1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 /* 121 ** Invoke the VDBE coverage callback, if that callback is defined. This 122 ** feature is used for test suite validation only and does not appear an 123 ** production builds. 124 ** 125 ** M is the type of branch. I is the direction taken for this instance of 126 ** the branch. 127 ** 128 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 129 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 130 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 131 ** 132 ** In other words, if M is 2, then I is either 0 (for fall-through) or 133 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 134 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 135 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 136 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 137 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 138 ** depending on if the operands are less than, equal, or greater than. 139 ** 140 ** iSrcLine is the source code line (from the __LINE__ macro) that 141 ** generated the VDBE instruction combined with flag bits. The source 142 ** code line number is in the lower 24 bits of iSrcLine and the upper 143 ** 8 bytes are flags. The lower three bits of the flags indicate 144 ** values for I that should never occur. For example, if the branch is 145 ** always taken, the flags should be 0x05 since the fall-through and 146 ** alternate branch are never taken. If a branch is never taken then 147 ** flags should be 0x06 since only the fall-through approach is allowed. 148 ** 149 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 150 ** interested in equal or not-equal. In other words, I==0 and I==2 151 ** should be treated as equivalent 152 ** 153 ** Since only a line number is retained, not the filename, this macro 154 ** only works for amalgamation builds. But that is ok, since these macros 155 ** should be no-ops except for special builds used to measure test coverage. 156 */ 157 #if !defined(SQLITE_VDBE_COVERAGE) 158 # define VdbeBranchTaken(I,M) 159 #else 160 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 161 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 162 u8 mNever; 163 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 164 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 165 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 166 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 167 I = 1<<I; 168 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 169 ** the flags indicate directions that the branch can never go. If 170 ** a branch really does go in one of those directions, assert right 171 ** away. */ 172 mNever = iSrcLine >> 24; 173 assert( (I & mNever)==0 ); 174 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 175 /* Invoke the branch coverage callback with three arguments: 176 ** iSrcLine - the line number of the VdbeCoverage() macro, with 177 ** flags removed. 178 ** I - Mask of bits 0x07 indicating which cases are are 179 ** fulfilled by this instance of the jump. 0x01 means 180 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 181 ** impossible cases (ex: if the comparison is never NULL) 182 ** are filled in automatically so that the coverage 183 ** measurement logic does not flag those impossible cases 184 ** as missed coverage. 185 ** M - Type of jump. Same as M argument above 186 */ 187 I |= mNever; 188 if( M==2 ) I |= 0x04; 189 if( M==4 ){ 190 I |= 0x08; 191 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 192 } 193 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 194 iSrcLine&0xffffff, I, M); 195 } 196 #endif 197 198 /* 199 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 200 ** a pointer to a dynamically allocated string where some other entity 201 ** is responsible for deallocating that string. Because the register 202 ** does not control the string, it might be deleted without the register 203 ** knowing it. 204 ** 205 ** This routine converts an ephemeral string into a dynamically allocated 206 ** string that the register itself controls. In other words, it 207 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 208 */ 209 #define Deephemeralize(P) \ 210 if( ((P)->flags&MEM_Ephem)!=0 \ 211 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 212 213 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 214 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 215 216 /* 217 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 218 ** if we run out of memory. 219 */ 220 static VdbeCursor *allocateCursor( 221 Vdbe *p, /* The virtual machine */ 222 int iCur, /* Index of the new VdbeCursor */ 223 int nField, /* Number of fields in the table or index */ 224 int iDb, /* Database the cursor belongs to, or -1 */ 225 u8 eCurType /* Type of the new cursor */ 226 ){ 227 /* Find the memory cell that will be used to store the blob of memory 228 ** required for this VdbeCursor structure. It is convenient to use a 229 ** vdbe memory cell to manage the memory allocation required for a 230 ** VdbeCursor structure for the following reasons: 231 ** 232 ** * Sometimes cursor numbers are used for a couple of different 233 ** purposes in a vdbe program. The different uses might require 234 ** different sized allocations. Memory cells provide growable 235 ** allocations. 236 ** 237 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 238 ** be freed lazily via the sqlite3_release_memory() API. This 239 ** minimizes the number of malloc calls made by the system. 240 ** 241 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 242 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 243 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 244 */ 245 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 246 247 int nByte; 248 VdbeCursor *pCx = 0; 249 nByte = 250 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 251 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 252 253 assert( iCur>=0 && iCur<p->nCursor ); 254 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 255 /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag 256 ** is clear. Otherwise, if this is an ephemeral cursor created by 257 ** OP_OpenDup, the cursor will not be closed and will still be part 258 ** of a BtShared.pCursor list. */ 259 if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0; 260 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 261 p->apCsr[iCur] = 0; 262 } 263 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 264 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 265 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 266 pCx->eCurType = eCurType; 267 pCx->iDb = iDb; 268 pCx->nField = nField; 269 pCx->aOffset = &pCx->aType[nField]; 270 if( eCurType==CURTYPE_BTREE ){ 271 pCx->uc.pCursor = (BtCursor*) 272 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 273 sqlite3BtreeCursorZero(pCx->uc.pCursor); 274 } 275 } 276 return pCx; 277 } 278 279 /* 280 ** The string in pRec is known to look like an integer and to have a 281 ** floating point value of rValue. Return true and set *piValue to the 282 ** integer value if the string is in range to be an integer. Otherwise, 283 ** return false. 284 */ 285 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 286 i64 iValue = (double)rValue; 287 if( sqlite3RealSameAsInt(rValue,iValue) ){ 288 *piValue = iValue; 289 return 1; 290 } 291 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 292 } 293 294 /* 295 ** Try to convert a value into a numeric representation if we can 296 ** do so without loss of information. In other words, if the string 297 ** looks like a number, convert it into a number. If it does not 298 ** look like a number, leave it alone. 299 ** 300 ** If the bTryForInt flag is true, then extra effort is made to give 301 ** an integer representation. Strings that look like floating point 302 ** values but which have no fractional component (example: '48.00') 303 ** will have a MEM_Int representation when bTryForInt is true. 304 ** 305 ** If bTryForInt is false, then if the input string contains a decimal 306 ** point or exponential notation, the result is only MEM_Real, even 307 ** if there is an exact integer representation of the quantity. 308 */ 309 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 310 double rValue; 311 u8 enc = pRec->enc; 312 int rc; 313 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 314 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 315 if( rc<=0 ) return; 316 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 317 pRec->flags |= MEM_Int; 318 }else{ 319 pRec->u.r = rValue; 320 pRec->flags |= MEM_Real; 321 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 322 } 323 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 324 ** string representation after computing a numeric equivalent, because the 325 ** string representation might not be the canonical representation for the 326 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 327 pRec->flags &= ~MEM_Str; 328 } 329 330 /* 331 ** Processing is determine by the affinity parameter: 332 ** 333 ** SQLITE_AFF_INTEGER: 334 ** SQLITE_AFF_REAL: 335 ** SQLITE_AFF_NUMERIC: 336 ** Try to convert pRec to an integer representation or a 337 ** floating-point representation if an integer representation 338 ** is not possible. Note that the integer representation is 339 ** always preferred, even if the affinity is REAL, because 340 ** an integer representation is more space efficient on disk. 341 ** 342 ** SQLITE_AFF_TEXT: 343 ** Convert pRec to a text representation. 344 ** 345 ** SQLITE_AFF_BLOB: 346 ** SQLITE_AFF_NONE: 347 ** No-op. pRec is unchanged. 348 */ 349 static void applyAffinity( 350 Mem *pRec, /* The value to apply affinity to */ 351 char affinity, /* The affinity to be applied */ 352 u8 enc /* Use this text encoding */ 353 ){ 354 if( affinity>=SQLITE_AFF_NUMERIC ){ 355 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 356 || affinity==SQLITE_AFF_NUMERIC ); 357 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 358 if( (pRec->flags & MEM_Real)==0 ){ 359 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 360 }else{ 361 sqlite3VdbeIntegerAffinity(pRec); 362 } 363 } 364 }else if( affinity==SQLITE_AFF_TEXT ){ 365 /* Only attempt the conversion to TEXT if there is an integer or real 366 ** representation (blob and NULL do not get converted) but no string 367 ** representation. It would be harmless to repeat the conversion if 368 ** there is already a string rep, but it is pointless to waste those 369 ** CPU cycles. */ 370 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 371 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 372 testcase( pRec->flags & MEM_Int ); 373 testcase( pRec->flags & MEM_Real ); 374 testcase( pRec->flags & MEM_IntReal ); 375 sqlite3VdbeMemStringify(pRec, enc, 1); 376 } 377 } 378 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 379 } 380 } 381 382 /* 383 ** Try to convert the type of a function argument or a result column 384 ** into a numeric representation. Use either INTEGER or REAL whichever 385 ** is appropriate. But only do the conversion if it is possible without 386 ** loss of information and return the revised type of the argument. 387 */ 388 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 389 int eType = sqlite3_value_type(pVal); 390 if( eType==SQLITE_TEXT ){ 391 Mem *pMem = (Mem*)pVal; 392 applyNumericAffinity(pMem, 0); 393 eType = sqlite3_value_type(pVal); 394 } 395 return eType; 396 } 397 398 /* 399 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 400 ** not the internal Mem* type. 401 */ 402 void sqlite3ValueApplyAffinity( 403 sqlite3_value *pVal, 404 u8 affinity, 405 u8 enc 406 ){ 407 applyAffinity((Mem *)pVal, affinity, enc); 408 } 409 410 /* 411 ** pMem currently only holds a string type (or maybe a BLOB that we can 412 ** interpret as a string if we want to). Compute its corresponding 413 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 414 ** accordingly. 415 */ 416 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 417 int rc; 418 sqlite3_int64 ix; 419 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 420 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 421 ExpandBlob(pMem); 422 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 423 if( rc<=0 ){ 424 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 425 pMem->u.i = ix; 426 return MEM_Int; 427 }else{ 428 return MEM_Real; 429 } 430 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 431 pMem->u.i = ix; 432 return MEM_Int; 433 } 434 return MEM_Real; 435 } 436 437 /* 438 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 439 ** none. 440 ** 441 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 442 ** But it does set pMem->u.r and pMem->u.i appropriately. 443 */ 444 static u16 numericType(Mem *pMem){ 445 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 446 testcase( pMem->flags & MEM_Int ); 447 testcase( pMem->flags & MEM_Real ); 448 testcase( pMem->flags & MEM_IntReal ); 449 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 450 } 451 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 452 testcase( pMem->flags & MEM_Str ); 453 testcase( pMem->flags & MEM_Blob ); 454 return computeNumericType(pMem); 455 } 456 return 0; 457 } 458 459 #ifdef SQLITE_DEBUG 460 /* 461 ** Write a nice string representation of the contents of cell pMem 462 ** into buffer zBuf, length nBuf. 463 */ 464 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 465 char *zCsr = zBuf; 466 int f = pMem->flags; 467 468 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 469 470 if( f&MEM_Blob ){ 471 int i; 472 char c; 473 if( f & MEM_Dyn ){ 474 c = 'z'; 475 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 476 }else if( f & MEM_Static ){ 477 c = 't'; 478 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 479 }else if( f & MEM_Ephem ){ 480 c = 'e'; 481 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 482 }else{ 483 c = 's'; 484 } 485 *(zCsr++) = c; 486 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 487 zCsr += sqlite3Strlen30(zCsr); 488 for(i=0; i<16 && i<pMem->n; i++){ 489 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 490 zCsr += sqlite3Strlen30(zCsr); 491 } 492 for(i=0; i<16 && i<pMem->n; i++){ 493 char z = pMem->z[i]; 494 if( z<32 || z>126 ) *zCsr++ = '.'; 495 else *zCsr++ = z; 496 } 497 *(zCsr++) = ']'; 498 if( f & MEM_Zero ){ 499 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 500 zCsr += sqlite3Strlen30(zCsr); 501 } 502 *zCsr = '\0'; 503 }else if( f & MEM_Str ){ 504 int j, k; 505 zBuf[0] = ' '; 506 if( f & MEM_Dyn ){ 507 zBuf[1] = 'z'; 508 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 509 }else if( f & MEM_Static ){ 510 zBuf[1] = 't'; 511 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 512 }else if( f & MEM_Ephem ){ 513 zBuf[1] = 'e'; 514 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 515 }else{ 516 zBuf[1] = 's'; 517 } 518 k = 2; 519 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 520 k += sqlite3Strlen30(&zBuf[k]); 521 zBuf[k++] = '['; 522 for(j=0; j<15 && j<pMem->n; j++){ 523 u8 c = pMem->z[j]; 524 if( c>=0x20 && c<0x7f ){ 525 zBuf[k++] = c; 526 }else{ 527 zBuf[k++] = '.'; 528 } 529 } 530 zBuf[k++] = ']'; 531 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 532 k += sqlite3Strlen30(&zBuf[k]); 533 zBuf[k++] = 0; 534 } 535 } 536 #endif 537 538 #ifdef SQLITE_DEBUG 539 /* 540 ** Print the value of a register for tracing purposes: 541 */ 542 static void memTracePrint(Mem *p){ 543 if( p->flags & MEM_Undefined ){ 544 printf(" undefined"); 545 }else if( p->flags & MEM_Null ){ 546 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 547 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 548 printf(" si:%lld", p->u.i); 549 }else if( (p->flags & (MEM_IntReal))!=0 ){ 550 printf(" ir:%lld", p->u.i); 551 }else if( p->flags & MEM_Int ){ 552 printf(" i:%lld", p->u.i); 553 #ifndef SQLITE_OMIT_FLOATING_POINT 554 }else if( p->flags & MEM_Real ){ 555 printf(" r:%g", p->u.r); 556 #endif 557 }else if( sqlite3VdbeMemIsRowSet(p) ){ 558 printf(" (rowset)"); 559 }else{ 560 char zBuf[200]; 561 sqlite3VdbeMemPrettyPrint(p, zBuf); 562 printf(" %s", zBuf); 563 } 564 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 565 } 566 static void registerTrace(int iReg, Mem *p){ 567 printf("REG[%d] = ", iReg); 568 memTracePrint(p); 569 printf("\n"); 570 sqlite3VdbeCheckMemInvariants(p); 571 } 572 #endif 573 574 #ifdef SQLITE_DEBUG 575 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 576 #else 577 # define REGISTER_TRACE(R,M) 578 #endif 579 580 581 #ifdef VDBE_PROFILE 582 583 /* 584 ** hwtime.h contains inline assembler code for implementing 585 ** high-performance timing routines. 586 */ 587 #include "hwtime.h" 588 589 #endif 590 591 #ifndef NDEBUG 592 /* 593 ** This function is only called from within an assert() expression. It 594 ** checks that the sqlite3.nTransaction variable is correctly set to 595 ** the number of non-transaction savepoints currently in the 596 ** linked list starting at sqlite3.pSavepoint. 597 ** 598 ** Usage: 599 ** 600 ** assert( checkSavepointCount(db) ); 601 */ 602 static int checkSavepointCount(sqlite3 *db){ 603 int n = 0; 604 Savepoint *p; 605 for(p=db->pSavepoint; p; p=p->pNext) n++; 606 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 607 return 1; 608 } 609 #endif 610 611 /* 612 ** Return the register of pOp->p2 after first preparing it to be 613 ** overwritten with an integer value. 614 */ 615 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 616 sqlite3VdbeMemSetNull(pOut); 617 pOut->flags = MEM_Int; 618 return pOut; 619 } 620 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 621 Mem *pOut; 622 assert( pOp->p2>0 ); 623 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 624 pOut = &p->aMem[pOp->p2]; 625 memAboutToChange(p, pOut); 626 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 627 return out2PrereleaseWithClear(pOut); 628 }else{ 629 pOut->flags = MEM_Int; 630 return pOut; 631 } 632 } 633 634 635 /* 636 ** Execute as much of a VDBE program as we can. 637 ** This is the core of sqlite3_step(). 638 */ 639 int sqlite3VdbeExec( 640 Vdbe *p /* The VDBE */ 641 ){ 642 Op *aOp = p->aOp; /* Copy of p->aOp */ 643 Op *pOp = aOp; /* Current operation */ 644 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 645 Op *pOrigOp; /* Value of pOp at the top of the loop */ 646 #endif 647 #ifdef SQLITE_DEBUG 648 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 649 #endif 650 int rc = SQLITE_OK; /* Value to return */ 651 sqlite3 *db = p->db; /* The database */ 652 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 653 u8 encoding = ENC(db); /* The database encoding */ 654 int iCompare = 0; /* Result of last comparison */ 655 unsigned nVmStep = 0; /* Number of virtual machine steps */ 656 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 657 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 658 #endif 659 Mem *aMem = p->aMem; /* Copy of p->aMem */ 660 Mem *pIn1 = 0; /* 1st input operand */ 661 Mem *pIn2 = 0; /* 2nd input operand */ 662 Mem *pIn3 = 0; /* 3rd input operand */ 663 Mem *pOut = 0; /* Output operand */ 664 #ifdef VDBE_PROFILE 665 u64 start; /* CPU clock count at start of opcode */ 666 #endif 667 /*** INSERT STACK UNION HERE ***/ 668 669 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 670 sqlite3VdbeEnter(p); 671 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 672 if( db->xProgress ){ 673 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 674 assert( 0 < db->nProgressOps ); 675 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 676 }else{ 677 nProgressLimit = 0xffffffff; 678 } 679 #endif 680 if( p->rc==SQLITE_NOMEM ){ 681 /* This happens if a malloc() inside a call to sqlite3_column_text() or 682 ** sqlite3_column_text16() failed. */ 683 goto no_mem; 684 } 685 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 686 assert( p->bIsReader || p->readOnly!=0 ); 687 p->iCurrentTime = 0; 688 assert( p->explain==0 ); 689 p->pResultSet = 0; 690 db->busyHandler.nBusy = 0; 691 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 692 sqlite3VdbeIOTraceSql(p); 693 #ifdef SQLITE_DEBUG 694 sqlite3BeginBenignMalloc(); 695 if( p->pc==0 696 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 697 ){ 698 int i; 699 int once = 1; 700 sqlite3VdbePrintSql(p); 701 if( p->db->flags & SQLITE_VdbeListing ){ 702 printf("VDBE Program Listing:\n"); 703 for(i=0; i<p->nOp; i++){ 704 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 705 } 706 } 707 if( p->db->flags & SQLITE_VdbeEQP ){ 708 for(i=0; i<p->nOp; i++){ 709 if( aOp[i].opcode==OP_Explain ){ 710 if( once ) printf("VDBE Query Plan:\n"); 711 printf("%s\n", aOp[i].p4.z); 712 once = 0; 713 } 714 } 715 } 716 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 717 } 718 sqlite3EndBenignMalloc(); 719 #endif 720 for(pOp=&aOp[p->pc]; 1; pOp++){ 721 /* Errors are detected by individual opcodes, with an immediate 722 ** jumps to abort_due_to_error. */ 723 assert( rc==SQLITE_OK ); 724 725 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 726 #ifdef VDBE_PROFILE 727 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 728 #endif 729 nVmStep++; 730 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 731 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 732 #endif 733 734 /* Only allow tracing if SQLITE_DEBUG is defined. 735 */ 736 #ifdef SQLITE_DEBUG 737 if( db->flags & SQLITE_VdbeTrace ){ 738 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 739 } 740 #endif 741 742 743 /* Check to see if we need to simulate an interrupt. This only happens 744 ** if we have a special test build. 745 */ 746 #ifdef SQLITE_TEST 747 if( sqlite3_interrupt_count>0 ){ 748 sqlite3_interrupt_count--; 749 if( sqlite3_interrupt_count==0 ){ 750 sqlite3_interrupt(db); 751 } 752 } 753 #endif 754 755 /* Sanity checking on other operands */ 756 #ifdef SQLITE_DEBUG 757 { 758 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 759 if( (opProperty & OPFLG_IN1)!=0 ){ 760 assert( pOp->p1>0 ); 761 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 762 assert( memIsValid(&aMem[pOp->p1]) ); 763 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 764 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 765 } 766 if( (opProperty & OPFLG_IN2)!=0 ){ 767 assert( pOp->p2>0 ); 768 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 769 assert( memIsValid(&aMem[pOp->p2]) ); 770 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 771 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 772 } 773 if( (opProperty & OPFLG_IN3)!=0 ){ 774 assert( pOp->p3>0 ); 775 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 776 assert( memIsValid(&aMem[pOp->p3]) ); 777 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 778 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 779 } 780 if( (opProperty & OPFLG_OUT2)!=0 ){ 781 assert( pOp->p2>0 ); 782 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 783 memAboutToChange(p, &aMem[pOp->p2]); 784 } 785 if( (opProperty & OPFLG_OUT3)!=0 ){ 786 assert( pOp->p3>0 ); 787 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 788 memAboutToChange(p, &aMem[pOp->p3]); 789 } 790 } 791 #endif 792 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 793 pOrigOp = pOp; 794 #endif 795 796 switch( pOp->opcode ){ 797 798 /***************************************************************************** 799 ** What follows is a massive switch statement where each case implements a 800 ** separate instruction in the virtual machine. If we follow the usual 801 ** indentation conventions, each case should be indented by 6 spaces. But 802 ** that is a lot of wasted space on the left margin. So the code within 803 ** the switch statement will break with convention and be flush-left. Another 804 ** big comment (similar to this one) will mark the point in the code where 805 ** we transition back to normal indentation. 806 ** 807 ** The formatting of each case is important. The makefile for SQLite 808 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 809 ** file looking for lines that begin with "case OP_". The opcodes.h files 810 ** will be filled with #defines that give unique integer values to each 811 ** opcode and the opcodes.c file is filled with an array of strings where 812 ** each string is the symbolic name for the corresponding opcode. If the 813 ** case statement is followed by a comment of the form "/# same as ... #/" 814 ** that comment is used to determine the particular value of the opcode. 815 ** 816 ** Other keywords in the comment that follows each case are used to 817 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 818 ** Keywords include: in1, in2, in3, out2, out3. See 819 ** the mkopcodeh.awk script for additional information. 820 ** 821 ** Documentation about VDBE opcodes is generated by scanning this file 822 ** for lines of that contain "Opcode:". That line and all subsequent 823 ** comment lines are used in the generation of the opcode.html documentation 824 ** file. 825 ** 826 ** SUMMARY: 827 ** 828 ** Formatting is important to scripts that scan this file. 829 ** Do not deviate from the formatting style currently in use. 830 ** 831 *****************************************************************************/ 832 833 /* Opcode: Goto * P2 * * * 834 ** 835 ** An unconditional jump to address P2. 836 ** The next instruction executed will be 837 ** the one at index P2 from the beginning of 838 ** the program. 839 ** 840 ** The P1 parameter is not actually used by this opcode. However, it 841 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 842 ** that this Goto is the bottom of a loop and that the lines from P2 down 843 ** to the current line should be indented for EXPLAIN output. 844 */ 845 case OP_Goto: { /* jump */ 846 jump_to_p2_and_check_for_interrupt: 847 pOp = &aOp[pOp->p2 - 1]; 848 849 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 850 ** OP_VNext, or OP_SorterNext) all jump here upon 851 ** completion. Check to see if sqlite3_interrupt() has been called 852 ** or if the progress callback needs to be invoked. 853 ** 854 ** This code uses unstructured "goto" statements and does not look clean. 855 ** But that is not due to sloppy coding habits. The code is written this 856 ** way for performance, to avoid having to run the interrupt and progress 857 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 858 ** faster according to "valgrind --tool=cachegrind" */ 859 check_for_interrupt: 860 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 861 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 862 /* Call the progress callback if it is configured and the required number 863 ** of VDBE ops have been executed (either since this invocation of 864 ** sqlite3VdbeExec() or since last time the progress callback was called). 865 ** If the progress callback returns non-zero, exit the virtual machine with 866 ** a return code SQLITE_ABORT. 867 */ 868 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 869 assert( db->nProgressOps!=0 ); 870 nProgressLimit += db->nProgressOps; 871 if( db->xProgress(db->pProgressArg) ){ 872 nProgressLimit = 0xffffffff; 873 rc = SQLITE_INTERRUPT; 874 goto abort_due_to_error; 875 } 876 } 877 #endif 878 879 break; 880 } 881 882 /* Opcode: Gosub P1 P2 * * * 883 ** 884 ** Write the current address onto register P1 885 ** and then jump to address P2. 886 */ 887 case OP_Gosub: { /* jump */ 888 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 889 pIn1 = &aMem[pOp->p1]; 890 assert( VdbeMemDynamic(pIn1)==0 ); 891 memAboutToChange(p, pIn1); 892 pIn1->flags = MEM_Int; 893 pIn1->u.i = (int)(pOp-aOp); 894 REGISTER_TRACE(pOp->p1, pIn1); 895 896 /* Most jump operations do a goto to this spot in order to update 897 ** the pOp pointer. */ 898 jump_to_p2: 899 pOp = &aOp[pOp->p2 - 1]; 900 break; 901 } 902 903 /* Opcode: Return P1 * * * * 904 ** 905 ** Jump to the next instruction after the address in register P1. After 906 ** the jump, register P1 becomes undefined. 907 */ 908 case OP_Return: { /* in1 */ 909 pIn1 = &aMem[pOp->p1]; 910 assert( pIn1->flags==MEM_Int ); 911 pOp = &aOp[pIn1->u.i]; 912 pIn1->flags = MEM_Undefined; 913 break; 914 } 915 916 /* Opcode: InitCoroutine P1 P2 P3 * * 917 ** 918 ** Set up register P1 so that it will Yield to the coroutine 919 ** located at address P3. 920 ** 921 ** If P2!=0 then the coroutine implementation immediately follows 922 ** this opcode. So jump over the coroutine implementation to 923 ** address P2. 924 ** 925 ** See also: EndCoroutine 926 */ 927 case OP_InitCoroutine: { /* jump */ 928 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 929 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 930 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 931 pOut = &aMem[pOp->p1]; 932 assert( !VdbeMemDynamic(pOut) ); 933 pOut->u.i = pOp->p3 - 1; 934 pOut->flags = MEM_Int; 935 if( pOp->p2 ) goto jump_to_p2; 936 break; 937 } 938 939 /* Opcode: EndCoroutine P1 * * * * 940 ** 941 ** The instruction at the address in register P1 is a Yield. 942 ** Jump to the P2 parameter of that Yield. 943 ** After the jump, register P1 becomes undefined. 944 ** 945 ** See also: InitCoroutine 946 */ 947 case OP_EndCoroutine: { /* in1 */ 948 VdbeOp *pCaller; 949 pIn1 = &aMem[pOp->p1]; 950 assert( pIn1->flags==MEM_Int ); 951 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 952 pCaller = &aOp[pIn1->u.i]; 953 assert( pCaller->opcode==OP_Yield ); 954 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 955 pOp = &aOp[pCaller->p2 - 1]; 956 pIn1->flags = MEM_Undefined; 957 break; 958 } 959 960 /* Opcode: Yield P1 P2 * * * 961 ** 962 ** Swap the program counter with the value in register P1. This 963 ** has the effect of yielding to a coroutine. 964 ** 965 ** If the coroutine that is launched by this instruction ends with 966 ** Yield or Return then continue to the next instruction. But if 967 ** the coroutine launched by this instruction ends with 968 ** EndCoroutine, then jump to P2 rather than continuing with the 969 ** next instruction. 970 ** 971 ** See also: InitCoroutine 972 */ 973 case OP_Yield: { /* in1, jump */ 974 int pcDest; 975 pIn1 = &aMem[pOp->p1]; 976 assert( VdbeMemDynamic(pIn1)==0 ); 977 pIn1->flags = MEM_Int; 978 pcDest = (int)pIn1->u.i; 979 pIn1->u.i = (int)(pOp - aOp); 980 REGISTER_TRACE(pOp->p1, pIn1); 981 pOp = &aOp[pcDest]; 982 break; 983 } 984 985 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 986 ** Synopsis: if r[P3]=null halt 987 ** 988 ** Check the value in register P3. If it is NULL then Halt using 989 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 990 ** value in register P3 is not NULL, then this routine is a no-op. 991 ** The P5 parameter should be 1. 992 */ 993 case OP_HaltIfNull: { /* in3 */ 994 pIn3 = &aMem[pOp->p3]; 995 #ifdef SQLITE_DEBUG 996 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 997 #endif 998 if( (pIn3->flags & MEM_Null)==0 ) break; 999 /* Fall through into OP_Halt */ 1000 } 1001 1002 /* Opcode: Halt P1 P2 * P4 P5 1003 ** 1004 ** Exit immediately. All open cursors, etc are closed 1005 ** automatically. 1006 ** 1007 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1008 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1009 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1010 ** whether or not to rollback the current transaction. Do not rollback 1011 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1012 ** then back out all changes that have occurred during this execution of the 1013 ** VDBE, but do not rollback the transaction. 1014 ** 1015 ** If P4 is not null then it is an error message string. 1016 ** 1017 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1018 ** 1019 ** 0: (no change) 1020 ** 1: NOT NULL contraint failed: P4 1021 ** 2: UNIQUE constraint failed: P4 1022 ** 3: CHECK constraint failed: P4 1023 ** 4: FOREIGN KEY constraint failed: P4 1024 ** 1025 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1026 ** omitted. 1027 ** 1028 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1029 ** every program. So a jump past the last instruction of the program 1030 ** is the same as executing Halt. 1031 */ 1032 case OP_Halt: { 1033 VdbeFrame *pFrame; 1034 int pcx; 1035 1036 pcx = (int)(pOp - aOp); 1037 #ifdef SQLITE_DEBUG 1038 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1039 #endif 1040 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1041 /* Halt the sub-program. Return control to the parent frame. */ 1042 pFrame = p->pFrame; 1043 p->pFrame = pFrame->pParent; 1044 p->nFrame--; 1045 sqlite3VdbeSetChanges(db, p->nChange); 1046 pcx = sqlite3VdbeFrameRestore(pFrame); 1047 if( pOp->p2==OE_Ignore ){ 1048 /* Instruction pcx is the OP_Program that invoked the sub-program 1049 ** currently being halted. If the p2 instruction of this OP_Halt 1050 ** instruction is set to OE_Ignore, then the sub-program is throwing 1051 ** an IGNORE exception. In this case jump to the address specified 1052 ** as the p2 of the calling OP_Program. */ 1053 pcx = p->aOp[pcx].p2-1; 1054 } 1055 aOp = p->aOp; 1056 aMem = p->aMem; 1057 pOp = &aOp[pcx]; 1058 break; 1059 } 1060 p->rc = pOp->p1; 1061 p->errorAction = (u8)pOp->p2; 1062 p->pc = pcx; 1063 assert( pOp->p5<=4 ); 1064 if( p->rc ){ 1065 if( pOp->p5 ){ 1066 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1067 "FOREIGN KEY" }; 1068 testcase( pOp->p5==1 ); 1069 testcase( pOp->p5==2 ); 1070 testcase( pOp->p5==3 ); 1071 testcase( pOp->p5==4 ); 1072 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1073 if( pOp->p4.z ){ 1074 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1075 } 1076 }else{ 1077 sqlite3VdbeError(p, "%s", pOp->p4.z); 1078 } 1079 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1080 } 1081 rc = sqlite3VdbeHalt(p); 1082 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1083 if( rc==SQLITE_BUSY ){ 1084 p->rc = SQLITE_BUSY; 1085 }else{ 1086 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1087 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1088 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1089 } 1090 goto vdbe_return; 1091 } 1092 1093 /* Opcode: Integer P1 P2 * * * 1094 ** Synopsis: r[P2]=P1 1095 ** 1096 ** The 32-bit integer value P1 is written into register P2. 1097 */ 1098 case OP_Integer: { /* out2 */ 1099 pOut = out2Prerelease(p, pOp); 1100 pOut->u.i = pOp->p1; 1101 break; 1102 } 1103 1104 /* Opcode: Int64 * P2 * P4 * 1105 ** Synopsis: r[P2]=P4 1106 ** 1107 ** P4 is a pointer to a 64-bit integer value. 1108 ** Write that value into register P2. 1109 */ 1110 case OP_Int64: { /* out2 */ 1111 pOut = out2Prerelease(p, pOp); 1112 assert( pOp->p4.pI64!=0 ); 1113 pOut->u.i = *pOp->p4.pI64; 1114 break; 1115 } 1116 1117 #ifndef SQLITE_OMIT_FLOATING_POINT 1118 /* Opcode: Real * P2 * P4 * 1119 ** Synopsis: r[P2]=P4 1120 ** 1121 ** P4 is a pointer to a 64-bit floating point value. 1122 ** Write that value into register P2. 1123 */ 1124 case OP_Real: { /* same as TK_FLOAT, out2 */ 1125 pOut = out2Prerelease(p, pOp); 1126 pOut->flags = MEM_Real; 1127 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1128 pOut->u.r = *pOp->p4.pReal; 1129 break; 1130 } 1131 #endif 1132 1133 /* Opcode: String8 * P2 * P4 * 1134 ** Synopsis: r[P2]='P4' 1135 ** 1136 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1137 ** into a String opcode before it is executed for the first time. During 1138 ** this transformation, the length of string P4 is computed and stored 1139 ** as the P1 parameter. 1140 */ 1141 case OP_String8: { /* same as TK_STRING, out2 */ 1142 assert( pOp->p4.z!=0 ); 1143 pOut = out2Prerelease(p, pOp); 1144 pOp->opcode = OP_String; 1145 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1146 1147 #ifndef SQLITE_OMIT_UTF16 1148 if( encoding!=SQLITE_UTF8 ){ 1149 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1150 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1151 if( rc ) goto too_big; 1152 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1153 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1154 assert( VdbeMemDynamic(pOut)==0 ); 1155 pOut->szMalloc = 0; 1156 pOut->flags |= MEM_Static; 1157 if( pOp->p4type==P4_DYNAMIC ){ 1158 sqlite3DbFree(db, pOp->p4.z); 1159 } 1160 pOp->p4type = P4_DYNAMIC; 1161 pOp->p4.z = pOut->z; 1162 pOp->p1 = pOut->n; 1163 } 1164 #endif 1165 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1166 goto too_big; 1167 } 1168 assert( rc==SQLITE_OK ); 1169 /* Fall through to the next case, OP_String */ 1170 } 1171 1172 /* Opcode: String P1 P2 P3 P4 P5 1173 ** Synopsis: r[P2]='P4' (len=P1) 1174 ** 1175 ** The string value P4 of length P1 (bytes) is stored in register P2. 1176 ** 1177 ** If P3 is not zero and the content of register P3 is equal to P5, then 1178 ** the datatype of the register P2 is converted to BLOB. The content is 1179 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1180 ** of a string, as if it had been CAST. In other words: 1181 ** 1182 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1183 */ 1184 case OP_String: { /* out2 */ 1185 assert( pOp->p4.z!=0 ); 1186 pOut = out2Prerelease(p, pOp); 1187 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1188 pOut->z = pOp->p4.z; 1189 pOut->n = pOp->p1; 1190 pOut->enc = encoding; 1191 UPDATE_MAX_BLOBSIZE(pOut); 1192 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1193 if( pOp->p3>0 ){ 1194 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1195 pIn3 = &aMem[pOp->p3]; 1196 assert( pIn3->flags & MEM_Int ); 1197 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1198 } 1199 #endif 1200 break; 1201 } 1202 1203 /* Opcode: Null P1 P2 P3 * * 1204 ** Synopsis: r[P2..P3]=NULL 1205 ** 1206 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1207 ** NULL into register P3 and every register in between P2 and P3. If P3 1208 ** is less than P2 (typically P3 is zero) then only register P2 is 1209 ** set to NULL. 1210 ** 1211 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1212 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1213 ** OP_Ne or OP_Eq. 1214 */ 1215 case OP_Null: { /* out2 */ 1216 int cnt; 1217 u16 nullFlag; 1218 pOut = out2Prerelease(p, pOp); 1219 cnt = pOp->p3-pOp->p2; 1220 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1221 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1222 pOut->n = 0; 1223 #ifdef SQLITE_DEBUG 1224 pOut->uTemp = 0; 1225 #endif 1226 while( cnt>0 ){ 1227 pOut++; 1228 memAboutToChange(p, pOut); 1229 sqlite3VdbeMemSetNull(pOut); 1230 pOut->flags = nullFlag; 1231 pOut->n = 0; 1232 cnt--; 1233 } 1234 break; 1235 } 1236 1237 /* Opcode: SoftNull P1 * * * * 1238 ** Synopsis: r[P1]=NULL 1239 ** 1240 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1241 ** instruction, but do not free any string or blob memory associated with 1242 ** the register, so that if the value was a string or blob that was 1243 ** previously copied using OP_SCopy, the copies will continue to be valid. 1244 */ 1245 case OP_SoftNull: { 1246 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1247 pOut = &aMem[pOp->p1]; 1248 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1249 break; 1250 } 1251 1252 /* Opcode: Blob P1 P2 * P4 * 1253 ** Synopsis: r[P2]=P4 (len=P1) 1254 ** 1255 ** P4 points to a blob of data P1 bytes long. Store this 1256 ** blob in register P2. 1257 */ 1258 case OP_Blob: { /* out2 */ 1259 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1260 pOut = out2Prerelease(p, pOp); 1261 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1262 pOut->enc = encoding; 1263 UPDATE_MAX_BLOBSIZE(pOut); 1264 break; 1265 } 1266 1267 /* Opcode: Variable P1 P2 * P4 * 1268 ** Synopsis: r[P2]=parameter(P1,P4) 1269 ** 1270 ** Transfer the values of bound parameter P1 into register P2 1271 ** 1272 ** If the parameter is named, then its name appears in P4. 1273 ** The P4 value is used by sqlite3_bind_parameter_name(). 1274 */ 1275 case OP_Variable: { /* out2 */ 1276 Mem *pVar; /* Value being transferred */ 1277 1278 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1279 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1280 pVar = &p->aVar[pOp->p1 - 1]; 1281 if( sqlite3VdbeMemTooBig(pVar) ){ 1282 goto too_big; 1283 } 1284 pOut = &aMem[pOp->p2]; 1285 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1286 memcpy(pOut, pVar, MEMCELLSIZE); 1287 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1288 pOut->flags |= MEM_Static|MEM_FromBind; 1289 UPDATE_MAX_BLOBSIZE(pOut); 1290 break; 1291 } 1292 1293 /* Opcode: Move P1 P2 P3 * * 1294 ** Synopsis: r[P2@P3]=r[P1@P3] 1295 ** 1296 ** Move the P3 values in register P1..P1+P3-1 over into 1297 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1298 ** left holding a NULL. It is an error for register ranges 1299 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1300 ** for P3 to be less than 1. 1301 */ 1302 case OP_Move: { 1303 int n; /* Number of registers left to copy */ 1304 int p1; /* Register to copy from */ 1305 int p2; /* Register to copy to */ 1306 1307 n = pOp->p3; 1308 p1 = pOp->p1; 1309 p2 = pOp->p2; 1310 assert( n>0 && p1>0 && p2>0 ); 1311 assert( p1+n<=p2 || p2+n<=p1 ); 1312 1313 pIn1 = &aMem[p1]; 1314 pOut = &aMem[p2]; 1315 do{ 1316 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1317 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1318 assert( memIsValid(pIn1) ); 1319 memAboutToChange(p, pOut); 1320 sqlite3VdbeMemMove(pOut, pIn1); 1321 #ifdef SQLITE_DEBUG 1322 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1323 pOut->pScopyFrom += pOp->p2 - p1; 1324 } 1325 #endif 1326 Deephemeralize(pOut); 1327 REGISTER_TRACE(p2++, pOut); 1328 pIn1++; 1329 pOut++; 1330 }while( --n ); 1331 break; 1332 } 1333 1334 /* Opcode: Copy P1 P2 P3 * * 1335 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1336 ** 1337 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1338 ** 1339 ** This instruction makes a deep copy of the value. A duplicate 1340 ** is made of any string or blob constant. See also OP_SCopy. 1341 */ 1342 case OP_Copy: { 1343 int n; 1344 1345 n = pOp->p3; 1346 pIn1 = &aMem[pOp->p1]; 1347 pOut = &aMem[pOp->p2]; 1348 assert( pOut!=pIn1 ); 1349 while( 1 ){ 1350 memAboutToChange(p, pOut); 1351 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1352 Deephemeralize(pOut); 1353 #ifdef SQLITE_DEBUG 1354 pOut->pScopyFrom = 0; 1355 #endif 1356 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1357 if( (n--)==0 ) break; 1358 pOut++; 1359 pIn1++; 1360 } 1361 break; 1362 } 1363 1364 /* Opcode: SCopy P1 P2 * * * 1365 ** Synopsis: r[P2]=r[P1] 1366 ** 1367 ** Make a shallow copy of register P1 into register P2. 1368 ** 1369 ** This instruction makes a shallow copy of the value. If the value 1370 ** is a string or blob, then the copy is only a pointer to the 1371 ** original and hence if the original changes so will the copy. 1372 ** Worse, if the original is deallocated, the copy becomes invalid. 1373 ** Thus the program must guarantee that the original will not change 1374 ** during the lifetime of the copy. Use OP_Copy to make a complete 1375 ** copy. 1376 */ 1377 case OP_SCopy: { /* out2 */ 1378 pIn1 = &aMem[pOp->p1]; 1379 pOut = &aMem[pOp->p2]; 1380 assert( pOut!=pIn1 ); 1381 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1382 #ifdef SQLITE_DEBUG 1383 pOut->pScopyFrom = pIn1; 1384 pOut->mScopyFlags = pIn1->flags; 1385 #endif 1386 break; 1387 } 1388 1389 /* Opcode: IntCopy P1 P2 * * * 1390 ** Synopsis: r[P2]=r[P1] 1391 ** 1392 ** Transfer the integer value held in register P1 into register P2. 1393 ** 1394 ** This is an optimized version of SCopy that works only for integer 1395 ** values. 1396 */ 1397 case OP_IntCopy: { /* out2 */ 1398 pIn1 = &aMem[pOp->p1]; 1399 assert( (pIn1->flags & MEM_Int)!=0 ); 1400 pOut = &aMem[pOp->p2]; 1401 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1402 break; 1403 } 1404 1405 /* Opcode: ResultRow P1 P2 * * * 1406 ** Synopsis: output=r[P1@P2] 1407 ** 1408 ** The registers P1 through P1+P2-1 contain a single row of 1409 ** results. This opcode causes the sqlite3_step() call to terminate 1410 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1411 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1412 ** the result row. 1413 */ 1414 case OP_ResultRow: { 1415 Mem *pMem; 1416 int i; 1417 assert( p->nResColumn==pOp->p2 ); 1418 assert( pOp->p1>0 ); 1419 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1420 1421 /* If this statement has violated immediate foreign key constraints, do 1422 ** not return the number of rows modified. And do not RELEASE the statement 1423 ** transaction. It needs to be rolled back. */ 1424 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1425 assert( db->flags&SQLITE_CountRows ); 1426 assert( p->usesStmtJournal ); 1427 goto abort_due_to_error; 1428 } 1429 1430 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1431 ** DML statements invoke this opcode to return the number of rows 1432 ** modified to the user. This is the only way that a VM that 1433 ** opens a statement transaction may invoke this opcode. 1434 ** 1435 ** In case this is such a statement, close any statement transaction 1436 ** opened by this VM before returning control to the user. This is to 1437 ** ensure that statement-transactions are always nested, not overlapping. 1438 ** If the open statement-transaction is not closed here, then the user 1439 ** may step another VM that opens its own statement transaction. This 1440 ** may lead to overlapping statement transactions. 1441 ** 1442 ** The statement transaction is never a top-level transaction. Hence 1443 ** the RELEASE call below can never fail. 1444 */ 1445 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1446 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1447 assert( rc==SQLITE_OK ); 1448 1449 /* Invalidate all ephemeral cursor row caches */ 1450 p->cacheCtr = (p->cacheCtr + 2)|1; 1451 1452 /* Make sure the results of the current row are \000 terminated 1453 ** and have an assigned type. The results are de-ephemeralized as 1454 ** a side effect. 1455 */ 1456 pMem = p->pResultSet = &aMem[pOp->p1]; 1457 for(i=0; i<pOp->p2; i++){ 1458 assert( memIsValid(&pMem[i]) ); 1459 Deephemeralize(&pMem[i]); 1460 assert( (pMem[i].flags & MEM_Ephem)==0 1461 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1462 sqlite3VdbeMemNulTerminate(&pMem[i]); 1463 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1464 } 1465 if( db->mallocFailed ) goto no_mem; 1466 1467 if( db->mTrace & SQLITE_TRACE_ROW ){ 1468 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1469 } 1470 1471 /* Return SQLITE_ROW 1472 */ 1473 p->pc = (int)(pOp - aOp) + 1; 1474 rc = SQLITE_ROW; 1475 goto vdbe_return; 1476 } 1477 1478 /* Opcode: Concat P1 P2 P3 * * 1479 ** Synopsis: r[P3]=r[P2]+r[P1] 1480 ** 1481 ** Add the text in register P1 onto the end of the text in 1482 ** register P2 and store the result in register P3. 1483 ** If either the P1 or P2 text are NULL then store NULL in P3. 1484 ** 1485 ** P3 = P2 || P1 1486 ** 1487 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1488 ** if P3 is the same register as P2, the implementation is able 1489 ** to avoid a memcpy(). 1490 */ 1491 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1492 i64 nByte; /* Total size of the output string or blob */ 1493 u16 flags1; /* Initial flags for P1 */ 1494 u16 flags2; /* Initial flags for P2 */ 1495 1496 pIn1 = &aMem[pOp->p1]; 1497 pIn2 = &aMem[pOp->p2]; 1498 pOut = &aMem[pOp->p3]; 1499 testcase( pIn1==pIn2 ); 1500 testcase( pOut==pIn2 ); 1501 assert( pIn1!=pOut ); 1502 flags1 = pIn1->flags; 1503 testcase( flags1 & MEM_Null ); 1504 testcase( pIn2->flags & MEM_Null ); 1505 if( (flags1 | pIn2->flags) & MEM_Null ){ 1506 sqlite3VdbeMemSetNull(pOut); 1507 break; 1508 } 1509 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1510 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1511 flags1 = pIn1->flags & ~MEM_Str; 1512 }else if( (flags1 & MEM_Zero)!=0 ){ 1513 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1514 flags1 = pIn1->flags & ~MEM_Str; 1515 } 1516 flags2 = pIn2->flags; 1517 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1518 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1519 flags2 = pIn2->flags & ~MEM_Str; 1520 }else if( (flags2 & MEM_Zero)!=0 ){ 1521 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1522 flags2 = pIn2->flags & ~MEM_Str; 1523 } 1524 nByte = pIn1->n + pIn2->n; 1525 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1526 goto too_big; 1527 } 1528 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1529 goto no_mem; 1530 } 1531 MemSetTypeFlag(pOut, MEM_Str); 1532 if( pOut!=pIn2 ){ 1533 memcpy(pOut->z, pIn2->z, pIn2->n); 1534 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1535 pIn2->flags = flags2; 1536 } 1537 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1538 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1539 pIn1->flags = flags1; 1540 pOut->z[nByte]=0; 1541 pOut->z[nByte+1] = 0; 1542 pOut->z[nByte+2] = 0; 1543 pOut->flags |= MEM_Term; 1544 pOut->n = (int)nByte; 1545 pOut->enc = encoding; 1546 UPDATE_MAX_BLOBSIZE(pOut); 1547 break; 1548 } 1549 1550 /* Opcode: Add P1 P2 P3 * * 1551 ** Synopsis: r[P3]=r[P1]+r[P2] 1552 ** 1553 ** Add the value in register P1 to the value in register P2 1554 ** and store the result in register P3. 1555 ** If either input is NULL, the result is NULL. 1556 */ 1557 /* Opcode: Multiply P1 P2 P3 * * 1558 ** Synopsis: r[P3]=r[P1]*r[P2] 1559 ** 1560 ** 1561 ** Multiply the value in register P1 by the value in register P2 1562 ** and store the result in register P3. 1563 ** If either input is NULL, the result is NULL. 1564 */ 1565 /* Opcode: Subtract P1 P2 P3 * * 1566 ** Synopsis: r[P3]=r[P2]-r[P1] 1567 ** 1568 ** Subtract the value in register P1 from the value in register P2 1569 ** and store the result in register P3. 1570 ** If either input is NULL, the result is NULL. 1571 */ 1572 /* Opcode: Divide P1 P2 P3 * * 1573 ** Synopsis: r[P3]=r[P2]/r[P1] 1574 ** 1575 ** Divide the value in register P1 by the value in register P2 1576 ** and store the result in register P3 (P3=P2/P1). If the value in 1577 ** register P1 is zero, then the result is NULL. If either input is 1578 ** NULL, the result is NULL. 1579 */ 1580 /* Opcode: Remainder P1 P2 P3 * * 1581 ** Synopsis: r[P3]=r[P2]%r[P1] 1582 ** 1583 ** Compute the remainder after integer register P2 is divided by 1584 ** register P1 and store the result in register P3. 1585 ** If the value in register P1 is zero the result is NULL. 1586 ** If either operand is NULL, the result is NULL. 1587 */ 1588 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1589 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1590 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1591 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1592 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1593 u16 flags; /* Combined MEM_* flags from both inputs */ 1594 u16 type1; /* Numeric type of left operand */ 1595 u16 type2; /* Numeric type of right operand */ 1596 i64 iA; /* Integer value of left operand */ 1597 i64 iB; /* Integer value of right operand */ 1598 double rA; /* Real value of left operand */ 1599 double rB; /* Real value of right operand */ 1600 1601 pIn1 = &aMem[pOp->p1]; 1602 type1 = numericType(pIn1); 1603 pIn2 = &aMem[pOp->p2]; 1604 type2 = numericType(pIn2); 1605 pOut = &aMem[pOp->p3]; 1606 flags = pIn1->flags | pIn2->flags; 1607 if( (type1 & type2 & MEM_Int)!=0 ){ 1608 iA = pIn1->u.i; 1609 iB = pIn2->u.i; 1610 switch( pOp->opcode ){ 1611 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1612 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1613 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1614 case OP_Divide: { 1615 if( iA==0 ) goto arithmetic_result_is_null; 1616 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1617 iB /= iA; 1618 break; 1619 } 1620 default: { 1621 if( iA==0 ) goto arithmetic_result_is_null; 1622 if( iA==-1 ) iA = 1; 1623 iB %= iA; 1624 break; 1625 } 1626 } 1627 pOut->u.i = iB; 1628 MemSetTypeFlag(pOut, MEM_Int); 1629 }else if( (flags & MEM_Null)!=0 ){ 1630 goto arithmetic_result_is_null; 1631 }else{ 1632 fp_math: 1633 rA = sqlite3VdbeRealValue(pIn1); 1634 rB = sqlite3VdbeRealValue(pIn2); 1635 switch( pOp->opcode ){ 1636 case OP_Add: rB += rA; break; 1637 case OP_Subtract: rB -= rA; break; 1638 case OP_Multiply: rB *= rA; break; 1639 case OP_Divide: { 1640 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1641 if( rA==(double)0 ) goto arithmetic_result_is_null; 1642 rB /= rA; 1643 break; 1644 } 1645 default: { 1646 iA = sqlite3VdbeIntValue(pIn1); 1647 iB = sqlite3VdbeIntValue(pIn2); 1648 if( iA==0 ) goto arithmetic_result_is_null; 1649 if( iA==-1 ) iA = 1; 1650 rB = (double)(iB % iA); 1651 break; 1652 } 1653 } 1654 #ifdef SQLITE_OMIT_FLOATING_POINT 1655 pOut->u.i = rB; 1656 MemSetTypeFlag(pOut, MEM_Int); 1657 #else 1658 if( sqlite3IsNaN(rB) ){ 1659 goto arithmetic_result_is_null; 1660 } 1661 pOut->u.r = rB; 1662 MemSetTypeFlag(pOut, MEM_Real); 1663 #endif 1664 } 1665 break; 1666 1667 arithmetic_result_is_null: 1668 sqlite3VdbeMemSetNull(pOut); 1669 break; 1670 } 1671 1672 /* Opcode: CollSeq P1 * * P4 1673 ** 1674 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1675 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1676 ** be returned. This is used by the built-in min(), max() and nullif() 1677 ** functions. 1678 ** 1679 ** If P1 is not zero, then it is a register that a subsequent min() or 1680 ** max() aggregate will set to 1 if the current row is not the minimum or 1681 ** maximum. The P1 register is initialized to 0 by this instruction. 1682 ** 1683 ** The interface used by the implementation of the aforementioned functions 1684 ** to retrieve the collation sequence set by this opcode is not available 1685 ** publicly. Only built-in functions have access to this feature. 1686 */ 1687 case OP_CollSeq: { 1688 assert( pOp->p4type==P4_COLLSEQ ); 1689 if( pOp->p1 ){ 1690 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1691 } 1692 break; 1693 } 1694 1695 /* Opcode: BitAnd P1 P2 P3 * * 1696 ** Synopsis: r[P3]=r[P1]&r[P2] 1697 ** 1698 ** Take the bit-wise AND of the values in register P1 and P2 and 1699 ** store the result in register P3. 1700 ** If either input is NULL, the result is NULL. 1701 */ 1702 /* Opcode: BitOr P1 P2 P3 * * 1703 ** Synopsis: r[P3]=r[P1]|r[P2] 1704 ** 1705 ** Take the bit-wise OR of the values in register P1 and P2 and 1706 ** store the result in register P3. 1707 ** If either input is NULL, the result is NULL. 1708 */ 1709 /* Opcode: ShiftLeft P1 P2 P3 * * 1710 ** Synopsis: r[P3]=r[P2]<<r[P1] 1711 ** 1712 ** Shift the integer value in register P2 to the left by the 1713 ** number of bits specified by the integer in register P1. 1714 ** Store the result in register P3. 1715 ** If either input is NULL, the result is NULL. 1716 */ 1717 /* Opcode: ShiftRight P1 P2 P3 * * 1718 ** Synopsis: r[P3]=r[P2]>>r[P1] 1719 ** 1720 ** Shift the integer value in register P2 to the right by the 1721 ** number of bits specified by the integer in register P1. 1722 ** Store the result in register P3. 1723 ** If either input is NULL, the result is NULL. 1724 */ 1725 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1726 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1727 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1728 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1729 i64 iA; 1730 u64 uA; 1731 i64 iB; 1732 u8 op; 1733 1734 pIn1 = &aMem[pOp->p1]; 1735 pIn2 = &aMem[pOp->p2]; 1736 pOut = &aMem[pOp->p3]; 1737 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1738 sqlite3VdbeMemSetNull(pOut); 1739 break; 1740 } 1741 iA = sqlite3VdbeIntValue(pIn2); 1742 iB = sqlite3VdbeIntValue(pIn1); 1743 op = pOp->opcode; 1744 if( op==OP_BitAnd ){ 1745 iA &= iB; 1746 }else if( op==OP_BitOr ){ 1747 iA |= iB; 1748 }else if( iB!=0 ){ 1749 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1750 1751 /* If shifting by a negative amount, shift in the other direction */ 1752 if( iB<0 ){ 1753 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1754 op = 2*OP_ShiftLeft + 1 - op; 1755 iB = iB>(-64) ? -iB : 64; 1756 } 1757 1758 if( iB>=64 ){ 1759 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1760 }else{ 1761 memcpy(&uA, &iA, sizeof(uA)); 1762 if( op==OP_ShiftLeft ){ 1763 uA <<= iB; 1764 }else{ 1765 uA >>= iB; 1766 /* Sign-extend on a right shift of a negative number */ 1767 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1768 } 1769 memcpy(&iA, &uA, sizeof(iA)); 1770 } 1771 } 1772 pOut->u.i = iA; 1773 MemSetTypeFlag(pOut, MEM_Int); 1774 break; 1775 } 1776 1777 /* Opcode: AddImm P1 P2 * * * 1778 ** Synopsis: r[P1]=r[P1]+P2 1779 ** 1780 ** Add the constant P2 to the value in register P1. 1781 ** The result is always an integer. 1782 ** 1783 ** To force any register to be an integer, just add 0. 1784 */ 1785 case OP_AddImm: { /* in1 */ 1786 pIn1 = &aMem[pOp->p1]; 1787 memAboutToChange(p, pIn1); 1788 sqlite3VdbeMemIntegerify(pIn1); 1789 pIn1->u.i += pOp->p2; 1790 break; 1791 } 1792 1793 /* Opcode: MustBeInt P1 P2 * * * 1794 ** 1795 ** Force the value in register P1 to be an integer. If the value 1796 ** in P1 is not an integer and cannot be converted into an integer 1797 ** without data loss, then jump immediately to P2, or if P2==0 1798 ** raise an SQLITE_MISMATCH exception. 1799 */ 1800 case OP_MustBeInt: { /* jump, in1 */ 1801 pIn1 = &aMem[pOp->p1]; 1802 if( (pIn1->flags & MEM_Int)==0 ){ 1803 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1804 if( (pIn1->flags & MEM_Int)==0 ){ 1805 VdbeBranchTaken(1, 2); 1806 if( pOp->p2==0 ){ 1807 rc = SQLITE_MISMATCH; 1808 goto abort_due_to_error; 1809 }else{ 1810 goto jump_to_p2; 1811 } 1812 } 1813 } 1814 VdbeBranchTaken(0, 2); 1815 MemSetTypeFlag(pIn1, MEM_Int); 1816 break; 1817 } 1818 1819 #ifndef SQLITE_OMIT_FLOATING_POINT 1820 /* Opcode: RealAffinity P1 * * * * 1821 ** 1822 ** If register P1 holds an integer convert it to a real value. 1823 ** 1824 ** This opcode is used when extracting information from a column that 1825 ** has REAL affinity. Such column values may still be stored as 1826 ** integers, for space efficiency, but after extraction we want them 1827 ** to have only a real value. 1828 */ 1829 case OP_RealAffinity: { /* in1 */ 1830 pIn1 = &aMem[pOp->p1]; 1831 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1832 testcase( pIn1->flags & MEM_Int ); 1833 testcase( pIn1->flags & MEM_IntReal ); 1834 sqlite3VdbeMemRealify(pIn1); 1835 } 1836 break; 1837 } 1838 #endif 1839 1840 #ifndef SQLITE_OMIT_CAST 1841 /* Opcode: Cast P1 P2 * * * 1842 ** Synopsis: affinity(r[P1]) 1843 ** 1844 ** Force the value in register P1 to be the type defined by P2. 1845 ** 1846 ** <ul> 1847 ** <li> P2=='A' → BLOB 1848 ** <li> P2=='B' → TEXT 1849 ** <li> P2=='C' → NUMERIC 1850 ** <li> P2=='D' → INTEGER 1851 ** <li> P2=='E' → REAL 1852 ** </ul> 1853 ** 1854 ** A NULL value is not changed by this routine. It remains NULL. 1855 */ 1856 case OP_Cast: { /* in1 */ 1857 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1858 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1859 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1860 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1861 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1862 testcase( pOp->p2==SQLITE_AFF_REAL ); 1863 pIn1 = &aMem[pOp->p1]; 1864 memAboutToChange(p, pIn1); 1865 rc = ExpandBlob(pIn1); 1866 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1867 UPDATE_MAX_BLOBSIZE(pIn1); 1868 if( rc ) goto abort_due_to_error; 1869 break; 1870 } 1871 #endif /* SQLITE_OMIT_CAST */ 1872 1873 /* Opcode: Eq P1 P2 P3 P4 P5 1874 ** Synopsis: IF r[P3]==r[P1] 1875 ** 1876 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1877 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1878 ** store the result of comparison in register P2. 1879 ** 1880 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1881 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1882 ** to coerce both inputs according to this affinity before the 1883 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1884 ** affinity is used. Note that the affinity conversions are stored 1885 ** back into the input registers P1 and P3. So this opcode can cause 1886 ** persistent changes to registers P1 and P3. 1887 ** 1888 ** Once any conversions have taken place, and neither value is NULL, 1889 ** the values are compared. If both values are blobs then memcmp() is 1890 ** used to determine the results of the comparison. If both values 1891 ** are text, then the appropriate collating function specified in 1892 ** P4 is used to do the comparison. If P4 is not specified then 1893 ** memcmp() is used to compare text string. If both values are 1894 ** numeric, then a numeric comparison is used. If the two values 1895 ** are of different types, then numbers are considered less than 1896 ** strings and strings are considered less than blobs. 1897 ** 1898 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1899 ** true or false and is never NULL. If both operands are NULL then the result 1900 ** of comparison is true. If either operand is NULL then the result is false. 1901 ** If neither operand is NULL the result is the same as it would be if 1902 ** the SQLITE_NULLEQ flag were omitted from P5. 1903 ** 1904 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1905 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1906 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1907 */ 1908 /* Opcode: Ne P1 P2 P3 P4 P5 1909 ** Synopsis: IF r[P3]!=r[P1] 1910 ** 1911 ** This works just like the Eq opcode except that the jump is taken if 1912 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1913 ** additional information. 1914 ** 1915 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1916 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1917 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1918 */ 1919 /* Opcode: Lt P1 P2 P3 P4 P5 1920 ** Synopsis: IF r[P3]<r[P1] 1921 ** 1922 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1923 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1924 ** the result of comparison (0 or 1 or NULL) into register P2. 1925 ** 1926 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1927 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1928 ** bit is clear then fall through if either operand is NULL. 1929 ** 1930 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1931 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1932 ** to coerce both inputs according to this affinity before the 1933 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1934 ** affinity is used. Note that the affinity conversions are stored 1935 ** back into the input registers P1 and P3. So this opcode can cause 1936 ** persistent changes to registers P1 and P3. 1937 ** 1938 ** Once any conversions have taken place, and neither value is NULL, 1939 ** the values are compared. If both values are blobs then memcmp() is 1940 ** used to determine the results of the comparison. If both values 1941 ** are text, then the appropriate collating function specified in 1942 ** P4 is used to do the comparison. If P4 is not specified then 1943 ** memcmp() is used to compare text string. If both values are 1944 ** numeric, then a numeric comparison is used. If the two values 1945 ** are of different types, then numbers are considered less than 1946 ** strings and strings are considered less than blobs. 1947 */ 1948 /* Opcode: Le P1 P2 P3 P4 P5 1949 ** Synopsis: IF r[P3]<=r[P1] 1950 ** 1951 ** This works just like the Lt opcode except that the jump is taken if 1952 ** the content of register P3 is less than or equal to the content of 1953 ** register P1. See the Lt opcode for additional information. 1954 */ 1955 /* Opcode: Gt P1 P2 P3 P4 P5 1956 ** Synopsis: IF r[P3]>r[P1] 1957 ** 1958 ** This works just like the Lt opcode except that the jump is taken if 1959 ** the content of register P3 is greater than the content of 1960 ** register P1. See the Lt opcode for additional information. 1961 */ 1962 /* Opcode: Ge P1 P2 P3 P4 P5 1963 ** Synopsis: IF r[P3]>=r[P1] 1964 ** 1965 ** This works just like the Lt opcode except that the jump is taken if 1966 ** the content of register P3 is greater than or equal to the content of 1967 ** register P1. See the Lt opcode for additional information. 1968 */ 1969 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1970 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1971 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1972 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1973 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1974 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1975 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 1976 char affinity; /* Affinity to use for comparison */ 1977 u16 flags1; /* Copy of initial value of pIn1->flags */ 1978 u16 flags3; /* Copy of initial value of pIn3->flags */ 1979 1980 pIn1 = &aMem[pOp->p1]; 1981 pIn3 = &aMem[pOp->p3]; 1982 flags1 = pIn1->flags; 1983 flags3 = pIn3->flags; 1984 if( (flags1 | flags3)&MEM_Null ){ 1985 /* One or both operands are NULL */ 1986 if( pOp->p5 & SQLITE_NULLEQ ){ 1987 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1988 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1989 ** or not both operands are null. 1990 */ 1991 assert( (flags1 & MEM_Cleared)==0 ); 1992 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 1993 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 1994 if( (flags1&flags3&MEM_Null)!=0 1995 && (flags3&MEM_Cleared)==0 1996 ){ 1997 res = 0; /* Operands are equal */ 1998 }else{ 1999 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2000 } 2001 }else{ 2002 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2003 ** then the result is always NULL. 2004 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2005 */ 2006 if( pOp->p5 & SQLITE_STOREP2 ){ 2007 pOut = &aMem[pOp->p2]; 2008 iCompare = 1; /* Operands are not equal */ 2009 memAboutToChange(p, pOut); 2010 MemSetTypeFlag(pOut, MEM_Null); 2011 REGISTER_TRACE(pOp->p2, pOut); 2012 }else{ 2013 VdbeBranchTaken(2,3); 2014 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2015 goto jump_to_p2; 2016 } 2017 } 2018 break; 2019 } 2020 }else{ 2021 /* Neither operand is NULL. Do a comparison. */ 2022 affinity = pOp->p5 & SQLITE_AFF_MASK; 2023 if( affinity>=SQLITE_AFF_NUMERIC ){ 2024 if( (flags1 | flags3)&MEM_Str ){ 2025 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2026 applyNumericAffinity(pIn1,0); 2027 assert( flags3==pIn3->flags ); 2028 /* testcase( flags3!=pIn3->flags ); 2029 ** this used to be possible with pIn1==pIn3, but not since 2030 ** the column cache was removed. The following assignment 2031 ** is essentially a no-op. But, it provides defense-in-depth 2032 ** in case our analysis is incorrect, so it is left in. */ 2033 flags3 = pIn3->flags; 2034 } 2035 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2036 applyNumericAffinity(pIn3,0); 2037 } 2038 } 2039 /* Handle the common case of integer comparison here, as an 2040 ** optimization, to avoid a call to sqlite3MemCompare() */ 2041 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 2042 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 2043 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 2044 res = 0; 2045 goto compare_op; 2046 } 2047 }else if( affinity==SQLITE_AFF_TEXT ){ 2048 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2049 testcase( pIn1->flags & MEM_Int ); 2050 testcase( pIn1->flags & MEM_Real ); 2051 testcase( pIn1->flags & MEM_IntReal ); 2052 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2053 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2054 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2055 assert( pIn1!=pIn3 ); 2056 } 2057 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2058 testcase( pIn3->flags & MEM_Int ); 2059 testcase( pIn3->flags & MEM_Real ); 2060 testcase( pIn3->flags & MEM_IntReal ); 2061 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2062 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2063 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2064 } 2065 } 2066 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2067 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2068 } 2069 compare_op: 2070 /* At this point, res is negative, zero, or positive if reg[P1] is 2071 ** less than, equal to, or greater than reg[P3], respectively. Compute 2072 ** the answer to this operator in res2, depending on what the comparison 2073 ** operator actually is. The next block of code depends on the fact 2074 ** that the 6 comparison operators are consecutive integers in this 2075 ** order: NE, EQ, GT, LE, LT, GE */ 2076 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2077 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2078 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 2079 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 2080 res2 = aLTb[pOp->opcode - OP_Ne]; 2081 }else if( res==0 ){ 2082 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2083 res2 = aEQb[pOp->opcode - OP_Ne]; 2084 }else{ 2085 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2086 res2 = aGTb[pOp->opcode - OP_Ne]; 2087 } 2088 2089 /* Undo any changes made by applyAffinity() to the input registers. */ 2090 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2091 pIn1->flags = flags1; 2092 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2093 pIn3->flags = flags3; 2094 2095 if( pOp->p5 & SQLITE_STOREP2 ){ 2096 pOut = &aMem[pOp->p2]; 2097 iCompare = res; 2098 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2099 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2100 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2101 ** is only used in contexts where either: 2102 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2103 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2104 ** Therefore it is not necessary to check the content of r[P2] for 2105 ** NULL. */ 2106 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2107 assert( res2==0 || res2==1 ); 2108 testcase( res2==0 && pOp->opcode==OP_Eq ); 2109 testcase( res2==1 && pOp->opcode==OP_Eq ); 2110 testcase( res2==0 && pOp->opcode==OP_Ne ); 2111 testcase( res2==1 && pOp->opcode==OP_Ne ); 2112 if( (pOp->opcode==OP_Eq)==res2 ) break; 2113 } 2114 memAboutToChange(p, pOut); 2115 MemSetTypeFlag(pOut, MEM_Int); 2116 pOut->u.i = res2; 2117 REGISTER_TRACE(pOp->p2, pOut); 2118 }else{ 2119 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2120 if( res2 ){ 2121 goto jump_to_p2; 2122 } 2123 } 2124 break; 2125 } 2126 2127 /* Opcode: ElseNotEq * P2 * * * 2128 ** 2129 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. 2130 ** If result of an OP_Eq comparison on the same two operands 2131 ** would have be NULL or false (0), then then jump to P2. 2132 ** If the result of an OP_Eq comparison on the two previous operands 2133 ** would have been true (1), then fall through. 2134 */ 2135 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2136 assert( pOp>aOp ); 2137 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); 2138 assert( pOp[-1].p5 & SQLITE_STOREP2 ); 2139 VdbeBranchTaken(iCompare!=0, 2); 2140 if( iCompare!=0 ) goto jump_to_p2; 2141 break; 2142 } 2143 2144 2145 /* Opcode: Permutation * * * P4 * 2146 ** 2147 ** Set the permutation used by the OP_Compare operator in the next 2148 ** instruction. The permutation is stored in the P4 operand. 2149 ** 2150 ** The permutation is only valid until the next OP_Compare that has 2151 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2152 ** occur immediately prior to the OP_Compare. 2153 ** 2154 ** The first integer in the P4 integer array is the length of the array 2155 ** and does not become part of the permutation. 2156 */ 2157 case OP_Permutation: { 2158 assert( pOp->p4type==P4_INTARRAY ); 2159 assert( pOp->p4.ai ); 2160 assert( pOp[1].opcode==OP_Compare ); 2161 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2162 break; 2163 } 2164 2165 /* Opcode: Compare P1 P2 P3 P4 P5 2166 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2167 ** 2168 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2169 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2170 ** the comparison for use by the next OP_Jump instruct. 2171 ** 2172 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2173 ** determined by the most recent OP_Permutation operator. If the 2174 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2175 ** order. 2176 ** 2177 ** P4 is a KeyInfo structure that defines collating sequences and sort 2178 ** orders for the comparison. The permutation applies to registers 2179 ** only. The KeyInfo elements are used sequentially. 2180 ** 2181 ** The comparison is a sort comparison, so NULLs compare equal, 2182 ** NULLs are less than numbers, numbers are less than strings, 2183 ** and strings are less than blobs. 2184 */ 2185 case OP_Compare: { 2186 int n; 2187 int i; 2188 int p1; 2189 int p2; 2190 const KeyInfo *pKeyInfo; 2191 int idx; 2192 CollSeq *pColl; /* Collating sequence to use on this term */ 2193 int bRev; /* True for DESCENDING sort order */ 2194 int *aPermute; /* The permutation */ 2195 2196 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2197 aPermute = 0; 2198 }else{ 2199 assert( pOp>aOp ); 2200 assert( pOp[-1].opcode==OP_Permutation ); 2201 assert( pOp[-1].p4type==P4_INTARRAY ); 2202 aPermute = pOp[-1].p4.ai + 1; 2203 assert( aPermute!=0 ); 2204 } 2205 n = pOp->p3; 2206 pKeyInfo = pOp->p4.pKeyInfo; 2207 assert( n>0 ); 2208 assert( pKeyInfo!=0 ); 2209 p1 = pOp->p1; 2210 p2 = pOp->p2; 2211 #ifdef SQLITE_DEBUG 2212 if( aPermute ){ 2213 int k, mx = 0; 2214 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2215 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2216 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2217 }else{ 2218 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2219 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2220 } 2221 #endif /* SQLITE_DEBUG */ 2222 for(i=0; i<n; i++){ 2223 idx = aPermute ? aPermute[i] : i; 2224 assert( memIsValid(&aMem[p1+idx]) ); 2225 assert( memIsValid(&aMem[p2+idx]) ); 2226 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2227 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2228 assert( i<pKeyInfo->nKeyField ); 2229 pColl = pKeyInfo->aColl[i]; 2230 bRev = pKeyInfo->aSortOrder[i]; 2231 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2232 if( iCompare ){ 2233 if( bRev ) iCompare = -iCompare; 2234 break; 2235 } 2236 } 2237 break; 2238 } 2239 2240 /* Opcode: Jump P1 P2 P3 * * 2241 ** 2242 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2243 ** in the most recent OP_Compare instruction the P1 vector was less than 2244 ** equal to, or greater than the P2 vector, respectively. 2245 */ 2246 case OP_Jump: { /* jump */ 2247 if( iCompare<0 ){ 2248 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2249 }else if( iCompare==0 ){ 2250 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2251 }else{ 2252 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2253 } 2254 break; 2255 } 2256 2257 /* Opcode: And P1 P2 P3 * * 2258 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2259 ** 2260 ** Take the logical AND of the values in registers P1 and P2 and 2261 ** write the result into register P3. 2262 ** 2263 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2264 ** the other input is NULL. A NULL and true or two NULLs give 2265 ** a NULL output. 2266 */ 2267 /* Opcode: Or P1 P2 P3 * * 2268 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2269 ** 2270 ** Take the logical OR of the values in register P1 and P2 and 2271 ** store the answer in register P3. 2272 ** 2273 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2274 ** even if the other input is NULL. A NULL and false or two NULLs 2275 ** give a NULL output. 2276 */ 2277 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2278 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2279 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2280 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2281 2282 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2283 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2284 if( pOp->opcode==OP_And ){ 2285 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2286 v1 = and_logic[v1*3+v2]; 2287 }else{ 2288 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2289 v1 = or_logic[v1*3+v2]; 2290 } 2291 pOut = &aMem[pOp->p3]; 2292 if( v1==2 ){ 2293 MemSetTypeFlag(pOut, MEM_Null); 2294 }else{ 2295 pOut->u.i = v1; 2296 MemSetTypeFlag(pOut, MEM_Int); 2297 } 2298 break; 2299 } 2300 2301 /* Opcode: IsTrue P1 P2 P3 P4 * 2302 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2303 ** 2304 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2305 ** IS NOT FALSE operators. 2306 ** 2307 ** Interpret the value in register P1 as a boolean value. Store that 2308 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2309 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2310 ** is 1. 2311 ** 2312 ** The logic is summarized like this: 2313 ** 2314 ** <ul> 2315 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2316 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2317 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2318 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2319 ** </ul> 2320 */ 2321 case OP_IsTrue: { /* in1, out2 */ 2322 assert( pOp->p4type==P4_INT32 ); 2323 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2324 assert( pOp->p3==0 || pOp->p3==1 ); 2325 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2326 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2327 break; 2328 } 2329 2330 /* Opcode: Not P1 P2 * * * 2331 ** Synopsis: r[P2]= !r[P1] 2332 ** 2333 ** Interpret the value in register P1 as a boolean value. Store the 2334 ** boolean complement in register P2. If the value in register P1 is 2335 ** NULL, then a NULL is stored in P2. 2336 */ 2337 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2338 pIn1 = &aMem[pOp->p1]; 2339 pOut = &aMem[pOp->p2]; 2340 if( (pIn1->flags & MEM_Null)==0 ){ 2341 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2342 }else{ 2343 sqlite3VdbeMemSetNull(pOut); 2344 } 2345 break; 2346 } 2347 2348 /* Opcode: BitNot P1 P2 * * * 2349 ** Synopsis: r[P2]= ~r[P1] 2350 ** 2351 ** Interpret the content of register P1 as an integer. Store the 2352 ** ones-complement of the P1 value into register P2. If P1 holds 2353 ** a NULL then store a NULL in P2. 2354 */ 2355 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2356 pIn1 = &aMem[pOp->p1]; 2357 pOut = &aMem[pOp->p2]; 2358 sqlite3VdbeMemSetNull(pOut); 2359 if( (pIn1->flags & MEM_Null)==0 ){ 2360 pOut->flags = MEM_Int; 2361 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2362 } 2363 break; 2364 } 2365 2366 /* Opcode: Once P1 P2 * * * 2367 ** 2368 ** Fall through to the next instruction the first time this opcode is 2369 ** encountered on each invocation of the byte-code program. Jump to P2 2370 ** on the second and all subsequent encounters during the same invocation. 2371 ** 2372 ** Top-level programs determine first invocation by comparing the P1 2373 ** operand against the P1 operand on the OP_Init opcode at the beginning 2374 ** of the program. If the P1 values differ, then fall through and make 2375 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2376 ** the same then take the jump. 2377 ** 2378 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2379 ** whether or not the jump should be taken. The bitmask is necessary 2380 ** because the self-altering code trick does not work for recursive 2381 ** triggers. 2382 */ 2383 case OP_Once: { /* jump */ 2384 u32 iAddr; /* Address of this instruction */ 2385 assert( p->aOp[0].opcode==OP_Init ); 2386 if( p->pFrame ){ 2387 iAddr = (int)(pOp - p->aOp); 2388 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2389 VdbeBranchTaken(1, 2); 2390 goto jump_to_p2; 2391 } 2392 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2393 }else{ 2394 if( p->aOp[0].p1==pOp->p1 ){ 2395 VdbeBranchTaken(1, 2); 2396 goto jump_to_p2; 2397 } 2398 } 2399 VdbeBranchTaken(0, 2); 2400 pOp->p1 = p->aOp[0].p1; 2401 break; 2402 } 2403 2404 /* Opcode: If P1 P2 P3 * * 2405 ** 2406 ** Jump to P2 if the value in register P1 is true. The value 2407 ** is considered true if it is numeric and non-zero. If the value 2408 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2409 */ 2410 case OP_If: { /* jump, in1 */ 2411 int c; 2412 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2413 VdbeBranchTaken(c!=0, 2); 2414 if( c ) goto jump_to_p2; 2415 break; 2416 } 2417 2418 /* Opcode: IfNot P1 P2 P3 * * 2419 ** 2420 ** Jump to P2 if the value in register P1 is False. The value 2421 ** is considered false if it has a numeric value of zero. If the value 2422 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2423 */ 2424 case OP_IfNot: { /* jump, in1 */ 2425 int c; 2426 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2427 VdbeBranchTaken(c!=0, 2); 2428 if( c ) goto jump_to_p2; 2429 break; 2430 } 2431 2432 /* Opcode: IsNull P1 P2 * * * 2433 ** Synopsis: if r[P1]==NULL goto P2 2434 ** 2435 ** Jump to P2 if the value in register P1 is NULL. 2436 */ 2437 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2438 pIn1 = &aMem[pOp->p1]; 2439 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2440 if( (pIn1->flags & MEM_Null)!=0 ){ 2441 goto jump_to_p2; 2442 } 2443 break; 2444 } 2445 2446 /* Opcode: NotNull P1 P2 * * * 2447 ** Synopsis: if r[P1]!=NULL goto P2 2448 ** 2449 ** Jump to P2 if the value in register P1 is not NULL. 2450 */ 2451 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2452 pIn1 = &aMem[pOp->p1]; 2453 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2454 if( (pIn1->flags & MEM_Null)==0 ){ 2455 goto jump_to_p2; 2456 } 2457 break; 2458 } 2459 2460 /* Opcode: IfNullRow P1 P2 P3 * * 2461 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2462 ** 2463 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2464 ** If it is, then set register P3 to NULL and jump immediately to P2. 2465 ** If P1 is not on a NULL row, then fall through without making any 2466 ** changes. 2467 */ 2468 case OP_IfNullRow: { /* jump */ 2469 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2470 assert( p->apCsr[pOp->p1]!=0 ); 2471 if( p->apCsr[pOp->p1]->nullRow ){ 2472 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2473 goto jump_to_p2; 2474 } 2475 break; 2476 } 2477 2478 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2479 /* Opcode: Offset P1 P2 P3 * * 2480 ** Synopsis: r[P3] = sqlite_offset(P1) 2481 ** 2482 ** Store in register r[P3] the byte offset into the database file that is the 2483 ** start of the payload for the record at which that cursor P1 is currently 2484 ** pointing. 2485 ** 2486 ** P2 is the column number for the argument to the sqlite_offset() function. 2487 ** This opcode does not use P2 itself, but the P2 value is used by the 2488 ** code generator. The P1, P2, and P3 operands to this opcode are the 2489 ** same as for OP_Column. 2490 ** 2491 ** This opcode is only available if SQLite is compiled with the 2492 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2493 */ 2494 case OP_Offset: { /* out3 */ 2495 VdbeCursor *pC; /* The VDBE cursor */ 2496 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2497 pC = p->apCsr[pOp->p1]; 2498 pOut = &p->aMem[pOp->p3]; 2499 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2500 sqlite3VdbeMemSetNull(pOut); 2501 }else{ 2502 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2503 } 2504 break; 2505 } 2506 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2507 2508 /* Opcode: Column P1 P2 P3 P4 P5 2509 ** Synopsis: r[P3]=PX 2510 ** 2511 ** Interpret the data that cursor P1 points to as a structure built using 2512 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2513 ** information about the format of the data.) Extract the P2-th column 2514 ** from this record. If there are less that (P2+1) 2515 ** values in the record, extract a NULL. 2516 ** 2517 ** The value extracted is stored in register P3. 2518 ** 2519 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2520 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2521 ** the result. 2522 ** 2523 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2524 ** then the cache of the cursor is reset prior to extracting the column. 2525 ** The first OP_Column against a pseudo-table after the value of the content 2526 ** register has changed should have this bit set. 2527 ** 2528 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2529 ** the result is guaranteed to only be used as the argument of a length() 2530 ** or typeof() function, respectively. The loading of large blobs can be 2531 ** skipped for length() and all content loading can be skipped for typeof(). 2532 */ 2533 case OP_Column: { 2534 int p2; /* column number to retrieve */ 2535 VdbeCursor *pC; /* The VDBE cursor */ 2536 BtCursor *pCrsr; /* The BTree cursor */ 2537 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2538 int len; /* The length of the serialized data for the column */ 2539 int i; /* Loop counter */ 2540 Mem *pDest; /* Where to write the extracted value */ 2541 Mem sMem; /* For storing the record being decoded */ 2542 const u8 *zData; /* Part of the record being decoded */ 2543 const u8 *zHdr; /* Next unparsed byte of the header */ 2544 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2545 u64 offset64; /* 64-bit offset */ 2546 u32 t; /* A type code from the record header */ 2547 Mem *pReg; /* PseudoTable input register */ 2548 2549 pC = p->apCsr[pOp->p1]; 2550 p2 = pOp->p2; 2551 2552 /* If the cursor cache is stale (meaning it is not currently point at 2553 ** the correct row) then bring it up-to-date by doing the necessary 2554 ** B-Tree seek. */ 2555 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2556 if( rc ) goto abort_due_to_error; 2557 2558 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2559 pDest = &aMem[pOp->p3]; 2560 memAboutToChange(p, pDest); 2561 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2562 assert( pC!=0 ); 2563 assert( p2<pC->nField ); 2564 aOffset = pC->aOffset; 2565 assert( pC->eCurType!=CURTYPE_VTAB ); 2566 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2567 assert( pC->eCurType!=CURTYPE_SORTER ); 2568 2569 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2570 if( pC->nullRow ){ 2571 if( pC->eCurType==CURTYPE_PSEUDO ){ 2572 /* For the special case of as pseudo-cursor, the seekResult field 2573 ** identifies the register that holds the record */ 2574 assert( pC->seekResult>0 ); 2575 pReg = &aMem[pC->seekResult]; 2576 assert( pReg->flags & MEM_Blob ); 2577 assert( memIsValid(pReg) ); 2578 pC->payloadSize = pC->szRow = pReg->n; 2579 pC->aRow = (u8*)pReg->z; 2580 }else{ 2581 sqlite3VdbeMemSetNull(pDest); 2582 goto op_column_out; 2583 } 2584 }else{ 2585 pCrsr = pC->uc.pCursor; 2586 assert( pC->eCurType==CURTYPE_BTREE ); 2587 assert( pCrsr ); 2588 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2589 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2590 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2591 assert( pC->szRow<=pC->payloadSize ); 2592 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2593 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2594 goto too_big; 2595 } 2596 } 2597 pC->cacheStatus = p->cacheCtr; 2598 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2599 pC->nHdrParsed = 0; 2600 2601 2602 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2603 /* pC->aRow does not have to hold the entire row, but it does at least 2604 ** need to cover the header of the record. If pC->aRow does not contain 2605 ** the complete header, then set it to zero, forcing the header to be 2606 ** dynamically allocated. */ 2607 pC->aRow = 0; 2608 pC->szRow = 0; 2609 2610 /* Make sure a corrupt database has not given us an oversize header. 2611 ** Do this now to avoid an oversize memory allocation. 2612 ** 2613 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2614 ** types use so much data space that there can only be 4096 and 32 of 2615 ** them, respectively. So the maximum header length results from a 2616 ** 3-byte type for each of the maximum of 32768 columns plus three 2617 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2618 */ 2619 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2620 goto op_column_corrupt; 2621 } 2622 }else{ 2623 /* This is an optimization. By skipping over the first few tests 2624 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2625 ** measurable performance gain. 2626 ** 2627 ** This branch is taken even if aOffset[0]==0. Such a record is never 2628 ** generated by SQLite, and could be considered corruption, but we 2629 ** accept it for historical reasons. When aOffset[0]==0, the code this 2630 ** branch jumps to reads past the end of the record, but never more 2631 ** than a few bytes. Even if the record occurs at the end of the page 2632 ** content area, the "page header" comes after the page content and so 2633 ** this overread is harmless. Similar overreads can occur for a corrupt 2634 ** database file. 2635 */ 2636 zData = pC->aRow; 2637 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2638 testcase( aOffset[0]==0 ); 2639 goto op_column_read_header; 2640 } 2641 } 2642 2643 /* Make sure at least the first p2+1 entries of the header have been 2644 ** parsed and valid information is in aOffset[] and pC->aType[]. 2645 */ 2646 if( pC->nHdrParsed<=p2 ){ 2647 /* If there is more header available for parsing in the record, try 2648 ** to extract additional fields up through the p2+1-th field 2649 */ 2650 if( pC->iHdrOffset<aOffset[0] ){ 2651 /* Make sure zData points to enough of the record to cover the header. */ 2652 if( pC->aRow==0 ){ 2653 memset(&sMem, 0, sizeof(sMem)); 2654 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); 2655 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2656 zData = (u8*)sMem.z; 2657 }else{ 2658 zData = pC->aRow; 2659 } 2660 2661 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2662 op_column_read_header: 2663 i = pC->nHdrParsed; 2664 offset64 = aOffset[i]; 2665 zHdr = zData + pC->iHdrOffset; 2666 zEndHdr = zData + aOffset[0]; 2667 testcase( zHdr>=zEndHdr ); 2668 do{ 2669 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2670 zHdr++; 2671 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2672 }else{ 2673 zHdr += sqlite3GetVarint32(zHdr, &t); 2674 pC->aType[i] = t; 2675 offset64 += sqlite3VdbeSerialTypeLen(t); 2676 } 2677 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2678 }while( i<=p2 && zHdr<zEndHdr ); 2679 2680 /* The record is corrupt if any of the following are true: 2681 ** (1) the bytes of the header extend past the declared header size 2682 ** (2) the entire header was used but not all data was used 2683 ** (3) the end of the data extends beyond the end of the record. 2684 */ 2685 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2686 || (offset64 > pC->payloadSize) 2687 ){ 2688 if( aOffset[0]==0 ){ 2689 i = 0; 2690 zHdr = zEndHdr; 2691 }else{ 2692 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2693 goto op_column_corrupt; 2694 } 2695 } 2696 2697 pC->nHdrParsed = i; 2698 pC->iHdrOffset = (u32)(zHdr - zData); 2699 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2700 }else{ 2701 t = 0; 2702 } 2703 2704 /* If after trying to extract new entries from the header, nHdrParsed is 2705 ** still not up to p2, that means that the record has fewer than p2 2706 ** columns. So the result will be either the default value or a NULL. 2707 */ 2708 if( pC->nHdrParsed<=p2 ){ 2709 if( pOp->p4type==P4_MEM ){ 2710 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2711 }else{ 2712 sqlite3VdbeMemSetNull(pDest); 2713 } 2714 goto op_column_out; 2715 } 2716 }else{ 2717 t = pC->aType[p2]; 2718 } 2719 2720 /* Extract the content for the p2+1-th column. Control can only 2721 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2722 ** all valid. 2723 */ 2724 assert( p2<pC->nHdrParsed ); 2725 assert( rc==SQLITE_OK ); 2726 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2727 if( VdbeMemDynamic(pDest) ){ 2728 sqlite3VdbeMemSetNull(pDest); 2729 } 2730 assert( t==pC->aType[p2] ); 2731 if( pC->szRow>=aOffset[p2+1] ){ 2732 /* This is the common case where the desired content fits on the original 2733 ** page - where the content is not on an overflow page */ 2734 zData = pC->aRow + aOffset[p2]; 2735 if( t<12 ){ 2736 sqlite3VdbeSerialGet(zData, t, pDest); 2737 }else{ 2738 /* If the column value is a string, we need a persistent value, not 2739 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2740 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2741 */ 2742 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2743 pDest->n = len = (t-12)/2; 2744 pDest->enc = encoding; 2745 if( pDest->szMalloc < len+2 ){ 2746 pDest->flags = MEM_Null; 2747 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2748 }else{ 2749 pDest->z = pDest->zMalloc; 2750 } 2751 memcpy(pDest->z, zData, len); 2752 pDest->z[len] = 0; 2753 pDest->z[len+1] = 0; 2754 pDest->flags = aFlag[t&1]; 2755 } 2756 }else{ 2757 pDest->enc = encoding; 2758 /* This branch happens only when content is on overflow pages */ 2759 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2760 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2761 || (len = sqlite3VdbeSerialTypeLen(t))==0 2762 ){ 2763 /* Content is irrelevant for 2764 ** 1. the typeof() function, 2765 ** 2. the length(X) function if X is a blob, and 2766 ** 3. if the content length is zero. 2767 ** So we might as well use bogus content rather than reading 2768 ** content from disk. 2769 ** 2770 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2771 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2772 ** read up to 16. So 16 bytes of bogus content is supplied. 2773 */ 2774 static u8 aZero[16]; /* This is the bogus content */ 2775 sqlite3VdbeSerialGet(aZero, t, pDest); 2776 }else{ 2777 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2778 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2779 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2780 pDest->flags &= ~MEM_Ephem; 2781 } 2782 } 2783 2784 op_column_out: 2785 UPDATE_MAX_BLOBSIZE(pDest); 2786 REGISTER_TRACE(pOp->p3, pDest); 2787 break; 2788 2789 op_column_corrupt: 2790 if( aOp[0].p3>0 ){ 2791 pOp = &aOp[aOp[0].p3-1]; 2792 break; 2793 }else{ 2794 rc = SQLITE_CORRUPT_BKPT; 2795 goto abort_due_to_error; 2796 } 2797 } 2798 2799 /* Opcode: Affinity P1 P2 * P4 * 2800 ** Synopsis: affinity(r[P1@P2]) 2801 ** 2802 ** Apply affinities to a range of P2 registers starting with P1. 2803 ** 2804 ** P4 is a string that is P2 characters long. The N-th character of the 2805 ** string indicates the column affinity that should be used for the N-th 2806 ** memory cell in the range. 2807 */ 2808 case OP_Affinity: { 2809 const char *zAffinity; /* The affinity to be applied */ 2810 2811 zAffinity = pOp->p4.z; 2812 assert( zAffinity!=0 ); 2813 assert( pOp->p2>0 ); 2814 assert( zAffinity[pOp->p2]==0 ); 2815 pIn1 = &aMem[pOp->p1]; 2816 while( 1 /*exit-by-break*/ ){ 2817 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2818 assert( memIsValid(pIn1) ); 2819 applyAffinity(pIn1, zAffinity[0], encoding); 2820 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 2821 /* When applying REAL affinity, if the result is still an MEM_Int 2822 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2823 ** so that we keep the high-resolution integer value but know that 2824 ** the type really wants to be REAL. */ 2825 testcase( pIn1->u.i==140737488355328LL ); 2826 testcase( pIn1->u.i==140737488355327LL ); 2827 testcase( pIn1->u.i==-140737488355328LL ); 2828 testcase( pIn1->u.i==-140737488355329LL ); 2829 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 2830 pIn1->flags |= MEM_IntReal; 2831 pIn1->flags &= ~MEM_Int; 2832 }else{ 2833 pIn1->u.r = (double)pIn1->u.i; 2834 pIn1->flags |= MEM_Real; 2835 pIn1->flags &= ~MEM_Int; 2836 } 2837 } 2838 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 2839 zAffinity++; 2840 if( zAffinity[0]==0 ) break; 2841 pIn1++; 2842 } 2843 break; 2844 } 2845 2846 /* Opcode: MakeRecord P1 P2 P3 P4 * 2847 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2848 ** 2849 ** Convert P2 registers beginning with P1 into the [record format] 2850 ** use as a data record in a database table or as a key 2851 ** in an index. The OP_Column opcode can decode the record later. 2852 ** 2853 ** P4 may be a string that is P2 characters long. The N-th character of the 2854 ** string indicates the column affinity that should be used for the N-th 2855 ** field of the index key. 2856 ** 2857 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2858 ** macros defined in sqliteInt.h. 2859 ** 2860 ** If P4 is NULL then all index fields have the affinity BLOB. 2861 */ 2862 case OP_MakeRecord: { 2863 Mem *pRec; /* The new record */ 2864 u64 nData; /* Number of bytes of data space */ 2865 int nHdr; /* Number of bytes of header space */ 2866 i64 nByte; /* Data space required for this record */ 2867 i64 nZero; /* Number of zero bytes at the end of the record */ 2868 int nVarint; /* Number of bytes in a varint */ 2869 u32 serial_type; /* Type field */ 2870 Mem *pData0; /* First field to be combined into the record */ 2871 Mem *pLast; /* Last field of the record */ 2872 int nField; /* Number of fields in the record */ 2873 char *zAffinity; /* The affinity string for the record */ 2874 int file_format; /* File format to use for encoding */ 2875 u32 len; /* Length of a field */ 2876 u8 *zHdr; /* Where to write next byte of the header */ 2877 u8 *zPayload; /* Where to write next byte of the payload */ 2878 2879 /* Assuming the record contains N fields, the record format looks 2880 ** like this: 2881 ** 2882 ** ------------------------------------------------------------------------ 2883 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2884 ** ------------------------------------------------------------------------ 2885 ** 2886 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2887 ** and so forth. 2888 ** 2889 ** Each type field is a varint representing the serial type of the 2890 ** corresponding data element (see sqlite3VdbeSerialType()). The 2891 ** hdr-size field is also a varint which is the offset from the beginning 2892 ** of the record to data0. 2893 */ 2894 nData = 0; /* Number of bytes of data space */ 2895 nHdr = 0; /* Number of bytes of header space */ 2896 nZero = 0; /* Number of zero bytes at the end of the record */ 2897 nField = pOp->p1; 2898 zAffinity = pOp->p4.z; 2899 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2900 pData0 = &aMem[nField]; 2901 nField = pOp->p2; 2902 pLast = &pData0[nField-1]; 2903 file_format = p->minWriteFileFormat; 2904 2905 /* Identify the output register */ 2906 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2907 pOut = &aMem[pOp->p3]; 2908 memAboutToChange(p, pOut); 2909 2910 /* Apply the requested affinity to all inputs 2911 */ 2912 assert( pData0<=pLast ); 2913 if( zAffinity ){ 2914 pRec = pData0; 2915 do{ 2916 applyAffinity(pRec, zAffinity[0], encoding); 2917 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 2918 pRec->flags |= MEM_IntReal; 2919 pRec->flags &= ~(MEM_Int); 2920 } 2921 REGISTER_TRACE((int)(pRec-aMem), pRec); 2922 zAffinity++; 2923 pRec++; 2924 assert( zAffinity[0]==0 || pRec<=pLast ); 2925 }while( zAffinity[0] ); 2926 } 2927 2928 #ifdef SQLITE_ENABLE_NULL_TRIM 2929 /* NULLs can be safely trimmed from the end of the record, as long as 2930 ** as the schema format is 2 or more and none of the omitted columns 2931 ** have a non-NULL default value. Also, the record must be left with 2932 ** at least one field. If P5>0 then it will be one more than the 2933 ** index of the right-most column with a non-NULL default value */ 2934 if( pOp->p5 ){ 2935 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2936 pLast--; 2937 nField--; 2938 } 2939 } 2940 #endif 2941 2942 /* Loop through the elements that will make up the record to figure 2943 ** out how much space is required for the new record. After this loop, 2944 ** the Mem.uTemp field of each term should hold the serial-type that will 2945 ** be used for that term in the generated record: 2946 ** 2947 ** Mem.uTemp value type 2948 ** --------------- --------------- 2949 ** 0 NULL 2950 ** 1 1-byte signed integer 2951 ** 2 2-byte signed integer 2952 ** 3 3-byte signed integer 2953 ** 4 4-byte signed integer 2954 ** 5 6-byte signed integer 2955 ** 6 8-byte signed integer 2956 ** 7 IEEE float 2957 ** 8 Integer constant 0 2958 ** 9 Integer constant 1 2959 ** 10,11 reserved for expansion 2960 ** N>=12 and even BLOB 2961 ** N>=13 and odd text 2962 ** 2963 ** The following additional values are computed: 2964 ** nHdr Number of bytes needed for the record header 2965 ** nData Number of bytes of data space needed for the record 2966 ** nZero Zero bytes at the end of the record 2967 */ 2968 pRec = pLast; 2969 do{ 2970 assert( memIsValid(pRec) ); 2971 if( pRec->flags & MEM_Null ){ 2972 if( pRec->flags & MEM_Zero ){ 2973 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 2974 ** table methods that never invoke sqlite3_result_xxxxx() while 2975 ** computing an unchanging column value in an UPDATE statement. 2976 ** Give such values a special internal-use-only serial-type of 10 2977 ** so that they can be passed through to xUpdate and have 2978 ** a true sqlite3_value_nochange(). */ 2979 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 2980 pRec->uTemp = 10; 2981 }else{ 2982 pRec->uTemp = 0; 2983 } 2984 nHdr++; 2985 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 2986 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 2987 i64 i = pRec->u.i; 2988 u64 uu; 2989 testcase( pRec->flags & MEM_Int ); 2990 testcase( pRec->flags & MEM_IntReal ); 2991 if( i<0 ){ 2992 uu = ~i; 2993 }else{ 2994 uu = i; 2995 } 2996 nHdr++; 2997 testcase( uu==127 ); testcase( uu==128 ); 2998 testcase( uu==32767 ); testcase( uu==32768 ); 2999 testcase( uu==8388607 ); testcase( uu==8388608 ); 3000 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3001 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3002 if( uu<=127 ){ 3003 if( (i&1)==i && file_format>=4 ){ 3004 pRec->uTemp = 8+(u32)uu; 3005 }else{ 3006 nData++; 3007 pRec->uTemp = 1; 3008 } 3009 }else if( uu<=32767 ){ 3010 nData += 2; 3011 pRec->uTemp = 2; 3012 }else if( uu<=8388607 ){ 3013 nData += 3; 3014 pRec->uTemp = 3; 3015 }else if( uu<=2147483647 ){ 3016 nData += 4; 3017 pRec->uTemp = 4; 3018 }else if( uu<=140737488355327LL ){ 3019 nData += 6; 3020 pRec->uTemp = 5; 3021 }else{ 3022 nData += 8; 3023 if( pRec->flags & MEM_IntReal ){ 3024 /* If the value is IntReal and is going to take up 8 bytes to store 3025 ** as an integer, then we might as well make it an 8-byte floating 3026 ** point value */ 3027 pRec->u.r = (double)pRec->u.i; 3028 pRec->flags &= ~MEM_IntReal; 3029 pRec->flags |= MEM_Real; 3030 pRec->uTemp = 7; 3031 }else{ 3032 pRec->uTemp = 6; 3033 } 3034 } 3035 }else if( pRec->flags & MEM_Real ){ 3036 nHdr++; 3037 nData += 8; 3038 pRec->uTemp = 7; 3039 }else{ 3040 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3041 assert( pRec->n>=0 ); 3042 len = (u32)pRec->n; 3043 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3044 if( pRec->flags & MEM_Zero ){ 3045 serial_type += pRec->u.nZero*2; 3046 if( nData ){ 3047 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3048 len += pRec->u.nZero; 3049 }else{ 3050 nZero += pRec->u.nZero; 3051 } 3052 } 3053 nData += len; 3054 nHdr += sqlite3VarintLen(serial_type); 3055 pRec->uTemp = serial_type; 3056 } 3057 if( pRec==pData0 ) break; 3058 pRec--; 3059 }while(1); 3060 3061 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3062 ** which determines the total number of bytes in the header. The varint 3063 ** value is the size of the header in bytes including the size varint 3064 ** itself. */ 3065 testcase( nHdr==126 ); 3066 testcase( nHdr==127 ); 3067 if( nHdr<=126 ){ 3068 /* The common case */ 3069 nHdr += 1; 3070 }else{ 3071 /* Rare case of a really large header */ 3072 nVarint = sqlite3VarintLen(nHdr); 3073 nHdr += nVarint; 3074 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3075 } 3076 nByte = nHdr+nData; 3077 3078 /* Make sure the output register has a buffer large enough to store 3079 ** the new record. The output register (pOp->p3) is not allowed to 3080 ** be one of the input registers (because the following call to 3081 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3082 */ 3083 if( nByte+nZero<=pOut->szMalloc ){ 3084 /* The output register is already large enough to hold the record. 3085 ** No error checks or buffer enlargement is required */ 3086 pOut->z = pOut->zMalloc; 3087 }else{ 3088 /* Need to make sure that the output is not too big and then enlarge 3089 ** the output register to hold the full result */ 3090 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3091 goto too_big; 3092 } 3093 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3094 goto no_mem; 3095 } 3096 } 3097 pOut->n = (int)nByte; 3098 pOut->flags = MEM_Blob; 3099 if( nZero ){ 3100 pOut->u.nZero = nZero; 3101 pOut->flags |= MEM_Zero; 3102 } 3103 UPDATE_MAX_BLOBSIZE(pOut); 3104 zHdr = (u8 *)pOut->z; 3105 zPayload = zHdr + nHdr; 3106 3107 /* Write the record */ 3108 zHdr += putVarint32(zHdr, nHdr); 3109 assert( pData0<=pLast ); 3110 pRec = pData0; 3111 do{ 3112 serial_type = pRec->uTemp; 3113 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3114 ** additional varints, one per column. */ 3115 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3116 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3117 ** immediately follow the header. */ 3118 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3119 }while( (++pRec)<=pLast ); 3120 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3121 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3122 3123 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3124 REGISTER_TRACE(pOp->p3, pOut); 3125 break; 3126 } 3127 3128 /* Opcode: Count P1 P2 * * * 3129 ** Synopsis: r[P2]=count() 3130 ** 3131 ** Store the number of entries (an integer value) in the table or index 3132 ** opened by cursor P1 in register P2 3133 */ 3134 #ifndef SQLITE_OMIT_BTREECOUNT 3135 case OP_Count: { /* out2 */ 3136 i64 nEntry; 3137 BtCursor *pCrsr; 3138 3139 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3140 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3141 assert( pCrsr ); 3142 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3143 rc = sqlite3BtreeCount(pCrsr, &nEntry); 3144 if( rc ) goto abort_due_to_error; 3145 pOut = out2Prerelease(p, pOp); 3146 pOut->u.i = nEntry; 3147 break; 3148 } 3149 #endif 3150 3151 /* Opcode: Savepoint P1 * * P4 * 3152 ** 3153 ** Open, release or rollback the savepoint named by parameter P4, depending 3154 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3155 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3156 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3157 */ 3158 case OP_Savepoint: { 3159 int p1; /* Value of P1 operand */ 3160 char *zName; /* Name of savepoint */ 3161 int nName; 3162 Savepoint *pNew; 3163 Savepoint *pSavepoint; 3164 Savepoint *pTmp; 3165 int iSavepoint; 3166 int ii; 3167 3168 p1 = pOp->p1; 3169 zName = pOp->p4.z; 3170 3171 /* Assert that the p1 parameter is valid. Also that if there is no open 3172 ** transaction, then there cannot be any savepoints. 3173 */ 3174 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3175 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3176 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3177 assert( checkSavepointCount(db) ); 3178 assert( p->bIsReader ); 3179 3180 if( p1==SAVEPOINT_BEGIN ){ 3181 if( db->nVdbeWrite>0 ){ 3182 /* A new savepoint cannot be created if there are active write 3183 ** statements (i.e. open read/write incremental blob handles). 3184 */ 3185 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3186 rc = SQLITE_BUSY; 3187 }else{ 3188 nName = sqlite3Strlen30(zName); 3189 3190 #ifndef SQLITE_OMIT_VIRTUALTABLE 3191 /* This call is Ok even if this savepoint is actually a transaction 3192 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3193 ** If this is a transaction savepoint being opened, it is guaranteed 3194 ** that the db->aVTrans[] array is empty. */ 3195 assert( db->autoCommit==0 || db->nVTrans==0 ); 3196 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3197 db->nStatement+db->nSavepoint); 3198 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3199 #endif 3200 3201 /* Create a new savepoint structure. */ 3202 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3203 if( pNew ){ 3204 pNew->zName = (char *)&pNew[1]; 3205 memcpy(pNew->zName, zName, nName+1); 3206 3207 /* If there is no open transaction, then mark this as a special 3208 ** "transaction savepoint". */ 3209 if( db->autoCommit ){ 3210 db->autoCommit = 0; 3211 db->isTransactionSavepoint = 1; 3212 }else{ 3213 db->nSavepoint++; 3214 } 3215 3216 /* Link the new savepoint into the database handle's list. */ 3217 pNew->pNext = db->pSavepoint; 3218 db->pSavepoint = pNew; 3219 pNew->nDeferredCons = db->nDeferredCons; 3220 pNew->nDeferredImmCons = db->nDeferredImmCons; 3221 } 3222 } 3223 }else{ 3224 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3225 iSavepoint = 0; 3226 3227 /* Find the named savepoint. If there is no such savepoint, then an 3228 ** an error is returned to the user. */ 3229 for( 3230 pSavepoint = db->pSavepoint; 3231 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3232 pSavepoint = pSavepoint->pNext 3233 ){ 3234 iSavepoint++; 3235 } 3236 if( !pSavepoint ){ 3237 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3238 rc = SQLITE_ERROR; 3239 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3240 /* It is not possible to release (commit) a savepoint if there are 3241 ** active write statements. 3242 */ 3243 sqlite3VdbeError(p, "cannot release savepoint - " 3244 "SQL statements in progress"); 3245 rc = SQLITE_BUSY; 3246 }else{ 3247 3248 /* Determine whether or not this is a transaction savepoint. If so, 3249 ** and this is a RELEASE command, then the current transaction 3250 ** is committed. 3251 */ 3252 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3253 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3254 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3255 goto vdbe_return; 3256 } 3257 db->autoCommit = 1; 3258 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3259 p->pc = (int)(pOp - aOp); 3260 db->autoCommit = 0; 3261 p->rc = rc = SQLITE_BUSY; 3262 goto vdbe_return; 3263 } 3264 db->isTransactionSavepoint = 0; 3265 rc = p->rc; 3266 }else{ 3267 int isSchemaChange; 3268 iSavepoint = db->nSavepoint - iSavepoint - 1; 3269 if( p1==SAVEPOINT_ROLLBACK ){ 3270 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3271 for(ii=0; ii<db->nDb; ii++){ 3272 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3273 SQLITE_ABORT_ROLLBACK, 3274 isSchemaChange==0); 3275 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3276 } 3277 }else{ 3278 assert( p1==SAVEPOINT_RELEASE ); 3279 isSchemaChange = 0; 3280 } 3281 for(ii=0; ii<db->nDb; ii++){ 3282 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3283 if( rc!=SQLITE_OK ){ 3284 goto abort_due_to_error; 3285 } 3286 } 3287 if( isSchemaChange ){ 3288 sqlite3ExpirePreparedStatements(db, 0); 3289 sqlite3ResetAllSchemasOfConnection(db); 3290 db->mDbFlags |= DBFLAG_SchemaChange; 3291 } 3292 } 3293 3294 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3295 ** savepoints nested inside of the savepoint being operated on. */ 3296 while( db->pSavepoint!=pSavepoint ){ 3297 pTmp = db->pSavepoint; 3298 db->pSavepoint = pTmp->pNext; 3299 sqlite3DbFree(db, pTmp); 3300 db->nSavepoint--; 3301 } 3302 3303 /* If it is a RELEASE, then destroy the savepoint being operated on 3304 ** too. If it is a ROLLBACK TO, then set the number of deferred 3305 ** constraint violations present in the database to the value stored 3306 ** when the savepoint was created. */ 3307 if( p1==SAVEPOINT_RELEASE ){ 3308 assert( pSavepoint==db->pSavepoint ); 3309 db->pSavepoint = pSavepoint->pNext; 3310 sqlite3DbFree(db, pSavepoint); 3311 if( !isTransaction ){ 3312 db->nSavepoint--; 3313 } 3314 }else{ 3315 assert( p1==SAVEPOINT_ROLLBACK ); 3316 db->nDeferredCons = pSavepoint->nDeferredCons; 3317 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3318 } 3319 3320 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3321 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3322 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3323 } 3324 } 3325 } 3326 if( rc ) goto abort_due_to_error; 3327 3328 break; 3329 } 3330 3331 /* Opcode: AutoCommit P1 P2 * * * 3332 ** 3333 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3334 ** back any currently active btree transactions. If there are any active 3335 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3336 ** there are active writing VMs or active VMs that use shared cache. 3337 ** 3338 ** This instruction causes the VM to halt. 3339 */ 3340 case OP_AutoCommit: { 3341 int desiredAutoCommit; 3342 int iRollback; 3343 3344 desiredAutoCommit = pOp->p1; 3345 iRollback = pOp->p2; 3346 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3347 assert( desiredAutoCommit==1 || iRollback==0 ); 3348 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3349 assert( p->bIsReader ); 3350 3351 if( desiredAutoCommit!=db->autoCommit ){ 3352 if( iRollback ){ 3353 assert( desiredAutoCommit==1 ); 3354 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3355 db->autoCommit = 1; 3356 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3357 /* If this instruction implements a COMMIT and other VMs are writing 3358 ** return an error indicating that the other VMs must complete first. 3359 */ 3360 sqlite3VdbeError(p, "cannot commit transaction - " 3361 "SQL statements in progress"); 3362 rc = SQLITE_BUSY; 3363 goto abort_due_to_error; 3364 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3365 goto vdbe_return; 3366 }else{ 3367 db->autoCommit = (u8)desiredAutoCommit; 3368 } 3369 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3370 p->pc = (int)(pOp - aOp); 3371 db->autoCommit = (u8)(1-desiredAutoCommit); 3372 p->rc = rc = SQLITE_BUSY; 3373 goto vdbe_return; 3374 } 3375 assert( db->nStatement==0 ); 3376 sqlite3CloseSavepoints(db); 3377 if( p->rc==SQLITE_OK ){ 3378 rc = SQLITE_DONE; 3379 }else{ 3380 rc = SQLITE_ERROR; 3381 } 3382 goto vdbe_return; 3383 }else{ 3384 sqlite3VdbeError(p, 3385 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3386 (iRollback)?"cannot rollback - no transaction is active": 3387 "cannot commit - no transaction is active")); 3388 3389 rc = SQLITE_ERROR; 3390 goto abort_due_to_error; 3391 } 3392 /*NOTREACHED*/ assert(0); 3393 } 3394 3395 /* Opcode: Transaction P1 P2 P3 P4 P5 3396 ** 3397 ** Begin a transaction on database P1 if a transaction is not already 3398 ** active. 3399 ** If P2 is non-zero, then a write-transaction is started, or if a 3400 ** read-transaction is already active, it is upgraded to a write-transaction. 3401 ** If P2 is zero, then a read-transaction is started. 3402 ** 3403 ** P1 is the index of the database file on which the transaction is 3404 ** started. Index 0 is the main database file and index 1 is the 3405 ** file used for temporary tables. Indices of 2 or more are used for 3406 ** attached databases. 3407 ** 3408 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3409 ** true (this flag is set if the Vdbe may modify more than one row and may 3410 ** throw an ABORT exception), a statement transaction may also be opened. 3411 ** More specifically, a statement transaction is opened iff the database 3412 ** connection is currently not in autocommit mode, or if there are other 3413 ** active statements. A statement transaction allows the changes made by this 3414 ** VDBE to be rolled back after an error without having to roll back the 3415 ** entire transaction. If no error is encountered, the statement transaction 3416 ** will automatically commit when the VDBE halts. 3417 ** 3418 ** If P5!=0 then this opcode also checks the schema cookie against P3 3419 ** and the schema generation counter against P4. 3420 ** The cookie changes its value whenever the database schema changes. 3421 ** This operation is used to detect when that the cookie has changed 3422 ** and that the current process needs to reread the schema. If the schema 3423 ** cookie in P3 differs from the schema cookie in the database header or 3424 ** if the schema generation counter in P4 differs from the current 3425 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3426 ** halts. The sqlite3_step() wrapper function might then reprepare the 3427 ** statement and rerun it from the beginning. 3428 */ 3429 case OP_Transaction: { 3430 Btree *pBt; 3431 int iMeta = 0; 3432 3433 assert( p->bIsReader ); 3434 assert( p->readOnly==0 || pOp->p2==0 ); 3435 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3436 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3437 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3438 rc = SQLITE_READONLY; 3439 goto abort_due_to_error; 3440 } 3441 pBt = db->aDb[pOp->p1].pBt; 3442 3443 if( pBt ){ 3444 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3445 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3446 testcase( rc==SQLITE_BUSY_RECOVERY ); 3447 if( rc!=SQLITE_OK ){ 3448 if( (rc&0xff)==SQLITE_BUSY ){ 3449 p->pc = (int)(pOp - aOp); 3450 p->rc = rc; 3451 goto vdbe_return; 3452 } 3453 goto abort_due_to_error; 3454 } 3455 3456 if( pOp->p2 && p->usesStmtJournal 3457 && (db->autoCommit==0 || db->nVdbeRead>1) 3458 ){ 3459 assert( sqlite3BtreeIsInTrans(pBt) ); 3460 if( p->iStatement==0 ){ 3461 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3462 db->nStatement++; 3463 p->iStatement = db->nSavepoint + db->nStatement; 3464 } 3465 3466 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3467 if( rc==SQLITE_OK ){ 3468 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3469 } 3470 3471 /* Store the current value of the database handles deferred constraint 3472 ** counter. If the statement transaction needs to be rolled back, 3473 ** the value of this counter needs to be restored too. */ 3474 p->nStmtDefCons = db->nDeferredCons; 3475 p->nStmtDefImmCons = db->nDeferredImmCons; 3476 } 3477 } 3478 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3479 if( pOp->p5 3480 && (iMeta!=pOp->p3 3481 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3482 ){ 3483 /* 3484 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3485 ** version is checked to ensure that the schema has not changed since the 3486 ** SQL statement was prepared. 3487 */ 3488 sqlite3DbFree(db, p->zErrMsg); 3489 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3490 /* If the schema-cookie from the database file matches the cookie 3491 ** stored with the in-memory representation of the schema, do 3492 ** not reload the schema from the database file. 3493 ** 3494 ** If virtual-tables are in use, this is not just an optimization. 3495 ** Often, v-tables store their data in other SQLite tables, which 3496 ** are queried from within xNext() and other v-table methods using 3497 ** prepared queries. If such a query is out-of-date, we do not want to 3498 ** discard the database schema, as the user code implementing the 3499 ** v-table would have to be ready for the sqlite3_vtab structure itself 3500 ** to be invalidated whenever sqlite3_step() is called from within 3501 ** a v-table method. 3502 */ 3503 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3504 sqlite3ResetOneSchema(db, pOp->p1); 3505 } 3506 p->expired = 1; 3507 rc = SQLITE_SCHEMA; 3508 } 3509 if( rc ) goto abort_due_to_error; 3510 break; 3511 } 3512 3513 /* Opcode: ReadCookie P1 P2 P3 * * 3514 ** 3515 ** Read cookie number P3 from database P1 and write it into register P2. 3516 ** P3==1 is the schema version. P3==2 is the database format. 3517 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3518 ** the main database file and P1==1 is the database file used to store 3519 ** temporary tables. 3520 ** 3521 ** There must be a read-lock on the database (either a transaction 3522 ** must be started or there must be an open cursor) before 3523 ** executing this instruction. 3524 */ 3525 case OP_ReadCookie: { /* out2 */ 3526 int iMeta; 3527 int iDb; 3528 int iCookie; 3529 3530 assert( p->bIsReader ); 3531 iDb = pOp->p1; 3532 iCookie = pOp->p3; 3533 assert( pOp->p3<SQLITE_N_BTREE_META ); 3534 assert( iDb>=0 && iDb<db->nDb ); 3535 assert( db->aDb[iDb].pBt!=0 ); 3536 assert( DbMaskTest(p->btreeMask, iDb) ); 3537 3538 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3539 pOut = out2Prerelease(p, pOp); 3540 pOut->u.i = iMeta; 3541 break; 3542 } 3543 3544 /* Opcode: SetCookie P1 P2 P3 * * 3545 ** 3546 ** Write the integer value P3 into cookie number P2 of database P1. 3547 ** P2==1 is the schema version. P2==2 is the database format. 3548 ** P2==3 is the recommended pager cache 3549 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3550 ** database file used to store temporary tables. 3551 ** 3552 ** A transaction must be started before executing this opcode. 3553 */ 3554 case OP_SetCookie: { 3555 Db *pDb; 3556 3557 sqlite3VdbeIncrWriteCounter(p, 0); 3558 assert( pOp->p2<SQLITE_N_BTREE_META ); 3559 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3560 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3561 assert( p->readOnly==0 ); 3562 pDb = &db->aDb[pOp->p1]; 3563 assert( pDb->pBt!=0 ); 3564 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3565 /* See note about index shifting on OP_ReadCookie */ 3566 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3567 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3568 /* When the schema cookie changes, record the new cookie internally */ 3569 pDb->pSchema->schema_cookie = pOp->p3; 3570 db->mDbFlags |= DBFLAG_SchemaChange; 3571 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3572 /* Record changes in the file format */ 3573 pDb->pSchema->file_format = pOp->p3; 3574 } 3575 if( pOp->p1==1 ){ 3576 /* Invalidate all prepared statements whenever the TEMP database 3577 ** schema is changed. Ticket #1644 */ 3578 sqlite3ExpirePreparedStatements(db, 0); 3579 p->expired = 0; 3580 } 3581 if( rc ) goto abort_due_to_error; 3582 break; 3583 } 3584 3585 /* Opcode: OpenRead P1 P2 P3 P4 P5 3586 ** Synopsis: root=P2 iDb=P3 3587 ** 3588 ** Open a read-only cursor for the database table whose root page is 3589 ** P2 in a database file. The database file is determined by P3. 3590 ** P3==0 means the main database, P3==1 means the database used for 3591 ** temporary tables, and P3>1 means used the corresponding attached 3592 ** database. Give the new cursor an identifier of P1. The P1 3593 ** values need not be contiguous but all P1 values should be small integers. 3594 ** It is an error for P1 to be negative. 3595 ** 3596 ** Allowed P5 bits: 3597 ** <ul> 3598 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3599 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3600 ** of OP_SeekLE/OP_IdxGT) 3601 ** </ul> 3602 ** 3603 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3604 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3605 ** object, then table being opened must be an [index b-tree] where the 3606 ** KeyInfo object defines the content and collating 3607 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3608 ** value, then the table being opened must be a [table b-tree] with a 3609 ** number of columns no less than the value of P4. 3610 ** 3611 ** See also: OpenWrite, ReopenIdx 3612 */ 3613 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3614 ** Synopsis: root=P2 iDb=P3 3615 ** 3616 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3617 ** checks to see if the cursor on P1 is already open on the same 3618 ** b-tree and if it is this opcode becomes a no-op. In other words, 3619 ** if the cursor is already open, do not reopen it. 3620 ** 3621 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3622 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3623 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3624 ** number. 3625 ** 3626 ** Allowed P5 bits: 3627 ** <ul> 3628 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3629 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3630 ** of OP_SeekLE/OP_IdxGT) 3631 ** </ul> 3632 ** 3633 ** See also: OP_OpenRead, OP_OpenWrite 3634 */ 3635 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3636 ** Synopsis: root=P2 iDb=P3 3637 ** 3638 ** Open a read/write cursor named P1 on the table or index whose root 3639 ** page is P2 (or whose root page is held in register P2 if the 3640 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3641 ** 3642 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3643 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3644 ** object, then table being opened must be an [index b-tree] where the 3645 ** KeyInfo object defines the content and collating 3646 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3647 ** value, then the table being opened must be a [table b-tree] with a 3648 ** number of columns no less than the value of P4. 3649 ** 3650 ** Allowed P5 bits: 3651 ** <ul> 3652 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3653 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3654 ** of OP_SeekLE/OP_IdxGT) 3655 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3656 ** and subsequently delete entries in an index btree. This is a 3657 ** hint to the storage engine that the storage engine is allowed to 3658 ** ignore. The hint is not used by the official SQLite b*tree storage 3659 ** engine, but is used by COMDB2. 3660 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3661 ** as the root page, not the value of P2 itself. 3662 ** </ul> 3663 ** 3664 ** This instruction works like OpenRead except that it opens the cursor 3665 ** in read/write mode. 3666 ** 3667 ** See also: OP_OpenRead, OP_ReopenIdx 3668 */ 3669 case OP_ReopenIdx: { 3670 int nField; 3671 KeyInfo *pKeyInfo; 3672 int p2; 3673 int iDb; 3674 int wrFlag; 3675 Btree *pX; 3676 VdbeCursor *pCur; 3677 Db *pDb; 3678 3679 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3680 assert( pOp->p4type==P4_KEYINFO ); 3681 pCur = p->apCsr[pOp->p1]; 3682 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3683 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3684 goto open_cursor_set_hints; 3685 } 3686 /* If the cursor is not currently open or is open on a different 3687 ** index, then fall through into OP_OpenRead to force a reopen */ 3688 case OP_OpenRead: 3689 case OP_OpenWrite: 3690 3691 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3692 assert( p->bIsReader ); 3693 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3694 || p->readOnly==0 ); 3695 3696 if( p->expired==1 ){ 3697 rc = SQLITE_ABORT_ROLLBACK; 3698 goto abort_due_to_error; 3699 } 3700 3701 nField = 0; 3702 pKeyInfo = 0; 3703 p2 = pOp->p2; 3704 iDb = pOp->p3; 3705 assert( iDb>=0 && iDb<db->nDb ); 3706 assert( DbMaskTest(p->btreeMask, iDb) ); 3707 pDb = &db->aDb[iDb]; 3708 pX = pDb->pBt; 3709 assert( pX!=0 ); 3710 if( pOp->opcode==OP_OpenWrite ){ 3711 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3712 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3713 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3714 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3715 p->minWriteFileFormat = pDb->pSchema->file_format; 3716 } 3717 }else{ 3718 wrFlag = 0; 3719 } 3720 if( pOp->p5 & OPFLAG_P2ISREG ){ 3721 assert( p2>0 ); 3722 assert( p2<=(p->nMem+1 - p->nCursor) ); 3723 assert( pOp->opcode==OP_OpenWrite ); 3724 pIn2 = &aMem[p2]; 3725 assert( memIsValid(pIn2) ); 3726 assert( (pIn2->flags & MEM_Int)!=0 ); 3727 sqlite3VdbeMemIntegerify(pIn2); 3728 p2 = (int)pIn2->u.i; 3729 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3730 ** that opcode will always set the p2 value to 2 or more or else fail. 3731 ** If there were a failure, the prepared statement would have halted 3732 ** before reaching this instruction. */ 3733 assert( p2>=2 ); 3734 } 3735 if( pOp->p4type==P4_KEYINFO ){ 3736 pKeyInfo = pOp->p4.pKeyInfo; 3737 assert( pKeyInfo->enc==ENC(db) ); 3738 assert( pKeyInfo->db==db ); 3739 nField = pKeyInfo->nAllField; 3740 }else if( pOp->p4type==P4_INT32 ){ 3741 nField = pOp->p4.i; 3742 } 3743 assert( pOp->p1>=0 ); 3744 assert( nField>=0 ); 3745 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3746 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3747 if( pCur==0 ) goto no_mem; 3748 pCur->nullRow = 1; 3749 pCur->isOrdered = 1; 3750 pCur->pgnoRoot = p2; 3751 #ifdef SQLITE_DEBUG 3752 pCur->wrFlag = wrFlag; 3753 #endif 3754 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3755 pCur->pKeyInfo = pKeyInfo; 3756 /* Set the VdbeCursor.isTable variable. Previous versions of 3757 ** SQLite used to check if the root-page flags were sane at this point 3758 ** and report database corruption if they were not, but this check has 3759 ** since moved into the btree layer. */ 3760 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3761 3762 open_cursor_set_hints: 3763 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3764 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3765 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3766 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3767 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3768 #endif 3769 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3770 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3771 if( rc ) goto abort_due_to_error; 3772 break; 3773 } 3774 3775 /* Opcode: OpenDup P1 P2 * * * 3776 ** 3777 ** Open a new cursor P1 that points to the same ephemeral table as 3778 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3779 ** opcode. Only ephemeral cursors may be duplicated. 3780 ** 3781 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3782 */ 3783 case OP_OpenDup: { 3784 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3785 VdbeCursor *pCx; /* The new cursor */ 3786 3787 pOrig = p->apCsr[pOp->p2]; 3788 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3789 3790 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3791 if( pCx==0 ) goto no_mem; 3792 pCx->nullRow = 1; 3793 pCx->isEphemeral = 1; 3794 pCx->pKeyInfo = pOrig->pKeyInfo; 3795 pCx->isTable = pOrig->isTable; 3796 pCx->pgnoRoot = pOrig->pgnoRoot; 3797 pCx->isOrdered = pOrig->isOrdered; 3798 rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3799 pCx->pKeyInfo, pCx->uc.pCursor); 3800 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3801 ** opened for a database. Since there is already an open cursor when this 3802 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3803 assert( rc==SQLITE_OK ); 3804 break; 3805 } 3806 3807 3808 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3809 ** Synopsis: nColumn=P2 3810 ** 3811 ** Open a new cursor P1 to a transient table. 3812 ** The cursor is always opened read/write even if 3813 ** the main database is read-only. The ephemeral 3814 ** table is deleted automatically when the cursor is closed. 3815 ** 3816 ** If the cursor P1 is already opened on an ephemeral table, the table 3817 ** is cleared (all content is erased). 3818 ** 3819 ** P2 is the number of columns in the ephemeral table. 3820 ** The cursor points to a BTree table if P4==0 and to a BTree index 3821 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3822 ** that defines the format of keys in the index. 3823 ** 3824 ** The P5 parameter can be a mask of the BTREE_* flags defined 3825 ** in btree.h. These flags control aspects of the operation of 3826 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3827 ** added automatically. 3828 */ 3829 /* Opcode: OpenAutoindex P1 P2 * P4 * 3830 ** Synopsis: nColumn=P2 3831 ** 3832 ** This opcode works the same as OP_OpenEphemeral. It has a 3833 ** different name to distinguish its use. Tables created using 3834 ** by this opcode will be used for automatically created transient 3835 ** indices in joins. 3836 */ 3837 case OP_OpenAutoindex: 3838 case OP_OpenEphemeral: { 3839 VdbeCursor *pCx; 3840 KeyInfo *pKeyInfo; 3841 3842 static const int vfsFlags = 3843 SQLITE_OPEN_READWRITE | 3844 SQLITE_OPEN_CREATE | 3845 SQLITE_OPEN_EXCLUSIVE | 3846 SQLITE_OPEN_DELETEONCLOSE | 3847 SQLITE_OPEN_TRANSIENT_DB; 3848 assert( pOp->p1>=0 ); 3849 assert( pOp->p2>=0 ); 3850 pCx = p->apCsr[pOp->p1]; 3851 if( pCx ){ 3852 /* If the ephermeral table is already open, erase all existing content 3853 ** so that the table is empty again, rather than creating a new table. */ 3854 assert( pCx->isEphemeral ); 3855 pCx->seqCount = 0; 3856 pCx->cacheStatus = CACHE_STALE; 3857 if( pCx->pBtx ){ 3858 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 3859 } 3860 }else{ 3861 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3862 if( pCx==0 ) goto no_mem; 3863 pCx->isEphemeral = 1; 3864 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3865 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 3866 vfsFlags); 3867 if( rc==SQLITE_OK ){ 3868 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3869 } 3870 if( rc==SQLITE_OK ){ 3871 /* If a transient index is required, create it by calling 3872 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3873 ** opening it. If a transient table is required, just use the 3874 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3875 */ 3876 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3877 assert( pOp->p4type==P4_KEYINFO ); 3878 rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot, 3879 BTREE_BLOBKEY | pOp->p5); 3880 if( rc==SQLITE_OK ){ 3881 assert( pCx->pgnoRoot==MASTER_ROOT+1 ); 3882 assert( pKeyInfo->db==db ); 3883 assert( pKeyInfo->enc==ENC(db) ); 3884 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3885 pKeyInfo, pCx->uc.pCursor); 3886 } 3887 pCx->isTable = 0; 3888 }else{ 3889 pCx->pgnoRoot = MASTER_ROOT; 3890 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3891 0, pCx->uc.pCursor); 3892 pCx->isTable = 1; 3893 } 3894 } 3895 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3896 } 3897 if( rc ) goto abort_due_to_error; 3898 pCx->nullRow = 1; 3899 break; 3900 } 3901 3902 /* Opcode: SorterOpen P1 P2 P3 P4 * 3903 ** 3904 ** This opcode works like OP_OpenEphemeral except that it opens 3905 ** a transient index that is specifically designed to sort large 3906 ** tables using an external merge-sort algorithm. 3907 ** 3908 ** If argument P3 is non-zero, then it indicates that the sorter may 3909 ** assume that a stable sort considering the first P3 fields of each 3910 ** key is sufficient to produce the required results. 3911 */ 3912 case OP_SorterOpen: { 3913 VdbeCursor *pCx; 3914 3915 assert( pOp->p1>=0 ); 3916 assert( pOp->p2>=0 ); 3917 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3918 if( pCx==0 ) goto no_mem; 3919 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3920 assert( pCx->pKeyInfo->db==db ); 3921 assert( pCx->pKeyInfo->enc==ENC(db) ); 3922 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3923 if( rc ) goto abort_due_to_error; 3924 break; 3925 } 3926 3927 /* Opcode: SequenceTest P1 P2 * * * 3928 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3929 ** 3930 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3931 ** to P2. Regardless of whether or not the jump is taken, increment the 3932 ** the sequence value. 3933 */ 3934 case OP_SequenceTest: { 3935 VdbeCursor *pC; 3936 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3937 pC = p->apCsr[pOp->p1]; 3938 assert( isSorter(pC) ); 3939 if( (pC->seqCount++)==0 ){ 3940 goto jump_to_p2; 3941 } 3942 break; 3943 } 3944 3945 /* Opcode: OpenPseudo P1 P2 P3 * * 3946 ** Synopsis: P3 columns in r[P2] 3947 ** 3948 ** Open a new cursor that points to a fake table that contains a single 3949 ** row of data. The content of that one row is the content of memory 3950 ** register P2. In other words, cursor P1 becomes an alias for the 3951 ** MEM_Blob content contained in register P2. 3952 ** 3953 ** A pseudo-table created by this opcode is used to hold a single 3954 ** row output from the sorter so that the row can be decomposed into 3955 ** individual columns using the OP_Column opcode. The OP_Column opcode 3956 ** is the only cursor opcode that works with a pseudo-table. 3957 ** 3958 ** P3 is the number of fields in the records that will be stored by 3959 ** the pseudo-table. 3960 */ 3961 case OP_OpenPseudo: { 3962 VdbeCursor *pCx; 3963 3964 assert( pOp->p1>=0 ); 3965 assert( pOp->p3>=0 ); 3966 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3967 if( pCx==0 ) goto no_mem; 3968 pCx->nullRow = 1; 3969 pCx->seekResult = pOp->p2; 3970 pCx->isTable = 1; 3971 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 3972 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 3973 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 3974 ** which is a performance optimization */ 3975 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 3976 assert( pOp->p5==0 ); 3977 break; 3978 } 3979 3980 /* Opcode: Close P1 * * * * 3981 ** 3982 ** Close a cursor previously opened as P1. If P1 is not 3983 ** currently open, this instruction is a no-op. 3984 */ 3985 case OP_Close: { 3986 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3987 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3988 p->apCsr[pOp->p1] = 0; 3989 break; 3990 } 3991 3992 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3993 /* Opcode: ColumnsUsed P1 * * P4 * 3994 ** 3995 ** This opcode (which only exists if SQLite was compiled with 3996 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3997 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3998 ** (P4_INT64) in which the first 63 bits are one for each of the 3999 ** first 63 columns of the table or index that are actually used 4000 ** by the cursor. The high-order bit is set if any column after 4001 ** the 64th is used. 4002 */ 4003 case OP_ColumnsUsed: { 4004 VdbeCursor *pC; 4005 pC = p->apCsr[pOp->p1]; 4006 assert( pC->eCurType==CURTYPE_BTREE ); 4007 pC->maskUsed = *(u64*)pOp->p4.pI64; 4008 break; 4009 } 4010 #endif 4011 4012 /* Opcode: SeekGE P1 P2 P3 P4 * 4013 ** Synopsis: key=r[P3@P4] 4014 ** 4015 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4016 ** use the value in register P3 as the key. If cursor P1 refers 4017 ** to an SQL index, then P3 is the first in an array of P4 registers 4018 ** that are used as an unpacked index key. 4019 ** 4020 ** Reposition cursor P1 so that it points to the smallest entry that 4021 ** is greater than or equal to the key value. If there are no records 4022 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4023 ** 4024 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4025 ** opcode will always land on a record that equally equals the key, or 4026 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 4027 ** opcode must be followed by an IdxLE opcode with the same arguments. 4028 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 4029 ** IdxLE opcode will be used on subsequent loop iterations. 4030 ** 4031 ** This opcode leaves the cursor configured to move in forward order, 4032 ** from the beginning toward the end. In other words, the cursor is 4033 ** configured to use Next, not Prev. 4034 ** 4035 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4036 */ 4037 /* Opcode: SeekGT P1 P2 P3 P4 * 4038 ** Synopsis: key=r[P3@P4] 4039 ** 4040 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4041 ** use the value in register P3 as a key. If cursor P1 refers 4042 ** to an SQL index, then P3 is the first in an array of P4 registers 4043 ** that are used as an unpacked index key. 4044 ** 4045 ** Reposition cursor P1 so that it points to the smallest entry that 4046 ** is greater than the key value. If there are no records greater than 4047 ** the key and P2 is not zero, then jump to P2. 4048 ** 4049 ** This opcode leaves the cursor configured to move in forward order, 4050 ** from the beginning toward the end. In other words, the cursor is 4051 ** configured to use Next, not Prev. 4052 ** 4053 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4054 */ 4055 /* Opcode: SeekLT P1 P2 P3 P4 * 4056 ** Synopsis: key=r[P3@P4] 4057 ** 4058 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4059 ** use the value in register P3 as a key. If cursor P1 refers 4060 ** to an SQL index, then P3 is the first in an array of P4 registers 4061 ** that are used as an unpacked index key. 4062 ** 4063 ** Reposition cursor P1 so that it points to the largest entry that 4064 ** is less than the key value. If there are no records less than 4065 ** the key and P2 is not zero, then jump to P2. 4066 ** 4067 ** This opcode leaves the cursor configured to move in reverse order, 4068 ** from the end toward the beginning. In other words, the cursor is 4069 ** configured to use Prev, not Next. 4070 ** 4071 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4072 */ 4073 /* Opcode: SeekLE P1 P2 P3 P4 * 4074 ** Synopsis: key=r[P3@P4] 4075 ** 4076 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4077 ** use the value in register P3 as a key. If cursor P1 refers 4078 ** to an SQL index, then P3 is the first in an array of P4 registers 4079 ** that are used as an unpacked index key. 4080 ** 4081 ** Reposition cursor P1 so that it points to the largest entry that 4082 ** is less than or equal to the key value. If there are no records 4083 ** less than or equal to the key and P2 is not zero, then jump to P2. 4084 ** 4085 ** This opcode leaves the cursor configured to move in reverse order, 4086 ** from the end toward the beginning. In other words, the cursor is 4087 ** configured to use Prev, not Next. 4088 ** 4089 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4090 ** opcode will always land on a record that equally equals the key, or 4091 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 4092 ** opcode must be followed by an IdxGE opcode with the same arguments. 4093 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4094 ** IdxGE opcode will be used on subsequent loop iterations. 4095 ** 4096 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4097 */ 4098 case OP_SeekLT: /* jump, in3, group */ 4099 case OP_SeekLE: /* jump, in3, group */ 4100 case OP_SeekGE: /* jump, in3, group */ 4101 case OP_SeekGT: { /* jump, in3, group */ 4102 int res; /* Comparison result */ 4103 int oc; /* Opcode */ 4104 VdbeCursor *pC; /* The cursor to seek */ 4105 UnpackedRecord r; /* The key to seek for */ 4106 int nField; /* Number of columns or fields in the key */ 4107 i64 iKey; /* The rowid we are to seek to */ 4108 int eqOnly; /* Only interested in == results */ 4109 4110 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4111 assert( pOp->p2!=0 ); 4112 pC = p->apCsr[pOp->p1]; 4113 assert( pC!=0 ); 4114 assert( pC->eCurType==CURTYPE_BTREE ); 4115 assert( OP_SeekLE == OP_SeekLT+1 ); 4116 assert( OP_SeekGE == OP_SeekLT+2 ); 4117 assert( OP_SeekGT == OP_SeekLT+3 ); 4118 assert( pC->isOrdered ); 4119 assert( pC->uc.pCursor!=0 ); 4120 oc = pOp->opcode; 4121 eqOnly = 0; 4122 pC->nullRow = 0; 4123 #ifdef SQLITE_DEBUG 4124 pC->seekOp = pOp->opcode; 4125 #endif 4126 4127 pC->deferredMoveto = 0; 4128 pC->cacheStatus = CACHE_STALE; 4129 if( pC->isTable ){ 4130 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 4131 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4132 || CORRUPT_DB ); 4133 4134 /* The input value in P3 might be of any type: integer, real, string, 4135 ** blob, or NULL. But it needs to be an integer before we can do 4136 ** the seek, so convert it. */ 4137 pIn3 = &aMem[pOp->p3]; 4138 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4139 applyNumericAffinity(pIn3, 0); 4140 } 4141 iKey = sqlite3VdbeIntValue(pIn3); 4142 4143 /* If the P3 value could not be converted into an integer without 4144 ** loss of information, then special processing is required... */ 4145 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 4146 if( (pIn3->flags & MEM_Real)==0 ){ 4147 if( (pIn3->flags & MEM_Null) || oc>=OP_SeekGE ){ 4148 VdbeBranchTaken(1,2); 4149 goto jump_to_p2; 4150 }else{ 4151 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4152 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4153 goto seek_not_found; 4154 } 4155 }else 4156 4157 /* If the approximation iKey is larger than the actual real search 4158 ** term, substitute >= for > and < for <=. e.g. if the search term 4159 ** is 4.9 and the integer approximation 5: 4160 ** 4161 ** (x > 4.9) -> (x >= 5) 4162 ** (x <= 4.9) -> (x < 5) 4163 */ 4164 if( pIn3->u.r<(double)iKey ){ 4165 assert( OP_SeekGE==(OP_SeekGT-1) ); 4166 assert( OP_SeekLT==(OP_SeekLE-1) ); 4167 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4168 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4169 } 4170 4171 /* If the approximation iKey is smaller than the actual real search 4172 ** term, substitute <= for < and > for >=. */ 4173 else if( pIn3->u.r>(double)iKey ){ 4174 assert( OP_SeekLE==(OP_SeekLT+1) ); 4175 assert( OP_SeekGT==(OP_SeekGE+1) ); 4176 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4177 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4178 } 4179 } 4180 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 4181 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4182 if( rc!=SQLITE_OK ){ 4183 goto abort_due_to_error; 4184 } 4185 }else{ 4186 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 4187 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 4188 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 4189 */ 4190 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4191 eqOnly = 1; 4192 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4193 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4194 assert( pOp[1].p1==pOp[0].p1 ); 4195 assert( pOp[1].p2==pOp[0].p2 ); 4196 assert( pOp[1].p3==pOp[0].p3 ); 4197 assert( pOp[1].p4.i==pOp[0].p4.i ); 4198 } 4199 4200 nField = pOp->p4.i; 4201 assert( pOp->p4type==P4_INT32 ); 4202 assert( nField>0 ); 4203 r.pKeyInfo = pC->pKeyInfo; 4204 r.nField = (u16)nField; 4205 4206 /* The next line of code computes as follows, only faster: 4207 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4208 ** r.default_rc = -1; 4209 ** }else{ 4210 ** r.default_rc = +1; 4211 ** } 4212 */ 4213 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4214 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4215 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4216 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4217 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4218 4219 r.aMem = &aMem[pOp->p3]; 4220 #ifdef SQLITE_DEBUG 4221 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4222 #endif 4223 r.eqSeen = 0; 4224 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4225 if( rc!=SQLITE_OK ){ 4226 goto abort_due_to_error; 4227 } 4228 if( eqOnly && r.eqSeen==0 ){ 4229 assert( res!=0 ); 4230 goto seek_not_found; 4231 } 4232 } 4233 #ifdef SQLITE_TEST 4234 sqlite3_search_count++; 4235 #endif 4236 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4237 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4238 res = 0; 4239 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4240 if( rc!=SQLITE_OK ){ 4241 if( rc==SQLITE_DONE ){ 4242 rc = SQLITE_OK; 4243 res = 1; 4244 }else{ 4245 goto abort_due_to_error; 4246 } 4247 } 4248 }else{ 4249 res = 0; 4250 } 4251 }else{ 4252 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4253 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4254 res = 0; 4255 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4256 if( rc!=SQLITE_OK ){ 4257 if( rc==SQLITE_DONE ){ 4258 rc = SQLITE_OK; 4259 res = 1; 4260 }else{ 4261 goto abort_due_to_error; 4262 } 4263 } 4264 }else{ 4265 /* res might be negative because the table is empty. Check to 4266 ** see if this is the case. 4267 */ 4268 res = sqlite3BtreeEof(pC->uc.pCursor); 4269 } 4270 } 4271 seek_not_found: 4272 assert( pOp->p2>0 ); 4273 VdbeBranchTaken(res!=0,2); 4274 if( res ){ 4275 goto jump_to_p2; 4276 }else if( eqOnly ){ 4277 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4278 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4279 } 4280 break; 4281 } 4282 4283 /* Opcode: SeekHit P1 P2 * * * 4284 ** Synopsis: seekHit=P2 4285 ** 4286 ** Set the seekHit flag on cursor P1 to the value in P2. 4287 ** The seekHit flag is used by the IfNoHope opcode. 4288 ** 4289 ** P1 must be a valid b-tree cursor. P2 must be a boolean value, 4290 ** either 0 or 1. 4291 */ 4292 case OP_SeekHit: { 4293 VdbeCursor *pC; 4294 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4295 pC = p->apCsr[pOp->p1]; 4296 assert( pC!=0 ); 4297 assert( pOp->p2==0 || pOp->p2==1 ); 4298 pC->seekHit = pOp->p2 & 1; 4299 break; 4300 } 4301 4302 /* Opcode: Found P1 P2 P3 P4 * 4303 ** Synopsis: key=r[P3@P4] 4304 ** 4305 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4306 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4307 ** record. 4308 ** 4309 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4310 ** is a prefix of any entry in P1 then a jump is made to P2 and 4311 ** P1 is left pointing at the matching entry. 4312 ** 4313 ** This operation leaves the cursor in a state where it can be 4314 ** advanced in the forward direction. The Next instruction will work, 4315 ** but not the Prev instruction. 4316 ** 4317 ** See also: NotFound, NoConflict, NotExists. SeekGe 4318 */ 4319 /* Opcode: NotFound P1 P2 P3 P4 * 4320 ** Synopsis: key=r[P3@P4] 4321 ** 4322 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4323 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4324 ** record. 4325 ** 4326 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4327 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4328 ** does contain an entry whose prefix matches the P3/P4 record then control 4329 ** falls through to the next instruction and P1 is left pointing at the 4330 ** matching entry. 4331 ** 4332 ** This operation leaves the cursor in a state where it cannot be 4333 ** advanced in either direction. In other words, the Next and Prev 4334 ** opcodes do not work after this operation. 4335 ** 4336 ** See also: Found, NotExists, NoConflict, IfNoHope 4337 */ 4338 /* Opcode: IfNoHope P1 P2 P3 P4 * 4339 ** Synopsis: key=r[P3@P4] 4340 ** 4341 ** Register P3 is the first of P4 registers that form an unpacked 4342 ** record. 4343 ** 4344 ** Cursor P1 is on an index btree. If the seekHit flag is set on P1, then 4345 ** this opcode is a no-op. But if the seekHit flag of P1 is clear, then 4346 ** check to see if there is any entry in P1 that matches the 4347 ** prefix identified by P3 and P4. If no entry matches the prefix, 4348 ** jump to P2. Otherwise fall through. 4349 ** 4350 ** This opcode behaves like OP_NotFound if the seekHit 4351 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set. 4352 ** 4353 ** This opcode is used in IN clause processing for a multi-column key. 4354 ** If an IN clause is attached to an element of the key other than the 4355 ** left-most element, and if there are no matches on the most recent 4356 ** seek over the whole key, then it might be that one of the key element 4357 ** to the left is prohibiting a match, and hence there is "no hope" of 4358 ** any match regardless of how many IN clause elements are checked. 4359 ** In such a case, we abandon the IN clause search early, using this 4360 ** opcode. The opcode name comes from the fact that the 4361 ** jump is taken if there is "no hope" of achieving a match. 4362 ** 4363 ** See also: NotFound, SeekHit 4364 */ 4365 /* Opcode: NoConflict P1 P2 P3 P4 * 4366 ** Synopsis: key=r[P3@P4] 4367 ** 4368 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4369 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4370 ** record. 4371 ** 4372 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4373 ** contains any NULL value, jump immediately to P2. If all terms of the 4374 ** record are not-NULL then a check is done to determine if any row in the 4375 ** P1 index btree has a matching key prefix. If there are no matches, jump 4376 ** immediately to P2. If there is a match, fall through and leave the P1 4377 ** cursor pointing to the matching row. 4378 ** 4379 ** This opcode is similar to OP_NotFound with the exceptions that the 4380 ** branch is always taken if any part of the search key input is NULL. 4381 ** 4382 ** This operation leaves the cursor in a state where it cannot be 4383 ** advanced in either direction. In other words, the Next and Prev 4384 ** opcodes do not work after this operation. 4385 ** 4386 ** See also: NotFound, Found, NotExists 4387 */ 4388 case OP_IfNoHope: { /* jump, in3 */ 4389 VdbeCursor *pC; 4390 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4391 pC = p->apCsr[pOp->p1]; 4392 assert( pC!=0 ); 4393 if( pC->seekHit ) break; 4394 /* Fall through into OP_NotFound */ 4395 } 4396 case OP_NoConflict: /* jump, in3 */ 4397 case OP_NotFound: /* jump, in3 */ 4398 case OP_Found: { /* jump, in3 */ 4399 int alreadyExists; 4400 int takeJump; 4401 int ii; 4402 VdbeCursor *pC; 4403 int res; 4404 UnpackedRecord *pFree; 4405 UnpackedRecord *pIdxKey; 4406 UnpackedRecord r; 4407 4408 #ifdef SQLITE_TEST 4409 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4410 #endif 4411 4412 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4413 assert( pOp->p4type==P4_INT32 ); 4414 pC = p->apCsr[pOp->p1]; 4415 assert( pC!=0 ); 4416 #ifdef SQLITE_DEBUG 4417 pC->seekOp = pOp->opcode; 4418 #endif 4419 pIn3 = &aMem[pOp->p3]; 4420 assert( pC->eCurType==CURTYPE_BTREE ); 4421 assert( pC->uc.pCursor!=0 ); 4422 assert( pC->isTable==0 ); 4423 if( pOp->p4.i>0 ){ 4424 r.pKeyInfo = pC->pKeyInfo; 4425 r.nField = (u16)pOp->p4.i; 4426 r.aMem = pIn3; 4427 #ifdef SQLITE_DEBUG 4428 for(ii=0; ii<r.nField; ii++){ 4429 assert( memIsValid(&r.aMem[ii]) ); 4430 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4431 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4432 } 4433 #endif 4434 pIdxKey = &r; 4435 pFree = 0; 4436 }else{ 4437 assert( pIn3->flags & MEM_Blob ); 4438 rc = ExpandBlob(pIn3); 4439 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4440 if( rc ) goto no_mem; 4441 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4442 if( pIdxKey==0 ) goto no_mem; 4443 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4444 } 4445 pIdxKey->default_rc = 0; 4446 takeJump = 0; 4447 if( pOp->opcode==OP_NoConflict ){ 4448 /* For the OP_NoConflict opcode, take the jump if any of the 4449 ** input fields are NULL, since any key with a NULL will not 4450 ** conflict */ 4451 for(ii=0; ii<pIdxKey->nField; ii++){ 4452 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4453 takeJump = 1; 4454 break; 4455 } 4456 } 4457 } 4458 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4459 if( pFree ) sqlite3DbFreeNN(db, pFree); 4460 if( rc!=SQLITE_OK ){ 4461 goto abort_due_to_error; 4462 } 4463 pC->seekResult = res; 4464 alreadyExists = (res==0); 4465 pC->nullRow = 1-alreadyExists; 4466 pC->deferredMoveto = 0; 4467 pC->cacheStatus = CACHE_STALE; 4468 if( pOp->opcode==OP_Found ){ 4469 VdbeBranchTaken(alreadyExists!=0,2); 4470 if( alreadyExists ) goto jump_to_p2; 4471 }else{ 4472 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4473 if( takeJump || !alreadyExists ) goto jump_to_p2; 4474 } 4475 break; 4476 } 4477 4478 /* Opcode: SeekRowid P1 P2 P3 * * 4479 ** Synopsis: intkey=r[P3] 4480 ** 4481 ** P1 is the index of a cursor open on an SQL table btree (with integer 4482 ** keys). If register P3 does not contain an integer or if P1 does not 4483 ** contain a record with rowid P3 then jump immediately to P2. 4484 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4485 ** a record with rowid P3 then 4486 ** leave the cursor pointing at that record and fall through to the next 4487 ** instruction. 4488 ** 4489 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4490 ** the P3 register must be guaranteed to contain an integer value. With this 4491 ** opcode, register P3 might not contain an integer. 4492 ** 4493 ** The OP_NotFound opcode performs the same operation on index btrees 4494 ** (with arbitrary multi-value keys). 4495 ** 4496 ** This opcode leaves the cursor in a state where it cannot be advanced 4497 ** in either direction. In other words, the Next and Prev opcodes will 4498 ** not work following this opcode. 4499 ** 4500 ** See also: Found, NotFound, NoConflict, SeekRowid 4501 */ 4502 /* Opcode: NotExists P1 P2 P3 * * 4503 ** Synopsis: intkey=r[P3] 4504 ** 4505 ** P1 is the index of a cursor open on an SQL table btree (with integer 4506 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4507 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4508 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4509 ** leave the cursor pointing at that record and fall through to the next 4510 ** instruction. 4511 ** 4512 ** The OP_SeekRowid opcode performs the same operation but also allows the 4513 ** P3 register to contain a non-integer value, in which case the jump is 4514 ** always taken. This opcode requires that P3 always contain an integer. 4515 ** 4516 ** The OP_NotFound opcode performs the same operation on index btrees 4517 ** (with arbitrary multi-value keys). 4518 ** 4519 ** This opcode leaves the cursor in a state where it cannot be advanced 4520 ** in either direction. In other words, the Next and Prev opcodes will 4521 ** not work following this opcode. 4522 ** 4523 ** See also: Found, NotFound, NoConflict, SeekRowid 4524 */ 4525 case OP_SeekRowid: { /* jump, in3 */ 4526 VdbeCursor *pC; 4527 BtCursor *pCrsr; 4528 int res; 4529 u64 iKey; 4530 4531 pIn3 = &aMem[pOp->p3]; 4532 testcase( pIn3->flags & MEM_Int ); 4533 testcase( pIn3->flags & MEM_IntReal ); 4534 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 4535 /* Make sure pIn3->u.i contains a valid integer representation of 4536 ** the key value, but do not change the datatype of the register, as 4537 ** other parts of the perpared statement might be depending on the 4538 ** current datatype. */ 4539 u16 origFlags = pIn3->flags; 4540 int isNotInt; 4541 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); 4542 isNotInt = (pIn3->flags & MEM_Int)==0; 4543 pIn3->flags = origFlags; 4544 if( isNotInt ) goto jump_to_p2; 4545 } 4546 /* Fall through into OP_NotExists */ 4547 case OP_NotExists: /* jump, in3 */ 4548 pIn3 = &aMem[pOp->p3]; 4549 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 4550 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4551 pC = p->apCsr[pOp->p1]; 4552 assert( pC!=0 ); 4553 #ifdef SQLITE_DEBUG 4554 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 4555 #endif 4556 assert( pC->isTable ); 4557 assert( pC->eCurType==CURTYPE_BTREE ); 4558 pCrsr = pC->uc.pCursor; 4559 assert( pCrsr!=0 ); 4560 res = 0; 4561 iKey = pIn3->u.i; 4562 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4563 assert( rc==SQLITE_OK || res==0 ); 4564 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4565 pC->nullRow = 0; 4566 pC->cacheStatus = CACHE_STALE; 4567 pC->deferredMoveto = 0; 4568 VdbeBranchTaken(res!=0,2); 4569 pC->seekResult = res; 4570 if( res!=0 ){ 4571 assert( rc==SQLITE_OK ); 4572 if( pOp->p2==0 ){ 4573 rc = SQLITE_CORRUPT_BKPT; 4574 }else{ 4575 goto jump_to_p2; 4576 } 4577 } 4578 if( rc ) goto abort_due_to_error; 4579 break; 4580 } 4581 4582 /* Opcode: Sequence P1 P2 * * * 4583 ** Synopsis: r[P2]=cursor[P1].ctr++ 4584 ** 4585 ** Find the next available sequence number for cursor P1. 4586 ** Write the sequence number into register P2. 4587 ** The sequence number on the cursor is incremented after this 4588 ** instruction. 4589 */ 4590 case OP_Sequence: { /* out2 */ 4591 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4592 assert( p->apCsr[pOp->p1]!=0 ); 4593 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4594 pOut = out2Prerelease(p, pOp); 4595 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4596 break; 4597 } 4598 4599 4600 /* Opcode: NewRowid P1 P2 P3 * * 4601 ** Synopsis: r[P2]=rowid 4602 ** 4603 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4604 ** The record number is not previously used as a key in the database 4605 ** table that cursor P1 points to. The new record number is written 4606 ** written to register P2. 4607 ** 4608 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4609 ** the largest previously generated record number. No new record numbers are 4610 ** allowed to be less than this value. When this value reaches its maximum, 4611 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4612 ** generated record number. This P3 mechanism is used to help implement the 4613 ** AUTOINCREMENT feature. 4614 */ 4615 case OP_NewRowid: { /* out2 */ 4616 i64 v; /* The new rowid */ 4617 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4618 int res; /* Result of an sqlite3BtreeLast() */ 4619 int cnt; /* Counter to limit the number of searches */ 4620 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4621 VdbeFrame *pFrame; /* Root frame of VDBE */ 4622 4623 v = 0; 4624 res = 0; 4625 pOut = out2Prerelease(p, pOp); 4626 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4627 pC = p->apCsr[pOp->p1]; 4628 assert( pC!=0 ); 4629 assert( pC->isTable ); 4630 assert( pC->eCurType==CURTYPE_BTREE ); 4631 assert( pC->uc.pCursor!=0 ); 4632 { 4633 /* The next rowid or record number (different terms for the same 4634 ** thing) is obtained in a two-step algorithm. 4635 ** 4636 ** First we attempt to find the largest existing rowid and add one 4637 ** to that. But if the largest existing rowid is already the maximum 4638 ** positive integer, we have to fall through to the second 4639 ** probabilistic algorithm 4640 ** 4641 ** The second algorithm is to select a rowid at random and see if 4642 ** it already exists in the table. If it does not exist, we have 4643 ** succeeded. If the random rowid does exist, we select a new one 4644 ** and try again, up to 100 times. 4645 */ 4646 assert( pC->isTable ); 4647 4648 #ifdef SQLITE_32BIT_ROWID 4649 # define MAX_ROWID 0x7fffffff 4650 #else 4651 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4652 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4653 ** to provide the constant while making all compilers happy. 4654 */ 4655 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4656 #endif 4657 4658 if( !pC->useRandomRowid ){ 4659 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4660 if( rc!=SQLITE_OK ){ 4661 goto abort_due_to_error; 4662 } 4663 if( res ){ 4664 v = 1; /* IMP: R-61914-48074 */ 4665 }else{ 4666 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4667 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4668 if( v>=MAX_ROWID ){ 4669 pC->useRandomRowid = 1; 4670 }else{ 4671 v++; /* IMP: R-29538-34987 */ 4672 } 4673 } 4674 } 4675 4676 #ifndef SQLITE_OMIT_AUTOINCREMENT 4677 if( pOp->p3 ){ 4678 /* Assert that P3 is a valid memory cell. */ 4679 assert( pOp->p3>0 ); 4680 if( p->pFrame ){ 4681 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4682 /* Assert that P3 is a valid memory cell. */ 4683 assert( pOp->p3<=pFrame->nMem ); 4684 pMem = &pFrame->aMem[pOp->p3]; 4685 }else{ 4686 /* Assert that P3 is a valid memory cell. */ 4687 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4688 pMem = &aMem[pOp->p3]; 4689 memAboutToChange(p, pMem); 4690 } 4691 assert( memIsValid(pMem) ); 4692 4693 REGISTER_TRACE(pOp->p3, pMem); 4694 sqlite3VdbeMemIntegerify(pMem); 4695 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4696 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4697 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4698 goto abort_due_to_error; 4699 } 4700 if( v<pMem->u.i+1 ){ 4701 v = pMem->u.i + 1; 4702 } 4703 pMem->u.i = v; 4704 } 4705 #endif 4706 if( pC->useRandomRowid ){ 4707 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4708 ** largest possible integer (9223372036854775807) then the database 4709 ** engine starts picking positive candidate ROWIDs at random until 4710 ** it finds one that is not previously used. */ 4711 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4712 ** an AUTOINCREMENT table. */ 4713 cnt = 0; 4714 do{ 4715 sqlite3_randomness(sizeof(v), &v); 4716 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4717 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4718 0, &res))==SQLITE_OK) 4719 && (res==0) 4720 && (++cnt<100)); 4721 if( rc ) goto abort_due_to_error; 4722 if( res==0 ){ 4723 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4724 goto abort_due_to_error; 4725 } 4726 assert( v>0 ); /* EV: R-40812-03570 */ 4727 } 4728 pC->deferredMoveto = 0; 4729 pC->cacheStatus = CACHE_STALE; 4730 } 4731 pOut->u.i = v; 4732 break; 4733 } 4734 4735 /* Opcode: Insert P1 P2 P3 P4 P5 4736 ** Synopsis: intkey=r[P3] data=r[P2] 4737 ** 4738 ** Write an entry into the table of cursor P1. A new entry is 4739 ** created if it doesn't already exist or the data for an existing 4740 ** entry is overwritten. The data is the value MEM_Blob stored in register 4741 ** number P2. The key is stored in register P3. The key must 4742 ** be a MEM_Int. 4743 ** 4744 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4745 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4746 ** then rowid is stored for subsequent return by the 4747 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4748 ** 4749 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4750 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4751 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4752 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4753 ** 4754 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4755 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4756 ** is part of an INSERT operation. The difference is only important to 4757 ** the update hook. 4758 ** 4759 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4760 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4761 ** following a successful insert. 4762 ** 4763 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4764 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4765 ** and register P2 becomes ephemeral. If the cursor is changed, the 4766 ** value of register P2 will then change. Make sure this does not 4767 ** cause any problems.) 4768 ** 4769 ** This instruction only works on tables. The equivalent instruction 4770 ** for indices is OP_IdxInsert. 4771 */ 4772 case OP_Insert: { 4773 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4774 Mem *pKey; /* MEM cell holding key for the record */ 4775 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4776 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4777 const char *zDb; /* database name - used by the update hook */ 4778 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4779 BtreePayload x; /* Payload to be inserted */ 4780 4781 pData = &aMem[pOp->p2]; 4782 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4783 assert( memIsValid(pData) ); 4784 pC = p->apCsr[pOp->p1]; 4785 assert( pC!=0 ); 4786 assert( pC->eCurType==CURTYPE_BTREE ); 4787 assert( pC->uc.pCursor!=0 ); 4788 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4789 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4790 REGISTER_TRACE(pOp->p2, pData); 4791 sqlite3VdbeIncrWriteCounter(p, pC); 4792 4793 pKey = &aMem[pOp->p3]; 4794 assert( pKey->flags & MEM_Int ); 4795 assert( memIsValid(pKey) ); 4796 REGISTER_TRACE(pOp->p3, pKey); 4797 x.nKey = pKey->u.i; 4798 4799 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4800 assert( pC->iDb>=0 ); 4801 zDb = db->aDb[pC->iDb].zDbSName; 4802 pTab = pOp->p4.pTab; 4803 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4804 }else{ 4805 pTab = 0; 4806 zDb = 0; /* Not needed. Silence a compiler warning. */ 4807 } 4808 4809 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4810 /* Invoke the pre-update hook, if any */ 4811 if( pTab ){ 4812 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 4813 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 4814 } 4815 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 4816 /* Prevent post-update hook from running in cases when it should not */ 4817 pTab = 0; 4818 } 4819 } 4820 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4821 #endif 4822 4823 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4824 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4825 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4826 x.pData = pData->z; 4827 x.nData = pData->n; 4828 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4829 if( pData->flags & MEM_Zero ){ 4830 x.nZero = pData->u.nZero; 4831 }else{ 4832 x.nZero = 0; 4833 } 4834 x.pKey = 0; 4835 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4836 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4837 ); 4838 pC->deferredMoveto = 0; 4839 pC->cacheStatus = CACHE_STALE; 4840 4841 /* Invoke the update-hook if required. */ 4842 if( rc ) goto abort_due_to_error; 4843 if( pTab ){ 4844 assert( db->xUpdateCallback!=0 ); 4845 assert( pTab->aCol!=0 ); 4846 db->xUpdateCallback(db->pUpdateArg, 4847 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 4848 zDb, pTab->zName, x.nKey); 4849 } 4850 break; 4851 } 4852 4853 /* Opcode: Delete P1 P2 P3 P4 P5 4854 ** 4855 ** Delete the record at which the P1 cursor is currently pointing. 4856 ** 4857 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4858 ** the cursor will be left pointing at either the next or the previous 4859 ** record in the table. If it is left pointing at the next record, then 4860 ** the next Next instruction will be a no-op. As a result, in this case 4861 ** it is ok to delete a record from within a Next loop. If 4862 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4863 ** left in an undefined state. 4864 ** 4865 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4866 ** delete one of several associated with deleting a table row and all its 4867 ** associated index entries. Exactly one of those deletes is the "primary" 4868 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4869 ** marked with the AUXDELETE flag. 4870 ** 4871 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4872 ** change count is incremented (otherwise not). 4873 ** 4874 ** P1 must not be pseudo-table. It has to be a real table with 4875 ** multiple rows. 4876 ** 4877 ** If P4 is not NULL then it points to a Table object. In this case either 4878 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4879 ** have been positioned using OP_NotFound prior to invoking this opcode in 4880 ** this case. Specifically, if one is configured, the pre-update hook is 4881 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4882 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4883 ** 4884 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4885 ** of the memory cell that contains the value that the rowid of the row will 4886 ** be set to by the update. 4887 */ 4888 case OP_Delete: { 4889 VdbeCursor *pC; 4890 const char *zDb; 4891 Table *pTab; 4892 int opflags; 4893 4894 opflags = pOp->p2; 4895 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4896 pC = p->apCsr[pOp->p1]; 4897 assert( pC!=0 ); 4898 assert( pC->eCurType==CURTYPE_BTREE ); 4899 assert( pC->uc.pCursor!=0 ); 4900 assert( pC->deferredMoveto==0 ); 4901 sqlite3VdbeIncrWriteCounter(p, pC); 4902 4903 #ifdef SQLITE_DEBUG 4904 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ 4905 /* If p5 is zero, the seek operation that positioned the cursor prior to 4906 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 4907 ** the row that is being deleted */ 4908 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4909 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 4910 } 4911 #endif 4912 4913 /* If the update-hook or pre-update-hook will be invoked, set zDb to 4914 ** the name of the db to pass as to it. Also set local pTab to a copy 4915 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 4916 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 4917 ** VdbeCursor.movetoTarget to the current rowid. */ 4918 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4919 assert( pC->iDb>=0 ); 4920 assert( pOp->p4.pTab!=0 ); 4921 zDb = db->aDb[pC->iDb].zDbSName; 4922 pTab = pOp->p4.pTab; 4923 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 4924 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4925 } 4926 }else{ 4927 zDb = 0; /* Not needed. Silence a compiler warning. */ 4928 pTab = 0; /* Not needed. Silence a compiler warning. */ 4929 } 4930 4931 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4932 /* Invoke the pre-update-hook if required. */ 4933 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 4934 assert( !(opflags & OPFLAG_ISUPDATE) 4935 || HasRowid(pTab)==0 4936 || (aMem[pOp->p3].flags & MEM_Int) 4937 ); 4938 sqlite3VdbePreUpdateHook(p, pC, 4939 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 4940 zDb, pTab, pC->movetoTarget, 4941 pOp->p3 4942 ); 4943 } 4944 if( opflags & OPFLAG_ISNOOP ) break; 4945 #endif 4946 4947 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4948 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4949 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4950 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4951 4952 #ifdef SQLITE_DEBUG 4953 if( p->pFrame==0 ){ 4954 if( pC->isEphemeral==0 4955 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4956 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4957 ){ 4958 nExtraDelete++; 4959 } 4960 if( pOp->p2 & OPFLAG_NCHANGE ){ 4961 nExtraDelete--; 4962 } 4963 } 4964 #endif 4965 4966 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4967 pC->cacheStatus = CACHE_STALE; 4968 pC->seekResult = 0; 4969 if( rc ) goto abort_due_to_error; 4970 4971 /* Invoke the update-hook if required. */ 4972 if( opflags & OPFLAG_NCHANGE ){ 4973 p->nChange++; 4974 if( db->xUpdateCallback && HasRowid(pTab) ){ 4975 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 4976 pC->movetoTarget); 4977 assert( pC->iDb>=0 ); 4978 } 4979 } 4980 4981 break; 4982 } 4983 /* Opcode: ResetCount * * * * * 4984 ** 4985 ** The value of the change counter is copied to the database handle 4986 ** change counter (returned by subsequent calls to sqlite3_changes()). 4987 ** Then the VMs internal change counter resets to 0. 4988 ** This is used by trigger programs. 4989 */ 4990 case OP_ResetCount: { 4991 sqlite3VdbeSetChanges(db, p->nChange); 4992 p->nChange = 0; 4993 break; 4994 } 4995 4996 /* Opcode: SorterCompare P1 P2 P3 P4 4997 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4998 ** 4999 ** P1 is a sorter cursor. This instruction compares a prefix of the 5000 ** record blob in register P3 against a prefix of the entry that 5001 ** the sorter cursor currently points to. Only the first P4 fields 5002 ** of r[P3] and the sorter record are compared. 5003 ** 5004 ** If either P3 or the sorter contains a NULL in one of their significant 5005 ** fields (not counting the P4 fields at the end which are ignored) then 5006 ** the comparison is assumed to be equal. 5007 ** 5008 ** Fall through to next instruction if the two records compare equal to 5009 ** each other. Jump to P2 if they are different. 5010 */ 5011 case OP_SorterCompare: { 5012 VdbeCursor *pC; 5013 int res; 5014 int nKeyCol; 5015 5016 pC = p->apCsr[pOp->p1]; 5017 assert( isSorter(pC) ); 5018 assert( pOp->p4type==P4_INT32 ); 5019 pIn3 = &aMem[pOp->p3]; 5020 nKeyCol = pOp->p4.i; 5021 res = 0; 5022 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5023 VdbeBranchTaken(res!=0,2); 5024 if( rc ) goto abort_due_to_error; 5025 if( res ) goto jump_to_p2; 5026 break; 5027 }; 5028 5029 /* Opcode: SorterData P1 P2 P3 * * 5030 ** Synopsis: r[P2]=data 5031 ** 5032 ** Write into register P2 the current sorter data for sorter cursor P1. 5033 ** Then clear the column header cache on cursor P3. 5034 ** 5035 ** This opcode is normally use to move a record out of the sorter and into 5036 ** a register that is the source for a pseudo-table cursor created using 5037 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5038 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5039 ** us from having to issue a separate NullRow instruction to clear that cache. 5040 */ 5041 case OP_SorterData: { 5042 VdbeCursor *pC; 5043 5044 pOut = &aMem[pOp->p2]; 5045 pC = p->apCsr[pOp->p1]; 5046 assert( isSorter(pC) ); 5047 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5048 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5049 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5050 if( rc ) goto abort_due_to_error; 5051 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5052 break; 5053 } 5054 5055 /* Opcode: RowData P1 P2 P3 * * 5056 ** Synopsis: r[P2]=data 5057 ** 5058 ** Write into register P2 the complete row content for the row at 5059 ** which cursor P1 is currently pointing. 5060 ** There is no interpretation of the data. 5061 ** It is just copied onto the P2 register exactly as 5062 ** it is found in the database file. 5063 ** 5064 ** If cursor P1 is an index, then the content is the key of the row. 5065 ** If cursor P2 is a table, then the content extracted is the data. 5066 ** 5067 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5068 ** of a real table, not a pseudo-table. 5069 ** 5070 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5071 ** into the database page. That means that the content of the output 5072 ** register will be invalidated as soon as the cursor moves - including 5073 ** moves caused by other cursors that "save" the current cursors 5074 ** position in order that they can write to the same table. If P3==0 5075 ** then a copy of the data is made into memory. P3!=0 is faster, but 5076 ** P3==0 is safer. 5077 ** 5078 ** If P3!=0 then the content of the P2 register is unsuitable for use 5079 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5080 ** The P2 register content is invalidated by opcodes like OP_Function or 5081 ** by any use of another cursor pointing to the same table. 5082 */ 5083 case OP_RowData: { 5084 VdbeCursor *pC; 5085 BtCursor *pCrsr; 5086 u32 n; 5087 5088 pOut = out2Prerelease(p, pOp); 5089 5090 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5091 pC = p->apCsr[pOp->p1]; 5092 assert( pC!=0 ); 5093 assert( pC->eCurType==CURTYPE_BTREE ); 5094 assert( isSorter(pC)==0 ); 5095 assert( pC->nullRow==0 ); 5096 assert( pC->uc.pCursor!=0 ); 5097 pCrsr = pC->uc.pCursor; 5098 5099 /* The OP_RowData opcodes always follow OP_NotExists or 5100 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5101 ** that might invalidate the cursor. 5102 ** If this where not the case, on of the following assert()s 5103 ** would fail. Should this ever change (because of changes in the code 5104 ** generator) then the fix would be to insert a call to 5105 ** sqlite3VdbeCursorMoveto(). 5106 */ 5107 assert( pC->deferredMoveto==0 ); 5108 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5109 #if 0 /* Not required due to the previous to assert() statements */ 5110 rc = sqlite3VdbeCursorMoveto(pC); 5111 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5112 #endif 5113 5114 n = sqlite3BtreePayloadSize(pCrsr); 5115 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5116 goto too_big; 5117 } 5118 testcase( n==0 ); 5119 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); 5120 if( rc ) goto abort_due_to_error; 5121 if( !pOp->p3 ) Deephemeralize(pOut); 5122 UPDATE_MAX_BLOBSIZE(pOut); 5123 REGISTER_TRACE(pOp->p2, pOut); 5124 break; 5125 } 5126 5127 /* Opcode: Rowid P1 P2 * * * 5128 ** Synopsis: r[P2]=rowid 5129 ** 5130 ** Store in register P2 an integer which is the key of the table entry that 5131 ** P1 is currently point to. 5132 ** 5133 ** P1 can be either an ordinary table or a virtual table. There used to 5134 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5135 ** one opcode now works for both table types. 5136 */ 5137 case OP_Rowid: { /* out2 */ 5138 VdbeCursor *pC; 5139 i64 v; 5140 sqlite3_vtab *pVtab; 5141 const sqlite3_module *pModule; 5142 5143 pOut = out2Prerelease(p, pOp); 5144 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5145 pC = p->apCsr[pOp->p1]; 5146 assert( pC!=0 ); 5147 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5148 if( pC->nullRow ){ 5149 pOut->flags = MEM_Null; 5150 break; 5151 }else if( pC->deferredMoveto ){ 5152 v = pC->movetoTarget; 5153 #ifndef SQLITE_OMIT_VIRTUALTABLE 5154 }else if( pC->eCurType==CURTYPE_VTAB ){ 5155 assert( pC->uc.pVCur!=0 ); 5156 pVtab = pC->uc.pVCur->pVtab; 5157 pModule = pVtab->pModule; 5158 assert( pModule->xRowid ); 5159 rc = pModule->xRowid(pC->uc.pVCur, &v); 5160 sqlite3VtabImportErrmsg(p, pVtab); 5161 if( rc ) goto abort_due_to_error; 5162 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5163 }else{ 5164 assert( pC->eCurType==CURTYPE_BTREE ); 5165 assert( pC->uc.pCursor!=0 ); 5166 rc = sqlite3VdbeCursorRestore(pC); 5167 if( rc ) goto abort_due_to_error; 5168 if( pC->nullRow ){ 5169 pOut->flags = MEM_Null; 5170 break; 5171 } 5172 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5173 } 5174 pOut->u.i = v; 5175 break; 5176 } 5177 5178 /* Opcode: NullRow P1 * * * * 5179 ** 5180 ** Move the cursor P1 to a null row. Any OP_Column operations 5181 ** that occur while the cursor is on the null row will always 5182 ** write a NULL. 5183 */ 5184 case OP_NullRow: { 5185 VdbeCursor *pC; 5186 5187 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5188 pC = p->apCsr[pOp->p1]; 5189 assert( pC!=0 ); 5190 pC->nullRow = 1; 5191 pC->cacheStatus = CACHE_STALE; 5192 if( pC->eCurType==CURTYPE_BTREE ){ 5193 assert( pC->uc.pCursor!=0 ); 5194 sqlite3BtreeClearCursor(pC->uc.pCursor); 5195 } 5196 #ifdef SQLITE_DEBUG 5197 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5198 #endif 5199 break; 5200 } 5201 5202 /* Opcode: SeekEnd P1 * * * * 5203 ** 5204 ** Position cursor P1 at the end of the btree for the purpose of 5205 ** appending a new entry onto the btree. 5206 ** 5207 ** It is assumed that the cursor is used only for appending and so 5208 ** if the cursor is valid, then the cursor must already be pointing 5209 ** at the end of the btree and so no changes are made to 5210 ** the cursor. 5211 */ 5212 /* Opcode: Last P1 P2 * * * 5213 ** 5214 ** The next use of the Rowid or Column or Prev instruction for P1 5215 ** will refer to the last entry in the database table or index. 5216 ** If the table or index is empty and P2>0, then jump immediately to P2. 5217 ** If P2 is 0 or if the table or index is not empty, fall through 5218 ** to the following instruction. 5219 ** 5220 ** This opcode leaves the cursor configured to move in reverse order, 5221 ** from the end toward the beginning. In other words, the cursor is 5222 ** configured to use Prev, not Next. 5223 */ 5224 case OP_SeekEnd: 5225 case OP_Last: { /* jump */ 5226 VdbeCursor *pC; 5227 BtCursor *pCrsr; 5228 int res; 5229 5230 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5231 pC = p->apCsr[pOp->p1]; 5232 assert( pC!=0 ); 5233 assert( pC->eCurType==CURTYPE_BTREE ); 5234 pCrsr = pC->uc.pCursor; 5235 res = 0; 5236 assert( pCrsr!=0 ); 5237 #ifdef SQLITE_DEBUG 5238 pC->seekOp = pOp->opcode; 5239 #endif 5240 if( pOp->opcode==OP_SeekEnd ){ 5241 assert( pOp->p2==0 ); 5242 pC->seekResult = -1; 5243 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5244 break; 5245 } 5246 } 5247 rc = sqlite3BtreeLast(pCrsr, &res); 5248 pC->nullRow = (u8)res; 5249 pC->deferredMoveto = 0; 5250 pC->cacheStatus = CACHE_STALE; 5251 if( rc ) goto abort_due_to_error; 5252 if( pOp->p2>0 ){ 5253 VdbeBranchTaken(res!=0,2); 5254 if( res ) goto jump_to_p2; 5255 } 5256 break; 5257 } 5258 5259 /* Opcode: IfSmaller P1 P2 P3 * * 5260 ** 5261 ** Estimate the number of rows in the table P1. Jump to P2 if that 5262 ** estimate is less than approximately 2**(0.1*P3). 5263 */ 5264 case OP_IfSmaller: { /* jump */ 5265 VdbeCursor *pC; 5266 BtCursor *pCrsr; 5267 int res; 5268 i64 sz; 5269 5270 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5271 pC = p->apCsr[pOp->p1]; 5272 assert( pC!=0 ); 5273 pCrsr = pC->uc.pCursor; 5274 assert( pCrsr ); 5275 rc = sqlite3BtreeFirst(pCrsr, &res); 5276 if( rc ) goto abort_due_to_error; 5277 if( res==0 ){ 5278 sz = sqlite3BtreeRowCountEst(pCrsr); 5279 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5280 } 5281 VdbeBranchTaken(res!=0,2); 5282 if( res ) goto jump_to_p2; 5283 break; 5284 } 5285 5286 5287 /* Opcode: SorterSort P1 P2 * * * 5288 ** 5289 ** After all records have been inserted into the Sorter object 5290 ** identified by P1, invoke this opcode to actually do the sorting. 5291 ** Jump to P2 if there are no records to be sorted. 5292 ** 5293 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5294 ** for Sorter objects. 5295 */ 5296 /* Opcode: Sort P1 P2 * * * 5297 ** 5298 ** This opcode does exactly the same thing as OP_Rewind except that 5299 ** it increments an undocumented global variable used for testing. 5300 ** 5301 ** Sorting is accomplished by writing records into a sorting index, 5302 ** then rewinding that index and playing it back from beginning to 5303 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5304 ** rewinding so that the global variable will be incremented and 5305 ** regression tests can determine whether or not the optimizer is 5306 ** correctly optimizing out sorts. 5307 */ 5308 case OP_SorterSort: /* jump */ 5309 case OP_Sort: { /* jump */ 5310 #ifdef SQLITE_TEST 5311 sqlite3_sort_count++; 5312 sqlite3_search_count--; 5313 #endif 5314 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5315 /* Fall through into OP_Rewind */ 5316 } 5317 /* Opcode: Rewind P1 P2 * * * 5318 ** 5319 ** The next use of the Rowid or Column or Next instruction for P1 5320 ** will refer to the first entry in the database table or index. 5321 ** If the table or index is empty, jump immediately to P2. 5322 ** If the table or index is not empty, fall through to the following 5323 ** instruction. 5324 ** 5325 ** This opcode leaves the cursor configured to move in forward order, 5326 ** from the beginning toward the end. In other words, the cursor is 5327 ** configured to use Next, not Prev. 5328 */ 5329 case OP_Rewind: { /* jump */ 5330 VdbeCursor *pC; 5331 BtCursor *pCrsr; 5332 int res; 5333 5334 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5335 assert( pOp->p5==0 ); 5336 pC = p->apCsr[pOp->p1]; 5337 assert( pC!=0 ); 5338 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5339 res = 1; 5340 #ifdef SQLITE_DEBUG 5341 pC->seekOp = OP_Rewind; 5342 #endif 5343 if( isSorter(pC) ){ 5344 rc = sqlite3VdbeSorterRewind(pC, &res); 5345 }else{ 5346 assert( pC->eCurType==CURTYPE_BTREE ); 5347 pCrsr = pC->uc.pCursor; 5348 assert( pCrsr ); 5349 rc = sqlite3BtreeFirst(pCrsr, &res); 5350 pC->deferredMoveto = 0; 5351 pC->cacheStatus = CACHE_STALE; 5352 } 5353 if( rc ) goto abort_due_to_error; 5354 pC->nullRow = (u8)res; 5355 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5356 VdbeBranchTaken(res!=0,2); 5357 if( res ) goto jump_to_p2; 5358 break; 5359 } 5360 5361 /* Opcode: Next P1 P2 P3 P4 P5 5362 ** 5363 ** Advance cursor P1 so that it points to the next key/data pair in its 5364 ** table or index. If there are no more key/value pairs then fall through 5365 ** to the following instruction. But if the cursor advance was successful, 5366 ** jump immediately to P2. 5367 ** 5368 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5369 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5370 ** to follow SeekLT, SeekLE, or OP_Last. 5371 ** 5372 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5373 ** been opened prior to this opcode or the program will segfault. 5374 ** 5375 ** The P3 value is a hint to the btree implementation. If P3==1, that 5376 ** means P1 is an SQL index and that this instruction could have been 5377 ** omitted if that index had been unique. P3 is usually 0. P3 is 5378 ** always either 0 or 1. 5379 ** 5380 ** P4 is always of type P4_ADVANCE. The function pointer points to 5381 ** sqlite3BtreeNext(). 5382 ** 5383 ** If P5 is positive and the jump is taken, then event counter 5384 ** number P5-1 in the prepared statement is incremented. 5385 ** 5386 ** See also: Prev 5387 */ 5388 /* Opcode: Prev P1 P2 P3 P4 P5 5389 ** 5390 ** Back up cursor P1 so that it points to the previous key/data pair in its 5391 ** table or index. If there is no previous key/value pairs then fall through 5392 ** to the following instruction. But if the cursor backup was successful, 5393 ** jump immediately to P2. 5394 ** 5395 ** 5396 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5397 ** OP_Last opcode used to position the cursor. Prev is not allowed 5398 ** to follow SeekGT, SeekGE, or OP_Rewind. 5399 ** 5400 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5401 ** not open then the behavior is undefined. 5402 ** 5403 ** The P3 value is a hint to the btree implementation. If P3==1, that 5404 ** means P1 is an SQL index and that this instruction could have been 5405 ** omitted if that index had been unique. P3 is usually 0. P3 is 5406 ** always either 0 or 1. 5407 ** 5408 ** P4 is always of type P4_ADVANCE. The function pointer points to 5409 ** sqlite3BtreePrevious(). 5410 ** 5411 ** If P5 is positive and the jump is taken, then event counter 5412 ** number P5-1 in the prepared statement is incremented. 5413 */ 5414 /* Opcode: SorterNext P1 P2 * * P5 5415 ** 5416 ** This opcode works just like OP_Next except that P1 must be a 5417 ** sorter object for which the OP_SorterSort opcode has been 5418 ** invoked. This opcode advances the cursor to the next sorted 5419 ** record, or jumps to P2 if there are no more sorted records. 5420 */ 5421 case OP_SorterNext: { /* jump */ 5422 VdbeCursor *pC; 5423 5424 pC = p->apCsr[pOp->p1]; 5425 assert( isSorter(pC) ); 5426 rc = sqlite3VdbeSorterNext(db, pC); 5427 goto next_tail; 5428 case OP_Prev: /* jump */ 5429 case OP_Next: /* jump */ 5430 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5431 assert( pOp->p5<ArraySize(p->aCounter) ); 5432 pC = p->apCsr[pOp->p1]; 5433 assert( pC!=0 ); 5434 assert( pC->deferredMoveto==0 ); 5435 assert( pC->eCurType==CURTYPE_BTREE ); 5436 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5437 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5438 5439 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5440 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5441 assert( pOp->opcode!=OP_Next 5442 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5443 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5444 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid); 5445 assert( pOp->opcode!=OP_Prev 5446 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5447 || pC->seekOp==OP_Last 5448 || pC->seekOp==OP_NullRow); 5449 5450 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5451 next_tail: 5452 pC->cacheStatus = CACHE_STALE; 5453 VdbeBranchTaken(rc==SQLITE_OK,2); 5454 if( rc==SQLITE_OK ){ 5455 pC->nullRow = 0; 5456 p->aCounter[pOp->p5]++; 5457 #ifdef SQLITE_TEST 5458 sqlite3_search_count++; 5459 #endif 5460 goto jump_to_p2_and_check_for_interrupt; 5461 } 5462 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5463 rc = SQLITE_OK; 5464 pC->nullRow = 1; 5465 goto check_for_interrupt; 5466 } 5467 5468 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5469 ** Synopsis: key=r[P2] 5470 ** 5471 ** Register P2 holds an SQL index key made using the 5472 ** MakeRecord instructions. This opcode writes that key 5473 ** into the index P1. Data for the entry is nil. 5474 ** 5475 ** If P4 is not zero, then it is the number of values in the unpacked 5476 ** key of reg(P2). In that case, P3 is the index of the first register 5477 ** for the unpacked key. The availability of the unpacked key can sometimes 5478 ** be an optimization. 5479 ** 5480 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5481 ** that this insert is likely to be an append. 5482 ** 5483 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5484 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5485 ** then the change counter is unchanged. 5486 ** 5487 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5488 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5489 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5490 ** seeks on the cursor or if the most recent seek used a key equivalent 5491 ** to P2. 5492 ** 5493 ** This instruction only works for indices. The equivalent instruction 5494 ** for tables is OP_Insert. 5495 */ 5496 /* Opcode: SorterInsert P1 P2 * * * 5497 ** Synopsis: key=r[P2] 5498 ** 5499 ** Register P2 holds an SQL index key made using the 5500 ** MakeRecord instructions. This opcode writes that key 5501 ** into the sorter P1. Data for the entry is nil. 5502 */ 5503 case OP_SorterInsert: /* in2 */ 5504 case OP_IdxInsert: { /* in2 */ 5505 VdbeCursor *pC; 5506 BtreePayload x; 5507 5508 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5509 pC = p->apCsr[pOp->p1]; 5510 sqlite3VdbeIncrWriteCounter(p, pC); 5511 assert( pC!=0 ); 5512 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 5513 pIn2 = &aMem[pOp->p2]; 5514 assert( pIn2->flags & MEM_Blob ); 5515 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5516 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 5517 assert( pC->isTable==0 ); 5518 rc = ExpandBlob(pIn2); 5519 if( rc ) goto abort_due_to_error; 5520 if( pOp->opcode==OP_SorterInsert ){ 5521 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5522 }else{ 5523 x.nKey = pIn2->n; 5524 x.pKey = pIn2->z; 5525 x.aMem = aMem + pOp->p3; 5526 x.nMem = (u16)pOp->p4.i; 5527 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5528 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5529 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5530 ); 5531 assert( pC->deferredMoveto==0 ); 5532 pC->cacheStatus = CACHE_STALE; 5533 } 5534 if( rc) goto abort_due_to_error; 5535 break; 5536 } 5537 5538 /* Opcode: IdxDelete P1 P2 P3 * * 5539 ** Synopsis: key=r[P2@P3] 5540 ** 5541 ** The content of P3 registers starting at register P2 form 5542 ** an unpacked index key. This opcode removes that entry from the 5543 ** index opened by cursor P1. 5544 */ 5545 case OP_IdxDelete: { 5546 VdbeCursor *pC; 5547 BtCursor *pCrsr; 5548 int res; 5549 UnpackedRecord r; 5550 5551 assert( pOp->p3>0 ); 5552 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5553 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5554 pC = p->apCsr[pOp->p1]; 5555 assert( pC!=0 ); 5556 assert( pC->eCurType==CURTYPE_BTREE ); 5557 sqlite3VdbeIncrWriteCounter(p, pC); 5558 pCrsr = pC->uc.pCursor; 5559 assert( pCrsr!=0 ); 5560 assert( pOp->p5==0 ); 5561 r.pKeyInfo = pC->pKeyInfo; 5562 r.nField = (u16)pOp->p3; 5563 r.default_rc = 0; 5564 r.aMem = &aMem[pOp->p2]; 5565 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5566 if( rc ) goto abort_due_to_error; 5567 if( res==0 ){ 5568 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5569 if( rc ) goto abort_due_to_error; 5570 } 5571 assert( pC->deferredMoveto==0 ); 5572 pC->cacheStatus = CACHE_STALE; 5573 pC->seekResult = 0; 5574 break; 5575 } 5576 5577 /* Opcode: DeferredSeek P1 * P3 P4 * 5578 ** Synopsis: Move P3 to P1.rowid if needed 5579 ** 5580 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5581 ** table. This opcode does a deferred seek of the P3 table cursor 5582 ** to the row that corresponds to the current row of P1. 5583 ** 5584 ** This is a deferred seek. Nothing actually happens until 5585 ** the cursor is used to read a record. That way, if no reads 5586 ** occur, no unnecessary I/O happens. 5587 ** 5588 ** P4 may be an array of integers (type P4_INTARRAY) containing 5589 ** one entry for each column in the P3 table. If array entry a(i) 5590 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5591 ** equivalent to performing the deferred seek and then reading column i 5592 ** from P1. This information is stored in P3 and used to redirect 5593 ** reads against P3 over to P1, thus possibly avoiding the need to 5594 ** seek and read cursor P3. 5595 */ 5596 /* Opcode: IdxRowid P1 P2 * * * 5597 ** Synopsis: r[P2]=rowid 5598 ** 5599 ** Write into register P2 an integer which is the last entry in the record at 5600 ** the end of the index key pointed to by cursor P1. This integer should be 5601 ** the rowid of the table entry to which this index entry points. 5602 ** 5603 ** See also: Rowid, MakeRecord. 5604 */ 5605 case OP_DeferredSeek: 5606 case OP_IdxRowid: { /* out2 */ 5607 VdbeCursor *pC; /* The P1 index cursor */ 5608 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5609 i64 rowid; /* Rowid that P1 current points to */ 5610 5611 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5612 pC = p->apCsr[pOp->p1]; 5613 assert( pC!=0 ); 5614 assert( pC->eCurType==CURTYPE_BTREE ); 5615 assert( pC->uc.pCursor!=0 ); 5616 assert( pC->isTable==0 ); 5617 assert( pC->deferredMoveto==0 ); 5618 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5619 5620 /* The IdxRowid and Seek opcodes are combined because of the commonality 5621 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5622 rc = sqlite3VdbeCursorRestore(pC); 5623 5624 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5625 ** out from under the cursor. That will never happens for an IdxRowid 5626 ** or Seek opcode */ 5627 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5628 5629 if( !pC->nullRow ){ 5630 rowid = 0; /* Not needed. Only used to silence a warning. */ 5631 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5632 if( rc!=SQLITE_OK ){ 5633 goto abort_due_to_error; 5634 } 5635 if( pOp->opcode==OP_DeferredSeek ){ 5636 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5637 pTabCur = p->apCsr[pOp->p3]; 5638 assert( pTabCur!=0 ); 5639 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5640 assert( pTabCur->uc.pCursor!=0 ); 5641 assert( pTabCur->isTable ); 5642 pTabCur->nullRow = 0; 5643 pTabCur->movetoTarget = rowid; 5644 pTabCur->deferredMoveto = 1; 5645 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5646 pTabCur->aAltMap = pOp->p4.ai; 5647 pTabCur->pAltCursor = pC; 5648 }else{ 5649 pOut = out2Prerelease(p, pOp); 5650 pOut->u.i = rowid; 5651 } 5652 }else{ 5653 assert( pOp->opcode==OP_IdxRowid ); 5654 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5655 } 5656 break; 5657 } 5658 5659 /* Opcode: IdxGE P1 P2 P3 P4 P5 5660 ** Synopsis: key=r[P3@P4] 5661 ** 5662 ** The P4 register values beginning with P3 form an unpacked index 5663 ** key that omits the PRIMARY KEY. Compare this key value against the index 5664 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5665 ** fields at the end. 5666 ** 5667 ** If the P1 index entry is greater than or equal to the key value 5668 ** then jump to P2. Otherwise fall through to the next instruction. 5669 */ 5670 /* Opcode: IdxGT P1 P2 P3 P4 P5 5671 ** Synopsis: key=r[P3@P4] 5672 ** 5673 ** The P4 register values beginning with P3 form an unpacked index 5674 ** key that omits the PRIMARY KEY. Compare this key value against the index 5675 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5676 ** fields at the end. 5677 ** 5678 ** If the P1 index entry is greater than the key value 5679 ** then jump to P2. Otherwise fall through to the next instruction. 5680 */ 5681 /* Opcode: IdxLT P1 P2 P3 P4 P5 5682 ** Synopsis: key=r[P3@P4] 5683 ** 5684 ** The P4 register values beginning with P3 form an unpacked index 5685 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5686 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5687 ** ROWID on the P1 index. 5688 ** 5689 ** If the P1 index entry is less than the key value then jump to P2. 5690 ** Otherwise fall through to the next instruction. 5691 */ 5692 /* Opcode: IdxLE P1 P2 P3 P4 P5 5693 ** Synopsis: key=r[P3@P4] 5694 ** 5695 ** The P4 register values beginning with P3 form an unpacked index 5696 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5697 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5698 ** ROWID on the P1 index. 5699 ** 5700 ** If the P1 index entry is less than or equal to the key value then jump 5701 ** to P2. Otherwise fall through to the next instruction. 5702 */ 5703 case OP_IdxLE: /* jump */ 5704 case OP_IdxGT: /* jump */ 5705 case OP_IdxLT: /* jump */ 5706 case OP_IdxGE: { /* jump */ 5707 VdbeCursor *pC; 5708 int res; 5709 UnpackedRecord r; 5710 5711 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5712 pC = p->apCsr[pOp->p1]; 5713 assert( pC!=0 ); 5714 assert( pC->isOrdered ); 5715 assert( pC->eCurType==CURTYPE_BTREE ); 5716 assert( pC->uc.pCursor!=0); 5717 assert( pC->deferredMoveto==0 ); 5718 assert( pOp->p5==0 || pOp->p5==1 ); 5719 assert( pOp->p4type==P4_INT32 ); 5720 r.pKeyInfo = pC->pKeyInfo; 5721 r.nField = (u16)pOp->p4.i; 5722 if( pOp->opcode<OP_IdxLT ){ 5723 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5724 r.default_rc = -1; 5725 }else{ 5726 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5727 r.default_rc = 0; 5728 } 5729 r.aMem = &aMem[pOp->p3]; 5730 #ifdef SQLITE_DEBUG 5731 { 5732 int i; 5733 for(i=0; i<r.nField; i++){ 5734 assert( memIsValid(&r.aMem[i]) ); 5735 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 5736 } 5737 } 5738 #endif 5739 res = 0; /* Not needed. Only used to silence a warning. */ 5740 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5741 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5742 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5743 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5744 res = -res; 5745 }else{ 5746 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5747 res++; 5748 } 5749 VdbeBranchTaken(res>0,2); 5750 if( rc ) goto abort_due_to_error; 5751 if( res>0 ) goto jump_to_p2; 5752 break; 5753 } 5754 5755 /* Opcode: Destroy P1 P2 P3 * * 5756 ** 5757 ** Delete an entire database table or index whose root page in the database 5758 ** file is given by P1. 5759 ** 5760 ** The table being destroyed is in the main database file if P3==0. If 5761 ** P3==1 then the table to be clear is in the auxiliary database file 5762 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5763 ** 5764 ** If AUTOVACUUM is enabled then it is possible that another root page 5765 ** might be moved into the newly deleted root page in order to keep all 5766 ** root pages contiguous at the beginning of the database. The former 5767 ** value of the root page that moved - its value before the move occurred - 5768 ** is stored in register P2. If no page movement was required (because the 5769 ** table being dropped was already the last one in the database) then a 5770 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5771 ** is stored in register P2. 5772 ** 5773 ** This opcode throws an error if there are any active reader VMs when 5774 ** it is invoked. This is done to avoid the difficulty associated with 5775 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5776 ** database. This error is thrown even if the database is not an AUTOVACUUM 5777 ** db in order to avoid introducing an incompatibility between autovacuum 5778 ** and non-autovacuum modes. 5779 ** 5780 ** See also: Clear 5781 */ 5782 case OP_Destroy: { /* out2 */ 5783 int iMoved; 5784 int iDb; 5785 5786 sqlite3VdbeIncrWriteCounter(p, 0); 5787 assert( p->readOnly==0 ); 5788 assert( pOp->p1>1 ); 5789 pOut = out2Prerelease(p, pOp); 5790 pOut->flags = MEM_Null; 5791 if( db->nVdbeRead > db->nVDestroy+1 ){ 5792 rc = SQLITE_LOCKED; 5793 p->errorAction = OE_Abort; 5794 goto abort_due_to_error; 5795 }else{ 5796 iDb = pOp->p3; 5797 assert( DbMaskTest(p->btreeMask, iDb) ); 5798 iMoved = 0; /* Not needed. Only to silence a warning. */ 5799 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5800 pOut->flags = MEM_Int; 5801 pOut->u.i = iMoved; 5802 if( rc ) goto abort_due_to_error; 5803 #ifndef SQLITE_OMIT_AUTOVACUUM 5804 if( iMoved!=0 ){ 5805 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5806 /* All OP_Destroy operations occur on the same btree */ 5807 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5808 resetSchemaOnFault = iDb+1; 5809 } 5810 #endif 5811 } 5812 break; 5813 } 5814 5815 /* Opcode: Clear P1 P2 P3 5816 ** 5817 ** Delete all contents of the database table or index whose root page 5818 ** in the database file is given by P1. But, unlike Destroy, do not 5819 ** remove the table or index from the database file. 5820 ** 5821 ** The table being clear is in the main database file if P2==0. If 5822 ** P2==1 then the table to be clear is in the auxiliary database file 5823 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5824 ** 5825 ** If the P3 value is non-zero, then the table referred to must be an 5826 ** intkey table (an SQL table, not an index). In this case the row change 5827 ** count is incremented by the number of rows in the table being cleared. 5828 ** If P3 is greater than zero, then the value stored in register P3 is 5829 ** also incremented by the number of rows in the table being cleared. 5830 ** 5831 ** See also: Destroy 5832 */ 5833 case OP_Clear: { 5834 int nChange; 5835 5836 sqlite3VdbeIncrWriteCounter(p, 0); 5837 nChange = 0; 5838 assert( p->readOnly==0 ); 5839 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5840 rc = sqlite3BtreeClearTable( 5841 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5842 ); 5843 if( pOp->p3 ){ 5844 p->nChange += nChange; 5845 if( pOp->p3>0 ){ 5846 assert( memIsValid(&aMem[pOp->p3]) ); 5847 memAboutToChange(p, &aMem[pOp->p3]); 5848 aMem[pOp->p3].u.i += nChange; 5849 } 5850 } 5851 if( rc ) goto abort_due_to_error; 5852 break; 5853 } 5854 5855 /* Opcode: ResetSorter P1 * * * * 5856 ** 5857 ** Delete all contents from the ephemeral table or sorter 5858 ** that is open on cursor P1. 5859 ** 5860 ** This opcode only works for cursors used for sorting and 5861 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5862 */ 5863 case OP_ResetSorter: { 5864 VdbeCursor *pC; 5865 5866 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5867 pC = p->apCsr[pOp->p1]; 5868 assert( pC!=0 ); 5869 if( isSorter(pC) ){ 5870 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5871 }else{ 5872 assert( pC->eCurType==CURTYPE_BTREE ); 5873 assert( pC->isEphemeral ); 5874 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5875 if( rc ) goto abort_due_to_error; 5876 } 5877 break; 5878 } 5879 5880 /* Opcode: CreateBtree P1 P2 P3 * * 5881 ** Synopsis: r[P2]=root iDb=P1 flags=P3 5882 ** 5883 ** Allocate a new b-tree in the main database file if P1==0 or in the 5884 ** TEMP database file if P1==1 or in an attached database if 5885 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 5886 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 5887 ** The root page number of the new b-tree is stored in register P2. 5888 */ 5889 case OP_CreateBtree: { /* out2 */ 5890 int pgno; 5891 Db *pDb; 5892 5893 sqlite3VdbeIncrWriteCounter(p, 0); 5894 pOut = out2Prerelease(p, pOp); 5895 pgno = 0; 5896 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 5897 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5898 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5899 assert( p->readOnly==0 ); 5900 pDb = &db->aDb[pOp->p1]; 5901 assert( pDb->pBt!=0 ); 5902 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 5903 if( rc ) goto abort_due_to_error; 5904 pOut->u.i = pgno; 5905 break; 5906 } 5907 5908 /* Opcode: SqlExec * * * P4 * 5909 ** 5910 ** Run the SQL statement or statements specified in the P4 string. 5911 */ 5912 case OP_SqlExec: { 5913 sqlite3VdbeIncrWriteCounter(p, 0); 5914 db->nSqlExec++; 5915 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 5916 db->nSqlExec--; 5917 if( rc ) goto abort_due_to_error; 5918 break; 5919 } 5920 5921 /* Opcode: ParseSchema P1 * * P4 * 5922 ** 5923 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5924 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 5925 ** entire schema for P1 is reparsed. 5926 ** 5927 ** This opcode invokes the parser to create a new virtual machine, 5928 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5929 */ 5930 case OP_ParseSchema: { 5931 int iDb; 5932 const char *zMaster; 5933 char *zSql; 5934 InitData initData; 5935 5936 /* Any prepared statement that invokes this opcode will hold mutexes 5937 ** on every btree. This is a prerequisite for invoking 5938 ** sqlite3InitCallback(). 5939 */ 5940 #ifdef SQLITE_DEBUG 5941 for(iDb=0; iDb<db->nDb; iDb++){ 5942 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5943 } 5944 #endif 5945 5946 iDb = pOp->p1; 5947 assert( iDb>=0 && iDb<db->nDb ); 5948 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5949 5950 #ifndef SQLITE_OMIT_ALTERTABLE 5951 if( pOp->p4.z==0 ){ 5952 sqlite3SchemaClear(db->aDb[iDb].pSchema); 5953 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 5954 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable); 5955 db->mDbFlags |= DBFLAG_SchemaChange; 5956 p->expired = 0; 5957 }else 5958 #endif 5959 { 5960 zMaster = MASTER_NAME; 5961 initData.db = db; 5962 initData.iDb = iDb; 5963 initData.pzErrMsg = &p->zErrMsg; 5964 initData.mInitFlags = 0; 5965 zSql = sqlite3MPrintf(db, 5966 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 5967 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 5968 if( zSql==0 ){ 5969 rc = SQLITE_NOMEM_BKPT; 5970 }else{ 5971 assert( db->init.busy==0 ); 5972 db->init.busy = 1; 5973 initData.rc = SQLITE_OK; 5974 initData.nInitRow = 0; 5975 assert( !db->mallocFailed ); 5976 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5977 if( rc==SQLITE_OK ) rc = initData.rc; 5978 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 5979 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 5980 ** at least one SQL statement. Any less than that indicates that 5981 ** the sqlite_master table is corrupt. */ 5982 rc = SQLITE_CORRUPT_BKPT; 5983 } 5984 sqlite3DbFreeNN(db, zSql); 5985 db->init.busy = 0; 5986 } 5987 } 5988 if( rc ){ 5989 sqlite3ResetAllSchemasOfConnection(db); 5990 if( rc==SQLITE_NOMEM ){ 5991 goto no_mem; 5992 } 5993 goto abort_due_to_error; 5994 } 5995 break; 5996 } 5997 5998 #if !defined(SQLITE_OMIT_ANALYZE) 5999 /* Opcode: LoadAnalysis P1 * * * * 6000 ** 6001 ** Read the sqlite_stat1 table for database P1 and load the content 6002 ** of that table into the internal index hash table. This will cause 6003 ** the analysis to be used when preparing all subsequent queries. 6004 */ 6005 case OP_LoadAnalysis: { 6006 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6007 rc = sqlite3AnalysisLoad(db, pOp->p1); 6008 if( rc ) goto abort_due_to_error; 6009 break; 6010 } 6011 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6012 6013 /* Opcode: DropTable P1 * * P4 * 6014 ** 6015 ** Remove the internal (in-memory) data structures that describe 6016 ** the table named P4 in database P1. This is called after a table 6017 ** is dropped from disk (using the Destroy opcode) in order to keep 6018 ** the internal representation of the 6019 ** schema consistent with what is on disk. 6020 */ 6021 case OP_DropTable: { 6022 sqlite3VdbeIncrWriteCounter(p, 0); 6023 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6024 break; 6025 } 6026 6027 /* Opcode: DropIndex P1 * * P4 * 6028 ** 6029 ** Remove the internal (in-memory) data structures that describe 6030 ** the index named P4 in database P1. This is called after an index 6031 ** is dropped from disk (using the Destroy opcode) 6032 ** in order to keep the internal representation of the 6033 ** schema consistent with what is on disk. 6034 */ 6035 case OP_DropIndex: { 6036 sqlite3VdbeIncrWriteCounter(p, 0); 6037 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6038 break; 6039 } 6040 6041 /* Opcode: DropTrigger P1 * * P4 * 6042 ** 6043 ** Remove the internal (in-memory) data structures that describe 6044 ** the trigger named P4 in database P1. This is called after a trigger 6045 ** is dropped from disk (using the Destroy opcode) in order to keep 6046 ** the internal representation of the 6047 ** schema consistent with what is on disk. 6048 */ 6049 case OP_DropTrigger: { 6050 sqlite3VdbeIncrWriteCounter(p, 0); 6051 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6052 break; 6053 } 6054 6055 6056 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6057 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6058 ** 6059 ** Do an analysis of the currently open database. Store in 6060 ** register P1 the text of an error message describing any problems. 6061 ** If no problems are found, store a NULL in register P1. 6062 ** 6063 ** The register P3 contains one less than the maximum number of allowed errors. 6064 ** At most reg(P3) errors will be reported. 6065 ** In other words, the analysis stops as soon as reg(P1) errors are 6066 ** seen. Reg(P1) is updated with the number of errors remaining. 6067 ** 6068 ** The root page numbers of all tables in the database are integers 6069 ** stored in P4_INTARRAY argument. 6070 ** 6071 ** If P5 is not zero, the check is done on the auxiliary database 6072 ** file, not the main database file. 6073 ** 6074 ** This opcode is used to implement the integrity_check pragma. 6075 */ 6076 case OP_IntegrityCk: { 6077 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6078 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 6079 int nErr; /* Number of errors reported */ 6080 char *z; /* Text of the error report */ 6081 Mem *pnErr; /* Register keeping track of errors remaining */ 6082 6083 assert( p->bIsReader ); 6084 nRoot = pOp->p2; 6085 aRoot = pOp->p4.ai; 6086 assert( nRoot>0 ); 6087 assert( aRoot[0]==nRoot ); 6088 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6089 pnErr = &aMem[pOp->p3]; 6090 assert( (pnErr->flags & MEM_Int)!=0 ); 6091 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6092 pIn1 = &aMem[pOp->p1]; 6093 assert( pOp->p5<db->nDb ); 6094 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6095 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6096 (int)pnErr->u.i+1, &nErr); 6097 sqlite3VdbeMemSetNull(pIn1); 6098 if( nErr==0 ){ 6099 assert( z==0 ); 6100 }else if( z==0 ){ 6101 goto no_mem; 6102 }else{ 6103 pnErr->u.i -= nErr-1; 6104 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6105 } 6106 UPDATE_MAX_BLOBSIZE(pIn1); 6107 sqlite3VdbeChangeEncoding(pIn1, encoding); 6108 break; 6109 } 6110 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6111 6112 /* Opcode: RowSetAdd P1 P2 * * * 6113 ** Synopsis: rowset(P1)=r[P2] 6114 ** 6115 ** Insert the integer value held by register P2 into a RowSet object 6116 ** held in register P1. 6117 ** 6118 ** An assertion fails if P2 is not an integer. 6119 */ 6120 case OP_RowSetAdd: { /* in1, in2 */ 6121 pIn1 = &aMem[pOp->p1]; 6122 pIn2 = &aMem[pOp->p2]; 6123 assert( (pIn2->flags & MEM_Int)!=0 ); 6124 if( (pIn1->flags & MEM_Blob)==0 ){ 6125 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6126 } 6127 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6128 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6129 break; 6130 } 6131 6132 /* Opcode: RowSetRead P1 P2 P3 * * 6133 ** Synopsis: r[P3]=rowset(P1) 6134 ** 6135 ** Extract the smallest value from the RowSet object in P1 6136 ** and put that value into register P3. 6137 ** Or, if RowSet object P1 is initially empty, leave P3 6138 ** unchanged and jump to instruction P2. 6139 */ 6140 case OP_RowSetRead: { /* jump, in1, out3 */ 6141 i64 val; 6142 6143 pIn1 = &aMem[pOp->p1]; 6144 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6145 if( (pIn1->flags & MEM_Blob)==0 6146 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6147 ){ 6148 /* The boolean index is empty */ 6149 sqlite3VdbeMemSetNull(pIn1); 6150 VdbeBranchTaken(1,2); 6151 goto jump_to_p2_and_check_for_interrupt; 6152 }else{ 6153 /* A value was pulled from the index */ 6154 VdbeBranchTaken(0,2); 6155 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6156 } 6157 goto check_for_interrupt; 6158 } 6159 6160 /* Opcode: RowSetTest P1 P2 P3 P4 6161 ** Synopsis: if r[P3] in rowset(P1) goto P2 6162 ** 6163 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6164 ** contains a RowSet object and that RowSet object contains 6165 ** the value held in P3, jump to register P2. Otherwise, insert the 6166 ** integer in P3 into the RowSet and continue on to the 6167 ** next opcode. 6168 ** 6169 ** The RowSet object is optimized for the case where sets of integers 6170 ** are inserted in distinct phases, which each set contains no duplicates. 6171 ** Each set is identified by a unique P4 value. The first set 6172 ** must have P4==0, the final set must have P4==-1, and for all other sets 6173 ** must have P4>0. 6174 ** 6175 ** This allows optimizations: (a) when P4==0 there is no need to test 6176 ** the RowSet object for P3, as it is guaranteed not to contain it, 6177 ** (b) when P4==-1 there is no need to insert the value, as it will 6178 ** never be tested for, and (c) when a value that is part of set X is 6179 ** inserted, there is no need to search to see if the same value was 6180 ** previously inserted as part of set X (only if it was previously 6181 ** inserted as part of some other set). 6182 */ 6183 case OP_RowSetTest: { /* jump, in1, in3 */ 6184 int iSet; 6185 int exists; 6186 6187 pIn1 = &aMem[pOp->p1]; 6188 pIn3 = &aMem[pOp->p3]; 6189 iSet = pOp->p4.i; 6190 assert( pIn3->flags&MEM_Int ); 6191 6192 /* If there is anything other than a rowset object in memory cell P1, 6193 ** delete it now and initialize P1 with an empty rowset 6194 */ 6195 if( (pIn1->flags & MEM_Blob)==0 ){ 6196 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6197 } 6198 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6199 assert( pOp->p4type==P4_INT32 ); 6200 assert( iSet==-1 || iSet>=0 ); 6201 if( iSet ){ 6202 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6203 VdbeBranchTaken(exists!=0,2); 6204 if( exists ) goto jump_to_p2; 6205 } 6206 if( iSet>=0 ){ 6207 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6208 } 6209 break; 6210 } 6211 6212 6213 #ifndef SQLITE_OMIT_TRIGGER 6214 6215 /* Opcode: Program P1 P2 P3 P4 P5 6216 ** 6217 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6218 ** 6219 ** P1 contains the address of the memory cell that contains the first memory 6220 ** cell in an array of values used as arguments to the sub-program. P2 6221 ** contains the address to jump to if the sub-program throws an IGNORE 6222 ** exception using the RAISE() function. Register P3 contains the address 6223 ** of a memory cell in this (the parent) VM that is used to allocate the 6224 ** memory required by the sub-vdbe at runtime. 6225 ** 6226 ** P4 is a pointer to the VM containing the trigger program. 6227 ** 6228 ** If P5 is non-zero, then recursive program invocation is enabled. 6229 */ 6230 case OP_Program: { /* jump */ 6231 int nMem; /* Number of memory registers for sub-program */ 6232 int nByte; /* Bytes of runtime space required for sub-program */ 6233 Mem *pRt; /* Register to allocate runtime space */ 6234 Mem *pMem; /* Used to iterate through memory cells */ 6235 Mem *pEnd; /* Last memory cell in new array */ 6236 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6237 SubProgram *pProgram; /* Sub-program to execute */ 6238 void *t; /* Token identifying trigger */ 6239 6240 pProgram = pOp->p4.pProgram; 6241 pRt = &aMem[pOp->p3]; 6242 assert( pProgram->nOp>0 ); 6243 6244 /* If the p5 flag is clear, then recursive invocation of triggers is 6245 ** disabled for backwards compatibility (p5 is set if this sub-program 6246 ** is really a trigger, not a foreign key action, and the flag set 6247 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6248 ** 6249 ** It is recursive invocation of triggers, at the SQL level, that is 6250 ** disabled. In some cases a single trigger may generate more than one 6251 ** SubProgram (if the trigger may be executed with more than one different 6252 ** ON CONFLICT algorithm). SubProgram structures associated with a 6253 ** single trigger all have the same value for the SubProgram.token 6254 ** variable. */ 6255 if( pOp->p5 ){ 6256 t = pProgram->token; 6257 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6258 if( pFrame ) break; 6259 } 6260 6261 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6262 rc = SQLITE_ERROR; 6263 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6264 goto abort_due_to_error; 6265 } 6266 6267 /* Register pRt is used to store the memory required to save the state 6268 ** of the current program, and the memory required at runtime to execute 6269 ** the trigger program. If this trigger has been fired before, then pRt 6270 ** is already allocated. Otherwise, it must be initialized. */ 6271 if( (pRt->flags&MEM_Blob)==0 ){ 6272 /* SubProgram.nMem is set to the number of memory cells used by the 6273 ** program stored in SubProgram.aOp. As well as these, one memory 6274 ** cell is required for each cursor used by the program. Set local 6275 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6276 */ 6277 nMem = pProgram->nMem + pProgram->nCsr; 6278 assert( nMem>0 ); 6279 if( pProgram->nCsr==0 ) nMem++; 6280 nByte = ROUND8(sizeof(VdbeFrame)) 6281 + nMem * sizeof(Mem) 6282 + pProgram->nCsr * sizeof(VdbeCursor*) 6283 + (pProgram->nOp + 7)/8; 6284 pFrame = sqlite3DbMallocZero(db, nByte); 6285 if( !pFrame ){ 6286 goto no_mem; 6287 } 6288 sqlite3VdbeMemRelease(pRt); 6289 pRt->flags = MEM_Blob|MEM_Dyn; 6290 pRt->z = (char*)pFrame; 6291 pRt->n = nByte; 6292 pRt->xDel = sqlite3VdbeFrameMemDel; 6293 6294 pFrame->v = p; 6295 pFrame->nChildMem = nMem; 6296 pFrame->nChildCsr = pProgram->nCsr; 6297 pFrame->pc = (int)(pOp - aOp); 6298 pFrame->aMem = p->aMem; 6299 pFrame->nMem = p->nMem; 6300 pFrame->apCsr = p->apCsr; 6301 pFrame->nCursor = p->nCursor; 6302 pFrame->aOp = p->aOp; 6303 pFrame->nOp = p->nOp; 6304 pFrame->token = pProgram->token; 6305 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6306 pFrame->anExec = p->anExec; 6307 #endif 6308 #ifdef SQLITE_DEBUG 6309 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6310 #endif 6311 6312 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6313 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6314 pMem->flags = MEM_Undefined; 6315 pMem->db = db; 6316 } 6317 }else{ 6318 pFrame = (VdbeFrame*)pRt->z; 6319 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6320 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6321 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6322 assert( pProgram->nCsr==pFrame->nChildCsr ); 6323 assert( (int)(pOp - aOp)==pFrame->pc ); 6324 } 6325 6326 p->nFrame++; 6327 pFrame->pParent = p->pFrame; 6328 pFrame->lastRowid = db->lastRowid; 6329 pFrame->nChange = p->nChange; 6330 pFrame->nDbChange = p->db->nChange; 6331 assert( pFrame->pAuxData==0 ); 6332 pFrame->pAuxData = p->pAuxData; 6333 p->pAuxData = 0; 6334 p->nChange = 0; 6335 p->pFrame = pFrame; 6336 p->aMem = aMem = VdbeFrameMem(pFrame); 6337 p->nMem = pFrame->nChildMem; 6338 p->nCursor = (u16)pFrame->nChildCsr; 6339 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6340 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6341 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6342 p->aOp = aOp = pProgram->aOp; 6343 p->nOp = pProgram->nOp; 6344 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6345 p->anExec = 0; 6346 #endif 6347 #ifdef SQLITE_DEBUG 6348 /* Verify that second and subsequent executions of the same trigger do not 6349 ** try to reuse register values from the first use. */ 6350 { 6351 int i; 6352 for(i=0; i<p->nMem; i++){ 6353 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6354 aMem[i].flags |= MEM_Undefined; /* Cause a fault if this reg is reused */ 6355 } 6356 } 6357 #endif 6358 pOp = &aOp[-1]; 6359 goto check_for_interrupt; 6360 } 6361 6362 /* Opcode: Param P1 P2 * * * 6363 ** 6364 ** This opcode is only ever present in sub-programs called via the 6365 ** OP_Program instruction. Copy a value currently stored in a memory 6366 ** cell of the calling (parent) frame to cell P2 in the current frames 6367 ** address space. This is used by trigger programs to access the new.* 6368 ** and old.* values. 6369 ** 6370 ** The address of the cell in the parent frame is determined by adding 6371 ** the value of the P1 argument to the value of the P1 argument to the 6372 ** calling OP_Program instruction. 6373 */ 6374 case OP_Param: { /* out2 */ 6375 VdbeFrame *pFrame; 6376 Mem *pIn; 6377 pOut = out2Prerelease(p, pOp); 6378 pFrame = p->pFrame; 6379 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6380 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6381 break; 6382 } 6383 6384 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6385 6386 #ifndef SQLITE_OMIT_FOREIGN_KEY 6387 /* Opcode: FkCounter P1 P2 * * * 6388 ** Synopsis: fkctr[P1]+=P2 6389 ** 6390 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6391 ** If P1 is non-zero, the database constraint counter is incremented 6392 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6393 ** statement counter is incremented (immediate foreign key constraints). 6394 */ 6395 case OP_FkCounter: { 6396 if( db->flags & SQLITE_DeferFKs ){ 6397 db->nDeferredImmCons += pOp->p2; 6398 }else if( pOp->p1 ){ 6399 db->nDeferredCons += pOp->p2; 6400 }else{ 6401 p->nFkConstraint += pOp->p2; 6402 } 6403 break; 6404 } 6405 6406 /* Opcode: FkIfZero P1 P2 * * * 6407 ** Synopsis: if fkctr[P1]==0 goto P2 6408 ** 6409 ** This opcode tests if a foreign key constraint-counter is currently zero. 6410 ** If so, jump to instruction P2. Otherwise, fall through to the next 6411 ** instruction. 6412 ** 6413 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6414 ** is zero (the one that counts deferred constraint violations). If P1 is 6415 ** zero, the jump is taken if the statement constraint-counter is zero 6416 ** (immediate foreign key constraint violations). 6417 */ 6418 case OP_FkIfZero: { /* jump */ 6419 if( pOp->p1 ){ 6420 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6421 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6422 }else{ 6423 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6424 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6425 } 6426 break; 6427 } 6428 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6429 6430 #ifndef SQLITE_OMIT_AUTOINCREMENT 6431 /* Opcode: MemMax P1 P2 * * * 6432 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6433 ** 6434 ** P1 is a register in the root frame of this VM (the root frame is 6435 ** different from the current frame if this instruction is being executed 6436 ** within a sub-program). Set the value of register P1 to the maximum of 6437 ** its current value and the value in register P2. 6438 ** 6439 ** This instruction throws an error if the memory cell is not initially 6440 ** an integer. 6441 */ 6442 case OP_MemMax: { /* in2 */ 6443 VdbeFrame *pFrame; 6444 if( p->pFrame ){ 6445 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6446 pIn1 = &pFrame->aMem[pOp->p1]; 6447 }else{ 6448 pIn1 = &aMem[pOp->p1]; 6449 } 6450 assert( memIsValid(pIn1) ); 6451 sqlite3VdbeMemIntegerify(pIn1); 6452 pIn2 = &aMem[pOp->p2]; 6453 sqlite3VdbeMemIntegerify(pIn2); 6454 if( pIn1->u.i<pIn2->u.i){ 6455 pIn1->u.i = pIn2->u.i; 6456 } 6457 break; 6458 } 6459 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6460 6461 /* Opcode: IfPos P1 P2 P3 * * 6462 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6463 ** 6464 ** Register P1 must contain an integer. 6465 ** If the value of register P1 is 1 or greater, subtract P3 from the 6466 ** value in P1 and jump to P2. 6467 ** 6468 ** If the initial value of register P1 is less than 1, then the 6469 ** value is unchanged and control passes through to the next instruction. 6470 */ 6471 case OP_IfPos: { /* jump, in1 */ 6472 pIn1 = &aMem[pOp->p1]; 6473 assert( pIn1->flags&MEM_Int ); 6474 VdbeBranchTaken( pIn1->u.i>0, 2); 6475 if( pIn1->u.i>0 ){ 6476 pIn1->u.i -= pOp->p3; 6477 goto jump_to_p2; 6478 } 6479 break; 6480 } 6481 6482 /* Opcode: OffsetLimit P1 P2 P3 * * 6483 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6484 ** 6485 ** This opcode performs a commonly used computation associated with 6486 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6487 ** holds the offset counter. The opcode computes the combined value 6488 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6489 ** value computed is the total number of rows that will need to be 6490 ** visited in order to complete the query. 6491 ** 6492 ** If r[P3] is zero or negative, that means there is no OFFSET 6493 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6494 ** 6495 ** if r[P1] is zero or negative, that means there is no LIMIT 6496 ** and r[P2] is set to -1. 6497 ** 6498 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6499 */ 6500 case OP_OffsetLimit: { /* in1, out2, in3 */ 6501 i64 x; 6502 pIn1 = &aMem[pOp->p1]; 6503 pIn3 = &aMem[pOp->p3]; 6504 pOut = out2Prerelease(p, pOp); 6505 assert( pIn1->flags & MEM_Int ); 6506 assert( pIn3->flags & MEM_Int ); 6507 x = pIn1->u.i; 6508 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6509 /* If the LIMIT is less than or equal to zero, loop forever. This 6510 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6511 ** also loop forever. This is undocumented. In fact, one could argue 6512 ** that the loop should terminate. But assuming 1 billion iterations 6513 ** per second (far exceeding the capabilities of any current hardware) 6514 ** it would take nearly 300 years to actually reach the limit. So 6515 ** looping forever is a reasonable approximation. */ 6516 pOut->u.i = -1; 6517 }else{ 6518 pOut->u.i = x; 6519 } 6520 break; 6521 } 6522 6523 /* Opcode: IfNotZero P1 P2 * * * 6524 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6525 ** 6526 ** Register P1 must contain an integer. If the content of register P1 is 6527 ** initially greater than zero, then decrement the value in register P1. 6528 ** If it is non-zero (negative or positive) and then also jump to P2. 6529 ** If register P1 is initially zero, leave it unchanged and fall through. 6530 */ 6531 case OP_IfNotZero: { /* jump, in1 */ 6532 pIn1 = &aMem[pOp->p1]; 6533 assert( pIn1->flags&MEM_Int ); 6534 VdbeBranchTaken(pIn1->u.i<0, 2); 6535 if( pIn1->u.i ){ 6536 if( pIn1->u.i>0 ) pIn1->u.i--; 6537 goto jump_to_p2; 6538 } 6539 break; 6540 } 6541 6542 /* Opcode: DecrJumpZero P1 P2 * * * 6543 ** Synopsis: if (--r[P1])==0 goto P2 6544 ** 6545 ** Register P1 must hold an integer. Decrement the value in P1 6546 ** and jump to P2 if the new value is exactly zero. 6547 */ 6548 case OP_DecrJumpZero: { /* jump, in1 */ 6549 pIn1 = &aMem[pOp->p1]; 6550 assert( pIn1->flags&MEM_Int ); 6551 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6552 VdbeBranchTaken(pIn1->u.i==0, 2); 6553 if( pIn1->u.i==0 ) goto jump_to_p2; 6554 break; 6555 } 6556 6557 6558 /* Opcode: AggStep * P2 P3 P4 P5 6559 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6560 ** 6561 ** Execute the xStep function for an aggregate. 6562 ** The function has P5 arguments. P4 is a pointer to the 6563 ** FuncDef structure that specifies the function. Register P3 is the 6564 ** accumulator. 6565 ** 6566 ** The P5 arguments are taken from register P2 and its 6567 ** successors. 6568 */ 6569 /* Opcode: AggInverse * P2 P3 P4 P5 6570 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6571 ** 6572 ** Execute the xInverse function for an aggregate. 6573 ** The function has P5 arguments. P4 is a pointer to the 6574 ** FuncDef structure that specifies the function. Register P3 is the 6575 ** accumulator. 6576 ** 6577 ** The P5 arguments are taken from register P2 and its 6578 ** successors. 6579 */ 6580 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6581 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6582 ** 6583 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6584 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6585 ** FuncDef structure that specifies the function. Register P3 is the 6586 ** accumulator. 6587 ** 6588 ** The P5 arguments are taken from register P2 and its 6589 ** successors. 6590 ** 6591 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6592 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6593 ** the opcode is changed. In this way, the initialization of the 6594 ** sqlite3_context only happens once, instead of on each call to the 6595 ** step function. 6596 */ 6597 case OP_AggInverse: 6598 case OP_AggStep: { 6599 int n; 6600 sqlite3_context *pCtx; 6601 6602 assert( pOp->p4type==P4_FUNCDEF ); 6603 n = pOp->p5; 6604 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6605 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6606 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6607 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6608 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6609 if( pCtx==0 ) goto no_mem; 6610 pCtx->pMem = 0; 6611 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6612 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6613 pCtx->pFunc = pOp->p4.pFunc; 6614 pCtx->iOp = (int)(pOp - aOp); 6615 pCtx->pVdbe = p; 6616 pCtx->skipFlag = 0; 6617 pCtx->isError = 0; 6618 pCtx->argc = n; 6619 pOp->p4type = P4_FUNCCTX; 6620 pOp->p4.pCtx = pCtx; 6621 6622 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 6623 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 6624 6625 pOp->opcode = OP_AggStep1; 6626 /* Fall through into OP_AggStep */ 6627 } 6628 case OP_AggStep1: { 6629 int i; 6630 sqlite3_context *pCtx; 6631 Mem *pMem; 6632 6633 assert( pOp->p4type==P4_FUNCCTX ); 6634 pCtx = pOp->p4.pCtx; 6635 pMem = &aMem[pOp->p3]; 6636 6637 #ifdef SQLITE_DEBUG 6638 if( pOp->p1 ){ 6639 /* This is an OP_AggInverse call. Verify that xStep has always 6640 ** been called at least once prior to any xInverse call. */ 6641 assert( pMem->uTemp==0x1122e0e3 ); 6642 }else{ 6643 /* This is an OP_AggStep call. Mark it as such. */ 6644 pMem->uTemp = 0x1122e0e3; 6645 } 6646 #endif 6647 6648 /* If this function is inside of a trigger, the register array in aMem[] 6649 ** might change from one evaluation to the next. The next block of code 6650 ** checks to see if the register array has changed, and if so it 6651 ** reinitializes the relavant parts of the sqlite3_context object */ 6652 if( pCtx->pMem != pMem ){ 6653 pCtx->pMem = pMem; 6654 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6655 } 6656 6657 #ifdef SQLITE_DEBUG 6658 for(i=0; i<pCtx->argc; i++){ 6659 assert( memIsValid(pCtx->argv[i]) ); 6660 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6661 } 6662 #endif 6663 6664 pMem->n++; 6665 assert( pCtx->pOut->flags==MEM_Null ); 6666 assert( pCtx->isError==0 ); 6667 assert( pCtx->skipFlag==0 ); 6668 #ifndef SQLITE_OMIT_WINDOWFUNC 6669 if( pOp->p1 ){ 6670 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 6671 }else 6672 #endif 6673 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6674 6675 if( pCtx->isError ){ 6676 if( pCtx->isError>0 ){ 6677 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 6678 rc = pCtx->isError; 6679 } 6680 if( pCtx->skipFlag ){ 6681 assert( pOp[-1].opcode==OP_CollSeq ); 6682 i = pOp[-1].p1; 6683 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6684 pCtx->skipFlag = 0; 6685 } 6686 sqlite3VdbeMemRelease(pCtx->pOut); 6687 pCtx->pOut->flags = MEM_Null; 6688 pCtx->isError = 0; 6689 if( rc ) goto abort_due_to_error; 6690 } 6691 assert( pCtx->pOut->flags==MEM_Null ); 6692 assert( pCtx->skipFlag==0 ); 6693 break; 6694 } 6695 6696 /* Opcode: AggFinal P1 P2 * P4 * 6697 ** Synopsis: accum=r[P1] N=P2 6698 ** 6699 ** P1 is the memory location that is the accumulator for an aggregate 6700 ** or window function. Execute the finalizer function 6701 ** for an aggregate and store the result in P1. 6702 ** 6703 ** P2 is the number of arguments that the step function takes and 6704 ** P4 is a pointer to the FuncDef for this function. The P2 6705 ** argument is not used by this opcode. It is only there to disambiguate 6706 ** functions that can take varying numbers of arguments. The 6707 ** P4 argument is only needed for the case where 6708 ** the step function was not previously called. 6709 */ 6710 /* Opcode: AggValue * P2 P3 P4 * 6711 ** Synopsis: r[P3]=value N=P2 6712 ** 6713 ** Invoke the xValue() function and store the result in register P3. 6714 ** 6715 ** P2 is the number of arguments that the step function takes and 6716 ** P4 is a pointer to the FuncDef for this function. The P2 6717 ** argument is not used by this opcode. It is only there to disambiguate 6718 ** functions that can take varying numbers of arguments. The 6719 ** P4 argument is only needed for the case where 6720 ** the step function was not previously called. 6721 */ 6722 case OP_AggValue: 6723 case OP_AggFinal: { 6724 Mem *pMem; 6725 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6726 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 6727 pMem = &aMem[pOp->p1]; 6728 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6729 #ifndef SQLITE_OMIT_WINDOWFUNC 6730 if( pOp->p3 ){ 6731 memAboutToChange(p, &aMem[pOp->p3]); 6732 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 6733 pMem = &aMem[pOp->p3]; 6734 }else 6735 #endif 6736 { 6737 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6738 } 6739 6740 if( rc ){ 6741 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6742 goto abort_due_to_error; 6743 } 6744 sqlite3VdbeChangeEncoding(pMem, encoding); 6745 UPDATE_MAX_BLOBSIZE(pMem); 6746 if( sqlite3VdbeMemTooBig(pMem) ){ 6747 goto too_big; 6748 } 6749 break; 6750 } 6751 6752 #ifndef SQLITE_OMIT_WAL 6753 /* Opcode: Checkpoint P1 P2 P3 * * 6754 ** 6755 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6756 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6757 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6758 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6759 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6760 ** in the WAL that have been checkpointed after the checkpoint 6761 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6762 ** mem[P3+2] are initialized to -1. 6763 */ 6764 case OP_Checkpoint: { 6765 int i; /* Loop counter */ 6766 int aRes[3]; /* Results */ 6767 Mem *pMem; /* Write results here */ 6768 6769 assert( p->readOnly==0 ); 6770 aRes[0] = 0; 6771 aRes[1] = aRes[2] = -1; 6772 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6773 || pOp->p2==SQLITE_CHECKPOINT_FULL 6774 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6775 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6776 ); 6777 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6778 if( rc ){ 6779 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6780 rc = SQLITE_OK; 6781 aRes[0] = 1; 6782 } 6783 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6784 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6785 } 6786 break; 6787 }; 6788 #endif 6789 6790 #ifndef SQLITE_OMIT_PRAGMA 6791 /* Opcode: JournalMode P1 P2 P3 * * 6792 ** 6793 ** Change the journal mode of database P1 to P3. P3 must be one of the 6794 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6795 ** modes (delete, truncate, persist, off and memory), this is a simple 6796 ** operation. No IO is required. 6797 ** 6798 ** If changing into or out of WAL mode the procedure is more complicated. 6799 ** 6800 ** Write a string containing the final journal-mode to register P2. 6801 */ 6802 case OP_JournalMode: { /* out2 */ 6803 Btree *pBt; /* Btree to change journal mode of */ 6804 Pager *pPager; /* Pager associated with pBt */ 6805 int eNew; /* New journal mode */ 6806 int eOld; /* The old journal mode */ 6807 #ifndef SQLITE_OMIT_WAL 6808 const char *zFilename; /* Name of database file for pPager */ 6809 #endif 6810 6811 pOut = out2Prerelease(p, pOp); 6812 eNew = pOp->p3; 6813 assert( eNew==PAGER_JOURNALMODE_DELETE 6814 || eNew==PAGER_JOURNALMODE_TRUNCATE 6815 || eNew==PAGER_JOURNALMODE_PERSIST 6816 || eNew==PAGER_JOURNALMODE_OFF 6817 || eNew==PAGER_JOURNALMODE_MEMORY 6818 || eNew==PAGER_JOURNALMODE_WAL 6819 || eNew==PAGER_JOURNALMODE_QUERY 6820 ); 6821 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6822 assert( p->readOnly==0 ); 6823 6824 pBt = db->aDb[pOp->p1].pBt; 6825 pPager = sqlite3BtreePager(pBt); 6826 eOld = sqlite3PagerGetJournalMode(pPager); 6827 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6828 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6829 6830 #ifndef SQLITE_OMIT_WAL 6831 zFilename = sqlite3PagerFilename(pPager, 1); 6832 6833 /* Do not allow a transition to journal_mode=WAL for a database 6834 ** in temporary storage or if the VFS does not support shared memory 6835 */ 6836 if( eNew==PAGER_JOURNALMODE_WAL 6837 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6838 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6839 ){ 6840 eNew = eOld; 6841 } 6842 6843 if( (eNew!=eOld) 6844 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6845 ){ 6846 if( !db->autoCommit || db->nVdbeRead>1 ){ 6847 rc = SQLITE_ERROR; 6848 sqlite3VdbeError(p, 6849 "cannot change %s wal mode from within a transaction", 6850 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6851 ); 6852 goto abort_due_to_error; 6853 }else{ 6854 6855 if( eOld==PAGER_JOURNALMODE_WAL ){ 6856 /* If leaving WAL mode, close the log file. If successful, the call 6857 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6858 ** file. An EXCLUSIVE lock may still be held on the database file 6859 ** after a successful return. 6860 */ 6861 rc = sqlite3PagerCloseWal(pPager, db); 6862 if( rc==SQLITE_OK ){ 6863 sqlite3PagerSetJournalMode(pPager, eNew); 6864 } 6865 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6866 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6867 ** as an intermediate */ 6868 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6869 } 6870 6871 /* Open a transaction on the database file. Regardless of the journal 6872 ** mode, this transaction always uses a rollback journal. 6873 */ 6874 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6875 if( rc==SQLITE_OK ){ 6876 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6877 } 6878 } 6879 } 6880 #endif /* ifndef SQLITE_OMIT_WAL */ 6881 6882 if( rc ) eNew = eOld; 6883 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6884 6885 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6886 pOut->z = (char *)sqlite3JournalModename(eNew); 6887 pOut->n = sqlite3Strlen30(pOut->z); 6888 pOut->enc = SQLITE_UTF8; 6889 sqlite3VdbeChangeEncoding(pOut, encoding); 6890 if( rc ) goto abort_due_to_error; 6891 break; 6892 }; 6893 #endif /* SQLITE_OMIT_PRAGMA */ 6894 6895 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6896 /* Opcode: Vacuum P1 P2 * * * 6897 ** 6898 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 6899 ** for an attached database. The "temp" database may not be vacuumed. 6900 ** 6901 ** If P2 is not zero, then it is a register holding a string which is 6902 ** the file into which the result of vacuum should be written. When 6903 ** P2 is zero, the vacuum overwrites the original database. 6904 */ 6905 case OP_Vacuum: { 6906 assert( p->readOnly==0 ); 6907 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 6908 pOp->p2 ? &aMem[pOp->p2] : 0); 6909 if( rc ) goto abort_due_to_error; 6910 break; 6911 } 6912 #endif 6913 6914 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6915 /* Opcode: IncrVacuum P1 P2 * * * 6916 ** 6917 ** Perform a single step of the incremental vacuum procedure on 6918 ** the P1 database. If the vacuum has finished, jump to instruction 6919 ** P2. Otherwise, fall through to the next instruction. 6920 */ 6921 case OP_IncrVacuum: { /* jump */ 6922 Btree *pBt; 6923 6924 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6925 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6926 assert( p->readOnly==0 ); 6927 pBt = db->aDb[pOp->p1].pBt; 6928 rc = sqlite3BtreeIncrVacuum(pBt); 6929 VdbeBranchTaken(rc==SQLITE_DONE,2); 6930 if( rc ){ 6931 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6932 rc = SQLITE_OK; 6933 goto jump_to_p2; 6934 } 6935 break; 6936 } 6937 #endif 6938 6939 /* Opcode: Expire P1 P2 * * * 6940 ** 6941 ** Cause precompiled statements to expire. When an expired statement 6942 ** is executed using sqlite3_step() it will either automatically 6943 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6944 ** or it will fail with SQLITE_SCHEMA. 6945 ** 6946 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6947 ** then only the currently executing statement is expired. 6948 ** 6949 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 6950 ** then running SQL statements are allowed to continue to run to completion. 6951 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 6952 ** that might help the statement run faster but which does not affect the 6953 ** correctness of operation. 6954 */ 6955 case OP_Expire: { 6956 assert( pOp->p2==0 || pOp->p2==1 ); 6957 if( !pOp->p1 ){ 6958 sqlite3ExpirePreparedStatements(db, pOp->p2); 6959 }else{ 6960 p->expired = pOp->p2+1; 6961 } 6962 break; 6963 } 6964 6965 #ifndef SQLITE_OMIT_SHARED_CACHE 6966 /* Opcode: TableLock P1 P2 P3 P4 * 6967 ** Synopsis: iDb=P1 root=P2 write=P3 6968 ** 6969 ** Obtain a lock on a particular table. This instruction is only used when 6970 ** the shared-cache feature is enabled. 6971 ** 6972 ** P1 is the index of the database in sqlite3.aDb[] of the database 6973 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6974 ** a write lock if P3==1. 6975 ** 6976 ** P2 contains the root-page of the table to lock. 6977 ** 6978 ** P4 contains a pointer to the name of the table being locked. This is only 6979 ** used to generate an error message if the lock cannot be obtained. 6980 */ 6981 case OP_TableLock: { 6982 u8 isWriteLock = (u8)pOp->p3; 6983 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 6984 int p1 = pOp->p1; 6985 assert( p1>=0 && p1<db->nDb ); 6986 assert( DbMaskTest(p->btreeMask, p1) ); 6987 assert( isWriteLock==0 || isWriteLock==1 ); 6988 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6989 if( rc ){ 6990 if( (rc&0xFF)==SQLITE_LOCKED ){ 6991 const char *z = pOp->p4.z; 6992 sqlite3VdbeError(p, "database table is locked: %s", z); 6993 } 6994 goto abort_due_to_error; 6995 } 6996 } 6997 break; 6998 } 6999 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7000 7001 #ifndef SQLITE_OMIT_VIRTUALTABLE 7002 /* Opcode: VBegin * * * P4 * 7003 ** 7004 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7005 ** xBegin method for that table. 7006 ** 7007 ** Also, whether or not P4 is set, check that this is not being called from 7008 ** within a callback to a virtual table xSync() method. If it is, the error 7009 ** code will be set to SQLITE_LOCKED. 7010 */ 7011 case OP_VBegin: { 7012 VTable *pVTab; 7013 pVTab = pOp->p4.pVtab; 7014 rc = sqlite3VtabBegin(db, pVTab); 7015 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7016 if( rc ) goto abort_due_to_error; 7017 break; 7018 } 7019 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7020 7021 #ifndef SQLITE_OMIT_VIRTUALTABLE 7022 /* Opcode: VCreate P1 P2 * * * 7023 ** 7024 ** P2 is a register that holds the name of a virtual table in database 7025 ** P1. Call the xCreate method for that table. 7026 */ 7027 case OP_VCreate: { 7028 Mem sMem; /* For storing the record being decoded */ 7029 const char *zTab; /* Name of the virtual table */ 7030 7031 memset(&sMem, 0, sizeof(sMem)); 7032 sMem.db = db; 7033 /* Because P2 is always a static string, it is impossible for the 7034 ** sqlite3VdbeMemCopy() to fail */ 7035 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7036 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7037 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7038 assert( rc==SQLITE_OK ); 7039 zTab = (const char*)sqlite3_value_text(&sMem); 7040 assert( zTab || db->mallocFailed ); 7041 if( zTab ){ 7042 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7043 } 7044 sqlite3VdbeMemRelease(&sMem); 7045 if( rc ) goto abort_due_to_error; 7046 break; 7047 } 7048 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7049 7050 #ifndef SQLITE_OMIT_VIRTUALTABLE 7051 /* Opcode: VDestroy P1 * * P4 * 7052 ** 7053 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7054 ** of that table. 7055 */ 7056 case OP_VDestroy: { 7057 db->nVDestroy++; 7058 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7059 db->nVDestroy--; 7060 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7061 if( rc ) goto abort_due_to_error; 7062 break; 7063 } 7064 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7065 7066 #ifndef SQLITE_OMIT_VIRTUALTABLE 7067 /* Opcode: VOpen P1 * * P4 * 7068 ** 7069 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7070 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7071 ** table and stores that cursor in P1. 7072 */ 7073 case OP_VOpen: { 7074 VdbeCursor *pCur; 7075 sqlite3_vtab_cursor *pVCur; 7076 sqlite3_vtab *pVtab; 7077 const sqlite3_module *pModule; 7078 7079 assert( p->bIsReader ); 7080 pCur = 0; 7081 pVCur = 0; 7082 pVtab = pOp->p4.pVtab->pVtab; 7083 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7084 rc = SQLITE_LOCKED; 7085 goto abort_due_to_error; 7086 } 7087 pModule = pVtab->pModule; 7088 rc = pModule->xOpen(pVtab, &pVCur); 7089 sqlite3VtabImportErrmsg(p, pVtab); 7090 if( rc ) goto abort_due_to_error; 7091 7092 /* Initialize sqlite3_vtab_cursor base class */ 7093 pVCur->pVtab = pVtab; 7094 7095 /* Initialize vdbe cursor object */ 7096 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7097 if( pCur ){ 7098 pCur->uc.pVCur = pVCur; 7099 pVtab->nRef++; 7100 }else{ 7101 assert( db->mallocFailed ); 7102 pModule->xClose(pVCur); 7103 goto no_mem; 7104 } 7105 break; 7106 } 7107 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7108 7109 #ifndef SQLITE_OMIT_VIRTUALTABLE 7110 /* Opcode: VFilter P1 P2 P3 P4 * 7111 ** Synopsis: iplan=r[P3] zplan='P4' 7112 ** 7113 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7114 ** the filtered result set is empty. 7115 ** 7116 ** P4 is either NULL or a string that was generated by the xBestIndex 7117 ** method of the module. The interpretation of the P4 string is left 7118 ** to the module implementation. 7119 ** 7120 ** This opcode invokes the xFilter method on the virtual table specified 7121 ** by P1. The integer query plan parameter to xFilter is stored in register 7122 ** P3. Register P3+1 stores the argc parameter to be passed to the 7123 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7124 ** additional parameters which are passed to 7125 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7126 ** 7127 ** A jump is made to P2 if the result set after filtering would be empty. 7128 */ 7129 case OP_VFilter: { /* jump */ 7130 int nArg; 7131 int iQuery; 7132 const sqlite3_module *pModule; 7133 Mem *pQuery; 7134 Mem *pArgc; 7135 sqlite3_vtab_cursor *pVCur; 7136 sqlite3_vtab *pVtab; 7137 VdbeCursor *pCur; 7138 int res; 7139 int i; 7140 Mem **apArg; 7141 7142 pQuery = &aMem[pOp->p3]; 7143 pArgc = &pQuery[1]; 7144 pCur = p->apCsr[pOp->p1]; 7145 assert( memIsValid(pQuery) ); 7146 REGISTER_TRACE(pOp->p3, pQuery); 7147 assert( pCur->eCurType==CURTYPE_VTAB ); 7148 pVCur = pCur->uc.pVCur; 7149 pVtab = pVCur->pVtab; 7150 pModule = pVtab->pModule; 7151 7152 /* Grab the index number and argc parameters */ 7153 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7154 nArg = (int)pArgc->u.i; 7155 iQuery = (int)pQuery->u.i; 7156 7157 /* Invoke the xFilter method */ 7158 res = 0; 7159 apArg = p->apArg; 7160 for(i = 0; i<nArg; i++){ 7161 apArg[i] = &pArgc[i+1]; 7162 } 7163 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7164 sqlite3VtabImportErrmsg(p, pVtab); 7165 if( rc ) goto abort_due_to_error; 7166 res = pModule->xEof(pVCur); 7167 pCur->nullRow = 0; 7168 VdbeBranchTaken(res!=0,2); 7169 if( res ) goto jump_to_p2; 7170 break; 7171 } 7172 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7173 7174 #ifndef SQLITE_OMIT_VIRTUALTABLE 7175 /* Opcode: VColumn P1 P2 P3 * P5 7176 ** Synopsis: r[P3]=vcolumn(P2) 7177 ** 7178 ** Store in register P3 the value of the P2-th column of 7179 ** the current row of the virtual-table of cursor P1. 7180 ** 7181 ** If the VColumn opcode is being used to fetch the value of 7182 ** an unchanging column during an UPDATE operation, then the P5 7183 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7184 ** function to return true inside the xColumn method of the virtual 7185 ** table implementation. The P5 column might also contain other 7186 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7187 ** unused by OP_VColumn. 7188 */ 7189 case OP_VColumn: { 7190 sqlite3_vtab *pVtab; 7191 const sqlite3_module *pModule; 7192 Mem *pDest; 7193 sqlite3_context sContext; 7194 7195 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7196 assert( pCur->eCurType==CURTYPE_VTAB ); 7197 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7198 pDest = &aMem[pOp->p3]; 7199 memAboutToChange(p, pDest); 7200 if( pCur->nullRow ){ 7201 sqlite3VdbeMemSetNull(pDest); 7202 break; 7203 } 7204 pVtab = pCur->uc.pVCur->pVtab; 7205 pModule = pVtab->pModule; 7206 assert( pModule->xColumn ); 7207 memset(&sContext, 0, sizeof(sContext)); 7208 sContext.pOut = pDest; 7209 testcase( (pOp->p5 & OPFLAG_NOCHNG)==0 && pOp->p5!=0 ); 7210 if( pOp->p5 & OPFLAG_NOCHNG ){ 7211 sqlite3VdbeMemSetNull(pDest); 7212 pDest->flags = MEM_Null|MEM_Zero; 7213 pDest->u.nZero = 0; 7214 }else{ 7215 MemSetTypeFlag(pDest, MEM_Null); 7216 } 7217 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7218 sqlite3VtabImportErrmsg(p, pVtab); 7219 if( sContext.isError>0 ){ 7220 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7221 rc = sContext.isError; 7222 } 7223 sqlite3VdbeChangeEncoding(pDest, encoding); 7224 REGISTER_TRACE(pOp->p3, pDest); 7225 UPDATE_MAX_BLOBSIZE(pDest); 7226 7227 if( sqlite3VdbeMemTooBig(pDest) ){ 7228 goto too_big; 7229 } 7230 if( rc ) goto abort_due_to_error; 7231 break; 7232 } 7233 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7234 7235 #ifndef SQLITE_OMIT_VIRTUALTABLE 7236 /* Opcode: VNext P1 P2 * * * 7237 ** 7238 ** Advance virtual table P1 to the next row in its result set and 7239 ** jump to instruction P2. Or, if the virtual table has reached 7240 ** the end of its result set, then fall through to the next instruction. 7241 */ 7242 case OP_VNext: { /* jump */ 7243 sqlite3_vtab *pVtab; 7244 const sqlite3_module *pModule; 7245 int res; 7246 VdbeCursor *pCur; 7247 7248 res = 0; 7249 pCur = p->apCsr[pOp->p1]; 7250 assert( pCur->eCurType==CURTYPE_VTAB ); 7251 if( pCur->nullRow ){ 7252 break; 7253 } 7254 pVtab = pCur->uc.pVCur->pVtab; 7255 pModule = pVtab->pModule; 7256 assert( pModule->xNext ); 7257 7258 /* Invoke the xNext() method of the module. There is no way for the 7259 ** underlying implementation to return an error if one occurs during 7260 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7261 ** data is available) and the error code returned when xColumn or 7262 ** some other method is next invoked on the save virtual table cursor. 7263 */ 7264 rc = pModule->xNext(pCur->uc.pVCur); 7265 sqlite3VtabImportErrmsg(p, pVtab); 7266 if( rc ) goto abort_due_to_error; 7267 res = pModule->xEof(pCur->uc.pVCur); 7268 VdbeBranchTaken(!res,2); 7269 if( !res ){ 7270 /* If there is data, jump to P2 */ 7271 goto jump_to_p2_and_check_for_interrupt; 7272 } 7273 goto check_for_interrupt; 7274 } 7275 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7276 7277 #ifndef SQLITE_OMIT_VIRTUALTABLE 7278 /* Opcode: VRename P1 * * P4 * 7279 ** 7280 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7281 ** This opcode invokes the corresponding xRename method. The value 7282 ** in register P1 is passed as the zName argument to the xRename method. 7283 */ 7284 case OP_VRename: { 7285 sqlite3_vtab *pVtab; 7286 Mem *pName; 7287 int isLegacy; 7288 7289 isLegacy = (db->flags & SQLITE_LegacyAlter); 7290 db->flags |= SQLITE_LegacyAlter; 7291 pVtab = pOp->p4.pVtab->pVtab; 7292 pName = &aMem[pOp->p1]; 7293 assert( pVtab->pModule->xRename ); 7294 assert( memIsValid(pName) ); 7295 assert( p->readOnly==0 ); 7296 REGISTER_TRACE(pOp->p1, pName); 7297 assert( pName->flags & MEM_Str ); 7298 testcase( pName->enc==SQLITE_UTF8 ); 7299 testcase( pName->enc==SQLITE_UTF16BE ); 7300 testcase( pName->enc==SQLITE_UTF16LE ); 7301 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7302 if( rc ) goto abort_due_to_error; 7303 rc = pVtab->pModule->xRename(pVtab, pName->z); 7304 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7305 sqlite3VtabImportErrmsg(p, pVtab); 7306 p->expired = 0; 7307 if( rc ) goto abort_due_to_error; 7308 break; 7309 } 7310 #endif 7311 7312 #ifndef SQLITE_OMIT_VIRTUALTABLE 7313 /* Opcode: VUpdate P1 P2 P3 P4 P5 7314 ** Synopsis: data=r[P3@P2] 7315 ** 7316 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7317 ** This opcode invokes the corresponding xUpdate method. P2 values 7318 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7319 ** invocation. The value in register (P3+P2-1) corresponds to the 7320 ** p2th element of the argv array passed to xUpdate. 7321 ** 7322 ** The xUpdate method will do a DELETE or an INSERT or both. 7323 ** The argv[0] element (which corresponds to memory cell P3) 7324 ** is the rowid of a row to delete. If argv[0] is NULL then no 7325 ** deletion occurs. The argv[1] element is the rowid of the new 7326 ** row. This can be NULL to have the virtual table select the new 7327 ** rowid for itself. The subsequent elements in the array are 7328 ** the values of columns in the new row. 7329 ** 7330 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7331 ** a row to delete. 7332 ** 7333 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7334 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7335 ** is set to the value of the rowid for the row just inserted. 7336 ** 7337 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7338 ** apply in the case of a constraint failure on an insert or update. 7339 */ 7340 case OP_VUpdate: { 7341 sqlite3_vtab *pVtab; 7342 const sqlite3_module *pModule; 7343 int nArg; 7344 int i; 7345 sqlite_int64 rowid; 7346 Mem **apArg; 7347 Mem *pX; 7348 7349 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7350 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7351 ); 7352 assert( p->readOnly==0 ); 7353 if( db->mallocFailed ) goto no_mem; 7354 sqlite3VdbeIncrWriteCounter(p, 0); 7355 pVtab = pOp->p4.pVtab->pVtab; 7356 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7357 rc = SQLITE_LOCKED; 7358 goto abort_due_to_error; 7359 } 7360 pModule = pVtab->pModule; 7361 nArg = pOp->p2; 7362 assert( pOp->p4type==P4_VTAB ); 7363 if( ALWAYS(pModule->xUpdate) ){ 7364 u8 vtabOnConflict = db->vtabOnConflict; 7365 apArg = p->apArg; 7366 pX = &aMem[pOp->p3]; 7367 for(i=0; i<nArg; i++){ 7368 assert( memIsValid(pX) ); 7369 memAboutToChange(p, pX); 7370 apArg[i] = pX; 7371 pX++; 7372 } 7373 db->vtabOnConflict = pOp->p5; 7374 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7375 db->vtabOnConflict = vtabOnConflict; 7376 sqlite3VtabImportErrmsg(p, pVtab); 7377 if( rc==SQLITE_OK && pOp->p1 ){ 7378 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7379 db->lastRowid = rowid; 7380 } 7381 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7382 if( pOp->p5==OE_Ignore ){ 7383 rc = SQLITE_OK; 7384 }else{ 7385 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7386 } 7387 }else{ 7388 p->nChange++; 7389 } 7390 if( rc ) goto abort_due_to_error; 7391 } 7392 break; 7393 } 7394 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7395 7396 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7397 /* Opcode: Pagecount P1 P2 * * * 7398 ** 7399 ** Write the current number of pages in database P1 to memory cell P2. 7400 */ 7401 case OP_Pagecount: { /* out2 */ 7402 pOut = out2Prerelease(p, pOp); 7403 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7404 break; 7405 } 7406 #endif 7407 7408 7409 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7410 /* Opcode: MaxPgcnt P1 P2 P3 * * 7411 ** 7412 ** Try to set the maximum page count for database P1 to the value in P3. 7413 ** Do not let the maximum page count fall below the current page count and 7414 ** do not change the maximum page count value if P3==0. 7415 ** 7416 ** Store the maximum page count after the change in register P2. 7417 */ 7418 case OP_MaxPgcnt: { /* out2 */ 7419 unsigned int newMax; 7420 Btree *pBt; 7421 7422 pOut = out2Prerelease(p, pOp); 7423 pBt = db->aDb[pOp->p1].pBt; 7424 newMax = 0; 7425 if( pOp->p3 ){ 7426 newMax = sqlite3BtreeLastPage(pBt); 7427 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7428 } 7429 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7430 break; 7431 } 7432 #endif 7433 7434 /* Opcode: Function0 P1 P2 P3 P4 P5 7435 ** Synopsis: r[P3]=func(r[P2@P5]) 7436 ** 7437 ** Invoke a user function (P4 is a pointer to a FuncDef object that 7438 ** defines the function) with P5 arguments taken from register P2 and 7439 ** successors. The result of the function is stored in register P3. 7440 ** Register P3 must not be one of the function inputs. 7441 ** 7442 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7443 ** function was determined to be constant at compile time. If the first 7444 ** argument was constant then bit 0 of P1 is set. This is used to determine 7445 ** whether meta data associated with a user function argument using the 7446 ** sqlite3_set_auxdata() API may be safely retained until the next 7447 ** invocation of this opcode. 7448 ** 7449 ** See also: Function, AggStep, AggFinal 7450 */ 7451 /* Opcode: Function P1 P2 P3 P4 P5 7452 ** Synopsis: r[P3]=func(r[P2@P5]) 7453 ** 7454 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7455 ** contains a pointer to the function to be run) with P5 arguments taken 7456 ** from register P2 and successors. The result of the function is stored 7457 ** in register P3. Register P3 must not be one of the function inputs. 7458 ** 7459 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7460 ** function was determined to be constant at compile time. If the first 7461 ** argument was constant then bit 0 of P1 is set. This is used to determine 7462 ** whether meta data associated with a user function argument using the 7463 ** sqlite3_set_auxdata() API may be safely retained until the next 7464 ** invocation of this opcode. 7465 ** 7466 ** SQL functions are initially coded as OP_Function0 with P4 pointing 7467 ** to a FuncDef object. But on first evaluation, the P4 operand is 7468 ** automatically converted into an sqlite3_context object and the operation 7469 ** changed to this OP_Function opcode. In this way, the initialization of 7470 ** the sqlite3_context object occurs only once, rather than once for each 7471 ** evaluation of the function. 7472 ** 7473 ** See also: Function0, AggStep, AggFinal 7474 */ 7475 case OP_PureFunc0: /* group */ 7476 case OP_Function0: { /* group */ 7477 int n; 7478 sqlite3_context *pCtx; 7479 7480 assert( pOp->p4type==P4_FUNCDEF ); 7481 n = pOp->p5; 7482 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7483 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7484 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7485 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 7486 if( pCtx==0 ) goto no_mem; 7487 pCtx->pOut = 0; 7488 pCtx->pFunc = pOp->p4.pFunc; 7489 pCtx->iOp = (int)(pOp - aOp); 7490 pCtx->pVdbe = p; 7491 pCtx->isError = 0; 7492 pCtx->argc = n; 7493 pOp->p4type = P4_FUNCCTX; 7494 pOp->p4.pCtx = pCtx; 7495 assert( OP_PureFunc == OP_PureFunc0+2 ); 7496 assert( OP_Function == OP_Function0+2 ); 7497 pOp->opcode += 2; 7498 /* Fall through into OP_Function */ 7499 } 7500 case OP_PureFunc: /* group */ 7501 case OP_Function: { /* group */ 7502 int i; 7503 sqlite3_context *pCtx; 7504 7505 assert( pOp->p4type==P4_FUNCCTX ); 7506 pCtx = pOp->p4.pCtx; 7507 7508 /* If this function is inside of a trigger, the register array in aMem[] 7509 ** might change from one evaluation to the next. The next block of code 7510 ** checks to see if the register array has changed, and if so it 7511 ** reinitializes the relavant parts of the sqlite3_context object */ 7512 pOut = &aMem[pOp->p3]; 7513 if( pCtx->pOut != pOut ){ 7514 pCtx->pOut = pOut; 7515 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7516 } 7517 7518 memAboutToChange(p, pOut); 7519 #ifdef SQLITE_DEBUG 7520 for(i=0; i<pCtx->argc; i++){ 7521 assert( memIsValid(pCtx->argv[i]) ); 7522 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7523 } 7524 #endif 7525 MemSetTypeFlag(pOut, MEM_Null); 7526 assert( pCtx->isError==0 ); 7527 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7528 7529 /* If the function returned an error, throw an exception */ 7530 if( pCtx->isError ){ 7531 if( pCtx->isError>0 ){ 7532 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7533 rc = pCtx->isError; 7534 } 7535 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7536 pCtx->isError = 0; 7537 if( rc ) goto abort_due_to_error; 7538 } 7539 7540 /* Copy the result of the function into register P3 */ 7541 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7542 sqlite3VdbeChangeEncoding(pOut, encoding); 7543 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7544 } 7545 7546 REGISTER_TRACE(pOp->p3, pOut); 7547 UPDATE_MAX_BLOBSIZE(pOut); 7548 break; 7549 } 7550 7551 /* Opcode: Trace P1 P2 * P4 * 7552 ** 7553 ** Write P4 on the statement trace output if statement tracing is 7554 ** enabled. 7555 ** 7556 ** Operand P1 must be 0x7fffffff and P2 must positive. 7557 */ 7558 /* Opcode: Init P1 P2 P3 P4 * 7559 ** Synopsis: Start at P2 7560 ** 7561 ** Programs contain a single instance of this opcode as the very first 7562 ** opcode. 7563 ** 7564 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7565 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7566 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7567 ** 7568 ** If P2 is not zero, jump to instruction P2. 7569 ** 7570 ** Increment the value of P1 so that OP_Once opcodes will jump the 7571 ** first time they are evaluated for this run. 7572 ** 7573 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7574 ** error is encountered. 7575 */ 7576 case OP_Trace: 7577 case OP_Init: { /* jump */ 7578 int i; 7579 #ifndef SQLITE_OMIT_TRACE 7580 char *zTrace; 7581 #endif 7582 7583 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7584 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7585 ** 7586 ** This assert() provides evidence for: 7587 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7588 ** would have been returned by the legacy sqlite3_trace() interface by 7589 ** using the X argument when X begins with "--" and invoking 7590 ** sqlite3_expanded_sql(P) otherwise. 7591 */ 7592 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7593 7594 /* OP_Init is always instruction 0 */ 7595 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7596 7597 #ifndef SQLITE_OMIT_TRACE 7598 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7599 && !p->doingRerun 7600 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7601 ){ 7602 #ifndef SQLITE_OMIT_DEPRECATED 7603 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7604 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7605 char *z = sqlite3VdbeExpandSql(p, zTrace); 7606 x(db->pTraceArg, z); 7607 sqlite3_free(z); 7608 }else 7609 #endif 7610 if( db->nVdbeExec>1 ){ 7611 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7612 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7613 sqlite3DbFree(db, z); 7614 }else{ 7615 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7616 } 7617 } 7618 #ifdef SQLITE_USE_FCNTL_TRACE 7619 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7620 if( zTrace ){ 7621 int j; 7622 for(j=0; j<db->nDb; j++){ 7623 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7624 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7625 } 7626 } 7627 #endif /* SQLITE_USE_FCNTL_TRACE */ 7628 #ifdef SQLITE_DEBUG 7629 if( (db->flags & SQLITE_SqlTrace)!=0 7630 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7631 ){ 7632 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7633 } 7634 #endif /* SQLITE_DEBUG */ 7635 #endif /* SQLITE_OMIT_TRACE */ 7636 assert( pOp->p2>0 ); 7637 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7638 if( pOp->opcode==OP_Trace ) break; 7639 for(i=1; i<p->nOp; i++){ 7640 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7641 } 7642 pOp->p1 = 0; 7643 } 7644 pOp->p1++; 7645 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7646 goto jump_to_p2; 7647 } 7648 7649 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7650 /* Opcode: CursorHint P1 * * P4 * 7651 ** 7652 ** Provide a hint to cursor P1 that it only needs to return rows that 7653 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7654 ** to values currently held in registers. TK_COLUMN terms in the P4 7655 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7656 */ 7657 case OP_CursorHint: { 7658 VdbeCursor *pC; 7659 7660 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7661 assert( pOp->p4type==P4_EXPR ); 7662 pC = p->apCsr[pOp->p1]; 7663 if( pC ){ 7664 assert( pC->eCurType==CURTYPE_BTREE ); 7665 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7666 pOp->p4.pExpr, aMem); 7667 } 7668 break; 7669 } 7670 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7671 7672 #ifdef SQLITE_DEBUG 7673 /* Opcode: Abortable * * * * * 7674 ** 7675 ** Verify that an Abort can happen. Assert if an Abort at this point 7676 ** might cause database corruption. This opcode only appears in debugging 7677 ** builds. 7678 ** 7679 ** An Abort is safe if either there have been no writes, or if there is 7680 ** an active statement journal. 7681 */ 7682 case OP_Abortable: { 7683 sqlite3VdbeAssertAbortable(p); 7684 break; 7685 } 7686 #endif 7687 7688 /* Opcode: Noop * * * * * 7689 ** 7690 ** Do nothing. This instruction is often useful as a jump 7691 ** destination. 7692 */ 7693 /* 7694 ** The magic Explain opcode are only inserted when explain==2 (which 7695 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7696 ** This opcode records information from the optimizer. It is the 7697 ** the same as a no-op. This opcodesnever appears in a real VM program. 7698 */ 7699 default: { /* This is really OP_Noop, OP_Explain */ 7700 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7701 7702 break; 7703 } 7704 7705 /***************************************************************************** 7706 ** The cases of the switch statement above this line should all be indented 7707 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7708 ** readability. From this point on down, the normal indentation rules are 7709 ** restored. 7710 *****************************************************************************/ 7711 } 7712 7713 #ifdef VDBE_PROFILE 7714 { 7715 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 7716 if( endTime>start ) pOrigOp->cycles += endTime - start; 7717 pOrigOp->cnt++; 7718 } 7719 #endif 7720 7721 /* The following code adds nothing to the actual functionality 7722 ** of the program. It is only here for testing and debugging. 7723 ** On the other hand, it does burn CPU cycles every time through 7724 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7725 */ 7726 #ifndef NDEBUG 7727 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7728 7729 #ifdef SQLITE_DEBUG 7730 if( db->flags & SQLITE_VdbeTrace ){ 7731 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7732 if( rc!=0 ) printf("rc=%d\n",rc); 7733 if( opProperty & (OPFLG_OUT2) ){ 7734 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7735 } 7736 if( opProperty & OPFLG_OUT3 ){ 7737 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7738 } 7739 } 7740 #endif /* SQLITE_DEBUG */ 7741 #endif /* NDEBUG */ 7742 } /* The end of the for(;;) loop the loops through opcodes */ 7743 7744 /* If we reach this point, it means that execution is finished with 7745 ** an error of some kind. 7746 */ 7747 abort_due_to_error: 7748 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7749 assert( rc ); 7750 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7751 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7752 } 7753 p->rc = rc; 7754 sqlite3SystemError(db, rc); 7755 testcase( sqlite3GlobalConfig.xLog!=0 ); 7756 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7757 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7758 sqlite3VdbeHalt(p); 7759 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7760 rc = SQLITE_ERROR; 7761 if( resetSchemaOnFault>0 ){ 7762 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7763 } 7764 7765 /* This is the only way out of this procedure. We have to 7766 ** release the mutexes on btrees that were acquired at the 7767 ** top. */ 7768 vdbe_return: 7769 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 7770 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 7771 nProgressLimit += db->nProgressOps; 7772 if( db->xProgress(db->pProgressArg) ){ 7773 nProgressLimit = 0xffffffff; 7774 rc = SQLITE_INTERRUPT; 7775 goto abort_due_to_error; 7776 } 7777 } 7778 #endif 7779 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7780 sqlite3VdbeLeave(p); 7781 assert( rc!=SQLITE_OK || nExtraDelete==0 7782 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7783 ); 7784 return rc; 7785 7786 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7787 ** is encountered. 7788 */ 7789 too_big: 7790 sqlite3VdbeError(p, "string or blob too big"); 7791 rc = SQLITE_TOOBIG; 7792 goto abort_due_to_error; 7793 7794 /* Jump to here if a malloc() fails. 7795 */ 7796 no_mem: 7797 sqlite3OomFault(db); 7798 sqlite3VdbeError(p, "out of memory"); 7799 rc = SQLITE_NOMEM_BKPT; 7800 goto abort_due_to_error; 7801 7802 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 7803 ** flag. 7804 */ 7805 abort_due_to_interrupt: 7806 assert( db->u1.isInterrupted ); 7807 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 7808 p->rc = rc; 7809 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7810 goto abort_due_to_error; 7811 } 7812