xref: /sqlite-3.40.0/src/vdbe.c (revision 60c71b02)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   int iDb,              /* Database the cursor belongs to, or -1 */
245   u8 eCurType           /* Type of the new cursor */
246 ){
247   /* Find the memory cell that will be used to store the blob of memory
248   ** required for this VdbeCursor structure. It is convenient to use a
249   ** vdbe memory cell to manage the memory allocation required for a
250   ** VdbeCursor structure for the following reasons:
251   **
252   **   * Sometimes cursor numbers are used for a couple of different
253   **     purposes in a vdbe program. The different uses might require
254   **     different sized allocations. Memory cells provide growable
255   **     allocations.
256   **
257   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
258   **     be freed lazily via the sqlite3_release_memory() API. This
259   **     minimizes the number of malloc calls made by the system.
260   **
261   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
262   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
263   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
264   */
265   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
266 
267   int nByte;
268   VdbeCursor *pCx = 0;
269   nByte =
270       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
271       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
272 
273   assert( iCur>=0 && iCur<p->nCursor );
274   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
275     /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag
276     ** is clear. Otherwise, if this is an ephemeral cursor created by
277     ** OP_OpenDup, the cursor will not be closed and will still be part
278     ** of a BtShared.pCursor list.  */
279     if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0;
280     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
281     p->apCsr[iCur] = 0;
282   }
283   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
284     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
285     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
286     pCx->eCurType = eCurType;
287     pCx->iDb = iDb;
288     pCx->nField = nField;
289     pCx->aOffset = &pCx->aType[nField];
290     if( eCurType==CURTYPE_BTREE ){
291       pCx->uc.pCursor = (BtCursor*)
292           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
293       sqlite3BtreeCursorZero(pCx->uc.pCursor);
294     }
295   }
296   return pCx;
297 }
298 
299 /*
300 ** The string in pRec is known to look like an integer and to have a
301 ** floating point value of rValue.  Return true and set *piValue to the
302 ** integer value if the string is in range to be an integer.  Otherwise,
303 ** return false.
304 */
305 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
306   i64 iValue = (double)rValue;
307   if( sqlite3RealSameAsInt(rValue,iValue) ){
308     *piValue = iValue;
309     return 1;
310   }
311   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
312 }
313 
314 /*
315 ** Try to convert a value into a numeric representation if we can
316 ** do so without loss of information.  In other words, if the string
317 ** looks like a number, convert it into a number.  If it does not
318 ** look like a number, leave it alone.
319 **
320 ** If the bTryForInt flag is true, then extra effort is made to give
321 ** an integer representation.  Strings that look like floating point
322 ** values but which have no fractional component (example: '48.00')
323 ** will have a MEM_Int representation when bTryForInt is true.
324 **
325 ** If bTryForInt is false, then if the input string contains a decimal
326 ** point or exponential notation, the result is only MEM_Real, even
327 ** if there is an exact integer representation of the quantity.
328 */
329 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
330   double rValue;
331   u8 enc = pRec->enc;
332   int rc;
333   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
334   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
335   if( rc<=0 ) return;
336   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
337     pRec->flags |= MEM_Int;
338   }else{
339     pRec->u.r = rValue;
340     pRec->flags |= MEM_Real;
341     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
342   }
343   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
344   ** string representation after computing a numeric equivalent, because the
345   ** string representation might not be the canonical representation for the
346   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
347   pRec->flags &= ~MEM_Str;
348 }
349 
350 /*
351 ** Processing is determine by the affinity parameter:
352 **
353 ** SQLITE_AFF_INTEGER:
354 ** SQLITE_AFF_REAL:
355 ** SQLITE_AFF_NUMERIC:
356 **    Try to convert pRec to an integer representation or a
357 **    floating-point representation if an integer representation
358 **    is not possible.  Note that the integer representation is
359 **    always preferred, even if the affinity is REAL, because
360 **    an integer representation is more space efficient on disk.
361 **
362 ** SQLITE_AFF_TEXT:
363 **    Convert pRec to a text representation.
364 **
365 ** SQLITE_AFF_BLOB:
366 ** SQLITE_AFF_NONE:
367 **    No-op.  pRec is unchanged.
368 */
369 static void applyAffinity(
370   Mem *pRec,          /* The value to apply affinity to */
371   char affinity,      /* The affinity to be applied */
372   u8 enc              /* Use this text encoding */
373 ){
374   if( affinity>=SQLITE_AFF_NUMERIC ){
375     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
376              || affinity==SQLITE_AFF_NUMERIC );
377     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
378       if( (pRec->flags & MEM_Real)==0 ){
379         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
380       }else{
381         sqlite3VdbeIntegerAffinity(pRec);
382       }
383     }
384   }else if( affinity==SQLITE_AFF_TEXT ){
385     /* Only attempt the conversion to TEXT if there is an integer or real
386     ** representation (blob and NULL do not get converted) but no string
387     ** representation.  It would be harmless to repeat the conversion if
388     ** there is already a string rep, but it is pointless to waste those
389     ** CPU cycles. */
390     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
391       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
392         testcase( pRec->flags & MEM_Int );
393         testcase( pRec->flags & MEM_Real );
394         testcase( pRec->flags & MEM_IntReal );
395         sqlite3VdbeMemStringify(pRec, enc, 1);
396       }
397     }
398     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
399   }
400 }
401 
402 /*
403 ** Try to convert the type of a function argument or a result column
404 ** into a numeric representation.  Use either INTEGER or REAL whichever
405 ** is appropriate.  But only do the conversion if it is possible without
406 ** loss of information and return the revised type of the argument.
407 */
408 int sqlite3_value_numeric_type(sqlite3_value *pVal){
409   int eType = sqlite3_value_type(pVal);
410   if( eType==SQLITE_TEXT ){
411     Mem *pMem = (Mem*)pVal;
412     applyNumericAffinity(pMem, 0);
413     eType = sqlite3_value_type(pVal);
414   }
415   return eType;
416 }
417 
418 /*
419 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
420 ** not the internal Mem* type.
421 */
422 void sqlite3ValueApplyAffinity(
423   sqlite3_value *pVal,
424   u8 affinity,
425   u8 enc
426 ){
427   applyAffinity((Mem *)pVal, affinity, enc);
428 }
429 
430 /*
431 ** pMem currently only holds a string type (or maybe a BLOB that we can
432 ** interpret as a string if we want to).  Compute its corresponding
433 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
434 ** accordingly.
435 */
436 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
437   int rc;
438   sqlite3_int64 ix;
439   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
440   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
441   ExpandBlob(pMem);
442   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
443   if( rc<=0 ){
444     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
445       pMem->u.i = ix;
446       return MEM_Int;
447     }else{
448       return MEM_Real;
449     }
450   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
451     pMem->u.i = ix;
452     return MEM_Int;
453   }
454   return MEM_Real;
455 }
456 
457 /*
458 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
459 ** none.
460 **
461 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
462 ** But it does set pMem->u.r and pMem->u.i appropriately.
463 */
464 static u16 numericType(Mem *pMem){
465   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
466     testcase( pMem->flags & MEM_Int );
467     testcase( pMem->flags & MEM_Real );
468     testcase( pMem->flags & MEM_IntReal );
469     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
470   }
471   if( pMem->flags & (MEM_Str|MEM_Blob) ){
472     testcase( pMem->flags & MEM_Str );
473     testcase( pMem->flags & MEM_Blob );
474     return computeNumericType(pMem);
475   }
476   return 0;
477 }
478 
479 #ifdef SQLITE_DEBUG
480 /*
481 ** Write a nice string representation of the contents of cell pMem
482 ** into buffer zBuf, length nBuf.
483 */
484 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
485   int f = pMem->flags;
486   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
487   if( f&MEM_Blob ){
488     int i;
489     char c;
490     if( f & MEM_Dyn ){
491       c = 'z';
492       assert( (f & (MEM_Static|MEM_Ephem))==0 );
493     }else if( f & MEM_Static ){
494       c = 't';
495       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
496     }else if( f & MEM_Ephem ){
497       c = 'e';
498       assert( (f & (MEM_Static|MEM_Dyn))==0 );
499     }else{
500       c = 's';
501     }
502     sqlite3_str_appendf(pStr, "%cx[", c);
503     for(i=0; i<25 && i<pMem->n; i++){
504       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
505     }
506     sqlite3_str_appendf(pStr, "|");
507     for(i=0; i<25 && i<pMem->n; i++){
508       char z = pMem->z[i];
509       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
510     }
511     sqlite3_str_appendf(pStr,"]");
512     if( f & MEM_Zero ){
513       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
514     }
515   }else if( f & MEM_Str ){
516     int j;
517     u8 c;
518     if( f & MEM_Dyn ){
519       c = 'z';
520       assert( (f & (MEM_Static|MEM_Ephem))==0 );
521     }else if( f & MEM_Static ){
522       c = 't';
523       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
524     }else if( f & MEM_Ephem ){
525       c = 'e';
526       assert( (f & (MEM_Static|MEM_Dyn))==0 );
527     }else{
528       c = 's';
529     }
530     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
531     for(j=0; j<25 && j<pMem->n; j++){
532       c = pMem->z[j];
533       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
534     }
535     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
536   }
537 }
538 #endif
539 
540 #ifdef SQLITE_DEBUG
541 /*
542 ** Print the value of a register for tracing purposes:
543 */
544 static void memTracePrint(Mem *p){
545   if( p->flags & MEM_Undefined ){
546     printf(" undefined");
547   }else if( p->flags & MEM_Null ){
548     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
549   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
550     printf(" si:%lld", p->u.i);
551   }else if( (p->flags & (MEM_IntReal))!=0 ){
552     printf(" ir:%lld", p->u.i);
553   }else if( p->flags & MEM_Int ){
554     printf(" i:%lld", p->u.i);
555 #ifndef SQLITE_OMIT_FLOATING_POINT
556   }else if( p->flags & MEM_Real ){
557     printf(" r:%.17g", p->u.r);
558 #endif
559   }else if( sqlite3VdbeMemIsRowSet(p) ){
560     printf(" (rowset)");
561   }else{
562     StrAccum acc;
563     char zBuf[1000];
564     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
565     sqlite3VdbeMemPrettyPrint(p, &acc);
566     printf(" %s", sqlite3StrAccumFinish(&acc));
567   }
568   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
569 }
570 static void registerTrace(int iReg, Mem *p){
571   printf("R[%d] = ", iReg);
572   memTracePrint(p);
573   if( p->pScopyFrom ){
574     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
575   }
576   printf("\n");
577   sqlite3VdbeCheckMemInvariants(p);
578 }
579 #endif
580 
581 #ifdef SQLITE_DEBUG
582 /*
583 ** Show the values of all registers in the virtual machine.  Used for
584 ** interactive debugging.
585 */
586 void sqlite3VdbeRegisterDump(Vdbe *v){
587   int i;
588   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
589 }
590 #endif /* SQLITE_DEBUG */
591 
592 
593 #ifdef SQLITE_DEBUG
594 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
595 #else
596 #  define REGISTER_TRACE(R,M)
597 #endif
598 
599 
600 #ifdef VDBE_PROFILE
601 
602 /*
603 ** hwtime.h contains inline assembler code for implementing
604 ** high-performance timing routines.
605 */
606 #include "hwtime.h"
607 
608 #endif
609 
610 #ifndef NDEBUG
611 /*
612 ** This function is only called from within an assert() expression. It
613 ** checks that the sqlite3.nTransaction variable is correctly set to
614 ** the number of non-transaction savepoints currently in the
615 ** linked list starting at sqlite3.pSavepoint.
616 **
617 ** Usage:
618 **
619 **     assert( checkSavepointCount(db) );
620 */
621 static int checkSavepointCount(sqlite3 *db){
622   int n = 0;
623   Savepoint *p;
624   for(p=db->pSavepoint; p; p=p->pNext) n++;
625   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
626   return 1;
627 }
628 #endif
629 
630 /*
631 ** Return the register of pOp->p2 after first preparing it to be
632 ** overwritten with an integer value.
633 */
634 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
635   sqlite3VdbeMemSetNull(pOut);
636   pOut->flags = MEM_Int;
637   return pOut;
638 }
639 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
640   Mem *pOut;
641   assert( pOp->p2>0 );
642   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
643   pOut = &p->aMem[pOp->p2];
644   memAboutToChange(p, pOut);
645   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
646     return out2PrereleaseWithClear(pOut);
647   }else{
648     pOut->flags = MEM_Int;
649     return pOut;
650   }
651 }
652 
653 
654 /*
655 ** Execute as much of a VDBE program as we can.
656 ** This is the core of sqlite3_step().
657 */
658 int sqlite3VdbeExec(
659   Vdbe *p                    /* The VDBE */
660 ){
661   Op *aOp = p->aOp;          /* Copy of p->aOp */
662   Op *pOp = aOp;             /* Current operation */
663 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
664   Op *pOrigOp;               /* Value of pOp at the top of the loop */
665 #endif
666 #ifdef SQLITE_DEBUG
667   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
668 #endif
669   int rc = SQLITE_OK;        /* Value to return */
670   sqlite3 *db = p->db;       /* The database */
671   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
672   u8 encoding = ENC(db);     /* The database encoding */
673   int iCompare = 0;          /* Result of last comparison */
674   u64 nVmStep = 0;           /* Number of virtual machine steps */
675 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
676   u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
677 #endif
678   Mem *aMem = p->aMem;       /* Copy of p->aMem */
679   Mem *pIn1 = 0;             /* 1st input operand */
680   Mem *pIn2 = 0;             /* 2nd input operand */
681   Mem *pIn3 = 0;             /* 3rd input operand */
682   Mem *pOut = 0;             /* Output operand */
683 #ifdef VDBE_PROFILE
684   u64 start;                 /* CPU clock count at start of opcode */
685 #endif
686   /*** INSERT STACK UNION HERE ***/
687 
688   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
689   sqlite3VdbeEnter(p);
690 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
691   if( db->xProgress ){
692     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
693     assert( 0 < db->nProgressOps );
694     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
695   }else{
696     nProgressLimit = LARGEST_UINT64;
697   }
698 #endif
699   if( p->rc==SQLITE_NOMEM ){
700     /* This happens if a malloc() inside a call to sqlite3_column_text() or
701     ** sqlite3_column_text16() failed.  */
702     goto no_mem;
703   }
704   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
705   testcase( p->rc!=SQLITE_OK );
706   p->rc = SQLITE_OK;
707   assert( p->bIsReader || p->readOnly!=0 );
708   p->iCurrentTime = 0;
709   assert( p->explain==0 );
710   p->pResultSet = 0;
711   db->busyHandler.nBusy = 0;
712   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
713   sqlite3VdbeIOTraceSql(p);
714 #ifdef SQLITE_DEBUG
715   sqlite3BeginBenignMalloc();
716   if( p->pc==0
717    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
718   ){
719     int i;
720     int once = 1;
721     sqlite3VdbePrintSql(p);
722     if( p->db->flags & SQLITE_VdbeListing ){
723       printf("VDBE Program Listing:\n");
724       for(i=0; i<p->nOp; i++){
725         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
726       }
727     }
728     if( p->db->flags & SQLITE_VdbeEQP ){
729       for(i=0; i<p->nOp; i++){
730         if( aOp[i].opcode==OP_Explain ){
731           if( once ) printf("VDBE Query Plan:\n");
732           printf("%s\n", aOp[i].p4.z);
733           once = 0;
734         }
735       }
736     }
737     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
738   }
739   sqlite3EndBenignMalloc();
740 #endif
741   for(pOp=&aOp[p->pc]; 1; pOp++){
742     /* Errors are detected by individual opcodes, with an immediate
743     ** jumps to abort_due_to_error. */
744     assert( rc==SQLITE_OK );
745 
746     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
747 #ifdef VDBE_PROFILE
748     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
749 #endif
750     nVmStep++;
751 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
752     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
753 #endif
754 
755     /* Only allow tracing if SQLITE_DEBUG is defined.
756     */
757 #ifdef SQLITE_DEBUG
758     if( db->flags & SQLITE_VdbeTrace ){
759       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
760       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
761     }
762 #endif
763 
764 
765     /* Check to see if we need to simulate an interrupt.  This only happens
766     ** if we have a special test build.
767     */
768 #ifdef SQLITE_TEST
769     if( sqlite3_interrupt_count>0 ){
770       sqlite3_interrupt_count--;
771       if( sqlite3_interrupt_count==0 ){
772         sqlite3_interrupt(db);
773       }
774     }
775 #endif
776 
777     /* Sanity checking on other operands */
778 #ifdef SQLITE_DEBUG
779     {
780       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
781       if( (opProperty & OPFLG_IN1)!=0 ){
782         assert( pOp->p1>0 );
783         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
784         assert( memIsValid(&aMem[pOp->p1]) );
785         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
786         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
787       }
788       if( (opProperty & OPFLG_IN2)!=0 ){
789         assert( pOp->p2>0 );
790         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
791         assert( memIsValid(&aMem[pOp->p2]) );
792         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
793         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
794       }
795       if( (opProperty & OPFLG_IN3)!=0 ){
796         assert( pOp->p3>0 );
797         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
798         assert( memIsValid(&aMem[pOp->p3]) );
799         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
800         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
801       }
802       if( (opProperty & OPFLG_OUT2)!=0 ){
803         assert( pOp->p2>0 );
804         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
805         memAboutToChange(p, &aMem[pOp->p2]);
806       }
807       if( (opProperty & OPFLG_OUT3)!=0 ){
808         assert( pOp->p3>0 );
809         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
810         memAboutToChange(p, &aMem[pOp->p3]);
811       }
812     }
813 #endif
814 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
815     pOrigOp = pOp;
816 #endif
817 
818     switch( pOp->opcode ){
819 
820 /*****************************************************************************
821 ** What follows is a massive switch statement where each case implements a
822 ** separate instruction in the virtual machine.  If we follow the usual
823 ** indentation conventions, each case should be indented by 6 spaces.  But
824 ** that is a lot of wasted space on the left margin.  So the code within
825 ** the switch statement will break with convention and be flush-left. Another
826 ** big comment (similar to this one) will mark the point in the code where
827 ** we transition back to normal indentation.
828 **
829 ** The formatting of each case is important.  The makefile for SQLite
830 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
831 ** file looking for lines that begin with "case OP_".  The opcodes.h files
832 ** will be filled with #defines that give unique integer values to each
833 ** opcode and the opcodes.c file is filled with an array of strings where
834 ** each string is the symbolic name for the corresponding opcode.  If the
835 ** case statement is followed by a comment of the form "/# same as ... #/"
836 ** that comment is used to determine the particular value of the opcode.
837 **
838 ** Other keywords in the comment that follows each case are used to
839 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
840 ** Keywords include: in1, in2, in3, out2, out3.  See
841 ** the mkopcodeh.awk script for additional information.
842 **
843 ** Documentation about VDBE opcodes is generated by scanning this file
844 ** for lines of that contain "Opcode:".  That line and all subsequent
845 ** comment lines are used in the generation of the opcode.html documentation
846 ** file.
847 **
848 ** SUMMARY:
849 **
850 **     Formatting is important to scripts that scan this file.
851 **     Do not deviate from the formatting style currently in use.
852 **
853 *****************************************************************************/
854 
855 /* Opcode:  Goto * P2 * * *
856 **
857 ** An unconditional jump to address P2.
858 ** The next instruction executed will be
859 ** the one at index P2 from the beginning of
860 ** the program.
861 **
862 ** The P1 parameter is not actually used by this opcode.  However, it
863 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
864 ** that this Goto is the bottom of a loop and that the lines from P2 down
865 ** to the current line should be indented for EXPLAIN output.
866 */
867 case OP_Goto: {             /* jump */
868 
869 #ifdef SQLITE_DEBUG
870   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
871   ** means we should really jump back to the preceeding OP_ReleaseReg
872   ** instruction. */
873   if( pOp->p5 ){
874     assert( pOp->p2 < (int)(pOp - aOp) );
875     assert( pOp->p2 > 1 );
876     pOp = &aOp[pOp->p2 - 2];
877     assert( pOp[1].opcode==OP_ReleaseReg );
878     goto check_for_interrupt;
879   }
880 #endif
881 
882 jump_to_p2_and_check_for_interrupt:
883   pOp = &aOp[pOp->p2 - 1];
884 
885   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
886   ** OP_VNext, or OP_SorterNext) all jump here upon
887   ** completion.  Check to see if sqlite3_interrupt() has been called
888   ** or if the progress callback needs to be invoked.
889   **
890   ** This code uses unstructured "goto" statements and does not look clean.
891   ** But that is not due to sloppy coding habits. The code is written this
892   ** way for performance, to avoid having to run the interrupt and progress
893   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
894   ** faster according to "valgrind --tool=cachegrind" */
895 check_for_interrupt:
896   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
897 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
898   /* Call the progress callback if it is configured and the required number
899   ** of VDBE ops have been executed (either since this invocation of
900   ** sqlite3VdbeExec() or since last time the progress callback was called).
901   ** If the progress callback returns non-zero, exit the virtual machine with
902   ** a return code SQLITE_ABORT.
903   */
904   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
905     assert( db->nProgressOps!=0 );
906     nProgressLimit += db->nProgressOps;
907     if( db->xProgress(db->pProgressArg) ){
908       nProgressLimit = LARGEST_UINT64;
909       rc = SQLITE_INTERRUPT;
910       goto abort_due_to_error;
911     }
912   }
913 #endif
914 
915   break;
916 }
917 
918 /* Opcode:  Gosub P1 P2 * * *
919 **
920 ** Write the current address onto register P1
921 ** and then jump to address P2.
922 */
923 case OP_Gosub: {            /* jump */
924   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
925   pIn1 = &aMem[pOp->p1];
926   assert( VdbeMemDynamic(pIn1)==0 );
927   memAboutToChange(p, pIn1);
928   pIn1->flags = MEM_Int;
929   pIn1->u.i = (int)(pOp-aOp);
930   REGISTER_TRACE(pOp->p1, pIn1);
931 
932   /* Most jump operations do a goto to this spot in order to update
933   ** the pOp pointer. */
934 jump_to_p2:
935   pOp = &aOp[pOp->p2 - 1];
936   break;
937 }
938 
939 /* Opcode:  Return P1 * * * *
940 **
941 ** Jump to the next instruction after the address in register P1.  After
942 ** the jump, register P1 becomes undefined.
943 */
944 case OP_Return: {           /* in1 */
945   pIn1 = &aMem[pOp->p1];
946   assert( pIn1->flags==MEM_Int );
947   pOp = &aOp[pIn1->u.i];
948   pIn1->flags = MEM_Undefined;
949   break;
950 }
951 
952 /* Opcode: InitCoroutine P1 P2 P3 * *
953 **
954 ** Set up register P1 so that it will Yield to the coroutine
955 ** located at address P3.
956 **
957 ** If P2!=0 then the coroutine implementation immediately follows
958 ** this opcode.  So jump over the coroutine implementation to
959 ** address P2.
960 **
961 ** See also: EndCoroutine
962 */
963 case OP_InitCoroutine: {     /* jump */
964   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
965   assert( pOp->p2>=0 && pOp->p2<p->nOp );
966   assert( pOp->p3>=0 && pOp->p3<p->nOp );
967   pOut = &aMem[pOp->p1];
968   assert( !VdbeMemDynamic(pOut) );
969   pOut->u.i = pOp->p3 - 1;
970   pOut->flags = MEM_Int;
971   if( pOp->p2 ) goto jump_to_p2;
972   break;
973 }
974 
975 /* Opcode:  EndCoroutine P1 * * * *
976 **
977 ** The instruction at the address in register P1 is a Yield.
978 ** Jump to the P2 parameter of that Yield.
979 ** After the jump, register P1 becomes undefined.
980 **
981 ** See also: InitCoroutine
982 */
983 case OP_EndCoroutine: {           /* in1 */
984   VdbeOp *pCaller;
985   pIn1 = &aMem[pOp->p1];
986   assert( pIn1->flags==MEM_Int );
987   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
988   pCaller = &aOp[pIn1->u.i];
989   assert( pCaller->opcode==OP_Yield );
990   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
991   pOp = &aOp[pCaller->p2 - 1];
992   pIn1->flags = MEM_Undefined;
993   break;
994 }
995 
996 /* Opcode:  Yield P1 P2 * * *
997 **
998 ** Swap the program counter with the value in register P1.  This
999 ** has the effect of yielding to a coroutine.
1000 **
1001 ** If the coroutine that is launched by this instruction ends with
1002 ** Yield or Return then continue to the next instruction.  But if
1003 ** the coroutine launched by this instruction ends with
1004 ** EndCoroutine, then jump to P2 rather than continuing with the
1005 ** next instruction.
1006 **
1007 ** See also: InitCoroutine
1008 */
1009 case OP_Yield: {            /* in1, jump */
1010   int pcDest;
1011   pIn1 = &aMem[pOp->p1];
1012   assert( VdbeMemDynamic(pIn1)==0 );
1013   pIn1->flags = MEM_Int;
1014   pcDest = (int)pIn1->u.i;
1015   pIn1->u.i = (int)(pOp - aOp);
1016   REGISTER_TRACE(pOp->p1, pIn1);
1017   pOp = &aOp[pcDest];
1018   break;
1019 }
1020 
1021 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1022 ** Synopsis: if r[P3]=null halt
1023 **
1024 ** Check the value in register P3.  If it is NULL then Halt using
1025 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1026 ** value in register P3 is not NULL, then this routine is a no-op.
1027 ** The P5 parameter should be 1.
1028 */
1029 case OP_HaltIfNull: {      /* in3 */
1030   pIn3 = &aMem[pOp->p3];
1031 #ifdef SQLITE_DEBUG
1032   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1033 #endif
1034   if( (pIn3->flags & MEM_Null)==0 ) break;
1035   /* Fall through into OP_Halt */
1036   /* no break */ deliberate_fall_through
1037 }
1038 
1039 /* Opcode:  Halt P1 P2 * P4 P5
1040 **
1041 ** Exit immediately.  All open cursors, etc are closed
1042 ** automatically.
1043 **
1044 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1045 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1046 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1047 ** whether or not to rollback the current transaction.  Do not rollback
1048 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1049 ** then back out all changes that have occurred during this execution of the
1050 ** VDBE, but do not rollback the transaction.
1051 **
1052 ** If P4 is not null then it is an error message string.
1053 **
1054 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1055 **
1056 **    0:  (no change)
1057 **    1:  NOT NULL contraint failed: P4
1058 **    2:  UNIQUE constraint failed: P4
1059 **    3:  CHECK constraint failed: P4
1060 **    4:  FOREIGN KEY constraint failed: P4
1061 **
1062 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1063 ** omitted.
1064 **
1065 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1066 ** every program.  So a jump past the last instruction of the program
1067 ** is the same as executing Halt.
1068 */
1069 case OP_Halt: {
1070   VdbeFrame *pFrame;
1071   int pcx;
1072 
1073   pcx = (int)(pOp - aOp);
1074 #ifdef SQLITE_DEBUG
1075   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1076 #endif
1077   if( pOp->p1==SQLITE_OK && p->pFrame ){
1078     /* Halt the sub-program. Return control to the parent frame. */
1079     pFrame = p->pFrame;
1080     p->pFrame = pFrame->pParent;
1081     p->nFrame--;
1082     sqlite3VdbeSetChanges(db, p->nChange);
1083     pcx = sqlite3VdbeFrameRestore(pFrame);
1084     if( pOp->p2==OE_Ignore ){
1085       /* Instruction pcx is the OP_Program that invoked the sub-program
1086       ** currently being halted. If the p2 instruction of this OP_Halt
1087       ** instruction is set to OE_Ignore, then the sub-program is throwing
1088       ** an IGNORE exception. In this case jump to the address specified
1089       ** as the p2 of the calling OP_Program.  */
1090       pcx = p->aOp[pcx].p2-1;
1091     }
1092     aOp = p->aOp;
1093     aMem = p->aMem;
1094     pOp = &aOp[pcx];
1095     break;
1096   }
1097   p->rc = pOp->p1;
1098   p->errorAction = (u8)pOp->p2;
1099   p->pc = pcx;
1100   assert( pOp->p5<=4 );
1101   if( p->rc ){
1102     if( pOp->p5 ){
1103       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1104                                              "FOREIGN KEY" };
1105       testcase( pOp->p5==1 );
1106       testcase( pOp->p5==2 );
1107       testcase( pOp->p5==3 );
1108       testcase( pOp->p5==4 );
1109       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1110       if( pOp->p4.z ){
1111         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1112       }
1113     }else{
1114       sqlite3VdbeError(p, "%s", pOp->p4.z);
1115     }
1116     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1117   }
1118   rc = sqlite3VdbeHalt(p);
1119   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1120   if( rc==SQLITE_BUSY ){
1121     p->rc = SQLITE_BUSY;
1122   }else{
1123     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1124     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1125     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1126   }
1127   goto vdbe_return;
1128 }
1129 
1130 /* Opcode: Integer P1 P2 * * *
1131 ** Synopsis: r[P2]=P1
1132 **
1133 ** The 32-bit integer value P1 is written into register P2.
1134 */
1135 case OP_Integer: {         /* out2 */
1136   pOut = out2Prerelease(p, pOp);
1137   pOut->u.i = pOp->p1;
1138   break;
1139 }
1140 
1141 /* Opcode: Int64 * P2 * P4 *
1142 ** Synopsis: r[P2]=P4
1143 **
1144 ** P4 is a pointer to a 64-bit integer value.
1145 ** Write that value into register P2.
1146 */
1147 case OP_Int64: {           /* out2 */
1148   pOut = out2Prerelease(p, pOp);
1149   assert( pOp->p4.pI64!=0 );
1150   pOut->u.i = *pOp->p4.pI64;
1151   break;
1152 }
1153 
1154 #ifndef SQLITE_OMIT_FLOATING_POINT
1155 /* Opcode: Real * P2 * P4 *
1156 ** Synopsis: r[P2]=P4
1157 **
1158 ** P4 is a pointer to a 64-bit floating point value.
1159 ** Write that value into register P2.
1160 */
1161 case OP_Real: {            /* same as TK_FLOAT, out2 */
1162   pOut = out2Prerelease(p, pOp);
1163   pOut->flags = MEM_Real;
1164   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1165   pOut->u.r = *pOp->p4.pReal;
1166   break;
1167 }
1168 #endif
1169 
1170 /* Opcode: String8 * P2 * P4 *
1171 ** Synopsis: r[P2]='P4'
1172 **
1173 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1174 ** into a String opcode before it is executed for the first time.  During
1175 ** this transformation, the length of string P4 is computed and stored
1176 ** as the P1 parameter.
1177 */
1178 case OP_String8: {         /* same as TK_STRING, out2 */
1179   assert( pOp->p4.z!=0 );
1180   pOut = out2Prerelease(p, pOp);
1181   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1182 
1183 #ifndef SQLITE_OMIT_UTF16
1184   if( encoding!=SQLITE_UTF8 ){
1185     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1186     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1187     if( rc ) goto too_big;
1188     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1189     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1190     assert( VdbeMemDynamic(pOut)==0 );
1191     pOut->szMalloc = 0;
1192     pOut->flags |= MEM_Static;
1193     if( pOp->p4type==P4_DYNAMIC ){
1194       sqlite3DbFree(db, pOp->p4.z);
1195     }
1196     pOp->p4type = P4_DYNAMIC;
1197     pOp->p4.z = pOut->z;
1198     pOp->p1 = pOut->n;
1199   }
1200 #endif
1201   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1202     goto too_big;
1203   }
1204   pOp->opcode = OP_String;
1205   assert( rc==SQLITE_OK );
1206   /* Fall through to the next case, OP_String */
1207   /* no break */ deliberate_fall_through
1208 }
1209 
1210 /* Opcode: String P1 P2 P3 P4 P5
1211 ** Synopsis: r[P2]='P4' (len=P1)
1212 **
1213 ** The string value P4 of length P1 (bytes) is stored in register P2.
1214 **
1215 ** If P3 is not zero and the content of register P3 is equal to P5, then
1216 ** the datatype of the register P2 is converted to BLOB.  The content is
1217 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1218 ** of a string, as if it had been CAST.  In other words:
1219 **
1220 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1221 */
1222 case OP_String: {          /* out2 */
1223   assert( pOp->p4.z!=0 );
1224   pOut = out2Prerelease(p, pOp);
1225   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1226   pOut->z = pOp->p4.z;
1227   pOut->n = pOp->p1;
1228   pOut->enc = encoding;
1229   UPDATE_MAX_BLOBSIZE(pOut);
1230 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1231   if( pOp->p3>0 ){
1232     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1233     pIn3 = &aMem[pOp->p3];
1234     assert( pIn3->flags & MEM_Int );
1235     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1236   }
1237 #endif
1238   break;
1239 }
1240 
1241 /* Opcode: Null P1 P2 P3 * *
1242 ** Synopsis: r[P2..P3]=NULL
1243 **
1244 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1245 ** NULL into register P3 and every register in between P2 and P3.  If P3
1246 ** is less than P2 (typically P3 is zero) then only register P2 is
1247 ** set to NULL.
1248 **
1249 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1250 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1251 ** OP_Ne or OP_Eq.
1252 */
1253 case OP_Null: {           /* out2 */
1254   int cnt;
1255   u16 nullFlag;
1256   pOut = out2Prerelease(p, pOp);
1257   cnt = pOp->p3-pOp->p2;
1258   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1259   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1260   pOut->n = 0;
1261 #ifdef SQLITE_DEBUG
1262   pOut->uTemp = 0;
1263 #endif
1264   while( cnt>0 ){
1265     pOut++;
1266     memAboutToChange(p, pOut);
1267     sqlite3VdbeMemSetNull(pOut);
1268     pOut->flags = nullFlag;
1269     pOut->n = 0;
1270     cnt--;
1271   }
1272   break;
1273 }
1274 
1275 /* Opcode: SoftNull P1 * * * *
1276 ** Synopsis: r[P1]=NULL
1277 **
1278 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1279 ** instruction, but do not free any string or blob memory associated with
1280 ** the register, so that if the value was a string or blob that was
1281 ** previously copied using OP_SCopy, the copies will continue to be valid.
1282 */
1283 case OP_SoftNull: {
1284   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1285   pOut = &aMem[pOp->p1];
1286   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1287   break;
1288 }
1289 
1290 /* Opcode: Blob P1 P2 * P4 *
1291 ** Synopsis: r[P2]=P4 (len=P1)
1292 **
1293 ** P4 points to a blob of data P1 bytes long.  Store this
1294 ** blob in register P2.
1295 */
1296 case OP_Blob: {                /* out2 */
1297   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1298   pOut = out2Prerelease(p, pOp);
1299   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1300   pOut->enc = encoding;
1301   UPDATE_MAX_BLOBSIZE(pOut);
1302   break;
1303 }
1304 
1305 /* Opcode: Variable P1 P2 * P4 *
1306 ** Synopsis: r[P2]=parameter(P1,P4)
1307 **
1308 ** Transfer the values of bound parameter P1 into register P2
1309 **
1310 ** If the parameter is named, then its name appears in P4.
1311 ** The P4 value is used by sqlite3_bind_parameter_name().
1312 */
1313 case OP_Variable: {            /* out2 */
1314   Mem *pVar;       /* Value being transferred */
1315 
1316   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1317   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1318   pVar = &p->aVar[pOp->p1 - 1];
1319   if( sqlite3VdbeMemTooBig(pVar) ){
1320     goto too_big;
1321   }
1322   pOut = &aMem[pOp->p2];
1323   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1324   memcpy(pOut, pVar, MEMCELLSIZE);
1325   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1326   pOut->flags |= MEM_Static|MEM_FromBind;
1327   UPDATE_MAX_BLOBSIZE(pOut);
1328   break;
1329 }
1330 
1331 /* Opcode: Move P1 P2 P3 * *
1332 ** Synopsis: r[P2@P3]=r[P1@P3]
1333 **
1334 ** Move the P3 values in register P1..P1+P3-1 over into
1335 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1336 ** left holding a NULL.  It is an error for register ranges
1337 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1338 ** for P3 to be less than 1.
1339 */
1340 case OP_Move: {
1341   int n;           /* Number of registers left to copy */
1342   int p1;          /* Register to copy from */
1343   int p2;          /* Register to copy to */
1344 
1345   n = pOp->p3;
1346   p1 = pOp->p1;
1347   p2 = pOp->p2;
1348   assert( n>0 && p1>0 && p2>0 );
1349   assert( p1+n<=p2 || p2+n<=p1 );
1350 
1351   pIn1 = &aMem[p1];
1352   pOut = &aMem[p2];
1353   do{
1354     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1355     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1356     assert( memIsValid(pIn1) );
1357     memAboutToChange(p, pOut);
1358     sqlite3VdbeMemMove(pOut, pIn1);
1359 #ifdef SQLITE_DEBUG
1360     pIn1->pScopyFrom = 0;
1361     { int i;
1362       for(i=1; i<p->nMem; i++){
1363         if( aMem[i].pScopyFrom==pIn1 ){
1364           aMem[i].pScopyFrom = pOut;
1365         }
1366       }
1367     }
1368 #endif
1369     Deephemeralize(pOut);
1370     REGISTER_TRACE(p2++, pOut);
1371     pIn1++;
1372     pOut++;
1373   }while( --n );
1374   break;
1375 }
1376 
1377 /* Opcode: Copy P1 P2 P3 * *
1378 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1379 **
1380 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1381 **
1382 ** This instruction makes a deep copy of the value.  A duplicate
1383 ** is made of any string or blob constant.  See also OP_SCopy.
1384 */
1385 case OP_Copy: {
1386   int n;
1387 
1388   n = pOp->p3;
1389   pIn1 = &aMem[pOp->p1];
1390   pOut = &aMem[pOp->p2];
1391   assert( pOut!=pIn1 );
1392   while( 1 ){
1393     memAboutToChange(p, pOut);
1394     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1395     Deephemeralize(pOut);
1396 #ifdef SQLITE_DEBUG
1397     pOut->pScopyFrom = 0;
1398 #endif
1399     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1400     if( (n--)==0 ) break;
1401     pOut++;
1402     pIn1++;
1403   }
1404   break;
1405 }
1406 
1407 /* Opcode: SCopy P1 P2 * * *
1408 ** Synopsis: r[P2]=r[P1]
1409 **
1410 ** Make a shallow copy of register P1 into register P2.
1411 **
1412 ** This instruction makes a shallow copy of the value.  If the value
1413 ** is a string or blob, then the copy is only a pointer to the
1414 ** original and hence if the original changes so will the copy.
1415 ** Worse, if the original is deallocated, the copy becomes invalid.
1416 ** Thus the program must guarantee that the original will not change
1417 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1418 ** copy.
1419 */
1420 case OP_SCopy: {            /* out2 */
1421   pIn1 = &aMem[pOp->p1];
1422   pOut = &aMem[pOp->p2];
1423   assert( pOut!=pIn1 );
1424   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1425 #ifdef SQLITE_DEBUG
1426   pOut->pScopyFrom = pIn1;
1427   pOut->mScopyFlags = pIn1->flags;
1428 #endif
1429   break;
1430 }
1431 
1432 /* Opcode: IntCopy P1 P2 * * *
1433 ** Synopsis: r[P2]=r[P1]
1434 **
1435 ** Transfer the integer value held in register P1 into register P2.
1436 **
1437 ** This is an optimized version of SCopy that works only for integer
1438 ** values.
1439 */
1440 case OP_IntCopy: {            /* out2 */
1441   pIn1 = &aMem[pOp->p1];
1442   assert( (pIn1->flags & MEM_Int)!=0 );
1443   pOut = &aMem[pOp->p2];
1444   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1445   break;
1446 }
1447 
1448 /* Opcode: ResultRow P1 P2 * * *
1449 ** Synopsis: output=r[P1@P2]
1450 **
1451 ** The registers P1 through P1+P2-1 contain a single row of
1452 ** results. This opcode causes the sqlite3_step() call to terminate
1453 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1454 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1455 ** the result row.
1456 */
1457 case OP_ResultRow: {
1458   Mem *pMem;
1459   int i;
1460   assert( p->nResColumn==pOp->p2 );
1461   assert( pOp->p1>0 );
1462   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1463 
1464   /* If this statement has violated immediate foreign key constraints, do
1465   ** not return the number of rows modified. And do not RELEASE the statement
1466   ** transaction. It needs to be rolled back.  */
1467   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1468     assert( db->flags&SQLITE_CountRows );
1469     assert( p->usesStmtJournal );
1470     goto abort_due_to_error;
1471   }
1472 
1473   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1474   ** DML statements invoke this opcode to return the number of rows
1475   ** modified to the user. This is the only way that a VM that
1476   ** opens a statement transaction may invoke this opcode.
1477   **
1478   ** In case this is such a statement, close any statement transaction
1479   ** opened by this VM before returning control to the user. This is to
1480   ** ensure that statement-transactions are always nested, not overlapping.
1481   ** If the open statement-transaction is not closed here, then the user
1482   ** may step another VM that opens its own statement transaction. This
1483   ** may lead to overlapping statement transactions.
1484   **
1485   ** The statement transaction is never a top-level transaction.  Hence
1486   ** the RELEASE call below can never fail.
1487   */
1488   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1489   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1490   assert( rc==SQLITE_OK );
1491 
1492   /* Invalidate all ephemeral cursor row caches */
1493   p->cacheCtr = (p->cacheCtr + 2)|1;
1494 
1495   /* Make sure the results of the current row are \000 terminated
1496   ** and have an assigned type.  The results are de-ephemeralized as
1497   ** a side effect.
1498   */
1499   pMem = p->pResultSet = &aMem[pOp->p1];
1500   for(i=0; i<pOp->p2; i++){
1501     assert( memIsValid(&pMem[i]) );
1502     Deephemeralize(&pMem[i]);
1503     assert( (pMem[i].flags & MEM_Ephem)==0
1504             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1505     sqlite3VdbeMemNulTerminate(&pMem[i]);
1506     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1507 #ifdef SQLITE_DEBUG
1508     /* The registers in the result will not be used again when the
1509     ** prepared statement restarts.  This is because sqlite3_column()
1510     ** APIs might have caused type conversions of made other changes to
1511     ** the register values.  Therefore, we can go ahead and break any
1512     ** OP_SCopy dependencies. */
1513     pMem[i].pScopyFrom = 0;
1514 #endif
1515   }
1516   if( db->mallocFailed ) goto no_mem;
1517 
1518   if( db->mTrace & SQLITE_TRACE_ROW ){
1519     db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1520   }
1521 
1522 
1523   /* Return SQLITE_ROW
1524   */
1525   p->pc = (int)(pOp - aOp) + 1;
1526   rc = SQLITE_ROW;
1527   goto vdbe_return;
1528 }
1529 
1530 /* Opcode: Concat P1 P2 P3 * *
1531 ** Synopsis: r[P3]=r[P2]+r[P1]
1532 **
1533 ** Add the text in register P1 onto the end of the text in
1534 ** register P2 and store the result in register P3.
1535 ** If either the P1 or P2 text are NULL then store NULL in P3.
1536 **
1537 **   P3 = P2 || P1
1538 **
1539 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1540 ** if P3 is the same register as P2, the implementation is able
1541 ** to avoid a memcpy().
1542 */
1543 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1544   i64 nByte;          /* Total size of the output string or blob */
1545   u16 flags1;         /* Initial flags for P1 */
1546   u16 flags2;         /* Initial flags for P2 */
1547 
1548   pIn1 = &aMem[pOp->p1];
1549   pIn2 = &aMem[pOp->p2];
1550   pOut = &aMem[pOp->p3];
1551   testcase( pOut==pIn2 );
1552   assert( pIn1!=pOut );
1553   flags1 = pIn1->flags;
1554   testcase( flags1 & MEM_Null );
1555   testcase( pIn2->flags & MEM_Null );
1556   if( (flags1 | pIn2->flags) & MEM_Null ){
1557     sqlite3VdbeMemSetNull(pOut);
1558     break;
1559   }
1560   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1561     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1562     flags1 = pIn1->flags & ~MEM_Str;
1563   }else if( (flags1 & MEM_Zero)!=0 ){
1564     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1565     flags1 = pIn1->flags & ~MEM_Str;
1566   }
1567   flags2 = pIn2->flags;
1568   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1569     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1570     flags2 = pIn2->flags & ~MEM_Str;
1571   }else if( (flags2 & MEM_Zero)!=0 ){
1572     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1573     flags2 = pIn2->flags & ~MEM_Str;
1574   }
1575   nByte = pIn1->n + pIn2->n;
1576   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1577     goto too_big;
1578   }
1579   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1580     goto no_mem;
1581   }
1582   MemSetTypeFlag(pOut, MEM_Str);
1583   if( pOut!=pIn2 ){
1584     memcpy(pOut->z, pIn2->z, pIn2->n);
1585     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1586     pIn2->flags = flags2;
1587   }
1588   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1589   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1590   pIn1->flags = flags1;
1591   pOut->z[nByte]=0;
1592   pOut->z[nByte+1] = 0;
1593   pOut->z[nByte+2] = 0;
1594   pOut->flags |= MEM_Term;
1595   pOut->n = (int)nByte;
1596   pOut->enc = encoding;
1597   UPDATE_MAX_BLOBSIZE(pOut);
1598   break;
1599 }
1600 
1601 /* Opcode: Add P1 P2 P3 * *
1602 ** Synopsis: r[P3]=r[P1]+r[P2]
1603 **
1604 ** Add the value in register P1 to the value in register P2
1605 ** and store the result in register P3.
1606 ** If either input is NULL, the result is NULL.
1607 */
1608 /* Opcode: Multiply P1 P2 P3 * *
1609 ** Synopsis: r[P3]=r[P1]*r[P2]
1610 **
1611 **
1612 ** Multiply the value in register P1 by the value in register P2
1613 ** and store the result in register P3.
1614 ** If either input is NULL, the result is NULL.
1615 */
1616 /* Opcode: Subtract P1 P2 P3 * *
1617 ** Synopsis: r[P3]=r[P2]-r[P1]
1618 **
1619 ** Subtract the value in register P1 from the value in register P2
1620 ** and store the result in register P3.
1621 ** If either input is NULL, the result is NULL.
1622 */
1623 /* Opcode: Divide P1 P2 P3 * *
1624 ** Synopsis: r[P3]=r[P2]/r[P1]
1625 **
1626 ** Divide the value in register P1 by the value in register P2
1627 ** and store the result in register P3 (P3=P2/P1). If the value in
1628 ** register P1 is zero, then the result is NULL. If either input is
1629 ** NULL, the result is NULL.
1630 */
1631 /* Opcode: Remainder P1 P2 P3 * *
1632 ** Synopsis: r[P3]=r[P2]%r[P1]
1633 **
1634 ** Compute the remainder after integer register P2 is divided by
1635 ** register P1 and store the result in register P3.
1636 ** If the value in register P1 is zero the result is NULL.
1637 ** If either operand is NULL, the result is NULL.
1638 */
1639 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1640 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1641 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1642 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1643 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1644   u16 flags;      /* Combined MEM_* flags from both inputs */
1645   u16 type1;      /* Numeric type of left operand */
1646   u16 type2;      /* Numeric type of right operand */
1647   i64 iA;         /* Integer value of left operand */
1648   i64 iB;         /* Integer value of right operand */
1649   double rA;      /* Real value of left operand */
1650   double rB;      /* Real value of right operand */
1651 
1652   pIn1 = &aMem[pOp->p1];
1653   type1 = numericType(pIn1);
1654   pIn2 = &aMem[pOp->p2];
1655   type2 = numericType(pIn2);
1656   pOut = &aMem[pOp->p3];
1657   flags = pIn1->flags | pIn2->flags;
1658   if( (type1 & type2 & MEM_Int)!=0 ){
1659     iA = pIn1->u.i;
1660     iB = pIn2->u.i;
1661     switch( pOp->opcode ){
1662       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1663       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1664       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1665       case OP_Divide: {
1666         if( iA==0 ) goto arithmetic_result_is_null;
1667         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1668         iB /= iA;
1669         break;
1670       }
1671       default: {
1672         if( iA==0 ) goto arithmetic_result_is_null;
1673         if( iA==-1 ) iA = 1;
1674         iB %= iA;
1675         break;
1676       }
1677     }
1678     pOut->u.i = iB;
1679     MemSetTypeFlag(pOut, MEM_Int);
1680   }else if( (flags & MEM_Null)!=0 ){
1681     goto arithmetic_result_is_null;
1682   }else{
1683 fp_math:
1684     rA = sqlite3VdbeRealValue(pIn1);
1685     rB = sqlite3VdbeRealValue(pIn2);
1686     switch( pOp->opcode ){
1687       case OP_Add:         rB += rA;       break;
1688       case OP_Subtract:    rB -= rA;       break;
1689       case OP_Multiply:    rB *= rA;       break;
1690       case OP_Divide: {
1691         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1692         if( rA==(double)0 ) goto arithmetic_result_is_null;
1693         rB /= rA;
1694         break;
1695       }
1696       default: {
1697         iA = sqlite3VdbeIntValue(pIn1);
1698         iB = sqlite3VdbeIntValue(pIn2);
1699         if( iA==0 ) goto arithmetic_result_is_null;
1700         if( iA==-1 ) iA = 1;
1701         rB = (double)(iB % iA);
1702         break;
1703       }
1704     }
1705 #ifdef SQLITE_OMIT_FLOATING_POINT
1706     pOut->u.i = rB;
1707     MemSetTypeFlag(pOut, MEM_Int);
1708 #else
1709     if( sqlite3IsNaN(rB) ){
1710       goto arithmetic_result_is_null;
1711     }
1712     pOut->u.r = rB;
1713     MemSetTypeFlag(pOut, MEM_Real);
1714 #endif
1715   }
1716   break;
1717 
1718 arithmetic_result_is_null:
1719   sqlite3VdbeMemSetNull(pOut);
1720   break;
1721 }
1722 
1723 /* Opcode: CollSeq P1 * * P4
1724 **
1725 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1726 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1727 ** be returned. This is used by the built-in min(), max() and nullif()
1728 ** functions.
1729 **
1730 ** If P1 is not zero, then it is a register that a subsequent min() or
1731 ** max() aggregate will set to 1 if the current row is not the minimum or
1732 ** maximum.  The P1 register is initialized to 0 by this instruction.
1733 **
1734 ** The interface used by the implementation of the aforementioned functions
1735 ** to retrieve the collation sequence set by this opcode is not available
1736 ** publicly.  Only built-in functions have access to this feature.
1737 */
1738 case OP_CollSeq: {
1739   assert( pOp->p4type==P4_COLLSEQ );
1740   if( pOp->p1 ){
1741     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1742   }
1743   break;
1744 }
1745 
1746 /* Opcode: BitAnd P1 P2 P3 * *
1747 ** Synopsis: r[P3]=r[P1]&r[P2]
1748 **
1749 ** Take the bit-wise AND of the values in register P1 and P2 and
1750 ** store the result in register P3.
1751 ** If either input is NULL, the result is NULL.
1752 */
1753 /* Opcode: BitOr P1 P2 P3 * *
1754 ** Synopsis: r[P3]=r[P1]|r[P2]
1755 **
1756 ** Take the bit-wise OR of the values in register P1 and P2 and
1757 ** store the result in register P3.
1758 ** If either input is NULL, the result is NULL.
1759 */
1760 /* Opcode: ShiftLeft P1 P2 P3 * *
1761 ** Synopsis: r[P3]=r[P2]<<r[P1]
1762 **
1763 ** Shift the integer value in register P2 to the left by the
1764 ** number of bits specified by the integer in register P1.
1765 ** Store the result in register P3.
1766 ** If either input is NULL, the result is NULL.
1767 */
1768 /* Opcode: ShiftRight P1 P2 P3 * *
1769 ** Synopsis: r[P3]=r[P2]>>r[P1]
1770 **
1771 ** Shift the integer value in register P2 to the right by the
1772 ** number of bits specified by the integer in register P1.
1773 ** Store the result in register P3.
1774 ** If either input is NULL, the result is NULL.
1775 */
1776 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1777 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1778 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1779 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1780   i64 iA;
1781   u64 uA;
1782   i64 iB;
1783   u8 op;
1784 
1785   pIn1 = &aMem[pOp->p1];
1786   pIn2 = &aMem[pOp->p2];
1787   pOut = &aMem[pOp->p3];
1788   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1789     sqlite3VdbeMemSetNull(pOut);
1790     break;
1791   }
1792   iA = sqlite3VdbeIntValue(pIn2);
1793   iB = sqlite3VdbeIntValue(pIn1);
1794   op = pOp->opcode;
1795   if( op==OP_BitAnd ){
1796     iA &= iB;
1797   }else if( op==OP_BitOr ){
1798     iA |= iB;
1799   }else if( iB!=0 ){
1800     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1801 
1802     /* If shifting by a negative amount, shift in the other direction */
1803     if( iB<0 ){
1804       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1805       op = 2*OP_ShiftLeft + 1 - op;
1806       iB = iB>(-64) ? -iB : 64;
1807     }
1808 
1809     if( iB>=64 ){
1810       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1811     }else{
1812       memcpy(&uA, &iA, sizeof(uA));
1813       if( op==OP_ShiftLeft ){
1814         uA <<= iB;
1815       }else{
1816         uA >>= iB;
1817         /* Sign-extend on a right shift of a negative number */
1818         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1819       }
1820       memcpy(&iA, &uA, sizeof(iA));
1821     }
1822   }
1823   pOut->u.i = iA;
1824   MemSetTypeFlag(pOut, MEM_Int);
1825   break;
1826 }
1827 
1828 /* Opcode: AddImm  P1 P2 * * *
1829 ** Synopsis: r[P1]=r[P1]+P2
1830 **
1831 ** Add the constant P2 to the value in register P1.
1832 ** The result is always an integer.
1833 **
1834 ** To force any register to be an integer, just add 0.
1835 */
1836 case OP_AddImm: {            /* in1 */
1837   pIn1 = &aMem[pOp->p1];
1838   memAboutToChange(p, pIn1);
1839   sqlite3VdbeMemIntegerify(pIn1);
1840   pIn1->u.i += pOp->p2;
1841   break;
1842 }
1843 
1844 /* Opcode: MustBeInt P1 P2 * * *
1845 **
1846 ** Force the value in register P1 to be an integer.  If the value
1847 ** in P1 is not an integer and cannot be converted into an integer
1848 ** without data loss, then jump immediately to P2, or if P2==0
1849 ** raise an SQLITE_MISMATCH exception.
1850 */
1851 case OP_MustBeInt: {            /* jump, in1 */
1852   pIn1 = &aMem[pOp->p1];
1853   if( (pIn1->flags & MEM_Int)==0 ){
1854     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1855     if( (pIn1->flags & MEM_Int)==0 ){
1856       VdbeBranchTaken(1, 2);
1857       if( pOp->p2==0 ){
1858         rc = SQLITE_MISMATCH;
1859         goto abort_due_to_error;
1860       }else{
1861         goto jump_to_p2;
1862       }
1863     }
1864   }
1865   VdbeBranchTaken(0, 2);
1866   MemSetTypeFlag(pIn1, MEM_Int);
1867   break;
1868 }
1869 
1870 #ifndef SQLITE_OMIT_FLOATING_POINT
1871 /* Opcode: RealAffinity P1 * * * *
1872 **
1873 ** If register P1 holds an integer convert it to a real value.
1874 **
1875 ** This opcode is used when extracting information from a column that
1876 ** has REAL affinity.  Such column values may still be stored as
1877 ** integers, for space efficiency, but after extraction we want them
1878 ** to have only a real value.
1879 */
1880 case OP_RealAffinity: {                  /* in1 */
1881   pIn1 = &aMem[pOp->p1];
1882   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1883     testcase( pIn1->flags & MEM_Int );
1884     testcase( pIn1->flags & MEM_IntReal );
1885     sqlite3VdbeMemRealify(pIn1);
1886     REGISTER_TRACE(pOp->p1, pIn1);
1887   }
1888   break;
1889 }
1890 #endif
1891 
1892 #ifndef SQLITE_OMIT_CAST
1893 /* Opcode: Cast P1 P2 * * *
1894 ** Synopsis: affinity(r[P1])
1895 **
1896 ** Force the value in register P1 to be the type defined by P2.
1897 **
1898 ** <ul>
1899 ** <li> P2=='A' &rarr; BLOB
1900 ** <li> P2=='B' &rarr; TEXT
1901 ** <li> P2=='C' &rarr; NUMERIC
1902 ** <li> P2=='D' &rarr; INTEGER
1903 ** <li> P2=='E' &rarr; REAL
1904 ** </ul>
1905 **
1906 ** A NULL value is not changed by this routine.  It remains NULL.
1907 */
1908 case OP_Cast: {                  /* in1 */
1909   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1910   testcase( pOp->p2==SQLITE_AFF_TEXT );
1911   testcase( pOp->p2==SQLITE_AFF_BLOB );
1912   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1913   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1914   testcase( pOp->p2==SQLITE_AFF_REAL );
1915   pIn1 = &aMem[pOp->p1];
1916   memAboutToChange(p, pIn1);
1917   rc = ExpandBlob(pIn1);
1918   if( rc ) goto abort_due_to_error;
1919   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1920   if( rc ) goto abort_due_to_error;
1921   UPDATE_MAX_BLOBSIZE(pIn1);
1922   REGISTER_TRACE(pOp->p1, pIn1);
1923   break;
1924 }
1925 #endif /* SQLITE_OMIT_CAST */
1926 
1927 /* Opcode: Eq P1 P2 P3 P4 P5
1928 ** Synopsis: IF r[P3]==r[P1]
1929 **
1930 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1931 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1932 ** store the result of comparison in register P2.
1933 **
1934 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1935 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1936 ** to coerce both inputs according to this affinity before the
1937 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1938 ** affinity is used. Note that the affinity conversions are stored
1939 ** back into the input registers P1 and P3.  So this opcode can cause
1940 ** persistent changes to registers P1 and P3.
1941 **
1942 ** Once any conversions have taken place, and neither value is NULL,
1943 ** the values are compared. If both values are blobs then memcmp() is
1944 ** used to determine the results of the comparison.  If both values
1945 ** are text, then the appropriate collating function specified in
1946 ** P4 is used to do the comparison.  If P4 is not specified then
1947 ** memcmp() is used to compare text string.  If both values are
1948 ** numeric, then a numeric comparison is used. If the two values
1949 ** are of different types, then numbers are considered less than
1950 ** strings and strings are considered less than blobs.
1951 **
1952 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1953 ** true or false and is never NULL.  If both operands are NULL then the result
1954 ** of comparison is true.  If either operand is NULL then the result is false.
1955 ** If neither operand is NULL the result is the same as it would be if
1956 ** the SQLITE_NULLEQ flag were omitted from P5.
1957 **
1958 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1959 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1960 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1961 */
1962 /* Opcode: Ne P1 P2 P3 P4 P5
1963 ** Synopsis: IF r[P3]!=r[P1]
1964 **
1965 ** This works just like the Eq opcode except that the jump is taken if
1966 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1967 ** additional information.
1968 **
1969 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1970 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1971 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1972 */
1973 /* Opcode: Lt P1 P2 P3 P4 P5
1974 ** Synopsis: IF r[P3]<r[P1]
1975 **
1976 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1977 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1978 ** the result of comparison (0 or 1 or NULL) into register P2.
1979 **
1980 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1981 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1982 ** bit is clear then fall through if either operand is NULL.
1983 **
1984 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1985 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1986 ** to coerce both inputs according to this affinity before the
1987 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1988 ** affinity is used. Note that the affinity conversions are stored
1989 ** back into the input registers P1 and P3.  So this opcode can cause
1990 ** persistent changes to registers P1 and P3.
1991 **
1992 ** Once any conversions have taken place, and neither value is NULL,
1993 ** the values are compared. If both values are blobs then memcmp() is
1994 ** used to determine the results of the comparison.  If both values
1995 ** are text, then the appropriate collating function specified in
1996 ** P4 is  used to do the comparison.  If P4 is not specified then
1997 ** memcmp() is used to compare text string.  If both values are
1998 ** numeric, then a numeric comparison is used. If the two values
1999 ** are of different types, then numbers are considered less than
2000 ** strings and strings are considered less than blobs.
2001 */
2002 /* Opcode: Le P1 P2 P3 P4 P5
2003 ** Synopsis: IF r[P3]<=r[P1]
2004 **
2005 ** This works just like the Lt opcode except that the jump is taken if
2006 ** the content of register P3 is less than or equal to the content of
2007 ** register P1.  See the Lt opcode for additional information.
2008 */
2009 /* Opcode: Gt P1 P2 P3 P4 P5
2010 ** Synopsis: IF r[P3]>r[P1]
2011 **
2012 ** This works just like the Lt opcode except that the jump is taken if
2013 ** the content of register P3 is greater than the content of
2014 ** register P1.  See the Lt opcode for additional information.
2015 */
2016 /* Opcode: Ge P1 P2 P3 P4 P5
2017 ** Synopsis: IF r[P3]>=r[P1]
2018 **
2019 ** This works just like the Lt opcode except that the jump is taken if
2020 ** the content of register P3 is greater than or equal to the content of
2021 ** register P1.  See the Lt opcode for additional information.
2022 */
2023 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2024 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2025 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2026 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2027 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2028 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2029   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2030   char affinity;      /* Affinity to use for comparison */
2031   u16 flags1;         /* Copy of initial value of pIn1->flags */
2032   u16 flags3;         /* Copy of initial value of pIn3->flags */
2033 
2034   pIn1 = &aMem[pOp->p1];
2035   pIn3 = &aMem[pOp->p3];
2036   flags1 = pIn1->flags;
2037   flags3 = pIn3->flags;
2038   if( (flags1 | flags3)&MEM_Null ){
2039     /* One or both operands are NULL */
2040     if( pOp->p5 & SQLITE_NULLEQ ){
2041       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2042       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2043       ** or not both operands are null.
2044       */
2045       assert( (flags1 & MEM_Cleared)==0 );
2046       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2047       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2048       if( (flags1&flags3&MEM_Null)!=0
2049        && (flags3&MEM_Cleared)==0
2050       ){
2051         res = 0;  /* Operands are equal */
2052       }else{
2053         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2054       }
2055     }else{
2056       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2057       ** then the result is always NULL.
2058       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2059       */
2060       if( pOp->p5 & SQLITE_STOREP2 ){
2061         pOut = &aMem[pOp->p2];
2062         iCompare = 1;    /* Operands are not equal */
2063         memAboutToChange(p, pOut);
2064         MemSetTypeFlag(pOut, MEM_Null);
2065         REGISTER_TRACE(pOp->p2, pOut);
2066       }else{
2067         VdbeBranchTaken(2,3);
2068         if( pOp->p5 & SQLITE_JUMPIFNULL ){
2069           goto jump_to_p2;
2070         }
2071       }
2072       break;
2073     }
2074   }else{
2075     /* Neither operand is NULL.  Do a comparison. */
2076     affinity = pOp->p5 & SQLITE_AFF_MASK;
2077     if( affinity>=SQLITE_AFF_NUMERIC ){
2078       if( (flags1 | flags3)&MEM_Str ){
2079         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2080           applyNumericAffinity(pIn1,0);
2081           testcase( flags3==pIn3->flags );
2082           flags3 = pIn3->flags;
2083         }
2084         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2085           applyNumericAffinity(pIn3,0);
2086         }
2087       }
2088       /* Handle the common case of integer comparison here, as an
2089       ** optimization, to avoid a call to sqlite3MemCompare() */
2090       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2091         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2092         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2093         res = 0;
2094         goto compare_op;
2095       }
2096     }else if( affinity==SQLITE_AFF_TEXT ){
2097       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2098         testcase( pIn1->flags & MEM_Int );
2099         testcase( pIn1->flags & MEM_Real );
2100         testcase( pIn1->flags & MEM_IntReal );
2101         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2102         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2103         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2104         if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
2105       }
2106       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2107         testcase( pIn3->flags & MEM_Int );
2108         testcase( pIn3->flags & MEM_Real );
2109         testcase( pIn3->flags & MEM_IntReal );
2110         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2111         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2112         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2113       }
2114     }
2115     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2116     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2117   }
2118 compare_op:
2119   /* At this point, res is negative, zero, or positive if reg[P1] is
2120   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2121   ** the answer to this operator in res2, depending on what the comparison
2122   ** operator actually is.  The next block of code depends on the fact
2123   ** that the 6 comparison operators are consecutive integers in this
2124   ** order:  NE, EQ, GT, LE, LT, GE */
2125   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2126   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2127   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
2128     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
2129     res2 = aLTb[pOp->opcode - OP_Ne];
2130   }else if( res==0 ){
2131     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
2132     res2 = aEQb[pOp->opcode - OP_Ne];
2133   }else{
2134     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
2135     res2 = aGTb[pOp->opcode - OP_Ne];
2136   }
2137 
2138   /* Undo any changes made by applyAffinity() to the input registers. */
2139   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2140   pIn3->flags = flags3;
2141   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2142   pIn1->flags = flags1;
2143 
2144   if( pOp->p5 & SQLITE_STOREP2 ){
2145     pOut = &aMem[pOp->p2];
2146     iCompare = res;
2147     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2148       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2149       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2150       ** is only used in contexts where either:
2151       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2152       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2153       ** Therefore it is not necessary to check the content of r[P2] for
2154       ** NULL. */
2155       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2156       assert( res2==0 || res2==1 );
2157       testcase( res2==0 && pOp->opcode==OP_Eq );
2158       testcase( res2==1 && pOp->opcode==OP_Eq );
2159       testcase( res2==0 && pOp->opcode==OP_Ne );
2160       testcase( res2==1 && pOp->opcode==OP_Ne );
2161       if( (pOp->opcode==OP_Eq)==res2 ) break;
2162     }
2163     memAboutToChange(p, pOut);
2164     MemSetTypeFlag(pOut, MEM_Int);
2165     pOut->u.i = res2;
2166     REGISTER_TRACE(pOp->p2, pOut);
2167   }else{
2168     VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2169     if( res2 ){
2170       goto jump_to_p2;
2171     }
2172   }
2173   break;
2174 }
2175 
2176 /* Opcode: ElseNotEq * P2 * * *
2177 **
2178 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2179 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2180 ** opcodes are allowed to occur between this instruction and the previous
2181 ** OP_Lt or OP_Gt.  Furthermore, the prior OP_Lt or OP_Gt must have the
2182 ** SQLITE_STOREP2 bit set in the P5 field.
2183 **
2184 ** If result of an OP_Eq comparison on the same two operands as the
2185 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then
2186 ** jump to P2.  If the result of an OP_Eq comparison on the two previous
2187 ** operands would have been true (1), then fall through.
2188 */
2189 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2190 
2191 #ifdef SQLITE_DEBUG
2192   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2193   ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening
2194   ** OP_ReleaseReg opcodes */
2195   int iAddr;
2196   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2197     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2198     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2199     assert( aOp[iAddr].p5 & SQLITE_STOREP2 );
2200     break;
2201   }
2202 #endif /* SQLITE_DEBUG */
2203   VdbeBranchTaken(iCompare!=0, 2);
2204   if( iCompare!=0 ) goto jump_to_p2;
2205   break;
2206 }
2207 
2208 
2209 /* Opcode: Permutation * * * P4 *
2210 **
2211 ** Set the permutation used by the OP_Compare operator in the next
2212 ** instruction.  The permutation is stored in the P4 operand.
2213 **
2214 ** The permutation is only valid until the next OP_Compare that has
2215 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2216 ** occur immediately prior to the OP_Compare.
2217 **
2218 ** The first integer in the P4 integer array is the length of the array
2219 ** and does not become part of the permutation.
2220 */
2221 case OP_Permutation: {
2222   assert( pOp->p4type==P4_INTARRAY );
2223   assert( pOp->p4.ai );
2224   assert( pOp[1].opcode==OP_Compare );
2225   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2226   break;
2227 }
2228 
2229 /* Opcode: Compare P1 P2 P3 P4 P5
2230 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2231 **
2232 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2233 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2234 ** the comparison for use by the next OP_Jump instruct.
2235 **
2236 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2237 ** determined by the most recent OP_Permutation operator.  If the
2238 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2239 ** order.
2240 **
2241 ** P4 is a KeyInfo structure that defines collating sequences and sort
2242 ** orders for the comparison.  The permutation applies to registers
2243 ** only.  The KeyInfo elements are used sequentially.
2244 **
2245 ** The comparison is a sort comparison, so NULLs compare equal,
2246 ** NULLs are less than numbers, numbers are less than strings,
2247 ** and strings are less than blobs.
2248 */
2249 case OP_Compare: {
2250   int n;
2251   int i;
2252   int p1;
2253   int p2;
2254   const KeyInfo *pKeyInfo;
2255   u32 idx;
2256   CollSeq *pColl;    /* Collating sequence to use on this term */
2257   int bRev;          /* True for DESCENDING sort order */
2258   u32 *aPermute;     /* The permutation */
2259 
2260   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2261     aPermute = 0;
2262   }else{
2263     assert( pOp>aOp );
2264     assert( pOp[-1].opcode==OP_Permutation );
2265     assert( pOp[-1].p4type==P4_INTARRAY );
2266     aPermute = pOp[-1].p4.ai + 1;
2267     assert( aPermute!=0 );
2268   }
2269   n = pOp->p3;
2270   pKeyInfo = pOp->p4.pKeyInfo;
2271   assert( n>0 );
2272   assert( pKeyInfo!=0 );
2273   p1 = pOp->p1;
2274   p2 = pOp->p2;
2275 #ifdef SQLITE_DEBUG
2276   if( aPermute ){
2277     int k, mx = 0;
2278     for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2279     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2280     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2281   }else{
2282     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2283     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2284   }
2285 #endif /* SQLITE_DEBUG */
2286   for(i=0; i<n; i++){
2287     idx = aPermute ? aPermute[i] : (u32)i;
2288     assert( memIsValid(&aMem[p1+idx]) );
2289     assert( memIsValid(&aMem[p2+idx]) );
2290     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2291     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2292     assert( i<pKeyInfo->nKeyField );
2293     pColl = pKeyInfo->aColl[i];
2294     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2295     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2296     if( iCompare ){
2297       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2298        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2299       ){
2300         iCompare = -iCompare;
2301       }
2302       if( bRev ) iCompare = -iCompare;
2303       break;
2304     }
2305   }
2306   break;
2307 }
2308 
2309 /* Opcode: Jump P1 P2 P3 * *
2310 **
2311 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2312 ** in the most recent OP_Compare instruction the P1 vector was less than
2313 ** equal to, or greater than the P2 vector, respectively.
2314 */
2315 case OP_Jump: {             /* jump */
2316   if( iCompare<0 ){
2317     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2318   }else if( iCompare==0 ){
2319     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2320   }else{
2321     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2322   }
2323   break;
2324 }
2325 
2326 /* Opcode: And P1 P2 P3 * *
2327 ** Synopsis: r[P3]=(r[P1] && r[P2])
2328 **
2329 ** Take the logical AND of the values in registers P1 and P2 and
2330 ** write the result into register P3.
2331 **
2332 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2333 ** the other input is NULL.  A NULL and true or two NULLs give
2334 ** a NULL output.
2335 */
2336 /* Opcode: Or P1 P2 P3 * *
2337 ** Synopsis: r[P3]=(r[P1] || r[P2])
2338 **
2339 ** Take the logical OR of the values in register P1 and P2 and
2340 ** store the answer in register P3.
2341 **
2342 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2343 ** even if the other input is NULL.  A NULL and false or two NULLs
2344 ** give a NULL output.
2345 */
2346 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2347 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2348   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2349   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2350 
2351   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2352   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2353   if( pOp->opcode==OP_And ){
2354     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2355     v1 = and_logic[v1*3+v2];
2356   }else{
2357     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2358     v1 = or_logic[v1*3+v2];
2359   }
2360   pOut = &aMem[pOp->p3];
2361   if( v1==2 ){
2362     MemSetTypeFlag(pOut, MEM_Null);
2363   }else{
2364     pOut->u.i = v1;
2365     MemSetTypeFlag(pOut, MEM_Int);
2366   }
2367   break;
2368 }
2369 
2370 /* Opcode: IsTrue P1 P2 P3 P4 *
2371 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2372 **
2373 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2374 ** IS NOT FALSE operators.
2375 **
2376 ** Interpret the value in register P1 as a boolean value.  Store that
2377 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2378 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2379 ** is 1.
2380 **
2381 ** The logic is summarized like this:
2382 **
2383 ** <ul>
2384 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2385 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2386 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2387 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2388 ** </ul>
2389 */
2390 case OP_IsTrue: {               /* in1, out2 */
2391   assert( pOp->p4type==P4_INT32 );
2392   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2393   assert( pOp->p3==0 || pOp->p3==1 );
2394   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2395       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2396   break;
2397 }
2398 
2399 /* Opcode: Not P1 P2 * * *
2400 ** Synopsis: r[P2]= !r[P1]
2401 **
2402 ** Interpret the value in register P1 as a boolean value.  Store the
2403 ** boolean complement in register P2.  If the value in register P1 is
2404 ** NULL, then a NULL is stored in P2.
2405 */
2406 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2407   pIn1 = &aMem[pOp->p1];
2408   pOut = &aMem[pOp->p2];
2409   if( (pIn1->flags & MEM_Null)==0 ){
2410     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2411   }else{
2412     sqlite3VdbeMemSetNull(pOut);
2413   }
2414   break;
2415 }
2416 
2417 /* Opcode: BitNot P1 P2 * * *
2418 ** Synopsis: r[P2]= ~r[P1]
2419 **
2420 ** Interpret the content of register P1 as an integer.  Store the
2421 ** ones-complement of the P1 value into register P2.  If P1 holds
2422 ** a NULL then store a NULL in P2.
2423 */
2424 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2425   pIn1 = &aMem[pOp->p1];
2426   pOut = &aMem[pOp->p2];
2427   sqlite3VdbeMemSetNull(pOut);
2428   if( (pIn1->flags & MEM_Null)==0 ){
2429     pOut->flags = MEM_Int;
2430     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2431   }
2432   break;
2433 }
2434 
2435 /* Opcode: Once P1 P2 * * *
2436 **
2437 ** Fall through to the next instruction the first time this opcode is
2438 ** encountered on each invocation of the byte-code program.  Jump to P2
2439 ** on the second and all subsequent encounters during the same invocation.
2440 **
2441 ** Top-level programs determine first invocation by comparing the P1
2442 ** operand against the P1 operand on the OP_Init opcode at the beginning
2443 ** of the program.  If the P1 values differ, then fall through and make
2444 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2445 ** the same then take the jump.
2446 **
2447 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2448 ** whether or not the jump should be taken.  The bitmask is necessary
2449 ** because the self-altering code trick does not work for recursive
2450 ** triggers.
2451 */
2452 case OP_Once: {             /* jump */
2453   u32 iAddr;                /* Address of this instruction */
2454   assert( p->aOp[0].opcode==OP_Init );
2455   if( p->pFrame ){
2456     iAddr = (int)(pOp - p->aOp);
2457     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2458       VdbeBranchTaken(1, 2);
2459       goto jump_to_p2;
2460     }
2461     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2462   }else{
2463     if( p->aOp[0].p1==pOp->p1 ){
2464       VdbeBranchTaken(1, 2);
2465       goto jump_to_p2;
2466     }
2467   }
2468   VdbeBranchTaken(0, 2);
2469   pOp->p1 = p->aOp[0].p1;
2470   break;
2471 }
2472 
2473 /* Opcode: If P1 P2 P3 * *
2474 **
2475 ** Jump to P2 if the value in register P1 is true.  The value
2476 ** is considered true if it is numeric and non-zero.  If the value
2477 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2478 */
2479 case OP_If:  {               /* jump, in1 */
2480   int c;
2481   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2482   VdbeBranchTaken(c!=0, 2);
2483   if( c ) goto jump_to_p2;
2484   break;
2485 }
2486 
2487 /* Opcode: IfNot P1 P2 P3 * *
2488 **
2489 ** Jump to P2 if the value in register P1 is False.  The value
2490 ** is considered false if it has a numeric value of zero.  If the value
2491 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2492 */
2493 case OP_IfNot: {            /* jump, in1 */
2494   int c;
2495   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2496   VdbeBranchTaken(c!=0, 2);
2497   if( c ) goto jump_to_p2;
2498   break;
2499 }
2500 
2501 /* Opcode: IsNull P1 P2 * * *
2502 ** Synopsis: if r[P1]==NULL goto P2
2503 **
2504 ** Jump to P2 if the value in register P1 is NULL.
2505 */
2506 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2507   pIn1 = &aMem[pOp->p1];
2508   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2509   if( (pIn1->flags & MEM_Null)!=0 ){
2510     goto jump_to_p2;
2511   }
2512   break;
2513 }
2514 
2515 /* Opcode: NotNull P1 P2 * * *
2516 ** Synopsis: if r[P1]!=NULL goto P2
2517 **
2518 ** Jump to P2 if the value in register P1 is not NULL.
2519 */
2520 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2521   pIn1 = &aMem[pOp->p1];
2522   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2523   if( (pIn1->flags & MEM_Null)==0 ){
2524     goto jump_to_p2;
2525   }
2526   break;
2527 }
2528 
2529 /* Opcode: IfNullRow P1 P2 P3 * *
2530 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2531 **
2532 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2533 ** If it is, then set register P3 to NULL and jump immediately to P2.
2534 ** If P1 is not on a NULL row, then fall through without making any
2535 ** changes.
2536 */
2537 case OP_IfNullRow: {         /* jump */
2538   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2539   assert( p->apCsr[pOp->p1]!=0 );
2540   if( p->apCsr[pOp->p1]->nullRow ){
2541     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2542     goto jump_to_p2;
2543   }
2544   break;
2545 }
2546 
2547 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2548 /* Opcode: Offset P1 P2 P3 * *
2549 ** Synopsis: r[P3] = sqlite_offset(P1)
2550 **
2551 ** Store in register r[P3] the byte offset into the database file that is the
2552 ** start of the payload for the record at which that cursor P1 is currently
2553 ** pointing.
2554 **
2555 ** P2 is the column number for the argument to the sqlite_offset() function.
2556 ** This opcode does not use P2 itself, but the P2 value is used by the
2557 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2558 ** same as for OP_Column.
2559 **
2560 ** This opcode is only available if SQLite is compiled with the
2561 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2562 */
2563 case OP_Offset: {          /* out3 */
2564   VdbeCursor *pC;    /* The VDBE cursor */
2565   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2566   pC = p->apCsr[pOp->p1];
2567   pOut = &p->aMem[pOp->p3];
2568   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2569     sqlite3VdbeMemSetNull(pOut);
2570   }else{
2571     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2572   }
2573   break;
2574 }
2575 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2576 
2577 /* Opcode: Column P1 P2 P3 P4 P5
2578 ** Synopsis: r[P3]=PX
2579 **
2580 ** Interpret the data that cursor P1 points to as a structure built using
2581 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2582 ** information about the format of the data.)  Extract the P2-th column
2583 ** from this record.  If there are less that (P2+1)
2584 ** values in the record, extract a NULL.
2585 **
2586 ** The value extracted is stored in register P3.
2587 **
2588 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2589 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2590 ** the result.
2591 **
2592 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2593 ** the result is guaranteed to only be used as the argument of a length()
2594 ** or typeof() function, respectively.  The loading of large blobs can be
2595 ** skipped for length() and all content loading can be skipped for typeof().
2596 */
2597 case OP_Column: {
2598   u32 p2;            /* column number to retrieve */
2599   VdbeCursor *pC;    /* The VDBE cursor */
2600   BtCursor *pCrsr;   /* The BTree cursor */
2601   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2602   int len;           /* The length of the serialized data for the column */
2603   int i;             /* Loop counter */
2604   Mem *pDest;        /* Where to write the extracted value */
2605   Mem sMem;          /* For storing the record being decoded */
2606   const u8 *zData;   /* Part of the record being decoded */
2607   const u8 *zHdr;    /* Next unparsed byte of the header */
2608   const u8 *zEndHdr; /* Pointer to first byte after the header */
2609   u64 offset64;      /* 64-bit offset */
2610   u32 t;             /* A type code from the record header */
2611   Mem *pReg;         /* PseudoTable input register */
2612 
2613   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2614   pC = p->apCsr[pOp->p1];
2615   assert( pC!=0 );
2616   p2 = (u32)pOp->p2;
2617 
2618   /* If the cursor cache is stale (meaning it is not currently point at
2619   ** the correct row) then bring it up-to-date by doing the necessary
2620   ** B-Tree seek. */
2621   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2622   if( rc ) goto abort_due_to_error;
2623 
2624   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2625   pDest = &aMem[pOp->p3];
2626   memAboutToChange(p, pDest);
2627   assert( pC!=0 );
2628   assert( p2<(u32)pC->nField );
2629   aOffset = pC->aOffset;
2630   assert( pC->eCurType!=CURTYPE_VTAB );
2631   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2632   assert( pC->eCurType!=CURTYPE_SORTER );
2633 
2634   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2635     if( pC->nullRow ){
2636       if( pC->eCurType==CURTYPE_PSEUDO ){
2637         /* For the special case of as pseudo-cursor, the seekResult field
2638         ** identifies the register that holds the record */
2639         assert( pC->seekResult>0 );
2640         pReg = &aMem[pC->seekResult];
2641         assert( pReg->flags & MEM_Blob );
2642         assert( memIsValid(pReg) );
2643         pC->payloadSize = pC->szRow = pReg->n;
2644         pC->aRow = (u8*)pReg->z;
2645       }else{
2646         sqlite3VdbeMemSetNull(pDest);
2647         goto op_column_out;
2648       }
2649     }else{
2650       pCrsr = pC->uc.pCursor;
2651       assert( pC->eCurType==CURTYPE_BTREE );
2652       assert( pCrsr );
2653       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2654       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2655       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2656       assert( pC->szRow<=pC->payloadSize );
2657       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2658       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2659         goto too_big;
2660       }
2661     }
2662     pC->cacheStatus = p->cacheCtr;
2663     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2664     pC->nHdrParsed = 0;
2665 
2666 
2667     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2668       /* pC->aRow does not have to hold the entire row, but it does at least
2669       ** need to cover the header of the record.  If pC->aRow does not contain
2670       ** the complete header, then set it to zero, forcing the header to be
2671       ** dynamically allocated. */
2672       pC->aRow = 0;
2673       pC->szRow = 0;
2674 
2675       /* Make sure a corrupt database has not given us an oversize header.
2676       ** Do this now to avoid an oversize memory allocation.
2677       **
2678       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2679       ** types use so much data space that there can only be 4096 and 32 of
2680       ** them, respectively.  So the maximum header length results from a
2681       ** 3-byte type for each of the maximum of 32768 columns plus three
2682       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2683       */
2684       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2685         goto op_column_corrupt;
2686       }
2687     }else{
2688       /* This is an optimization.  By skipping over the first few tests
2689       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2690       ** measurable performance gain.
2691       **
2692       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2693       ** generated by SQLite, and could be considered corruption, but we
2694       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2695       ** branch jumps to reads past the end of the record, but never more
2696       ** than a few bytes.  Even if the record occurs at the end of the page
2697       ** content area, the "page header" comes after the page content and so
2698       ** this overread is harmless.  Similar overreads can occur for a corrupt
2699       ** database file.
2700       */
2701       zData = pC->aRow;
2702       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2703       testcase( aOffset[0]==0 );
2704       goto op_column_read_header;
2705     }
2706   }
2707 
2708   /* Make sure at least the first p2+1 entries of the header have been
2709   ** parsed and valid information is in aOffset[] and pC->aType[].
2710   */
2711   if( pC->nHdrParsed<=p2 ){
2712     /* If there is more header available for parsing in the record, try
2713     ** to extract additional fields up through the p2+1-th field
2714     */
2715     if( pC->iHdrOffset<aOffset[0] ){
2716       /* Make sure zData points to enough of the record to cover the header. */
2717       if( pC->aRow==0 ){
2718         memset(&sMem, 0, sizeof(sMem));
2719         rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2720         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2721         zData = (u8*)sMem.z;
2722       }else{
2723         zData = pC->aRow;
2724       }
2725 
2726       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2727     op_column_read_header:
2728       i = pC->nHdrParsed;
2729       offset64 = aOffset[i];
2730       zHdr = zData + pC->iHdrOffset;
2731       zEndHdr = zData + aOffset[0];
2732       testcase( zHdr>=zEndHdr );
2733       do{
2734         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2735           zHdr++;
2736           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2737         }else{
2738           zHdr += sqlite3GetVarint32(zHdr, &t);
2739           pC->aType[i] = t;
2740           offset64 += sqlite3VdbeSerialTypeLen(t);
2741         }
2742         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2743       }while( (u32)i<=p2 && zHdr<zEndHdr );
2744 
2745       /* The record is corrupt if any of the following are true:
2746       ** (1) the bytes of the header extend past the declared header size
2747       ** (2) the entire header was used but not all data was used
2748       ** (3) the end of the data extends beyond the end of the record.
2749       */
2750       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2751        || (offset64 > pC->payloadSize)
2752       ){
2753         if( aOffset[0]==0 ){
2754           i = 0;
2755           zHdr = zEndHdr;
2756         }else{
2757           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2758           goto op_column_corrupt;
2759         }
2760       }
2761 
2762       pC->nHdrParsed = i;
2763       pC->iHdrOffset = (u32)(zHdr - zData);
2764       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2765     }else{
2766       t = 0;
2767     }
2768 
2769     /* If after trying to extract new entries from the header, nHdrParsed is
2770     ** still not up to p2, that means that the record has fewer than p2
2771     ** columns.  So the result will be either the default value or a NULL.
2772     */
2773     if( pC->nHdrParsed<=p2 ){
2774       if( pOp->p4type==P4_MEM ){
2775         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2776       }else{
2777         sqlite3VdbeMemSetNull(pDest);
2778       }
2779       goto op_column_out;
2780     }
2781   }else{
2782     t = pC->aType[p2];
2783   }
2784 
2785   /* Extract the content for the p2+1-th column.  Control can only
2786   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2787   ** all valid.
2788   */
2789   assert( p2<pC->nHdrParsed );
2790   assert( rc==SQLITE_OK );
2791   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2792   if( VdbeMemDynamic(pDest) ){
2793     sqlite3VdbeMemSetNull(pDest);
2794   }
2795   assert( t==pC->aType[p2] );
2796   if( pC->szRow>=aOffset[p2+1] ){
2797     /* This is the common case where the desired content fits on the original
2798     ** page - where the content is not on an overflow page */
2799     zData = pC->aRow + aOffset[p2];
2800     if( t<12 ){
2801       sqlite3VdbeSerialGet(zData, t, pDest);
2802     }else{
2803       /* If the column value is a string, we need a persistent value, not
2804       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2805       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2806       */
2807       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2808       pDest->n = len = (t-12)/2;
2809       pDest->enc = encoding;
2810       if( pDest->szMalloc < len+2 ){
2811         pDest->flags = MEM_Null;
2812         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2813       }else{
2814         pDest->z = pDest->zMalloc;
2815       }
2816       memcpy(pDest->z, zData, len);
2817       pDest->z[len] = 0;
2818       pDest->z[len+1] = 0;
2819       pDest->flags = aFlag[t&1];
2820     }
2821   }else{
2822     pDest->enc = encoding;
2823     /* This branch happens only when content is on overflow pages */
2824     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2825           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2826      || (len = sqlite3VdbeSerialTypeLen(t))==0
2827     ){
2828       /* Content is irrelevant for
2829       **    1. the typeof() function,
2830       **    2. the length(X) function if X is a blob, and
2831       **    3. if the content length is zero.
2832       ** So we might as well use bogus content rather than reading
2833       ** content from disk.
2834       **
2835       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2836       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2837       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
2838       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2839       ** and it begins with a bunch of zeros.
2840       */
2841       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2842     }else{
2843       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2844       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2845       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2846       pDest->flags &= ~MEM_Ephem;
2847     }
2848   }
2849 
2850 op_column_out:
2851   UPDATE_MAX_BLOBSIZE(pDest);
2852   REGISTER_TRACE(pOp->p3, pDest);
2853   break;
2854 
2855 op_column_corrupt:
2856   if( aOp[0].p3>0 ){
2857     pOp = &aOp[aOp[0].p3-1];
2858     break;
2859   }else{
2860     rc = SQLITE_CORRUPT_BKPT;
2861     goto abort_due_to_error;
2862   }
2863 }
2864 
2865 /* Opcode: Affinity P1 P2 * P4 *
2866 ** Synopsis: affinity(r[P1@P2])
2867 **
2868 ** Apply affinities to a range of P2 registers starting with P1.
2869 **
2870 ** P4 is a string that is P2 characters long. The N-th character of the
2871 ** string indicates the column affinity that should be used for the N-th
2872 ** memory cell in the range.
2873 */
2874 case OP_Affinity: {
2875   const char *zAffinity;   /* The affinity to be applied */
2876 
2877   zAffinity = pOp->p4.z;
2878   assert( zAffinity!=0 );
2879   assert( pOp->p2>0 );
2880   assert( zAffinity[pOp->p2]==0 );
2881   pIn1 = &aMem[pOp->p1];
2882   while( 1 /*exit-by-break*/ ){
2883     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2884     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
2885     applyAffinity(pIn1, zAffinity[0], encoding);
2886     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
2887       /* When applying REAL affinity, if the result is still an MEM_Int
2888       ** that will fit in 6 bytes, then change the type to MEM_IntReal
2889       ** so that we keep the high-resolution integer value but know that
2890       ** the type really wants to be REAL. */
2891       testcase( pIn1->u.i==140737488355328LL );
2892       testcase( pIn1->u.i==140737488355327LL );
2893       testcase( pIn1->u.i==-140737488355328LL );
2894       testcase( pIn1->u.i==-140737488355329LL );
2895       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
2896         pIn1->flags |= MEM_IntReal;
2897         pIn1->flags &= ~MEM_Int;
2898       }else{
2899         pIn1->u.r = (double)pIn1->u.i;
2900         pIn1->flags |= MEM_Real;
2901         pIn1->flags &= ~MEM_Int;
2902       }
2903     }
2904     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
2905     zAffinity++;
2906     if( zAffinity[0]==0 ) break;
2907     pIn1++;
2908   }
2909   break;
2910 }
2911 
2912 /* Opcode: MakeRecord P1 P2 P3 P4 *
2913 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2914 **
2915 ** Convert P2 registers beginning with P1 into the [record format]
2916 ** use as a data record in a database table or as a key
2917 ** in an index.  The OP_Column opcode can decode the record later.
2918 **
2919 ** P4 may be a string that is P2 characters long.  The N-th character of the
2920 ** string indicates the column affinity that should be used for the N-th
2921 ** field of the index key.
2922 **
2923 ** The mapping from character to affinity is given by the SQLITE_AFF_
2924 ** macros defined in sqliteInt.h.
2925 **
2926 ** If P4 is NULL then all index fields have the affinity BLOB.
2927 **
2928 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
2929 ** compile-time option is enabled:
2930 **
2931 **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
2932 **     of the right-most table that can be null-trimmed.
2933 **
2934 **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
2935 **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
2936 **     accept no-change records with serial_type 10.  This value is
2937 **     only used inside an assert() and does not affect the end result.
2938 */
2939 case OP_MakeRecord: {
2940   Mem *pRec;             /* The new record */
2941   u64 nData;             /* Number of bytes of data space */
2942   int nHdr;              /* Number of bytes of header space */
2943   i64 nByte;             /* Data space required for this record */
2944   i64 nZero;             /* Number of zero bytes at the end of the record */
2945   int nVarint;           /* Number of bytes in a varint */
2946   u32 serial_type;       /* Type field */
2947   Mem *pData0;           /* First field to be combined into the record */
2948   Mem *pLast;            /* Last field of the record */
2949   int nField;            /* Number of fields in the record */
2950   char *zAffinity;       /* The affinity string for the record */
2951   int file_format;       /* File format to use for encoding */
2952   u32 len;               /* Length of a field */
2953   u8 *zHdr;              /* Where to write next byte of the header */
2954   u8 *zPayload;          /* Where to write next byte of the payload */
2955 
2956   /* Assuming the record contains N fields, the record format looks
2957   ** like this:
2958   **
2959   ** ------------------------------------------------------------------------
2960   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2961   ** ------------------------------------------------------------------------
2962   **
2963   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2964   ** and so forth.
2965   **
2966   ** Each type field is a varint representing the serial type of the
2967   ** corresponding data element (see sqlite3VdbeSerialType()). The
2968   ** hdr-size field is also a varint which is the offset from the beginning
2969   ** of the record to data0.
2970   */
2971   nData = 0;         /* Number of bytes of data space */
2972   nHdr = 0;          /* Number of bytes of header space */
2973   nZero = 0;         /* Number of zero bytes at the end of the record */
2974   nField = pOp->p1;
2975   zAffinity = pOp->p4.z;
2976   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2977   pData0 = &aMem[nField];
2978   nField = pOp->p2;
2979   pLast = &pData0[nField-1];
2980   file_format = p->minWriteFileFormat;
2981 
2982   /* Identify the output register */
2983   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2984   pOut = &aMem[pOp->p3];
2985   memAboutToChange(p, pOut);
2986 
2987   /* Apply the requested affinity to all inputs
2988   */
2989   assert( pData0<=pLast );
2990   if( zAffinity ){
2991     pRec = pData0;
2992     do{
2993       applyAffinity(pRec, zAffinity[0], encoding);
2994       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
2995         pRec->flags |= MEM_IntReal;
2996         pRec->flags &= ~(MEM_Int);
2997       }
2998       REGISTER_TRACE((int)(pRec-aMem), pRec);
2999       zAffinity++;
3000       pRec++;
3001       assert( zAffinity[0]==0 || pRec<=pLast );
3002     }while( zAffinity[0] );
3003   }
3004 
3005 #ifdef SQLITE_ENABLE_NULL_TRIM
3006   /* NULLs can be safely trimmed from the end of the record, as long as
3007   ** as the schema format is 2 or more and none of the omitted columns
3008   ** have a non-NULL default value.  Also, the record must be left with
3009   ** at least one field.  If P5>0 then it will be one more than the
3010   ** index of the right-most column with a non-NULL default value */
3011   if( pOp->p5 ){
3012     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3013       pLast--;
3014       nField--;
3015     }
3016   }
3017 #endif
3018 
3019   /* Loop through the elements that will make up the record to figure
3020   ** out how much space is required for the new record.  After this loop,
3021   ** the Mem.uTemp field of each term should hold the serial-type that will
3022   ** be used for that term in the generated record:
3023   **
3024   **   Mem.uTemp value    type
3025   **   ---------------    ---------------
3026   **      0               NULL
3027   **      1               1-byte signed integer
3028   **      2               2-byte signed integer
3029   **      3               3-byte signed integer
3030   **      4               4-byte signed integer
3031   **      5               6-byte signed integer
3032   **      6               8-byte signed integer
3033   **      7               IEEE float
3034   **      8               Integer constant 0
3035   **      9               Integer constant 1
3036   **     10,11            reserved for expansion
3037   **    N>=12 and even    BLOB
3038   **    N>=13 and odd     text
3039   **
3040   ** The following additional values are computed:
3041   **     nHdr        Number of bytes needed for the record header
3042   **     nData       Number of bytes of data space needed for the record
3043   **     nZero       Zero bytes at the end of the record
3044   */
3045   pRec = pLast;
3046   do{
3047     assert( memIsValid(pRec) );
3048     if( pRec->flags & MEM_Null ){
3049       if( pRec->flags & MEM_Zero ){
3050         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3051         ** table methods that never invoke sqlite3_result_xxxxx() while
3052         ** computing an unchanging column value in an UPDATE statement.
3053         ** Give such values a special internal-use-only serial-type of 10
3054         ** so that they can be passed through to xUpdate and have
3055         ** a true sqlite3_value_nochange(). */
3056 #ifndef SQLITE_ENABLE_NULL_TRIM
3057         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3058 #endif
3059         pRec->uTemp = 10;
3060       }else{
3061         pRec->uTemp = 0;
3062       }
3063       nHdr++;
3064     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3065       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3066       i64 i = pRec->u.i;
3067       u64 uu;
3068       testcase( pRec->flags & MEM_Int );
3069       testcase( pRec->flags & MEM_IntReal );
3070       if( i<0 ){
3071         uu = ~i;
3072       }else{
3073         uu = i;
3074       }
3075       nHdr++;
3076       testcase( uu==127 );               testcase( uu==128 );
3077       testcase( uu==32767 );             testcase( uu==32768 );
3078       testcase( uu==8388607 );           testcase( uu==8388608 );
3079       testcase( uu==2147483647 );        testcase( uu==2147483648 );
3080       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3081       if( uu<=127 ){
3082         if( (i&1)==i && file_format>=4 ){
3083           pRec->uTemp = 8+(u32)uu;
3084         }else{
3085           nData++;
3086           pRec->uTemp = 1;
3087         }
3088       }else if( uu<=32767 ){
3089         nData += 2;
3090         pRec->uTemp = 2;
3091       }else if( uu<=8388607 ){
3092         nData += 3;
3093         pRec->uTemp = 3;
3094       }else if( uu<=2147483647 ){
3095         nData += 4;
3096         pRec->uTemp = 4;
3097       }else if( uu<=140737488355327LL ){
3098         nData += 6;
3099         pRec->uTemp = 5;
3100       }else{
3101         nData += 8;
3102         if( pRec->flags & MEM_IntReal ){
3103           /* If the value is IntReal and is going to take up 8 bytes to store
3104           ** as an integer, then we might as well make it an 8-byte floating
3105           ** point value */
3106           pRec->u.r = (double)pRec->u.i;
3107           pRec->flags &= ~MEM_IntReal;
3108           pRec->flags |= MEM_Real;
3109           pRec->uTemp = 7;
3110         }else{
3111           pRec->uTemp = 6;
3112         }
3113       }
3114     }else if( pRec->flags & MEM_Real ){
3115       nHdr++;
3116       nData += 8;
3117       pRec->uTemp = 7;
3118     }else{
3119       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3120       assert( pRec->n>=0 );
3121       len = (u32)pRec->n;
3122       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3123       if( pRec->flags & MEM_Zero ){
3124         serial_type += pRec->u.nZero*2;
3125         if( nData ){
3126           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3127           len += pRec->u.nZero;
3128         }else{
3129           nZero += pRec->u.nZero;
3130         }
3131       }
3132       nData += len;
3133       nHdr += sqlite3VarintLen(serial_type);
3134       pRec->uTemp = serial_type;
3135     }
3136     if( pRec==pData0 ) break;
3137     pRec--;
3138   }while(1);
3139 
3140   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3141   ** which determines the total number of bytes in the header. The varint
3142   ** value is the size of the header in bytes including the size varint
3143   ** itself. */
3144   testcase( nHdr==126 );
3145   testcase( nHdr==127 );
3146   if( nHdr<=126 ){
3147     /* The common case */
3148     nHdr += 1;
3149   }else{
3150     /* Rare case of a really large header */
3151     nVarint = sqlite3VarintLen(nHdr);
3152     nHdr += nVarint;
3153     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3154   }
3155   nByte = nHdr+nData;
3156 
3157   /* Make sure the output register has a buffer large enough to store
3158   ** the new record. The output register (pOp->p3) is not allowed to
3159   ** be one of the input registers (because the following call to
3160   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3161   */
3162   if( nByte+nZero<=pOut->szMalloc ){
3163     /* The output register is already large enough to hold the record.
3164     ** No error checks or buffer enlargement is required */
3165     pOut->z = pOut->zMalloc;
3166   }else{
3167     /* Need to make sure that the output is not too big and then enlarge
3168     ** the output register to hold the full result */
3169     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3170       goto too_big;
3171     }
3172     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3173       goto no_mem;
3174     }
3175   }
3176   pOut->n = (int)nByte;
3177   pOut->flags = MEM_Blob;
3178   if( nZero ){
3179     pOut->u.nZero = nZero;
3180     pOut->flags |= MEM_Zero;
3181   }
3182   UPDATE_MAX_BLOBSIZE(pOut);
3183   zHdr = (u8 *)pOut->z;
3184   zPayload = zHdr + nHdr;
3185 
3186   /* Write the record */
3187   zHdr += putVarint32(zHdr, nHdr);
3188   assert( pData0<=pLast );
3189   pRec = pData0;
3190   do{
3191     serial_type = pRec->uTemp;
3192     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3193     ** additional varints, one per column. */
3194     zHdr += putVarint32(zHdr, serial_type);            /* serial type */
3195     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
3196     ** immediately follow the header. */
3197     zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */
3198   }while( (++pRec)<=pLast );
3199   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3200   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3201 
3202   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3203   REGISTER_TRACE(pOp->p3, pOut);
3204   break;
3205 }
3206 
3207 /* Opcode: Count P1 P2 p3 * *
3208 ** Synopsis: r[P2]=count()
3209 **
3210 ** Store the number of entries (an integer value) in the table or index
3211 ** opened by cursor P1 in register P2.
3212 **
3213 ** If P3==0, then an exact count is obtained, which involves visiting
3214 ** every btree page of the table.  But if P3 is non-zero, an estimate
3215 ** is returned based on the current cursor position.
3216 */
3217 case OP_Count: {         /* out2 */
3218   i64 nEntry;
3219   BtCursor *pCrsr;
3220 
3221   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3222   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3223   assert( pCrsr );
3224   if( pOp->p3 ){
3225     nEntry = sqlite3BtreeRowCountEst(pCrsr);
3226   }else{
3227     nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3228     rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3229     if( rc ) goto abort_due_to_error;
3230   }
3231   pOut = out2Prerelease(p, pOp);
3232   pOut->u.i = nEntry;
3233   goto check_for_interrupt;
3234 }
3235 
3236 /* Opcode: Savepoint P1 * * P4 *
3237 **
3238 ** Open, release or rollback the savepoint named by parameter P4, depending
3239 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3240 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3241 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3242 */
3243 case OP_Savepoint: {
3244   int p1;                         /* Value of P1 operand */
3245   char *zName;                    /* Name of savepoint */
3246   int nName;
3247   Savepoint *pNew;
3248   Savepoint *pSavepoint;
3249   Savepoint *pTmp;
3250   int iSavepoint;
3251   int ii;
3252 
3253   p1 = pOp->p1;
3254   zName = pOp->p4.z;
3255 
3256   /* Assert that the p1 parameter is valid. Also that if there is no open
3257   ** transaction, then there cannot be any savepoints.
3258   */
3259   assert( db->pSavepoint==0 || db->autoCommit==0 );
3260   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3261   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3262   assert( checkSavepointCount(db) );
3263   assert( p->bIsReader );
3264 
3265   if( p1==SAVEPOINT_BEGIN ){
3266     if( db->nVdbeWrite>0 ){
3267       /* A new savepoint cannot be created if there are active write
3268       ** statements (i.e. open read/write incremental blob handles).
3269       */
3270       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3271       rc = SQLITE_BUSY;
3272     }else{
3273       nName = sqlite3Strlen30(zName);
3274 
3275 #ifndef SQLITE_OMIT_VIRTUALTABLE
3276       /* This call is Ok even if this savepoint is actually a transaction
3277       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3278       ** If this is a transaction savepoint being opened, it is guaranteed
3279       ** that the db->aVTrans[] array is empty.  */
3280       assert( db->autoCommit==0 || db->nVTrans==0 );
3281       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3282                                 db->nStatement+db->nSavepoint);
3283       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3284 #endif
3285 
3286       /* Create a new savepoint structure. */
3287       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3288       if( pNew ){
3289         pNew->zName = (char *)&pNew[1];
3290         memcpy(pNew->zName, zName, nName+1);
3291 
3292         /* If there is no open transaction, then mark this as a special
3293         ** "transaction savepoint". */
3294         if( db->autoCommit ){
3295           db->autoCommit = 0;
3296           db->isTransactionSavepoint = 1;
3297         }else{
3298           db->nSavepoint++;
3299         }
3300 
3301         /* Link the new savepoint into the database handle's list. */
3302         pNew->pNext = db->pSavepoint;
3303         db->pSavepoint = pNew;
3304         pNew->nDeferredCons = db->nDeferredCons;
3305         pNew->nDeferredImmCons = db->nDeferredImmCons;
3306       }
3307     }
3308   }else{
3309     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3310     iSavepoint = 0;
3311 
3312     /* Find the named savepoint. If there is no such savepoint, then an
3313     ** an error is returned to the user.  */
3314     for(
3315       pSavepoint = db->pSavepoint;
3316       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3317       pSavepoint = pSavepoint->pNext
3318     ){
3319       iSavepoint++;
3320     }
3321     if( !pSavepoint ){
3322       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3323       rc = SQLITE_ERROR;
3324     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3325       /* It is not possible to release (commit) a savepoint if there are
3326       ** active write statements.
3327       */
3328       sqlite3VdbeError(p, "cannot release savepoint - "
3329                           "SQL statements in progress");
3330       rc = SQLITE_BUSY;
3331     }else{
3332 
3333       /* Determine whether or not this is a transaction savepoint. If so,
3334       ** and this is a RELEASE command, then the current transaction
3335       ** is committed.
3336       */
3337       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3338       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3339         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3340           goto vdbe_return;
3341         }
3342         db->autoCommit = 1;
3343         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3344           p->pc = (int)(pOp - aOp);
3345           db->autoCommit = 0;
3346           p->rc = rc = SQLITE_BUSY;
3347           goto vdbe_return;
3348         }
3349         rc = p->rc;
3350         if( rc ){
3351           db->autoCommit = 0;
3352         }else{
3353           db->isTransactionSavepoint = 0;
3354         }
3355       }else{
3356         int isSchemaChange;
3357         iSavepoint = db->nSavepoint - iSavepoint - 1;
3358         if( p1==SAVEPOINT_ROLLBACK ){
3359           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3360           for(ii=0; ii<db->nDb; ii++){
3361             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3362                                        SQLITE_ABORT_ROLLBACK,
3363                                        isSchemaChange==0);
3364             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3365           }
3366         }else{
3367           assert( p1==SAVEPOINT_RELEASE );
3368           isSchemaChange = 0;
3369         }
3370         for(ii=0; ii<db->nDb; ii++){
3371           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3372           if( rc!=SQLITE_OK ){
3373             goto abort_due_to_error;
3374           }
3375         }
3376         if( isSchemaChange ){
3377           sqlite3ExpirePreparedStatements(db, 0);
3378           sqlite3ResetAllSchemasOfConnection(db);
3379           db->mDbFlags |= DBFLAG_SchemaChange;
3380         }
3381       }
3382       if( rc ) goto abort_due_to_error;
3383 
3384       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3385       ** savepoints nested inside of the savepoint being operated on. */
3386       while( db->pSavepoint!=pSavepoint ){
3387         pTmp = db->pSavepoint;
3388         db->pSavepoint = pTmp->pNext;
3389         sqlite3DbFree(db, pTmp);
3390         db->nSavepoint--;
3391       }
3392 
3393       /* If it is a RELEASE, then destroy the savepoint being operated on
3394       ** too. If it is a ROLLBACK TO, then set the number of deferred
3395       ** constraint violations present in the database to the value stored
3396       ** when the savepoint was created.  */
3397       if( p1==SAVEPOINT_RELEASE ){
3398         assert( pSavepoint==db->pSavepoint );
3399         db->pSavepoint = pSavepoint->pNext;
3400         sqlite3DbFree(db, pSavepoint);
3401         if( !isTransaction ){
3402           db->nSavepoint--;
3403         }
3404       }else{
3405         assert( p1==SAVEPOINT_ROLLBACK );
3406         db->nDeferredCons = pSavepoint->nDeferredCons;
3407         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3408       }
3409 
3410       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3411         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3412         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3413       }
3414     }
3415   }
3416   if( rc ) goto abort_due_to_error;
3417 
3418   break;
3419 }
3420 
3421 /* Opcode: AutoCommit P1 P2 * * *
3422 **
3423 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3424 ** back any currently active btree transactions. If there are any active
3425 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3426 ** there are active writing VMs or active VMs that use shared cache.
3427 **
3428 ** This instruction causes the VM to halt.
3429 */
3430 case OP_AutoCommit: {
3431   int desiredAutoCommit;
3432   int iRollback;
3433 
3434   desiredAutoCommit = pOp->p1;
3435   iRollback = pOp->p2;
3436   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3437   assert( desiredAutoCommit==1 || iRollback==0 );
3438   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3439   assert( p->bIsReader );
3440 
3441   if( desiredAutoCommit!=db->autoCommit ){
3442     if( iRollback ){
3443       assert( desiredAutoCommit==1 );
3444       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3445       db->autoCommit = 1;
3446     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3447       /* If this instruction implements a COMMIT and other VMs are writing
3448       ** return an error indicating that the other VMs must complete first.
3449       */
3450       sqlite3VdbeError(p, "cannot commit transaction - "
3451                           "SQL statements in progress");
3452       rc = SQLITE_BUSY;
3453       goto abort_due_to_error;
3454     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3455       goto vdbe_return;
3456     }else{
3457       db->autoCommit = (u8)desiredAutoCommit;
3458     }
3459     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3460       p->pc = (int)(pOp - aOp);
3461       db->autoCommit = (u8)(1-desiredAutoCommit);
3462       p->rc = rc = SQLITE_BUSY;
3463       goto vdbe_return;
3464     }
3465     sqlite3CloseSavepoints(db);
3466     if( p->rc==SQLITE_OK ){
3467       rc = SQLITE_DONE;
3468     }else{
3469       rc = SQLITE_ERROR;
3470     }
3471     goto vdbe_return;
3472   }else{
3473     sqlite3VdbeError(p,
3474         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3475         (iRollback)?"cannot rollback - no transaction is active":
3476                    "cannot commit - no transaction is active"));
3477 
3478     rc = SQLITE_ERROR;
3479     goto abort_due_to_error;
3480   }
3481   /*NOTREACHED*/ assert(0);
3482 }
3483 
3484 /* Opcode: Transaction P1 P2 P3 P4 P5
3485 **
3486 ** Begin a transaction on database P1 if a transaction is not already
3487 ** active.
3488 ** If P2 is non-zero, then a write-transaction is started, or if a
3489 ** read-transaction is already active, it is upgraded to a write-transaction.
3490 ** If P2 is zero, then a read-transaction is started.
3491 **
3492 ** P1 is the index of the database file on which the transaction is
3493 ** started.  Index 0 is the main database file and index 1 is the
3494 ** file used for temporary tables.  Indices of 2 or more are used for
3495 ** attached databases.
3496 **
3497 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3498 ** true (this flag is set if the Vdbe may modify more than one row and may
3499 ** throw an ABORT exception), a statement transaction may also be opened.
3500 ** More specifically, a statement transaction is opened iff the database
3501 ** connection is currently not in autocommit mode, or if there are other
3502 ** active statements. A statement transaction allows the changes made by this
3503 ** VDBE to be rolled back after an error without having to roll back the
3504 ** entire transaction. If no error is encountered, the statement transaction
3505 ** will automatically commit when the VDBE halts.
3506 **
3507 ** If P5!=0 then this opcode also checks the schema cookie against P3
3508 ** and the schema generation counter against P4.
3509 ** The cookie changes its value whenever the database schema changes.
3510 ** This operation is used to detect when that the cookie has changed
3511 ** and that the current process needs to reread the schema.  If the schema
3512 ** cookie in P3 differs from the schema cookie in the database header or
3513 ** if the schema generation counter in P4 differs from the current
3514 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3515 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3516 ** statement and rerun it from the beginning.
3517 */
3518 case OP_Transaction: {
3519   Btree *pBt;
3520   int iMeta = 0;
3521 
3522   assert( p->bIsReader );
3523   assert( p->readOnly==0 || pOp->p2==0 );
3524   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3525   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3526   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3527     rc = SQLITE_READONLY;
3528     goto abort_due_to_error;
3529   }
3530   pBt = db->aDb[pOp->p1].pBt;
3531 
3532   if( pBt ){
3533     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3534     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3535     testcase( rc==SQLITE_BUSY_RECOVERY );
3536     if( rc!=SQLITE_OK ){
3537       if( (rc&0xff)==SQLITE_BUSY ){
3538         p->pc = (int)(pOp - aOp);
3539         p->rc = rc;
3540         goto vdbe_return;
3541       }
3542       goto abort_due_to_error;
3543     }
3544 
3545     if( p->usesStmtJournal
3546      && pOp->p2
3547      && (db->autoCommit==0 || db->nVdbeRead>1)
3548     ){
3549       assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3550       if( p->iStatement==0 ){
3551         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3552         db->nStatement++;
3553         p->iStatement = db->nSavepoint + db->nStatement;
3554       }
3555 
3556       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3557       if( rc==SQLITE_OK ){
3558         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3559       }
3560 
3561       /* Store the current value of the database handles deferred constraint
3562       ** counter. If the statement transaction needs to be rolled back,
3563       ** the value of this counter needs to be restored too.  */
3564       p->nStmtDefCons = db->nDeferredCons;
3565       p->nStmtDefImmCons = db->nDeferredImmCons;
3566     }
3567   }
3568   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3569   if( pOp->p5
3570    && (iMeta!=pOp->p3
3571       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3572   ){
3573     /*
3574     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3575     ** version is checked to ensure that the schema has not changed since the
3576     ** SQL statement was prepared.
3577     */
3578     sqlite3DbFree(db, p->zErrMsg);
3579     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3580     /* If the schema-cookie from the database file matches the cookie
3581     ** stored with the in-memory representation of the schema, do
3582     ** not reload the schema from the database file.
3583     **
3584     ** If virtual-tables are in use, this is not just an optimization.
3585     ** Often, v-tables store their data in other SQLite tables, which
3586     ** are queried from within xNext() and other v-table methods using
3587     ** prepared queries. If such a query is out-of-date, we do not want to
3588     ** discard the database schema, as the user code implementing the
3589     ** v-table would have to be ready for the sqlite3_vtab structure itself
3590     ** to be invalidated whenever sqlite3_step() is called from within
3591     ** a v-table method.
3592     */
3593     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3594       sqlite3ResetOneSchema(db, pOp->p1);
3595     }
3596     p->expired = 1;
3597     rc = SQLITE_SCHEMA;
3598   }
3599   if( rc ) goto abort_due_to_error;
3600   break;
3601 }
3602 
3603 /* Opcode: ReadCookie P1 P2 P3 * *
3604 **
3605 ** Read cookie number P3 from database P1 and write it into register P2.
3606 ** P3==1 is the schema version.  P3==2 is the database format.
3607 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3608 ** the main database file and P1==1 is the database file used to store
3609 ** temporary tables.
3610 **
3611 ** There must be a read-lock on the database (either a transaction
3612 ** must be started or there must be an open cursor) before
3613 ** executing this instruction.
3614 */
3615 case OP_ReadCookie: {               /* out2 */
3616   int iMeta;
3617   int iDb;
3618   int iCookie;
3619 
3620   assert( p->bIsReader );
3621   iDb = pOp->p1;
3622   iCookie = pOp->p3;
3623   assert( pOp->p3<SQLITE_N_BTREE_META );
3624   assert( iDb>=0 && iDb<db->nDb );
3625   assert( db->aDb[iDb].pBt!=0 );
3626   assert( DbMaskTest(p->btreeMask, iDb) );
3627 
3628   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3629   pOut = out2Prerelease(p, pOp);
3630   pOut->u.i = iMeta;
3631   break;
3632 }
3633 
3634 /* Opcode: SetCookie P1 P2 P3 * P5
3635 **
3636 ** Write the integer value P3 into cookie number P2 of database P1.
3637 ** P2==1 is the schema version.  P2==2 is the database format.
3638 ** P2==3 is the recommended pager cache
3639 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3640 ** database file used to store temporary tables.
3641 **
3642 ** A transaction must be started before executing this opcode.
3643 **
3644 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
3645 ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
3646 ** has P5 set to 1, so that the internal schema version will be different
3647 ** from the database schema version, resulting in a schema reset.
3648 */
3649 case OP_SetCookie: {
3650   Db *pDb;
3651 
3652   sqlite3VdbeIncrWriteCounter(p, 0);
3653   assert( pOp->p2<SQLITE_N_BTREE_META );
3654   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3655   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3656   assert( p->readOnly==0 );
3657   pDb = &db->aDb[pOp->p1];
3658   assert( pDb->pBt!=0 );
3659   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3660   /* See note about index shifting on OP_ReadCookie */
3661   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3662   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3663     /* When the schema cookie changes, record the new cookie internally */
3664     pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5;
3665     db->mDbFlags |= DBFLAG_SchemaChange;
3666   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3667     /* Record changes in the file format */
3668     pDb->pSchema->file_format = pOp->p3;
3669   }
3670   if( pOp->p1==1 ){
3671     /* Invalidate all prepared statements whenever the TEMP database
3672     ** schema is changed.  Ticket #1644 */
3673     sqlite3ExpirePreparedStatements(db, 0);
3674     p->expired = 0;
3675   }
3676   if( rc ) goto abort_due_to_error;
3677   break;
3678 }
3679 
3680 /* Opcode: OpenRead P1 P2 P3 P4 P5
3681 ** Synopsis: root=P2 iDb=P3
3682 **
3683 ** Open a read-only cursor for the database table whose root page is
3684 ** P2 in a database file.  The database file is determined by P3.
3685 ** P3==0 means the main database, P3==1 means the database used for
3686 ** temporary tables, and P3>1 means used the corresponding attached
3687 ** database.  Give the new cursor an identifier of P1.  The P1
3688 ** values need not be contiguous but all P1 values should be small integers.
3689 ** It is an error for P1 to be negative.
3690 **
3691 ** Allowed P5 bits:
3692 ** <ul>
3693 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3694 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3695 **       of OP_SeekLE/OP_IdxLT)
3696 ** </ul>
3697 **
3698 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3699 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3700 ** object, then table being opened must be an [index b-tree] where the
3701 ** KeyInfo object defines the content and collating
3702 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3703 ** value, then the table being opened must be a [table b-tree] with a
3704 ** number of columns no less than the value of P4.
3705 **
3706 ** See also: OpenWrite, ReopenIdx
3707 */
3708 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3709 ** Synopsis: root=P2 iDb=P3
3710 **
3711 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3712 ** checks to see if the cursor on P1 is already open on the same
3713 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3714 ** if the cursor is already open, do not reopen it.
3715 **
3716 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3717 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3718 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3719 ** number.
3720 **
3721 ** Allowed P5 bits:
3722 ** <ul>
3723 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3724 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3725 **       of OP_SeekLE/OP_IdxLT)
3726 ** </ul>
3727 **
3728 ** See also: OP_OpenRead, OP_OpenWrite
3729 */
3730 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3731 ** Synopsis: root=P2 iDb=P3
3732 **
3733 ** Open a read/write cursor named P1 on the table or index whose root
3734 ** page is P2 (or whose root page is held in register P2 if the
3735 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3736 **
3737 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3738 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3739 ** object, then table being opened must be an [index b-tree] where the
3740 ** KeyInfo object defines the content and collating
3741 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3742 ** value, then the table being opened must be a [table b-tree] with a
3743 ** number of columns no less than the value of P4.
3744 **
3745 ** Allowed P5 bits:
3746 ** <ul>
3747 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3748 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3749 **       of OP_SeekLE/OP_IdxLT)
3750 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3751 **       and subsequently delete entries in an index btree.  This is a
3752 **       hint to the storage engine that the storage engine is allowed to
3753 **       ignore.  The hint is not used by the official SQLite b*tree storage
3754 **       engine, but is used by COMDB2.
3755 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3756 **       as the root page, not the value of P2 itself.
3757 ** </ul>
3758 **
3759 ** This instruction works like OpenRead except that it opens the cursor
3760 ** in read/write mode.
3761 **
3762 ** See also: OP_OpenRead, OP_ReopenIdx
3763 */
3764 case OP_ReopenIdx: {
3765   int nField;
3766   KeyInfo *pKeyInfo;
3767   u32 p2;
3768   int iDb;
3769   int wrFlag;
3770   Btree *pX;
3771   VdbeCursor *pCur;
3772   Db *pDb;
3773 
3774   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3775   assert( pOp->p4type==P4_KEYINFO );
3776   pCur = p->apCsr[pOp->p1];
3777   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3778     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3779     goto open_cursor_set_hints;
3780   }
3781   /* If the cursor is not currently open or is open on a different
3782   ** index, then fall through into OP_OpenRead to force a reopen */
3783 case OP_OpenRead:
3784 case OP_OpenWrite:
3785 
3786   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3787   assert( p->bIsReader );
3788   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3789           || p->readOnly==0 );
3790 
3791   if( p->expired==1 ){
3792     rc = SQLITE_ABORT_ROLLBACK;
3793     goto abort_due_to_error;
3794   }
3795 
3796   nField = 0;
3797   pKeyInfo = 0;
3798   p2 = (u32)pOp->p2;
3799   iDb = pOp->p3;
3800   assert( iDb>=0 && iDb<db->nDb );
3801   assert( DbMaskTest(p->btreeMask, iDb) );
3802   pDb = &db->aDb[iDb];
3803   pX = pDb->pBt;
3804   assert( pX!=0 );
3805   if( pOp->opcode==OP_OpenWrite ){
3806     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3807     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3808     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3809     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3810       p->minWriteFileFormat = pDb->pSchema->file_format;
3811     }
3812   }else{
3813     wrFlag = 0;
3814   }
3815   if( pOp->p5 & OPFLAG_P2ISREG ){
3816     assert( p2>0 );
3817     assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
3818     assert( pOp->opcode==OP_OpenWrite );
3819     pIn2 = &aMem[p2];
3820     assert( memIsValid(pIn2) );
3821     assert( (pIn2->flags & MEM_Int)!=0 );
3822     sqlite3VdbeMemIntegerify(pIn2);
3823     p2 = (int)pIn2->u.i;
3824     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3825     ** that opcode will always set the p2 value to 2 or more or else fail.
3826     ** If there were a failure, the prepared statement would have halted
3827     ** before reaching this instruction. */
3828     assert( p2>=2 );
3829   }
3830   if( pOp->p4type==P4_KEYINFO ){
3831     pKeyInfo = pOp->p4.pKeyInfo;
3832     assert( pKeyInfo->enc==ENC(db) );
3833     assert( pKeyInfo->db==db );
3834     nField = pKeyInfo->nAllField;
3835   }else if( pOp->p4type==P4_INT32 ){
3836     nField = pOp->p4.i;
3837   }
3838   assert( pOp->p1>=0 );
3839   assert( nField>=0 );
3840   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3841   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3842   if( pCur==0 ) goto no_mem;
3843   pCur->nullRow = 1;
3844   pCur->isOrdered = 1;
3845   pCur->pgnoRoot = p2;
3846 #ifdef SQLITE_DEBUG
3847   pCur->wrFlag = wrFlag;
3848 #endif
3849   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3850   pCur->pKeyInfo = pKeyInfo;
3851   /* Set the VdbeCursor.isTable variable. Previous versions of
3852   ** SQLite used to check if the root-page flags were sane at this point
3853   ** and report database corruption if they were not, but this check has
3854   ** since moved into the btree layer.  */
3855   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3856 
3857 open_cursor_set_hints:
3858   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3859   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3860   testcase( pOp->p5 & OPFLAG_BULKCSR );
3861   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3862   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3863                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3864   if( rc ) goto abort_due_to_error;
3865   break;
3866 }
3867 
3868 /* Opcode: OpenDup P1 P2 * * *
3869 **
3870 ** Open a new cursor P1 that points to the same ephemeral table as
3871 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3872 ** opcode.  Only ephemeral cursors may be duplicated.
3873 **
3874 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3875 */
3876 case OP_OpenDup: {
3877   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3878   VdbeCursor *pCx;      /* The new cursor */
3879 
3880   pOrig = p->apCsr[pOp->p2];
3881   assert( pOrig );
3882   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3883 
3884   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3885   if( pCx==0 ) goto no_mem;
3886   pCx->nullRow = 1;
3887   pCx->isEphemeral = 1;
3888   pCx->pKeyInfo = pOrig->pKeyInfo;
3889   pCx->isTable = pOrig->isTable;
3890   pCx->pgnoRoot = pOrig->pgnoRoot;
3891   pCx->isOrdered = pOrig->isOrdered;
3892   rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3893                           pCx->pKeyInfo, pCx->uc.pCursor);
3894   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3895   ** opened for a database.  Since there is already an open cursor when this
3896   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3897   assert( rc==SQLITE_OK );
3898   break;
3899 }
3900 
3901 
3902 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3903 ** Synopsis: nColumn=P2
3904 **
3905 ** Open a new cursor P1 to a transient table.
3906 ** The cursor is always opened read/write even if
3907 ** the main database is read-only.  The ephemeral
3908 ** table is deleted automatically when the cursor is closed.
3909 **
3910 ** If the cursor P1 is already opened on an ephemeral table, the table
3911 ** is cleared (all content is erased).
3912 **
3913 ** P2 is the number of columns in the ephemeral table.
3914 ** The cursor points to a BTree table if P4==0 and to a BTree index
3915 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3916 ** that defines the format of keys in the index.
3917 **
3918 ** The P5 parameter can be a mask of the BTREE_* flags defined
3919 ** in btree.h.  These flags control aspects of the operation of
3920 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3921 ** added automatically.
3922 */
3923 /* Opcode: OpenAutoindex P1 P2 * P4 *
3924 ** Synopsis: nColumn=P2
3925 **
3926 ** This opcode works the same as OP_OpenEphemeral.  It has a
3927 ** different name to distinguish its use.  Tables created using
3928 ** by this opcode will be used for automatically created transient
3929 ** indices in joins.
3930 */
3931 case OP_OpenAutoindex:
3932 case OP_OpenEphemeral: {
3933   VdbeCursor *pCx;
3934   KeyInfo *pKeyInfo;
3935 
3936   static const int vfsFlags =
3937       SQLITE_OPEN_READWRITE |
3938       SQLITE_OPEN_CREATE |
3939       SQLITE_OPEN_EXCLUSIVE |
3940       SQLITE_OPEN_DELETEONCLOSE |
3941       SQLITE_OPEN_TRANSIENT_DB;
3942   assert( pOp->p1>=0 );
3943   assert( pOp->p2>=0 );
3944   pCx = p->apCsr[pOp->p1];
3945   if( pCx && pCx->pBtx ){
3946     /* If the ephermeral table is already open, erase all existing content
3947     ** so that the table is empty again, rather than creating a new table. */
3948     assert( pCx->isEphemeral );
3949     pCx->seqCount = 0;
3950     pCx->cacheStatus = CACHE_STALE;
3951     rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0);
3952   }else{
3953     pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3954     if( pCx==0 ) goto no_mem;
3955     pCx->isEphemeral = 1;
3956     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3957                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
3958                           vfsFlags);
3959     if( rc==SQLITE_OK ){
3960       rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
3961     }
3962     if( rc==SQLITE_OK ){
3963       /* If a transient index is required, create it by calling
3964       ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3965       ** opening it. If a transient table is required, just use the
3966       ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3967       */
3968       if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3969         assert( pOp->p4type==P4_KEYINFO );
3970         rc = sqlite3BtreeCreateTable(pCx->pBtx, &pCx->pgnoRoot,
3971                                      BTREE_BLOBKEY | pOp->p5);
3972         if( rc==SQLITE_OK ){
3973           assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
3974           assert( pKeyInfo->db==db );
3975           assert( pKeyInfo->enc==ENC(db) );
3976           rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3977                                   pKeyInfo, pCx->uc.pCursor);
3978         }
3979         pCx->isTable = 0;
3980       }else{
3981         pCx->pgnoRoot = SCHEMA_ROOT;
3982         rc = sqlite3BtreeCursor(pCx->pBtx, SCHEMA_ROOT, BTREE_WRCSR,
3983                                 0, pCx->uc.pCursor);
3984         pCx->isTable = 1;
3985       }
3986     }
3987     pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3988   }
3989   if( rc ) goto abort_due_to_error;
3990   pCx->nullRow = 1;
3991   break;
3992 }
3993 
3994 /* Opcode: SorterOpen P1 P2 P3 P4 *
3995 **
3996 ** This opcode works like OP_OpenEphemeral except that it opens
3997 ** a transient index that is specifically designed to sort large
3998 ** tables using an external merge-sort algorithm.
3999 **
4000 ** If argument P3 is non-zero, then it indicates that the sorter may
4001 ** assume that a stable sort considering the first P3 fields of each
4002 ** key is sufficient to produce the required results.
4003 */
4004 case OP_SorterOpen: {
4005   VdbeCursor *pCx;
4006 
4007   assert( pOp->p1>=0 );
4008   assert( pOp->p2>=0 );
4009   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
4010   if( pCx==0 ) goto no_mem;
4011   pCx->pKeyInfo = pOp->p4.pKeyInfo;
4012   assert( pCx->pKeyInfo->db==db );
4013   assert( pCx->pKeyInfo->enc==ENC(db) );
4014   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4015   if( rc ) goto abort_due_to_error;
4016   break;
4017 }
4018 
4019 /* Opcode: SequenceTest P1 P2 * * *
4020 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4021 **
4022 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4023 ** to P2. Regardless of whether or not the jump is taken, increment the
4024 ** the sequence value.
4025 */
4026 case OP_SequenceTest: {
4027   VdbeCursor *pC;
4028   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4029   pC = p->apCsr[pOp->p1];
4030   assert( isSorter(pC) );
4031   if( (pC->seqCount++)==0 ){
4032     goto jump_to_p2;
4033   }
4034   break;
4035 }
4036 
4037 /* Opcode: OpenPseudo P1 P2 P3 * *
4038 ** Synopsis: P3 columns in r[P2]
4039 **
4040 ** Open a new cursor that points to a fake table that contains a single
4041 ** row of data.  The content of that one row is the content of memory
4042 ** register P2.  In other words, cursor P1 becomes an alias for the
4043 ** MEM_Blob content contained in register P2.
4044 **
4045 ** A pseudo-table created by this opcode is used to hold a single
4046 ** row output from the sorter so that the row can be decomposed into
4047 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4048 ** is the only cursor opcode that works with a pseudo-table.
4049 **
4050 ** P3 is the number of fields in the records that will be stored by
4051 ** the pseudo-table.
4052 */
4053 case OP_OpenPseudo: {
4054   VdbeCursor *pCx;
4055 
4056   assert( pOp->p1>=0 );
4057   assert( pOp->p3>=0 );
4058   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
4059   if( pCx==0 ) goto no_mem;
4060   pCx->nullRow = 1;
4061   pCx->seekResult = pOp->p2;
4062   pCx->isTable = 1;
4063   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4064   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4065   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4066   ** which is a performance optimization */
4067   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4068   assert( pOp->p5==0 );
4069   break;
4070 }
4071 
4072 /* Opcode: Close P1 * * * *
4073 **
4074 ** Close a cursor previously opened as P1.  If P1 is not
4075 ** currently open, this instruction is a no-op.
4076 */
4077 case OP_Close: {
4078   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4079   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4080   p->apCsr[pOp->p1] = 0;
4081   break;
4082 }
4083 
4084 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4085 /* Opcode: ColumnsUsed P1 * * P4 *
4086 **
4087 ** This opcode (which only exists if SQLite was compiled with
4088 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4089 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4090 ** (P4_INT64) in which the first 63 bits are one for each of the
4091 ** first 63 columns of the table or index that are actually used
4092 ** by the cursor.  The high-order bit is set if any column after
4093 ** the 64th is used.
4094 */
4095 case OP_ColumnsUsed: {
4096   VdbeCursor *pC;
4097   pC = p->apCsr[pOp->p1];
4098   assert( pC->eCurType==CURTYPE_BTREE );
4099   pC->maskUsed = *(u64*)pOp->p4.pI64;
4100   break;
4101 }
4102 #endif
4103 
4104 /* Opcode: SeekGE P1 P2 P3 P4 *
4105 ** Synopsis: key=r[P3@P4]
4106 **
4107 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4108 ** use the value in register P3 as the key.  If cursor P1 refers
4109 ** to an SQL index, then P3 is the first in an array of P4 registers
4110 ** that are used as an unpacked index key.
4111 **
4112 ** Reposition cursor P1 so that  it points to the smallest entry that
4113 ** is greater than or equal to the key value. If there are no records
4114 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4115 **
4116 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4117 ** opcode will either land on a record that exactly matches the key, or
4118 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4119 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4120 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4121 ** IdxGT opcode will be used on subsequent loop iterations.  The
4122 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4123 ** is an equality search.
4124 **
4125 ** This opcode leaves the cursor configured to move in forward order,
4126 ** from the beginning toward the end.  In other words, the cursor is
4127 ** configured to use Next, not Prev.
4128 **
4129 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4130 */
4131 /* Opcode: SeekGT P1 P2 P3 P4 *
4132 ** Synopsis: key=r[P3@P4]
4133 **
4134 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4135 ** use the value in register P3 as a key. If cursor P1 refers
4136 ** to an SQL index, then P3 is the first in an array of P4 registers
4137 ** that are used as an unpacked index key.
4138 **
4139 ** Reposition cursor P1 so that it points to the smallest entry that
4140 ** is greater than the key value. If there are no records greater than
4141 ** the key and P2 is not zero, then jump to P2.
4142 **
4143 ** This opcode leaves the cursor configured to move in forward order,
4144 ** from the beginning toward the end.  In other words, the cursor is
4145 ** configured to use Next, not Prev.
4146 **
4147 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4148 */
4149 /* Opcode: SeekLT P1 P2 P3 P4 *
4150 ** Synopsis: key=r[P3@P4]
4151 **
4152 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4153 ** use the value in register P3 as a key. If cursor P1 refers
4154 ** to an SQL index, then P3 is the first in an array of P4 registers
4155 ** that are used as an unpacked index key.
4156 **
4157 ** Reposition cursor P1 so that  it points to the largest entry that
4158 ** is less than the key value. If there are no records less than
4159 ** the key and P2 is not zero, then jump to P2.
4160 **
4161 ** This opcode leaves the cursor configured to move in reverse order,
4162 ** from the end toward the beginning.  In other words, the cursor is
4163 ** configured to use Prev, not Next.
4164 **
4165 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4166 */
4167 /* Opcode: SeekLE P1 P2 P3 P4 *
4168 ** Synopsis: key=r[P3@P4]
4169 **
4170 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4171 ** use the value in register P3 as a key. If cursor P1 refers
4172 ** to an SQL index, then P3 is the first in an array of P4 registers
4173 ** that are used as an unpacked index key.
4174 **
4175 ** Reposition cursor P1 so that it points to the largest entry that
4176 ** is less than or equal to the key value. If there are no records
4177 ** less than or equal to the key and P2 is not zero, then jump to P2.
4178 **
4179 ** This opcode leaves the cursor configured to move in reverse order,
4180 ** from the end toward the beginning.  In other words, the cursor is
4181 ** configured to use Prev, not Next.
4182 **
4183 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4184 ** opcode will either land on a record that exactly matches the key, or
4185 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4186 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4187 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4188 ** IdxGE opcode will be used on subsequent loop iterations.  The
4189 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4190 ** is an equality search.
4191 **
4192 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4193 */
4194 case OP_SeekLT:         /* jump, in3, group */
4195 case OP_SeekLE:         /* jump, in3, group */
4196 case OP_SeekGE:         /* jump, in3, group */
4197 case OP_SeekGT: {       /* jump, in3, group */
4198   int res;           /* Comparison result */
4199   int oc;            /* Opcode */
4200   VdbeCursor *pC;    /* The cursor to seek */
4201   UnpackedRecord r;  /* The key to seek for */
4202   int nField;        /* Number of columns or fields in the key */
4203   i64 iKey;          /* The rowid we are to seek to */
4204   int eqOnly;        /* Only interested in == results */
4205 
4206   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4207   assert( pOp->p2!=0 );
4208   pC = p->apCsr[pOp->p1];
4209   assert( pC!=0 );
4210   assert( pC->eCurType==CURTYPE_BTREE );
4211   assert( OP_SeekLE == OP_SeekLT+1 );
4212   assert( OP_SeekGE == OP_SeekLT+2 );
4213   assert( OP_SeekGT == OP_SeekLT+3 );
4214   assert( pC->isOrdered );
4215   assert( pC->uc.pCursor!=0 );
4216   oc = pOp->opcode;
4217   eqOnly = 0;
4218   pC->nullRow = 0;
4219 #ifdef SQLITE_DEBUG
4220   pC->seekOp = pOp->opcode;
4221 #endif
4222 
4223   pC->deferredMoveto = 0;
4224   pC->cacheStatus = CACHE_STALE;
4225   if( pC->isTable ){
4226     u16 flags3, newType;
4227     /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4228     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4229               || CORRUPT_DB );
4230 
4231     /* The input value in P3 might be of any type: integer, real, string,
4232     ** blob, or NULL.  But it needs to be an integer before we can do
4233     ** the seek, so convert it. */
4234     pIn3 = &aMem[pOp->p3];
4235     flags3 = pIn3->flags;
4236     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4237       applyNumericAffinity(pIn3, 0);
4238     }
4239     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4240     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4241     pIn3->flags = flags3;  /* But convert the type back to its original */
4242 
4243     /* If the P3 value could not be converted into an integer without
4244     ** loss of information, then special processing is required... */
4245     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4246       if( (newType & MEM_Real)==0 ){
4247         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4248           VdbeBranchTaken(1,2);
4249           goto jump_to_p2;
4250         }else{
4251           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4252           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4253           goto seek_not_found;
4254         }
4255       }else
4256 
4257       /* If the approximation iKey is larger than the actual real search
4258       ** term, substitute >= for > and < for <=. e.g. if the search term
4259       ** is 4.9 and the integer approximation 5:
4260       **
4261       **        (x >  4.9)    ->     (x >= 5)
4262       **        (x <= 4.9)    ->     (x <  5)
4263       */
4264       if( pIn3->u.r<(double)iKey ){
4265         assert( OP_SeekGE==(OP_SeekGT-1) );
4266         assert( OP_SeekLT==(OP_SeekLE-1) );
4267         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4268         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4269       }
4270 
4271       /* If the approximation iKey is smaller than the actual real search
4272       ** term, substitute <= for < and > for >=.  */
4273       else if( pIn3->u.r>(double)iKey ){
4274         assert( OP_SeekLE==(OP_SeekLT+1) );
4275         assert( OP_SeekGT==(OP_SeekGE+1) );
4276         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4277         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4278       }
4279     }
4280     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
4281     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4282     if( rc!=SQLITE_OK ){
4283       goto abort_due_to_error;
4284     }
4285   }else{
4286     /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4287     ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4288     ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4289     ** with the same key.
4290     */
4291     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4292       eqOnly = 1;
4293       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4294       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4295       assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4296       assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4297       assert( pOp[1].p1==pOp[0].p1 );
4298       assert( pOp[1].p2==pOp[0].p2 );
4299       assert( pOp[1].p3==pOp[0].p3 );
4300       assert( pOp[1].p4.i==pOp[0].p4.i );
4301     }
4302 
4303     nField = pOp->p4.i;
4304     assert( pOp->p4type==P4_INT32 );
4305     assert( nField>0 );
4306     r.pKeyInfo = pC->pKeyInfo;
4307     r.nField = (u16)nField;
4308 
4309     /* The next line of code computes as follows, only faster:
4310     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4311     **     r.default_rc = -1;
4312     **   }else{
4313     **     r.default_rc = +1;
4314     **   }
4315     */
4316     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4317     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4318     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4319     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4320     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4321 
4322     r.aMem = &aMem[pOp->p3];
4323 #ifdef SQLITE_DEBUG
4324     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4325 #endif
4326     r.eqSeen = 0;
4327     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
4328     if( rc!=SQLITE_OK ){
4329       goto abort_due_to_error;
4330     }
4331     if( eqOnly && r.eqSeen==0 ){
4332       assert( res!=0 );
4333       goto seek_not_found;
4334     }
4335   }
4336 #ifdef SQLITE_TEST
4337   sqlite3_search_count++;
4338 #endif
4339   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4340     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4341       res = 0;
4342       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4343       if( rc!=SQLITE_OK ){
4344         if( rc==SQLITE_DONE ){
4345           rc = SQLITE_OK;
4346           res = 1;
4347         }else{
4348           goto abort_due_to_error;
4349         }
4350       }
4351     }else{
4352       res = 0;
4353     }
4354   }else{
4355     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4356     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4357       res = 0;
4358       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4359       if( rc!=SQLITE_OK ){
4360         if( rc==SQLITE_DONE ){
4361           rc = SQLITE_OK;
4362           res = 1;
4363         }else{
4364           goto abort_due_to_error;
4365         }
4366       }
4367     }else{
4368       /* res might be negative because the table is empty.  Check to
4369       ** see if this is the case.
4370       */
4371       res = sqlite3BtreeEof(pC->uc.pCursor);
4372     }
4373   }
4374 seek_not_found:
4375   assert( pOp->p2>0 );
4376   VdbeBranchTaken(res!=0,2);
4377   if( res ){
4378     goto jump_to_p2;
4379   }else if( eqOnly ){
4380     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4381     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4382   }
4383   break;
4384 }
4385 
4386 /* Opcode: SeekHit P1 P2 P3 * *
4387 ** Synopsis: set P2<=seekHit<=P3
4388 **
4389 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4390 ** so that it is no less than P2 and no greater than P3.
4391 **
4392 ** The seekHit integer represents the maximum of terms in an index for which
4393 ** there is known to be at least one match.  If the seekHit value is smaller
4394 ** than the total number of equality terms in an index lookup, then the
4395 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4396 ** early, thus saving work.  This is part of the IN-early-out optimization.
4397 **
4398 ** P1 must be a valid b-tree cursor.
4399 */
4400 case OP_SeekHit: {
4401   VdbeCursor *pC;
4402   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4403   pC = p->apCsr[pOp->p1];
4404   assert( pC!=0 );
4405   assert( pOp->p3>=pOp->p2 );
4406   if( pC->seekHit<pOp->p2 ){
4407     pC->seekHit = pOp->p2;
4408   }else if( pC->seekHit>pOp->p3 ){
4409     pC->seekHit = pOp->p3;
4410   }
4411   break;
4412 }
4413 
4414 /* Opcode: IfNotOpen P1 P2 * * *
4415 ** Synopsis: if( !csr[P1] ) goto P2
4416 **
4417 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4418 */
4419 case OP_IfNotOpen: {        /* jump */
4420   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4421   VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4422   if( !p->apCsr[pOp->p1] ){
4423     goto jump_to_p2_and_check_for_interrupt;
4424   }
4425   break;
4426 }
4427 
4428 /* Opcode: Found P1 P2 P3 P4 *
4429 ** Synopsis: key=r[P3@P4]
4430 **
4431 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4432 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4433 ** record.
4434 **
4435 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4436 ** is a prefix of any entry in P1 then a jump is made to P2 and
4437 ** P1 is left pointing at the matching entry.
4438 **
4439 ** This operation leaves the cursor in a state where it can be
4440 ** advanced in the forward direction.  The Next instruction will work,
4441 ** but not the Prev instruction.
4442 **
4443 ** See also: NotFound, NoConflict, NotExists. SeekGe
4444 */
4445 /* Opcode: NotFound P1 P2 P3 P4 *
4446 ** Synopsis: key=r[P3@P4]
4447 **
4448 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4449 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4450 ** record.
4451 **
4452 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4453 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4454 ** does contain an entry whose prefix matches the P3/P4 record then control
4455 ** falls through to the next instruction and P1 is left pointing at the
4456 ** matching entry.
4457 **
4458 ** This operation leaves the cursor in a state where it cannot be
4459 ** advanced in either direction.  In other words, the Next and Prev
4460 ** opcodes do not work after this operation.
4461 **
4462 ** See also: Found, NotExists, NoConflict, IfNoHope
4463 */
4464 /* Opcode: IfNoHope P1 P2 P3 P4 *
4465 ** Synopsis: key=r[P3@P4]
4466 **
4467 ** Register P3 is the first of P4 registers that form an unpacked
4468 ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
4469 ** In other words, the operands to this opcode are the same as the
4470 ** operands to OP_NotFound and OP_IdxGT.
4471 **
4472 ** This opcode is an optimization attempt only.  If this opcode always
4473 ** falls through, the correct answer is still obtained, but extra works
4474 ** is performed.
4475 **
4476 ** A value of N in the seekHit flag of cursor P1 means that there exists
4477 ** a key P3:N that will match some record in the index.  We want to know
4478 ** if it is possible for a record P3:P4 to match some record in the
4479 ** index.  If it is not possible, we can skips some work.  So if seekHit
4480 ** is less than P4, attempt to find out if a match is possible by running
4481 ** OP_NotFound.
4482 **
4483 ** This opcode is used in IN clause processing for a multi-column key.
4484 ** If an IN clause is attached to an element of the key other than the
4485 ** left-most element, and if there are no matches on the most recent
4486 ** seek over the whole key, then it might be that one of the key element
4487 ** to the left is prohibiting a match, and hence there is "no hope" of
4488 ** any match regardless of how many IN clause elements are checked.
4489 ** In such a case, we abandon the IN clause search early, using this
4490 ** opcode.  The opcode name comes from the fact that the
4491 ** jump is taken if there is "no hope" of achieving a match.
4492 **
4493 ** See also: NotFound, SeekHit
4494 */
4495 /* Opcode: NoConflict P1 P2 P3 P4 *
4496 ** Synopsis: key=r[P3@P4]
4497 **
4498 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4499 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4500 ** record.
4501 **
4502 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4503 ** contains any NULL value, jump immediately to P2.  If all terms of the
4504 ** record are not-NULL then a check is done to determine if any row in the
4505 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4506 ** immediately to P2.  If there is a match, fall through and leave the P1
4507 ** cursor pointing to the matching row.
4508 **
4509 ** This opcode is similar to OP_NotFound with the exceptions that the
4510 ** branch is always taken if any part of the search key input is NULL.
4511 **
4512 ** This operation leaves the cursor in a state where it cannot be
4513 ** advanced in either direction.  In other words, the Next and Prev
4514 ** opcodes do not work after this operation.
4515 **
4516 ** See also: NotFound, Found, NotExists
4517 */
4518 case OP_IfNoHope: {     /* jump, in3 */
4519   VdbeCursor *pC;
4520   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4521   pC = p->apCsr[pOp->p1];
4522   assert( pC!=0 );
4523   if( pC->seekHit>=pOp->p4.i ) break;
4524   /* Fall through into OP_NotFound */
4525   /* no break */ deliberate_fall_through
4526 }
4527 case OP_NoConflict:     /* jump, in3 */
4528 case OP_NotFound:       /* jump, in3 */
4529 case OP_Found: {        /* jump, in3 */
4530   int alreadyExists;
4531   int takeJump;
4532   int ii;
4533   VdbeCursor *pC;
4534   int res;
4535   UnpackedRecord *pFree;
4536   UnpackedRecord *pIdxKey;
4537   UnpackedRecord r;
4538 
4539 #ifdef SQLITE_TEST
4540   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4541 #endif
4542 
4543   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4544   assert( pOp->p4type==P4_INT32 );
4545   pC = p->apCsr[pOp->p1];
4546   assert( pC!=0 );
4547 #ifdef SQLITE_DEBUG
4548   pC->seekOp = pOp->opcode;
4549 #endif
4550   pIn3 = &aMem[pOp->p3];
4551   assert( pC->eCurType==CURTYPE_BTREE );
4552   assert( pC->uc.pCursor!=0 );
4553   assert( pC->isTable==0 );
4554   if( pOp->p4.i>0 ){
4555     r.pKeyInfo = pC->pKeyInfo;
4556     r.nField = (u16)pOp->p4.i;
4557     r.aMem = pIn3;
4558 #ifdef SQLITE_DEBUG
4559     for(ii=0; ii<r.nField; ii++){
4560       assert( memIsValid(&r.aMem[ii]) );
4561       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4562       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4563     }
4564 #endif
4565     pIdxKey = &r;
4566     pFree = 0;
4567   }else{
4568     assert( pIn3->flags & MEM_Blob );
4569     rc = ExpandBlob(pIn3);
4570     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4571     if( rc ) goto no_mem;
4572     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4573     if( pIdxKey==0 ) goto no_mem;
4574     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4575   }
4576   pIdxKey->default_rc = 0;
4577   takeJump = 0;
4578   if( pOp->opcode==OP_NoConflict ){
4579     /* For the OP_NoConflict opcode, take the jump if any of the
4580     ** input fields are NULL, since any key with a NULL will not
4581     ** conflict */
4582     for(ii=0; ii<pIdxKey->nField; ii++){
4583       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4584         takeJump = 1;
4585         break;
4586       }
4587     }
4588   }
4589   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4590   if( pFree ) sqlite3DbFreeNN(db, pFree);
4591   if( rc!=SQLITE_OK ){
4592     goto abort_due_to_error;
4593   }
4594   pC->seekResult = res;
4595   alreadyExists = (res==0);
4596   pC->nullRow = 1-alreadyExists;
4597   pC->deferredMoveto = 0;
4598   pC->cacheStatus = CACHE_STALE;
4599   if( pOp->opcode==OP_Found ){
4600     VdbeBranchTaken(alreadyExists!=0,2);
4601     if( alreadyExists ) goto jump_to_p2;
4602   }else{
4603     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4604     if( takeJump || !alreadyExists ) goto jump_to_p2;
4605     if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i;
4606   }
4607   break;
4608 }
4609 
4610 /* Opcode: SeekRowid P1 P2 P3 * *
4611 ** Synopsis: intkey=r[P3]
4612 **
4613 ** P1 is the index of a cursor open on an SQL table btree (with integer
4614 ** keys).  If register P3 does not contain an integer or if P1 does not
4615 ** contain a record with rowid P3 then jump immediately to P2.
4616 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4617 ** a record with rowid P3 then
4618 ** leave the cursor pointing at that record and fall through to the next
4619 ** instruction.
4620 **
4621 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4622 ** the P3 register must be guaranteed to contain an integer value.  With this
4623 ** opcode, register P3 might not contain an integer.
4624 **
4625 ** The OP_NotFound opcode performs the same operation on index btrees
4626 ** (with arbitrary multi-value keys).
4627 **
4628 ** This opcode leaves the cursor in a state where it cannot be advanced
4629 ** in either direction.  In other words, the Next and Prev opcodes will
4630 ** not work following this opcode.
4631 **
4632 ** See also: Found, NotFound, NoConflict, SeekRowid
4633 */
4634 /* Opcode: NotExists P1 P2 P3 * *
4635 ** Synopsis: intkey=r[P3]
4636 **
4637 ** P1 is the index of a cursor open on an SQL table btree (with integer
4638 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4639 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4640 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4641 ** leave the cursor pointing at that record and fall through to the next
4642 ** instruction.
4643 **
4644 ** The OP_SeekRowid opcode performs the same operation but also allows the
4645 ** P3 register to contain a non-integer value, in which case the jump is
4646 ** always taken.  This opcode requires that P3 always contain an integer.
4647 **
4648 ** The OP_NotFound opcode performs the same operation on index btrees
4649 ** (with arbitrary multi-value keys).
4650 **
4651 ** This opcode leaves the cursor in a state where it cannot be advanced
4652 ** in either direction.  In other words, the Next and Prev opcodes will
4653 ** not work following this opcode.
4654 **
4655 ** See also: Found, NotFound, NoConflict, SeekRowid
4656 */
4657 case OP_SeekRowid: {        /* jump, in3 */
4658   VdbeCursor *pC;
4659   BtCursor *pCrsr;
4660   int res;
4661   u64 iKey;
4662 
4663   pIn3 = &aMem[pOp->p3];
4664   testcase( pIn3->flags & MEM_Int );
4665   testcase( pIn3->flags & MEM_IntReal );
4666   testcase( pIn3->flags & MEM_Real );
4667   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
4668   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
4669     /* If pIn3->u.i does not contain an integer, compute iKey as the
4670     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
4671     ** into an integer without loss of information.  Take care to avoid
4672     ** changing the datatype of pIn3, however, as it is used by other
4673     ** parts of the prepared statement. */
4674     Mem x = pIn3[0];
4675     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
4676     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
4677     iKey = x.u.i;
4678     goto notExistsWithKey;
4679   }
4680   /* Fall through into OP_NotExists */
4681   /* no break */ deliberate_fall_through
4682 case OP_NotExists:          /* jump, in3 */
4683   pIn3 = &aMem[pOp->p3];
4684   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
4685   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4686   iKey = pIn3->u.i;
4687 notExistsWithKey:
4688   pC = p->apCsr[pOp->p1];
4689   assert( pC!=0 );
4690 #ifdef SQLITE_DEBUG
4691   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
4692 #endif
4693   assert( pC->isTable );
4694   assert( pC->eCurType==CURTYPE_BTREE );
4695   pCrsr = pC->uc.pCursor;
4696   assert( pCrsr!=0 );
4697   res = 0;
4698   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4699   assert( rc==SQLITE_OK || res==0 );
4700   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4701   pC->nullRow = 0;
4702   pC->cacheStatus = CACHE_STALE;
4703   pC->deferredMoveto = 0;
4704   VdbeBranchTaken(res!=0,2);
4705   pC->seekResult = res;
4706   if( res!=0 ){
4707     assert( rc==SQLITE_OK );
4708     if( pOp->p2==0 ){
4709       rc = SQLITE_CORRUPT_BKPT;
4710     }else{
4711       goto jump_to_p2;
4712     }
4713   }
4714   if( rc ) goto abort_due_to_error;
4715   break;
4716 }
4717 
4718 /* Opcode: Sequence P1 P2 * * *
4719 ** Synopsis: r[P2]=cursor[P1].ctr++
4720 **
4721 ** Find the next available sequence number for cursor P1.
4722 ** Write the sequence number into register P2.
4723 ** The sequence number on the cursor is incremented after this
4724 ** instruction.
4725 */
4726 case OP_Sequence: {           /* out2 */
4727   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4728   assert( p->apCsr[pOp->p1]!=0 );
4729   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4730   pOut = out2Prerelease(p, pOp);
4731   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4732   break;
4733 }
4734 
4735 
4736 /* Opcode: NewRowid P1 P2 P3 * *
4737 ** Synopsis: r[P2]=rowid
4738 **
4739 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4740 ** The record number is not previously used as a key in the database
4741 ** table that cursor P1 points to.  The new record number is written
4742 ** written to register P2.
4743 **
4744 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4745 ** the largest previously generated record number. No new record numbers are
4746 ** allowed to be less than this value. When this value reaches its maximum,
4747 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4748 ** generated record number. This P3 mechanism is used to help implement the
4749 ** AUTOINCREMENT feature.
4750 */
4751 case OP_NewRowid: {           /* out2 */
4752   i64 v;                 /* The new rowid */
4753   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4754   int res;               /* Result of an sqlite3BtreeLast() */
4755   int cnt;               /* Counter to limit the number of searches */
4756   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4757   VdbeFrame *pFrame;     /* Root frame of VDBE */
4758 
4759   v = 0;
4760   res = 0;
4761   pOut = out2Prerelease(p, pOp);
4762   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4763   pC = p->apCsr[pOp->p1];
4764   assert( pC!=0 );
4765   assert( pC->isTable );
4766   assert( pC->eCurType==CURTYPE_BTREE );
4767   assert( pC->uc.pCursor!=0 );
4768   {
4769     /* The next rowid or record number (different terms for the same
4770     ** thing) is obtained in a two-step algorithm.
4771     **
4772     ** First we attempt to find the largest existing rowid and add one
4773     ** to that.  But if the largest existing rowid is already the maximum
4774     ** positive integer, we have to fall through to the second
4775     ** probabilistic algorithm
4776     **
4777     ** The second algorithm is to select a rowid at random and see if
4778     ** it already exists in the table.  If it does not exist, we have
4779     ** succeeded.  If the random rowid does exist, we select a new one
4780     ** and try again, up to 100 times.
4781     */
4782     assert( pC->isTable );
4783 
4784 #ifdef SQLITE_32BIT_ROWID
4785 #   define MAX_ROWID 0x7fffffff
4786 #else
4787     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4788     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4789     ** to provide the constant while making all compilers happy.
4790     */
4791 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4792 #endif
4793 
4794     if( !pC->useRandomRowid ){
4795       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4796       if( rc!=SQLITE_OK ){
4797         goto abort_due_to_error;
4798       }
4799       if( res ){
4800         v = 1;   /* IMP: R-61914-48074 */
4801       }else{
4802         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4803         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4804         if( v>=MAX_ROWID ){
4805           pC->useRandomRowid = 1;
4806         }else{
4807           v++;   /* IMP: R-29538-34987 */
4808         }
4809       }
4810     }
4811 
4812 #ifndef SQLITE_OMIT_AUTOINCREMENT
4813     if( pOp->p3 ){
4814       /* Assert that P3 is a valid memory cell. */
4815       assert( pOp->p3>0 );
4816       if( p->pFrame ){
4817         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4818         /* Assert that P3 is a valid memory cell. */
4819         assert( pOp->p3<=pFrame->nMem );
4820         pMem = &pFrame->aMem[pOp->p3];
4821       }else{
4822         /* Assert that P3 is a valid memory cell. */
4823         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4824         pMem = &aMem[pOp->p3];
4825         memAboutToChange(p, pMem);
4826       }
4827       assert( memIsValid(pMem) );
4828 
4829       REGISTER_TRACE(pOp->p3, pMem);
4830       sqlite3VdbeMemIntegerify(pMem);
4831       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4832       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4833         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4834         goto abort_due_to_error;
4835       }
4836       if( v<pMem->u.i+1 ){
4837         v = pMem->u.i + 1;
4838       }
4839       pMem->u.i = v;
4840     }
4841 #endif
4842     if( pC->useRandomRowid ){
4843       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4844       ** largest possible integer (9223372036854775807) then the database
4845       ** engine starts picking positive candidate ROWIDs at random until
4846       ** it finds one that is not previously used. */
4847       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4848                              ** an AUTOINCREMENT table. */
4849       cnt = 0;
4850       do{
4851         sqlite3_randomness(sizeof(v), &v);
4852         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4853       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4854                                                  0, &res))==SQLITE_OK)
4855             && (res==0)
4856             && (++cnt<100));
4857       if( rc ) goto abort_due_to_error;
4858       if( res==0 ){
4859         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4860         goto abort_due_to_error;
4861       }
4862       assert( v>0 );  /* EV: R-40812-03570 */
4863     }
4864     pC->deferredMoveto = 0;
4865     pC->cacheStatus = CACHE_STALE;
4866   }
4867   pOut->u.i = v;
4868   break;
4869 }
4870 
4871 /* Opcode: Insert P1 P2 P3 P4 P5
4872 ** Synopsis: intkey=r[P3] data=r[P2]
4873 **
4874 ** Write an entry into the table of cursor P1.  A new entry is
4875 ** created if it doesn't already exist or the data for an existing
4876 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4877 ** number P2. The key is stored in register P3. The key must
4878 ** be a MEM_Int.
4879 **
4880 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4881 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4882 ** then rowid is stored for subsequent return by the
4883 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4884 **
4885 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4886 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4887 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4888 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4889 **
4890 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4891 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4892 ** is part of an INSERT operation.  The difference is only important to
4893 ** the update hook.
4894 **
4895 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4896 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4897 ** following a successful insert.
4898 **
4899 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4900 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4901 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4902 ** value of register P2 will then change.  Make sure this does not
4903 ** cause any problems.)
4904 **
4905 ** This instruction only works on tables.  The equivalent instruction
4906 ** for indices is OP_IdxInsert.
4907 */
4908 case OP_Insert: {
4909   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4910   Mem *pKey;        /* MEM cell holding key  for the record */
4911   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4912   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4913   const char *zDb;  /* database name - used by the update hook */
4914   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4915   BtreePayload x;   /* Payload to be inserted */
4916 
4917   pData = &aMem[pOp->p2];
4918   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4919   assert( memIsValid(pData) );
4920   pC = p->apCsr[pOp->p1];
4921   assert( pC!=0 );
4922   assert( pC->eCurType==CURTYPE_BTREE );
4923   assert( pC->deferredMoveto==0 );
4924   assert( pC->uc.pCursor!=0 );
4925   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4926   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4927   REGISTER_TRACE(pOp->p2, pData);
4928   sqlite3VdbeIncrWriteCounter(p, pC);
4929 
4930   pKey = &aMem[pOp->p3];
4931   assert( pKey->flags & MEM_Int );
4932   assert( memIsValid(pKey) );
4933   REGISTER_TRACE(pOp->p3, pKey);
4934   x.nKey = pKey->u.i;
4935 
4936   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4937     assert( pC->iDb>=0 );
4938     zDb = db->aDb[pC->iDb].zDbSName;
4939     pTab = pOp->p4.pTab;
4940     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4941   }else{
4942     pTab = 0;
4943     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4944   }
4945 
4946 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4947   /* Invoke the pre-update hook, if any */
4948   if( pTab ){
4949     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4950       sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4951     }
4952     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4953       /* Prevent post-update hook from running in cases when it should not */
4954       pTab = 0;
4955     }
4956   }
4957   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4958 #endif
4959 
4960   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4961   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4962   assert( pData->flags & (MEM_Blob|MEM_Str) );
4963   x.pData = pData->z;
4964   x.nData = pData->n;
4965   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4966   if( pData->flags & MEM_Zero ){
4967     x.nZero = pData->u.nZero;
4968   }else{
4969     x.nZero = 0;
4970   }
4971   x.pKey = 0;
4972   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4973       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4974   );
4975   pC->deferredMoveto = 0;
4976   pC->cacheStatus = CACHE_STALE;
4977 
4978   /* Invoke the update-hook if required. */
4979   if( rc ) goto abort_due_to_error;
4980   if( pTab ){
4981     assert( db->xUpdateCallback!=0 );
4982     assert( pTab->aCol!=0 );
4983     db->xUpdateCallback(db->pUpdateArg,
4984            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4985            zDb, pTab->zName, x.nKey);
4986   }
4987   break;
4988 }
4989 
4990 /* Opcode: Delete P1 P2 P3 P4 P5
4991 **
4992 ** Delete the record at which the P1 cursor is currently pointing.
4993 **
4994 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4995 ** the cursor will be left pointing at  either the next or the previous
4996 ** record in the table. If it is left pointing at the next record, then
4997 ** the next Next instruction will be a no-op. As a result, in this case
4998 ** it is ok to delete a record from within a Next loop. If
4999 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5000 ** left in an undefined state.
5001 **
5002 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5003 ** delete one of several associated with deleting a table row and all its
5004 ** associated index entries.  Exactly one of those deletes is the "primary"
5005 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
5006 ** marked with the AUXDELETE flag.
5007 **
5008 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5009 ** change count is incremented (otherwise not).
5010 **
5011 ** P1 must not be pseudo-table.  It has to be a real table with
5012 ** multiple rows.
5013 **
5014 ** If P4 is not NULL then it points to a Table object. In this case either
5015 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5016 ** have been positioned using OP_NotFound prior to invoking this opcode in
5017 ** this case. Specifically, if one is configured, the pre-update hook is
5018 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5019 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5020 **
5021 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5022 ** of the memory cell that contains the value that the rowid of the row will
5023 ** be set to by the update.
5024 */
5025 case OP_Delete: {
5026   VdbeCursor *pC;
5027   const char *zDb;
5028   Table *pTab;
5029   int opflags;
5030 
5031   opflags = pOp->p2;
5032   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5033   pC = p->apCsr[pOp->p1];
5034   assert( pC!=0 );
5035   assert( pC->eCurType==CURTYPE_BTREE );
5036   assert( pC->uc.pCursor!=0 );
5037   assert( pC->deferredMoveto==0 );
5038   sqlite3VdbeIncrWriteCounter(p, pC);
5039 
5040 #ifdef SQLITE_DEBUG
5041   if( pOp->p4type==P4_TABLE
5042    && HasRowid(pOp->p4.pTab)
5043    && pOp->p5==0
5044    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5045   ){
5046     /* If p5 is zero, the seek operation that positioned the cursor prior to
5047     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5048     ** the row that is being deleted */
5049     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5050     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5051   }
5052 #endif
5053 
5054   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5055   ** the name of the db to pass as to it. Also set local pTab to a copy
5056   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5057   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5058   ** VdbeCursor.movetoTarget to the current rowid.  */
5059   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5060     assert( pC->iDb>=0 );
5061     assert( pOp->p4.pTab!=0 );
5062     zDb = db->aDb[pC->iDb].zDbSName;
5063     pTab = pOp->p4.pTab;
5064     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5065       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5066     }
5067   }else{
5068     zDb = 0;   /* Not needed.  Silence a compiler warning. */
5069     pTab = 0;  /* Not needed.  Silence a compiler warning. */
5070   }
5071 
5072 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5073   /* Invoke the pre-update-hook if required. */
5074   if( db->xPreUpdateCallback && pOp->p4.pTab ){
5075     assert( !(opflags & OPFLAG_ISUPDATE)
5076          || HasRowid(pTab)==0
5077          || (aMem[pOp->p3].flags & MEM_Int)
5078     );
5079     sqlite3VdbePreUpdateHook(p, pC,
5080         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5081         zDb, pTab, pC->movetoTarget,
5082         pOp->p3
5083     );
5084   }
5085   if( opflags & OPFLAG_ISNOOP ) break;
5086 #endif
5087 
5088   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5089   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5090   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5091   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5092 
5093 #ifdef SQLITE_DEBUG
5094   if( p->pFrame==0 ){
5095     if( pC->isEphemeral==0
5096         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5097         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5098       ){
5099       nExtraDelete++;
5100     }
5101     if( pOp->p2 & OPFLAG_NCHANGE ){
5102       nExtraDelete--;
5103     }
5104   }
5105 #endif
5106 
5107   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5108   pC->cacheStatus = CACHE_STALE;
5109   pC->seekResult = 0;
5110   if( rc ) goto abort_due_to_error;
5111 
5112   /* Invoke the update-hook if required. */
5113   if( opflags & OPFLAG_NCHANGE ){
5114     p->nChange++;
5115     if( db->xUpdateCallback && HasRowid(pTab) ){
5116       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5117           pC->movetoTarget);
5118       assert( pC->iDb>=0 );
5119     }
5120   }
5121 
5122   break;
5123 }
5124 /* Opcode: ResetCount * * * * *
5125 **
5126 ** The value of the change counter is copied to the database handle
5127 ** change counter (returned by subsequent calls to sqlite3_changes()).
5128 ** Then the VMs internal change counter resets to 0.
5129 ** This is used by trigger programs.
5130 */
5131 case OP_ResetCount: {
5132   sqlite3VdbeSetChanges(db, p->nChange);
5133   p->nChange = 0;
5134   break;
5135 }
5136 
5137 /* Opcode: SorterCompare P1 P2 P3 P4
5138 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5139 **
5140 ** P1 is a sorter cursor. This instruction compares a prefix of the
5141 ** record blob in register P3 against a prefix of the entry that
5142 ** the sorter cursor currently points to.  Only the first P4 fields
5143 ** of r[P3] and the sorter record are compared.
5144 **
5145 ** If either P3 or the sorter contains a NULL in one of their significant
5146 ** fields (not counting the P4 fields at the end which are ignored) then
5147 ** the comparison is assumed to be equal.
5148 **
5149 ** Fall through to next instruction if the two records compare equal to
5150 ** each other.  Jump to P2 if they are different.
5151 */
5152 case OP_SorterCompare: {
5153   VdbeCursor *pC;
5154   int res;
5155   int nKeyCol;
5156 
5157   pC = p->apCsr[pOp->p1];
5158   assert( isSorter(pC) );
5159   assert( pOp->p4type==P4_INT32 );
5160   pIn3 = &aMem[pOp->p3];
5161   nKeyCol = pOp->p4.i;
5162   res = 0;
5163   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5164   VdbeBranchTaken(res!=0,2);
5165   if( rc ) goto abort_due_to_error;
5166   if( res ) goto jump_to_p2;
5167   break;
5168 };
5169 
5170 /* Opcode: SorterData P1 P2 P3 * *
5171 ** Synopsis: r[P2]=data
5172 **
5173 ** Write into register P2 the current sorter data for sorter cursor P1.
5174 ** Then clear the column header cache on cursor P3.
5175 **
5176 ** This opcode is normally use to move a record out of the sorter and into
5177 ** a register that is the source for a pseudo-table cursor created using
5178 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5179 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5180 ** us from having to issue a separate NullRow instruction to clear that cache.
5181 */
5182 case OP_SorterData: {
5183   VdbeCursor *pC;
5184 
5185   pOut = &aMem[pOp->p2];
5186   pC = p->apCsr[pOp->p1];
5187   assert( isSorter(pC) );
5188   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5189   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5190   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5191   if( rc ) goto abort_due_to_error;
5192   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5193   break;
5194 }
5195 
5196 /* Opcode: RowData P1 P2 P3 * *
5197 ** Synopsis: r[P2]=data
5198 **
5199 ** Write into register P2 the complete row content for the row at
5200 ** which cursor P1 is currently pointing.
5201 ** There is no interpretation of the data.
5202 ** It is just copied onto the P2 register exactly as
5203 ** it is found in the database file.
5204 **
5205 ** If cursor P1 is an index, then the content is the key of the row.
5206 ** If cursor P2 is a table, then the content extracted is the data.
5207 **
5208 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5209 ** of a real table, not a pseudo-table.
5210 **
5211 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5212 ** into the database page.  That means that the content of the output
5213 ** register will be invalidated as soon as the cursor moves - including
5214 ** moves caused by other cursors that "save" the current cursors
5215 ** position in order that they can write to the same table.  If P3==0
5216 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5217 ** P3==0 is safer.
5218 **
5219 ** If P3!=0 then the content of the P2 register is unsuitable for use
5220 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5221 ** The P2 register content is invalidated by opcodes like OP_Function or
5222 ** by any use of another cursor pointing to the same table.
5223 */
5224 case OP_RowData: {
5225   VdbeCursor *pC;
5226   BtCursor *pCrsr;
5227   u32 n;
5228 
5229   pOut = out2Prerelease(p, pOp);
5230 
5231   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5232   pC = p->apCsr[pOp->p1];
5233   assert( pC!=0 );
5234   assert( pC->eCurType==CURTYPE_BTREE );
5235   assert( isSorter(pC)==0 );
5236   assert( pC->nullRow==0 );
5237   assert( pC->uc.pCursor!=0 );
5238   pCrsr = pC->uc.pCursor;
5239 
5240   /* The OP_RowData opcodes always follow OP_NotExists or
5241   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5242   ** that might invalidate the cursor.
5243   ** If this where not the case, on of the following assert()s
5244   ** would fail.  Should this ever change (because of changes in the code
5245   ** generator) then the fix would be to insert a call to
5246   ** sqlite3VdbeCursorMoveto().
5247   */
5248   assert( pC->deferredMoveto==0 );
5249   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5250 
5251   n = sqlite3BtreePayloadSize(pCrsr);
5252   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5253     goto too_big;
5254   }
5255   testcase( n==0 );
5256   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5257   if( rc ) goto abort_due_to_error;
5258   if( !pOp->p3 ) Deephemeralize(pOut);
5259   UPDATE_MAX_BLOBSIZE(pOut);
5260   REGISTER_TRACE(pOp->p2, pOut);
5261   break;
5262 }
5263 
5264 /* Opcode: Rowid P1 P2 * * *
5265 ** Synopsis: r[P2]=rowid
5266 **
5267 ** Store in register P2 an integer which is the key of the table entry that
5268 ** P1 is currently point to.
5269 **
5270 ** P1 can be either an ordinary table or a virtual table.  There used to
5271 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5272 ** one opcode now works for both table types.
5273 */
5274 case OP_Rowid: {                 /* out2 */
5275   VdbeCursor *pC;
5276   i64 v;
5277   sqlite3_vtab *pVtab;
5278   const sqlite3_module *pModule;
5279 
5280   pOut = out2Prerelease(p, pOp);
5281   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5282   pC = p->apCsr[pOp->p1];
5283   assert( pC!=0 );
5284   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5285   if( pC->nullRow ){
5286     pOut->flags = MEM_Null;
5287     break;
5288   }else if( pC->deferredMoveto ){
5289     v = pC->movetoTarget;
5290 #ifndef SQLITE_OMIT_VIRTUALTABLE
5291   }else if( pC->eCurType==CURTYPE_VTAB ){
5292     assert( pC->uc.pVCur!=0 );
5293     pVtab = pC->uc.pVCur->pVtab;
5294     pModule = pVtab->pModule;
5295     assert( pModule->xRowid );
5296     rc = pModule->xRowid(pC->uc.pVCur, &v);
5297     sqlite3VtabImportErrmsg(p, pVtab);
5298     if( rc ) goto abort_due_to_error;
5299 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5300   }else{
5301     assert( pC->eCurType==CURTYPE_BTREE );
5302     assert( pC->uc.pCursor!=0 );
5303     rc = sqlite3VdbeCursorRestore(pC);
5304     if( rc ) goto abort_due_to_error;
5305     if( pC->nullRow ){
5306       pOut->flags = MEM_Null;
5307       break;
5308     }
5309     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5310   }
5311   pOut->u.i = v;
5312   break;
5313 }
5314 
5315 /* Opcode: NullRow P1 * * * *
5316 **
5317 ** Move the cursor P1 to a null row.  Any OP_Column operations
5318 ** that occur while the cursor is on the null row will always
5319 ** write a NULL.
5320 */
5321 case OP_NullRow: {
5322   VdbeCursor *pC;
5323 
5324   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5325   pC = p->apCsr[pOp->p1];
5326   assert( pC!=0 );
5327   pC->nullRow = 1;
5328   pC->cacheStatus = CACHE_STALE;
5329   if( pC->eCurType==CURTYPE_BTREE ){
5330     assert( pC->uc.pCursor!=0 );
5331     sqlite3BtreeClearCursor(pC->uc.pCursor);
5332   }
5333 #ifdef SQLITE_DEBUG
5334   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5335 #endif
5336   break;
5337 }
5338 
5339 /* Opcode: SeekEnd P1 * * * *
5340 **
5341 ** Position cursor P1 at the end of the btree for the purpose of
5342 ** appending a new entry onto the btree.
5343 **
5344 ** It is assumed that the cursor is used only for appending and so
5345 ** if the cursor is valid, then the cursor must already be pointing
5346 ** at the end of the btree and so no changes are made to
5347 ** the cursor.
5348 */
5349 /* Opcode: Last P1 P2 * * *
5350 **
5351 ** The next use of the Rowid or Column or Prev instruction for P1
5352 ** will refer to the last entry in the database table or index.
5353 ** If the table or index is empty and P2>0, then jump immediately to P2.
5354 ** If P2 is 0 or if the table or index is not empty, fall through
5355 ** to the following instruction.
5356 **
5357 ** This opcode leaves the cursor configured to move in reverse order,
5358 ** from the end toward the beginning.  In other words, the cursor is
5359 ** configured to use Prev, not Next.
5360 */
5361 case OP_SeekEnd:
5362 case OP_Last: {        /* jump */
5363   VdbeCursor *pC;
5364   BtCursor *pCrsr;
5365   int res;
5366 
5367   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5368   pC = p->apCsr[pOp->p1];
5369   assert( pC!=0 );
5370   assert( pC->eCurType==CURTYPE_BTREE );
5371   pCrsr = pC->uc.pCursor;
5372   res = 0;
5373   assert( pCrsr!=0 );
5374 #ifdef SQLITE_DEBUG
5375   pC->seekOp = pOp->opcode;
5376 #endif
5377   if( pOp->opcode==OP_SeekEnd ){
5378     assert( pOp->p2==0 );
5379     pC->seekResult = -1;
5380     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5381       break;
5382     }
5383   }
5384   rc = sqlite3BtreeLast(pCrsr, &res);
5385   pC->nullRow = (u8)res;
5386   pC->deferredMoveto = 0;
5387   pC->cacheStatus = CACHE_STALE;
5388   if( rc ) goto abort_due_to_error;
5389   if( pOp->p2>0 ){
5390     VdbeBranchTaken(res!=0,2);
5391     if( res ) goto jump_to_p2;
5392   }
5393   break;
5394 }
5395 
5396 /* Opcode: IfSmaller P1 P2 P3 * *
5397 **
5398 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5399 ** estimate is less than approximately 2**(0.1*P3).
5400 */
5401 case OP_IfSmaller: {        /* jump */
5402   VdbeCursor *pC;
5403   BtCursor *pCrsr;
5404   int res;
5405   i64 sz;
5406 
5407   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5408   pC = p->apCsr[pOp->p1];
5409   assert( pC!=0 );
5410   pCrsr = pC->uc.pCursor;
5411   assert( pCrsr );
5412   rc = sqlite3BtreeFirst(pCrsr, &res);
5413   if( rc ) goto abort_due_to_error;
5414   if( res==0 ){
5415     sz = sqlite3BtreeRowCountEst(pCrsr);
5416     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5417   }
5418   VdbeBranchTaken(res!=0,2);
5419   if( res ) goto jump_to_p2;
5420   break;
5421 }
5422 
5423 
5424 /* Opcode: SorterSort P1 P2 * * *
5425 **
5426 ** After all records have been inserted into the Sorter object
5427 ** identified by P1, invoke this opcode to actually do the sorting.
5428 ** Jump to P2 if there are no records to be sorted.
5429 **
5430 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5431 ** for Sorter objects.
5432 */
5433 /* Opcode: Sort P1 P2 * * *
5434 **
5435 ** This opcode does exactly the same thing as OP_Rewind except that
5436 ** it increments an undocumented global variable used for testing.
5437 **
5438 ** Sorting is accomplished by writing records into a sorting index,
5439 ** then rewinding that index and playing it back from beginning to
5440 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5441 ** rewinding so that the global variable will be incremented and
5442 ** regression tests can determine whether or not the optimizer is
5443 ** correctly optimizing out sorts.
5444 */
5445 case OP_SorterSort:    /* jump */
5446 case OP_Sort: {        /* jump */
5447 #ifdef SQLITE_TEST
5448   sqlite3_sort_count++;
5449   sqlite3_search_count--;
5450 #endif
5451   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5452   /* Fall through into OP_Rewind */
5453   /* no break */ deliberate_fall_through
5454 }
5455 /* Opcode: Rewind P1 P2 * * *
5456 **
5457 ** The next use of the Rowid or Column or Next instruction for P1
5458 ** will refer to the first entry in the database table or index.
5459 ** If the table or index is empty, jump immediately to P2.
5460 ** If the table or index is not empty, fall through to the following
5461 ** instruction.
5462 **
5463 ** This opcode leaves the cursor configured to move in forward order,
5464 ** from the beginning toward the end.  In other words, the cursor is
5465 ** configured to use Next, not Prev.
5466 */
5467 case OP_Rewind: {        /* jump */
5468   VdbeCursor *pC;
5469   BtCursor *pCrsr;
5470   int res;
5471 
5472   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5473   assert( pOp->p5==0 );
5474   pC = p->apCsr[pOp->p1];
5475   assert( pC!=0 );
5476   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5477   res = 1;
5478 #ifdef SQLITE_DEBUG
5479   pC->seekOp = OP_Rewind;
5480 #endif
5481   if( isSorter(pC) ){
5482     rc = sqlite3VdbeSorterRewind(pC, &res);
5483   }else{
5484     assert( pC->eCurType==CURTYPE_BTREE );
5485     pCrsr = pC->uc.pCursor;
5486     assert( pCrsr );
5487     rc = sqlite3BtreeFirst(pCrsr, &res);
5488     pC->deferredMoveto = 0;
5489     pC->cacheStatus = CACHE_STALE;
5490   }
5491   if( rc ) goto abort_due_to_error;
5492   pC->nullRow = (u8)res;
5493   assert( pOp->p2>0 && pOp->p2<p->nOp );
5494   VdbeBranchTaken(res!=0,2);
5495   if( res ) goto jump_to_p2;
5496   break;
5497 }
5498 
5499 /* Opcode: Next P1 P2 P3 P4 P5
5500 **
5501 ** Advance cursor P1 so that it points to the next key/data pair in its
5502 ** table or index.  If there are no more key/value pairs then fall through
5503 ** to the following instruction.  But if the cursor advance was successful,
5504 ** jump immediately to P2.
5505 **
5506 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5507 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5508 ** to follow SeekLT, SeekLE, or OP_Last.
5509 **
5510 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5511 ** been opened prior to this opcode or the program will segfault.
5512 **
5513 ** The P3 value is a hint to the btree implementation. If P3==1, that
5514 ** means P1 is an SQL index and that this instruction could have been
5515 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5516 ** always either 0 or 1.
5517 **
5518 ** P4 is always of type P4_ADVANCE. The function pointer points to
5519 ** sqlite3BtreeNext().
5520 **
5521 ** If P5 is positive and the jump is taken, then event counter
5522 ** number P5-1 in the prepared statement is incremented.
5523 **
5524 ** See also: Prev
5525 */
5526 /* Opcode: Prev P1 P2 P3 P4 P5
5527 **
5528 ** Back up cursor P1 so that it points to the previous key/data pair in its
5529 ** table or index.  If there is no previous key/value pairs then fall through
5530 ** to the following instruction.  But if the cursor backup was successful,
5531 ** jump immediately to P2.
5532 **
5533 **
5534 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5535 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5536 ** to follow SeekGT, SeekGE, or OP_Rewind.
5537 **
5538 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5539 ** not open then the behavior is undefined.
5540 **
5541 ** The P3 value is a hint to the btree implementation. If P3==1, that
5542 ** means P1 is an SQL index and that this instruction could have been
5543 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5544 ** always either 0 or 1.
5545 **
5546 ** P4 is always of type P4_ADVANCE. The function pointer points to
5547 ** sqlite3BtreePrevious().
5548 **
5549 ** If P5 is positive and the jump is taken, then event counter
5550 ** number P5-1 in the prepared statement is incremented.
5551 */
5552 /* Opcode: SorterNext P1 P2 * * P5
5553 **
5554 ** This opcode works just like OP_Next except that P1 must be a
5555 ** sorter object for which the OP_SorterSort opcode has been
5556 ** invoked.  This opcode advances the cursor to the next sorted
5557 ** record, or jumps to P2 if there are no more sorted records.
5558 */
5559 case OP_SorterNext: {  /* jump */
5560   VdbeCursor *pC;
5561 
5562   pC = p->apCsr[pOp->p1];
5563   assert( isSorter(pC) );
5564   rc = sqlite3VdbeSorterNext(db, pC);
5565   goto next_tail;
5566 case OP_Prev:          /* jump */
5567 case OP_Next:          /* jump */
5568   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5569   assert( pOp->p5<ArraySize(p->aCounter) );
5570   pC = p->apCsr[pOp->p1];
5571   assert( pC!=0 );
5572   assert( pC->deferredMoveto==0 );
5573   assert( pC->eCurType==CURTYPE_BTREE );
5574   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5575   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5576 
5577   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5578   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5579   assert( pOp->opcode!=OP_Next
5580        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5581        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5582        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
5583        || pC->seekOp==OP_IfNoHope);
5584   assert( pOp->opcode!=OP_Prev
5585        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5586        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
5587        || pC->seekOp==OP_NullRow);
5588 
5589   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5590 next_tail:
5591   pC->cacheStatus = CACHE_STALE;
5592   VdbeBranchTaken(rc==SQLITE_OK,2);
5593   if( rc==SQLITE_OK ){
5594     pC->nullRow = 0;
5595     p->aCounter[pOp->p5]++;
5596 #ifdef SQLITE_TEST
5597     sqlite3_search_count++;
5598 #endif
5599     goto jump_to_p2_and_check_for_interrupt;
5600   }
5601   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5602   rc = SQLITE_OK;
5603   pC->nullRow = 1;
5604   goto check_for_interrupt;
5605 }
5606 
5607 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5608 ** Synopsis: key=r[P2]
5609 **
5610 ** Register P2 holds an SQL index key made using the
5611 ** MakeRecord instructions.  This opcode writes that key
5612 ** into the index P1.  Data for the entry is nil.
5613 **
5614 ** If P4 is not zero, then it is the number of values in the unpacked
5615 ** key of reg(P2).  In that case, P3 is the index of the first register
5616 ** for the unpacked key.  The availability of the unpacked key can sometimes
5617 ** be an optimization.
5618 **
5619 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5620 ** that this insert is likely to be an append.
5621 **
5622 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5623 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5624 ** then the change counter is unchanged.
5625 **
5626 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5627 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5628 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5629 ** seeks on the cursor or if the most recent seek used a key equivalent
5630 ** to P2.
5631 **
5632 ** This instruction only works for indices.  The equivalent instruction
5633 ** for tables is OP_Insert.
5634 */
5635 case OP_IdxInsert: {        /* in2 */
5636   VdbeCursor *pC;
5637   BtreePayload x;
5638 
5639   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5640   pC = p->apCsr[pOp->p1];
5641   sqlite3VdbeIncrWriteCounter(p, pC);
5642   assert( pC!=0 );
5643   assert( !isSorter(pC) );
5644   pIn2 = &aMem[pOp->p2];
5645   assert( pIn2->flags & MEM_Blob );
5646   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5647   assert( pC->eCurType==CURTYPE_BTREE );
5648   assert( pC->isTable==0 );
5649   rc = ExpandBlob(pIn2);
5650   if( rc ) goto abort_due_to_error;
5651   x.nKey = pIn2->n;
5652   x.pKey = pIn2->z;
5653   x.aMem = aMem + pOp->p3;
5654   x.nMem = (u16)pOp->p4.i;
5655   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5656        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5657       ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5658       );
5659   assert( pC->deferredMoveto==0 );
5660   pC->cacheStatus = CACHE_STALE;
5661   if( rc) goto abort_due_to_error;
5662   break;
5663 }
5664 
5665 /* Opcode: SorterInsert P1 P2 * * *
5666 ** Synopsis: key=r[P2]
5667 **
5668 ** Register P2 holds an SQL index key made using the
5669 ** MakeRecord instructions.  This opcode writes that key
5670 ** into the sorter P1.  Data for the entry is nil.
5671 */
5672 case OP_SorterInsert: {     /* in2 */
5673   VdbeCursor *pC;
5674 
5675   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5676   pC = p->apCsr[pOp->p1];
5677   sqlite3VdbeIncrWriteCounter(p, pC);
5678   assert( pC!=0 );
5679   assert( isSorter(pC) );
5680   pIn2 = &aMem[pOp->p2];
5681   assert( pIn2->flags & MEM_Blob );
5682   assert( pC->isTable==0 );
5683   rc = ExpandBlob(pIn2);
5684   if( rc ) goto abort_due_to_error;
5685   rc = sqlite3VdbeSorterWrite(pC, pIn2);
5686   if( rc) goto abort_due_to_error;
5687   break;
5688 }
5689 
5690 /* Opcode: IdxDelete P1 P2 P3 * P5
5691 ** Synopsis: key=r[P2@P3]
5692 **
5693 ** The content of P3 registers starting at register P2 form
5694 ** an unpacked index key. This opcode removes that entry from the
5695 ** index opened by cursor P1.
5696 **
5697 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
5698 ** if no matching index entry is found.  This happens when running
5699 ** an UPDATE or DELETE statement and the index entry to be updated
5700 ** or deleted is not found.  For some uses of IdxDelete
5701 ** (example:  the EXCEPT operator) it does not matter that no matching
5702 ** entry is found.  For those cases, P5 is zero.
5703 */
5704 case OP_IdxDelete: {
5705   VdbeCursor *pC;
5706   BtCursor *pCrsr;
5707   int res;
5708   UnpackedRecord r;
5709 
5710   assert( pOp->p3>0 );
5711   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5712   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5713   pC = p->apCsr[pOp->p1];
5714   assert( pC!=0 );
5715   assert( pC->eCurType==CURTYPE_BTREE );
5716   sqlite3VdbeIncrWriteCounter(p, pC);
5717   pCrsr = pC->uc.pCursor;
5718   assert( pCrsr!=0 );
5719   r.pKeyInfo = pC->pKeyInfo;
5720   r.nField = (u16)pOp->p3;
5721   r.default_rc = 0;
5722   r.aMem = &aMem[pOp->p2];
5723   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5724   if( rc ) goto abort_due_to_error;
5725   if( res==0 ){
5726     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5727     if( rc ) goto abort_due_to_error;
5728   }else if( pOp->p5 ){
5729     rc = SQLITE_CORRUPT_INDEX;
5730     goto abort_due_to_error;
5731   }
5732   assert( pC->deferredMoveto==0 );
5733   pC->cacheStatus = CACHE_STALE;
5734   pC->seekResult = 0;
5735   break;
5736 }
5737 
5738 /* Opcode: DeferredSeek P1 * P3 P4 *
5739 ** Synopsis: Move P3 to P1.rowid if needed
5740 **
5741 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5742 ** table.  This opcode does a deferred seek of the P3 table cursor
5743 ** to the row that corresponds to the current row of P1.
5744 **
5745 ** This is a deferred seek.  Nothing actually happens until
5746 ** the cursor is used to read a record.  That way, if no reads
5747 ** occur, no unnecessary I/O happens.
5748 **
5749 ** P4 may be an array of integers (type P4_INTARRAY) containing
5750 ** one entry for each column in the P3 table.  If array entry a(i)
5751 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5752 ** equivalent to performing the deferred seek and then reading column i
5753 ** from P1.  This information is stored in P3 and used to redirect
5754 ** reads against P3 over to P1, thus possibly avoiding the need to
5755 ** seek and read cursor P3.
5756 */
5757 /* Opcode: IdxRowid P1 P2 * * *
5758 ** Synopsis: r[P2]=rowid
5759 **
5760 ** Write into register P2 an integer which is the last entry in the record at
5761 ** the end of the index key pointed to by cursor P1.  This integer should be
5762 ** the rowid of the table entry to which this index entry points.
5763 **
5764 ** See also: Rowid, MakeRecord.
5765 */
5766 case OP_DeferredSeek:
5767 case OP_IdxRowid: {           /* out2 */
5768   VdbeCursor *pC;             /* The P1 index cursor */
5769   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5770   i64 rowid;                  /* Rowid that P1 current points to */
5771 
5772   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5773   pC = p->apCsr[pOp->p1];
5774   assert( pC!=0 );
5775   assert( pC->eCurType==CURTYPE_BTREE );
5776   assert( pC->uc.pCursor!=0 );
5777   assert( pC->isTable==0 );
5778   assert( pC->deferredMoveto==0 );
5779   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5780 
5781   /* The IdxRowid and Seek opcodes are combined because of the commonality
5782   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5783   rc = sqlite3VdbeCursorRestore(pC);
5784 
5785   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5786   ** out from under the cursor.  That will never happens for an IdxRowid
5787   ** or Seek opcode */
5788   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5789 
5790   if( !pC->nullRow ){
5791     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5792     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5793     if( rc!=SQLITE_OK ){
5794       goto abort_due_to_error;
5795     }
5796     if( pOp->opcode==OP_DeferredSeek ){
5797       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5798       pTabCur = p->apCsr[pOp->p3];
5799       assert( pTabCur!=0 );
5800       assert( pTabCur->eCurType==CURTYPE_BTREE );
5801       assert( pTabCur->uc.pCursor!=0 );
5802       assert( pTabCur->isTable );
5803       pTabCur->nullRow = 0;
5804       pTabCur->movetoTarget = rowid;
5805       pTabCur->deferredMoveto = 1;
5806       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5807       pTabCur->aAltMap = pOp->p4.ai;
5808       pTabCur->pAltCursor = pC;
5809     }else{
5810       pOut = out2Prerelease(p, pOp);
5811       pOut->u.i = rowid;
5812     }
5813   }else{
5814     assert( pOp->opcode==OP_IdxRowid );
5815     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5816   }
5817   break;
5818 }
5819 
5820 /* Opcode: FinishSeek P1 * * * *
5821 **
5822 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
5823 ** seek operation now, without further delay.  If the cursor seek has
5824 ** already occurred, this instruction is a no-op.
5825 */
5826 case OP_FinishSeek: {
5827   VdbeCursor *pC;             /* The P1 index cursor */
5828 
5829   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5830   pC = p->apCsr[pOp->p1];
5831   if( pC->deferredMoveto ){
5832     rc = sqlite3VdbeFinishMoveto(pC);
5833     if( rc ) goto abort_due_to_error;
5834   }
5835   break;
5836 }
5837 
5838 /* Opcode: IdxGE P1 P2 P3 P4 *
5839 ** Synopsis: key=r[P3@P4]
5840 **
5841 ** The P4 register values beginning with P3 form an unpacked index
5842 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5843 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5844 ** fields at the end.
5845 **
5846 ** If the P1 index entry is greater than or equal to the key value
5847 ** then jump to P2.  Otherwise fall through to the next instruction.
5848 */
5849 /* Opcode: IdxGT P1 P2 P3 P4 *
5850 ** Synopsis: key=r[P3@P4]
5851 **
5852 ** The P4 register values beginning with P3 form an unpacked index
5853 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5854 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5855 ** fields at the end.
5856 **
5857 ** If the P1 index entry is greater than the key value
5858 ** then jump to P2.  Otherwise fall through to the next instruction.
5859 */
5860 /* Opcode: IdxLT P1 P2 P3 P4 *
5861 ** Synopsis: key=r[P3@P4]
5862 **
5863 ** The P4 register values beginning with P3 form an unpacked index
5864 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5865 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5866 ** ROWID on the P1 index.
5867 **
5868 ** If the P1 index entry is less than the key value then jump to P2.
5869 ** Otherwise fall through to the next instruction.
5870 */
5871 /* Opcode: IdxLE P1 P2 P3 P4 *
5872 ** Synopsis: key=r[P3@P4]
5873 **
5874 ** The P4 register values beginning with P3 form an unpacked index
5875 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5876 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5877 ** ROWID on the P1 index.
5878 **
5879 ** If the P1 index entry is less than or equal to the key value then jump
5880 ** to P2. Otherwise fall through to the next instruction.
5881 */
5882 case OP_IdxLE:          /* jump */
5883 case OP_IdxGT:          /* jump */
5884 case OP_IdxLT:          /* jump */
5885 case OP_IdxGE:  {       /* jump */
5886   VdbeCursor *pC;
5887   int res;
5888   UnpackedRecord r;
5889 
5890   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5891   pC = p->apCsr[pOp->p1];
5892   assert( pC!=0 );
5893   assert( pC->isOrdered );
5894   assert( pC->eCurType==CURTYPE_BTREE );
5895   assert( pC->uc.pCursor!=0);
5896   assert( pC->deferredMoveto==0 );
5897   assert( pOp->p4type==P4_INT32 );
5898   r.pKeyInfo = pC->pKeyInfo;
5899   r.nField = (u16)pOp->p4.i;
5900   if( pOp->opcode<OP_IdxLT ){
5901     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5902     r.default_rc = -1;
5903   }else{
5904     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5905     r.default_rc = 0;
5906   }
5907   r.aMem = &aMem[pOp->p3];
5908 #ifdef SQLITE_DEBUG
5909   {
5910     int i;
5911     for(i=0; i<r.nField; i++){
5912       assert( memIsValid(&r.aMem[i]) );
5913       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
5914     }
5915   }
5916 #endif
5917   res = 0;  /* Not needed.  Only used to silence a warning. */
5918   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5919   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5920   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5921     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5922     res = -res;
5923   }else{
5924     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5925     res++;
5926   }
5927   VdbeBranchTaken(res>0,2);
5928   if( rc ) goto abort_due_to_error;
5929   if( res>0 ) goto jump_to_p2;
5930   break;
5931 }
5932 
5933 /* Opcode: Destroy P1 P2 P3 * *
5934 **
5935 ** Delete an entire database table or index whose root page in the database
5936 ** file is given by P1.
5937 **
5938 ** The table being destroyed is in the main database file if P3==0.  If
5939 ** P3==1 then the table to be clear is in the auxiliary database file
5940 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5941 **
5942 ** If AUTOVACUUM is enabled then it is possible that another root page
5943 ** might be moved into the newly deleted root page in order to keep all
5944 ** root pages contiguous at the beginning of the database.  The former
5945 ** value of the root page that moved - its value before the move occurred -
5946 ** is stored in register P2. If no page movement was required (because the
5947 ** table being dropped was already the last one in the database) then a
5948 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5949 ** is stored in register P2.
5950 **
5951 ** This opcode throws an error if there are any active reader VMs when
5952 ** it is invoked. This is done to avoid the difficulty associated with
5953 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5954 ** database. This error is thrown even if the database is not an AUTOVACUUM
5955 ** db in order to avoid introducing an incompatibility between autovacuum
5956 ** and non-autovacuum modes.
5957 **
5958 ** See also: Clear
5959 */
5960 case OP_Destroy: {     /* out2 */
5961   int iMoved;
5962   int iDb;
5963 
5964   sqlite3VdbeIncrWriteCounter(p, 0);
5965   assert( p->readOnly==0 );
5966   assert( pOp->p1>1 );
5967   pOut = out2Prerelease(p, pOp);
5968   pOut->flags = MEM_Null;
5969   if( db->nVdbeRead > db->nVDestroy+1 ){
5970     rc = SQLITE_LOCKED;
5971     p->errorAction = OE_Abort;
5972     goto abort_due_to_error;
5973   }else{
5974     iDb = pOp->p3;
5975     assert( DbMaskTest(p->btreeMask, iDb) );
5976     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5977     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5978     pOut->flags = MEM_Int;
5979     pOut->u.i = iMoved;
5980     if( rc ) goto abort_due_to_error;
5981 #ifndef SQLITE_OMIT_AUTOVACUUM
5982     if( iMoved!=0 ){
5983       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5984       /* All OP_Destroy operations occur on the same btree */
5985       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5986       resetSchemaOnFault = iDb+1;
5987     }
5988 #endif
5989   }
5990   break;
5991 }
5992 
5993 /* Opcode: Clear P1 P2 P3
5994 **
5995 ** Delete all contents of the database table or index whose root page
5996 ** in the database file is given by P1.  But, unlike Destroy, do not
5997 ** remove the table or index from the database file.
5998 **
5999 ** The table being clear is in the main database file if P2==0.  If
6000 ** P2==1 then the table to be clear is in the auxiliary database file
6001 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6002 **
6003 ** If the P3 value is non-zero, then the table referred to must be an
6004 ** intkey table (an SQL table, not an index). In this case the row change
6005 ** count is incremented by the number of rows in the table being cleared.
6006 ** If P3 is greater than zero, then the value stored in register P3 is
6007 ** also incremented by the number of rows in the table being cleared.
6008 **
6009 ** See also: Destroy
6010 */
6011 case OP_Clear: {
6012   int nChange;
6013 
6014   sqlite3VdbeIncrWriteCounter(p, 0);
6015   nChange = 0;
6016   assert( p->readOnly==0 );
6017   assert( DbMaskTest(p->btreeMask, pOp->p2) );
6018   rc = sqlite3BtreeClearTable(
6019       db->aDb[pOp->p2].pBt, (u32)pOp->p1, (pOp->p3 ? &nChange : 0)
6020   );
6021   if( pOp->p3 ){
6022     p->nChange += nChange;
6023     if( pOp->p3>0 ){
6024       assert( memIsValid(&aMem[pOp->p3]) );
6025       memAboutToChange(p, &aMem[pOp->p3]);
6026       aMem[pOp->p3].u.i += nChange;
6027     }
6028   }
6029   if( rc ) goto abort_due_to_error;
6030   break;
6031 }
6032 
6033 /* Opcode: ResetSorter P1 * * * *
6034 **
6035 ** Delete all contents from the ephemeral table or sorter
6036 ** that is open on cursor P1.
6037 **
6038 ** This opcode only works for cursors used for sorting and
6039 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6040 */
6041 case OP_ResetSorter: {
6042   VdbeCursor *pC;
6043 
6044   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6045   pC = p->apCsr[pOp->p1];
6046   assert( pC!=0 );
6047   if( isSorter(pC) ){
6048     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6049   }else{
6050     assert( pC->eCurType==CURTYPE_BTREE );
6051     assert( pC->isEphemeral );
6052     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6053     if( rc ) goto abort_due_to_error;
6054   }
6055   break;
6056 }
6057 
6058 /* Opcode: CreateBtree P1 P2 P3 * *
6059 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6060 **
6061 ** Allocate a new b-tree in the main database file if P1==0 or in the
6062 ** TEMP database file if P1==1 or in an attached database if
6063 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6064 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6065 ** The root page number of the new b-tree is stored in register P2.
6066 */
6067 case OP_CreateBtree: {          /* out2 */
6068   Pgno pgno;
6069   Db *pDb;
6070 
6071   sqlite3VdbeIncrWriteCounter(p, 0);
6072   pOut = out2Prerelease(p, pOp);
6073   pgno = 0;
6074   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6075   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6076   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6077   assert( p->readOnly==0 );
6078   pDb = &db->aDb[pOp->p1];
6079   assert( pDb->pBt!=0 );
6080   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6081   if( rc ) goto abort_due_to_error;
6082   pOut->u.i = pgno;
6083   break;
6084 }
6085 
6086 /* Opcode: SqlExec * * * P4 *
6087 **
6088 ** Run the SQL statement or statements specified in the P4 string.
6089 */
6090 case OP_SqlExec: {
6091   sqlite3VdbeIncrWriteCounter(p, 0);
6092   db->nSqlExec++;
6093   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6094   db->nSqlExec--;
6095   if( rc ) goto abort_due_to_error;
6096   break;
6097 }
6098 
6099 /* Opcode: ParseSchema P1 * * P4 *
6100 **
6101 ** Read and parse all entries from the schema table of database P1
6102 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6103 ** entire schema for P1 is reparsed.
6104 **
6105 ** This opcode invokes the parser to create a new virtual machine,
6106 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6107 */
6108 case OP_ParseSchema: {
6109   int iDb;
6110   const char *zSchema;
6111   char *zSql;
6112   InitData initData;
6113 
6114   /* Any prepared statement that invokes this opcode will hold mutexes
6115   ** on every btree.  This is a prerequisite for invoking
6116   ** sqlite3InitCallback().
6117   */
6118 #ifdef SQLITE_DEBUG
6119   for(iDb=0; iDb<db->nDb; iDb++){
6120     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6121   }
6122 #endif
6123 
6124   iDb = pOp->p1;
6125   assert( iDb>=0 && iDb<db->nDb );
6126   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
6127 
6128 #ifndef SQLITE_OMIT_ALTERTABLE
6129   if( pOp->p4.z==0 ){
6130     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6131     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6132     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable);
6133     db->mDbFlags |= DBFLAG_SchemaChange;
6134     p->expired = 0;
6135   }else
6136 #endif
6137   {
6138     zSchema = DFLT_SCHEMA_TABLE;
6139     initData.db = db;
6140     initData.iDb = iDb;
6141     initData.pzErrMsg = &p->zErrMsg;
6142     initData.mInitFlags = 0;
6143     initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6144     zSql = sqlite3MPrintf(db,
6145        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6146        db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6147     if( zSql==0 ){
6148       rc = SQLITE_NOMEM_BKPT;
6149     }else{
6150       assert( db->init.busy==0 );
6151       db->init.busy = 1;
6152       initData.rc = SQLITE_OK;
6153       initData.nInitRow = 0;
6154       assert( !db->mallocFailed );
6155       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6156       if( rc==SQLITE_OK ) rc = initData.rc;
6157       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6158         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6159         ** at least one SQL statement. Any less than that indicates that
6160         ** the sqlite_schema table is corrupt. */
6161         rc = SQLITE_CORRUPT_BKPT;
6162       }
6163       sqlite3DbFreeNN(db, zSql);
6164       db->init.busy = 0;
6165     }
6166   }
6167   if( rc ){
6168     sqlite3ResetAllSchemasOfConnection(db);
6169     if( rc==SQLITE_NOMEM ){
6170       goto no_mem;
6171     }
6172     goto abort_due_to_error;
6173   }
6174   break;
6175 }
6176 
6177 #if !defined(SQLITE_OMIT_ANALYZE)
6178 /* Opcode: LoadAnalysis P1 * * * *
6179 **
6180 ** Read the sqlite_stat1 table for database P1 and load the content
6181 ** of that table into the internal index hash table.  This will cause
6182 ** the analysis to be used when preparing all subsequent queries.
6183 */
6184 case OP_LoadAnalysis: {
6185   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6186   rc = sqlite3AnalysisLoad(db, pOp->p1);
6187   if( rc ) goto abort_due_to_error;
6188   break;
6189 }
6190 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6191 
6192 /* Opcode: DropTable P1 * * P4 *
6193 **
6194 ** Remove the internal (in-memory) data structures that describe
6195 ** the table named P4 in database P1.  This is called after a table
6196 ** is dropped from disk (using the Destroy opcode) in order to keep
6197 ** the internal representation of the
6198 ** schema consistent with what is on disk.
6199 */
6200 case OP_DropTable: {
6201   sqlite3VdbeIncrWriteCounter(p, 0);
6202   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6203   break;
6204 }
6205 
6206 /* Opcode: DropIndex P1 * * P4 *
6207 **
6208 ** Remove the internal (in-memory) data structures that describe
6209 ** the index named P4 in database P1.  This is called after an index
6210 ** is dropped from disk (using the Destroy opcode)
6211 ** in order to keep the internal representation of the
6212 ** schema consistent with what is on disk.
6213 */
6214 case OP_DropIndex: {
6215   sqlite3VdbeIncrWriteCounter(p, 0);
6216   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6217   break;
6218 }
6219 
6220 /* Opcode: DropTrigger P1 * * P4 *
6221 **
6222 ** Remove the internal (in-memory) data structures that describe
6223 ** the trigger named P4 in database P1.  This is called after a trigger
6224 ** is dropped from disk (using the Destroy opcode) in order to keep
6225 ** the internal representation of the
6226 ** schema consistent with what is on disk.
6227 */
6228 case OP_DropTrigger: {
6229   sqlite3VdbeIncrWriteCounter(p, 0);
6230   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6231   break;
6232 }
6233 
6234 
6235 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6236 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6237 **
6238 ** Do an analysis of the currently open database.  Store in
6239 ** register P1 the text of an error message describing any problems.
6240 ** If no problems are found, store a NULL in register P1.
6241 **
6242 ** The register P3 contains one less than the maximum number of allowed errors.
6243 ** At most reg(P3) errors will be reported.
6244 ** In other words, the analysis stops as soon as reg(P1) errors are
6245 ** seen.  Reg(P1) is updated with the number of errors remaining.
6246 **
6247 ** The root page numbers of all tables in the database are integers
6248 ** stored in P4_INTARRAY argument.
6249 **
6250 ** If P5 is not zero, the check is done on the auxiliary database
6251 ** file, not the main database file.
6252 **
6253 ** This opcode is used to implement the integrity_check pragma.
6254 */
6255 case OP_IntegrityCk: {
6256   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6257   Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
6258   int nErr;       /* Number of errors reported */
6259   char *z;        /* Text of the error report */
6260   Mem *pnErr;     /* Register keeping track of errors remaining */
6261 
6262   assert( p->bIsReader );
6263   nRoot = pOp->p2;
6264   aRoot = pOp->p4.ai;
6265   assert( nRoot>0 );
6266   assert( aRoot[0]==(Pgno)nRoot );
6267   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6268   pnErr = &aMem[pOp->p3];
6269   assert( (pnErr->flags & MEM_Int)!=0 );
6270   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6271   pIn1 = &aMem[pOp->p1];
6272   assert( pOp->p5<db->nDb );
6273   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6274   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6275                                  (int)pnErr->u.i+1, &nErr);
6276   sqlite3VdbeMemSetNull(pIn1);
6277   if( nErr==0 ){
6278     assert( z==0 );
6279   }else if( z==0 ){
6280     goto no_mem;
6281   }else{
6282     pnErr->u.i -= nErr-1;
6283     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6284   }
6285   UPDATE_MAX_BLOBSIZE(pIn1);
6286   sqlite3VdbeChangeEncoding(pIn1, encoding);
6287   goto check_for_interrupt;
6288 }
6289 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6290 
6291 /* Opcode: RowSetAdd P1 P2 * * *
6292 ** Synopsis: rowset(P1)=r[P2]
6293 **
6294 ** Insert the integer value held by register P2 into a RowSet object
6295 ** held in register P1.
6296 **
6297 ** An assertion fails if P2 is not an integer.
6298 */
6299 case OP_RowSetAdd: {       /* in1, in2 */
6300   pIn1 = &aMem[pOp->p1];
6301   pIn2 = &aMem[pOp->p2];
6302   assert( (pIn2->flags & MEM_Int)!=0 );
6303   if( (pIn1->flags & MEM_Blob)==0 ){
6304     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6305   }
6306   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6307   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6308   break;
6309 }
6310 
6311 /* Opcode: RowSetRead P1 P2 P3 * *
6312 ** Synopsis: r[P3]=rowset(P1)
6313 **
6314 ** Extract the smallest value from the RowSet object in P1
6315 ** and put that value into register P3.
6316 ** Or, if RowSet object P1 is initially empty, leave P3
6317 ** unchanged and jump to instruction P2.
6318 */
6319 case OP_RowSetRead: {       /* jump, in1, out3 */
6320   i64 val;
6321 
6322   pIn1 = &aMem[pOp->p1];
6323   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6324   if( (pIn1->flags & MEM_Blob)==0
6325    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6326   ){
6327     /* The boolean index is empty */
6328     sqlite3VdbeMemSetNull(pIn1);
6329     VdbeBranchTaken(1,2);
6330     goto jump_to_p2_and_check_for_interrupt;
6331   }else{
6332     /* A value was pulled from the index */
6333     VdbeBranchTaken(0,2);
6334     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6335   }
6336   goto check_for_interrupt;
6337 }
6338 
6339 /* Opcode: RowSetTest P1 P2 P3 P4
6340 ** Synopsis: if r[P3] in rowset(P1) goto P2
6341 **
6342 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6343 ** contains a RowSet object and that RowSet object contains
6344 ** the value held in P3, jump to register P2. Otherwise, insert the
6345 ** integer in P3 into the RowSet and continue on to the
6346 ** next opcode.
6347 **
6348 ** The RowSet object is optimized for the case where sets of integers
6349 ** are inserted in distinct phases, which each set contains no duplicates.
6350 ** Each set is identified by a unique P4 value. The first set
6351 ** must have P4==0, the final set must have P4==-1, and for all other sets
6352 ** must have P4>0.
6353 **
6354 ** This allows optimizations: (a) when P4==0 there is no need to test
6355 ** the RowSet object for P3, as it is guaranteed not to contain it,
6356 ** (b) when P4==-1 there is no need to insert the value, as it will
6357 ** never be tested for, and (c) when a value that is part of set X is
6358 ** inserted, there is no need to search to see if the same value was
6359 ** previously inserted as part of set X (only if it was previously
6360 ** inserted as part of some other set).
6361 */
6362 case OP_RowSetTest: {                     /* jump, in1, in3 */
6363   int iSet;
6364   int exists;
6365 
6366   pIn1 = &aMem[pOp->p1];
6367   pIn3 = &aMem[pOp->p3];
6368   iSet = pOp->p4.i;
6369   assert( pIn3->flags&MEM_Int );
6370 
6371   /* If there is anything other than a rowset object in memory cell P1,
6372   ** delete it now and initialize P1 with an empty rowset
6373   */
6374   if( (pIn1->flags & MEM_Blob)==0 ){
6375     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6376   }
6377   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6378   assert( pOp->p4type==P4_INT32 );
6379   assert( iSet==-1 || iSet>=0 );
6380   if( iSet ){
6381     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6382     VdbeBranchTaken(exists!=0,2);
6383     if( exists ) goto jump_to_p2;
6384   }
6385   if( iSet>=0 ){
6386     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6387   }
6388   break;
6389 }
6390 
6391 
6392 #ifndef SQLITE_OMIT_TRIGGER
6393 
6394 /* Opcode: Program P1 P2 P3 P4 P5
6395 **
6396 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6397 **
6398 ** P1 contains the address of the memory cell that contains the first memory
6399 ** cell in an array of values used as arguments to the sub-program. P2
6400 ** contains the address to jump to if the sub-program throws an IGNORE
6401 ** exception using the RAISE() function. Register P3 contains the address
6402 ** of a memory cell in this (the parent) VM that is used to allocate the
6403 ** memory required by the sub-vdbe at runtime.
6404 **
6405 ** P4 is a pointer to the VM containing the trigger program.
6406 **
6407 ** If P5 is non-zero, then recursive program invocation is enabled.
6408 */
6409 case OP_Program: {        /* jump */
6410   int nMem;               /* Number of memory registers for sub-program */
6411   int nByte;              /* Bytes of runtime space required for sub-program */
6412   Mem *pRt;               /* Register to allocate runtime space */
6413   Mem *pMem;              /* Used to iterate through memory cells */
6414   Mem *pEnd;              /* Last memory cell in new array */
6415   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6416   SubProgram *pProgram;   /* Sub-program to execute */
6417   void *t;                /* Token identifying trigger */
6418 
6419   pProgram = pOp->p4.pProgram;
6420   pRt = &aMem[pOp->p3];
6421   assert( pProgram->nOp>0 );
6422 
6423   /* If the p5 flag is clear, then recursive invocation of triggers is
6424   ** disabled for backwards compatibility (p5 is set if this sub-program
6425   ** is really a trigger, not a foreign key action, and the flag set
6426   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6427   **
6428   ** It is recursive invocation of triggers, at the SQL level, that is
6429   ** disabled. In some cases a single trigger may generate more than one
6430   ** SubProgram (if the trigger may be executed with more than one different
6431   ** ON CONFLICT algorithm). SubProgram structures associated with a
6432   ** single trigger all have the same value for the SubProgram.token
6433   ** variable.  */
6434   if( pOp->p5 ){
6435     t = pProgram->token;
6436     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6437     if( pFrame ) break;
6438   }
6439 
6440   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6441     rc = SQLITE_ERROR;
6442     sqlite3VdbeError(p, "too many levels of trigger recursion");
6443     goto abort_due_to_error;
6444   }
6445 
6446   /* Register pRt is used to store the memory required to save the state
6447   ** of the current program, and the memory required at runtime to execute
6448   ** the trigger program. If this trigger has been fired before, then pRt
6449   ** is already allocated. Otherwise, it must be initialized.  */
6450   if( (pRt->flags&MEM_Blob)==0 ){
6451     /* SubProgram.nMem is set to the number of memory cells used by the
6452     ** program stored in SubProgram.aOp. As well as these, one memory
6453     ** cell is required for each cursor used by the program. Set local
6454     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6455     */
6456     nMem = pProgram->nMem + pProgram->nCsr;
6457     assert( nMem>0 );
6458     if( pProgram->nCsr==0 ) nMem++;
6459     nByte = ROUND8(sizeof(VdbeFrame))
6460               + nMem * sizeof(Mem)
6461               + pProgram->nCsr * sizeof(VdbeCursor*)
6462               + (pProgram->nOp + 7)/8;
6463     pFrame = sqlite3DbMallocZero(db, nByte);
6464     if( !pFrame ){
6465       goto no_mem;
6466     }
6467     sqlite3VdbeMemRelease(pRt);
6468     pRt->flags = MEM_Blob|MEM_Dyn;
6469     pRt->z = (char*)pFrame;
6470     pRt->n = nByte;
6471     pRt->xDel = sqlite3VdbeFrameMemDel;
6472 
6473     pFrame->v = p;
6474     pFrame->nChildMem = nMem;
6475     pFrame->nChildCsr = pProgram->nCsr;
6476     pFrame->pc = (int)(pOp - aOp);
6477     pFrame->aMem = p->aMem;
6478     pFrame->nMem = p->nMem;
6479     pFrame->apCsr = p->apCsr;
6480     pFrame->nCursor = p->nCursor;
6481     pFrame->aOp = p->aOp;
6482     pFrame->nOp = p->nOp;
6483     pFrame->token = pProgram->token;
6484 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6485     pFrame->anExec = p->anExec;
6486 #endif
6487 #ifdef SQLITE_DEBUG
6488     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
6489 #endif
6490 
6491     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6492     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6493       pMem->flags = MEM_Undefined;
6494       pMem->db = db;
6495     }
6496   }else{
6497     pFrame = (VdbeFrame*)pRt->z;
6498     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
6499     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6500         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6501     assert( pProgram->nCsr==pFrame->nChildCsr );
6502     assert( (int)(pOp - aOp)==pFrame->pc );
6503   }
6504 
6505   p->nFrame++;
6506   pFrame->pParent = p->pFrame;
6507   pFrame->lastRowid = db->lastRowid;
6508   pFrame->nChange = p->nChange;
6509   pFrame->nDbChange = p->db->nChange;
6510   assert( pFrame->pAuxData==0 );
6511   pFrame->pAuxData = p->pAuxData;
6512   p->pAuxData = 0;
6513   p->nChange = 0;
6514   p->pFrame = pFrame;
6515   p->aMem = aMem = VdbeFrameMem(pFrame);
6516   p->nMem = pFrame->nChildMem;
6517   p->nCursor = (u16)pFrame->nChildCsr;
6518   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6519   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6520   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6521   p->aOp = aOp = pProgram->aOp;
6522   p->nOp = pProgram->nOp;
6523 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6524   p->anExec = 0;
6525 #endif
6526 #ifdef SQLITE_DEBUG
6527   /* Verify that second and subsequent executions of the same trigger do not
6528   ** try to reuse register values from the first use. */
6529   {
6530     int i;
6531     for(i=0; i<p->nMem; i++){
6532       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
6533       MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
6534     }
6535   }
6536 #endif
6537   pOp = &aOp[-1];
6538   goto check_for_interrupt;
6539 }
6540 
6541 /* Opcode: Param P1 P2 * * *
6542 **
6543 ** This opcode is only ever present in sub-programs called via the
6544 ** OP_Program instruction. Copy a value currently stored in a memory
6545 ** cell of the calling (parent) frame to cell P2 in the current frames
6546 ** address space. This is used by trigger programs to access the new.*
6547 ** and old.* values.
6548 **
6549 ** The address of the cell in the parent frame is determined by adding
6550 ** the value of the P1 argument to the value of the P1 argument to the
6551 ** calling OP_Program instruction.
6552 */
6553 case OP_Param: {           /* out2 */
6554   VdbeFrame *pFrame;
6555   Mem *pIn;
6556   pOut = out2Prerelease(p, pOp);
6557   pFrame = p->pFrame;
6558   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6559   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6560   break;
6561 }
6562 
6563 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6564 
6565 #ifndef SQLITE_OMIT_FOREIGN_KEY
6566 /* Opcode: FkCounter P1 P2 * * *
6567 ** Synopsis: fkctr[P1]+=P2
6568 **
6569 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6570 ** If P1 is non-zero, the database constraint counter is incremented
6571 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6572 ** statement counter is incremented (immediate foreign key constraints).
6573 */
6574 case OP_FkCounter: {
6575   if( db->flags & SQLITE_DeferFKs ){
6576     db->nDeferredImmCons += pOp->p2;
6577   }else if( pOp->p1 ){
6578     db->nDeferredCons += pOp->p2;
6579   }else{
6580     p->nFkConstraint += pOp->p2;
6581   }
6582   break;
6583 }
6584 
6585 /* Opcode: FkIfZero P1 P2 * * *
6586 ** Synopsis: if fkctr[P1]==0 goto P2
6587 **
6588 ** This opcode tests if a foreign key constraint-counter is currently zero.
6589 ** If so, jump to instruction P2. Otherwise, fall through to the next
6590 ** instruction.
6591 **
6592 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6593 ** is zero (the one that counts deferred constraint violations). If P1 is
6594 ** zero, the jump is taken if the statement constraint-counter is zero
6595 ** (immediate foreign key constraint violations).
6596 */
6597 case OP_FkIfZero: {         /* jump */
6598   if( pOp->p1 ){
6599     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
6600     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6601   }else{
6602     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
6603     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6604   }
6605   break;
6606 }
6607 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6608 
6609 #ifndef SQLITE_OMIT_AUTOINCREMENT
6610 /* Opcode: MemMax P1 P2 * * *
6611 ** Synopsis: r[P1]=max(r[P1],r[P2])
6612 **
6613 ** P1 is a register in the root frame of this VM (the root frame is
6614 ** different from the current frame if this instruction is being executed
6615 ** within a sub-program). Set the value of register P1 to the maximum of
6616 ** its current value and the value in register P2.
6617 **
6618 ** This instruction throws an error if the memory cell is not initially
6619 ** an integer.
6620 */
6621 case OP_MemMax: {        /* in2 */
6622   VdbeFrame *pFrame;
6623   if( p->pFrame ){
6624     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6625     pIn1 = &pFrame->aMem[pOp->p1];
6626   }else{
6627     pIn1 = &aMem[pOp->p1];
6628   }
6629   assert( memIsValid(pIn1) );
6630   sqlite3VdbeMemIntegerify(pIn1);
6631   pIn2 = &aMem[pOp->p2];
6632   sqlite3VdbeMemIntegerify(pIn2);
6633   if( pIn1->u.i<pIn2->u.i){
6634     pIn1->u.i = pIn2->u.i;
6635   }
6636   break;
6637 }
6638 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6639 
6640 /* Opcode: IfPos P1 P2 P3 * *
6641 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6642 **
6643 ** Register P1 must contain an integer.
6644 ** If the value of register P1 is 1 or greater, subtract P3 from the
6645 ** value in P1 and jump to P2.
6646 **
6647 ** If the initial value of register P1 is less than 1, then the
6648 ** value is unchanged and control passes through to the next instruction.
6649 */
6650 case OP_IfPos: {        /* jump, in1 */
6651   pIn1 = &aMem[pOp->p1];
6652   assert( pIn1->flags&MEM_Int );
6653   VdbeBranchTaken( pIn1->u.i>0, 2);
6654   if( pIn1->u.i>0 ){
6655     pIn1->u.i -= pOp->p3;
6656     goto jump_to_p2;
6657   }
6658   break;
6659 }
6660 
6661 /* Opcode: OffsetLimit P1 P2 P3 * *
6662 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6663 **
6664 ** This opcode performs a commonly used computation associated with
6665 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6666 ** holds the offset counter.  The opcode computes the combined value
6667 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6668 ** value computed is the total number of rows that will need to be
6669 ** visited in order to complete the query.
6670 **
6671 ** If r[P3] is zero or negative, that means there is no OFFSET
6672 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6673 **
6674 ** if r[P1] is zero or negative, that means there is no LIMIT
6675 ** and r[P2] is set to -1.
6676 **
6677 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6678 */
6679 case OP_OffsetLimit: {    /* in1, out2, in3 */
6680   i64 x;
6681   pIn1 = &aMem[pOp->p1];
6682   pIn3 = &aMem[pOp->p3];
6683   pOut = out2Prerelease(p, pOp);
6684   assert( pIn1->flags & MEM_Int );
6685   assert( pIn3->flags & MEM_Int );
6686   x = pIn1->u.i;
6687   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6688     /* If the LIMIT is less than or equal to zero, loop forever.  This
6689     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6690     ** also loop forever.  This is undocumented.  In fact, one could argue
6691     ** that the loop should terminate.  But assuming 1 billion iterations
6692     ** per second (far exceeding the capabilities of any current hardware)
6693     ** it would take nearly 300 years to actually reach the limit.  So
6694     ** looping forever is a reasonable approximation. */
6695     pOut->u.i = -1;
6696   }else{
6697     pOut->u.i = x;
6698   }
6699   break;
6700 }
6701 
6702 /* Opcode: IfNotZero P1 P2 * * *
6703 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6704 **
6705 ** Register P1 must contain an integer.  If the content of register P1 is
6706 ** initially greater than zero, then decrement the value in register P1.
6707 ** If it is non-zero (negative or positive) and then also jump to P2.
6708 ** If register P1 is initially zero, leave it unchanged and fall through.
6709 */
6710 case OP_IfNotZero: {        /* jump, in1 */
6711   pIn1 = &aMem[pOp->p1];
6712   assert( pIn1->flags&MEM_Int );
6713   VdbeBranchTaken(pIn1->u.i<0, 2);
6714   if( pIn1->u.i ){
6715      if( pIn1->u.i>0 ) pIn1->u.i--;
6716      goto jump_to_p2;
6717   }
6718   break;
6719 }
6720 
6721 /* Opcode: DecrJumpZero P1 P2 * * *
6722 ** Synopsis: if (--r[P1])==0 goto P2
6723 **
6724 ** Register P1 must hold an integer.  Decrement the value in P1
6725 ** and jump to P2 if the new value is exactly zero.
6726 */
6727 case OP_DecrJumpZero: {      /* jump, in1 */
6728   pIn1 = &aMem[pOp->p1];
6729   assert( pIn1->flags&MEM_Int );
6730   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6731   VdbeBranchTaken(pIn1->u.i==0, 2);
6732   if( pIn1->u.i==0 ) goto jump_to_p2;
6733   break;
6734 }
6735 
6736 
6737 /* Opcode: AggStep * P2 P3 P4 P5
6738 ** Synopsis: accum=r[P3] step(r[P2@P5])
6739 **
6740 ** Execute the xStep function for an aggregate.
6741 ** The function has P5 arguments.  P4 is a pointer to the
6742 ** FuncDef structure that specifies the function.  Register P3 is the
6743 ** accumulator.
6744 **
6745 ** The P5 arguments are taken from register P2 and its
6746 ** successors.
6747 */
6748 /* Opcode: AggInverse * P2 P3 P4 P5
6749 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
6750 **
6751 ** Execute the xInverse function for an aggregate.
6752 ** The function has P5 arguments.  P4 is a pointer to the
6753 ** FuncDef structure that specifies the function.  Register P3 is the
6754 ** accumulator.
6755 **
6756 ** The P5 arguments are taken from register P2 and its
6757 ** successors.
6758 */
6759 /* Opcode: AggStep1 P1 P2 P3 P4 P5
6760 ** Synopsis: accum=r[P3] step(r[P2@P5])
6761 **
6762 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6763 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
6764 ** FuncDef structure that specifies the function.  Register P3 is the
6765 ** accumulator.
6766 **
6767 ** The P5 arguments are taken from register P2 and its
6768 ** successors.
6769 **
6770 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6771 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6772 ** the opcode is changed.  In this way, the initialization of the
6773 ** sqlite3_context only happens once, instead of on each call to the
6774 ** step function.
6775 */
6776 case OP_AggInverse:
6777 case OP_AggStep: {
6778   int n;
6779   sqlite3_context *pCtx;
6780 
6781   assert( pOp->p4type==P4_FUNCDEF );
6782   n = pOp->p5;
6783   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6784   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6785   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6786   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6787                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
6788   if( pCtx==0 ) goto no_mem;
6789   pCtx->pMem = 0;
6790   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6791   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
6792   pCtx->pFunc = pOp->p4.pFunc;
6793   pCtx->iOp = (int)(pOp - aOp);
6794   pCtx->pVdbe = p;
6795   pCtx->skipFlag = 0;
6796   pCtx->isError = 0;
6797   pCtx->argc = n;
6798   pOp->p4type = P4_FUNCCTX;
6799   pOp->p4.pCtx = pCtx;
6800 
6801   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
6802   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
6803 
6804   pOp->opcode = OP_AggStep1;
6805   /* Fall through into OP_AggStep */
6806   /* no break */ deliberate_fall_through
6807 }
6808 case OP_AggStep1: {
6809   int i;
6810   sqlite3_context *pCtx;
6811   Mem *pMem;
6812 
6813   assert( pOp->p4type==P4_FUNCCTX );
6814   pCtx = pOp->p4.pCtx;
6815   pMem = &aMem[pOp->p3];
6816 
6817 #ifdef SQLITE_DEBUG
6818   if( pOp->p1 ){
6819     /* This is an OP_AggInverse call.  Verify that xStep has always
6820     ** been called at least once prior to any xInverse call. */
6821     assert( pMem->uTemp==0x1122e0e3 );
6822   }else{
6823     /* This is an OP_AggStep call.  Mark it as such. */
6824     pMem->uTemp = 0x1122e0e3;
6825   }
6826 #endif
6827 
6828   /* If this function is inside of a trigger, the register array in aMem[]
6829   ** might change from one evaluation to the next.  The next block of code
6830   ** checks to see if the register array has changed, and if so it
6831   ** reinitializes the relavant parts of the sqlite3_context object */
6832   if( pCtx->pMem != pMem ){
6833     pCtx->pMem = pMem;
6834     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6835   }
6836 
6837 #ifdef SQLITE_DEBUG
6838   for(i=0; i<pCtx->argc; i++){
6839     assert( memIsValid(pCtx->argv[i]) );
6840     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6841   }
6842 #endif
6843 
6844   pMem->n++;
6845   assert( pCtx->pOut->flags==MEM_Null );
6846   assert( pCtx->isError==0 );
6847   assert( pCtx->skipFlag==0 );
6848 #ifndef SQLITE_OMIT_WINDOWFUNC
6849   if( pOp->p1 ){
6850     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6851   }else
6852 #endif
6853   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6854 
6855   if( pCtx->isError ){
6856     if( pCtx->isError>0 ){
6857       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
6858       rc = pCtx->isError;
6859     }
6860     if( pCtx->skipFlag ){
6861       assert( pOp[-1].opcode==OP_CollSeq );
6862       i = pOp[-1].p1;
6863       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6864       pCtx->skipFlag = 0;
6865     }
6866     sqlite3VdbeMemRelease(pCtx->pOut);
6867     pCtx->pOut->flags = MEM_Null;
6868     pCtx->isError = 0;
6869     if( rc ) goto abort_due_to_error;
6870   }
6871   assert( pCtx->pOut->flags==MEM_Null );
6872   assert( pCtx->skipFlag==0 );
6873   break;
6874 }
6875 
6876 /* Opcode: AggFinal P1 P2 * P4 *
6877 ** Synopsis: accum=r[P1] N=P2
6878 **
6879 ** P1 is the memory location that is the accumulator for an aggregate
6880 ** or window function.  Execute the finalizer function
6881 ** for an aggregate and store the result in P1.
6882 **
6883 ** P2 is the number of arguments that the step function takes and
6884 ** P4 is a pointer to the FuncDef for this function.  The P2
6885 ** argument is not used by this opcode.  It is only there to disambiguate
6886 ** functions that can take varying numbers of arguments.  The
6887 ** P4 argument is only needed for the case where
6888 ** the step function was not previously called.
6889 */
6890 /* Opcode: AggValue * P2 P3 P4 *
6891 ** Synopsis: r[P3]=value N=P2
6892 **
6893 ** Invoke the xValue() function and store the result in register P3.
6894 **
6895 ** P2 is the number of arguments that the step function takes and
6896 ** P4 is a pointer to the FuncDef for this function.  The P2
6897 ** argument is not used by this opcode.  It is only there to disambiguate
6898 ** functions that can take varying numbers of arguments.  The
6899 ** P4 argument is only needed for the case where
6900 ** the step function was not previously called.
6901 */
6902 case OP_AggValue:
6903 case OP_AggFinal: {
6904   Mem *pMem;
6905   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6906   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
6907   pMem = &aMem[pOp->p1];
6908   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6909 #ifndef SQLITE_OMIT_WINDOWFUNC
6910   if( pOp->p3 ){
6911     memAboutToChange(p, &aMem[pOp->p3]);
6912     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
6913     pMem = &aMem[pOp->p3];
6914   }else
6915 #endif
6916   {
6917     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6918   }
6919 
6920   if( rc ){
6921     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6922     goto abort_due_to_error;
6923   }
6924   sqlite3VdbeChangeEncoding(pMem, encoding);
6925   UPDATE_MAX_BLOBSIZE(pMem);
6926   if( sqlite3VdbeMemTooBig(pMem) ){
6927     goto too_big;
6928   }
6929   break;
6930 }
6931 
6932 #ifndef SQLITE_OMIT_WAL
6933 /* Opcode: Checkpoint P1 P2 P3 * *
6934 **
6935 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6936 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6937 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6938 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6939 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6940 ** in the WAL that have been checkpointed after the checkpoint
6941 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6942 ** mem[P3+2] are initialized to -1.
6943 */
6944 case OP_Checkpoint: {
6945   int i;                          /* Loop counter */
6946   int aRes[3];                    /* Results */
6947   Mem *pMem;                      /* Write results here */
6948 
6949   assert( p->readOnly==0 );
6950   aRes[0] = 0;
6951   aRes[1] = aRes[2] = -1;
6952   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6953        || pOp->p2==SQLITE_CHECKPOINT_FULL
6954        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6955        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6956   );
6957   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6958   if( rc ){
6959     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6960     rc = SQLITE_OK;
6961     aRes[0] = 1;
6962   }
6963   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6964     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6965   }
6966   break;
6967 };
6968 #endif
6969 
6970 #ifndef SQLITE_OMIT_PRAGMA
6971 /* Opcode: JournalMode P1 P2 P3 * *
6972 **
6973 ** Change the journal mode of database P1 to P3. P3 must be one of the
6974 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6975 ** modes (delete, truncate, persist, off and memory), this is a simple
6976 ** operation. No IO is required.
6977 **
6978 ** If changing into or out of WAL mode the procedure is more complicated.
6979 **
6980 ** Write a string containing the final journal-mode to register P2.
6981 */
6982 case OP_JournalMode: {    /* out2 */
6983   Btree *pBt;                     /* Btree to change journal mode of */
6984   Pager *pPager;                  /* Pager associated with pBt */
6985   int eNew;                       /* New journal mode */
6986   int eOld;                       /* The old journal mode */
6987 #ifndef SQLITE_OMIT_WAL
6988   const char *zFilename;          /* Name of database file for pPager */
6989 #endif
6990 
6991   pOut = out2Prerelease(p, pOp);
6992   eNew = pOp->p3;
6993   assert( eNew==PAGER_JOURNALMODE_DELETE
6994        || eNew==PAGER_JOURNALMODE_TRUNCATE
6995        || eNew==PAGER_JOURNALMODE_PERSIST
6996        || eNew==PAGER_JOURNALMODE_OFF
6997        || eNew==PAGER_JOURNALMODE_MEMORY
6998        || eNew==PAGER_JOURNALMODE_WAL
6999        || eNew==PAGER_JOURNALMODE_QUERY
7000   );
7001   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7002   assert( p->readOnly==0 );
7003 
7004   pBt = db->aDb[pOp->p1].pBt;
7005   pPager = sqlite3BtreePager(pBt);
7006   eOld = sqlite3PagerGetJournalMode(pPager);
7007   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7008   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7009 
7010 #ifndef SQLITE_OMIT_WAL
7011   zFilename = sqlite3PagerFilename(pPager, 1);
7012 
7013   /* Do not allow a transition to journal_mode=WAL for a database
7014   ** in temporary storage or if the VFS does not support shared memory
7015   */
7016   if( eNew==PAGER_JOURNALMODE_WAL
7017    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
7018        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
7019   ){
7020     eNew = eOld;
7021   }
7022 
7023   if( (eNew!=eOld)
7024    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7025   ){
7026     if( !db->autoCommit || db->nVdbeRead>1 ){
7027       rc = SQLITE_ERROR;
7028       sqlite3VdbeError(p,
7029           "cannot change %s wal mode from within a transaction",
7030           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7031       );
7032       goto abort_due_to_error;
7033     }else{
7034 
7035       if( eOld==PAGER_JOURNALMODE_WAL ){
7036         /* If leaving WAL mode, close the log file. If successful, the call
7037         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7038         ** file. An EXCLUSIVE lock may still be held on the database file
7039         ** after a successful return.
7040         */
7041         rc = sqlite3PagerCloseWal(pPager, db);
7042         if( rc==SQLITE_OK ){
7043           sqlite3PagerSetJournalMode(pPager, eNew);
7044         }
7045       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7046         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
7047         ** as an intermediate */
7048         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7049       }
7050 
7051       /* Open a transaction on the database file. Regardless of the journal
7052       ** mode, this transaction always uses a rollback journal.
7053       */
7054       assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7055       if( rc==SQLITE_OK ){
7056         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7057       }
7058     }
7059   }
7060 #endif /* ifndef SQLITE_OMIT_WAL */
7061 
7062   if( rc ) eNew = eOld;
7063   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7064 
7065   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7066   pOut->z = (char *)sqlite3JournalModename(eNew);
7067   pOut->n = sqlite3Strlen30(pOut->z);
7068   pOut->enc = SQLITE_UTF8;
7069   sqlite3VdbeChangeEncoding(pOut, encoding);
7070   if( rc ) goto abort_due_to_error;
7071   break;
7072 };
7073 #endif /* SQLITE_OMIT_PRAGMA */
7074 
7075 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7076 /* Opcode: Vacuum P1 P2 * * *
7077 **
7078 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7079 ** for an attached database.  The "temp" database may not be vacuumed.
7080 **
7081 ** If P2 is not zero, then it is a register holding a string which is
7082 ** the file into which the result of vacuum should be written.  When
7083 ** P2 is zero, the vacuum overwrites the original database.
7084 */
7085 case OP_Vacuum: {
7086   assert( p->readOnly==0 );
7087   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7088                         pOp->p2 ? &aMem[pOp->p2] : 0);
7089   if( rc ) goto abort_due_to_error;
7090   break;
7091 }
7092 #endif
7093 
7094 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7095 /* Opcode: IncrVacuum P1 P2 * * *
7096 **
7097 ** Perform a single step of the incremental vacuum procedure on
7098 ** the P1 database. If the vacuum has finished, jump to instruction
7099 ** P2. Otherwise, fall through to the next instruction.
7100 */
7101 case OP_IncrVacuum: {        /* jump */
7102   Btree *pBt;
7103 
7104   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7105   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7106   assert( p->readOnly==0 );
7107   pBt = db->aDb[pOp->p1].pBt;
7108   rc = sqlite3BtreeIncrVacuum(pBt);
7109   VdbeBranchTaken(rc==SQLITE_DONE,2);
7110   if( rc ){
7111     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7112     rc = SQLITE_OK;
7113     goto jump_to_p2;
7114   }
7115   break;
7116 }
7117 #endif
7118 
7119 /* Opcode: Expire P1 P2 * * *
7120 **
7121 ** Cause precompiled statements to expire.  When an expired statement
7122 ** is executed using sqlite3_step() it will either automatically
7123 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7124 ** or it will fail with SQLITE_SCHEMA.
7125 **
7126 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7127 ** then only the currently executing statement is expired.
7128 **
7129 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7130 ** then running SQL statements are allowed to continue to run to completion.
7131 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7132 ** that might help the statement run faster but which does not affect the
7133 ** correctness of operation.
7134 */
7135 case OP_Expire: {
7136   assert( pOp->p2==0 || pOp->p2==1 );
7137   if( !pOp->p1 ){
7138     sqlite3ExpirePreparedStatements(db, pOp->p2);
7139   }else{
7140     p->expired = pOp->p2+1;
7141   }
7142   break;
7143 }
7144 
7145 /* Opcode: CursorLock P1 * * * *
7146 **
7147 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7148 ** written by an other cursor.
7149 */
7150 case OP_CursorLock: {
7151   VdbeCursor *pC;
7152   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7153   pC = p->apCsr[pOp->p1];
7154   assert( pC!=0 );
7155   assert( pC->eCurType==CURTYPE_BTREE );
7156   sqlite3BtreeCursorPin(pC->uc.pCursor);
7157   break;
7158 }
7159 
7160 /* Opcode: CursorUnlock P1 * * * *
7161 **
7162 ** Unlock the btree to which cursor P1 is pointing so that it can be
7163 ** written by other cursors.
7164 */
7165 case OP_CursorUnlock: {
7166   VdbeCursor *pC;
7167   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7168   pC = p->apCsr[pOp->p1];
7169   assert( pC!=0 );
7170   assert( pC->eCurType==CURTYPE_BTREE );
7171   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7172   break;
7173 }
7174 
7175 #ifndef SQLITE_OMIT_SHARED_CACHE
7176 /* Opcode: TableLock P1 P2 P3 P4 *
7177 ** Synopsis: iDb=P1 root=P2 write=P3
7178 **
7179 ** Obtain a lock on a particular table. This instruction is only used when
7180 ** the shared-cache feature is enabled.
7181 **
7182 ** P1 is the index of the database in sqlite3.aDb[] of the database
7183 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7184 ** a write lock if P3==1.
7185 **
7186 ** P2 contains the root-page of the table to lock.
7187 **
7188 ** P4 contains a pointer to the name of the table being locked. This is only
7189 ** used to generate an error message if the lock cannot be obtained.
7190 */
7191 case OP_TableLock: {
7192   u8 isWriteLock = (u8)pOp->p3;
7193   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7194     int p1 = pOp->p1;
7195     assert( p1>=0 && p1<db->nDb );
7196     assert( DbMaskTest(p->btreeMask, p1) );
7197     assert( isWriteLock==0 || isWriteLock==1 );
7198     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7199     if( rc ){
7200       if( (rc&0xFF)==SQLITE_LOCKED ){
7201         const char *z = pOp->p4.z;
7202         sqlite3VdbeError(p, "database table is locked: %s", z);
7203       }
7204       goto abort_due_to_error;
7205     }
7206   }
7207   break;
7208 }
7209 #endif /* SQLITE_OMIT_SHARED_CACHE */
7210 
7211 #ifndef SQLITE_OMIT_VIRTUALTABLE
7212 /* Opcode: VBegin * * * P4 *
7213 **
7214 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7215 ** xBegin method for that table.
7216 **
7217 ** Also, whether or not P4 is set, check that this is not being called from
7218 ** within a callback to a virtual table xSync() method. If it is, the error
7219 ** code will be set to SQLITE_LOCKED.
7220 */
7221 case OP_VBegin: {
7222   VTable *pVTab;
7223   pVTab = pOp->p4.pVtab;
7224   rc = sqlite3VtabBegin(db, pVTab);
7225   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7226   if( rc ) goto abort_due_to_error;
7227   break;
7228 }
7229 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7230 
7231 #ifndef SQLITE_OMIT_VIRTUALTABLE
7232 /* Opcode: VCreate P1 P2 * * *
7233 **
7234 ** P2 is a register that holds the name of a virtual table in database
7235 ** P1. Call the xCreate method for that table.
7236 */
7237 case OP_VCreate: {
7238   Mem sMem;          /* For storing the record being decoded */
7239   const char *zTab;  /* Name of the virtual table */
7240 
7241   memset(&sMem, 0, sizeof(sMem));
7242   sMem.db = db;
7243   /* Because P2 is always a static string, it is impossible for the
7244   ** sqlite3VdbeMemCopy() to fail */
7245   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7246   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7247   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7248   assert( rc==SQLITE_OK );
7249   zTab = (const char*)sqlite3_value_text(&sMem);
7250   assert( zTab || db->mallocFailed );
7251   if( zTab ){
7252     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7253   }
7254   sqlite3VdbeMemRelease(&sMem);
7255   if( rc ) goto abort_due_to_error;
7256   break;
7257 }
7258 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7259 
7260 #ifndef SQLITE_OMIT_VIRTUALTABLE
7261 /* Opcode: VDestroy P1 * * P4 *
7262 **
7263 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7264 ** of that table.
7265 */
7266 case OP_VDestroy: {
7267   db->nVDestroy++;
7268   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7269   db->nVDestroy--;
7270   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7271   if( rc ) goto abort_due_to_error;
7272   break;
7273 }
7274 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7275 
7276 #ifndef SQLITE_OMIT_VIRTUALTABLE
7277 /* Opcode: VOpen P1 * * P4 *
7278 **
7279 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7280 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7281 ** table and stores that cursor in P1.
7282 */
7283 case OP_VOpen: {
7284   VdbeCursor *pCur;
7285   sqlite3_vtab_cursor *pVCur;
7286   sqlite3_vtab *pVtab;
7287   const sqlite3_module *pModule;
7288 
7289   assert( p->bIsReader );
7290   pCur = 0;
7291   pVCur = 0;
7292   pVtab = pOp->p4.pVtab->pVtab;
7293   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7294     rc = SQLITE_LOCKED;
7295     goto abort_due_to_error;
7296   }
7297   pModule = pVtab->pModule;
7298   rc = pModule->xOpen(pVtab, &pVCur);
7299   sqlite3VtabImportErrmsg(p, pVtab);
7300   if( rc ) goto abort_due_to_error;
7301 
7302   /* Initialize sqlite3_vtab_cursor base class */
7303   pVCur->pVtab = pVtab;
7304 
7305   /* Initialize vdbe cursor object */
7306   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
7307   if( pCur ){
7308     pCur->uc.pVCur = pVCur;
7309     pVtab->nRef++;
7310   }else{
7311     assert( db->mallocFailed );
7312     pModule->xClose(pVCur);
7313     goto no_mem;
7314   }
7315   break;
7316 }
7317 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7318 
7319 #ifndef SQLITE_OMIT_VIRTUALTABLE
7320 /* Opcode: VFilter P1 P2 P3 P4 *
7321 ** Synopsis: iplan=r[P3] zplan='P4'
7322 **
7323 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7324 ** the filtered result set is empty.
7325 **
7326 ** P4 is either NULL or a string that was generated by the xBestIndex
7327 ** method of the module.  The interpretation of the P4 string is left
7328 ** to the module implementation.
7329 **
7330 ** This opcode invokes the xFilter method on the virtual table specified
7331 ** by P1.  The integer query plan parameter to xFilter is stored in register
7332 ** P3. Register P3+1 stores the argc parameter to be passed to the
7333 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7334 ** additional parameters which are passed to
7335 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7336 **
7337 ** A jump is made to P2 if the result set after filtering would be empty.
7338 */
7339 case OP_VFilter: {   /* jump */
7340   int nArg;
7341   int iQuery;
7342   const sqlite3_module *pModule;
7343   Mem *pQuery;
7344   Mem *pArgc;
7345   sqlite3_vtab_cursor *pVCur;
7346   sqlite3_vtab *pVtab;
7347   VdbeCursor *pCur;
7348   int res;
7349   int i;
7350   Mem **apArg;
7351 
7352   pQuery = &aMem[pOp->p3];
7353   pArgc = &pQuery[1];
7354   pCur = p->apCsr[pOp->p1];
7355   assert( memIsValid(pQuery) );
7356   REGISTER_TRACE(pOp->p3, pQuery);
7357   assert( pCur->eCurType==CURTYPE_VTAB );
7358   pVCur = pCur->uc.pVCur;
7359   pVtab = pVCur->pVtab;
7360   pModule = pVtab->pModule;
7361 
7362   /* Grab the index number and argc parameters */
7363   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7364   nArg = (int)pArgc->u.i;
7365   iQuery = (int)pQuery->u.i;
7366 
7367   /* Invoke the xFilter method */
7368   res = 0;
7369   apArg = p->apArg;
7370   for(i = 0; i<nArg; i++){
7371     apArg[i] = &pArgc[i+1];
7372   }
7373   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7374   sqlite3VtabImportErrmsg(p, pVtab);
7375   if( rc ) goto abort_due_to_error;
7376   res = pModule->xEof(pVCur);
7377   pCur->nullRow = 0;
7378   VdbeBranchTaken(res!=0,2);
7379   if( res ) goto jump_to_p2;
7380   break;
7381 }
7382 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7383 
7384 #ifndef SQLITE_OMIT_VIRTUALTABLE
7385 /* Opcode: VColumn P1 P2 P3 * P5
7386 ** Synopsis: r[P3]=vcolumn(P2)
7387 **
7388 ** Store in register P3 the value of the P2-th column of
7389 ** the current row of the virtual-table of cursor P1.
7390 **
7391 ** If the VColumn opcode is being used to fetch the value of
7392 ** an unchanging column during an UPDATE operation, then the P5
7393 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7394 ** function to return true inside the xColumn method of the virtual
7395 ** table implementation.  The P5 column might also contain other
7396 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7397 ** unused by OP_VColumn.
7398 */
7399 case OP_VColumn: {
7400   sqlite3_vtab *pVtab;
7401   const sqlite3_module *pModule;
7402   Mem *pDest;
7403   sqlite3_context sContext;
7404 
7405   VdbeCursor *pCur = p->apCsr[pOp->p1];
7406   assert( pCur->eCurType==CURTYPE_VTAB );
7407   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7408   pDest = &aMem[pOp->p3];
7409   memAboutToChange(p, pDest);
7410   if( pCur->nullRow ){
7411     sqlite3VdbeMemSetNull(pDest);
7412     break;
7413   }
7414   pVtab = pCur->uc.pVCur->pVtab;
7415   pModule = pVtab->pModule;
7416   assert( pModule->xColumn );
7417   memset(&sContext, 0, sizeof(sContext));
7418   sContext.pOut = pDest;
7419   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7420   if( pOp->p5 & OPFLAG_NOCHNG ){
7421     sqlite3VdbeMemSetNull(pDest);
7422     pDest->flags = MEM_Null|MEM_Zero;
7423     pDest->u.nZero = 0;
7424   }else{
7425     MemSetTypeFlag(pDest, MEM_Null);
7426   }
7427   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7428   sqlite3VtabImportErrmsg(p, pVtab);
7429   if( sContext.isError>0 ){
7430     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7431     rc = sContext.isError;
7432   }
7433   sqlite3VdbeChangeEncoding(pDest, encoding);
7434   REGISTER_TRACE(pOp->p3, pDest);
7435   UPDATE_MAX_BLOBSIZE(pDest);
7436 
7437   if( sqlite3VdbeMemTooBig(pDest) ){
7438     goto too_big;
7439   }
7440   if( rc ) goto abort_due_to_error;
7441   break;
7442 }
7443 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7444 
7445 #ifndef SQLITE_OMIT_VIRTUALTABLE
7446 /* Opcode: VNext P1 P2 * * *
7447 **
7448 ** Advance virtual table P1 to the next row in its result set and
7449 ** jump to instruction P2.  Or, if the virtual table has reached
7450 ** the end of its result set, then fall through to the next instruction.
7451 */
7452 case OP_VNext: {   /* jump */
7453   sqlite3_vtab *pVtab;
7454   const sqlite3_module *pModule;
7455   int res;
7456   VdbeCursor *pCur;
7457 
7458   res = 0;
7459   pCur = p->apCsr[pOp->p1];
7460   assert( pCur->eCurType==CURTYPE_VTAB );
7461   if( pCur->nullRow ){
7462     break;
7463   }
7464   pVtab = pCur->uc.pVCur->pVtab;
7465   pModule = pVtab->pModule;
7466   assert( pModule->xNext );
7467 
7468   /* Invoke the xNext() method of the module. There is no way for the
7469   ** underlying implementation to return an error if one occurs during
7470   ** xNext(). Instead, if an error occurs, true is returned (indicating that
7471   ** data is available) and the error code returned when xColumn or
7472   ** some other method is next invoked on the save virtual table cursor.
7473   */
7474   rc = pModule->xNext(pCur->uc.pVCur);
7475   sqlite3VtabImportErrmsg(p, pVtab);
7476   if( rc ) goto abort_due_to_error;
7477   res = pModule->xEof(pCur->uc.pVCur);
7478   VdbeBranchTaken(!res,2);
7479   if( !res ){
7480     /* If there is data, jump to P2 */
7481     goto jump_to_p2_and_check_for_interrupt;
7482   }
7483   goto check_for_interrupt;
7484 }
7485 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7486 
7487 #ifndef SQLITE_OMIT_VIRTUALTABLE
7488 /* Opcode: VRename P1 * * P4 *
7489 **
7490 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7491 ** This opcode invokes the corresponding xRename method. The value
7492 ** in register P1 is passed as the zName argument to the xRename method.
7493 */
7494 case OP_VRename: {
7495   sqlite3_vtab *pVtab;
7496   Mem *pName;
7497   int isLegacy;
7498 
7499   isLegacy = (db->flags & SQLITE_LegacyAlter);
7500   db->flags |= SQLITE_LegacyAlter;
7501   pVtab = pOp->p4.pVtab->pVtab;
7502   pName = &aMem[pOp->p1];
7503   assert( pVtab->pModule->xRename );
7504   assert( memIsValid(pName) );
7505   assert( p->readOnly==0 );
7506   REGISTER_TRACE(pOp->p1, pName);
7507   assert( pName->flags & MEM_Str );
7508   testcase( pName->enc==SQLITE_UTF8 );
7509   testcase( pName->enc==SQLITE_UTF16BE );
7510   testcase( pName->enc==SQLITE_UTF16LE );
7511   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7512   if( rc ) goto abort_due_to_error;
7513   rc = pVtab->pModule->xRename(pVtab, pName->z);
7514   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
7515   sqlite3VtabImportErrmsg(p, pVtab);
7516   p->expired = 0;
7517   if( rc ) goto abort_due_to_error;
7518   break;
7519 }
7520 #endif
7521 
7522 #ifndef SQLITE_OMIT_VIRTUALTABLE
7523 /* Opcode: VUpdate P1 P2 P3 P4 P5
7524 ** Synopsis: data=r[P3@P2]
7525 **
7526 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7527 ** This opcode invokes the corresponding xUpdate method. P2 values
7528 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7529 ** invocation. The value in register (P3+P2-1) corresponds to the
7530 ** p2th element of the argv array passed to xUpdate.
7531 **
7532 ** The xUpdate method will do a DELETE or an INSERT or both.
7533 ** The argv[0] element (which corresponds to memory cell P3)
7534 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7535 ** deletion occurs.  The argv[1] element is the rowid of the new
7536 ** row.  This can be NULL to have the virtual table select the new
7537 ** rowid for itself.  The subsequent elements in the array are
7538 ** the values of columns in the new row.
7539 **
7540 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7541 ** a row to delete.
7542 **
7543 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7544 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7545 ** is set to the value of the rowid for the row just inserted.
7546 **
7547 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7548 ** apply in the case of a constraint failure on an insert or update.
7549 */
7550 case OP_VUpdate: {
7551   sqlite3_vtab *pVtab;
7552   const sqlite3_module *pModule;
7553   int nArg;
7554   int i;
7555   sqlite_int64 rowid;
7556   Mem **apArg;
7557   Mem *pX;
7558 
7559   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7560        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7561   );
7562   assert( p->readOnly==0 );
7563   if( db->mallocFailed ) goto no_mem;
7564   sqlite3VdbeIncrWriteCounter(p, 0);
7565   pVtab = pOp->p4.pVtab->pVtab;
7566   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7567     rc = SQLITE_LOCKED;
7568     goto abort_due_to_error;
7569   }
7570   pModule = pVtab->pModule;
7571   nArg = pOp->p2;
7572   assert( pOp->p4type==P4_VTAB );
7573   if( ALWAYS(pModule->xUpdate) ){
7574     u8 vtabOnConflict = db->vtabOnConflict;
7575     apArg = p->apArg;
7576     pX = &aMem[pOp->p3];
7577     for(i=0; i<nArg; i++){
7578       assert( memIsValid(pX) );
7579       memAboutToChange(p, pX);
7580       apArg[i] = pX;
7581       pX++;
7582     }
7583     db->vtabOnConflict = pOp->p5;
7584     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
7585     db->vtabOnConflict = vtabOnConflict;
7586     sqlite3VtabImportErrmsg(p, pVtab);
7587     if( rc==SQLITE_OK && pOp->p1 ){
7588       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
7589       db->lastRowid = rowid;
7590     }
7591     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
7592       if( pOp->p5==OE_Ignore ){
7593         rc = SQLITE_OK;
7594       }else{
7595         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7596       }
7597     }else{
7598       p->nChange++;
7599     }
7600     if( rc ) goto abort_due_to_error;
7601   }
7602   break;
7603 }
7604 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7605 
7606 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7607 /* Opcode: Pagecount P1 P2 * * *
7608 **
7609 ** Write the current number of pages in database P1 to memory cell P2.
7610 */
7611 case OP_Pagecount: {            /* out2 */
7612   pOut = out2Prerelease(p, pOp);
7613   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
7614   break;
7615 }
7616 #endif
7617 
7618 
7619 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7620 /* Opcode: MaxPgcnt P1 P2 P3 * *
7621 **
7622 ** Try to set the maximum page count for database P1 to the value in P3.
7623 ** Do not let the maximum page count fall below the current page count and
7624 ** do not change the maximum page count value if P3==0.
7625 **
7626 ** Store the maximum page count after the change in register P2.
7627 */
7628 case OP_MaxPgcnt: {            /* out2 */
7629   unsigned int newMax;
7630   Btree *pBt;
7631 
7632   pOut = out2Prerelease(p, pOp);
7633   pBt = db->aDb[pOp->p1].pBt;
7634   newMax = 0;
7635   if( pOp->p3 ){
7636     newMax = sqlite3BtreeLastPage(pBt);
7637     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
7638   }
7639   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
7640   break;
7641 }
7642 #endif
7643 
7644 /* Opcode: Function P1 P2 P3 P4 *
7645 ** Synopsis: r[P3]=func(r[P2@NP])
7646 **
7647 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7648 ** contains a pointer to the function to be run) with arguments taken
7649 ** from register P2 and successors.  The number of arguments is in
7650 ** the sqlite3_context object that P4 points to.
7651 ** The result of the function is stored
7652 ** in register P3.  Register P3 must not be one of the function inputs.
7653 **
7654 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7655 ** function was determined to be constant at compile time. If the first
7656 ** argument was constant then bit 0 of P1 is set. This is used to determine
7657 ** whether meta data associated with a user function argument using the
7658 ** sqlite3_set_auxdata() API may be safely retained until the next
7659 ** invocation of this opcode.
7660 **
7661 ** See also: AggStep, AggFinal, PureFunc
7662 */
7663 /* Opcode: PureFunc P1 P2 P3 P4 *
7664 ** Synopsis: r[P3]=func(r[P2@NP])
7665 **
7666 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7667 ** contains a pointer to the function to be run) with arguments taken
7668 ** from register P2 and successors.  The number of arguments is in
7669 ** the sqlite3_context object that P4 points to.
7670 ** The result of the function is stored
7671 ** in register P3.  Register P3 must not be one of the function inputs.
7672 **
7673 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7674 ** function was determined to be constant at compile time. If the first
7675 ** argument was constant then bit 0 of P1 is set. This is used to determine
7676 ** whether meta data associated with a user function argument using the
7677 ** sqlite3_set_auxdata() API may be safely retained until the next
7678 ** invocation of this opcode.
7679 **
7680 ** This opcode works exactly like OP_Function.  The only difference is in
7681 ** its name.  This opcode is used in places where the function must be
7682 ** purely non-deterministic.  Some built-in date/time functions can be
7683 ** either determinitic of non-deterministic, depending on their arguments.
7684 ** When those function are used in a non-deterministic way, they will check
7685 ** to see if they were called using OP_PureFunc instead of OP_Function, and
7686 ** if they were, they throw an error.
7687 **
7688 ** See also: AggStep, AggFinal, Function
7689 */
7690 case OP_PureFunc:              /* group */
7691 case OP_Function: {            /* group */
7692   int i;
7693   sqlite3_context *pCtx;
7694 
7695   assert( pOp->p4type==P4_FUNCCTX );
7696   pCtx = pOp->p4.pCtx;
7697 
7698   /* If this function is inside of a trigger, the register array in aMem[]
7699   ** might change from one evaluation to the next.  The next block of code
7700   ** checks to see if the register array has changed, and if so it
7701   ** reinitializes the relavant parts of the sqlite3_context object */
7702   pOut = &aMem[pOp->p3];
7703   if( pCtx->pOut != pOut ){
7704     pCtx->pVdbe = p;
7705     pCtx->pOut = pOut;
7706     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7707   }
7708   assert( pCtx->pVdbe==p );
7709 
7710   memAboutToChange(p, pOut);
7711 #ifdef SQLITE_DEBUG
7712   for(i=0; i<pCtx->argc; i++){
7713     assert( memIsValid(pCtx->argv[i]) );
7714     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7715   }
7716 #endif
7717   MemSetTypeFlag(pOut, MEM_Null);
7718   assert( pCtx->isError==0 );
7719   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7720 
7721   /* If the function returned an error, throw an exception */
7722   if( pCtx->isError ){
7723     if( pCtx->isError>0 ){
7724       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7725       rc = pCtx->isError;
7726     }
7727     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7728     pCtx->isError = 0;
7729     if( rc ) goto abort_due_to_error;
7730   }
7731 
7732   /* Copy the result of the function into register P3 */
7733   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7734     sqlite3VdbeChangeEncoding(pOut, encoding);
7735     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7736   }
7737 
7738   REGISTER_TRACE(pOp->p3, pOut);
7739   UPDATE_MAX_BLOBSIZE(pOut);
7740   break;
7741 }
7742 
7743 /* Opcode: Trace P1 P2 * P4 *
7744 **
7745 ** Write P4 on the statement trace output if statement tracing is
7746 ** enabled.
7747 **
7748 ** Operand P1 must be 0x7fffffff and P2 must positive.
7749 */
7750 /* Opcode: Init P1 P2 P3 P4 *
7751 ** Synopsis: Start at P2
7752 **
7753 ** Programs contain a single instance of this opcode as the very first
7754 ** opcode.
7755 **
7756 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7757 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7758 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7759 **
7760 ** If P2 is not zero, jump to instruction P2.
7761 **
7762 ** Increment the value of P1 so that OP_Once opcodes will jump the
7763 ** first time they are evaluated for this run.
7764 **
7765 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7766 ** error is encountered.
7767 */
7768 case OP_Trace:
7769 case OP_Init: {          /* jump */
7770   int i;
7771 #ifndef SQLITE_OMIT_TRACE
7772   char *zTrace;
7773 #endif
7774 
7775   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7776   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7777   **
7778   ** This assert() provides evidence for:
7779   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7780   ** would have been returned by the legacy sqlite3_trace() interface by
7781   ** using the X argument when X begins with "--" and invoking
7782   ** sqlite3_expanded_sql(P) otherwise.
7783   */
7784   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7785 
7786   /* OP_Init is always instruction 0 */
7787   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
7788 
7789 #ifndef SQLITE_OMIT_TRACE
7790   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7791    && !p->doingRerun
7792    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7793   ){
7794 #ifndef SQLITE_OMIT_DEPRECATED
7795     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7796       char *z = sqlite3VdbeExpandSql(p, zTrace);
7797       db->trace.xLegacy(db->pTraceArg, z);
7798       sqlite3_free(z);
7799     }else
7800 #endif
7801     if( db->nVdbeExec>1 ){
7802       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7803       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7804       sqlite3DbFree(db, z);
7805     }else{
7806       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7807     }
7808   }
7809 #ifdef SQLITE_USE_FCNTL_TRACE
7810   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7811   if( zTrace ){
7812     int j;
7813     for(j=0; j<db->nDb; j++){
7814       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7815       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7816     }
7817   }
7818 #endif /* SQLITE_USE_FCNTL_TRACE */
7819 #ifdef SQLITE_DEBUG
7820   if( (db->flags & SQLITE_SqlTrace)!=0
7821    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7822   ){
7823     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7824   }
7825 #endif /* SQLITE_DEBUG */
7826 #endif /* SQLITE_OMIT_TRACE */
7827   assert( pOp->p2>0 );
7828   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7829     if( pOp->opcode==OP_Trace ) break;
7830     for(i=1; i<p->nOp; i++){
7831       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7832     }
7833     pOp->p1 = 0;
7834   }
7835   pOp->p1++;
7836   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7837   goto jump_to_p2;
7838 }
7839 
7840 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7841 /* Opcode: CursorHint P1 * * P4 *
7842 **
7843 ** Provide a hint to cursor P1 that it only needs to return rows that
7844 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7845 ** to values currently held in registers.  TK_COLUMN terms in the P4
7846 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7847 */
7848 case OP_CursorHint: {
7849   VdbeCursor *pC;
7850 
7851   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7852   assert( pOp->p4type==P4_EXPR );
7853   pC = p->apCsr[pOp->p1];
7854   if( pC ){
7855     assert( pC->eCurType==CURTYPE_BTREE );
7856     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7857                            pOp->p4.pExpr, aMem);
7858   }
7859   break;
7860 }
7861 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7862 
7863 #ifdef SQLITE_DEBUG
7864 /* Opcode:  Abortable   * * * * *
7865 **
7866 ** Verify that an Abort can happen.  Assert if an Abort at this point
7867 ** might cause database corruption.  This opcode only appears in debugging
7868 ** builds.
7869 **
7870 ** An Abort is safe if either there have been no writes, or if there is
7871 ** an active statement journal.
7872 */
7873 case OP_Abortable: {
7874   sqlite3VdbeAssertAbortable(p);
7875   break;
7876 }
7877 #endif
7878 
7879 #ifdef SQLITE_DEBUG
7880 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
7881 ** Synopsis: release r[P1@P2] mask P3
7882 **
7883 ** Release registers from service.  Any content that was in the
7884 ** the registers is unreliable after this opcode completes.
7885 **
7886 ** The registers released will be the P2 registers starting at P1,
7887 ** except if bit ii of P3 set, then do not release register P1+ii.
7888 ** In other words, P3 is a mask of registers to preserve.
7889 **
7890 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
7891 ** that if the content of the released register was set using OP_SCopy,
7892 ** a change to the value of the source register for the OP_SCopy will no longer
7893 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
7894 **
7895 ** If P5 is set, then all released registers have their type set
7896 ** to MEM_Undefined so that any subsequent attempt to read the released
7897 ** register (before it is reinitialized) will generate an assertion fault.
7898 **
7899 ** P5 ought to be set on every call to this opcode.
7900 ** However, there are places in the code generator will release registers
7901 ** before their are used, under the (valid) assumption that the registers
7902 ** will not be reallocated for some other purpose before they are used and
7903 ** hence are safe to release.
7904 **
7905 ** This opcode is only available in testing and debugging builds.  It is
7906 ** not generated for release builds.  The purpose of this opcode is to help
7907 ** validate the generated bytecode.  This opcode does not actually contribute
7908 ** to computing an answer.
7909 */
7910 case OP_ReleaseReg: {
7911   Mem *pMem;
7912   int i;
7913   u32 constMask;
7914   assert( pOp->p1>0 );
7915   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
7916   pMem = &aMem[pOp->p1];
7917   constMask = pOp->p3;
7918   for(i=0; i<pOp->p2; i++, pMem++){
7919     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
7920       pMem->pScopyFrom = 0;
7921       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
7922     }
7923   }
7924   break;
7925 }
7926 #endif
7927 
7928 /* Opcode: Noop * * * * *
7929 **
7930 ** Do nothing.  This instruction is often useful as a jump
7931 ** destination.
7932 */
7933 /*
7934 ** The magic Explain opcode are only inserted when explain==2 (which
7935 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7936 ** This opcode records information from the optimizer.  It is the
7937 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7938 */
7939 default: {          /* This is really OP_Noop, OP_Explain */
7940   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7941 
7942   break;
7943 }
7944 
7945 /*****************************************************************************
7946 ** The cases of the switch statement above this line should all be indented
7947 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7948 ** readability.  From this point on down, the normal indentation rules are
7949 ** restored.
7950 *****************************************************************************/
7951     }
7952 
7953 #ifdef VDBE_PROFILE
7954     {
7955       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
7956       if( endTime>start ) pOrigOp->cycles += endTime - start;
7957       pOrigOp->cnt++;
7958     }
7959 #endif
7960 
7961     /* The following code adds nothing to the actual functionality
7962     ** of the program.  It is only here for testing and debugging.
7963     ** On the other hand, it does burn CPU cycles every time through
7964     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7965     */
7966 #ifndef NDEBUG
7967     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7968 
7969 #ifdef SQLITE_DEBUG
7970     if( db->flags & SQLITE_VdbeTrace ){
7971       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7972       if( rc!=0 ) printf("rc=%d\n",rc);
7973       if( opProperty & (OPFLG_OUT2) ){
7974         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7975       }
7976       if( opProperty & OPFLG_OUT3 ){
7977         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7978       }
7979       if( opProperty==0xff ){
7980         /* Never happens.  This code exists to avoid a harmless linkage
7981         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
7982         ** used. */
7983         sqlite3VdbeRegisterDump(p);
7984       }
7985     }
7986 #endif  /* SQLITE_DEBUG */
7987 #endif  /* NDEBUG */
7988   }  /* The end of the for(;;) loop the loops through opcodes */
7989 
7990   /* If we reach this point, it means that execution is finished with
7991   ** an error of some kind.
7992   */
7993 abort_due_to_error:
7994   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7995   assert( rc );
7996   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7997     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7998   }
7999   p->rc = rc;
8000   sqlite3SystemError(db, rc);
8001   testcase( sqlite3GlobalConfig.xLog!=0 );
8002   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8003                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
8004   sqlite3VdbeHalt(p);
8005   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8006   rc = SQLITE_ERROR;
8007   if( resetSchemaOnFault>0 ){
8008     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8009   }
8010 
8011   /* This is the only way out of this procedure.  We have to
8012   ** release the mutexes on btrees that were acquired at the
8013   ** top. */
8014 vdbe_return:
8015 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8016   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8017     nProgressLimit += db->nProgressOps;
8018     if( db->xProgress(db->pProgressArg) ){
8019       nProgressLimit = LARGEST_UINT64;
8020       rc = SQLITE_INTERRUPT;
8021       goto abort_due_to_error;
8022     }
8023   }
8024 #endif
8025   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8026   sqlite3VdbeLeave(p);
8027   assert( rc!=SQLITE_OK || nExtraDelete==0
8028        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8029   );
8030   return rc;
8031 
8032   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8033   ** is encountered.
8034   */
8035 too_big:
8036   sqlite3VdbeError(p, "string or blob too big");
8037   rc = SQLITE_TOOBIG;
8038   goto abort_due_to_error;
8039 
8040   /* Jump to here if a malloc() fails.
8041   */
8042 no_mem:
8043   sqlite3OomFault(db);
8044   sqlite3VdbeError(p, "out of memory");
8045   rc = SQLITE_NOMEM_BKPT;
8046   goto abort_due_to_error;
8047 
8048   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8049   ** flag.
8050   */
8051 abort_due_to_interrupt:
8052   assert( AtomicLoad(&db->u1.isInterrupted) );
8053   rc = SQLITE_INTERRUPT;
8054   goto abort_due_to_error;
8055 }
8056