jump to P2 if the new value is exactly zero.
5798 */
5799 case OP_DecrJumpZero: {      /* jump, in1 */
5800   pIn1 = &aMem[pOp->p1];
5801   assert( pIn1->flags&MEM_Int );
5802   pIn1->u.i--;
5803   VdbeBranchTaken(pIn1->u.i==0, 2);
5804   if( pIn1->u.i==0 ) goto jump_to_p2;
5805   break;
5806 }
5807 
5808 
5809 /* Opcode: JumpZeroIncr P1 P2 * * *
5810 ** Synopsis: if (r[P1]++)==0 ) goto P2
5811 **
5812 ** The register P1 must contain an integer.  If register P1 is initially
5813 ** zero, then jump to P2.  Increment register P1 regardless of whether or
5814 ** not the jump is taken.
5815 */
5816 case OP_JumpZeroIncr: {        /* jump, in1 */
5817   pIn1 = &aMem[pOp->p1];
5818   assert( pIn1->flags&MEM_Int );
5819   VdbeBranchTaken(pIn1->u.i==0, 2);
5820   if( (pIn1->u.i++)==0 ) goto jump_to_p2;
5821   break;
5822 }
5823 
5824 /* Opcode: AggStep0 * P2 P3 P4 P5
5825 ** Synopsis: accum=r[P3] step(r[P2@P5])
5826 **
5827 ** Execute the step function for an aggregate.  The
5828 ** function has P5 arguments.   P4 is a pointer to the FuncDef
5829 ** structure that specifies the function.  Register P3 is the
5830 ** accumulator.
5831 **
5832 ** The P5 arguments are taken from register P2 and its
5833 ** successors.
5834 */
5835 /* Opcode: AggStep * P2 P3 P4 P5
5836 ** Synopsis: accum=r[P3] step(r[P2@P5])
5837 **
5838 ** Execute the step function for an aggregate.  The
5839 ** function has P5 arguments.   P4 is a pointer to an sqlite3_context
5840 ** object that is used to run the function.  Register P3 is
5841 ** as the accumulator.
5842 **
5843 ** The P5 arguments are taken from register P2 and its
5844 ** successors.
5845 **
5846 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
5847 ** the FuncDef stored in P4 is converted into an sqlite3_context and
5848 ** the opcode is changed.  In this way, the initialization of the
5849 ** sqlite3_context only happens once, instead of on each call to the
5850 ** step function.
5851 */
5852 case OP_AggStep0: {
5853   int n;
5854   sqlite3_context *pCtx;
5855 
5856   assert( pOp->p4type==P4_FUNCDEF );
5857   n = pOp->p5;
5858   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5859   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
5860   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
5861   pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
5862   if( pCtx==0 ) goto no_mem;
5863   pCtx->pMem = 0;
5864   pCtx->pFunc = pOp->p4.pFunc;
5865   pCtx->iOp = (int)(pOp - aOp);
5866   pCtx->pVdbe = p;
5867   pCtx->argc = n;
5868   pOp->p4type = P4_FUNCCTX;
5869   pOp->p4.pCtx = pCtx;
5870   pOp->opcode = OP_AggStep;
5871   /* Fall through into OP_AggStep */
5872 }
5873 case OP_AggStep: {
5874   int i;
5875   sqlite3_context *pCtx;
5876   Mem *pMem;
5877   Mem t;
5878 
5879   assert( pOp->p4type==P4_FUNCCTX );
5880   pCtx = pOp->p4.pCtx;
5881   pMem = &aMem[pOp->p3];
5882 
5883   /* If this function is inside of a trigger, the register array in aMem[]
5884   ** might change from one evaluation to the next.  The next block of code
5885   ** checks to see if the register array has changed, and if so it
5886   ** reinitializes the relavant parts of the sqlite3_context object */
5887   if( pCtx->pMem != pMem ){
5888     pCtx->pMem = pMem;
5889     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
5890   }
5891 
5892 #ifdef SQLITE_DEBUG
5893   for(i=0; i<pCtx->argc; i++){
5894     assert( memIsValid(pCtx->argv[i]) );
5895     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
5896   }
5897 #endif
5898 
5899   pMem->n++;
5900   sqlite3VdbeMemInit(&t, db, MEM_Null);
5901   pCtx->pOut = &t;
5902   pCtx->fErrorOrAux = 0;
5903   pCtx->skipFlag = 0;
5904   (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
5905   if( pCtx->fErrorOrAux ){
5906     if( pCtx->isError ){
5907       sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
5908       rc = pCtx->isError;
5909     }
5910     sqlite3VdbeMemRelease(&t);
5911   }else{
5912     assert( t.flags==MEM_Null );
5913   }
5914   if( pCtx->skipFlag ){
5915     assert( pOp[-1].opcode==OP_CollSeq );
5916     i = pOp[-1].p1;
5917     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5918   }
5919   break;
5920 }
5921 
5922 /* Opcode: AggFinal P1 P2 * P4 *
5923 ** Synopsis: accum=r[P1] N=P2
5924 **
5925 ** Execute the finalizer function for an aggregate.  P1 is
5926 ** the memory location that is the accumulator for the aggregate.
5927 **
5928 ** P2 is the number of arguments that the step function takes and
5929 ** P4 is a pointer to the FuncDef for this function.  The P2
5930 ** argument is not used by this opcode.  It is only there to disambiguate
5931 ** functions that can take varying numbers of arguments.  The
5932 ** P4 argument is only needed for the degenerate case where
5933 ** the step function was not previously called.
5934 */
5935 case OP_AggFinal: {
5936   Mem *pMem;
5937   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
5938   pMem = &aMem[pOp->p1];
5939   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5940   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5941   if( rc ){
5942     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
5943   }
5944   sqlite3VdbeChangeEncoding(pMem, encoding);
5945   UPDATE_MAX_BLOBSIZE(pMem);
5946   if( sqlite3VdbeMemTooBig(pMem) ){
5947     goto too_big;
5948   }
5949   break;
5950 }
5951 
5952 #ifndef SQLITE_OMIT_WAL
5953 /* Opcode: Checkpoint P1 P2 P3 * *
5954 **
5955 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5956 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5957 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
5958 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
5959 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5960 ** in the WAL that have been checkpointed after the checkpoint
5961 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
5962 ** mem[P3+2] are initialized to -1.
5963 */
5964 case OP_Checkpoint: {
5965   int i;                          /* Loop counter */
5966   int aRes[3];                    /* Results */
5967   Mem *pMem;                      /* Write results here */
5968 
5969   assert( p->readOnly==0 );
5970   aRes[0] = 0;
5971   aRes[1] = aRes[2] = -1;
5972   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5973        || pOp->p2==SQLITE_CHECKPOINT_FULL
5974        || pOp->p2==SQLITE_CHECKPOINT_RESTART
5975        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
5976   );
5977   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5978   if( rc==SQLITE_BUSY ){
5979     rc = SQLITE_OK;
5980     aRes[0] = 1;
5981   }
5982   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5983     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5984   }
5985   break;
5986 };
5987 #endif
5988 
5989 #ifndef SQLITE_OMIT_PRAGMA
5990 /* Opcode: JournalMode P1 P2 P3 * *
5991 **
5992 ** Change the journal mode of database P1 to P3. P3 must be one of the
5993 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5994 ** modes (delete, truncate, persist, off and memory), this is a simple
5995 ** operation. No IO is required.
5996 **
5997 ** If changing into or out of WAL mode the procedure is more complicated.
5998 **
5999 ** Write a string containing the final journal-mode to register P2.
6000 */
6001 case OP_JournalMode: {    /* out2 */
6002   Btree *pBt;                     /* Btree to change journal mode of */
6003   Pager *pPager;                  /* Pager associated with pBt */
6004   int eNew;                       /* New journal mode */
6005   int eOld;                       /* The old journal mode */
6006 #ifndef SQLITE_OMIT_WAL
6007   const char *zFilename;          /* Name of database file for pPager */
6008 #endif
6009 
6010   pOut = out2Prerelease(p, pOp);
6011   eNew = pOp->p3;
6012   assert( eNew==PAGER_JOURNALMODE_DELETE
6013        || eNew==PAGER_JOURNALMODE_TRUNCATE
6014        || eNew==PAGER_JOURNALMODE_PERSIST
6015        || eNew==PAGER_JOURNALMODE_OFF
6016        || eNew==PAGER_JOURNALMODE_MEMORY
6017        || eNew==PAGER_JOURNALMODE_WAL
6018        || eNew==PAGER_JOURNALMODE_QUERY
6019   );
6020   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6021   assert( p->readOnly==0 );
6022 
6023   pBt = db->aDb[pOp->p1].pBt;
6024   pPager = sqlite3BtreePager(pBt);
6025   eOld = sqlite3PagerGetJournalMode(pPager);
6026   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6027   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6028 
6029 #ifndef SQLITE_OMIT_WAL
6030   zFilename = sqlite3PagerFilename(pPager, 1);
6031 
6032   /* Do not allow a transition to journal_mode=WAL for a database
6033   ** in temporary storage or if the VFS does not support shared memory
6034   */
6035   if( eNew==PAGER_JOURNALMODE_WAL
6036    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6037        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6038   ){
6039     eNew = eOld;
6040   }
6041 
6042   if( (eNew!=eOld)
6043    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6044   ){
6045     if( !db->autoCommit || db->nVdbeRead>1 ){
6046       rc = SQLITE_ERROR;
6047       sqlite3VdbeError(p,
6048           "cannot change %s wal mode from within a transaction",
6049           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6050       );
6051       break;
6052     }else{
6053 
6054       if( eOld==PAGER_JOURNALMODE_WAL ){
6055         /* If leaving WAL mode, close the log file. If successful, the call
6056         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6057         ** file. An EXCLUSIVE lock may still be held on the database file
6058         ** after a successful return.
6059         */
6060         rc = sqlite3PagerCloseWal(pPager);
6061         if( rc==SQLITE_OK ){
6062           sqlite3PagerSetJournalMode(pPager, eNew);
6063         }
6064       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6065         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6066         ** as an intermediate */
6067         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6068       }
6069 
6070       /* Open a transaction on the database file. Regardless of the journal
6071       ** mode, this transaction always uses a rollback journal.
6072       */
6073       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6074       if( rc==SQLITE_OK ){
6075         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6076       }
6077     }
6078   }
6079 #endif /* ifndef SQLITE_OMIT_WAL */
6080 
6081   if( rc ){
6082     eNew = eOld;
6083   }
6084   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6085 
6086   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6087   pOut->z = (char *)sqlite3JournalModename(eNew);
6088   pOut->n = sqlite3Strlen30(pOut->z);
6089   pOut->enc = SQLITE_UTF8;
6090   sqlite3VdbeChangeEncoding(pOut, encoding);
6091   break;
6092 };
6093 #endif /* SQLITE_OMIT_PRAGMA */
6094 
6095 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6096 /* Opcode: Vacuum * * * * *
6097 **
6098 ** Vacuum the entire database.  This opcode will cause other virtual
6099 ** machines to be created and run.  It may not be called from within
6100 ** a transaction.
6101 */
6102 case OP_Vacuum: {
6103   assert( p->readOnly==0 );
6104   rc = sqlite3RunVacuum(&p->zErrMsg, db);
6105   break;
6106 }
6107 #endif
6108 
6109 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6110 /* Opcode: IncrVacuum P1 P2 * * *
6111 **
6112 ** Perform a single step of the incremental vacuum procedure on
6113 ** the P1 database. If the vacuum has finished, jump to instruction
6114 ** P2. Otherwise, fall through to the next instruction.
6115 */
6116 case OP_IncrVacuum: {        /* jump */
6117   Btree *pBt;
6118 
6119   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6120   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6121   assert( p->readOnly==0 );
6122   pBt = db->aDb[pOp->p1].pBt;
6123   rc = sqlite3BtreeIncrVacuum(pBt);
6124   VdbeBranchTaken(rc==SQLITE_DONE,2);
6125   if( rc==SQLITE_DONE ){
6126     rc = SQLITE_OK;
6127     goto jump_to_p2;
6128   }
6129   break;
6130 }
6131 #endif
6132 
6133 /* Opcode: Expire P1 * * * *
6134 **
6135 ** Cause precompiled statements to expire.  When an expired statement
6136 ** is executed using sqlite3_step() it will either automatically
6137 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6138 ** or it will fail with SQLITE_SCHEMA.
6139 **
6140 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6141 ** then only the currently executing statement is expired.
6142 */
6143 case OP_Expire: {
6144   if( !pOp->p1 ){
6145     sqlite3ExpirePreparedStatements(db);
6146   }else{
6147     p->expired = 1;
6148   }
6149   break;
6150 }
6151 
6152 #ifndef SQLITE_OMIT_SHARED_CACHE
6153 /* Opcode: TableLock P1 P2 P3 P4 *
6154 ** Synopsis: iDb=P1 root=P2 write=P3
6155 **
6156 ** Obtain a lock on a particular table. This instruction is only used when
6157 ** the shared-cache feature is enabled.
6158 **
6159 ** P1 is the index of the database in sqlite3.aDb[] of the database
6160 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6161 ** a write lock if P3==1.
6162 **
6163 ** P2 contains the root-page of the table to lock.
6164 **
6165 ** P4 contains a pointer to the name of the table being locked. This is only
6166 ** used to generate an error message if the lock cannot be obtained.
6167 */
6168 case OP_TableLock: {
6169   u8 isWriteLock = (u8)pOp->p3;
6170   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6171     int p1 = pOp->p1;
6172     assert( p1>=0 && p1<db->nDb );
6173     assert( DbMaskTest(p->btreeMask, p1) );
6174     assert( isWriteLock==0 || isWriteLock==1 );
6175     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6176     if( (rc&0xFF)==SQLITE_LOCKED ){
6177       const char *z = pOp->p4.z;
6178       sqlite3VdbeError(p, "database table is locked: %s", z);
6179     }
6180   }
6181   break;
6182 }
6183 #endif /* SQLITE_OMIT_SHARED_CACHE */
6184 
6185 #ifndef SQLITE_OMIT_VIRTUALTABLE
6186 /* Opcode: VBegin * * * P4 *
6187 **
6188 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6189 ** xBegin method for that table.
6190 **
6191 ** Also, whether or not P4 is set, check that this is not being called from
6192 ** within a callback to a virtual table xSync() method. If it is, the error
6193 ** code will be set to SQLITE_LOCKED.
6194 */
6195 case OP_VBegin: {
6196   VTable *pVTab;
6197   pVTab = pOp->p4.pVtab;
6198   rc = sqlite3VtabBegin(db, pVTab);
6199   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6200   break;
6201 }
6202 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6203 
6204 #ifndef SQLITE_OMIT_VIRTUALTABLE
6205 /* Opcode: VCreate P1 P2 * * *
6206 **
6207 ** P2 is a register that holds the name of a virtual table in database
6208 ** P1. Call the xCreate method for that table.
6209 */
6210 case OP_VCreate: {
6211   Mem sMem;          /* For storing the record being decoded */
6212   const char *zTab;  /* Name of the virtual table */
6213 
6214   memset(&sMem, 0, sizeof(sMem));
6215   sMem.db = db;
6216   /* Because P2 is always a static string, it is impossible for the
6217   ** sqlite3VdbeMemCopy() to fail */
6218   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6219   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6220   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6221   assert( rc==SQLITE_OK );
6222   zTab = (const char*)sqlite3_value_text(&sMem);
6223   assert( zTab || db->mallocFailed );
6224   if( zTab ){
6225     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6226   }
6227   sqlite3VdbeMemRelease(&sMem);
6228   break;
6229 }
6230 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6231 
6232 #ifndef SQLITE_OMIT_VIRTUALTABLE
6233 /* Opcode: VDestroy P1 * * P4 *
6234 **
6235 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6236 ** of that table.
6237 */
6238 case OP_VDestroy: {
6239   db->nVDestroy++;
6240   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6241   db->nVDestroy--;
6242   break;
6243 }
6244 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6245 
6246 #ifndef SQLITE_OMIT_VIRTUALTABLE
6247 /* Opcode: VOpen P1 * * P4 *
6248 **
6249 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6250 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6251 ** table and stores that cursor in P1.
6252 */
6253 case OP_VOpen: {
6254   VdbeCursor *pCur;
6255   sqlite3_vtab_cursor *pVCur;
6256   sqlite3_vtab *pVtab;
6257   const sqlite3_module *pModule;
6258 
6259   assert( p->bIsReader );
6260   pCur = 0;
6261   pVCur = 0;
6262   pVtab = pOp->p4.pVtab->pVtab;
6263   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6264     rc = SQLITE_LOCKED;
6265     break;
6266   }
6267   pModule = pVtab->pModule;
6268   rc = pModule->xOpen(pVtab, &pVCur);
6269   sqlite3VtabImportErrmsg(p, pVtab);
6270   if( SQLITE_OK==rc ){
6271     /* Initialize sqlite3_vtab_cursor base class */
6272     pVCur->pVtab = pVtab;
6273 
6274     /* Initialize vdbe cursor object */
6275     pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6276     if( pCur ){
6277       pCur->uc.pVCur = pVCur;
6278       pVtab->nRef++;
6279     }else{
6280       assert( db->mallocFailed );
6281       pModule->xClose(pVCur);
6282       goto no_mem;
6283     }
6284   }
6285   break;
6286 }
6287 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6288 
6289 #ifndef SQLITE_OMIT_VIRTUALTABLE
6290 /* Opcode: VFilter P1 P2 P3 P4 *
6291 ** Synopsis: iplan=r[P3] zplan='P4'
6292 **
6293 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6294 ** the filtered result set is empty.
6295 **
6296 ** P4 is either NULL or a string that was generated by the xBestIndex
6297 ** method of the module.  The interpretation of the P4 string is left
6298 ** to the module implementation.
6299 **
6300 ** This opcode invokes the xFilter method on the virtual table specified
6301 ** by P1.  The integer query plan parameter to xFilter is stored in register
6302 ** P3. Register P3+1 stores the argc parameter to be passed to the
6303 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6304 ** additional parameters which are passed to
6305 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6306 **
6307 ** A jump is made to P2 if the result set after filtering would be empty.
6308 */
6309 case OP_VFilter: {   /* jump */
6310   int nArg;
6311   int iQuery;
6312   const sqlite3_module *pModule;
6313   Mem *pQuery;
6314   Mem *pArgc;
6315   sqlite3_vtab_cursor *pVCur;
6316   sqlite3_vtab *pVtab;
6317   VdbeCursor *pCur;
6318   int res;
6319   int i;
6320   Mem **apArg;
6321 
6322   pQuery = &aMem[pOp->p3];
6323   pArgc = &pQuery[1];
6324   pCur = p->apCsr[pOp->p1];
6325   assert( memIsValid(pQuery) );
6326   REGISTER_TRACE(pOp->p3, pQuery);
6327   assert( pCur->eCurType==CURTYPE_VTAB );
6328   pVCur = pCur->uc.pVCur;
6329   pVtab = pVCur->pVtab;
6330   pModule = pVtab->pModule;
6331 
6332   /* Grab the index number and argc parameters */
6333   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6334   nArg = (int)pArgc->u.i;
6335   iQuery = (int)pQuery->u.i;
6336 
6337   /* Invoke the xFilter method */
6338   res = 0;
6339   apArg = p->apArg;
6340   for(i = 0; i<nArg; i++){
6341     apArg[i] = &pArgc[i+1];
6342   }
6343   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6344   sqlite3VtabImportErrmsg(p, pVtab);
6345   if( rc==SQLITE_OK ){
6346     res = pModule->xEof(pVCur);
6347   }
6348   pCur->nullRow = 0;
6349   VdbeBranchTaken(res!=0,2);
6350   if( res ) goto jump_to_p2;
6351   break;
6352 }
6353 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6354 
6355 #ifndef SQLITE_OMIT_VIRTUALTABLE
6356 /* Opcode: VColumn P1 P2 P3 * *
6357 ** Synopsis: r[P3]=vcolumn(P2)
6358 **
6359 ** Store the value of the P2-th column of
6360 ** the row of the virtual-table that the
6361 ** P1 cursor is pointing to into register P3.
6362 */
6363 case OP_VColumn: {
6364   sqlite3_vtab *pVtab;
6365   const sqlite3_module *pModule;
6366   Mem *pDest;
6367   sqlite3_context sContext;
6368 
6369   VdbeCursor *pCur = p->apCsr[pOp->p1];
6370   assert( pCur->eCurType==CURTYPE_VTAB );
6371   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
6372   pDest = &aMem[pOp->p3];
6373   memAboutToChange(p, pDest);
6374   if( pCur->nullRow ){
6375     sqlite3VdbeMemSetNull(pDest);
6376     break;
6377   }
6378   pVtab = pCur->uc.pVCur->pVtab;
6379   pModule = pVtab->pModule;
6380   assert( pModule->xColumn );
6381   memset(&sContext, 0, sizeof(sContext));
6382   sContext.pOut = pDest;
6383   MemSetTypeFlag(pDest, MEM_Null);
6384   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6385   sqlite3VtabImportErrmsg(p, pVtab);
6386   if( sContext.isError ){
6387     rc = sContext.isError;
6388   }
6389   sqlite3VdbeChangeEncoding(pDest, encoding);
6390   REGISTER_TRACE(pOp->p3, pDest);
6391   UPDATE_MAX_BLOBSIZE(pDest);
6392 
6393   if( sqlite3VdbeMemTooBig(pDest) ){
6394     goto too_big;
6395   }
6396   break;
6397 }
6398 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6399 
6400 #ifndef SQLITE_OMIT_VIRTUALTABLE
6401 /* Opcode: VNext P1 P2 * * *
6402 **
6403 ** Advance virtual table P1 to the next row in its result set and
6404 ** jump to instruction P2.  Or, if the virtual table has reached
6405 ** the end of its result set, then fall through to the next instruction.
6406 */
6407 case OP_VNext: {   /* jump */
6408   sqlite3_vtab *pVtab;
6409   const sqlite3_module *pModule;
6410   int res;
6411   VdbeCursor *pCur;
6412 
6413   res = 0;
6414   pCur = p->apCsr[pOp->p1];
6415   assert( pCur->eCurType==CURTYPE_VTAB );
6416   if( pCur->nullRow ){
6417     break;
6418   }
6419   pVtab = pCur->uc.pVCur->pVtab;
6420   pModule = pVtab->pModule;
6421   assert( pModule->xNext );
6422 
6423   /* Invoke the xNext() method of the module. There is no way for the
6424   ** underlying implementation to return an error if one occurs during
6425   ** xNext(). Instead, if an error occurs, true is returned (indicating that
6426   ** data is available) and the error code returned when xColumn or
6427   ** some other method is next invoked on the save virtual table cursor.
6428   */
6429   rc = pModule->xNext(pCur->uc.pVCur);
6430   sqlite3VtabImportErrmsg(p, pVtab);
6431   if( rc==SQLITE_OK ){
6432     res = pModule->xEof(pCur->uc.pVCur);
6433   }
6434   VdbeBranchTaken(!res,2);
6435   if( !res ){
6436     /* If there is data, jump to P2 */
6437     goto jump_to_p2_and_check_for_interrupt;
6438   }
6439   goto check_for_interrupt;
6440 }
6441 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6442 
6443 #ifndef SQLITE_OMIT_VIRTUALTABLE
6444 /* Opcode: VRename P1 * * P4 *
6445 **
6446 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6447 ** This opcode invokes the corresponding xRename method. The value
6448 ** in register P1 is passed as the zName argument to the xRename method.
6449 */
6450 case OP_VRename: {
6451   sqlite3_vtab *pVtab;
6452   Mem *pName;
6453 
6454   pVtab = pOp->p4.pVtab->pVtab;
6455   pName = &aMem[pOp->p1];
6456   assert( pVtab->pModule->xRename );
6457   assert( memIsValid(pName) );
6458   assert( p->readOnly==0 );
6459   REGISTER_TRACE(pOp->p1, pName);
6460   assert( pName->flags & MEM_Str );
6461   testcase( pName->enc==SQLITE_UTF8 );
6462   testcase( pName->enc==SQLITE_UTF16BE );
6463   testcase( pName->enc==SQLITE_UTF16LE );
6464   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6465   if( rc==SQLITE_OK ){
6466     rc = pVtab->pModule->xRename(pVtab, pName->z);
6467     sqlite3VtabImportErrmsg(p, pVtab);
6468     p->expired = 0;
6469   }
6470   break;
6471 }
6472 #endif
6473 
6474 #ifndef SQLITE_OMIT_VIRTUALTABLE
6475 /* Opcode: VUpdate P1 P2 P3 P4 P5
6476 ** Synopsis: data=r[P3@P2]
6477 **
6478 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6479 ** This opcode invokes the corresponding xUpdate method. P2 values
6480 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6481 ** invocation. The value in register (P3+P2-1) corresponds to the
6482 ** p2th element of the argv array passed to xUpdate.
6483 **
6484 ** The xUpdate method will do a DELETE or an INSERT or both.
6485 ** The argv[0] element (which corresponds to memory cell P3)
6486 ** is the rowid of a row to delete.  If argv[0] is NULL then no
6487 ** deletion occurs.  The argv[1] element is the rowid of the new
6488 ** row.  This can be NULL to have the virtual table select the new
6489 ** rowid for itself.  The subsequent elements in the array are
6490 ** the values of columns in the new row.
6491 **
6492 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6493 ** a row to delete.
6494 **
6495 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6496 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6497 ** is set to the value of the rowid for the row just inserted.
6498 **
6499 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6500 ** apply in the case of a constraint failure on an insert or update.
6501 */
6502 case OP_VUpdate: {
6503   sqlite3_vtab *pVtab;
6504   const sqlite3_module *pModule;
6505   int nArg;
6506   int i;
6507   sqlite_int64 rowid;
6508   Mem **apArg;
6509   Mem *pX;
6510 
6511   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6512        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6513   );
6514   assert( p->readOnly==0 );
6515   pVtab = pOp->p4.pVtab->pVtab;
6516   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6517     rc = SQLITE_LOCKED;
6518     break;
6519   }
6520   pModule = pVtab->pModule;
6521   nArg = pOp->p2;
6522   assert( pOp->p4type==P4_VTAB );
6523   if( ALWAYS(pModule->xUpdate) ){
6524     u8 vtabOnConflict = db->vtabOnConflict;
6525     apArg = p->apArg;
6526     pX = &aMem[pOp->p3];
6527     for(i=0; i<nArg; i++){
6528       assert( memIsValid(pX) );
6529       memAboutToChange(p, pX);
6530       apArg[i] = pX;
6531       pX++;
6532     }
6533     db->vtabOnConflict = pOp->p5;
6534     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6535     db->vtabOnConflict = vtabOnConflict;
6536     sqlite3VtabImportErrmsg(p, pVtab);
6537     if( rc==SQLITE_OK && pOp->p1 ){
6538       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6539       db->lastRowid = lastRowid = rowid;
6540     }
6541     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6542       if( pOp->p5==OE_Ignore ){
6543         rc = SQLITE_OK;
6544       }else{
6545         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6546       }
6547     }else{
6548       p->nChange++;
6549     }
6550   }
6551   break;
6552 }
6553 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6554 
6555 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6556 /* Opcode: Pagecount P1 P2 * * *
6557 **
6558 ** Write the current number of pages in database P1 to memory cell P2.
6559 */
6560 case OP_Pagecount: {            /* out2 */
6561   pOut = out2Prerelease(p, pOp);
6562   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6563   break;
6564 }
6565 #endif
6566 
6567 
6568 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6569 /* Opcode: MaxPgcnt P1 P2 P3 * *
6570 **
6571 ** Try to set the maximum page count for database P1 to the value in P3.
6572 ** Do not let the maximum page count fall below the current page count and
6573 ** do not change the maximum page count value if P3==0.
6574 **
6575 ** Store the maximum page count after the change in register P2.
6576 */
6577 case OP_MaxPgcnt: {            /* out2 */
6578   unsigned int newMax;
6579   Btree *pBt;
6580 
6581   pOut = out2Prerelease(p, pOp);
6582   pBt = db->aDb[pOp->p1].pBt;
6583   newMax = 0;
6584   if( pOp->p3 ){
6585     newMax = sqlite3BtreeLastPage(pBt);
6586     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6587   }
6588   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6589   break;
6590 }
6591 #endif
6592 
6593 
6594 /* Opcode: Init * P2 * P4 *
6595 ** Synopsis:  Start at P2
6596 **
6597 ** Programs contain a single instance of this opcode as the very first
6598 ** opcode.
6599 **
6600 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6601 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6602 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6603 **
6604 ** If P2 is not zero, jump to instruction P2.
6605 */
6606 case OP_Init: {          /* jump */
6607   char *zTrace;
6608   char *z;
6609 
6610 #ifndef SQLITE_OMIT_TRACE
6611   if( db->xTrace
6612    && !p->doingRerun
6613    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6614   ){
6615     z = sqlite3VdbeExpandSql(p, zTrace);
6616     db->xTrace(db->pTraceArg, z);
6617     sqlite3DbFree(db, z);
6618   }
6619 #ifdef SQLITE_USE_FCNTL_TRACE
6620   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6621   if( zTrace ){
6622     int i;
6623     for(i=0; i<db->nDb; i++){
6624       if( DbMaskTest(p->btreeMask, i)==0 ) continue;
6625       sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6626     }
6627   }
6628 #endif /* SQLITE_USE_FCNTL_TRACE */
6629 #ifdef SQLITE_DEBUG
6630   if( (db->flags & SQLITE_SqlTrace)!=0
6631    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6632   ){
6633     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6634   }
6635 #endif /* SQLITE_DEBUG */
6636 #endif /* SQLITE_OMIT_TRACE */
6637   if( pOp->p2 ) goto jump_to_p2;
6638   break;
6639 }
6640 
6641 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6642 /* Opcode: CursorHint P1 * * P4 *
6643 **
6644 ** Provide a hint to cursor P1 that it only needs to return rows that
6645 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
6646 ** to values currently held in registers.  TK_COLUMN terms in the P4
6647 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
6648 */
6649 case OP_CursorHint: {
6650   VdbeCursor *pC;
6651 
6652   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6653   assert( pOp->p4type==P4_EXPR );
6654   pC = p->apCsr[pOp->p1];
6655   if( pC ){
6656     assert( pC->eCurType==CURTYPE_BTREE );
6657     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6658                            pOp->p4.pExpr, aMem);
6659   }
6660   break;
6661 }
6662 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
6663 
6664 /* Opcode: Noop * * * * *
6665 **
6666 ** Do nothing.  This instruction is often useful as a jump
6667 ** destination.
6668 */
6669 /*
6670 ** The magic Explain opcode are only inserted when explain==2 (which
6671 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6672 ** This opcode records information from the optimizer.  It is the
6673 ** the same as a no-op.  This opcodesnever appears in a real VM program.
6674 */
6675 default: {          /* This is really OP_Noop and OP_Explain */
6676   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6677   break;
6678 }
6679 
6680 /*****************************************************************************
6681 ** The cases of the switch statement above this line should all be indented
6682 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
6683 ** readability.  From this point on down, the normal indentation rules are
6684 ** restored.
6685 *****************************************************************************/
6686     }
6687 
6688 #ifdef VDBE_PROFILE
6689     {
6690       u64 endTime = sqlite3Hwtime();
6691       if( endTime>start ) pOrigOp->cycles += endTime - start;
6692       pOrigOp->cnt++;
6693     }
6694 #endif
6695 
6696     /* The following code adds nothing to the actual functionality
6697     ** of the program.  It is only here for testing and debugging.
6698     ** On the other hand, it does burn CPU cycles every time through
6699     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
6700     */
6701 #ifndef NDEBUG
6702     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
6703 
6704 #ifdef SQLITE_DEBUG
6705     if( db->flags & SQLITE_VdbeTrace ){
6706       if( rc!=0 ) printf("rc=%d\n",rc);
6707       if( pOrigOp->opflags & (OPFLG_OUT2) ){
6708         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
6709       }
6710       if( pOrigOp->opflags & OPFLG_OUT3 ){
6711         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
6712       }
6713     }
6714 #endif  /* SQLITE_DEBUG */
6715 #endif  /* NDEBUG */
6716   }  /* The end of the for(;;) loop the loops through opcodes */
6717 
6718   /* If we reach this point, it means that execution is finished with
6719   ** an error of some kind.
6720   */
6721 vdbe_error_halt:
6722   assert( rc );
6723   p->rc = rc;
6724   testcase( sqlite3GlobalConfig.xLog!=0 );
6725   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6726                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
6727   sqlite3VdbeHalt(p);
6728   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6729   rc = SQLITE_ERROR;
6730   if( resetSchemaOnFault>0 ){
6731     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6732   }
6733 
6734   /* This is the only way out of this procedure.  We have to
6735   ** release the mutexes on btrees that were acquired at the
6736   ** top. */
6737 vdbe_return:
6738   db->lastRowid = lastRowid;
6739   testcase( nVmStep>0 );
6740   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6741   sqlite3VdbeLeave(p);
6742   return rc;
6743 
6744   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6745   ** is encountered.
6746   */
6747 too_big:
6748   sqlite3VdbeError(p, "string or blob too big");
6749   rc = SQLITE_TOOBIG;
6750   goto vdbe_error_halt;
6751 
6752   /* Jump to here if a malloc() fails.
6753   */
6754 no_mem:
6755   db->mallocFailed = 1;
6756   sqlite3VdbeError(p, "out of memory");
6757   rc = SQLITE_NOMEM;
6758   goto vdbe_error_halt;
6759 
6760   /* Jump to here for any other kind of fatal error.  The "rc" variable
6761   ** should hold the error number.
6762   */
6763 abort_due_to_error:
6764   assert( p->zErrMsg==0 );
6765   if( db->mallocFailed ) rc = SQLITE_NOMEM;
6766   if( rc!=SQLITE_IOERR_NOMEM ){
6767     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6768   }
6769   goto vdbe_error_halt;
6770 
6771   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6772   ** flag.
6773   */
6774 abort_due_to_interrupt:
6775   assert( db->u1.isInterrupted );
6776   rc = SQLITE_INTERRUPT;
6777   p->rc = rc;
6778   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6779   goto vdbe_error_halt;
6780 }
6781