xref: /sqlite-3.40.0/src/vdbe.c (revision 60176fa9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances.  This file is solely interested in executing
16 ** the VDBE program.
17 **
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
19 ** to a VDBE.
20 **
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement.  VDBE programs are
23 ** similar in form to assembly language.  The program consists of
24 ** a linear sequence of operations.  Each operation has an opcode
25 ** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4
26 ** is a null-terminated string.  Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
28 **
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem.  Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value.  An implicit conversion from one
33 ** type to the other occurs as necessary.
34 **
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
39 **
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files.  The formatting
42 ** of the code in this file is, therefore, important.  See other comments
43 ** in this file for details.  If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
45 */
46 #include "sqliteInt.h"
47 #include "vdbeInt.h"
48 
49 /*
50 ** The following global variable is incremented every time a cursor
51 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
52 ** procedures use this information to make sure that indices are
53 ** working correctly.  This variable has no function other than to
54 ** help verify the correct operation of the library.
55 */
56 #ifdef SQLITE_TEST
57 int sqlite3_search_count = 0;
58 #endif
59 
60 /*
61 ** When this global variable is positive, it gets decremented once before
62 ** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
63 ** field of the sqlite3 structure is set in order to simulate and interrupt.
64 **
65 ** This facility is used for testing purposes only.  It does not function
66 ** in an ordinary build.
67 */
68 #ifdef SQLITE_TEST
69 int sqlite3_interrupt_count = 0;
70 #endif
71 
72 /*
73 ** The next global variable is incremented each type the OP_Sort opcode
74 ** is executed.  The test procedures use this information to make sure that
75 ** sorting is occurring or not occurring at appropriate times.   This variable
76 ** has no function other than to help verify the correct operation of the
77 ** library.
78 */
79 #ifdef SQLITE_TEST
80 int sqlite3_sort_count = 0;
81 #endif
82 
83 /*
84 ** The next global variable records the size of the largest MEM_Blob
85 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
86 ** use this information to make sure that the zero-blob functionality
87 ** is working correctly.   This variable has no function other than to
88 ** help verify the correct operation of the library.
89 */
90 #ifdef SQLITE_TEST
91 int sqlite3_max_blobsize = 0;
92 static void updateMaxBlobsize(Mem *p){
93   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
94     sqlite3_max_blobsize = p->n;
95   }
96 }
97 #endif
98 
99 /*
100 ** The next global variable is incremented each type the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 /*
121 ** Convert the given register into a string if it isn't one
122 ** already. Return non-zero if a malloc() fails.
123 */
124 #define Stringify(P, enc) \
125    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
126      { goto no_mem; }
127 
128 /*
129 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
130 ** a pointer to a dynamically allocated string where some other entity
131 ** is responsible for deallocating that string.  Because the register
132 ** does not control the string, it might be deleted without the register
133 ** knowing it.
134 **
135 ** This routine converts an ephemeral string into a dynamically allocated
136 ** string that the register itself controls.  In other words, it
137 ** converts an MEM_Ephem string into an MEM_Dyn string.
138 */
139 #define Deephemeralize(P) \
140    if( ((P)->flags&MEM_Ephem)!=0 \
141        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
142 
143 /*
144 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
145 ** P if required.
146 */
147 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
148 
149 /*
150 ** Argument pMem points at a register that will be passed to a
151 ** user-defined function or returned to the user as the result of a query.
152 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
153 ** routines.
154 */
155 void sqlite3VdbeMemStoreType(Mem *pMem){
156   int flags = pMem->flags;
157   if( flags & MEM_Null ){
158     pMem->type = SQLITE_NULL;
159   }
160   else if( flags & MEM_Int ){
161     pMem->type = SQLITE_INTEGER;
162   }
163   else if( flags & MEM_Real ){
164     pMem->type = SQLITE_FLOAT;
165   }
166   else if( flags & MEM_Str ){
167     pMem->type = SQLITE_TEXT;
168   }else{
169     pMem->type = SQLITE_BLOB;
170   }
171 }
172 
173 /*
174 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
175 ** if we run out of memory.
176 */
177 static VdbeCursor *allocateCursor(
178   Vdbe *p,              /* The virtual machine */
179   int iCur,             /* Index of the new VdbeCursor */
180   int nField,           /* Number of fields in the table or index */
181   int iDb,              /* When database the cursor belongs to, or -1 */
182   int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
183 ){
184   /* Find the memory cell that will be used to store the blob of memory
185   ** required for this VdbeCursor structure. It is convenient to use a
186   ** vdbe memory cell to manage the memory allocation required for a
187   ** VdbeCursor structure for the following reasons:
188   **
189   **   * Sometimes cursor numbers are used for a couple of different
190   **     purposes in a vdbe program. The different uses might require
191   **     different sized allocations. Memory cells provide growable
192   **     allocations.
193   **
194   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
195   **     be freed lazily via the sqlite3_release_memory() API. This
196   **     minimizes the number of malloc calls made by the system.
197   **
198   ** Memory cells for cursors are allocated at the top of the address
199   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
200   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
201   */
202   Mem *pMem = &p->aMem[p->nMem-iCur];
203 
204   int nByte;
205   VdbeCursor *pCx = 0;
206   nByte =
207       ROUND8(sizeof(VdbeCursor)) +
208       (isBtreeCursor?sqlite3BtreeCursorSize():0) +
209       2*nField*sizeof(u32);
210 
211   assert( iCur<p->nCursor );
212   if( p->apCsr[iCur] ){
213     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
214     p->apCsr[iCur] = 0;
215   }
216   if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
217     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
218     memset(pCx, 0, sizeof(VdbeCursor));
219     pCx->iDb = iDb;
220     pCx->nField = nField;
221     if( nField ){
222       pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
223     }
224     if( isBtreeCursor ){
225       pCx->pCursor = (BtCursor*)
226           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
227       sqlite3BtreeCursorZero(pCx->pCursor);
228     }
229   }
230   return pCx;
231 }
232 
233 /*
234 ** Try to convert a value into a numeric representation if we can
235 ** do so without loss of information.  In other words, if the string
236 ** looks like a number, convert it into a number.  If it does not
237 ** look like a number, leave it alone.
238 */
239 static void applyNumericAffinity(Mem *pRec){
240   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
241     int realnum;
242     u8 enc = pRec->enc;
243     sqlite3VdbeMemNulTerminate(pRec);
244     if( (pRec->flags&MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, enc) ){
245       i64 value;
246       char *zUtf8 = pRec->z;
247 #ifndef SQLITE_OMIT_UTF16
248       if( enc!=SQLITE_UTF8 ){
249         assert( pRec->db );
250         zUtf8 = sqlite3Utf16to8(pRec->db, pRec->z, pRec->n, enc);
251         if( !zUtf8 ) return;
252       }
253 #endif
254       if( !realnum && sqlite3Atoi64(zUtf8, &value) ){
255         pRec->u.i = value;
256         MemSetTypeFlag(pRec, MEM_Int);
257       }else{
258         sqlite3AtoF(zUtf8, &pRec->r);
259         MemSetTypeFlag(pRec, MEM_Real);
260       }
261 #ifndef SQLITE_OMIT_UTF16
262       if( enc!=SQLITE_UTF8 ){
263         sqlite3DbFree(pRec->db, zUtf8);
264       }
265 #endif
266     }
267   }
268 }
269 
270 /*
271 ** Processing is determine by the affinity parameter:
272 **
273 ** SQLITE_AFF_INTEGER:
274 ** SQLITE_AFF_REAL:
275 ** SQLITE_AFF_NUMERIC:
276 **    Try to convert pRec to an integer representation or a
277 **    floating-point representation if an integer representation
278 **    is not possible.  Note that the integer representation is
279 **    always preferred, even if the affinity is REAL, because
280 **    an integer representation is more space efficient on disk.
281 **
282 ** SQLITE_AFF_TEXT:
283 **    Convert pRec to a text representation.
284 **
285 ** SQLITE_AFF_NONE:
286 **    No-op.  pRec is unchanged.
287 */
288 static void applyAffinity(
289   Mem *pRec,          /* The value to apply affinity to */
290   char affinity,      /* The affinity to be applied */
291   u8 enc              /* Use this text encoding */
292 ){
293   if( affinity==SQLITE_AFF_TEXT ){
294     /* Only attempt the conversion to TEXT if there is an integer or real
295     ** representation (blob and NULL do not get converted) but no string
296     ** representation.
297     */
298     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
299       sqlite3VdbeMemStringify(pRec, enc);
300     }
301     pRec->flags &= ~(MEM_Real|MEM_Int);
302   }else if( affinity!=SQLITE_AFF_NONE ){
303     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
304              || affinity==SQLITE_AFF_NUMERIC );
305     applyNumericAffinity(pRec);
306     if( pRec->flags & MEM_Real ){
307       sqlite3VdbeIntegerAffinity(pRec);
308     }
309   }
310 }
311 
312 /*
313 ** Try to convert the type of a function argument or a result column
314 ** into a numeric representation.  Use either INTEGER or REAL whichever
315 ** is appropriate.  But only do the conversion if it is possible without
316 ** loss of information and return the revised type of the argument.
317 **
318 ** This is an EXPERIMENTAL api and is subject to change or removal.
319 */
320 int sqlite3_value_numeric_type(sqlite3_value *pVal){
321   Mem *pMem = (Mem*)pVal;
322   applyNumericAffinity(pMem);
323   sqlite3VdbeMemStoreType(pMem);
324   return pMem->type;
325 }
326 
327 /*
328 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
329 ** not the internal Mem* type.
330 */
331 void sqlite3ValueApplyAffinity(
332   sqlite3_value *pVal,
333   u8 affinity,
334   u8 enc
335 ){
336   applyAffinity((Mem *)pVal, affinity, enc);
337 }
338 
339 #ifdef SQLITE_DEBUG
340 /*
341 ** Write a nice string representation of the contents of cell pMem
342 ** into buffer zBuf, length nBuf.
343 */
344 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
345   char *zCsr = zBuf;
346   int f = pMem->flags;
347 
348   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
349 
350   if( f&MEM_Blob ){
351     int i;
352     char c;
353     if( f & MEM_Dyn ){
354       c = 'z';
355       assert( (f & (MEM_Static|MEM_Ephem))==0 );
356     }else if( f & MEM_Static ){
357       c = 't';
358       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
359     }else if( f & MEM_Ephem ){
360       c = 'e';
361       assert( (f & (MEM_Static|MEM_Dyn))==0 );
362     }else{
363       c = 's';
364     }
365 
366     sqlite3_snprintf(100, zCsr, "%c", c);
367     zCsr += sqlite3Strlen30(zCsr);
368     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
369     zCsr += sqlite3Strlen30(zCsr);
370     for(i=0; i<16 && i<pMem->n; i++){
371       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
372       zCsr += sqlite3Strlen30(zCsr);
373     }
374     for(i=0; i<16 && i<pMem->n; i++){
375       char z = pMem->z[i];
376       if( z<32 || z>126 ) *zCsr++ = '.';
377       else *zCsr++ = z;
378     }
379 
380     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
381     zCsr += sqlite3Strlen30(zCsr);
382     if( f & MEM_Zero ){
383       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
384       zCsr += sqlite3Strlen30(zCsr);
385     }
386     *zCsr = '\0';
387   }else if( f & MEM_Str ){
388     int j, k;
389     zBuf[0] = ' ';
390     if( f & MEM_Dyn ){
391       zBuf[1] = 'z';
392       assert( (f & (MEM_Static|MEM_Ephem))==0 );
393     }else if( f & MEM_Static ){
394       zBuf[1] = 't';
395       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
396     }else if( f & MEM_Ephem ){
397       zBuf[1] = 'e';
398       assert( (f & (MEM_Static|MEM_Dyn))==0 );
399     }else{
400       zBuf[1] = 's';
401     }
402     k = 2;
403     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
404     k += sqlite3Strlen30(&zBuf[k]);
405     zBuf[k++] = '[';
406     for(j=0; j<15 && j<pMem->n; j++){
407       u8 c = pMem->z[j];
408       if( c>=0x20 && c<0x7f ){
409         zBuf[k++] = c;
410       }else{
411         zBuf[k++] = '.';
412       }
413     }
414     zBuf[k++] = ']';
415     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
416     k += sqlite3Strlen30(&zBuf[k]);
417     zBuf[k++] = 0;
418   }
419 }
420 #endif
421 
422 #ifdef SQLITE_DEBUG
423 /*
424 ** Print the value of a register for tracing purposes:
425 */
426 static void memTracePrint(FILE *out, Mem *p){
427   if( p->flags & MEM_Null ){
428     fprintf(out, " NULL");
429   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
430     fprintf(out, " si:%lld", p->u.i);
431   }else if( p->flags & MEM_Int ){
432     fprintf(out, " i:%lld", p->u.i);
433 #ifndef SQLITE_OMIT_FLOATING_POINT
434   }else if( p->flags & MEM_Real ){
435     fprintf(out, " r:%g", p->r);
436 #endif
437   }else if( p->flags & MEM_RowSet ){
438     fprintf(out, " (rowset)");
439   }else{
440     char zBuf[200];
441     sqlite3VdbeMemPrettyPrint(p, zBuf);
442     fprintf(out, " ");
443     fprintf(out, "%s", zBuf);
444   }
445 }
446 static void registerTrace(FILE *out, int iReg, Mem *p){
447   fprintf(out, "REG[%d] = ", iReg);
448   memTracePrint(out, p);
449   fprintf(out, "\n");
450 }
451 #endif
452 
453 #ifdef SQLITE_DEBUG
454 #  define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
455 #else
456 #  define REGISTER_TRACE(R,M)
457 #endif
458 
459 
460 #ifdef VDBE_PROFILE
461 
462 /*
463 ** hwtime.h contains inline assembler code for implementing
464 ** high-performance timing routines.
465 */
466 #include "hwtime.h"
467 
468 #endif
469 
470 /*
471 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
472 ** sqlite3_interrupt() routine has been called.  If it has been, then
473 ** processing of the VDBE program is interrupted.
474 **
475 ** This macro added to every instruction that does a jump in order to
476 ** implement a loop.  This test used to be on every single instruction,
477 ** but that meant we more testing that we needed.  By only testing the
478 ** flag on jump instructions, we get a (small) speed improvement.
479 */
480 #define CHECK_FOR_INTERRUPT \
481    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
482 
483 
484 #ifndef NDEBUG
485 /*
486 ** This function is only called from within an assert() expression. It
487 ** checks that the sqlite3.nTransaction variable is correctly set to
488 ** the number of non-transaction savepoints currently in the
489 ** linked list starting at sqlite3.pSavepoint.
490 **
491 ** Usage:
492 **
493 **     assert( checkSavepointCount(db) );
494 */
495 static int checkSavepointCount(sqlite3 *db){
496   int n = 0;
497   Savepoint *p;
498   for(p=db->pSavepoint; p; p=p->pNext) n++;
499   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
500   return 1;
501 }
502 #endif
503 
504 /*
505 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
506 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
507 ** in memory obtained from sqlite3DbMalloc).
508 */
509 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
510   sqlite3 *db = p->db;
511   sqlite3DbFree(db, p->zErrMsg);
512   p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
513   sqlite3_free(pVtab->zErrMsg);
514   pVtab->zErrMsg = 0;
515 }
516 
517 
518 /*
519 ** Execute as much of a VDBE program as we can then return.
520 **
521 ** sqlite3VdbeMakeReady() must be called before this routine in order to
522 ** close the program with a final OP_Halt and to set up the callbacks
523 ** and the error message pointer.
524 **
525 ** Whenever a row or result data is available, this routine will either
526 ** invoke the result callback (if there is one) or return with
527 ** SQLITE_ROW.
528 **
529 ** If an attempt is made to open a locked database, then this routine
530 ** will either invoke the busy callback (if there is one) or it will
531 ** return SQLITE_BUSY.
532 **
533 ** If an error occurs, an error message is written to memory obtained
534 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
535 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
536 **
537 ** If the callback ever returns non-zero, then the program exits
538 ** immediately.  There will be no error message but the p->rc field is
539 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
540 **
541 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
542 ** routine to return SQLITE_ERROR.
543 **
544 ** Other fatal errors return SQLITE_ERROR.
545 **
546 ** After this routine has finished, sqlite3VdbeFinalize() should be
547 ** used to clean up the mess that was left behind.
548 */
549 int sqlite3VdbeExec(
550   Vdbe *p                    /* The VDBE */
551 ){
552   int pc=0;                  /* The program counter */
553   Op *aOp = p->aOp;          /* Copy of p->aOp */
554   Op *pOp;                   /* Current operation */
555   int rc = SQLITE_OK;        /* Value to return */
556   sqlite3 *db = p->db;       /* The database */
557   u8 resetSchemaOnFault = 0; /* Reset schema after an error if true */
558   u8 encoding = ENC(db);     /* The database encoding */
559 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
560   int checkProgress;         /* True if progress callbacks are enabled */
561   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
562 #endif
563   Mem *aMem = p->aMem;       /* Copy of p->aMem */
564   Mem *pIn1 = 0;             /* 1st input operand */
565   Mem *pIn2 = 0;             /* 2nd input operand */
566   Mem *pIn3 = 0;             /* 3rd input operand */
567   Mem *pOut = 0;             /* Output operand */
568   int iCompare = 0;          /* Result of last OP_Compare operation */
569   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
570 #ifdef VDBE_PROFILE
571   u64 start;                 /* CPU clock count at start of opcode */
572   int origPc;                /* Program counter at start of opcode */
573 #endif
574   /*** INSERT STACK UNION HERE ***/
575 
576   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
577   sqlite3VdbeMutexArrayEnter(p);
578   if( p->rc==SQLITE_NOMEM ){
579     /* This happens if a malloc() inside a call to sqlite3_column_text() or
580     ** sqlite3_column_text16() failed.  */
581     goto no_mem;
582   }
583   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
584   p->rc = SQLITE_OK;
585   assert( p->explain==0 );
586   p->pResultSet = 0;
587   db->busyHandler.nBusy = 0;
588   CHECK_FOR_INTERRUPT;
589   sqlite3VdbeIOTraceSql(p);
590 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
591   checkProgress = db->xProgress!=0;
592 #endif
593 #ifdef SQLITE_DEBUG
594   sqlite3BeginBenignMalloc();
595   if( p->pc==0  && (p->db->flags & SQLITE_VdbeListing)!=0 ){
596     int i;
597     printf("VDBE Program Listing:\n");
598     sqlite3VdbePrintSql(p);
599     for(i=0; i<p->nOp; i++){
600       sqlite3VdbePrintOp(stdout, i, &aOp[i]);
601     }
602   }
603   sqlite3EndBenignMalloc();
604 #endif
605   for(pc=p->pc; rc==SQLITE_OK; pc++){
606     assert( pc>=0 && pc<p->nOp );
607     if( db->mallocFailed ) goto no_mem;
608 #ifdef VDBE_PROFILE
609     origPc = pc;
610     start = sqlite3Hwtime();
611 #endif
612     pOp = &aOp[pc];
613 
614     /* Only allow tracing if SQLITE_DEBUG is defined.
615     */
616 #ifdef SQLITE_DEBUG
617     if( p->trace ){
618       if( pc==0 ){
619         printf("VDBE Execution Trace:\n");
620         sqlite3VdbePrintSql(p);
621       }
622       sqlite3VdbePrintOp(p->trace, pc, pOp);
623     }
624 #endif
625 
626 
627     /* Check to see if we need to simulate an interrupt.  This only happens
628     ** if we have a special test build.
629     */
630 #ifdef SQLITE_TEST
631     if( sqlite3_interrupt_count>0 ){
632       sqlite3_interrupt_count--;
633       if( sqlite3_interrupt_count==0 ){
634         sqlite3_interrupt(db);
635       }
636     }
637 #endif
638 
639 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
640     /* Call the progress callback if it is configured and the required number
641     ** of VDBE ops have been executed (either since this invocation of
642     ** sqlite3VdbeExec() or since last time the progress callback was called).
643     ** If the progress callback returns non-zero, exit the virtual machine with
644     ** a return code SQLITE_ABORT.
645     */
646     if( checkProgress ){
647       if( db->nProgressOps==nProgressOps ){
648         int prc;
649         prc = db->xProgress(db->pProgressArg);
650         if( prc!=0 ){
651           rc = SQLITE_INTERRUPT;
652           goto vdbe_error_halt;
653         }
654         nProgressOps = 0;
655       }
656       nProgressOps++;
657     }
658 #endif
659 
660     /* On any opcode with the "out2-prerelase" tag, free any
661     ** external allocations out of mem[p2] and set mem[p2] to be
662     ** an undefined integer.  Opcodes will either fill in the integer
663     ** value or convert mem[p2] to a different type.
664     */
665     assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
666     if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
667       assert( pOp->p2>0 );
668       assert( pOp->p2<=p->nMem );
669       pOut = &aMem[pOp->p2];
670       sqlite3VdbeMemReleaseExternal(pOut);
671       pOut->flags = MEM_Int;
672     }
673 
674     /* Sanity checking on other operands */
675 #ifdef SQLITE_DEBUG
676     if( (pOp->opflags & OPFLG_IN1)!=0 ){
677       assert( pOp->p1>0 );
678       assert( pOp->p1<=p->nMem );
679       REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
680     }
681     if( (pOp->opflags & OPFLG_IN2)!=0 ){
682       assert( pOp->p2>0 );
683       assert( pOp->p2<=p->nMem );
684       REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
685     }
686     if( (pOp->opflags & OPFLG_IN3)!=0 ){
687       assert( pOp->p3>0 );
688       assert( pOp->p3<=p->nMem );
689       REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
690     }
691     if( (pOp->opflags & OPFLG_OUT2)!=0 ){
692       assert( pOp->p2>0 );
693       assert( pOp->p2<=p->nMem );
694     }
695     if( (pOp->opflags & OPFLG_OUT3)!=0 ){
696       assert( pOp->p3>0 );
697       assert( pOp->p3<=p->nMem );
698     }
699 #endif
700 
701     switch( pOp->opcode ){
702 
703 /*****************************************************************************
704 ** What follows is a massive switch statement where each case implements a
705 ** separate instruction in the virtual machine.  If we follow the usual
706 ** indentation conventions, each case should be indented by 6 spaces.  But
707 ** that is a lot of wasted space on the left margin.  So the code within
708 ** the switch statement will break with convention and be flush-left. Another
709 ** big comment (similar to this one) will mark the point in the code where
710 ** we transition back to normal indentation.
711 **
712 ** The formatting of each case is important.  The makefile for SQLite
713 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
714 ** file looking for lines that begin with "case OP_".  The opcodes.h files
715 ** will be filled with #defines that give unique integer values to each
716 ** opcode and the opcodes.c file is filled with an array of strings where
717 ** each string is the symbolic name for the corresponding opcode.  If the
718 ** case statement is followed by a comment of the form "/# same as ... #/"
719 ** that comment is used to determine the particular value of the opcode.
720 **
721 ** Other keywords in the comment that follows each case are used to
722 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
723 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
724 ** the mkopcodeh.awk script for additional information.
725 **
726 ** Documentation about VDBE opcodes is generated by scanning this file
727 ** for lines of that contain "Opcode:".  That line and all subsequent
728 ** comment lines are used in the generation of the opcode.html documentation
729 ** file.
730 **
731 ** SUMMARY:
732 **
733 **     Formatting is important to scripts that scan this file.
734 **     Do not deviate from the formatting style currently in use.
735 **
736 *****************************************************************************/
737 
738 /* Opcode:  Goto * P2 * * *
739 **
740 ** An unconditional jump to address P2.
741 ** The next instruction executed will be
742 ** the one at index P2 from the beginning of
743 ** the program.
744 */
745 case OP_Goto: {             /* jump */
746   CHECK_FOR_INTERRUPT;
747   pc = pOp->p2 - 1;
748   break;
749 }
750 
751 /* Opcode:  Gosub P1 P2 * * *
752 **
753 ** Write the current address onto register P1
754 ** and then jump to address P2.
755 */
756 case OP_Gosub: {            /* jump, in1 */
757   pIn1 = &aMem[pOp->p1];
758   assert( (pIn1->flags & MEM_Dyn)==0 );
759   pIn1->flags = MEM_Int;
760   pIn1->u.i = pc;
761   REGISTER_TRACE(pOp->p1, pIn1);
762   pc = pOp->p2 - 1;
763   break;
764 }
765 
766 /* Opcode:  Return P1 * * * *
767 **
768 ** Jump to the next instruction after the address in register P1.
769 */
770 case OP_Return: {           /* in1 */
771   pIn1 = &aMem[pOp->p1];
772   assert( pIn1->flags & MEM_Int );
773   pc = (int)pIn1->u.i;
774   break;
775 }
776 
777 /* Opcode:  Yield P1 * * * *
778 **
779 ** Swap the program counter with the value in register P1.
780 */
781 case OP_Yield: {            /* in1 */
782   int pcDest;
783   pIn1 = &aMem[pOp->p1];
784   assert( (pIn1->flags & MEM_Dyn)==0 );
785   pIn1->flags = MEM_Int;
786   pcDest = (int)pIn1->u.i;
787   pIn1->u.i = pc;
788   REGISTER_TRACE(pOp->p1, pIn1);
789   pc = pcDest;
790   break;
791 }
792 
793 /* Opcode:  HaltIfNull  P1 P2 P3 P4 *
794 **
795 ** Check the value in register P3.  If is is NULL then Halt using
796 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
797 ** value in register P3 is not NULL, then this routine is a no-op.
798 */
799 case OP_HaltIfNull: {      /* in3 */
800   pIn3 = &aMem[pOp->p3];
801   if( (pIn3->flags & MEM_Null)==0 ) break;
802   /* Fall through into OP_Halt */
803 }
804 
805 /* Opcode:  Halt P1 P2 * P4 *
806 **
807 ** Exit immediately.  All open cursors, etc are closed
808 ** automatically.
809 **
810 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
811 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
812 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
813 ** whether or not to rollback the current transaction.  Do not rollback
814 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
815 ** then back out all changes that have occurred during this execution of the
816 ** VDBE, but do not rollback the transaction.
817 **
818 ** If P4 is not null then it is an error message string.
819 **
820 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
821 ** every program.  So a jump past the last instruction of the program
822 ** is the same as executing Halt.
823 */
824 case OP_Halt: {
825   if( pOp->p1==SQLITE_OK && p->pFrame ){
826     /* Halt the sub-program. Return control to the parent frame. */
827     VdbeFrame *pFrame = p->pFrame;
828     p->pFrame = pFrame->pParent;
829     p->nFrame--;
830     sqlite3VdbeSetChanges(db, p->nChange);
831     pc = sqlite3VdbeFrameRestore(pFrame);
832     if( pOp->p2==OE_Ignore ){
833       /* Instruction pc is the OP_Program that invoked the sub-program
834       ** currently being halted. If the p2 instruction of this OP_Halt
835       ** instruction is set to OE_Ignore, then the sub-program is throwing
836       ** an IGNORE exception. In this case jump to the address specified
837       ** as the p2 of the calling OP_Program.  */
838       pc = p->aOp[pc].p2-1;
839     }
840     aOp = p->aOp;
841     aMem = p->aMem;
842     break;
843   }
844 
845   p->rc = pOp->p1;
846   p->errorAction = (u8)pOp->p2;
847   p->pc = pc;
848   if( pOp->p4.z ){
849     assert( p->rc!=SQLITE_OK );
850     sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
851     testcase( sqlite3GlobalConfig.xLog!=0 );
852     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
853   }else if( p->rc ){
854     testcase( sqlite3GlobalConfig.xLog!=0 );
855     sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
856   }
857   rc = sqlite3VdbeHalt(p);
858   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
859   if( rc==SQLITE_BUSY ){
860     p->rc = rc = SQLITE_BUSY;
861   }else{
862     assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
863     assert( rc==SQLITE_OK || db->nDeferredCons>0 );
864     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
865   }
866   goto vdbe_return;
867 }
868 
869 /* Opcode: Integer P1 P2 * * *
870 **
871 ** The 32-bit integer value P1 is written into register P2.
872 */
873 case OP_Integer: {         /* out2-prerelease */
874   pOut->u.i = pOp->p1;
875   break;
876 }
877 
878 /* Opcode: Int64 * P2 * P4 *
879 **
880 ** P4 is a pointer to a 64-bit integer value.
881 ** Write that value into register P2.
882 */
883 case OP_Int64: {           /* out2-prerelease */
884   assert( pOp->p4.pI64!=0 );
885   pOut->u.i = *pOp->p4.pI64;
886   break;
887 }
888 
889 #ifndef SQLITE_OMIT_FLOATING_POINT
890 /* Opcode: Real * P2 * P4 *
891 **
892 ** P4 is a pointer to a 64-bit floating point value.
893 ** Write that value into register P2.
894 */
895 case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
896   pOut->flags = MEM_Real;
897   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
898   pOut->r = *pOp->p4.pReal;
899   break;
900 }
901 #endif
902 
903 /* Opcode: String8 * P2 * P4 *
904 **
905 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
906 ** into an OP_String before it is executed for the first time.
907 */
908 case OP_String8: {         /* same as TK_STRING, out2-prerelease */
909   assert( pOp->p4.z!=0 );
910   pOp->opcode = OP_String;
911   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
912 
913 #ifndef SQLITE_OMIT_UTF16
914   if( encoding!=SQLITE_UTF8 ){
915     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
916     if( rc==SQLITE_TOOBIG ) goto too_big;
917     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
918     assert( pOut->zMalloc==pOut->z );
919     assert( pOut->flags & MEM_Dyn );
920     pOut->zMalloc = 0;
921     pOut->flags |= MEM_Static;
922     pOut->flags &= ~MEM_Dyn;
923     if( pOp->p4type==P4_DYNAMIC ){
924       sqlite3DbFree(db, pOp->p4.z);
925     }
926     pOp->p4type = P4_DYNAMIC;
927     pOp->p4.z = pOut->z;
928     pOp->p1 = pOut->n;
929   }
930 #endif
931   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
932     goto too_big;
933   }
934   /* Fall through to the next case, OP_String */
935 }
936 
937 /* Opcode: String P1 P2 * P4 *
938 **
939 ** The string value P4 of length P1 (bytes) is stored in register P2.
940 */
941 case OP_String: {          /* out2-prerelease */
942   assert( pOp->p4.z!=0 );
943   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
944   pOut->z = pOp->p4.z;
945   pOut->n = pOp->p1;
946   pOut->enc = encoding;
947   UPDATE_MAX_BLOBSIZE(pOut);
948   break;
949 }
950 
951 /* Opcode: Null * P2 * * *
952 **
953 ** Write a NULL into register P2.
954 */
955 case OP_Null: {           /* out2-prerelease */
956   pOut->flags = MEM_Null;
957   break;
958 }
959 
960 
961 /* Opcode: Blob P1 P2 * P4
962 **
963 ** P4 points to a blob of data P1 bytes long.  Store this
964 ** blob in register P2. This instruction is not coded directly
965 ** by the compiler. Instead, the compiler layer specifies
966 ** an OP_HexBlob opcode, with the hex string representation of
967 ** the blob as P4. This opcode is transformed to an OP_Blob
968 ** the first time it is executed.
969 */
970 case OP_Blob: {                /* out2-prerelease */
971   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
972   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
973   pOut->enc = encoding;
974   UPDATE_MAX_BLOBSIZE(pOut);
975   break;
976 }
977 
978 /* Opcode: Variable P1 P2 * P4 *
979 **
980 ** Transfer the values of bound parameter P1 into register P2
981 **
982 ** If the parameter is named, then its name appears in P4 and P3==1.
983 ** The P4 value is used by sqlite3_bind_parameter_name().
984 */
985 case OP_Variable: {            /* out2-prerelease */
986   Mem *pVar;       /* Value being transferred */
987 
988   assert( pOp->p1>0 && pOp->p1<=p->nVar );
989   pVar = &p->aVar[pOp->p1 - 1];
990   if( sqlite3VdbeMemTooBig(pVar) ){
991     goto too_big;
992   }
993   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
994   UPDATE_MAX_BLOBSIZE(pOut);
995   break;
996 }
997 
998 /* Opcode: Move P1 P2 P3 * *
999 **
1000 ** Move the values in register P1..P1+P3-1 over into
1001 ** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
1002 ** left holding a NULL.  It is an error for register ranges
1003 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
1004 */
1005 case OP_Move: {
1006   char *zMalloc;   /* Holding variable for allocated memory */
1007   int n;           /* Number of registers left to copy */
1008   int p1;          /* Register to copy from */
1009   int p2;          /* Register to copy to */
1010 
1011   n = pOp->p3;
1012   p1 = pOp->p1;
1013   p2 = pOp->p2;
1014   assert( n>0 && p1>0 && p2>0 );
1015   assert( p1+n<=p2 || p2+n<=p1 );
1016 
1017   pIn1 = &aMem[p1];
1018   pOut = &aMem[p2];
1019   while( n-- ){
1020     assert( pOut<=&aMem[p->nMem] );
1021     assert( pIn1<=&aMem[p->nMem] );
1022     zMalloc = pOut->zMalloc;
1023     pOut->zMalloc = 0;
1024     sqlite3VdbeMemMove(pOut, pIn1);
1025     pIn1->zMalloc = zMalloc;
1026     REGISTER_TRACE(p2++, pOut);
1027     pIn1++;
1028     pOut++;
1029   }
1030   break;
1031 }
1032 
1033 /* Opcode: Copy P1 P2 * * *
1034 **
1035 ** Make a copy of register P1 into register P2.
1036 **
1037 ** This instruction makes a deep copy of the value.  A duplicate
1038 ** is made of any string or blob constant.  See also OP_SCopy.
1039 */
1040 case OP_Copy: {             /* in1, out2 */
1041   pIn1 = &aMem[pOp->p1];
1042   pOut = &aMem[pOp->p2];
1043   assert( pOut!=pIn1 );
1044   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1045   Deephemeralize(pOut);
1046   REGISTER_TRACE(pOp->p2, pOut);
1047   break;
1048 }
1049 
1050 /* Opcode: SCopy P1 P2 * * *
1051 **
1052 ** Make a shallow copy of register P1 into register P2.
1053 **
1054 ** This instruction makes a shallow copy of the value.  If the value
1055 ** is a string or blob, then the copy is only a pointer to the
1056 ** original and hence if the original changes so will the copy.
1057 ** Worse, if the original is deallocated, the copy becomes invalid.
1058 ** Thus the program must guarantee that the original will not change
1059 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1060 ** copy.
1061 */
1062 case OP_SCopy: {            /* in1, out2 */
1063   pIn1 = &aMem[pOp->p1];
1064   pOut = &aMem[pOp->p2];
1065   assert( pOut!=pIn1 );
1066   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1067   REGISTER_TRACE(pOp->p2, pOut);
1068   break;
1069 }
1070 
1071 /* Opcode: ResultRow P1 P2 * * *
1072 **
1073 ** The registers P1 through P1+P2-1 contain a single row of
1074 ** results. This opcode causes the sqlite3_step() call to terminate
1075 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1076 ** structure to provide access to the top P1 values as the result
1077 ** row.
1078 */
1079 case OP_ResultRow: {
1080   Mem *pMem;
1081   int i;
1082   assert( p->nResColumn==pOp->p2 );
1083   assert( pOp->p1>0 );
1084   assert( pOp->p1+pOp->p2<=p->nMem+1 );
1085 
1086   /* If this statement has violated immediate foreign key constraints, do
1087   ** not return the number of rows modified. And do not RELEASE the statement
1088   ** transaction. It needs to be rolled back.  */
1089   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1090     assert( db->flags&SQLITE_CountRows );
1091     assert( p->usesStmtJournal );
1092     break;
1093   }
1094 
1095   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1096   ** DML statements invoke this opcode to return the number of rows
1097   ** modified to the user. This is the only way that a VM that
1098   ** opens a statement transaction may invoke this opcode.
1099   **
1100   ** In case this is such a statement, close any statement transaction
1101   ** opened by this VM before returning control to the user. This is to
1102   ** ensure that statement-transactions are always nested, not overlapping.
1103   ** If the open statement-transaction is not closed here, then the user
1104   ** may step another VM that opens its own statement transaction. This
1105   ** may lead to overlapping statement transactions.
1106   **
1107   ** The statement transaction is never a top-level transaction.  Hence
1108   ** the RELEASE call below can never fail.
1109   */
1110   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1111   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1112   if( NEVER(rc!=SQLITE_OK) ){
1113     break;
1114   }
1115 
1116   /* Invalidate all ephemeral cursor row caches */
1117   p->cacheCtr = (p->cacheCtr + 2)|1;
1118 
1119   /* Make sure the results of the current row are \000 terminated
1120   ** and have an assigned type.  The results are de-ephemeralized as
1121   ** as side effect.
1122   */
1123   pMem = p->pResultSet = &aMem[pOp->p1];
1124   for(i=0; i<pOp->p2; i++){
1125     sqlite3VdbeMemNulTerminate(&pMem[i]);
1126     sqlite3VdbeMemStoreType(&pMem[i]);
1127     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1128   }
1129   if( db->mallocFailed ) goto no_mem;
1130 
1131   /* Return SQLITE_ROW
1132   */
1133   p->pc = pc + 1;
1134   rc = SQLITE_ROW;
1135   goto vdbe_return;
1136 }
1137 
1138 /* Opcode: Concat P1 P2 P3 * *
1139 **
1140 ** Add the text in register P1 onto the end of the text in
1141 ** register P2 and store the result in register P3.
1142 ** If either the P1 or P2 text are NULL then store NULL in P3.
1143 **
1144 **   P3 = P2 || P1
1145 **
1146 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1147 ** if P3 is the same register as P2, the implementation is able
1148 ** to avoid a memcpy().
1149 */
1150 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1151   i64 nByte;
1152 
1153   pIn1 = &aMem[pOp->p1];
1154   pIn2 = &aMem[pOp->p2];
1155   pOut = &aMem[pOp->p3];
1156   assert( pIn1!=pOut );
1157   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1158     sqlite3VdbeMemSetNull(pOut);
1159     break;
1160   }
1161   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1162   Stringify(pIn1, encoding);
1163   Stringify(pIn2, encoding);
1164   nByte = pIn1->n + pIn2->n;
1165   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1166     goto too_big;
1167   }
1168   MemSetTypeFlag(pOut, MEM_Str);
1169   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1170     goto no_mem;
1171   }
1172   if( pOut!=pIn2 ){
1173     memcpy(pOut->z, pIn2->z, pIn2->n);
1174   }
1175   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1176   pOut->z[nByte] = 0;
1177   pOut->z[nByte+1] = 0;
1178   pOut->flags |= MEM_Term;
1179   pOut->n = (int)nByte;
1180   pOut->enc = encoding;
1181   UPDATE_MAX_BLOBSIZE(pOut);
1182   break;
1183 }
1184 
1185 /* Opcode: Add P1 P2 P3 * *
1186 **
1187 ** Add the value in register P1 to the value in register P2
1188 ** and store the result in register P3.
1189 ** If either input is NULL, the result is NULL.
1190 */
1191 /* Opcode: Multiply P1 P2 P3 * *
1192 **
1193 **
1194 ** Multiply the value in register P1 by the value in register P2
1195 ** and store the result in register P3.
1196 ** If either input is NULL, the result is NULL.
1197 */
1198 /* Opcode: Subtract P1 P2 P3 * *
1199 **
1200 ** Subtract the value in register P1 from the value in register P2
1201 ** and store the result in register P3.
1202 ** If either input is NULL, the result is NULL.
1203 */
1204 /* Opcode: Divide P1 P2 P3 * *
1205 **
1206 ** Divide the value in register P1 by the value in register P2
1207 ** and store the result in register P3 (P3=P2/P1). If the value in
1208 ** register P1 is zero, then the result is NULL. If either input is
1209 ** NULL, the result is NULL.
1210 */
1211 /* Opcode: Remainder P1 P2 P3 * *
1212 **
1213 ** Compute the remainder after integer division of the value in
1214 ** register P1 by the value in register P2 and store the result in P3.
1215 ** If the value in register P2 is zero the result is NULL.
1216 ** If either operand is NULL, the result is NULL.
1217 */
1218 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1219 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1220 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1221 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1222 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1223   int flags;      /* Combined MEM_* flags from both inputs */
1224   i64 iA;         /* Integer value of left operand */
1225   i64 iB;         /* Integer value of right operand */
1226   double rA;      /* Real value of left operand */
1227   double rB;      /* Real value of right operand */
1228 
1229   pIn1 = &aMem[pOp->p1];
1230   applyNumericAffinity(pIn1);
1231   pIn2 = &aMem[pOp->p2];
1232   applyNumericAffinity(pIn2);
1233   pOut = &aMem[pOp->p3];
1234   flags = pIn1->flags | pIn2->flags;
1235   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1236   if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
1237     iA = pIn1->u.i;
1238     iB = pIn2->u.i;
1239     switch( pOp->opcode ){
1240       case OP_Add:         iB += iA;       break;
1241       case OP_Subtract:    iB -= iA;       break;
1242       case OP_Multiply:    iB *= iA;       break;
1243       case OP_Divide: {
1244         if( iA==0 ) goto arithmetic_result_is_null;
1245         /* Dividing the largest possible negative 64-bit integer (1<<63) by
1246         ** -1 returns an integer too large to store in a 64-bit data-type. On
1247         ** some architectures, the value overflows to (1<<63). On others,
1248         ** a SIGFPE is issued. The following statement normalizes this
1249         ** behavior so that all architectures behave as if integer
1250         ** overflow occurred.
1251         */
1252         if( iA==-1 && iB==SMALLEST_INT64 ) iA = 1;
1253         iB /= iA;
1254         break;
1255       }
1256       default: {
1257         if( iA==0 ) goto arithmetic_result_is_null;
1258         if( iA==-1 ) iA = 1;
1259         iB %= iA;
1260         break;
1261       }
1262     }
1263     pOut->u.i = iB;
1264     MemSetTypeFlag(pOut, MEM_Int);
1265   }else{
1266     rA = sqlite3VdbeRealValue(pIn1);
1267     rB = sqlite3VdbeRealValue(pIn2);
1268     switch( pOp->opcode ){
1269       case OP_Add:         rB += rA;       break;
1270       case OP_Subtract:    rB -= rA;       break;
1271       case OP_Multiply:    rB *= rA;       break;
1272       case OP_Divide: {
1273         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1274         if( rA==(double)0 ) goto arithmetic_result_is_null;
1275         rB /= rA;
1276         break;
1277       }
1278       default: {
1279         iA = (i64)rA;
1280         iB = (i64)rB;
1281         if( iA==0 ) goto arithmetic_result_is_null;
1282         if( iA==-1 ) iA = 1;
1283         rB = (double)(iB % iA);
1284         break;
1285       }
1286     }
1287 #ifdef SQLITE_OMIT_FLOATING_POINT
1288     pOut->u.i = rB;
1289     MemSetTypeFlag(pOut, MEM_Int);
1290 #else
1291     if( sqlite3IsNaN(rB) ){
1292       goto arithmetic_result_is_null;
1293     }
1294     pOut->r = rB;
1295     MemSetTypeFlag(pOut, MEM_Real);
1296     if( (flags & MEM_Real)==0 ){
1297       sqlite3VdbeIntegerAffinity(pOut);
1298     }
1299 #endif
1300   }
1301   break;
1302 
1303 arithmetic_result_is_null:
1304   sqlite3VdbeMemSetNull(pOut);
1305   break;
1306 }
1307 
1308 /* Opcode: CollSeq * * P4
1309 **
1310 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1311 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1312 ** be returned. This is used by the built-in min(), max() and nullif()
1313 ** functions.
1314 **
1315 ** The interface used by the implementation of the aforementioned functions
1316 ** to retrieve the collation sequence set by this opcode is not available
1317 ** publicly, only to user functions defined in func.c.
1318 */
1319 case OP_CollSeq: {
1320   assert( pOp->p4type==P4_COLLSEQ );
1321   break;
1322 }
1323 
1324 /* Opcode: Function P1 P2 P3 P4 P5
1325 **
1326 ** Invoke a user function (P4 is a pointer to a Function structure that
1327 ** defines the function) with P5 arguments taken from register P2 and
1328 ** successors.  The result of the function is stored in register P3.
1329 ** Register P3 must not be one of the function inputs.
1330 **
1331 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1332 ** function was determined to be constant at compile time. If the first
1333 ** argument was constant then bit 0 of P1 is set. This is used to determine
1334 ** whether meta data associated with a user function argument using the
1335 ** sqlite3_set_auxdata() API may be safely retained until the next
1336 ** invocation of this opcode.
1337 **
1338 ** See also: AggStep and AggFinal
1339 */
1340 case OP_Function: {
1341   int i;
1342   Mem *pArg;
1343   sqlite3_context ctx;
1344   sqlite3_value **apVal;
1345   int n;
1346 
1347   n = pOp->p5;
1348   apVal = p->apArg;
1349   assert( apVal || n==0 );
1350 
1351   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
1352   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1353   pArg = &aMem[pOp->p2];
1354   for(i=0; i<n; i++, pArg++){
1355     apVal[i] = pArg;
1356     sqlite3VdbeMemStoreType(pArg);
1357     REGISTER_TRACE(pOp->p2+i, pArg);
1358   }
1359 
1360   assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1361   if( pOp->p4type==P4_FUNCDEF ){
1362     ctx.pFunc = pOp->p4.pFunc;
1363     ctx.pVdbeFunc = 0;
1364   }else{
1365     ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
1366     ctx.pFunc = ctx.pVdbeFunc->pFunc;
1367   }
1368 
1369   assert( pOp->p3>0 && pOp->p3<=p->nMem );
1370   pOut = &aMem[pOp->p3];
1371   ctx.s.flags = MEM_Null;
1372   ctx.s.db = db;
1373   ctx.s.xDel = 0;
1374   ctx.s.zMalloc = 0;
1375 
1376   /* The output cell may already have a buffer allocated. Move
1377   ** the pointer to ctx.s so in case the user-function can use
1378   ** the already allocated buffer instead of allocating a new one.
1379   */
1380   sqlite3VdbeMemMove(&ctx.s, pOut);
1381   MemSetTypeFlag(&ctx.s, MEM_Null);
1382 
1383   ctx.isError = 0;
1384   if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
1385     assert( pOp>aOp );
1386     assert( pOp[-1].p4type==P4_COLLSEQ );
1387     assert( pOp[-1].opcode==OP_CollSeq );
1388     ctx.pColl = pOp[-1].p4.pColl;
1389   }
1390   (*ctx.pFunc->xFunc)(&ctx, n, apVal);
1391   if( db->mallocFailed ){
1392     /* Even though a malloc() has failed, the implementation of the
1393     ** user function may have called an sqlite3_result_XXX() function
1394     ** to return a value. The following call releases any resources
1395     ** associated with such a value.
1396     */
1397     sqlite3VdbeMemRelease(&ctx.s);
1398     goto no_mem;
1399   }
1400 
1401   /* If any auxiliary data functions have been called by this user function,
1402   ** immediately call the destructor for any non-static values.
1403   */
1404   if( ctx.pVdbeFunc ){
1405     sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1406     pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
1407     pOp->p4type = P4_VDBEFUNC;
1408   }
1409 
1410   /* If the function returned an error, throw an exception */
1411   if( ctx.isError ){
1412     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1413     rc = ctx.isError;
1414   }
1415 
1416   /* Copy the result of the function into register P3 */
1417   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1418   sqlite3VdbeMemMove(pOut, &ctx.s);
1419   if( sqlite3VdbeMemTooBig(pOut) ){
1420     goto too_big;
1421   }
1422   REGISTER_TRACE(pOp->p3, pOut);
1423   UPDATE_MAX_BLOBSIZE(pOut);
1424   break;
1425 }
1426 
1427 /* Opcode: BitAnd P1 P2 P3 * *
1428 **
1429 ** Take the bit-wise AND of the values in register P1 and P2 and
1430 ** store the result in register P3.
1431 ** If either input is NULL, the result is NULL.
1432 */
1433 /* Opcode: BitOr P1 P2 P3 * *
1434 **
1435 ** Take the bit-wise OR of the values in register P1 and P2 and
1436 ** store the result in register P3.
1437 ** If either input is NULL, the result is NULL.
1438 */
1439 /* Opcode: ShiftLeft P1 P2 P3 * *
1440 **
1441 ** Shift the integer value in register P2 to the left by the
1442 ** number of bits specified by the integer in regiser P1.
1443 ** Store the result in register P3.
1444 ** If either input is NULL, the result is NULL.
1445 */
1446 /* Opcode: ShiftRight P1 P2 P3 * *
1447 **
1448 ** Shift the integer value in register P2 to the right by the
1449 ** number of bits specified by the integer in register P1.
1450 ** Store the result in register P3.
1451 ** If either input is NULL, the result is NULL.
1452 */
1453 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1454 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1455 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1456 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1457   i64 a;
1458   i64 b;
1459 
1460   pIn1 = &aMem[pOp->p1];
1461   pIn2 = &aMem[pOp->p2];
1462   pOut = &aMem[pOp->p3];
1463   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1464     sqlite3VdbeMemSetNull(pOut);
1465     break;
1466   }
1467   a = sqlite3VdbeIntValue(pIn2);
1468   b = sqlite3VdbeIntValue(pIn1);
1469   switch( pOp->opcode ){
1470     case OP_BitAnd:      a &= b;     break;
1471     case OP_BitOr:       a |= b;     break;
1472     case OP_ShiftLeft:   a <<= b;    break;
1473     default:  assert( pOp->opcode==OP_ShiftRight );
1474                          a >>= b;    break;
1475   }
1476   pOut->u.i = a;
1477   MemSetTypeFlag(pOut, MEM_Int);
1478   break;
1479 }
1480 
1481 /* Opcode: AddImm  P1 P2 * * *
1482 **
1483 ** Add the constant P2 to the value in register P1.
1484 ** The result is always an integer.
1485 **
1486 ** To force any register to be an integer, just add 0.
1487 */
1488 case OP_AddImm: {            /* in1 */
1489   pIn1 = &aMem[pOp->p1];
1490   sqlite3VdbeMemIntegerify(pIn1);
1491   pIn1->u.i += pOp->p2;
1492   break;
1493 }
1494 
1495 /* Opcode: MustBeInt P1 P2 * * *
1496 **
1497 ** Force the value in register P1 to be an integer.  If the value
1498 ** in P1 is not an integer and cannot be converted into an integer
1499 ** without data loss, then jump immediately to P2, or if P2==0
1500 ** raise an SQLITE_MISMATCH exception.
1501 */
1502 case OP_MustBeInt: {            /* jump, in1 */
1503   pIn1 = &aMem[pOp->p1];
1504   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1505   if( (pIn1->flags & MEM_Int)==0 ){
1506     if( pOp->p2==0 ){
1507       rc = SQLITE_MISMATCH;
1508       goto abort_due_to_error;
1509     }else{
1510       pc = pOp->p2 - 1;
1511     }
1512   }else{
1513     MemSetTypeFlag(pIn1, MEM_Int);
1514   }
1515   break;
1516 }
1517 
1518 #ifndef SQLITE_OMIT_FLOATING_POINT
1519 /* Opcode: RealAffinity P1 * * * *
1520 **
1521 ** If register P1 holds an integer convert it to a real value.
1522 **
1523 ** This opcode is used when extracting information from a column that
1524 ** has REAL affinity.  Such column values may still be stored as
1525 ** integers, for space efficiency, but after extraction we want them
1526 ** to have only a real value.
1527 */
1528 case OP_RealAffinity: {                  /* in1 */
1529   pIn1 = &aMem[pOp->p1];
1530   if( pIn1->flags & MEM_Int ){
1531     sqlite3VdbeMemRealify(pIn1);
1532   }
1533   break;
1534 }
1535 #endif
1536 
1537 #ifndef SQLITE_OMIT_CAST
1538 /* Opcode: ToText P1 * * * *
1539 **
1540 ** Force the value in register P1 to be text.
1541 ** If the value is numeric, convert it to a string using the
1542 ** equivalent of printf().  Blob values are unchanged and
1543 ** are afterwards simply interpreted as text.
1544 **
1545 ** A NULL value is not changed by this routine.  It remains NULL.
1546 */
1547 case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
1548   pIn1 = &aMem[pOp->p1];
1549   if( pIn1->flags & MEM_Null ) break;
1550   assert( MEM_Str==(MEM_Blob>>3) );
1551   pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1552   applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1553   rc = ExpandBlob(pIn1);
1554   assert( pIn1->flags & MEM_Str || db->mallocFailed );
1555   pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
1556   UPDATE_MAX_BLOBSIZE(pIn1);
1557   break;
1558 }
1559 
1560 /* Opcode: ToBlob P1 * * * *
1561 **
1562 ** Force the value in register P1 to be a BLOB.
1563 ** If the value is numeric, convert it to a string first.
1564 ** Strings are simply reinterpreted as blobs with no change
1565 ** to the underlying data.
1566 **
1567 ** A NULL value is not changed by this routine.  It remains NULL.
1568 */
1569 case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
1570   pIn1 = &aMem[pOp->p1];
1571   if( pIn1->flags & MEM_Null ) break;
1572   if( (pIn1->flags & MEM_Blob)==0 ){
1573     applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1574     assert( pIn1->flags & MEM_Str || db->mallocFailed );
1575     MemSetTypeFlag(pIn1, MEM_Blob);
1576   }else{
1577     pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
1578   }
1579   UPDATE_MAX_BLOBSIZE(pIn1);
1580   break;
1581 }
1582 
1583 /* Opcode: ToNumeric P1 * * * *
1584 **
1585 ** Force the value in register P1 to be numeric (either an
1586 ** integer or a floating-point number.)
1587 ** If the value is text or blob, try to convert it to an using the
1588 ** equivalent of atoi() or atof() and store 0 if no such conversion
1589 ** is possible.
1590 **
1591 ** A NULL value is not changed by this routine.  It remains NULL.
1592 */
1593 case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
1594   pIn1 = &aMem[pOp->p1];
1595   if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
1596     sqlite3VdbeMemNumerify(pIn1);
1597   }
1598   break;
1599 }
1600 #endif /* SQLITE_OMIT_CAST */
1601 
1602 /* Opcode: ToInt P1 * * * *
1603 **
1604 ** Force the value in register P1 be an integer.  If
1605 ** The value is currently a real number, drop its fractional part.
1606 ** If the value is text or blob, try to convert it to an integer using the
1607 ** equivalent of atoi() and store 0 if no such conversion is possible.
1608 **
1609 ** A NULL value is not changed by this routine.  It remains NULL.
1610 */
1611 case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
1612   pIn1 = &aMem[pOp->p1];
1613   if( (pIn1->flags & MEM_Null)==0 ){
1614     sqlite3VdbeMemIntegerify(pIn1);
1615   }
1616   break;
1617 }
1618 
1619 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1620 /* Opcode: ToReal P1 * * * *
1621 **
1622 ** Force the value in register P1 to be a floating point number.
1623 ** If The value is currently an integer, convert it.
1624 ** If the value is text or blob, try to convert it to an integer using the
1625 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1626 **
1627 ** A NULL value is not changed by this routine.  It remains NULL.
1628 */
1629 case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
1630   pIn1 = &aMem[pOp->p1];
1631   if( (pIn1->flags & MEM_Null)==0 ){
1632     sqlite3VdbeMemRealify(pIn1);
1633   }
1634   break;
1635 }
1636 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1637 
1638 /* Opcode: Lt P1 P2 P3 P4 P5
1639 **
1640 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1641 ** jump to address P2.
1642 **
1643 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1644 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
1645 ** bit is clear then fall thru if either operand is NULL.
1646 **
1647 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1648 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1649 ** to coerce both inputs according to this affinity before the
1650 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1651 ** affinity is used. Note that the affinity conversions are stored
1652 ** back into the input registers P1 and P3.  So this opcode can cause
1653 ** persistent changes to registers P1 and P3.
1654 **
1655 ** Once any conversions have taken place, and neither value is NULL,
1656 ** the values are compared. If both values are blobs then memcmp() is
1657 ** used to determine the results of the comparison.  If both values
1658 ** are text, then the appropriate collating function specified in
1659 ** P4 is  used to do the comparison.  If P4 is not specified then
1660 ** memcmp() is used to compare text string.  If both values are
1661 ** numeric, then a numeric comparison is used. If the two values
1662 ** are of different types, then numbers are considered less than
1663 ** strings and strings are considered less than blobs.
1664 **
1665 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
1666 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1667 */
1668 /* Opcode: Ne P1 P2 P3 P4 P5
1669 **
1670 ** This works just like the Lt opcode except that the jump is taken if
1671 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
1672 ** additional information.
1673 **
1674 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1675 ** true or false and is never NULL.  If both operands are NULL then the result
1676 ** of comparison is false.  If either operand is NULL then the result is true.
1677 ** If neither operand is NULL the the result is the same as it would be if
1678 ** the SQLITE_NULLEQ flag were omitted from P5.
1679 */
1680 /* Opcode: Eq P1 P2 P3 P4 P5
1681 **
1682 ** This works just like the Lt opcode except that the jump is taken if
1683 ** the operands in registers P1 and P3 are equal.
1684 ** See the Lt opcode for additional information.
1685 **
1686 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1687 ** true or false and is never NULL.  If both operands are NULL then the result
1688 ** of comparison is true.  If either operand is NULL then the result is false.
1689 ** If neither operand is NULL the the result is the same as it would be if
1690 ** the SQLITE_NULLEQ flag were omitted from P5.
1691 */
1692 /* Opcode: Le P1 P2 P3 P4 P5
1693 **
1694 ** This works just like the Lt opcode except that the jump is taken if
1695 ** the content of register P3 is less than or equal to the content of
1696 ** register P1.  See the Lt opcode for additional information.
1697 */
1698 /* Opcode: Gt P1 P2 P3 P4 P5
1699 **
1700 ** This works just like the Lt opcode except that the jump is taken if
1701 ** the content of register P3 is greater than the content of
1702 ** register P1.  See the Lt opcode for additional information.
1703 */
1704 /* Opcode: Ge P1 P2 P3 P4 P5
1705 **
1706 ** This works just like the Lt opcode except that the jump is taken if
1707 ** the content of register P3 is greater than or equal to the content of
1708 ** register P1.  See the Lt opcode for additional information.
1709 */
1710 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1711 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1712 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1713 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1714 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1715 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1716   int res;            /* Result of the comparison of pIn1 against pIn3 */
1717   char affinity;      /* Affinity to use for comparison */
1718   u16 flags1;         /* Copy of initial value of pIn1->flags */
1719   u16 flags3;         /* Copy of initial value of pIn3->flags */
1720 
1721   pIn1 = &aMem[pOp->p1];
1722   pIn3 = &aMem[pOp->p3];
1723   flags1 = pIn1->flags;
1724   flags3 = pIn3->flags;
1725   if( (pIn1->flags | pIn3->flags)&MEM_Null ){
1726     /* One or both operands are NULL */
1727     if( pOp->p5 & SQLITE_NULLEQ ){
1728       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1729       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1730       ** or not both operands are null.
1731       */
1732       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1733       res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
1734     }else{
1735       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1736       ** then the result is always NULL.
1737       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1738       */
1739       if( pOp->p5 & SQLITE_STOREP2 ){
1740         pOut = &aMem[pOp->p2];
1741         MemSetTypeFlag(pOut, MEM_Null);
1742         REGISTER_TRACE(pOp->p2, pOut);
1743       }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1744         pc = pOp->p2-1;
1745       }
1746       break;
1747     }
1748   }else{
1749     /* Neither operand is NULL.  Do a comparison. */
1750     affinity = pOp->p5 & SQLITE_AFF_MASK;
1751     if( affinity ){
1752       applyAffinity(pIn1, affinity, encoding);
1753       applyAffinity(pIn3, affinity, encoding);
1754       if( db->mallocFailed ) goto no_mem;
1755     }
1756 
1757     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1758     ExpandBlob(pIn1);
1759     ExpandBlob(pIn3);
1760     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1761   }
1762   switch( pOp->opcode ){
1763     case OP_Eq:    res = res==0;     break;
1764     case OP_Ne:    res = res!=0;     break;
1765     case OP_Lt:    res = res<0;      break;
1766     case OP_Le:    res = res<=0;     break;
1767     case OP_Gt:    res = res>0;      break;
1768     default:       res = res>=0;     break;
1769   }
1770 
1771   if( pOp->p5 & SQLITE_STOREP2 ){
1772     pOut = &aMem[pOp->p2];
1773     MemSetTypeFlag(pOut, MEM_Int);
1774     pOut->u.i = res;
1775     REGISTER_TRACE(pOp->p2, pOut);
1776   }else if( res ){
1777     pc = pOp->p2-1;
1778   }
1779 
1780   /* Undo any changes made by applyAffinity() to the input registers. */
1781   pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1782   pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
1783   break;
1784 }
1785 
1786 /* Opcode: Permutation * * * P4 *
1787 **
1788 ** Set the permutation used by the OP_Compare operator to be the array
1789 ** of integers in P4.
1790 **
1791 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
1792 ** OP_Halt, or OP_ResultRow.  Typically the OP_Permutation should occur
1793 ** immediately prior to the OP_Compare.
1794 */
1795 case OP_Permutation: {
1796   assert( pOp->p4type==P4_INTARRAY );
1797   assert( pOp->p4.ai );
1798   aPermute = pOp->p4.ai;
1799   break;
1800 }
1801 
1802 /* Opcode: Compare P1 P2 P3 P4 *
1803 **
1804 ** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
1805 ** one "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
1806 ** the comparison for use by the next OP_Jump instruct.
1807 **
1808 ** P4 is a KeyInfo structure that defines collating sequences and sort
1809 ** orders for the comparison.  The permutation applies to registers
1810 ** only.  The KeyInfo elements are used sequentially.
1811 **
1812 ** The comparison is a sort comparison, so NULLs compare equal,
1813 ** NULLs are less than numbers, numbers are less than strings,
1814 ** and strings are less than blobs.
1815 */
1816 case OP_Compare: {
1817   int n;
1818   int i;
1819   int p1;
1820   int p2;
1821   const KeyInfo *pKeyInfo;
1822   int idx;
1823   CollSeq *pColl;    /* Collating sequence to use on this term */
1824   int bRev;          /* True for DESCENDING sort order */
1825 
1826   n = pOp->p3;
1827   pKeyInfo = pOp->p4.pKeyInfo;
1828   assert( n>0 );
1829   assert( pKeyInfo!=0 );
1830   p1 = pOp->p1;
1831   p2 = pOp->p2;
1832 #if SQLITE_DEBUG
1833   if( aPermute ){
1834     int k, mx = 0;
1835     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1836     assert( p1>0 && p1+mx<=p->nMem+1 );
1837     assert( p2>0 && p2+mx<=p->nMem+1 );
1838   }else{
1839     assert( p1>0 && p1+n<=p->nMem+1 );
1840     assert( p2>0 && p2+n<=p->nMem+1 );
1841   }
1842 #endif /* SQLITE_DEBUG */
1843   for(i=0; i<n; i++){
1844     idx = aPermute ? aPermute[i] : i;
1845     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1846     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
1847     assert( i<pKeyInfo->nField );
1848     pColl = pKeyInfo->aColl[i];
1849     bRev = pKeyInfo->aSortOrder[i];
1850     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
1851     if( iCompare ){
1852       if( bRev ) iCompare = -iCompare;
1853       break;
1854     }
1855   }
1856   aPermute = 0;
1857   break;
1858 }
1859 
1860 /* Opcode: Jump P1 P2 P3 * *
1861 **
1862 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1863 ** in the most recent OP_Compare instruction the P1 vector was less than
1864 ** equal to, or greater than the P2 vector, respectively.
1865 */
1866 case OP_Jump: {             /* jump */
1867   if( iCompare<0 ){
1868     pc = pOp->p1 - 1;
1869   }else if( iCompare==0 ){
1870     pc = pOp->p2 - 1;
1871   }else{
1872     pc = pOp->p3 - 1;
1873   }
1874   break;
1875 }
1876 
1877 /* Opcode: And P1 P2 P3 * *
1878 **
1879 ** Take the logical AND of the values in registers P1 and P2 and
1880 ** write the result into register P3.
1881 **
1882 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1883 ** the other input is NULL.  A NULL and true or two NULLs give
1884 ** a NULL output.
1885 */
1886 /* Opcode: Or P1 P2 P3 * *
1887 **
1888 ** Take the logical OR of the values in register P1 and P2 and
1889 ** store the answer in register P3.
1890 **
1891 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1892 ** even if the other input is NULL.  A NULL and false or two NULLs
1893 ** give a NULL output.
1894 */
1895 case OP_And:              /* same as TK_AND, in1, in2, out3 */
1896 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
1897   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1898   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1899 
1900   pIn1 = &aMem[pOp->p1];
1901   if( pIn1->flags & MEM_Null ){
1902     v1 = 2;
1903   }else{
1904     v1 = sqlite3VdbeIntValue(pIn1)!=0;
1905   }
1906   pIn2 = &aMem[pOp->p2];
1907   if( pIn2->flags & MEM_Null ){
1908     v2 = 2;
1909   }else{
1910     v2 = sqlite3VdbeIntValue(pIn2)!=0;
1911   }
1912   if( pOp->opcode==OP_And ){
1913     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1914     v1 = and_logic[v1*3+v2];
1915   }else{
1916     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1917     v1 = or_logic[v1*3+v2];
1918   }
1919   pOut = &aMem[pOp->p3];
1920   if( v1==2 ){
1921     MemSetTypeFlag(pOut, MEM_Null);
1922   }else{
1923     pOut->u.i = v1;
1924     MemSetTypeFlag(pOut, MEM_Int);
1925   }
1926   break;
1927 }
1928 
1929 /* Opcode: Not P1 P2 * * *
1930 **
1931 ** Interpret the value in register P1 as a boolean value.  Store the
1932 ** boolean complement in register P2.  If the value in register P1 is
1933 ** NULL, then a NULL is stored in P2.
1934 */
1935 case OP_Not: {                /* same as TK_NOT, in1, out2 */
1936   pIn1 = &aMem[pOp->p1];
1937   pOut = &aMem[pOp->p2];
1938   if( pIn1->flags & MEM_Null ){
1939     sqlite3VdbeMemSetNull(pOut);
1940   }else{
1941     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
1942   }
1943   break;
1944 }
1945 
1946 /* Opcode: BitNot P1 P2 * * *
1947 **
1948 ** Interpret the content of register P1 as an integer.  Store the
1949 ** ones-complement of the P1 value into register P2.  If P1 holds
1950 ** a NULL then store a NULL in P2.
1951 */
1952 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
1953   pIn1 = &aMem[pOp->p1];
1954   pOut = &aMem[pOp->p2];
1955   if( pIn1->flags & MEM_Null ){
1956     sqlite3VdbeMemSetNull(pOut);
1957   }else{
1958     sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
1959   }
1960   break;
1961 }
1962 
1963 /* Opcode: If P1 P2 P3 * *
1964 **
1965 ** Jump to P2 if the value in register P1 is true.  The value is
1966 ** is considered true if it is numeric and non-zero.  If the value
1967 ** in P1 is NULL then take the jump if P3 is true.
1968 */
1969 /* Opcode: IfNot P1 P2 P3 * *
1970 **
1971 ** Jump to P2 if the value in register P1 is False.  The value is
1972 ** is considered true if it has a numeric value of zero.  If the value
1973 ** in P1 is NULL then take the jump if P3 is true.
1974 */
1975 case OP_If:                 /* jump, in1 */
1976 case OP_IfNot: {            /* jump, in1 */
1977   int c;
1978   pIn1 = &aMem[pOp->p1];
1979   if( pIn1->flags & MEM_Null ){
1980     c = pOp->p3;
1981   }else{
1982 #ifdef SQLITE_OMIT_FLOATING_POINT
1983     c = sqlite3VdbeIntValue(pIn1)!=0;
1984 #else
1985     c = sqlite3VdbeRealValue(pIn1)!=0.0;
1986 #endif
1987     if( pOp->opcode==OP_IfNot ) c = !c;
1988   }
1989   if( c ){
1990     pc = pOp->p2-1;
1991   }
1992   break;
1993 }
1994 
1995 /* Opcode: IsNull P1 P2 * * *
1996 **
1997 ** Jump to P2 if the value in register P1 is NULL.
1998 */
1999 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2000   pIn1 = &aMem[pOp->p1];
2001   if( (pIn1->flags & MEM_Null)!=0 ){
2002     pc = pOp->p2 - 1;
2003   }
2004   break;
2005 }
2006 
2007 /* Opcode: NotNull P1 P2 * * *
2008 **
2009 ** Jump to P2 if the value in register P1 is not NULL.
2010 */
2011 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2012   pIn1 = &aMem[pOp->p1];
2013   if( (pIn1->flags & MEM_Null)==0 ){
2014     pc = pOp->p2 - 1;
2015   }
2016   break;
2017 }
2018 
2019 /* Opcode: Column P1 P2 P3 P4 P5
2020 **
2021 ** Interpret the data that cursor P1 points to as a structure built using
2022 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2023 ** information about the format of the data.)  Extract the P2-th column
2024 ** from this record.  If there are less that (P2+1)
2025 ** values in the record, extract a NULL.
2026 **
2027 ** The value extracted is stored in register P3.
2028 **
2029 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2030 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2031 ** the result.
2032 **
2033 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2034 ** then the cache of the cursor is reset prior to extracting the column.
2035 ** The first OP_Column against a pseudo-table after the value of the content
2036 ** register has changed should have this bit set.
2037 */
2038 case OP_Column: {
2039   u32 payloadSize;   /* Number of bytes in the record */
2040   i64 payloadSize64; /* Number of bytes in the record */
2041   int p1;            /* P1 value of the opcode */
2042   int p2;            /* column number to retrieve */
2043   VdbeCursor *pC;    /* The VDBE cursor */
2044   char *zRec;        /* Pointer to complete record-data */
2045   BtCursor *pCrsr;   /* The BTree cursor */
2046   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
2047   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2048   int nField;        /* number of fields in the record */
2049   int len;           /* The length of the serialized data for the column */
2050   int i;             /* Loop counter */
2051   char *zData;       /* Part of the record being decoded */
2052   Mem *pDest;        /* Where to write the extracted value */
2053   Mem sMem;          /* For storing the record being decoded */
2054   u8 *zIdx;          /* Index into header */
2055   u8 *zEndHdr;       /* Pointer to first byte after the header */
2056   u32 offset;        /* Offset into the data */
2057   u32 szField;       /* Number of bytes in the content of a field */
2058   int szHdr;         /* Size of the header size field at start of record */
2059   int avail;         /* Number of bytes of available data */
2060   Mem *pReg;         /* PseudoTable input register */
2061 
2062 
2063   p1 = pOp->p1;
2064   p2 = pOp->p2;
2065   pC = 0;
2066   memset(&sMem, 0, sizeof(sMem));
2067   assert( p1<p->nCursor );
2068   assert( pOp->p3>0 && pOp->p3<=p->nMem );
2069   pDest = &aMem[pOp->p3];
2070   MemSetTypeFlag(pDest, MEM_Null);
2071   zRec = 0;
2072 
2073   /* This block sets the variable payloadSize to be the total number of
2074   ** bytes in the record.
2075   **
2076   ** zRec is set to be the complete text of the record if it is available.
2077   ** The complete record text is always available for pseudo-tables
2078   ** If the record is stored in a cursor, the complete record text
2079   ** might be available in the  pC->aRow cache.  Or it might not be.
2080   ** If the data is unavailable,  zRec is set to NULL.
2081   **
2082   ** We also compute the number of columns in the record.  For cursors,
2083   ** the number of columns is stored in the VdbeCursor.nField element.
2084   */
2085   pC = p->apCsr[p1];
2086   assert( pC!=0 );
2087 #ifndef SQLITE_OMIT_VIRTUALTABLE
2088   assert( pC->pVtabCursor==0 );
2089 #endif
2090   pCrsr = pC->pCursor;
2091   if( pCrsr!=0 ){
2092     /* The record is stored in a B-Tree */
2093     rc = sqlite3VdbeCursorMoveto(pC);
2094     if( rc ) goto abort_due_to_error;
2095     if( pC->nullRow ){
2096       payloadSize = 0;
2097     }else if( pC->cacheStatus==p->cacheCtr ){
2098       payloadSize = pC->payloadSize;
2099       zRec = (char*)pC->aRow;
2100     }else if( pC->isIndex ){
2101       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2102       rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2103       assert( rc==SQLITE_OK );   /* True because of CursorMoveto() call above */
2104       /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2105       ** payload size, so it is impossible for payloadSize64 to be
2106       ** larger than 32 bits. */
2107       assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2108       payloadSize = (u32)payloadSize64;
2109     }else{
2110       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2111       rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
2112       assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
2113     }
2114   }else if( pC->pseudoTableReg>0 ){
2115     pReg = &aMem[pC->pseudoTableReg];
2116     assert( pReg->flags & MEM_Blob );
2117     payloadSize = pReg->n;
2118     zRec = pReg->z;
2119     pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
2120     assert( payloadSize==0 || zRec!=0 );
2121   }else{
2122     /* Consider the row to be NULL */
2123     payloadSize = 0;
2124   }
2125 
2126   /* If payloadSize is 0, then just store a NULL */
2127   if( payloadSize==0 ){
2128     assert( pDest->flags&MEM_Null );
2129     goto op_column_out;
2130   }
2131   assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2132   if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2133     goto too_big;
2134   }
2135 
2136   nField = pC->nField;
2137   assert( p2<nField );
2138 
2139   /* Read and parse the table header.  Store the results of the parse
2140   ** into the record header cache fields of the cursor.
2141   */
2142   aType = pC->aType;
2143   if( pC->cacheStatus==p->cacheCtr ){
2144     aOffset = pC->aOffset;
2145   }else{
2146     assert(aType);
2147     avail = 0;
2148     pC->aOffset = aOffset = &aType[nField];
2149     pC->payloadSize = payloadSize;
2150     pC->cacheStatus = p->cacheCtr;
2151 
2152     /* Figure out how many bytes are in the header */
2153     if( zRec ){
2154       zData = zRec;
2155     }else{
2156       if( pC->isIndex ){
2157         zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2158       }else{
2159         zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2160       }
2161       /* If KeyFetch()/DataFetch() managed to get the entire payload,
2162       ** save the payload in the pC->aRow cache.  That will save us from
2163       ** having to make additional calls to fetch the content portion of
2164       ** the record.
2165       */
2166       assert( avail>=0 );
2167       if( payloadSize <= (u32)avail ){
2168         zRec = zData;
2169         pC->aRow = (u8*)zData;
2170       }else{
2171         pC->aRow = 0;
2172       }
2173     }
2174     /* The following assert is true in all cases accept when
2175     ** the database file has been corrupted externally.
2176     **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2177     szHdr = getVarint32((u8*)zData, offset);
2178 
2179     /* Make sure a corrupt database has not given us an oversize header.
2180     ** Do this now to avoid an oversize memory allocation.
2181     **
2182     ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2183     ** types use so much data space that there can only be 4096 and 32 of
2184     ** them, respectively.  So the maximum header length results from a
2185     ** 3-byte type for each of the maximum of 32768 columns plus three
2186     ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2187     */
2188     if( offset > 98307 ){
2189       rc = SQLITE_CORRUPT_BKPT;
2190       goto op_column_out;
2191     }
2192 
2193     /* Compute in len the number of bytes of data we need to read in order
2194     ** to get nField type values.  offset is an upper bound on this.  But
2195     ** nField might be significantly less than the true number of columns
2196     ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2197     ** We want to minimize len in order to limit the size of the memory
2198     ** allocation, especially if a corrupt database file has caused offset
2199     ** to be oversized. Offset is limited to 98307 above.  But 98307 might
2200     ** still exceed Robson memory allocation limits on some configurations.
2201     ** On systems that cannot tolerate large memory allocations, nField*5+3
2202     ** will likely be much smaller since nField will likely be less than
2203     ** 20 or so.  This insures that Robson memory allocation limits are
2204     ** not exceeded even for corrupt database files.
2205     */
2206     len = nField*5 + 3;
2207     if( len > (int)offset ) len = (int)offset;
2208 
2209     /* The KeyFetch() or DataFetch() above are fast and will get the entire
2210     ** record header in most cases.  But they will fail to get the complete
2211     ** record header if the record header does not fit on a single page
2212     ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
2213     ** acquire the complete header text.
2214     */
2215     if( !zRec && avail<len ){
2216       sMem.flags = 0;
2217       sMem.db = 0;
2218       rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
2219       if( rc!=SQLITE_OK ){
2220         goto op_column_out;
2221       }
2222       zData = sMem.z;
2223     }
2224     zEndHdr = (u8 *)&zData[len];
2225     zIdx = (u8 *)&zData[szHdr];
2226 
2227     /* Scan the header and use it to fill in the aType[] and aOffset[]
2228     ** arrays.  aType[i] will contain the type integer for the i-th
2229     ** column and aOffset[i] will contain the offset from the beginning
2230     ** of the record to the start of the data for the i-th column
2231     */
2232     for(i=0; i<nField; i++){
2233       if( zIdx<zEndHdr ){
2234         aOffset[i] = offset;
2235         zIdx += getVarint32(zIdx, aType[i]);
2236         szField = sqlite3VdbeSerialTypeLen(aType[i]);
2237         offset += szField;
2238         if( offset<szField ){  /* True if offset overflows */
2239           zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
2240           break;
2241         }
2242       }else{
2243         /* If i is less that nField, then there are less fields in this
2244         ** record than SetNumColumns indicated there are columns in the
2245         ** table. Set the offset for any extra columns not present in
2246         ** the record to 0. This tells code below to store a NULL
2247         ** instead of deserializing a value from the record.
2248         */
2249         aOffset[i] = 0;
2250       }
2251     }
2252     sqlite3VdbeMemRelease(&sMem);
2253     sMem.flags = MEM_Null;
2254 
2255     /* If we have read more header data than was contained in the header,
2256     ** or if the end of the last field appears to be past the end of the
2257     ** record, or if the end of the last field appears to be before the end
2258     ** of the record (when all fields present), then we must be dealing
2259     ** with a corrupt database.
2260     */
2261     if( (zIdx > zEndHdr) || (offset > payloadSize)
2262          || (zIdx==zEndHdr && offset!=payloadSize) ){
2263       rc = SQLITE_CORRUPT_BKPT;
2264       goto op_column_out;
2265     }
2266   }
2267 
2268   /* Get the column information. If aOffset[p2] is non-zero, then
2269   ** deserialize the value from the record. If aOffset[p2] is zero,
2270   ** then there are not enough fields in the record to satisfy the
2271   ** request.  In this case, set the value NULL or to P4 if P4 is
2272   ** a pointer to a Mem object.
2273   */
2274   if( aOffset[p2] ){
2275     assert( rc==SQLITE_OK );
2276     if( zRec ){
2277       sqlite3VdbeMemReleaseExternal(pDest);
2278       sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
2279     }else{
2280       len = sqlite3VdbeSerialTypeLen(aType[p2]);
2281       sqlite3VdbeMemMove(&sMem, pDest);
2282       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
2283       if( rc!=SQLITE_OK ){
2284         goto op_column_out;
2285       }
2286       zData = sMem.z;
2287       sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
2288     }
2289     pDest->enc = encoding;
2290   }else{
2291     if( pOp->p4type==P4_MEM ){
2292       sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2293     }else{
2294       assert( pDest->flags&MEM_Null );
2295     }
2296   }
2297 
2298   /* If we dynamically allocated space to hold the data (in the
2299   ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2300   ** dynamically allocated space over to the pDest structure.
2301   ** This prevents a memory copy.
2302   */
2303   if( sMem.zMalloc ){
2304     assert( sMem.z==sMem.zMalloc );
2305     assert( !(pDest->flags & MEM_Dyn) );
2306     assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2307     pDest->flags &= ~(MEM_Ephem|MEM_Static);
2308     pDest->flags |= MEM_Term;
2309     pDest->z = sMem.z;
2310     pDest->zMalloc = sMem.zMalloc;
2311   }
2312 
2313   rc = sqlite3VdbeMemMakeWriteable(pDest);
2314 
2315 op_column_out:
2316   UPDATE_MAX_BLOBSIZE(pDest);
2317   REGISTER_TRACE(pOp->p3, pDest);
2318   break;
2319 }
2320 
2321 /* Opcode: Affinity P1 P2 * P4 *
2322 **
2323 ** Apply affinities to a range of P2 registers starting with P1.
2324 **
2325 ** P4 is a string that is P2 characters long. The nth character of the
2326 ** string indicates the column affinity that should be used for the nth
2327 ** memory cell in the range.
2328 */
2329 case OP_Affinity: {
2330   const char *zAffinity;   /* The affinity to be applied */
2331   char cAff;               /* A single character of affinity */
2332 
2333   zAffinity = pOp->p4.z;
2334   assert( zAffinity!=0 );
2335   assert( zAffinity[pOp->p2]==0 );
2336   pIn1 = &aMem[pOp->p1];
2337   while( (cAff = *(zAffinity++))!=0 ){
2338     assert( pIn1 <= &p->aMem[p->nMem] );
2339     ExpandBlob(pIn1);
2340     applyAffinity(pIn1, cAff, encoding);
2341     pIn1++;
2342   }
2343   break;
2344 }
2345 
2346 /* Opcode: MakeRecord P1 P2 P3 P4 *
2347 **
2348 ** Convert P2 registers beginning with P1 into a single entry
2349 ** suitable for use as a data record in a database table or as a key
2350 ** in an index.  The details of the format are irrelevant as long as
2351 ** the OP_Column opcode can decode the record later.
2352 ** Refer to source code comments for the details of the record
2353 ** format.
2354 **
2355 ** P4 may be a string that is P2 characters long.  The nth character of the
2356 ** string indicates the column affinity that should be used for the nth
2357 ** field of the index key.
2358 **
2359 ** The mapping from character to affinity is given by the SQLITE_AFF_
2360 ** macros defined in sqliteInt.h.
2361 **
2362 ** If P4 is NULL then all index fields have the affinity NONE.
2363 */
2364 case OP_MakeRecord: {
2365   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2366   Mem *pRec;             /* The new record */
2367   u64 nData;             /* Number of bytes of data space */
2368   int nHdr;              /* Number of bytes of header space */
2369   i64 nByte;             /* Data space required for this record */
2370   int nZero;             /* Number of zero bytes at the end of the record */
2371   int nVarint;           /* Number of bytes in a varint */
2372   u32 serial_type;       /* Type field */
2373   Mem *pData0;           /* First field to be combined into the record */
2374   Mem *pLast;            /* Last field of the record */
2375   int nField;            /* Number of fields in the record */
2376   char *zAffinity;       /* The affinity string for the record */
2377   int file_format;       /* File format to use for encoding */
2378   int i;                 /* Space used in zNewRecord[] */
2379   int len;               /* Length of a field */
2380 
2381   /* Assuming the record contains N fields, the record format looks
2382   ** like this:
2383   **
2384   ** ------------------------------------------------------------------------
2385   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2386   ** ------------------------------------------------------------------------
2387   **
2388   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2389   ** and so froth.
2390   **
2391   ** Each type field is a varint representing the serial type of the
2392   ** corresponding data element (see sqlite3VdbeSerialType()). The
2393   ** hdr-size field is also a varint which is the offset from the beginning
2394   ** of the record to data0.
2395   */
2396   nData = 0;         /* Number of bytes of data space */
2397   nHdr = 0;          /* Number of bytes of header space */
2398   nByte = 0;         /* Data space required for this record */
2399   nZero = 0;         /* Number of zero bytes at the end of the record */
2400   nField = pOp->p1;
2401   zAffinity = pOp->p4.z;
2402   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
2403   pData0 = &aMem[nField];
2404   nField = pOp->p2;
2405   pLast = &pData0[nField-1];
2406   file_format = p->minWriteFileFormat;
2407 
2408   /* Loop through the elements that will make up the record to figure
2409   ** out how much space is required for the new record.
2410   */
2411   for(pRec=pData0; pRec<=pLast; pRec++){
2412     if( zAffinity ){
2413       applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2414     }
2415     if( pRec->flags&MEM_Zero && pRec->n>0 ){
2416       sqlite3VdbeMemExpandBlob(pRec);
2417     }
2418     serial_type = sqlite3VdbeSerialType(pRec, file_format);
2419     len = sqlite3VdbeSerialTypeLen(serial_type);
2420     nData += len;
2421     nHdr += sqlite3VarintLen(serial_type);
2422     if( pRec->flags & MEM_Zero ){
2423       /* Only pure zero-filled BLOBs can be input to this Opcode.
2424       ** We do not allow blobs with a prefix and a zero-filled tail. */
2425       nZero += pRec->u.nZero;
2426     }else if( len ){
2427       nZero = 0;
2428     }
2429   }
2430 
2431   /* Add the initial header varint and total the size */
2432   nHdr += nVarint = sqlite3VarintLen(nHdr);
2433   if( nVarint<sqlite3VarintLen(nHdr) ){
2434     nHdr++;
2435   }
2436   nByte = nHdr+nData-nZero;
2437   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2438     goto too_big;
2439   }
2440 
2441   /* Make sure the output register has a buffer large enough to store
2442   ** the new record. The output register (pOp->p3) is not allowed to
2443   ** be one of the input registers (because the following call to
2444   ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2445   */
2446   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2447   pOut = &aMem[pOp->p3];
2448   if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
2449     goto no_mem;
2450   }
2451   zNewRecord = (u8 *)pOut->z;
2452 
2453   /* Write the record */
2454   i = putVarint32(zNewRecord, nHdr);
2455   for(pRec=pData0; pRec<=pLast; pRec++){
2456     serial_type = sqlite3VdbeSerialType(pRec, file_format);
2457     i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
2458   }
2459   for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
2460     i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
2461   }
2462   assert( i==nByte );
2463 
2464   assert( pOp->p3>0 && pOp->p3<=p->nMem );
2465   pOut->n = (int)nByte;
2466   pOut->flags = MEM_Blob | MEM_Dyn;
2467   pOut->xDel = 0;
2468   if( nZero ){
2469     pOut->u.nZero = nZero;
2470     pOut->flags |= MEM_Zero;
2471   }
2472   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2473   REGISTER_TRACE(pOp->p3, pOut);
2474   UPDATE_MAX_BLOBSIZE(pOut);
2475   break;
2476 }
2477 
2478 /* Opcode: Count P1 P2 * * *
2479 **
2480 ** Store the number of entries (an integer value) in the table or index
2481 ** opened by cursor P1 in register P2
2482 */
2483 #ifndef SQLITE_OMIT_BTREECOUNT
2484 case OP_Count: {         /* out2-prerelease */
2485   i64 nEntry;
2486   BtCursor *pCrsr;
2487 
2488   pCrsr = p->apCsr[pOp->p1]->pCursor;
2489   if( pCrsr ){
2490     rc = sqlite3BtreeCount(pCrsr, &nEntry);
2491   }else{
2492     nEntry = 0;
2493   }
2494   pOut->u.i = nEntry;
2495   break;
2496 }
2497 #endif
2498 
2499 /* Opcode: Savepoint P1 * * P4 *
2500 **
2501 ** Open, release or rollback the savepoint named by parameter P4, depending
2502 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2503 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2504 */
2505 case OP_Savepoint: {
2506   int p1;                         /* Value of P1 operand */
2507   char *zName;                    /* Name of savepoint */
2508   int nName;
2509   Savepoint *pNew;
2510   Savepoint *pSavepoint;
2511   Savepoint *pTmp;
2512   int iSavepoint;
2513   int ii;
2514 
2515   p1 = pOp->p1;
2516   zName = pOp->p4.z;
2517 
2518   /* Assert that the p1 parameter is valid. Also that if there is no open
2519   ** transaction, then there cannot be any savepoints.
2520   */
2521   assert( db->pSavepoint==0 || db->autoCommit==0 );
2522   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2523   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2524   assert( checkSavepointCount(db) );
2525 
2526   if( p1==SAVEPOINT_BEGIN ){
2527     if( db->writeVdbeCnt>0 ){
2528       /* A new savepoint cannot be created if there are active write
2529       ** statements (i.e. open read/write incremental blob handles).
2530       */
2531       sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2532         "SQL statements in progress");
2533       rc = SQLITE_BUSY;
2534     }else{
2535       nName = sqlite3Strlen30(zName);
2536 
2537       /* Create a new savepoint structure. */
2538       pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2539       if( pNew ){
2540         pNew->zName = (char *)&pNew[1];
2541         memcpy(pNew->zName, zName, nName+1);
2542 
2543         /* If there is no open transaction, then mark this as a special
2544         ** "transaction savepoint". */
2545         if( db->autoCommit ){
2546           db->autoCommit = 0;
2547           db->isTransactionSavepoint = 1;
2548         }else{
2549           db->nSavepoint++;
2550         }
2551 
2552         /* Link the new savepoint into the database handle's list. */
2553         pNew->pNext = db->pSavepoint;
2554         db->pSavepoint = pNew;
2555         pNew->nDeferredCons = db->nDeferredCons;
2556       }
2557     }
2558   }else{
2559     iSavepoint = 0;
2560 
2561     /* Find the named savepoint. If there is no such savepoint, then an
2562     ** an error is returned to the user.  */
2563     for(
2564       pSavepoint = db->pSavepoint;
2565       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2566       pSavepoint = pSavepoint->pNext
2567     ){
2568       iSavepoint++;
2569     }
2570     if( !pSavepoint ){
2571       sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2572       rc = SQLITE_ERROR;
2573     }else if(
2574         db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
2575     ){
2576       /* It is not possible to release (commit) a savepoint if there are
2577       ** active write statements. It is not possible to rollback a savepoint
2578       ** if there are any active statements at all.
2579       */
2580       sqlite3SetString(&p->zErrMsg, db,
2581         "cannot %s savepoint - SQL statements in progress",
2582         (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
2583       );
2584       rc = SQLITE_BUSY;
2585     }else{
2586 
2587       /* Determine whether or not this is a transaction savepoint. If so,
2588       ** and this is a RELEASE command, then the current transaction
2589       ** is committed.
2590       */
2591       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2592       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2593         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2594           goto vdbe_return;
2595         }
2596         db->autoCommit = 1;
2597         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2598           p->pc = pc;
2599           db->autoCommit = 0;
2600           p->rc = rc = SQLITE_BUSY;
2601           goto vdbe_return;
2602         }
2603         db->isTransactionSavepoint = 0;
2604         rc = p->rc;
2605       }else{
2606         iSavepoint = db->nSavepoint - iSavepoint - 1;
2607         for(ii=0; ii<db->nDb; ii++){
2608           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2609           if( rc!=SQLITE_OK ){
2610             goto abort_due_to_error;
2611           }
2612         }
2613         if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
2614           sqlite3ExpirePreparedStatements(db);
2615           sqlite3ResetInternalSchema(db, 0);
2616         }
2617       }
2618 
2619       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2620       ** savepoints nested inside of the savepoint being operated on. */
2621       while( db->pSavepoint!=pSavepoint ){
2622         pTmp = db->pSavepoint;
2623         db->pSavepoint = pTmp->pNext;
2624         sqlite3DbFree(db, pTmp);
2625         db->nSavepoint--;
2626       }
2627 
2628       /* If it is a RELEASE, then destroy the savepoint being operated on
2629       ** too. If it is a ROLLBACK TO, then set the number of deferred
2630       ** constraint violations present in the database to the value stored
2631       ** when the savepoint was created.  */
2632       if( p1==SAVEPOINT_RELEASE ){
2633         assert( pSavepoint==db->pSavepoint );
2634         db->pSavepoint = pSavepoint->pNext;
2635         sqlite3DbFree(db, pSavepoint);
2636         if( !isTransaction ){
2637           db->nSavepoint--;
2638         }
2639       }else{
2640         db->nDeferredCons = pSavepoint->nDeferredCons;
2641       }
2642     }
2643   }
2644 
2645   break;
2646 }
2647 
2648 /* Opcode: AutoCommit P1 P2 * * *
2649 **
2650 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2651 ** back any currently active btree transactions. If there are any active
2652 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
2653 ** there are active writing VMs or active VMs that use shared cache.
2654 **
2655 ** This instruction causes the VM to halt.
2656 */
2657 case OP_AutoCommit: {
2658   int desiredAutoCommit;
2659   int iRollback;
2660   int turnOnAC;
2661 
2662   desiredAutoCommit = pOp->p1;
2663   iRollback = pOp->p2;
2664   turnOnAC = desiredAutoCommit && !db->autoCommit;
2665   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2666   assert( desiredAutoCommit==1 || iRollback==0 );
2667   assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
2668 
2669   if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
2670     /* If this instruction implements a ROLLBACK and other VMs are
2671     ** still running, and a transaction is active, return an error indicating
2672     ** that the other VMs must complete first.
2673     */
2674     sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2675         "SQL statements in progress");
2676     rc = SQLITE_BUSY;
2677   }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
2678     /* If this instruction implements a COMMIT and other VMs are writing
2679     ** return an error indicating that the other VMs must complete first.
2680     */
2681     sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2682         "SQL statements in progress");
2683     rc = SQLITE_BUSY;
2684   }else if( desiredAutoCommit!=db->autoCommit ){
2685     if( iRollback ){
2686       assert( desiredAutoCommit==1 );
2687       sqlite3RollbackAll(db);
2688       db->autoCommit = 1;
2689     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2690       goto vdbe_return;
2691     }else{
2692       db->autoCommit = (u8)desiredAutoCommit;
2693       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2694         p->pc = pc;
2695         db->autoCommit = (u8)(1-desiredAutoCommit);
2696         p->rc = rc = SQLITE_BUSY;
2697         goto vdbe_return;
2698       }
2699     }
2700     assert( db->nStatement==0 );
2701     sqlite3CloseSavepoints(db);
2702     if( p->rc==SQLITE_OK ){
2703       rc = SQLITE_DONE;
2704     }else{
2705       rc = SQLITE_ERROR;
2706     }
2707     goto vdbe_return;
2708   }else{
2709     sqlite3SetString(&p->zErrMsg, db,
2710         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2711         (iRollback)?"cannot rollback - no transaction is active":
2712                    "cannot commit - no transaction is active"));
2713 
2714     rc = SQLITE_ERROR;
2715   }
2716   break;
2717 }
2718 
2719 /* Opcode: Transaction P1 P2 * * *
2720 **
2721 ** Begin a transaction.  The transaction ends when a Commit or Rollback
2722 ** opcode is encountered.  Depending on the ON CONFLICT setting, the
2723 ** transaction might also be rolled back if an error is encountered.
2724 **
2725 ** P1 is the index of the database file on which the transaction is
2726 ** started.  Index 0 is the main database file and index 1 is the
2727 ** file used for temporary tables.  Indices of 2 or more are used for
2728 ** attached databases.
2729 **
2730 ** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
2731 ** obtained on the database file when a write-transaction is started.  No
2732 ** other process can start another write transaction while this transaction is
2733 ** underway.  Starting a write transaction also creates a rollback journal. A
2734 ** write transaction must be started before any changes can be made to the
2735 ** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2736 ** on the file.
2737 **
2738 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2739 ** true (this flag is set if the Vdbe may modify more than one row and may
2740 ** throw an ABORT exception), a statement transaction may also be opened.
2741 ** More specifically, a statement transaction is opened iff the database
2742 ** connection is currently not in autocommit mode, or if there are other
2743 ** active statements. A statement transaction allows the affects of this
2744 ** VDBE to be rolled back after an error without having to roll back the
2745 ** entire transaction. If no error is encountered, the statement transaction
2746 ** will automatically commit when the VDBE halts.
2747 **
2748 ** If P2 is zero, then a read-lock is obtained on the database file.
2749 */
2750 case OP_Transaction: {
2751   Btree *pBt;
2752 
2753   assert( pOp->p1>=0 && pOp->p1<db->nDb );
2754   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2755   pBt = db->aDb[pOp->p1].pBt;
2756 
2757   if( pBt ){
2758     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2759     if( rc==SQLITE_BUSY ){
2760       p->pc = pc;
2761       p->rc = rc = SQLITE_BUSY;
2762       goto vdbe_return;
2763     }
2764     if( rc!=SQLITE_OK ){
2765       goto abort_due_to_error;
2766     }
2767 
2768     if( pOp->p2 && p->usesStmtJournal
2769      && (db->autoCommit==0 || db->activeVdbeCnt>1)
2770     ){
2771       assert( sqlite3BtreeIsInTrans(pBt) );
2772       if( p->iStatement==0 ){
2773         assert( db->nStatement>=0 && db->nSavepoint>=0 );
2774         db->nStatement++;
2775         p->iStatement = db->nSavepoint + db->nStatement;
2776       }
2777       rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2778 
2779       /* Store the current value of the database handles deferred constraint
2780       ** counter. If the statement transaction needs to be rolled back,
2781       ** the value of this counter needs to be restored too.  */
2782       p->nStmtDefCons = db->nDeferredCons;
2783     }
2784   }
2785   break;
2786 }
2787 
2788 /* Opcode: ReadCookie P1 P2 P3 * *
2789 **
2790 ** Read cookie number P3 from database P1 and write it into register P2.
2791 ** P3==1 is the schema version.  P3==2 is the database format.
2792 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
2793 ** the main database file and P1==1 is the database file used to store
2794 ** temporary tables.
2795 **
2796 ** There must be a read-lock on the database (either a transaction
2797 ** must be started or there must be an open cursor) before
2798 ** executing this instruction.
2799 */
2800 case OP_ReadCookie: {               /* out2-prerelease */
2801   int iMeta;
2802   int iDb;
2803   int iCookie;
2804 
2805   iDb = pOp->p1;
2806   iCookie = pOp->p3;
2807   assert( pOp->p3<SQLITE_N_BTREE_META );
2808   assert( iDb>=0 && iDb<db->nDb );
2809   assert( db->aDb[iDb].pBt!=0 );
2810   assert( (p->btreeMask & (1<<iDb))!=0 );
2811 
2812   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
2813   pOut->u.i = iMeta;
2814   break;
2815 }
2816 
2817 /* Opcode: SetCookie P1 P2 P3 * *
2818 **
2819 ** Write the content of register P3 (interpreted as an integer)
2820 ** into cookie number P2 of database P1.  P2==1 is the schema version.
2821 ** P2==2 is the database format. P2==3 is the recommended pager cache
2822 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
2823 ** database file used to store temporary tables.
2824 **
2825 ** A transaction must be started before executing this opcode.
2826 */
2827 case OP_SetCookie: {       /* in3 */
2828   Db *pDb;
2829   assert( pOp->p2<SQLITE_N_BTREE_META );
2830   assert( pOp->p1>=0 && pOp->p1<db->nDb );
2831   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2832   pDb = &db->aDb[pOp->p1];
2833   assert( pDb->pBt!=0 );
2834   pIn3 = &aMem[pOp->p3];
2835   sqlite3VdbeMemIntegerify(pIn3);
2836   /* See note about index shifting on OP_ReadCookie */
2837   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2838   if( pOp->p2==BTREE_SCHEMA_VERSION ){
2839     /* When the schema cookie changes, record the new cookie internally */
2840     pDb->pSchema->schema_cookie = (int)pIn3->u.i;
2841     db->flags |= SQLITE_InternChanges;
2842   }else if( pOp->p2==BTREE_FILE_FORMAT ){
2843     /* Record changes in the file format */
2844     pDb->pSchema->file_format = (u8)pIn3->u.i;
2845   }
2846   if( pOp->p1==1 ){
2847     /* Invalidate all prepared statements whenever the TEMP database
2848     ** schema is changed.  Ticket #1644 */
2849     sqlite3ExpirePreparedStatements(db);
2850     p->expired = 0;
2851   }
2852   break;
2853 }
2854 
2855 /* Opcode: VerifyCookie P1 P2 *
2856 **
2857 ** Check the value of global database parameter number 0 (the
2858 ** schema version) and make sure it is equal to P2.
2859 ** P1 is the database number which is 0 for the main database file
2860 ** and 1 for the file holding temporary tables and some higher number
2861 ** for auxiliary databases.
2862 **
2863 ** The cookie changes its value whenever the database schema changes.
2864 ** This operation is used to detect when that the cookie has changed
2865 ** and that the current process needs to reread the schema.
2866 **
2867 ** Either a transaction needs to have been started or an OP_Open needs
2868 ** to be executed (to establish a read lock) before this opcode is
2869 ** invoked.
2870 */
2871 case OP_VerifyCookie: {
2872   int iMeta;
2873   Btree *pBt;
2874   assert( pOp->p1>=0 && pOp->p1<db->nDb );
2875   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2876   pBt = db->aDb[pOp->p1].pBt;
2877   if( pBt ){
2878     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
2879   }else{
2880     iMeta = 0;
2881   }
2882   if( iMeta!=pOp->p2 ){
2883     sqlite3DbFree(db, p->zErrMsg);
2884     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
2885     /* If the schema-cookie from the database file matches the cookie
2886     ** stored with the in-memory representation of the schema, do
2887     ** not reload the schema from the database file.
2888     **
2889     ** If virtual-tables are in use, this is not just an optimization.
2890     ** Often, v-tables store their data in other SQLite tables, which
2891     ** are queried from within xNext() and other v-table methods using
2892     ** prepared queries. If such a query is out-of-date, we do not want to
2893     ** discard the database schema, as the user code implementing the
2894     ** v-table would have to be ready for the sqlite3_vtab structure itself
2895     ** to be invalidated whenever sqlite3_step() is called from within
2896     ** a v-table method.
2897     */
2898     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2899       sqlite3ResetInternalSchema(db, pOp->p1);
2900     }
2901 
2902     sqlite3ExpirePreparedStatements(db);
2903     rc = SQLITE_SCHEMA;
2904   }
2905   break;
2906 }
2907 
2908 /* Opcode: OpenRead P1 P2 P3 P4 P5
2909 **
2910 ** Open a read-only cursor for the database table whose root page is
2911 ** P2 in a database file.  The database file is determined by P3.
2912 ** P3==0 means the main database, P3==1 means the database used for
2913 ** temporary tables, and P3>1 means used the corresponding attached
2914 ** database.  Give the new cursor an identifier of P1.  The P1
2915 ** values need not be contiguous but all P1 values should be small integers.
2916 ** It is an error for P1 to be negative.
2917 **
2918 ** If P5!=0 then use the content of register P2 as the root page, not
2919 ** the value of P2 itself.
2920 **
2921 ** There will be a read lock on the database whenever there is an
2922 ** open cursor.  If the database was unlocked prior to this instruction
2923 ** then a read lock is acquired as part of this instruction.  A read
2924 ** lock allows other processes to read the database but prohibits
2925 ** any other process from modifying the database.  The read lock is
2926 ** released when all cursors are closed.  If this instruction attempts
2927 ** to get a read lock but fails, the script terminates with an
2928 ** SQLITE_BUSY error code.
2929 **
2930 ** The P4 value may be either an integer (P4_INT32) or a pointer to
2931 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2932 ** structure, then said structure defines the content and collating
2933 ** sequence of the index being opened. Otherwise, if P4 is an integer
2934 ** value, it is set to the number of columns in the table.
2935 **
2936 ** See also OpenWrite.
2937 */
2938 /* Opcode: OpenWrite P1 P2 P3 P4 P5
2939 **
2940 ** Open a read/write cursor named P1 on the table or index whose root
2941 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
2942 ** root page.
2943 **
2944 ** The P4 value may be either an integer (P4_INT32) or a pointer to
2945 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2946 ** structure, then said structure defines the content and collating
2947 ** sequence of the index being opened. Otherwise, if P4 is an integer
2948 ** value, it is set to the number of columns in the table, or to the
2949 ** largest index of any column of the table that is actually used.
2950 **
2951 ** This instruction works just like OpenRead except that it opens the cursor
2952 ** in read/write mode.  For a given table, there can be one or more read-only
2953 ** cursors or a single read/write cursor but not both.
2954 **
2955 ** See also OpenRead.
2956 */
2957 case OP_OpenRead:
2958 case OP_OpenWrite: {
2959   int nField;
2960   KeyInfo *pKeyInfo;
2961   int p2;
2962   int iDb;
2963   int wrFlag;
2964   Btree *pX;
2965   VdbeCursor *pCur;
2966   Db *pDb;
2967 
2968   if( p->expired ){
2969     rc = SQLITE_ABORT;
2970     break;
2971   }
2972 
2973   nField = 0;
2974   pKeyInfo = 0;
2975   p2 = pOp->p2;
2976   iDb = pOp->p3;
2977   assert( iDb>=0 && iDb<db->nDb );
2978   assert( (p->btreeMask & (1<<iDb))!=0 );
2979   pDb = &db->aDb[iDb];
2980   pX = pDb->pBt;
2981   assert( pX!=0 );
2982   if( pOp->opcode==OP_OpenWrite ){
2983     wrFlag = 1;
2984     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
2985       p->minWriteFileFormat = pDb->pSchema->file_format;
2986     }
2987   }else{
2988     wrFlag = 0;
2989   }
2990   if( pOp->p5 ){
2991     assert( p2>0 );
2992     assert( p2<=p->nMem );
2993     pIn2 = &aMem[p2];
2994     sqlite3VdbeMemIntegerify(pIn2);
2995     p2 = (int)pIn2->u.i;
2996     /* The p2 value always comes from a prior OP_CreateTable opcode and
2997     ** that opcode will always set the p2 value to 2 or more or else fail.
2998     ** If there were a failure, the prepared statement would have halted
2999     ** before reaching this instruction. */
3000     if( NEVER(p2<2) ) {
3001       rc = SQLITE_CORRUPT_BKPT;
3002       goto abort_due_to_error;
3003     }
3004   }
3005   if( pOp->p4type==P4_KEYINFO ){
3006     pKeyInfo = pOp->p4.pKeyInfo;
3007     pKeyInfo->enc = ENC(p->db);
3008     nField = pKeyInfo->nField+1;
3009   }else if( pOp->p4type==P4_INT32 ){
3010     nField = pOp->p4.i;
3011   }
3012   assert( pOp->p1>=0 );
3013   pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3014   if( pCur==0 ) goto no_mem;
3015   pCur->nullRow = 1;
3016   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3017   pCur->pKeyInfo = pKeyInfo;
3018 
3019   /* Since it performs no memory allocation or IO, the only values that
3020   ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
3021   ** SQLITE_EMPTY is only returned when attempting to open the table
3022   ** rooted at page 1 of a zero-byte database.  */
3023   assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
3024   if( rc==SQLITE_EMPTY ){
3025     pCur->pCursor = 0;
3026     rc = SQLITE_OK;
3027   }
3028 
3029   /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3030   ** SQLite used to check if the root-page flags were sane at this point
3031   ** and report database corruption if they were not, but this check has
3032   ** since moved into the btree layer.  */
3033   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3034   pCur->isIndex = !pCur->isTable;
3035   break;
3036 }
3037 
3038 /* Opcode: OpenEphemeral P1 P2 * P4 *
3039 **
3040 ** Open a new cursor P1 to a transient table.
3041 ** The cursor is always opened read/write even if
3042 ** the main database is read-only.  The ephemeral
3043 ** table is deleted automatically when the cursor is closed.
3044 **
3045 ** P2 is the number of columns in the ephemeral table.
3046 ** The cursor points to a BTree table if P4==0 and to a BTree index
3047 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3048 ** that defines the format of keys in the index.
3049 **
3050 ** This opcode was once called OpenTemp.  But that created
3051 ** confusion because the term "temp table", might refer either
3052 ** to a TEMP table at the SQL level, or to a table opened by
3053 ** this opcode.  Then this opcode was call OpenVirtual.  But
3054 ** that created confusion with the whole virtual-table idea.
3055 */
3056 /* Opcode: OpenAutoindex P1 P2 * P4 *
3057 **
3058 ** This opcode works the same as OP_OpenEphemeral.  It has a
3059 ** different name to distinguish its use.  Tables created using
3060 ** by this opcode will be used for automatically created transient
3061 ** indices in joins.
3062 */
3063 case OP_OpenAutoindex:
3064 case OP_OpenEphemeral: {
3065   VdbeCursor *pCx;
3066   static const int openFlags =
3067       SQLITE_OPEN_READWRITE |
3068       SQLITE_OPEN_CREATE |
3069       SQLITE_OPEN_EXCLUSIVE |
3070       SQLITE_OPEN_DELETEONCLOSE |
3071       SQLITE_OPEN_TRANSIENT_DB;
3072 
3073   assert( pOp->p1>=0 );
3074   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3075   if( pCx==0 ) goto no_mem;
3076   pCx->nullRow = 1;
3077   rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
3078                            &pCx->pBt);
3079   if( rc==SQLITE_OK ){
3080     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3081   }
3082   if( rc==SQLITE_OK ){
3083     /* If a transient index is required, create it by calling
3084     ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
3085     ** opening it. If a transient table is required, just use the
3086     ** automatically created table with root-page 1 (an INTKEY table).
3087     */
3088     if( pOp->p4.pKeyInfo ){
3089       int pgno;
3090       assert( pOp->p4type==P4_KEYINFO );
3091       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
3092       if( rc==SQLITE_OK ){
3093         assert( pgno==MASTER_ROOT+1 );
3094         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
3095                                 (KeyInfo*)pOp->p4.z, pCx->pCursor);
3096         pCx->pKeyInfo = pOp->p4.pKeyInfo;
3097         pCx->pKeyInfo->enc = ENC(p->db);
3098       }
3099       pCx->isTable = 0;
3100     }else{
3101       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3102       pCx->isTable = 1;
3103     }
3104   }
3105   pCx->isIndex = !pCx->isTable;
3106   break;
3107 }
3108 
3109 /* Opcode: OpenPseudo P1 P2 P3 * *
3110 **
3111 ** Open a new cursor that points to a fake table that contains a single
3112 ** row of data.  The content of that one row in the content of memory
3113 ** register P2.  In other words, cursor P1 becomes an alias for the
3114 ** MEM_Blob content contained in register P2.
3115 **
3116 ** A pseudo-table created by this opcode is used to hold a single
3117 ** row output from the sorter so that the row can be decomposed into
3118 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3119 ** is the only cursor opcode that works with a pseudo-table.
3120 **
3121 ** P3 is the number of fields in the records that will be stored by
3122 ** the pseudo-table.
3123 */
3124 case OP_OpenPseudo: {
3125   VdbeCursor *pCx;
3126 
3127   assert( pOp->p1>=0 );
3128   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3129   if( pCx==0 ) goto no_mem;
3130   pCx->nullRow = 1;
3131   pCx->pseudoTableReg = pOp->p2;
3132   pCx->isTable = 1;
3133   pCx->isIndex = 0;
3134   break;
3135 }
3136 
3137 /* Opcode: Close P1 * * * *
3138 **
3139 ** Close a cursor previously opened as P1.  If P1 is not
3140 ** currently open, this instruction is a no-op.
3141 */
3142 case OP_Close: {
3143   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3144   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3145   p->apCsr[pOp->p1] = 0;
3146   break;
3147 }
3148 
3149 /* Opcode: SeekGe P1 P2 P3 P4 *
3150 **
3151 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3152 ** use the value in register P3 as the key.  If cursor P1 refers
3153 ** to an SQL index, then P3 is the first in an array of P4 registers
3154 ** that are used as an unpacked index key.
3155 **
3156 ** Reposition cursor P1 so that  it points to the smallest entry that
3157 ** is greater than or equal to the key value. If there are no records
3158 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3159 **
3160 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3161 */
3162 /* Opcode: SeekGt P1 P2 P3 P4 *
3163 **
3164 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3165 ** use the value in register P3 as a key. If cursor P1 refers
3166 ** to an SQL index, then P3 is the first in an array of P4 registers
3167 ** that are used as an unpacked index key.
3168 **
3169 ** Reposition cursor P1 so that  it points to the smallest entry that
3170 ** is greater than the key value. If there are no records greater than
3171 ** the key and P2 is not zero, then jump to P2.
3172 **
3173 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3174 */
3175 /* Opcode: SeekLt P1 P2 P3 P4 *
3176 **
3177 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3178 ** use the value in register P3 as a key. If cursor P1 refers
3179 ** to an SQL index, then P3 is the first in an array of P4 registers
3180 ** that are used as an unpacked index key.
3181 **
3182 ** Reposition cursor P1 so that  it points to the largest entry that
3183 ** is less than the key value. If there are no records less than
3184 ** the key and P2 is not zero, then jump to P2.
3185 **
3186 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3187 */
3188 /* Opcode: SeekLe P1 P2 P3 P4 *
3189 **
3190 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3191 ** use the value in register P3 as a key. If cursor P1 refers
3192 ** to an SQL index, then P3 is the first in an array of P4 registers
3193 ** that are used as an unpacked index key.
3194 **
3195 ** Reposition cursor P1 so that it points to the largest entry that
3196 ** is less than or equal to the key value. If there are no records
3197 ** less than or equal to the key and P2 is not zero, then jump to P2.
3198 **
3199 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3200 */
3201 case OP_SeekLt:         /* jump, in3 */
3202 case OP_SeekLe:         /* jump, in3 */
3203 case OP_SeekGe:         /* jump, in3 */
3204 case OP_SeekGt: {       /* jump, in3 */
3205   int res;
3206   int oc;
3207   VdbeCursor *pC;
3208   UnpackedRecord r;
3209   int nField;
3210   i64 iKey;      /* The rowid we are to seek to */
3211 
3212   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3213   assert( pOp->p2!=0 );
3214   pC = p->apCsr[pOp->p1];
3215   assert( pC!=0 );
3216   assert( pC->pseudoTableReg==0 );
3217   assert( OP_SeekLe == OP_SeekLt+1 );
3218   assert( OP_SeekGe == OP_SeekLt+2 );
3219   assert( OP_SeekGt == OP_SeekLt+3 );
3220   if( pC->pCursor!=0 ){
3221     oc = pOp->opcode;
3222     pC->nullRow = 0;
3223     if( pC->isTable ){
3224       /* The input value in P3 might be of any type: integer, real, string,
3225       ** blob, or NULL.  But it needs to be an integer before we can do
3226       ** the seek, so covert it. */
3227       pIn3 = &aMem[pOp->p3];
3228       applyNumericAffinity(pIn3);
3229       iKey = sqlite3VdbeIntValue(pIn3);
3230       pC->rowidIsValid = 0;
3231 
3232       /* If the P3 value could not be converted into an integer without
3233       ** loss of information, then special processing is required... */
3234       if( (pIn3->flags & MEM_Int)==0 ){
3235         if( (pIn3->flags & MEM_Real)==0 ){
3236           /* If the P3 value cannot be converted into any kind of a number,
3237           ** then the seek is not possible, so jump to P2 */
3238           pc = pOp->p2 - 1;
3239           break;
3240         }
3241         /* If we reach this point, then the P3 value must be a floating
3242         ** point number. */
3243         assert( (pIn3->flags & MEM_Real)!=0 );
3244 
3245         if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
3246           /* The P3 value is too large in magnitude to be expressed as an
3247           ** integer. */
3248           res = 1;
3249           if( pIn3->r<0 ){
3250             if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
3251               rc = sqlite3BtreeFirst(pC->pCursor, &res);
3252               if( rc!=SQLITE_OK ) goto abort_due_to_error;
3253             }
3254           }else{
3255             if( oc<=OP_SeekLe ){  assert( oc==OP_SeekLt || oc==OP_SeekLe );
3256               rc = sqlite3BtreeLast(pC->pCursor, &res);
3257               if( rc!=SQLITE_OK ) goto abort_due_to_error;
3258             }
3259           }
3260           if( res ){
3261             pc = pOp->p2 - 1;
3262           }
3263           break;
3264         }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3265           /* Use the ceiling() function to convert real->int */
3266           if( pIn3->r > (double)iKey ) iKey++;
3267         }else{
3268           /* Use the floor() function to convert real->int */
3269           assert( oc==OP_SeekLe || oc==OP_SeekGt );
3270           if( pIn3->r < (double)iKey ) iKey--;
3271         }
3272       }
3273       rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3274       if( rc!=SQLITE_OK ){
3275         goto abort_due_to_error;
3276       }
3277       if( res==0 ){
3278         pC->rowidIsValid = 1;
3279         pC->lastRowid = iKey;
3280       }
3281     }else{
3282       nField = pOp->p4.i;
3283       assert( pOp->p4type==P4_INT32 );
3284       assert( nField>0 );
3285       r.pKeyInfo = pC->pKeyInfo;
3286       r.nField = (u16)nField;
3287 
3288       /* The next line of code computes as follows, only faster:
3289       **   if( oc==OP_SeekGt || oc==OP_SeekLe ){
3290       **     r.flags = UNPACKED_INCRKEY;
3291       **   }else{
3292       **     r.flags = 0;
3293       **   }
3294       */
3295       r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
3296       assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3297       assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3298       assert( oc!=OP_SeekGe || r.flags==0 );
3299       assert( oc!=OP_SeekLt || r.flags==0 );
3300 
3301       r.aMem = &aMem[pOp->p3];
3302       ExpandBlob(r.aMem);
3303       rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3304       if( rc!=SQLITE_OK ){
3305         goto abort_due_to_error;
3306       }
3307       pC->rowidIsValid = 0;
3308     }
3309     pC->deferredMoveto = 0;
3310     pC->cacheStatus = CACHE_STALE;
3311 #ifdef SQLITE_TEST
3312     sqlite3_search_count++;
3313 #endif
3314     if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
3315       if( res<0 || (res==0 && oc==OP_SeekGt) ){
3316         rc = sqlite3BtreeNext(pC->pCursor, &res);
3317         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3318         pC->rowidIsValid = 0;
3319       }else{
3320         res = 0;
3321       }
3322     }else{
3323       assert( oc==OP_SeekLt || oc==OP_SeekLe );
3324       if( res>0 || (res==0 && oc==OP_SeekLt) ){
3325         rc = sqlite3BtreePrevious(pC->pCursor, &res);
3326         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3327         pC->rowidIsValid = 0;
3328       }else{
3329         /* res might be negative because the table is empty.  Check to
3330         ** see if this is the case.
3331         */
3332         res = sqlite3BtreeEof(pC->pCursor);
3333       }
3334     }
3335     assert( pOp->p2>0 );
3336     if( res ){
3337       pc = pOp->p2 - 1;
3338     }
3339   }else{
3340     /* This happens when attempting to open the sqlite3_master table
3341     ** for read access returns SQLITE_EMPTY. In this case always
3342     ** take the jump (since there are no records in the table).
3343     */
3344     pc = pOp->p2 - 1;
3345   }
3346   break;
3347 }
3348 
3349 /* Opcode: Seek P1 P2 * * *
3350 **
3351 ** P1 is an open table cursor and P2 is a rowid integer.  Arrange
3352 ** for P1 to move so that it points to the rowid given by P2.
3353 **
3354 ** This is actually a deferred seek.  Nothing actually happens until
3355 ** the cursor is used to read a record.  That way, if no reads
3356 ** occur, no unnecessary I/O happens.
3357 */
3358 case OP_Seek: {    /* in2 */
3359   VdbeCursor *pC;
3360 
3361   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3362   pC = p->apCsr[pOp->p1];
3363   assert( pC!=0 );
3364   if( ALWAYS(pC->pCursor!=0) ){
3365     assert( pC->isTable );
3366     pC->nullRow = 0;
3367     pIn2 = &aMem[pOp->p2];
3368     pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3369     pC->rowidIsValid = 0;
3370     pC->deferredMoveto = 1;
3371   }
3372   break;
3373 }
3374 
3375 
3376 /* Opcode: Found P1 P2 P3 P4 *
3377 **
3378 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3379 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3380 ** record.
3381 **
3382 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3383 ** is a prefix of any entry in P1 then a jump is made to P2 and
3384 ** P1 is left pointing at the matching entry.
3385 */
3386 /* Opcode: NotFound P1 P2 P3 P4 *
3387 **
3388 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3389 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3390 ** record.
3391 **
3392 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3393 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3394 ** does contain an entry whose prefix matches the P3/P4 record then control
3395 ** falls through to the next instruction and P1 is left pointing at the
3396 ** matching entry.
3397 **
3398 ** See also: Found, NotExists, IsUnique
3399 */
3400 case OP_NotFound:       /* jump, in3 */
3401 case OP_Found: {        /* jump, in3 */
3402   int alreadyExists;
3403   VdbeCursor *pC;
3404   int res;
3405   UnpackedRecord *pIdxKey;
3406   UnpackedRecord r;
3407   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3408 
3409 #ifdef SQLITE_TEST
3410   sqlite3_found_count++;
3411 #endif
3412 
3413   alreadyExists = 0;
3414   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3415   assert( pOp->p4type==P4_INT32 );
3416   pC = p->apCsr[pOp->p1];
3417   assert( pC!=0 );
3418   pIn3 = &aMem[pOp->p3];
3419   if( ALWAYS(pC->pCursor!=0) ){
3420 
3421     assert( pC->isTable==0 );
3422     if( pOp->p4.i>0 ){
3423       r.pKeyInfo = pC->pKeyInfo;
3424       r.nField = (u16)pOp->p4.i;
3425       r.aMem = pIn3;
3426       r.flags = UNPACKED_PREFIX_MATCH;
3427       pIdxKey = &r;
3428     }else{
3429       assert( pIn3->flags & MEM_Blob );
3430       ExpandBlob(pIn3);
3431       pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
3432                                         aTempRec, sizeof(aTempRec));
3433       if( pIdxKey==0 ){
3434         goto no_mem;
3435       }
3436       pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
3437     }
3438     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3439     if( pOp->p4.i==0 ){
3440       sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
3441     }
3442     if( rc!=SQLITE_OK ){
3443       break;
3444     }
3445     alreadyExists = (res==0);
3446     pC->deferredMoveto = 0;
3447     pC->cacheStatus = CACHE_STALE;
3448   }
3449   if( pOp->opcode==OP_Found ){
3450     if( alreadyExists ) pc = pOp->p2 - 1;
3451   }else{
3452     if( !alreadyExists ) pc = pOp->p2 - 1;
3453   }
3454   break;
3455 }
3456 
3457 /* Opcode: IsUnique P1 P2 P3 P4 *
3458 **
3459 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3460 ** no data and where the key are records generated by OP_MakeRecord with
3461 ** the list field being the integer ROWID of the entry that the index
3462 ** entry refers to.
3463 **
3464 ** The P3 register contains an integer record number. Call this record
3465 ** number R. Register P4 is the first in a set of N contiguous registers
3466 ** that make up an unpacked index key that can be used with cursor P1.
3467 ** The value of N can be inferred from the cursor. N includes the rowid
3468 ** value appended to the end of the index record. This rowid value may
3469 ** or may not be the same as R.
3470 **
3471 ** If any of the N registers beginning with register P4 contains a NULL
3472 ** value, jump immediately to P2.
3473 **
3474 ** Otherwise, this instruction checks if cursor P1 contains an entry
3475 ** where the first (N-1) fields match but the rowid value at the end
3476 ** of the index entry is not R. If there is no such entry, control jumps
3477 ** to instruction P2. Otherwise, the rowid of the conflicting index
3478 ** entry is copied to register P3 and control falls through to the next
3479 ** instruction.
3480 **
3481 ** See also: NotFound, NotExists, Found
3482 */
3483 case OP_IsUnique: {        /* jump, in3 */
3484   u16 ii;
3485   VdbeCursor *pCx;
3486   BtCursor *pCrsr;
3487   u16 nField;
3488   Mem *aMx;
3489   UnpackedRecord r;                  /* B-Tree index search key */
3490   i64 R;                             /* Rowid stored in register P3 */
3491 
3492   pIn3 = &aMem[pOp->p3];
3493   aMx = &aMem[pOp->p4.i];
3494   /* Assert that the values of parameters P1 and P4 are in range. */
3495   assert( pOp->p4type==P4_INT32 );
3496   assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
3497   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3498 
3499   /* Find the index cursor. */
3500   pCx = p->apCsr[pOp->p1];
3501   assert( pCx->deferredMoveto==0 );
3502   pCx->seekResult = 0;
3503   pCx->cacheStatus = CACHE_STALE;
3504   pCrsr = pCx->pCursor;
3505 
3506   /* If any of the values are NULL, take the jump. */
3507   nField = pCx->pKeyInfo->nField;
3508   for(ii=0; ii<nField; ii++){
3509     if( aMx[ii].flags & MEM_Null ){
3510       pc = pOp->p2 - 1;
3511       pCrsr = 0;
3512       break;
3513     }
3514   }
3515   assert( (aMx[nField].flags & MEM_Null)==0 );
3516 
3517   if( pCrsr!=0 ){
3518     /* Populate the index search key. */
3519     r.pKeyInfo = pCx->pKeyInfo;
3520     r.nField = nField + 1;
3521     r.flags = UNPACKED_PREFIX_SEARCH;
3522     r.aMem = aMx;
3523 
3524     /* Extract the value of R from register P3. */
3525     sqlite3VdbeMemIntegerify(pIn3);
3526     R = pIn3->u.i;
3527 
3528     /* Search the B-Tree index. If no conflicting record is found, jump
3529     ** to P2. Otherwise, copy the rowid of the conflicting record to
3530     ** register P3 and fall through to the next instruction.  */
3531     rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3532     if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
3533       pc = pOp->p2 - 1;
3534     }else{
3535       pIn3->u.i = r.rowid;
3536     }
3537   }
3538   break;
3539 }
3540 
3541 /* Opcode: NotExists P1 P2 P3 * *
3542 **
3543 ** Use the content of register P3 as a integer key.  If a record
3544 ** with that key does not exist in table of P1, then jump to P2.
3545 ** If the record does exist, then fall thru.  The cursor is left
3546 ** pointing to the record if it exists.
3547 **
3548 ** The difference between this operation and NotFound is that this
3549 ** operation assumes the key is an integer and that P1 is a table whereas
3550 ** NotFound assumes key is a blob constructed from MakeRecord and
3551 ** P1 is an index.
3552 **
3553 ** See also: Found, NotFound, IsUnique
3554 */
3555 case OP_NotExists: {        /* jump, in3 */
3556   VdbeCursor *pC;
3557   BtCursor *pCrsr;
3558   int res;
3559   u64 iKey;
3560 
3561   pIn3 = &aMem[pOp->p3];
3562   assert( pIn3->flags & MEM_Int );
3563   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3564   pC = p->apCsr[pOp->p1];
3565   assert( pC!=0 );
3566   assert( pC->isTable );
3567   assert( pC->pseudoTableReg==0 );
3568   pCrsr = pC->pCursor;
3569   if( pCrsr!=0 ){
3570     res = 0;
3571     iKey = pIn3->u.i;
3572     rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3573     pC->lastRowid = pIn3->u.i;
3574     pC->rowidIsValid = res==0 ?1:0;
3575     pC->nullRow = 0;
3576     pC->cacheStatus = CACHE_STALE;
3577     pC->deferredMoveto = 0;
3578     if( res!=0 ){
3579       pc = pOp->p2 - 1;
3580       assert( pC->rowidIsValid==0 );
3581     }
3582     pC->seekResult = res;
3583   }else{
3584     /* This happens when an attempt to open a read cursor on the
3585     ** sqlite_master table returns SQLITE_EMPTY.
3586     */
3587     pc = pOp->p2 - 1;
3588     assert( pC->rowidIsValid==0 );
3589     pC->seekResult = 0;
3590   }
3591   break;
3592 }
3593 
3594 /* Opcode: Sequence P1 P2 * * *
3595 **
3596 ** Find the next available sequence number for cursor P1.
3597 ** Write the sequence number into register P2.
3598 ** The sequence number on the cursor is incremented after this
3599 ** instruction.
3600 */
3601 case OP_Sequence: {           /* out2-prerelease */
3602   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3603   assert( p->apCsr[pOp->p1]!=0 );
3604   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3605   break;
3606 }
3607 
3608 
3609 /* Opcode: NewRowid P1 P2 P3 * *
3610 **
3611 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3612 ** The record number is not previously used as a key in the database
3613 ** table that cursor P1 points to.  The new record number is written
3614 ** written to register P2.
3615 **
3616 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3617 ** the largest previously generated record number. No new record numbers are
3618 ** allowed to be less than this value. When this value reaches its maximum,
3619 ** a SQLITE_FULL error is generated. The P3 register is updated with the '
3620 ** generated record number. This P3 mechanism is used to help implement the
3621 ** AUTOINCREMENT feature.
3622 */
3623 case OP_NewRowid: {           /* out2-prerelease */
3624   i64 v;                 /* The new rowid */
3625   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
3626   int res;               /* Result of an sqlite3BtreeLast() */
3627   int cnt;               /* Counter to limit the number of searches */
3628   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
3629   VdbeFrame *pFrame;     /* Root frame of VDBE */
3630 
3631   v = 0;
3632   res = 0;
3633   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3634   pC = p->apCsr[pOp->p1];
3635   assert( pC!=0 );
3636   if( NEVER(pC->pCursor==0) ){
3637     /* The zero initialization above is all that is needed */
3638   }else{
3639     /* The next rowid or record number (different terms for the same
3640     ** thing) is obtained in a two-step algorithm.
3641     **
3642     ** First we attempt to find the largest existing rowid and add one
3643     ** to that.  But if the largest existing rowid is already the maximum
3644     ** positive integer, we have to fall through to the second
3645     ** probabilistic algorithm
3646     **
3647     ** The second algorithm is to select a rowid at random and see if
3648     ** it already exists in the table.  If it does not exist, we have
3649     ** succeeded.  If the random rowid does exist, we select a new one
3650     ** and try again, up to 100 times.
3651     */
3652     assert( pC->isTable );
3653     cnt = 0;
3654 
3655 #ifdef SQLITE_32BIT_ROWID
3656 #   define MAX_ROWID 0x7fffffff
3657 #else
3658     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3659     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
3660     ** to provide the constant while making all compilers happy.
3661     */
3662 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3663 #endif
3664 
3665     if( !pC->useRandomRowid ){
3666       v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3667       if( v==0 ){
3668         rc = sqlite3BtreeLast(pC->pCursor, &res);
3669         if( rc!=SQLITE_OK ){
3670           goto abort_due_to_error;
3671         }
3672         if( res ){
3673           v = 1;   /* IMP: R-61914-48074 */
3674         }else{
3675           assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3676           rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3677           assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
3678           if( v==MAX_ROWID ){
3679             pC->useRandomRowid = 1;
3680           }else{
3681             v++;   /* IMP: R-29538-34987 */
3682           }
3683         }
3684       }
3685 
3686 #ifndef SQLITE_OMIT_AUTOINCREMENT
3687       if( pOp->p3 ){
3688         /* Assert that P3 is a valid memory cell. */
3689         assert( pOp->p3>0 );
3690         if( p->pFrame ){
3691           for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
3692           /* Assert that P3 is a valid memory cell. */
3693           assert( pOp->p3<=pFrame->nMem );
3694           pMem = &pFrame->aMem[pOp->p3];
3695         }else{
3696           /* Assert that P3 is a valid memory cell. */
3697           assert( pOp->p3<=p->nMem );
3698           pMem = &aMem[pOp->p3];
3699         }
3700 
3701         REGISTER_TRACE(pOp->p3, pMem);
3702         sqlite3VdbeMemIntegerify(pMem);
3703         assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
3704         if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3705           rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
3706           goto abort_due_to_error;
3707         }
3708         if( v<pMem->u.i+1 ){
3709           v = pMem->u.i + 1;
3710         }
3711         pMem->u.i = v;
3712       }
3713 #endif
3714 
3715       sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
3716     }
3717     if( pC->useRandomRowid ){
3718       /* IMPLEMENTATION-OF: R-48598-02938 If the largest ROWID is equal to the
3719       ** largest possible integer (9223372036854775807) then the database
3720       ** engine starts picking candidate ROWIDs at random until it finds one
3721       ** that is not previously used.
3722       */
3723       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
3724                              ** an AUTOINCREMENT table. */
3725       v = db->lastRowid;
3726       cnt = 0;
3727       do{
3728         if( cnt==0 && (v&0xffffff)==v ){
3729           v++;
3730         }else{
3731           sqlite3_randomness(sizeof(v), &v);
3732           if( cnt<5 ) v &= 0xffffff;
3733         }
3734         rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 0, &res);
3735         cnt++;
3736       }while( cnt<100 && rc==SQLITE_OK && res==0 );
3737       if( rc==SQLITE_OK && res==0 ){
3738         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
3739         goto abort_due_to_error;
3740       }
3741     }
3742     pC->rowidIsValid = 0;
3743     pC->deferredMoveto = 0;
3744     pC->cacheStatus = CACHE_STALE;
3745   }
3746   pOut->u.i = v;
3747   break;
3748 }
3749 
3750 /* Opcode: Insert P1 P2 P3 P4 P5
3751 **
3752 ** Write an entry into the table of cursor P1.  A new entry is
3753 ** created if it doesn't already exist or the data for an existing
3754 ** entry is overwritten.  The data is the value MEM_Blob stored in register
3755 ** number P2. The key is stored in register P3. The key must
3756 ** be a MEM_Int.
3757 **
3758 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3759 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
3760 ** then rowid is stored for subsequent return by the
3761 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
3762 **
3763 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3764 ** the last seek operation (OP_NotExists) was a success, then this
3765 ** operation will not attempt to find the appropriate row before doing
3766 ** the insert but will instead overwrite the row that the cursor is
3767 ** currently pointing to.  Presumably, the prior OP_NotExists opcode
3768 ** has already positioned the cursor correctly.  This is an optimization
3769 ** that boosts performance by avoiding redundant seeks.
3770 **
3771 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3772 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
3773 ** is part of an INSERT operation.  The difference is only important to
3774 ** the update hook.
3775 **
3776 ** Parameter P4 may point to a string containing the table-name, or
3777 ** may be NULL. If it is not NULL, then the update-hook
3778 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3779 **
3780 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3781 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
3782 ** and register P2 becomes ephemeral.  If the cursor is changed, the
3783 ** value of register P2 will then change.  Make sure this does not
3784 ** cause any problems.)
3785 **
3786 ** This instruction only works on tables.  The equivalent instruction
3787 ** for indices is OP_IdxInsert.
3788 */
3789 /* Opcode: InsertInt P1 P2 P3 P4 P5
3790 **
3791 ** This works exactly like OP_Insert except that the key is the
3792 ** integer value P3, not the value of the integer stored in register P3.
3793 */
3794 case OP_Insert:
3795 case OP_InsertInt: {
3796   Mem *pData;       /* MEM cell holding data for the record to be inserted */
3797   Mem *pKey;        /* MEM cell holding key  for the record */
3798   i64 iKey;         /* The integer ROWID or key for the record to be inserted */
3799   VdbeCursor *pC;   /* Cursor to table into which insert is written */
3800   int nZero;        /* Number of zero-bytes to append */
3801   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
3802   const char *zDb;  /* database name - used by the update hook */
3803   const char *zTbl; /* Table name - used by the opdate hook */
3804   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
3805 
3806   pData = &aMem[pOp->p2];
3807   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3808   pC = p->apCsr[pOp->p1];
3809   assert( pC!=0 );
3810   assert( pC->pCursor!=0 );
3811   assert( pC->pseudoTableReg==0 );
3812   assert( pC->isTable );
3813   REGISTER_TRACE(pOp->p2, pData);
3814 
3815   if( pOp->opcode==OP_Insert ){
3816     pKey = &aMem[pOp->p3];
3817     assert( pKey->flags & MEM_Int );
3818     REGISTER_TRACE(pOp->p3, pKey);
3819     iKey = pKey->u.i;
3820   }else{
3821     assert( pOp->opcode==OP_InsertInt );
3822     iKey = pOp->p3;
3823   }
3824 
3825   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
3826   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey;
3827   if( pData->flags & MEM_Null ){
3828     pData->z = 0;
3829     pData->n = 0;
3830   }else{
3831     assert( pData->flags & (MEM_Blob|MEM_Str) );
3832   }
3833   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
3834   if( pData->flags & MEM_Zero ){
3835     nZero = pData->u.nZero;
3836   }else{
3837     nZero = 0;
3838   }
3839   sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3840   rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3841                           pData->z, pData->n, nZero,
3842                           pOp->p5 & OPFLAG_APPEND, seekResult
3843   );
3844   pC->rowidIsValid = 0;
3845   pC->deferredMoveto = 0;
3846   pC->cacheStatus = CACHE_STALE;
3847 
3848   /* Invoke the update-hook if required. */
3849   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3850     zDb = db->aDb[pC->iDb].zName;
3851     zTbl = pOp->p4.z;
3852     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
3853     assert( pC->isTable );
3854     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3855     assert( pC->iDb>=0 );
3856   }
3857   break;
3858 }
3859 
3860 /* Opcode: Delete P1 P2 * P4 *
3861 **
3862 ** Delete the record at which the P1 cursor is currently pointing.
3863 **
3864 ** The cursor will be left pointing at either the next or the previous
3865 ** record in the table. If it is left pointing at the next record, then
3866 ** the next Next instruction will be a no-op.  Hence it is OK to delete
3867 ** a record from within an Next loop.
3868 **
3869 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
3870 ** incremented (otherwise not).
3871 **
3872 ** P1 must not be pseudo-table.  It has to be a real table with
3873 ** multiple rows.
3874 **
3875 ** If P4 is not NULL, then it is the name of the table that P1 is
3876 ** pointing to.  The update hook will be invoked, if it exists.
3877 ** If P4 is not NULL then the P1 cursor must have been positioned
3878 ** using OP_NotFound prior to invoking this opcode.
3879 */
3880 case OP_Delete: {
3881   i64 iKey;
3882   VdbeCursor *pC;
3883 
3884   iKey = 0;
3885   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3886   pC = p->apCsr[pOp->p1];
3887   assert( pC!=0 );
3888   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
3889 
3890   /* If the update-hook will be invoked, set iKey to the rowid of the
3891   ** row being deleted.
3892   */
3893   if( db->xUpdateCallback && pOp->p4.z ){
3894     assert( pC->isTable );
3895     assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
3896     iKey = pC->lastRowid;
3897   }
3898 
3899   /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
3900   ** OP_Column on the same table without any intervening operations that
3901   ** might move or invalidate the cursor.  Hence cursor pC is always pointing
3902   ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
3903   ** below is always a no-op and cannot fail.  We will run it anyhow, though,
3904   ** to guard against future changes to the code generator.
3905   **/
3906   assert( pC->deferredMoveto==0 );
3907   rc = sqlite3VdbeCursorMoveto(pC);
3908   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3909 
3910   sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3911   rc = sqlite3BtreeDelete(pC->pCursor);
3912   pC->cacheStatus = CACHE_STALE;
3913 
3914   /* Invoke the update-hook if required. */
3915   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3916     const char *zDb = db->aDb[pC->iDb].zName;
3917     const char *zTbl = pOp->p4.z;
3918     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
3919     assert( pC->iDb>=0 );
3920   }
3921   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
3922   break;
3923 }
3924 /* Opcode: ResetCount * * * * *
3925 **
3926 ** The value of the change counter is copied to the database handle
3927 ** change counter (returned by subsequent calls to sqlite3_changes()).
3928 ** Then the VMs internal change counter resets to 0.
3929 ** This is used by trigger programs.
3930 */
3931 case OP_ResetCount: {
3932   sqlite3VdbeSetChanges(db, p->nChange);
3933   p->nChange = 0;
3934   break;
3935 }
3936 
3937 /* Opcode: RowData P1 P2 * * *
3938 **
3939 ** Write into register P2 the complete row data for cursor P1.
3940 ** There is no interpretation of the data.
3941 ** It is just copied onto the P2 register exactly as
3942 ** it is found in the database file.
3943 **
3944 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
3945 ** of a real table, not a pseudo-table.
3946 */
3947 /* Opcode: RowKey P1 P2 * * *
3948 **
3949 ** Write into register P2 the complete row key for cursor P1.
3950 ** There is no interpretation of the data.
3951 ** The key is copied onto the P3 register exactly as
3952 ** it is found in the database file.
3953 **
3954 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
3955 ** of a real table, not a pseudo-table.
3956 */
3957 case OP_RowKey:
3958 case OP_RowData: {
3959   VdbeCursor *pC;
3960   BtCursor *pCrsr;
3961   u32 n;
3962   i64 n64;
3963 
3964   pOut = &aMem[pOp->p2];
3965 
3966   /* Note that RowKey and RowData are really exactly the same instruction */
3967   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3968   pC = p->apCsr[pOp->p1];
3969   assert( pC->isTable || pOp->opcode==OP_RowKey );
3970   assert( pC->isIndex || pOp->opcode==OP_RowData );
3971   assert( pC!=0 );
3972   assert( pC->nullRow==0 );
3973   assert( pC->pseudoTableReg==0 );
3974   assert( pC->pCursor!=0 );
3975   pCrsr = pC->pCursor;
3976   assert( sqlite3BtreeCursorIsValid(pCrsr) );
3977 
3978   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
3979   ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
3980   ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
3981   ** a no-op and can never fail.  But we leave it in place as a safety.
3982   */
3983   assert( pC->deferredMoveto==0 );
3984   rc = sqlite3VdbeCursorMoveto(pC);
3985   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3986 
3987   if( pC->isIndex ){
3988     assert( !pC->isTable );
3989     rc = sqlite3BtreeKeySize(pCrsr, &n64);
3990     assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
3991     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3992       goto too_big;
3993     }
3994     n = (u32)n64;
3995   }else{
3996     rc = sqlite3BtreeDataSize(pCrsr, &n);
3997     assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
3998     if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
3999       goto too_big;
4000     }
4001   }
4002   if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4003     goto no_mem;
4004   }
4005   pOut->n = n;
4006   MemSetTypeFlag(pOut, MEM_Blob);
4007   if( pC->isIndex ){
4008     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4009   }else{
4010     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4011   }
4012   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4013   UPDATE_MAX_BLOBSIZE(pOut);
4014   break;
4015 }
4016 
4017 /* Opcode: Rowid P1 P2 * * *
4018 **
4019 ** Store in register P2 an integer which is the key of the table entry that
4020 ** P1 is currently point to.
4021 **
4022 ** P1 can be either an ordinary table or a virtual table.  There used to
4023 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4024 ** one opcode now works for both table types.
4025 */
4026 case OP_Rowid: {                 /* out2-prerelease */
4027   VdbeCursor *pC;
4028   i64 v;
4029   sqlite3_vtab *pVtab;
4030   const sqlite3_module *pModule;
4031 
4032   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4033   pC = p->apCsr[pOp->p1];
4034   assert( pC!=0 );
4035   assert( pC->pseudoTableReg==0 );
4036   if( pC->nullRow ){
4037     pOut->flags = MEM_Null;
4038     break;
4039   }else if( pC->deferredMoveto ){
4040     v = pC->movetoTarget;
4041 #ifndef SQLITE_OMIT_VIRTUALTABLE
4042   }else if( pC->pVtabCursor ){
4043     pVtab = pC->pVtabCursor->pVtab;
4044     pModule = pVtab->pModule;
4045     assert( pModule->xRowid );
4046     rc = pModule->xRowid(pC->pVtabCursor, &v);
4047     importVtabErrMsg(p, pVtab);
4048 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4049   }else{
4050     assert( pC->pCursor!=0 );
4051     rc = sqlite3VdbeCursorMoveto(pC);
4052     if( rc ) goto abort_due_to_error;
4053     if( pC->rowidIsValid ){
4054       v = pC->lastRowid;
4055     }else{
4056       rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4057       assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
4058     }
4059   }
4060   pOut->u.i = v;
4061   break;
4062 }
4063 
4064 /* Opcode: NullRow P1 * * * *
4065 **
4066 ** Move the cursor P1 to a null row.  Any OP_Column operations
4067 ** that occur while the cursor is on the null row will always
4068 ** write a NULL.
4069 */
4070 case OP_NullRow: {
4071   VdbeCursor *pC;
4072 
4073   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4074   pC = p->apCsr[pOp->p1];
4075   assert( pC!=0 );
4076   pC->nullRow = 1;
4077   pC->rowidIsValid = 0;
4078   if( pC->pCursor ){
4079     sqlite3BtreeClearCursor(pC->pCursor);
4080   }
4081   break;
4082 }
4083 
4084 /* Opcode: Last P1 P2 * * *
4085 **
4086 ** The next use of the Rowid or Column or Next instruction for P1
4087 ** will refer to the last entry in the database table or index.
4088 ** If the table or index is empty and P2>0, then jump immediately to P2.
4089 ** If P2 is 0 or if the table or index is not empty, fall through
4090 ** to the following instruction.
4091 */
4092 case OP_Last: {        /* jump */
4093   VdbeCursor *pC;
4094   BtCursor *pCrsr;
4095   int res;
4096 
4097   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4098   pC = p->apCsr[pOp->p1];
4099   assert( pC!=0 );
4100   pCrsr = pC->pCursor;
4101   if( pCrsr==0 ){
4102     res = 1;
4103   }else{
4104     rc = sqlite3BtreeLast(pCrsr, &res);
4105   }
4106   pC->nullRow = (u8)res;
4107   pC->deferredMoveto = 0;
4108   pC->rowidIsValid = 0;
4109   pC->cacheStatus = CACHE_STALE;
4110   if( pOp->p2>0 && res ){
4111     pc = pOp->p2 - 1;
4112   }
4113   break;
4114 }
4115 
4116 
4117 /* Opcode: Sort P1 P2 * * *
4118 **
4119 ** This opcode does exactly the same thing as OP_Rewind except that
4120 ** it increments an undocumented global variable used for testing.
4121 **
4122 ** Sorting is accomplished by writing records into a sorting index,
4123 ** then rewinding that index and playing it back from beginning to
4124 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4125 ** rewinding so that the global variable will be incremented and
4126 ** regression tests can determine whether or not the optimizer is
4127 ** correctly optimizing out sorts.
4128 */
4129 case OP_Sort: {        /* jump */
4130 #ifdef SQLITE_TEST
4131   sqlite3_sort_count++;
4132   sqlite3_search_count--;
4133 #endif
4134   p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
4135   /* Fall through into OP_Rewind */
4136 }
4137 /* Opcode: Rewind P1 P2 * * *
4138 **
4139 ** The next use of the Rowid or Column or Next instruction for P1
4140 ** will refer to the first entry in the database table or index.
4141 ** If the table or index is empty and P2>0, then jump immediately to P2.
4142 ** If P2 is 0 or if the table or index is not empty, fall through
4143 ** to the following instruction.
4144 */
4145 case OP_Rewind: {        /* jump */
4146   VdbeCursor *pC;
4147   BtCursor *pCrsr;
4148   int res;
4149 
4150   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4151   pC = p->apCsr[pOp->p1];
4152   assert( pC!=0 );
4153   res = 1;
4154   if( (pCrsr = pC->pCursor)!=0 ){
4155     rc = sqlite3BtreeFirst(pCrsr, &res);
4156     pC->atFirst = res==0 ?1:0;
4157     pC->deferredMoveto = 0;
4158     pC->cacheStatus = CACHE_STALE;
4159     pC->rowidIsValid = 0;
4160   }
4161   pC->nullRow = (u8)res;
4162   assert( pOp->p2>0 && pOp->p2<p->nOp );
4163   if( res ){
4164     pc = pOp->p2 - 1;
4165   }
4166   break;
4167 }
4168 
4169 /* Opcode: Next P1 P2 * * P5
4170 **
4171 ** Advance cursor P1 so that it points to the next key/data pair in its
4172 ** table or index.  If there are no more key/value pairs then fall through
4173 ** to the following instruction.  But if the cursor advance was successful,
4174 ** jump immediately to P2.
4175 **
4176 ** The P1 cursor must be for a real table, not a pseudo-table.
4177 **
4178 ** If P5 is positive and the jump is taken, then event counter
4179 ** number P5-1 in the prepared statement is incremented.
4180 **
4181 ** See also: Prev
4182 */
4183 /* Opcode: Prev P1 P2 * * P5
4184 **
4185 ** Back up cursor P1 so that it points to the previous key/data pair in its
4186 ** table or index.  If there is no previous key/value pairs then fall through
4187 ** to the following instruction.  But if the cursor backup was successful,
4188 ** jump immediately to P2.
4189 **
4190 ** The P1 cursor must be for a real table, not a pseudo-table.
4191 **
4192 ** If P5 is positive and the jump is taken, then event counter
4193 ** number P5-1 in the prepared statement is incremented.
4194 */
4195 case OP_Prev:          /* jump */
4196 case OP_Next: {        /* jump */
4197   VdbeCursor *pC;
4198   BtCursor *pCrsr;
4199   int res;
4200 
4201   CHECK_FOR_INTERRUPT;
4202   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4203   assert( pOp->p5<=ArraySize(p->aCounter) );
4204   pC = p->apCsr[pOp->p1];
4205   if( pC==0 ){
4206     break;  /* See ticket #2273 */
4207   }
4208   pCrsr = pC->pCursor;
4209   if( pCrsr==0 ){
4210     pC->nullRow = 1;
4211     break;
4212   }
4213   res = 1;
4214   assert( pC->deferredMoveto==0 );
4215   rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
4216                               sqlite3BtreePrevious(pCrsr, &res);
4217   pC->nullRow = (u8)res;
4218   pC->cacheStatus = CACHE_STALE;
4219   if( res==0 ){
4220     pc = pOp->p2 - 1;
4221     if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
4222 #ifdef SQLITE_TEST
4223     sqlite3_search_count++;
4224 #endif
4225   }
4226   pC->rowidIsValid = 0;
4227   break;
4228 }
4229 
4230 /* Opcode: IdxInsert P1 P2 P3 * P5
4231 **
4232 ** Register P2 holds a SQL index key made using the
4233 ** MakeRecord instructions.  This opcode writes that key
4234 ** into the index P1.  Data for the entry is nil.
4235 **
4236 ** P3 is a flag that provides a hint to the b-tree layer that this
4237 ** insert is likely to be an append.
4238 **
4239 ** This instruction only works for indices.  The equivalent instruction
4240 ** for tables is OP_Insert.
4241 */
4242 case OP_IdxInsert: {        /* in2 */
4243   VdbeCursor *pC;
4244   BtCursor *pCrsr;
4245   int nKey;
4246   const char *zKey;
4247 
4248   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4249   pC = p->apCsr[pOp->p1];
4250   assert( pC!=0 );
4251   pIn2 = &aMem[pOp->p2];
4252   assert( pIn2->flags & MEM_Blob );
4253   pCrsr = pC->pCursor;
4254   if( ALWAYS(pCrsr!=0) ){
4255     assert( pC->isTable==0 );
4256     rc = ExpandBlob(pIn2);
4257     if( rc==SQLITE_OK ){
4258       nKey = pIn2->n;
4259       zKey = pIn2->z;
4260       rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4261           ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4262       );
4263       assert( pC->deferredMoveto==0 );
4264       pC->cacheStatus = CACHE_STALE;
4265     }
4266   }
4267   break;
4268 }
4269 
4270 /* Opcode: IdxDelete P1 P2 P3 * *
4271 **
4272 ** The content of P3 registers starting at register P2 form
4273 ** an unpacked index key. This opcode removes that entry from the
4274 ** index opened by cursor P1.
4275 */
4276 case OP_IdxDelete: {
4277   VdbeCursor *pC;
4278   BtCursor *pCrsr;
4279   int res;
4280   UnpackedRecord r;
4281 
4282   assert( pOp->p3>0 );
4283   assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
4284   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4285   pC = p->apCsr[pOp->p1];
4286   assert( pC!=0 );
4287   pCrsr = pC->pCursor;
4288   if( ALWAYS(pCrsr!=0) ){
4289     r.pKeyInfo = pC->pKeyInfo;
4290     r.nField = (u16)pOp->p3;
4291     r.flags = 0;
4292     r.aMem = &aMem[pOp->p2];
4293     rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4294     if( rc==SQLITE_OK && res==0 ){
4295       rc = sqlite3BtreeDelete(pCrsr);
4296     }
4297     assert( pC->deferredMoveto==0 );
4298     pC->cacheStatus = CACHE_STALE;
4299   }
4300   break;
4301 }
4302 
4303 /* Opcode: IdxRowid P1 P2 * * *
4304 **
4305 ** Write into register P2 an integer which is the last entry in the record at
4306 ** the end of the index key pointed to by cursor P1.  This integer should be
4307 ** the rowid of the table entry to which this index entry points.
4308 **
4309 ** See also: Rowid, MakeRecord.
4310 */
4311 case OP_IdxRowid: {              /* out2-prerelease */
4312   BtCursor *pCrsr;
4313   VdbeCursor *pC;
4314   i64 rowid;
4315 
4316   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4317   pC = p->apCsr[pOp->p1];
4318   assert( pC!=0 );
4319   pCrsr = pC->pCursor;
4320   pOut->flags = MEM_Null;
4321   if( ALWAYS(pCrsr!=0) ){
4322     rc = sqlite3VdbeCursorMoveto(pC);
4323     if( NEVER(rc) ) goto abort_due_to_error;
4324     assert( pC->deferredMoveto==0 );
4325     assert( pC->isTable==0 );
4326     if( !pC->nullRow ){
4327       rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4328       if( rc!=SQLITE_OK ){
4329         goto abort_due_to_error;
4330       }
4331       pOut->u.i = rowid;
4332       pOut->flags = MEM_Int;
4333     }
4334   }
4335   break;
4336 }
4337 
4338 /* Opcode: IdxGE P1 P2 P3 P4 P5
4339 **
4340 ** The P4 register values beginning with P3 form an unpacked index
4341 ** key that omits the ROWID.  Compare this key value against the index
4342 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4343 **
4344 ** If the P1 index entry is greater than or equal to the key value
4345 ** then jump to P2.  Otherwise fall through to the next instruction.
4346 **
4347 ** If P5 is non-zero then the key value is increased by an epsilon
4348 ** prior to the comparison.  This make the opcode work like IdxGT except
4349 ** that if the key from register P3 is a prefix of the key in the cursor,
4350 ** the result is false whereas it would be true with IdxGT.
4351 */
4352 /* Opcode: IdxLT P1 P2 P3 * P5
4353 **
4354 ** The P4 register values beginning with P3 form an unpacked index
4355 ** key that omits the ROWID.  Compare this key value against the index
4356 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4357 **
4358 ** If the P1 index entry is less than the key value then jump to P2.
4359 ** Otherwise fall through to the next instruction.
4360 **
4361 ** If P5 is non-zero then the key value is increased by an epsilon prior
4362 ** to the comparison.  This makes the opcode work like IdxLE.
4363 */
4364 case OP_IdxLT:          /* jump */
4365 case OP_IdxGE: {        /* jump */
4366   VdbeCursor *pC;
4367   int res;
4368   UnpackedRecord r;
4369 
4370   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4371   pC = p->apCsr[pOp->p1];
4372   assert( pC!=0 );
4373   if( ALWAYS(pC->pCursor!=0) ){
4374     assert( pC->deferredMoveto==0 );
4375     assert( pOp->p5==0 || pOp->p5==1 );
4376     assert( pOp->p4type==P4_INT32 );
4377     r.pKeyInfo = pC->pKeyInfo;
4378     r.nField = (u16)pOp->p4.i;
4379     if( pOp->p5 ){
4380       r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4381     }else{
4382       r.flags = UNPACKED_IGNORE_ROWID;
4383     }
4384     r.aMem = &aMem[pOp->p3];
4385     rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
4386     if( pOp->opcode==OP_IdxLT ){
4387       res = -res;
4388     }else{
4389       assert( pOp->opcode==OP_IdxGE );
4390       res++;
4391     }
4392     if( res>0 ){
4393       pc = pOp->p2 - 1 ;
4394     }
4395   }
4396   break;
4397 }
4398 
4399 /* Opcode: Destroy P1 P2 P3 * *
4400 **
4401 ** Delete an entire database table or index whose root page in the database
4402 ** file is given by P1.
4403 **
4404 ** The table being destroyed is in the main database file if P3==0.  If
4405 ** P3==1 then the table to be clear is in the auxiliary database file
4406 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4407 **
4408 ** If AUTOVACUUM is enabled then it is possible that another root page
4409 ** might be moved into the newly deleted root page in order to keep all
4410 ** root pages contiguous at the beginning of the database.  The former
4411 ** value of the root page that moved - its value before the move occurred -
4412 ** is stored in register P2.  If no page
4413 ** movement was required (because the table being dropped was already
4414 ** the last one in the database) then a zero is stored in register P2.
4415 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4416 **
4417 ** See also: Clear
4418 */
4419 case OP_Destroy: {     /* out2-prerelease */
4420   int iMoved;
4421   int iCnt;
4422   Vdbe *pVdbe;
4423   int iDb;
4424 #ifndef SQLITE_OMIT_VIRTUALTABLE
4425   iCnt = 0;
4426   for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4427     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4428       iCnt++;
4429     }
4430   }
4431 #else
4432   iCnt = db->activeVdbeCnt;
4433 #endif
4434   pOut->flags = MEM_Null;
4435   if( iCnt>1 ){
4436     rc = SQLITE_LOCKED;
4437     p->errorAction = OE_Abort;
4438   }else{
4439     iDb = pOp->p3;
4440     assert( iCnt==1 );
4441     assert( (p->btreeMask & (1<<iDb))!=0 );
4442     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4443     pOut->flags = MEM_Int;
4444     pOut->u.i = iMoved;
4445 #ifndef SQLITE_OMIT_AUTOVACUUM
4446     if( rc==SQLITE_OK && iMoved!=0 ){
4447       sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
4448       resetSchemaOnFault = 1;
4449     }
4450 #endif
4451   }
4452   break;
4453 }
4454 
4455 /* Opcode: Clear P1 P2 P3
4456 **
4457 ** Delete all contents of the database table or index whose root page
4458 ** in the database file is given by P1.  But, unlike Destroy, do not
4459 ** remove the table or index from the database file.
4460 **
4461 ** The table being clear is in the main database file if P2==0.  If
4462 ** P2==1 then the table to be clear is in the auxiliary database file
4463 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4464 **
4465 ** If the P3 value is non-zero, then the table referred to must be an
4466 ** intkey table (an SQL table, not an index). In this case the row change
4467 ** count is incremented by the number of rows in the table being cleared.
4468 ** If P3 is greater than zero, then the value stored in register P3 is
4469 ** also incremented by the number of rows in the table being cleared.
4470 **
4471 ** See also: Destroy
4472 */
4473 case OP_Clear: {
4474   int nChange;
4475 
4476   nChange = 0;
4477   assert( (p->btreeMask & (1<<pOp->p2))!=0 );
4478   rc = sqlite3BtreeClearTable(
4479       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4480   );
4481   if( pOp->p3 ){
4482     p->nChange += nChange;
4483     if( pOp->p3>0 ){
4484       aMem[pOp->p3].u.i += nChange;
4485     }
4486   }
4487   break;
4488 }
4489 
4490 /* Opcode: CreateTable P1 P2 * * *
4491 **
4492 ** Allocate a new table in the main database file if P1==0 or in the
4493 ** auxiliary database file if P1==1 or in an attached database if
4494 ** P1>1.  Write the root page number of the new table into
4495 ** register P2
4496 **
4497 ** The difference between a table and an index is this:  A table must
4498 ** have a 4-byte integer key and can have arbitrary data.  An index
4499 ** has an arbitrary key but no data.
4500 **
4501 ** See also: CreateIndex
4502 */
4503 /* Opcode: CreateIndex P1 P2 * * *
4504 **
4505 ** Allocate a new index in the main database file if P1==0 or in the
4506 ** auxiliary database file if P1==1 or in an attached database if
4507 ** P1>1.  Write the root page number of the new table into
4508 ** register P2.
4509 **
4510 ** See documentation on OP_CreateTable for additional information.
4511 */
4512 case OP_CreateIndex:            /* out2-prerelease */
4513 case OP_CreateTable: {          /* out2-prerelease */
4514   int pgno;
4515   int flags;
4516   Db *pDb;
4517 
4518   pgno = 0;
4519   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4520   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
4521   pDb = &db->aDb[pOp->p1];
4522   assert( pDb->pBt!=0 );
4523   if( pOp->opcode==OP_CreateTable ){
4524     /* flags = BTREE_INTKEY; */
4525     flags = BTREE_LEAFDATA|BTREE_INTKEY;
4526   }else{
4527     flags = BTREE_ZERODATA;
4528   }
4529   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4530   pOut->u.i = pgno;
4531   break;
4532 }
4533 
4534 /* Opcode: ParseSchema P1 P2 * P4 *
4535 **
4536 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4537 ** that match the WHERE clause P4.  P2 is the "force" flag.   Always do
4538 ** the parsing if P2 is true.  If P2 is false, then this routine is a
4539 ** no-op if the schema is not currently loaded.  In other words, if P2
4540 ** is false, the SQLITE_MASTER table is only parsed if the rest of the
4541 ** schema is already loaded into the symbol table.
4542 **
4543 ** This opcode invokes the parser to create a new virtual machine,
4544 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
4545 */
4546 case OP_ParseSchema: {
4547   int iDb;
4548   const char *zMaster;
4549   char *zSql;
4550   InitData initData;
4551 
4552   iDb = pOp->p1;
4553   assert( iDb>=0 && iDb<db->nDb );
4554 
4555   /* If pOp->p2 is 0, then this opcode is being executed to read a
4556   ** single row, for example the row corresponding to a new index
4557   ** created by this VDBE, from the sqlite_master table. It only
4558   ** does this if the corresponding in-memory schema is currently
4559   ** loaded. Otherwise, the new index definition can be loaded along
4560   ** with the rest of the schema when it is required.
4561   **
4562   ** Although the mutex on the BtShared object that corresponds to
4563   ** database iDb (the database containing the sqlite_master table
4564   ** read by this instruction) is currently held, it is necessary to
4565   ** obtain the mutexes on all attached databases before checking if
4566   ** the schema of iDb is loaded. This is because, at the start of
4567   ** the sqlite3_exec() call below, SQLite will invoke
4568   ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the
4569   ** iDb mutex may be temporarily released to avoid deadlock. If
4570   ** this happens, then some other thread may delete the in-memory
4571   ** schema of database iDb before the SQL statement runs. The schema
4572   ** will not be reloaded becuase the db->init.busy flag is set. This
4573   ** can result in a "no such table: sqlite_master" or "malformed
4574   ** database schema" error being returned to the user.
4575   */
4576   assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4577   sqlite3BtreeEnterAll(db);
4578   if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){
4579     zMaster = SCHEMA_TABLE(iDb);
4580     initData.db = db;
4581     initData.iDb = pOp->p1;
4582     initData.pzErrMsg = &p->zErrMsg;
4583     zSql = sqlite3MPrintf(db,
4584        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4585        db->aDb[iDb].zName, zMaster, pOp->p4.z);
4586     if( zSql==0 ){
4587       rc = SQLITE_NOMEM;
4588     }else{
4589       assert( db->init.busy==0 );
4590       db->init.busy = 1;
4591       initData.rc = SQLITE_OK;
4592       assert( !db->mallocFailed );
4593       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4594       if( rc==SQLITE_OK ) rc = initData.rc;
4595       sqlite3DbFree(db, zSql);
4596       db->init.busy = 0;
4597     }
4598   }
4599   sqlite3BtreeLeaveAll(db);
4600   if( rc==SQLITE_NOMEM ){
4601     goto no_mem;
4602   }
4603   break;
4604 }
4605 
4606 #if !defined(SQLITE_OMIT_ANALYZE)
4607 /* Opcode: LoadAnalysis P1 * * * *
4608 **
4609 ** Read the sqlite_stat1 table for database P1 and load the content
4610 ** of that table into the internal index hash table.  This will cause
4611 ** the analysis to be used when preparing all subsequent queries.
4612 */
4613 case OP_LoadAnalysis: {
4614   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4615   rc = sqlite3AnalysisLoad(db, pOp->p1);
4616   break;
4617 }
4618 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4619 
4620 /* Opcode: DropTable P1 * * P4 *
4621 **
4622 ** Remove the internal (in-memory) data structures that describe
4623 ** the table named P4 in database P1.  This is called after a table
4624 ** is dropped in order to keep the internal representation of the
4625 ** schema consistent with what is on disk.
4626 */
4627 case OP_DropTable: {
4628   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
4629   break;
4630 }
4631 
4632 /* Opcode: DropIndex P1 * * P4 *
4633 **
4634 ** Remove the internal (in-memory) data structures that describe
4635 ** the index named P4 in database P1.  This is called after an index
4636 ** is dropped in order to keep the internal representation of the
4637 ** schema consistent with what is on disk.
4638 */
4639 case OP_DropIndex: {
4640   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
4641   break;
4642 }
4643 
4644 /* Opcode: DropTrigger P1 * * P4 *
4645 **
4646 ** Remove the internal (in-memory) data structures that describe
4647 ** the trigger named P4 in database P1.  This is called after a trigger
4648 ** is dropped in order to keep the internal representation of the
4649 ** schema consistent with what is on disk.
4650 */
4651 case OP_DropTrigger: {
4652   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
4653   break;
4654 }
4655 
4656 
4657 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4658 /* Opcode: IntegrityCk P1 P2 P3 * P5
4659 **
4660 ** Do an analysis of the currently open database.  Store in
4661 ** register P1 the text of an error message describing any problems.
4662 ** If no problems are found, store a NULL in register P1.
4663 **
4664 ** The register P3 contains the maximum number of allowed errors.
4665 ** At most reg(P3) errors will be reported.
4666 ** In other words, the analysis stops as soon as reg(P1) errors are
4667 ** seen.  Reg(P1) is updated with the number of errors remaining.
4668 **
4669 ** The root page numbers of all tables in the database are integer
4670 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
4671 ** total.
4672 **
4673 ** If P5 is not zero, the check is done on the auxiliary database
4674 ** file, not the main database file.
4675 **
4676 ** This opcode is used to implement the integrity_check pragma.
4677 */
4678 case OP_IntegrityCk: {
4679   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
4680   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
4681   int j;          /* Loop counter */
4682   int nErr;       /* Number of errors reported */
4683   char *z;        /* Text of the error report */
4684   Mem *pnErr;     /* Register keeping track of errors remaining */
4685 
4686   nRoot = pOp->p2;
4687   assert( nRoot>0 );
4688   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
4689   if( aRoot==0 ) goto no_mem;
4690   assert( pOp->p3>0 && pOp->p3<=p->nMem );
4691   pnErr = &aMem[pOp->p3];
4692   assert( (pnErr->flags & MEM_Int)!=0 );
4693   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
4694   pIn1 = &aMem[pOp->p1];
4695   for(j=0; j<nRoot; j++){
4696     aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
4697   }
4698   aRoot[j] = 0;
4699   assert( pOp->p5<db->nDb );
4700   assert( (p->btreeMask & (1<<pOp->p5))!=0 );
4701   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
4702                                  (int)pnErr->u.i, &nErr);
4703   sqlite3DbFree(db, aRoot);
4704   pnErr->u.i -= nErr;
4705   sqlite3VdbeMemSetNull(pIn1);
4706   if( nErr==0 ){
4707     assert( z==0 );
4708   }else if( z==0 ){
4709     goto no_mem;
4710   }else{
4711     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
4712   }
4713   UPDATE_MAX_BLOBSIZE(pIn1);
4714   sqlite3VdbeChangeEncoding(pIn1, encoding);
4715   break;
4716 }
4717 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
4718 
4719 /* Opcode: RowSetAdd P1 P2 * * *
4720 **
4721 ** Insert the integer value held by register P2 into a boolean index
4722 ** held in register P1.
4723 **
4724 ** An assertion fails if P2 is not an integer.
4725 */
4726 case OP_RowSetAdd: {       /* in1, in2 */
4727   pIn1 = &aMem[pOp->p1];
4728   pIn2 = &aMem[pOp->p2];
4729   assert( (pIn2->flags & MEM_Int)!=0 );
4730   if( (pIn1->flags & MEM_RowSet)==0 ){
4731     sqlite3VdbeMemSetRowSet(pIn1);
4732     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
4733   }
4734   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
4735   break;
4736 }
4737 
4738 /* Opcode: RowSetRead P1 P2 P3 * *
4739 **
4740 ** Extract the smallest value from boolean index P1 and put that value into
4741 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
4742 ** unchanged and jump to instruction P2.
4743 */
4744 case OP_RowSetRead: {       /* jump, in1, out3 */
4745   i64 val;
4746   CHECK_FOR_INTERRUPT;
4747   pIn1 = &aMem[pOp->p1];
4748   if( (pIn1->flags & MEM_RowSet)==0
4749    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
4750   ){
4751     /* The boolean index is empty */
4752     sqlite3VdbeMemSetNull(pIn1);
4753     pc = pOp->p2 - 1;
4754   }else{
4755     /* A value was pulled from the index */
4756     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
4757   }
4758   break;
4759 }
4760 
4761 /* Opcode: RowSetTest P1 P2 P3 P4
4762 **
4763 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
4764 ** contains a RowSet object and that RowSet object contains
4765 ** the value held in P3, jump to register P2. Otherwise, insert the
4766 ** integer in P3 into the RowSet and continue on to the
4767 ** next opcode.
4768 **
4769 ** The RowSet object is optimized for the case where successive sets
4770 ** of integers, where each set contains no duplicates. Each set
4771 ** of values is identified by a unique P4 value. The first set
4772 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
4773 ** non-negative.  For non-negative values of P4 only the lower 4
4774 ** bits are significant.
4775 **
4776 ** This allows optimizations: (a) when P4==0 there is no need to test
4777 ** the rowset object for P3, as it is guaranteed not to contain it,
4778 ** (b) when P4==-1 there is no need to insert the value, as it will
4779 ** never be tested for, and (c) when a value that is part of set X is
4780 ** inserted, there is no need to search to see if the same value was
4781 ** previously inserted as part of set X (only if it was previously
4782 ** inserted as part of some other set).
4783 */
4784 case OP_RowSetTest: {                     /* jump, in1, in3 */
4785   int iSet;
4786   int exists;
4787 
4788   pIn1 = &aMem[pOp->p1];
4789   pIn3 = &aMem[pOp->p3];
4790   iSet = pOp->p4.i;
4791   assert( pIn3->flags&MEM_Int );
4792 
4793   /* If there is anything other than a rowset object in memory cell P1,
4794   ** delete it now and initialize P1 with an empty rowset
4795   */
4796   if( (pIn1->flags & MEM_RowSet)==0 ){
4797     sqlite3VdbeMemSetRowSet(pIn1);
4798     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
4799   }
4800 
4801   assert( pOp->p4type==P4_INT32 );
4802   assert( iSet==-1 || iSet>=0 );
4803   if( iSet ){
4804     exists = sqlite3RowSetTest(pIn1->u.pRowSet,
4805                                (u8)(iSet>=0 ? iSet & 0xf : 0xff),
4806                                pIn3->u.i);
4807     if( exists ){
4808       pc = pOp->p2 - 1;
4809       break;
4810     }
4811   }
4812   if( iSet>=0 ){
4813     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
4814   }
4815   break;
4816 }
4817 
4818 
4819 #ifndef SQLITE_OMIT_TRIGGER
4820 
4821 /* Opcode: Program P1 P2 P3 P4 *
4822 **
4823 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
4824 **
4825 ** P1 contains the address of the memory cell that contains the first memory
4826 ** cell in an array of values used as arguments to the sub-program. P2
4827 ** contains the address to jump to if the sub-program throws an IGNORE
4828 ** exception using the RAISE() function. Register P3 contains the address
4829 ** of a memory cell in this (the parent) VM that is used to allocate the
4830 ** memory required by the sub-vdbe at runtime.
4831 **
4832 ** P4 is a pointer to the VM containing the trigger program.
4833 */
4834 case OP_Program: {        /* jump */
4835   int nMem;               /* Number of memory registers for sub-program */
4836   int nByte;              /* Bytes of runtime space required for sub-program */
4837   Mem *pRt;               /* Register to allocate runtime space */
4838   Mem *pMem;              /* Used to iterate through memory cells */
4839   Mem *pEnd;              /* Last memory cell in new array */
4840   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
4841   SubProgram *pProgram;   /* Sub-program to execute */
4842   void *t;                /* Token identifying trigger */
4843 
4844   pProgram = pOp->p4.pProgram;
4845   pRt = &aMem[pOp->p3];
4846   assert( pProgram->nOp>0 );
4847 
4848   /* If the p5 flag is clear, then recursive invocation of triggers is
4849   ** disabled for backwards compatibility (p5 is set if this sub-program
4850   ** is really a trigger, not a foreign key action, and the flag set
4851   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
4852   **
4853   ** It is recursive invocation of triggers, at the SQL level, that is
4854   ** disabled. In some cases a single trigger may generate more than one
4855   ** SubProgram (if the trigger may be executed with more than one different
4856   ** ON CONFLICT algorithm). SubProgram structures associated with a
4857   ** single trigger all have the same value for the SubProgram.token
4858   ** variable.  */
4859   if( pOp->p5 ){
4860     t = pProgram->token;
4861     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
4862     if( pFrame ) break;
4863   }
4864 
4865   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
4866     rc = SQLITE_ERROR;
4867     sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
4868     break;
4869   }
4870 
4871   /* Register pRt is used to store the memory required to save the state
4872   ** of the current program, and the memory required at runtime to execute
4873   ** the trigger program. If this trigger has been fired before, then pRt
4874   ** is already allocated. Otherwise, it must be initialized.  */
4875   if( (pRt->flags&MEM_Frame)==0 ){
4876     /* SubProgram.nMem is set to the number of memory cells used by the
4877     ** program stored in SubProgram.aOp. As well as these, one memory
4878     ** cell is required for each cursor used by the program. Set local
4879     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
4880     */
4881     nMem = pProgram->nMem + pProgram->nCsr;
4882     nByte = ROUND8(sizeof(VdbeFrame))
4883               + nMem * sizeof(Mem)
4884               + pProgram->nCsr * sizeof(VdbeCursor *);
4885     pFrame = sqlite3DbMallocZero(db, nByte);
4886     if( !pFrame ){
4887       goto no_mem;
4888     }
4889     sqlite3VdbeMemRelease(pRt);
4890     pRt->flags = MEM_Frame;
4891     pRt->u.pFrame = pFrame;
4892 
4893     pFrame->v = p;
4894     pFrame->nChildMem = nMem;
4895     pFrame->nChildCsr = pProgram->nCsr;
4896     pFrame->pc = pc;
4897     pFrame->aMem = p->aMem;
4898     pFrame->nMem = p->nMem;
4899     pFrame->apCsr = p->apCsr;
4900     pFrame->nCursor = p->nCursor;
4901     pFrame->aOp = p->aOp;
4902     pFrame->nOp = p->nOp;
4903     pFrame->token = pProgram->token;
4904 
4905     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
4906     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
4907       pMem->flags = MEM_Null;
4908       pMem->db = db;
4909     }
4910   }else{
4911     pFrame = pRt->u.pFrame;
4912     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
4913     assert( pProgram->nCsr==pFrame->nChildCsr );
4914     assert( pc==pFrame->pc );
4915   }
4916 
4917   p->nFrame++;
4918   pFrame->pParent = p->pFrame;
4919   pFrame->lastRowid = db->lastRowid;
4920   pFrame->nChange = p->nChange;
4921   p->nChange = 0;
4922   p->pFrame = pFrame;
4923   p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
4924   p->nMem = pFrame->nChildMem;
4925   p->nCursor = (u16)pFrame->nChildCsr;
4926   p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
4927   p->aOp = aOp = pProgram->aOp;
4928   p->nOp = pProgram->nOp;
4929   pc = -1;
4930 
4931   break;
4932 }
4933 
4934 /* Opcode: Param P1 P2 * * *
4935 **
4936 ** This opcode is only ever present in sub-programs called via the
4937 ** OP_Program instruction. Copy a value currently stored in a memory
4938 ** cell of the calling (parent) frame to cell P2 in the current frames
4939 ** address space. This is used by trigger programs to access the new.*
4940 ** and old.* values.
4941 **
4942 ** The address of the cell in the parent frame is determined by adding
4943 ** the value of the P1 argument to the value of the P1 argument to the
4944 ** calling OP_Program instruction.
4945 */
4946 case OP_Param: {           /* out2-prerelease */
4947   VdbeFrame *pFrame;
4948   Mem *pIn;
4949   pFrame = p->pFrame;
4950   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
4951   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
4952   break;
4953 }
4954 
4955 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
4956 
4957 #ifndef SQLITE_OMIT_FOREIGN_KEY
4958 /* Opcode: FkCounter P1 P2 * * *
4959 **
4960 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
4961 ** If P1 is non-zero, the database constraint counter is incremented
4962 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
4963 ** statement counter is incremented (immediate foreign key constraints).
4964 */
4965 case OP_FkCounter: {
4966   if( pOp->p1 ){
4967     db->nDeferredCons += pOp->p2;
4968   }else{
4969     p->nFkConstraint += pOp->p2;
4970   }
4971   break;
4972 }
4973 
4974 /* Opcode: FkIfZero P1 P2 * * *
4975 **
4976 ** This opcode tests if a foreign key constraint-counter is currently zero.
4977 ** If so, jump to instruction P2. Otherwise, fall through to the next
4978 ** instruction.
4979 **
4980 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
4981 ** is zero (the one that counts deferred constraint violations). If P1 is
4982 ** zero, the jump is taken if the statement constraint-counter is zero
4983 ** (immediate foreign key constraint violations).
4984 */
4985 case OP_FkIfZero: {         /* jump */
4986   if( pOp->p1 ){
4987     if( db->nDeferredCons==0 ) pc = pOp->p2-1;
4988   }else{
4989     if( p->nFkConstraint==0 ) pc = pOp->p2-1;
4990   }
4991   break;
4992 }
4993 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
4994 
4995 #ifndef SQLITE_OMIT_AUTOINCREMENT
4996 /* Opcode: MemMax P1 P2 * * *
4997 **
4998 ** P1 is a register in the root frame of this VM (the root frame is
4999 ** different from the current frame if this instruction is being executed
5000 ** within a sub-program). Set the value of register P1 to the maximum of
5001 ** its current value and the value in register P2.
5002 **
5003 ** This instruction throws an error if the memory cell is not initially
5004 ** an integer.
5005 */
5006 case OP_MemMax: {        /* in2 */
5007   Mem *pIn1;
5008   VdbeFrame *pFrame;
5009   if( p->pFrame ){
5010     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5011     pIn1 = &pFrame->aMem[pOp->p1];
5012   }else{
5013     pIn1 = &aMem[pOp->p1];
5014   }
5015   sqlite3VdbeMemIntegerify(pIn1);
5016   pIn2 = &aMem[pOp->p2];
5017   sqlite3VdbeMemIntegerify(pIn2);
5018   if( pIn1->u.i<pIn2->u.i){
5019     pIn1->u.i = pIn2->u.i;
5020   }
5021   break;
5022 }
5023 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5024 
5025 /* Opcode: IfPos P1 P2 * * *
5026 **
5027 ** If the value of register P1 is 1 or greater, jump to P2.
5028 **
5029 ** It is illegal to use this instruction on a register that does
5030 ** not contain an integer.  An assertion fault will result if you try.
5031 */
5032 case OP_IfPos: {        /* jump, in1 */
5033   pIn1 = &aMem[pOp->p1];
5034   assert( pIn1->flags&MEM_Int );
5035   if( pIn1->u.i>0 ){
5036      pc = pOp->p2 - 1;
5037   }
5038   break;
5039 }
5040 
5041 /* Opcode: IfNeg P1 P2 * * *
5042 **
5043 ** If the value of register P1 is less than zero, jump to P2.
5044 **
5045 ** It is illegal to use this instruction on a register that does
5046 ** not contain an integer.  An assertion fault will result if you try.
5047 */
5048 case OP_IfNeg: {        /* jump, in1 */
5049   pIn1 = &aMem[pOp->p1];
5050   assert( pIn1->flags&MEM_Int );
5051   if( pIn1->u.i<0 ){
5052      pc = pOp->p2 - 1;
5053   }
5054   break;
5055 }
5056 
5057 /* Opcode: IfZero P1 P2 P3 * *
5058 **
5059 ** The register P1 must contain an integer.  Add literal P3 to the
5060 ** value in register P1.  If the result is exactly 0, jump to P2.
5061 **
5062 ** It is illegal to use this instruction on a register that does
5063 ** not contain an integer.  An assertion fault will result if you try.
5064 */
5065 case OP_IfZero: {        /* jump, in1 */
5066   pIn1 = &aMem[pOp->p1];
5067   assert( pIn1->flags&MEM_Int );
5068   pIn1->u.i += pOp->p3;
5069   if( pIn1->u.i==0 ){
5070      pc = pOp->p2 - 1;
5071   }
5072   break;
5073 }
5074 
5075 /* Opcode: AggStep * P2 P3 P4 P5
5076 **
5077 ** Execute the step function for an aggregate.  The
5078 ** function has P5 arguments.   P4 is a pointer to the FuncDef
5079 ** structure that specifies the function.  Use register
5080 ** P3 as the accumulator.
5081 **
5082 ** The P5 arguments are taken from register P2 and its
5083 ** successors.
5084 */
5085 case OP_AggStep: {
5086   int n;
5087   int i;
5088   Mem *pMem;
5089   Mem *pRec;
5090   sqlite3_context ctx;
5091   sqlite3_value **apVal;
5092 
5093   n = pOp->p5;
5094   assert( n>=0 );
5095   pRec = &aMem[pOp->p2];
5096   apVal = p->apArg;
5097   assert( apVal || n==0 );
5098   for(i=0; i<n; i++, pRec++){
5099     apVal[i] = pRec;
5100     sqlite3VdbeMemStoreType(pRec);
5101   }
5102   ctx.pFunc = pOp->p4.pFunc;
5103   assert( pOp->p3>0 && pOp->p3<=p->nMem );
5104   ctx.pMem = pMem = &aMem[pOp->p3];
5105   pMem->n++;
5106   ctx.s.flags = MEM_Null;
5107   ctx.s.z = 0;
5108   ctx.s.zMalloc = 0;
5109   ctx.s.xDel = 0;
5110   ctx.s.db = db;
5111   ctx.isError = 0;
5112   ctx.pColl = 0;
5113   if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
5114     assert( pOp>p->aOp );
5115     assert( pOp[-1].p4type==P4_COLLSEQ );
5116     assert( pOp[-1].opcode==OP_CollSeq );
5117     ctx.pColl = pOp[-1].p4.pColl;
5118   }
5119   (ctx.pFunc->xStep)(&ctx, n, apVal);
5120   if( ctx.isError ){
5121     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
5122     rc = ctx.isError;
5123   }
5124   sqlite3VdbeMemRelease(&ctx.s);
5125   break;
5126 }
5127 
5128 /* Opcode: AggFinal P1 P2 * P4 *
5129 **
5130 ** Execute the finalizer function for an aggregate.  P1 is
5131 ** the memory location that is the accumulator for the aggregate.
5132 **
5133 ** P2 is the number of arguments that the step function takes and
5134 ** P4 is a pointer to the FuncDef for this function.  The P2
5135 ** argument is not used by this opcode.  It is only there to disambiguate
5136 ** functions that can take varying numbers of arguments.  The
5137 ** P4 argument is only needed for the degenerate case where
5138 ** the step function was not previously called.
5139 */
5140 case OP_AggFinal: {
5141   Mem *pMem;
5142   assert( pOp->p1>0 && pOp->p1<=p->nMem );
5143   pMem = &aMem[pOp->p1];
5144   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5145   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5146   if( rc ){
5147     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
5148   }
5149   sqlite3VdbeChangeEncoding(pMem, encoding);
5150   UPDATE_MAX_BLOBSIZE(pMem);
5151   if( sqlite3VdbeMemTooBig(pMem) ){
5152     goto too_big;
5153   }
5154   break;
5155 }
5156 
5157 #ifndef SQLITE_OMIT_WAL
5158 /* Opcode: Checkpoint P1 * * * *
5159 **
5160 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5161 ** WAL mode.
5162 */
5163 case OP_Checkpoint: {
5164   rc = sqlite3Checkpoint(db, pOp->p1);
5165   break;
5166 };
5167 #endif
5168 
5169 #ifndef SQLITE_OMIT_PRAGMA
5170 /* Opcode: JournalMode P1 P2 P3 * P5
5171 **
5172 ** Change the journal mode of database P1 to P3. P3 must be one of the
5173 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5174 ** modes (delete, truncate, persist, off and memory), this is a simple
5175 ** operation. No IO is required.
5176 **
5177 ** If changing into or out of WAL mode the procedure is more complicated.
5178 **
5179 ** Write a string containing the final journal-mode to register P2.
5180 */
5181 case OP_JournalMode: {    /* out2-prerelease */
5182   Btree *pBt;                     /* Btree to change journal mode of */
5183   Pager *pPager;                  /* Pager associated with pBt */
5184   int eNew;                       /* New journal mode */
5185   int eOld;                       /* The old journal mode */
5186   const char *zFilename;          /* Name of database file for pPager */
5187 
5188   eNew = pOp->p3;
5189   assert( eNew==PAGER_JOURNALMODE_DELETE
5190        || eNew==PAGER_JOURNALMODE_TRUNCATE
5191        || eNew==PAGER_JOURNALMODE_PERSIST
5192        || eNew==PAGER_JOURNALMODE_OFF
5193        || eNew==PAGER_JOURNALMODE_MEMORY
5194        || eNew==PAGER_JOURNALMODE_WAL
5195        || eNew==PAGER_JOURNALMODE_QUERY
5196   );
5197   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5198 
5199   /* This opcode is used in two places: PRAGMA journal_mode and ATTACH.
5200   ** In PRAGMA journal_mode, the sqlite3VdbeUsesBtree() routine is called
5201   ** when the statment is prepared and so p->aMutex.nMutex>0.  All mutexes
5202   ** are already acquired.  But when used in ATTACH, sqlite3VdbeUsesBtree()
5203   ** is not called when the statement is prepared because it requires the
5204   ** iDb index of the database as a parameter, and the database has not
5205   ** yet been attached so that index is unavailable.  We have to wait
5206   ** until runtime (now) to get the mutex on the newly attached database.
5207   ** No other mutexes are required by the ATTACH command so this is safe
5208   ** to do.
5209   */
5210   assert( (p->btreeMask & (1<<pOp->p1))!=0 || p->aMutex.nMutex==0 );
5211   if( p->aMutex.nMutex==0 ){
5212     /* This occurs right after ATTACH.  Get a mutex on the newly ATTACHed
5213     ** database. */
5214     sqlite3VdbeUsesBtree(p, pOp->p1);
5215     sqlite3VdbeMutexArrayEnter(p);
5216   }
5217 
5218   pBt = db->aDb[pOp->p1].pBt;
5219   pPager = sqlite3BtreePager(pBt);
5220   eOld = sqlite3PagerGetJournalMode(pPager);
5221   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5222   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5223 
5224 #ifndef SQLITE_OMIT_WAL
5225   zFilename = sqlite3PagerFilename(pPager);
5226 
5227   /* Do not allow a transition to journal_mode=WAL for a database
5228   ** in temporary storage or if the VFS does not support shared memory
5229   */
5230   if( eNew==PAGER_JOURNALMODE_WAL
5231    && (zFilename[0]==0                         /* Temp file */
5232        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
5233   ){
5234     eNew = eOld;
5235   }
5236 
5237   if( (eNew!=eOld)
5238    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5239   ){
5240     if( !db->autoCommit || db->activeVdbeCnt>1 ){
5241       rc = SQLITE_ERROR;
5242       sqlite3SetString(&p->zErrMsg, db,
5243           "cannot change %s wal mode from within a transaction",
5244           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5245       );
5246       break;
5247     }else{
5248 
5249       if( eOld==PAGER_JOURNALMODE_WAL ){
5250         /* If leaving WAL mode, close the log file. If successful, the call
5251         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5252         ** file. An EXCLUSIVE lock may still be held on the database file
5253         ** after a successful return.
5254         */
5255         rc = sqlite3PagerCloseWal(pPager);
5256         if( rc==SQLITE_OK ){
5257           sqlite3PagerSetJournalMode(pPager, eNew);
5258         }
5259       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5260         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
5261         ** as an intermediate */
5262         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5263       }
5264 
5265       /* Open a transaction on the database file. Regardless of the journal
5266       ** mode, this transaction always uses a rollback journal.
5267       */
5268       assert( sqlite3BtreeIsInTrans(pBt)==0 );
5269       if( rc==SQLITE_OK ){
5270         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5271       }
5272     }
5273   }
5274 #endif /* ifndef SQLITE_OMIT_WAL */
5275 
5276   if( rc ){
5277     eNew = eOld;
5278   }
5279   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5280 
5281   pOut = &aMem[pOp->p2];
5282   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5283   pOut->z = (char *)sqlite3JournalModename(eNew);
5284   pOut->n = sqlite3Strlen30(pOut->z);
5285   pOut->enc = SQLITE_UTF8;
5286   sqlite3VdbeChangeEncoding(pOut, encoding);
5287   break;
5288 };
5289 #endif /* SQLITE_OMIT_PRAGMA */
5290 
5291 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5292 /* Opcode: Vacuum * * * * *
5293 **
5294 ** Vacuum the entire database.  This opcode will cause other virtual
5295 ** machines to be created and run.  It may not be called from within
5296 ** a transaction.
5297 */
5298 case OP_Vacuum: {
5299   rc = sqlite3RunVacuum(&p->zErrMsg, db);
5300   break;
5301 }
5302 #endif
5303 
5304 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5305 /* Opcode: IncrVacuum P1 P2 * * *
5306 **
5307 ** Perform a single step of the incremental vacuum procedure on
5308 ** the P1 database. If the vacuum has finished, jump to instruction
5309 ** P2. Otherwise, fall through to the next instruction.
5310 */
5311 case OP_IncrVacuum: {        /* jump */
5312   Btree *pBt;
5313 
5314   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5315   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
5316   pBt = db->aDb[pOp->p1].pBt;
5317   rc = sqlite3BtreeIncrVacuum(pBt);
5318   if( rc==SQLITE_DONE ){
5319     pc = pOp->p2 - 1;
5320     rc = SQLITE_OK;
5321   }
5322   break;
5323 }
5324 #endif
5325 
5326 /* Opcode: Expire P1 * * * *
5327 **
5328 ** Cause precompiled statements to become expired. An expired statement
5329 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5330 ** (via sqlite3_step()).
5331 **
5332 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5333 ** then only the currently executing statement is affected.
5334 */
5335 case OP_Expire: {
5336   if( !pOp->p1 ){
5337     sqlite3ExpirePreparedStatements(db);
5338   }else{
5339     p->expired = 1;
5340   }
5341   break;
5342 }
5343 
5344 #ifndef SQLITE_OMIT_SHARED_CACHE
5345 /* Opcode: TableLock P1 P2 P3 P4 *
5346 **
5347 ** Obtain a lock on a particular table. This instruction is only used when
5348 ** the shared-cache feature is enabled.
5349 **
5350 ** P1 is the index of the database in sqlite3.aDb[] of the database
5351 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
5352 ** a write lock if P3==1.
5353 **
5354 ** P2 contains the root-page of the table to lock.
5355 **
5356 ** P4 contains a pointer to the name of the table being locked. This is only
5357 ** used to generate an error message if the lock cannot be obtained.
5358 */
5359 case OP_TableLock: {
5360   u8 isWriteLock = (u8)pOp->p3;
5361   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5362     int p1 = pOp->p1;
5363     assert( p1>=0 && p1<db->nDb );
5364     assert( (p->btreeMask & (1<<p1))!=0 );
5365     assert( isWriteLock==0 || isWriteLock==1 );
5366     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5367     if( (rc&0xFF)==SQLITE_LOCKED ){
5368       const char *z = pOp->p4.z;
5369       sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5370     }
5371   }
5372   break;
5373 }
5374 #endif /* SQLITE_OMIT_SHARED_CACHE */
5375 
5376 #ifndef SQLITE_OMIT_VIRTUALTABLE
5377 /* Opcode: VBegin * * * P4 *
5378 **
5379 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5380 ** xBegin method for that table.
5381 **
5382 ** Also, whether or not P4 is set, check that this is not being called from
5383 ** within a callback to a virtual table xSync() method. If it is, the error
5384 ** code will be set to SQLITE_LOCKED.
5385 */
5386 case OP_VBegin: {
5387   VTable *pVTab;
5388   pVTab = pOp->p4.pVtab;
5389   rc = sqlite3VtabBegin(db, pVTab);
5390   if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
5391   break;
5392 }
5393 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5394 
5395 #ifndef SQLITE_OMIT_VIRTUALTABLE
5396 /* Opcode: VCreate P1 * * P4 *
5397 **
5398 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5399 ** for that table.
5400 */
5401 case OP_VCreate: {
5402   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
5403   break;
5404 }
5405 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5406 
5407 #ifndef SQLITE_OMIT_VIRTUALTABLE
5408 /* Opcode: VDestroy P1 * * P4 *
5409 **
5410 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
5411 ** of that table.
5412 */
5413 case OP_VDestroy: {
5414   p->inVtabMethod = 2;
5415   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5416   p->inVtabMethod = 0;
5417   break;
5418 }
5419 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5420 
5421 #ifndef SQLITE_OMIT_VIRTUALTABLE
5422 /* Opcode: VOpen P1 * * P4 *
5423 **
5424 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5425 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
5426 ** table and stores that cursor in P1.
5427 */
5428 case OP_VOpen: {
5429   VdbeCursor *pCur;
5430   sqlite3_vtab_cursor *pVtabCursor;
5431   sqlite3_vtab *pVtab;
5432   sqlite3_module *pModule;
5433 
5434   pCur = 0;
5435   pVtabCursor = 0;
5436   pVtab = pOp->p4.pVtab->pVtab;
5437   pModule = (sqlite3_module *)pVtab->pModule;
5438   assert(pVtab && pModule);
5439   rc = pModule->xOpen(pVtab, &pVtabCursor);
5440   importVtabErrMsg(p, pVtab);
5441   if( SQLITE_OK==rc ){
5442     /* Initialize sqlite3_vtab_cursor base class */
5443     pVtabCursor->pVtab = pVtab;
5444 
5445     /* Initialise vdbe cursor object */
5446     pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
5447     if( pCur ){
5448       pCur->pVtabCursor = pVtabCursor;
5449       pCur->pModule = pVtabCursor->pVtab->pModule;
5450     }else{
5451       db->mallocFailed = 1;
5452       pModule->xClose(pVtabCursor);
5453     }
5454   }
5455   break;
5456 }
5457 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5458 
5459 #ifndef SQLITE_OMIT_VIRTUALTABLE
5460 /* Opcode: VFilter P1 P2 P3 P4 *
5461 **
5462 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
5463 ** the filtered result set is empty.
5464 **
5465 ** P4 is either NULL or a string that was generated by the xBestIndex
5466 ** method of the module.  The interpretation of the P4 string is left
5467 ** to the module implementation.
5468 **
5469 ** This opcode invokes the xFilter method on the virtual table specified
5470 ** by P1.  The integer query plan parameter to xFilter is stored in register
5471 ** P3. Register P3+1 stores the argc parameter to be passed to the
5472 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5473 ** additional parameters which are passed to
5474 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5475 **
5476 ** A jump is made to P2 if the result set after filtering would be empty.
5477 */
5478 case OP_VFilter: {   /* jump */
5479   int nArg;
5480   int iQuery;
5481   const sqlite3_module *pModule;
5482   Mem *pQuery;
5483   Mem *pArgc;
5484   sqlite3_vtab_cursor *pVtabCursor;
5485   sqlite3_vtab *pVtab;
5486   VdbeCursor *pCur;
5487   int res;
5488   int i;
5489   Mem **apArg;
5490 
5491   pQuery = &aMem[pOp->p3];
5492   pArgc = &pQuery[1];
5493   pCur = p->apCsr[pOp->p1];
5494   REGISTER_TRACE(pOp->p3, pQuery);
5495   assert( pCur->pVtabCursor );
5496   pVtabCursor = pCur->pVtabCursor;
5497   pVtab = pVtabCursor->pVtab;
5498   pModule = pVtab->pModule;
5499 
5500   /* Grab the index number and argc parameters */
5501   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
5502   nArg = (int)pArgc->u.i;
5503   iQuery = (int)pQuery->u.i;
5504 
5505   /* Invoke the xFilter method */
5506   {
5507     res = 0;
5508     apArg = p->apArg;
5509     for(i = 0; i<nArg; i++){
5510       apArg[i] = &pArgc[i+1];
5511       sqlite3VdbeMemStoreType(apArg[i]);
5512     }
5513 
5514     p->inVtabMethod = 1;
5515     rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
5516     p->inVtabMethod = 0;
5517     importVtabErrMsg(p, pVtab);
5518     if( rc==SQLITE_OK ){
5519       res = pModule->xEof(pVtabCursor);
5520     }
5521 
5522     if( res ){
5523       pc = pOp->p2 - 1;
5524     }
5525   }
5526   pCur->nullRow = 0;
5527 
5528   break;
5529 }
5530 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5531 
5532 #ifndef SQLITE_OMIT_VIRTUALTABLE
5533 /* Opcode: VColumn P1 P2 P3 * *
5534 **
5535 ** Store the value of the P2-th column of
5536 ** the row of the virtual-table that the
5537 ** P1 cursor is pointing to into register P3.
5538 */
5539 case OP_VColumn: {
5540   sqlite3_vtab *pVtab;
5541   const sqlite3_module *pModule;
5542   Mem *pDest;
5543   sqlite3_context sContext;
5544 
5545   VdbeCursor *pCur = p->apCsr[pOp->p1];
5546   assert( pCur->pVtabCursor );
5547   assert( pOp->p3>0 && pOp->p3<=p->nMem );
5548   pDest = &aMem[pOp->p3];
5549   if( pCur->nullRow ){
5550     sqlite3VdbeMemSetNull(pDest);
5551     break;
5552   }
5553   pVtab = pCur->pVtabCursor->pVtab;
5554   pModule = pVtab->pModule;
5555   assert( pModule->xColumn );
5556   memset(&sContext, 0, sizeof(sContext));
5557 
5558   /* The output cell may already have a buffer allocated. Move
5559   ** the current contents to sContext.s so in case the user-function
5560   ** can use the already allocated buffer instead of allocating a
5561   ** new one.
5562   */
5563   sqlite3VdbeMemMove(&sContext.s, pDest);
5564   MemSetTypeFlag(&sContext.s, MEM_Null);
5565 
5566   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
5567   importVtabErrMsg(p, pVtab);
5568   if( sContext.isError ){
5569     rc = sContext.isError;
5570   }
5571 
5572   /* Copy the result of the function to the P3 register. We
5573   ** do this regardless of whether or not an error occurred to ensure any
5574   ** dynamic allocation in sContext.s (a Mem struct) is  released.
5575   */
5576   sqlite3VdbeChangeEncoding(&sContext.s, encoding);
5577   sqlite3VdbeMemMove(pDest, &sContext.s);
5578   REGISTER_TRACE(pOp->p3, pDest);
5579   UPDATE_MAX_BLOBSIZE(pDest);
5580 
5581   if( sqlite3VdbeMemTooBig(pDest) ){
5582     goto too_big;
5583   }
5584   break;
5585 }
5586 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5587 
5588 #ifndef SQLITE_OMIT_VIRTUALTABLE
5589 /* Opcode: VNext P1 P2 * * *
5590 **
5591 ** Advance virtual table P1 to the next row in its result set and
5592 ** jump to instruction P2.  Or, if the virtual table has reached
5593 ** the end of its result set, then fall through to the next instruction.
5594 */
5595 case OP_VNext: {   /* jump */
5596   sqlite3_vtab *pVtab;
5597   const sqlite3_module *pModule;
5598   int res;
5599   VdbeCursor *pCur;
5600 
5601   res = 0;
5602   pCur = p->apCsr[pOp->p1];
5603   assert( pCur->pVtabCursor );
5604   if( pCur->nullRow ){
5605     break;
5606   }
5607   pVtab = pCur->pVtabCursor->pVtab;
5608   pModule = pVtab->pModule;
5609   assert( pModule->xNext );
5610 
5611   /* Invoke the xNext() method of the module. There is no way for the
5612   ** underlying implementation to return an error if one occurs during
5613   ** xNext(). Instead, if an error occurs, true is returned (indicating that
5614   ** data is available) and the error code returned when xColumn or
5615   ** some other method is next invoked on the save virtual table cursor.
5616   */
5617   p->inVtabMethod = 1;
5618   rc = pModule->xNext(pCur->pVtabCursor);
5619   p->inVtabMethod = 0;
5620   importVtabErrMsg(p, pVtab);
5621   if( rc==SQLITE_OK ){
5622     res = pModule->xEof(pCur->pVtabCursor);
5623   }
5624 
5625   if( !res ){
5626     /* If there is data, jump to P2 */
5627     pc = pOp->p2 - 1;
5628   }
5629   break;
5630 }
5631 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5632 
5633 #ifndef SQLITE_OMIT_VIRTUALTABLE
5634 /* Opcode: VRename P1 * * P4 *
5635 **
5636 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5637 ** This opcode invokes the corresponding xRename method. The value
5638 ** in register P1 is passed as the zName argument to the xRename method.
5639 */
5640 case OP_VRename: {
5641   sqlite3_vtab *pVtab;
5642   Mem *pName;
5643 
5644   pVtab = pOp->p4.pVtab->pVtab;
5645   pName = &aMem[pOp->p1];
5646   assert( pVtab->pModule->xRename );
5647   REGISTER_TRACE(pOp->p1, pName);
5648   assert( pName->flags & MEM_Str );
5649   rc = pVtab->pModule->xRename(pVtab, pName->z);
5650   importVtabErrMsg(p, pVtab);
5651 
5652   break;
5653 }
5654 #endif
5655 
5656 #ifndef SQLITE_OMIT_VIRTUALTABLE
5657 /* Opcode: VUpdate P1 P2 P3 P4 *
5658 **
5659 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5660 ** This opcode invokes the corresponding xUpdate method. P2 values
5661 ** are contiguous memory cells starting at P3 to pass to the xUpdate
5662 ** invocation. The value in register (P3+P2-1) corresponds to the
5663 ** p2th element of the argv array passed to xUpdate.
5664 **
5665 ** The xUpdate method will do a DELETE or an INSERT or both.
5666 ** The argv[0] element (which corresponds to memory cell P3)
5667 ** is the rowid of a row to delete.  If argv[0] is NULL then no
5668 ** deletion occurs.  The argv[1] element is the rowid of the new
5669 ** row.  This can be NULL to have the virtual table select the new
5670 ** rowid for itself.  The subsequent elements in the array are
5671 ** the values of columns in the new row.
5672 **
5673 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
5674 ** a row to delete.
5675 **
5676 ** P1 is a boolean flag. If it is set to true and the xUpdate call
5677 ** is successful, then the value returned by sqlite3_last_insert_rowid()
5678 ** is set to the value of the rowid for the row just inserted.
5679 */
5680 case OP_VUpdate: {
5681   sqlite3_vtab *pVtab;
5682   sqlite3_module *pModule;
5683   int nArg;
5684   int i;
5685   sqlite_int64 rowid;
5686   Mem **apArg;
5687   Mem *pX;
5688 
5689   pVtab = pOp->p4.pVtab->pVtab;
5690   pModule = (sqlite3_module *)pVtab->pModule;
5691   nArg = pOp->p2;
5692   assert( pOp->p4type==P4_VTAB );
5693   if( ALWAYS(pModule->xUpdate) ){
5694     apArg = p->apArg;
5695     pX = &aMem[pOp->p3];
5696     for(i=0; i<nArg; i++){
5697       sqlite3VdbeMemStoreType(pX);
5698       apArg[i] = pX;
5699       pX++;
5700     }
5701     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
5702     importVtabErrMsg(p, pVtab);
5703     if( rc==SQLITE_OK && pOp->p1 ){
5704       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
5705       db->lastRowid = rowid;
5706     }
5707     p->nChange++;
5708   }
5709   break;
5710 }
5711 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5712 
5713 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
5714 /* Opcode: Pagecount P1 P2 * * *
5715 **
5716 ** Write the current number of pages in database P1 to memory cell P2.
5717 */
5718 case OP_Pagecount: {            /* out2-prerelease */
5719   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
5720   break;
5721 }
5722 #endif
5723 
5724 #ifndef SQLITE_OMIT_TRACE
5725 /* Opcode: Trace * * * P4 *
5726 **
5727 ** If tracing is enabled (by the sqlite3_trace()) interface, then
5728 ** the UTF-8 string contained in P4 is emitted on the trace callback.
5729 */
5730 case OP_Trace: {
5731   char *zTrace;
5732 
5733   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
5734   if( zTrace ){
5735     if( db->xTrace ){
5736       char *z = sqlite3VdbeExpandSql(p, zTrace);
5737       db->xTrace(db->pTraceArg, z);
5738       sqlite3DbFree(db, z);
5739     }
5740 #ifdef SQLITE_DEBUG
5741     if( (db->flags & SQLITE_SqlTrace)!=0 ){
5742       sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
5743     }
5744 #endif /* SQLITE_DEBUG */
5745   }
5746   break;
5747 }
5748 #endif
5749 
5750 
5751 /* Opcode: Noop * * * * *
5752 **
5753 ** Do nothing.  This instruction is often useful as a jump
5754 ** destination.
5755 */
5756 /*
5757 ** The magic Explain opcode are only inserted when explain==2 (which
5758 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5759 ** This opcode records information from the optimizer.  It is the
5760 ** the same as a no-op.  This opcodesnever appears in a real VM program.
5761 */
5762 default: {          /* This is really OP_Noop and OP_Explain */
5763   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
5764   break;
5765 }
5766 
5767 /*****************************************************************************
5768 ** The cases of the switch statement above this line should all be indented
5769 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
5770 ** readability.  From this point on down, the normal indentation rules are
5771 ** restored.
5772 *****************************************************************************/
5773     }
5774 
5775 #ifdef VDBE_PROFILE
5776     {
5777       u64 elapsed = sqlite3Hwtime() - start;
5778       pOp->cycles += elapsed;
5779       pOp->cnt++;
5780 #if 0
5781         fprintf(stdout, "%10llu ", elapsed);
5782         sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
5783 #endif
5784     }
5785 #endif
5786 
5787     /* The following code adds nothing to the actual functionality
5788     ** of the program.  It is only here for testing and debugging.
5789     ** On the other hand, it does burn CPU cycles every time through
5790     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
5791     */
5792 #ifndef NDEBUG
5793     assert( pc>=-1 && pc<p->nOp );
5794 
5795 #ifdef SQLITE_DEBUG
5796     if( p->trace ){
5797       if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
5798       if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
5799         registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
5800       }
5801       if( pOp->opflags & OPFLG_OUT3 ){
5802         registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
5803       }
5804     }
5805 #endif  /* SQLITE_DEBUG */
5806 #endif  /* NDEBUG */
5807   }  /* The end of the for(;;) loop the loops through opcodes */
5808 
5809   /* If we reach this point, it means that execution is finished with
5810   ** an error of some kind.
5811   */
5812 vdbe_error_halt:
5813   assert( rc );
5814   p->rc = rc;
5815   testcase( sqlite3GlobalConfig.xLog!=0 );
5816   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
5817                    pc, p->zSql, p->zErrMsg);
5818   sqlite3VdbeHalt(p);
5819   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
5820   rc = SQLITE_ERROR;
5821   if( resetSchemaOnFault ) sqlite3ResetInternalSchema(db, 0);
5822 
5823   /* This is the only way out of this procedure.  We have to
5824   ** release the mutexes on btrees that were acquired at the
5825   ** top. */
5826 vdbe_return:
5827   sqlite3BtreeMutexArrayLeave(&p->aMutex);
5828   return rc;
5829 
5830   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5831   ** is encountered.
5832   */
5833 too_big:
5834   sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
5835   rc = SQLITE_TOOBIG;
5836   goto vdbe_error_halt;
5837 
5838   /* Jump to here if a malloc() fails.
5839   */
5840 no_mem:
5841   db->mallocFailed = 1;
5842   sqlite3SetString(&p->zErrMsg, db, "out of memory");
5843   rc = SQLITE_NOMEM;
5844   goto vdbe_error_halt;
5845 
5846   /* Jump to here for any other kind of fatal error.  The "rc" variable
5847   ** should hold the error number.
5848   */
5849 abort_due_to_error:
5850   assert( p->zErrMsg==0 );
5851   if( db->mallocFailed ) rc = SQLITE_NOMEM;
5852   if( rc!=SQLITE_IOERR_NOMEM ){
5853     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
5854   }
5855   goto vdbe_error_halt;
5856 
5857   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
5858   ** flag.
5859   */
5860 abort_due_to_interrupt:
5861   assert( db->u1.isInterrupted );
5862   rc = SQLITE_INTERRUPT;
5863   p->rc = rc;
5864   sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
5865   goto vdbe_error_halt;
5866 }
5867