1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 u8 eCurType /* Type of the new cursor */ 245 ){ 246 /* Find the memory cell that will be used to store the blob of memory 247 ** required for this VdbeCursor structure. It is convenient to use a 248 ** vdbe memory cell to manage the memory allocation required for a 249 ** VdbeCursor structure for the following reasons: 250 ** 251 ** * Sometimes cursor numbers are used for a couple of different 252 ** purposes in a vdbe program. The different uses might require 253 ** different sized allocations. Memory cells provide growable 254 ** allocations. 255 ** 256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 257 ** be freed lazily via the sqlite3_release_memory() API. This 258 ** minimizes the number of malloc calls made by the system. 259 ** 260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 263 */ 264 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 265 266 int nByte; 267 VdbeCursor *pCx = 0; 268 nByte = 269 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 270 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 271 272 assert( iCur>=0 && iCur<p->nCursor ); 273 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 274 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); 275 p->apCsr[iCur] = 0; 276 } 277 278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 279 ** the pMem used to hold space for the cursor has enough storage available 280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 281 ** to hold cursors, it is faster to in-line the logic. */ 282 assert( pMem->flags==MEM_Undefined ); 283 assert( (pMem->flags & MEM_Dyn)==0 ); 284 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 285 if( pMem->szMalloc<nByte ){ 286 if( pMem->szMalloc>0 ){ 287 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 288 } 289 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 290 if( pMem->zMalloc==0 ){ 291 pMem->szMalloc = 0; 292 return 0; 293 } 294 pMem->szMalloc = nByte; 295 } 296 297 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 298 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 299 pCx->eCurType = eCurType; 300 pCx->nField = nField; 301 pCx->aOffset = &pCx->aType[nField]; 302 if( eCurType==CURTYPE_BTREE ){ 303 pCx->uc.pCursor = (BtCursor*) 304 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 305 sqlite3BtreeCursorZero(pCx->uc.pCursor); 306 } 307 return pCx; 308 } 309 310 /* 311 ** The string in pRec is known to look like an integer and to have a 312 ** floating point value of rValue. Return true and set *piValue to the 313 ** integer value if the string is in range to be an integer. Otherwise, 314 ** return false. 315 */ 316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 317 i64 iValue = (double)rValue; 318 if( sqlite3RealSameAsInt(rValue,iValue) ){ 319 *piValue = iValue; 320 return 1; 321 } 322 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 323 } 324 325 /* 326 ** Try to convert a value into a numeric representation if we can 327 ** do so without loss of information. In other words, if the string 328 ** looks like a number, convert it into a number. If it does not 329 ** look like a number, leave it alone. 330 ** 331 ** If the bTryForInt flag is true, then extra effort is made to give 332 ** an integer representation. Strings that look like floating point 333 ** values but which have no fractional component (example: '48.00') 334 ** will have a MEM_Int representation when bTryForInt is true. 335 ** 336 ** If bTryForInt is false, then if the input string contains a decimal 337 ** point or exponential notation, the result is only MEM_Real, even 338 ** if there is an exact integer representation of the quantity. 339 */ 340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 341 double rValue; 342 u8 enc = pRec->enc; 343 int rc; 344 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 345 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 346 if( rc<=0 ) return; 347 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 348 pRec->flags |= MEM_Int; 349 }else{ 350 pRec->u.r = rValue; 351 pRec->flags |= MEM_Real; 352 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 353 } 354 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 355 ** string representation after computing a numeric equivalent, because the 356 ** string representation might not be the canonical representation for the 357 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 358 pRec->flags &= ~MEM_Str; 359 } 360 361 /* 362 ** Processing is determine by the affinity parameter: 363 ** 364 ** SQLITE_AFF_INTEGER: 365 ** SQLITE_AFF_REAL: 366 ** SQLITE_AFF_NUMERIC: 367 ** Try to convert pRec to an integer representation or a 368 ** floating-point representation if an integer representation 369 ** is not possible. Note that the integer representation is 370 ** always preferred, even if the affinity is REAL, because 371 ** an integer representation is more space efficient on disk. 372 ** 373 ** SQLITE_AFF_TEXT: 374 ** Convert pRec to a text representation. 375 ** 376 ** SQLITE_AFF_BLOB: 377 ** SQLITE_AFF_NONE: 378 ** No-op. pRec is unchanged. 379 */ 380 static void applyAffinity( 381 Mem *pRec, /* The value to apply affinity to */ 382 char affinity, /* The affinity to be applied */ 383 u8 enc /* Use this text encoding */ 384 ){ 385 if( affinity>=SQLITE_AFF_NUMERIC ){ 386 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 387 || affinity==SQLITE_AFF_NUMERIC ); 388 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 389 if( (pRec->flags & MEM_Real)==0 ){ 390 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 391 }else{ 392 sqlite3VdbeIntegerAffinity(pRec); 393 } 394 } 395 }else if( affinity==SQLITE_AFF_TEXT ){ 396 /* Only attempt the conversion to TEXT if there is an integer or real 397 ** representation (blob and NULL do not get converted) but no string 398 ** representation. It would be harmless to repeat the conversion if 399 ** there is already a string rep, but it is pointless to waste those 400 ** CPU cycles. */ 401 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 402 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 403 testcase( pRec->flags & MEM_Int ); 404 testcase( pRec->flags & MEM_Real ); 405 testcase( pRec->flags & MEM_IntReal ); 406 sqlite3VdbeMemStringify(pRec, enc, 1); 407 } 408 } 409 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 410 } 411 } 412 413 /* 414 ** Try to convert the type of a function argument or a result column 415 ** into a numeric representation. Use either INTEGER or REAL whichever 416 ** is appropriate. But only do the conversion if it is possible without 417 ** loss of information and return the revised type of the argument. 418 */ 419 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 420 int eType = sqlite3_value_type(pVal); 421 if( eType==SQLITE_TEXT ){ 422 Mem *pMem = (Mem*)pVal; 423 applyNumericAffinity(pMem, 0); 424 eType = sqlite3_value_type(pVal); 425 } 426 return eType; 427 } 428 429 /* 430 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 431 ** not the internal Mem* type. 432 */ 433 void sqlite3ValueApplyAffinity( 434 sqlite3_value *pVal, 435 u8 affinity, 436 u8 enc 437 ){ 438 applyAffinity((Mem *)pVal, affinity, enc); 439 } 440 441 /* 442 ** pMem currently only holds a string type (or maybe a BLOB that we can 443 ** interpret as a string if we want to). Compute its corresponding 444 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 445 ** accordingly. 446 */ 447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 448 int rc; 449 sqlite3_int64 ix; 450 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 451 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 452 if( ExpandBlob(pMem) ){ 453 pMem->u.i = 0; 454 return MEM_Int; 455 } 456 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 457 if( rc<=0 ){ 458 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 459 pMem->u.i = ix; 460 return MEM_Int; 461 }else{ 462 return MEM_Real; 463 } 464 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 465 pMem->u.i = ix; 466 return MEM_Int; 467 } 468 return MEM_Real; 469 } 470 471 /* 472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 473 ** none. 474 ** 475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 476 ** But it does set pMem->u.r and pMem->u.i appropriately. 477 */ 478 static u16 numericType(Mem *pMem){ 479 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 480 testcase( pMem->flags & MEM_Int ); 481 testcase( pMem->flags & MEM_Real ); 482 testcase( pMem->flags & MEM_IntReal ); 483 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 484 } 485 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 486 testcase( pMem->flags & MEM_Str ); 487 testcase( pMem->flags & MEM_Blob ); 488 return computeNumericType(pMem); 489 } 490 return 0; 491 } 492 493 #ifdef SQLITE_DEBUG 494 /* 495 ** Write a nice string representation of the contents of cell pMem 496 ** into buffer zBuf, length nBuf. 497 */ 498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 499 int f = pMem->flags; 500 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 501 if( f&MEM_Blob ){ 502 int i; 503 char c; 504 if( f & MEM_Dyn ){ 505 c = 'z'; 506 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 507 }else if( f & MEM_Static ){ 508 c = 't'; 509 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 510 }else if( f & MEM_Ephem ){ 511 c = 'e'; 512 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 513 }else{ 514 c = 's'; 515 } 516 sqlite3_str_appendf(pStr, "%cx[", c); 517 for(i=0; i<25 && i<pMem->n; i++){ 518 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 519 } 520 sqlite3_str_appendf(pStr, "|"); 521 for(i=0; i<25 && i<pMem->n; i++){ 522 char z = pMem->z[i]; 523 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 524 } 525 sqlite3_str_appendf(pStr,"]"); 526 if( f & MEM_Zero ){ 527 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 528 } 529 }else if( f & MEM_Str ){ 530 int j; 531 u8 c; 532 if( f & MEM_Dyn ){ 533 c = 'z'; 534 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 535 }else if( f & MEM_Static ){ 536 c = 't'; 537 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 538 }else if( f & MEM_Ephem ){ 539 c = 'e'; 540 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 541 }else{ 542 c = 's'; 543 } 544 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 545 for(j=0; j<25 && j<pMem->n; j++){ 546 c = pMem->z[j]; 547 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 548 } 549 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 550 } 551 } 552 #endif 553 554 #ifdef SQLITE_DEBUG 555 /* 556 ** Print the value of a register for tracing purposes: 557 */ 558 static void memTracePrint(Mem *p){ 559 if( p->flags & MEM_Undefined ){ 560 printf(" undefined"); 561 }else if( p->flags & MEM_Null ){ 562 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 563 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 564 printf(" si:%lld", p->u.i); 565 }else if( (p->flags & (MEM_IntReal))!=0 ){ 566 printf(" ir:%lld", p->u.i); 567 }else if( p->flags & MEM_Int ){ 568 printf(" i:%lld", p->u.i); 569 #ifndef SQLITE_OMIT_FLOATING_POINT 570 }else if( p->flags & MEM_Real ){ 571 printf(" r:%.17g", p->u.r); 572 #endif 573 }else if( sqlite3VdbeMemIsRowSet(p) ){ 574 printf(" (rowset)"); 575 }else{ 576 StrAccum acc; 577 char zBuf[1000]; 578 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 579 sqlite3VdbeMemPrettyPrint(p, &acc); 580 printf(" %s", sqlite3StrAccumFinish(&acc)); 581 } 582 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 583 } 584 static void registerTrace(int iReg, Mem *p){ 585 printf("R[%d] = ", iReg); 586 memTracePrint(p); 587 if( p->pScopyFrom ){ 588 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 589 } 590 printf("\n"); 591 sqlite3VdbeCheckMemInvariants(p); 592 } 593 /**/ void sqlite3PrintMem(Mem *pMem){ 594 memTracePrint(pMem); 595 printf("\n"); 596 fflush(stdout); 597 } 598 #endif 599 600 #ifdef SQLITE_DEBUG 601 /* 602 ** Show the values of all registers in the virtual machine. Used for 603 ** interactive debugging. 604 */ 605 void sqlite3VdbeRegisterDump(Vdbe *v){ 606 int i; 607 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 608 } 609 #endif /* SQLITE_DEBUG */ 610 611 612 #ifdef SQLITE_DEBUG 613 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 614 #else 615 # define REGISTER_TRACE(R,M) 616 #endif 617 618 619 #ifdef VDBE_PROFILE 620 621 /* 622 ** hwtime.h contains inline assembler code for implementing 623 ** high-performance timing routines. 624 */ 625 #include "hwtime.h" 626 627 #endif 628 629 #ifndef NDEBUG 630 /* 631 ** This function is only called from within an assert() expression. It 632 ** checks that the sqlite3.nTransaction variable is correctly set to 633 ** the number of non-transaction savepoints currently in the 634 ** linked list starting at sqlite3.pSavepoint. 635 ** 636 ** Usage: 637 ** 638 ** assert( checkSavepointCount(db) ); 639 */ 640 static int checkSavepointCount(sqlite3 *db){ 641 int n = 0; 642 Savepoint *p; 643 for(p=db->pSavepoint; p; p=p->pNext) n++; 644 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 645 return 1; 646 } 647 #endif 648 649 /* 650 ** Return the register of pOp->p2 after first preparing it to be 651 ** overwritten with an integer value. 652 */ 653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 654 sqlite3VdbeMemSetNull(pOut); 655 pOut->flags = MEM_Int; 656 return pOut; 657 } 658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 659 Mem *pOut; 660 assert( pOp->p2>0 ); 661 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 662 pOut = &p->aMem[pOp->p2]; 663 memAboutToChange(p, pOut); 664 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 665 return out2PrereleaseWithClear(pOut); 666 }else{ 667 pOut->flags = MEM_Int; 668 return pOut; 669 } 670 } 671 672 /* 673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 674 ** with pOp->p3. Return the hash. 675 */ 676 static u64 filterHash(const Mem *aMem, const Op *pOp){ 677 int i, mx; 678 u64 h = 0; 679 680 assert( pOp->p4type==P4_INT32 ); 681 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 682 const Mem *p = &aMem[i]; 683 if( p->flags & (MEM_Int|MEM_IntReal) ){ 684 h += p->u.i; 685 }else if( p->flags & MEM_Real ){ 686 h += sqlite3VdbeIntValue(p); 687 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 688 h += p->n; 689 if( p->flags & MEM_Zero ) h += p->u.nZero; 690 } 691 } 692 return h; 693 } 694 695 /* 696 ** Return the symbolic name for the data type of a pMem 697 */ 698 static const char *vdbeMemTypeName(Mem *pMem){ 699 static const char *azTypes[] = { 700 /* SQLITE_INTEGER */ "INT", 701 /* SQLITE_FLOAT */ "REAL", 702 /* SQLITE_TEXT */ "TEXT", 703 /* SQLITE_BLOB */ "BLOB", 704 /* SQLITE_NULL */ "NULL" 705 }; 706 return azTypes[sqlite3_value_type(pMem)-1]; 707 } 708 709 /* 710 ** Execute as much of a VDBE program as we can. 711 ** This is the core of sqlite3_step(). 712 */ 713 int sqlite3VdbeExec( 714 Vdbe *p /* The VDBE */ 715 ){ 716 Op *aOp = p->aOp; /* Copy of p->aOp */ 717 Op *pOp = aOp; /* Current operation */ 718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 719 Op *pOrigOp; /* Value of pOp at the top of the loop */ 720 #endif 721 #ifdef SQLITE_DEBUG 722 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 723 #endif 724 int rc = SQLITE_OK; /* Value to return */ 725 sqlite3 *db = p->db; /* The database */ 726 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 727 u8 encoding = ENC(db); /* The database encoding */ 728 int iCompare = 0; /* Result of last comparison */ 729 u64 nVmStep = 0; /* Number of virtual machine steps */ 730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 731 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 732 #endif 733 Mem *aMem = p->aMem; /* Copy of p->aMem */ 734 Mem *pIn1 = 0; /* 1st input operand */ 735 Mem *pIn2 = 0; /* 2nd input operand */ 736 Mem *pIn3 = 0; /* 3rd input operand */ 737 Mem *pOut = 0; /* Output operand */ 738 #ifdef VDBE_PROFILE 739 u64 start; /* CPU clock count at start of opcode */ 740 #endif 741 /*** INSERT STACK UNION HERE ***/ 742 743 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ 744 sqlite3VdbeEnter(p); 745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 746 if( db->xProgress ){ 747 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 748 assert( 0 < db->nProgressOps ); 749 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 750 }else{ 751 nProgressLimit = LARGEST_UINT64; 752 } 753 #endif 754 if( p->rc==SQLITE_NOMEM ){ 755 /* This happens if a malloc() inside a call to sqlite3_column_text() or 756 ** sqlite3_column_text16() failed. */ 757 goto no_mem; 758 } 759 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 760 testcase( p->rc!=SQLITE_OK ); 761 p->rc = SQLITE_OK; 762 assert( p->bIsReader || p->readOnly!=0 ); 763 p->iCurrentTime = 0; 764 assert( p->explain==0 ); 765 p->pResultSet = 0; 766 db->busyHandler.nBusy = 0; 767 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 768 sqlite3VdbeIOTraceSql(p); 769 #ifdef SQLITE_DEBUG 770 sqlite3BeginBenignMalloc(); 771 if( p->pc==0 772 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 773 ){ 774 int i; 775 int once = 1; 776 sqlite3VdbePrintSql(p); 777 if( p->db->flags & SQLITE_VdbeListing ){ 778 printf("VDBE Program Listing:\n"); 779 for(i=0; i<p->nOp; i++){ 780 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 781 } 782 } 783 if( p->db->flags & SQLITE_VdbeEQP ){ 784 for(i=0; i<p->nOp; i++){ 785 if( aOp[i].opcode==OP_Explain ){ 786 if( once ) printf("VDBE Query Plan:\n"); 787 printf("%s\n", aOp[i].p4.z); 788 once = 0; 789 } 790 } 791 } 792 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 793 } 794 sqlite3EndBenignMalloc(); 795 #endif 796 for(pOp=&aOp[p->pc]; 1; pOp++){ 797 /* Errors are detected by individual opcodes, with an immediate 798 ** jumps to abort_due_to_error. */ 799 assert( rc==SQLITE_OK ); 800 801 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 802 #ifdef VDBE_PROFILE 803 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 804 #endif 805 nVmStep++; 806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 807 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 808 #endif 809 810 /* Only allow tracing if SQLITE_DEBUG is defined. 811 */ 812 #ifdef SQLITE_DEBUG 813 if( db->flags & SQLITE_VdbeTrace ){ 814 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 815 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 816 } 817 #endif 818 819 820 /* Check to see if we need to simulate an interrupt. This only happens 821 ** if we have a special test build. 822 */ 823 #ifdef SQLITE_TEST 824 if( sqlite3_interrupt_count>0 ){ 825 sqlite3_interrupt_count--; 826 if( sqlite3_interrupt_count==0 ){ 827 sqlite3_interrupt(db); 828 } 829 } 830 #endif 831 832 /* Sanity checking on other operands */ 833 #ifdef SQLITE_DEBUG 834 { 835 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 836 if( (opProperty & OPFLG_IN1)!=0 ){ 837 assert( pOp->p1>0 ); 838 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 839 assert( memIsValid(&aMem[pOp->p1]) ); 840 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 841 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 842 } 843 if( (opProperty & OPFLG_IN2)!=0 ){ 844 assert( pOp->p2>0 ); 845 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 846 assert( memIsValid(&aMem[pOp->p2]) ); 847 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 848 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 849 } 850 if( (opProperty & OPFLG_IN3)!=0 ){ 851 assert( pOp->p3>0 ); 852 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 853 assert( memIsValid(&aMem[pOp->p3]) ); 854 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 855 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 856 } 857 if( (opProperty & OPFLG_OUT2)!=0 ){ 858 assert( pOp->p2>0 ); 859 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 860 memAboutToChange(p, &aMem[pOp->p2]); 861 } 862 if( (opProperty & OPFLG_OUT3)!=0 ){ 863 assert( pOp->p3>0 ); 864 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 865 memAboutToChange(p, &aMem[pOp->p3]); 866 } 867 } 868 #endif 869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 870 pOrigOp = pOp; 871 #endif 872 873 switch( pOp->opcode ){ 874 875 /***************************************************************************** 876 ** What follows is a massive switch statement where each case implements a 877 ** separate instruction in the virtual machine. If we follow the usual 878 ** indentation conventions, each case should be indented by 6 spaces. But 879 ** that is a lot of wasted space on the left margin. So the code within 880 ** the switch statement will break with convention and be flush-left. Another 881 ** big comment (similar to this one) will mark the point in the code where 882 ** we transition back to normal indentation. 883 ** 884 ** The formatting of each case is important. The makefile for SQLite 885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 886 ** file looking for lines that begin with "case OP_". The opcodes.h files 887 ** will be filled with #defines that give unique integer values to each 888 ** opcode and the opcodes.c file is filled with an array of strings where 889 ** each string is the symbolic name for the corresponding opcode. If the 890 ** case statement is followed by a comment of the form "/# same as ... #/" 891 ** that comment is used to determine the particular value of the opcode. 892 ** 893 ** Other keywords in the comment that follows each case are used to 894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 895 ** Keywords include: in1, in2, in3, out2, out3. See 896 ** the mkopcodeh.awk script for additional information. 897 ** 898 ** Documentation about VDBE opcodes is generated by scanning this file 899 ** for lines of that contain "Opcode:". That line and all subsequent 900 ** comment lines are used in the generation of the opcode.html documentation 901 ** file. 902 ** 903 ** SUMMARY: 904 ** 905 ** Formatting is important to scripts that scan this file. 906 ** Do not deviate from the formatting style currently in use. 907 ** 908 *****************************************************************************/ 909 910 /* Opcode: Goto * P2 * * * 911 ** 912 ** An unconditional jump to address P2. 913 ** The next instruction executed will be 914 ** the one at index P2 from the beginning of 915 ** the program. 916 ** 917 ** The P1 parameter is not actually used by this opcode. However, it 918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 919 ** that this Goto is the bottom of a loop and that the lines from P2 down 920 ** to the current line should be indented for EXPLAIN output. 921 */ 922 case OP_Goto: { /* jump */ 923 924 #ifdef SQLITE_DEBUG 925 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 926 ** means we should really jump back to the preceeding OP_ReleaseReg 927 ** instruction. */ 928 if( pOp->p5 ){ 929 assert( pOp->p2 < (int)(pOp - aOp) ); 930 assert( pOp->p2 > 1 ); 931 pOp = &aOp[pOp->p2 - 2]; 932 assert( pOp[1].opcode==OP_ReleaseReg ); 933 goto check_for_interrupt; 934 } 935 #endif 936 937 jump_to_p2_and_check_for_interrupt: 938 pOp = &aOp[pOp->p2 - 1]; 939 940 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 941 ** OP_VNext, or OP_SorterNext) all jump here upon 942 ** completion. Check to see if sqlite3_interrupt() has been called 943 ** or if the progress callback needs to be invoked. 944 ** 945 ** This code uses unstructured "goto" statements and does not look clean. 946 ** But that is not due to sloppy coding habits. The code is written this 947 ** way for performance, to avoid having to run the interrupt and progress 948 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 949 ** faster according to "valgrind --tool=cachegrind" */ 950 check_for_interrupt: 951 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 953 /* Call the progress callback if it is configured and the required number 954 ** of VDBE ops have been executed (either since this invocation of 955 ** sqlite3VdbeExec() or since last time the progress callback was called). 956 ** If the progress callback returns non-zero, exit the virtual machine with 957 ** a return code SQLITE_ABORT. 958 */ 959 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 960 assert( db->nProgressOps!=0 ); 961 nProgressLimit += db->nProgressOps; 962 if( db->xProgress(db->pProgressArg) ){ 963 nProgressLimit = LARGEST_UINT64; 964 rc = SQLITE_INTERRUPT; 965 goto abort_due_to_error; 966 } 967 } 968 #endif 969 970 break; 971 } 972 973 /* Opcode: Gosub P1 P2 * * * 974 ** 975 ** Write the current address onto register P1 976 ** and then jump to address P2. 977 */ 978 case OP_Gosub: { /* jump */ 979 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 980 pIn1 = &aMem[pOp->p1]; 981 assert( VdbeMemDynamic(pIn1)==0 ); 982 memAboutToChange(p, pIn1); 983 pIn1->flags = MEM_Int; 984 pIn1->u.i = (int)(pOp-aOp); 985 REGISTER_TRACE(pOp->p1, pIn1); 986 goto jump_to_p2_and_check_for_interrupt; 987 } 988 989 /* Opcode: Return P1 P2 P3 * * 990 ** 991 ** Jump to the address stored in register P1. If P1 is a return address 992 ** register, then this accomplishes a return from a subroutine. 993 ** 994 ** If P3 is 1, then the jump is only taken if register P1 holds an integer 995 ** values, otherwise execution falls through to the next opcode, and the 996 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an 997 ** integer or else an assert() is raised. P3 should be set to 1 when 998 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 999 ** otherwise. 1000 ** 1001 ** The value in register P1 is unchanged by this opcode. 1002 ** 1003 ** P2 is not used by the byte-code engine. However, if P2 is positive 1004 ** and also less than the current address, then the "EXPLAIN" output 1005 ** formatter in the CLI will indent all opcodes from the P2 opcode up 1006 ** to be not including the current Return. P2 should be the first opcode 1007 ** in the subroutine from which this opcode is returning. Thus the P2 1008 ** value is a byte-code indentation hint. See tag-20220407a in 1009 ** wherecode.c and shell.c. 1010 */ 1011 case OP_Return: { /* in1 */ 1012 pIn1 = &aMem[pOp->p1]; 1013 if( pIn1->flags & MEM_Int ){ 1014 if( pOp->p3 ){ VdbeBranchTaken(1, 2); } 1015 pOp = &aOp[pIn1->u.i]; 1016 }else if( ALWAYS(pOp->p3) ){ 1017 VdbeBranchTaken(0, 2); 1018 } 1019 break; 1020 } 1021 1022 /* Opcode: InitCoroutine P1 P2 P3 * * 1023 ** 1024 ** Set up register P1 so that it will Yield to the coroutine 1025 ** located at address P3. 1026 ** 1027 ** If P2!=0 then the coroutine implementation immediately follows 1028 ** this opcode. So jump over the coroutine implementation to 1029 ** address P2. 1030 ** 1031 ** See also: EndCoroutine 1032 */ 1033 case OP_InitCoroutine: { /* jump */ 1034 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1035 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1036 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1037 pOut = &aMem[pOp->p1]; 1038 assert( !VdbeMemDynamic(pOut) ); 1039 pOut->u.i = pOp->p3 - 1; 1040 pOut->flags = MEM_Int; 1041 if( pOp->p2==0 ) break; 1042 1043 /* Most jump operations do a goto to this spot in order to update 1044 ** the pOp pointer. */ 1045 jump_to_p2: 1046 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ 1047 assert( pOp->p2<p->nOp ); /* Jumps must be in range */ 1048 pOp = &aOp[pOp->p2 - 1]; 1049 break; 1050 } 1051 1052 /* Opcode: EndCoroutine P1 * * * * 1053 ** 1054 ** The instruction at the address in register P1 is a Yield. 1055 ** Jump to the P2 parameter of that Yield. 1056 ** After the jump, register P1 becomes undefined. 1057 ** 1058 ** See also: InitCoroutine 1059 */ 1060 case OP_EndCoroutine: { /* in1 */ 1061 VdbeOp *pCaller; 1062 pIn1 = &aMem[pOp->p1]; 1063 assert( pIn1->flags==MEM_Int ); 1064 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1065 pCaller = &aOp[pIn1->u.i]; 1066 assert( pCaller->opcode==OP_Yield ); 1067 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1068 pOp = &aOp[pCaller->p2 - 1]; 1069 pIn1->flags = MEM_Undefined; 1070 break; 1071 } 1072 1073 /* Opcode: Yield P1 P2 * * * 1074 ** 1075 ** Swap the program counter with the value in register P1. This 1076 ** has the effect of yielding to a coroutine. 1077 ** 1078 ** If the coroutine that is launched by this instruction ends with 1079 ** Yield or Return then continue to the next instruction. But if 1080 ** the coroutine launched by this instruction ends with 1081 ** EndCoroutine, then jump to P2 rather than continuing with the 1082 ** next instruction. 1083 ** 1084 ** See also: InitCoroutine 1085 */ 1086 case OP_Yield: { /* in1, jump */ 1087 int pcDest; 1088 pIn1 = &aMem[pOp->p1]; 1089 assert( VdbeMemDynamic(pIn1)==0 ); 1090 pIn1->flags = MEM_Int; 1091 pcDest = (int)pIn1->u.i; 1092 pIn1->u.i = (int)(pOp - aOp); 1093 REGISTER_TRACE(pOp->p1, pIn1); 1094 pOp = &aOp[pcDest]; 1095 break; 1096 } 1097 1098 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1099 ** Synopsis: if r[P3]=null halt 1100 ** 1101 ** Check the value in register P3. If it is NULL then Halt using 1102 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1103 ** value in register P3 is not NULL, then this routine is a no-op. 1104 ** The P5 parameter should be 1. 1105 */ 1106 case OP_HaltIfNull: { /* in3 */ 1107 pIn3 = &aMem[pOp->p3]; 1108 #ifdef SQLITE_DEBUG 1109 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1110 #endif 1111 if( (pIn3->flags & MEM_Null)==0 ) break; 1112 /* Fall through into OP_Halt */ 1113 /* no break */ deliberate_fall_through 1114 } 1115 1116 /* Opcode: Halt P1 P2 * P4 P5 1117 ** 1118 ** Exit immediately. All open cursors, etc are closed 1119 ** automatically. 1120 ** 1121 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1122 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1123 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1124 ** whether or not to rollback the current transaction. Do not rollback 1125 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1126 ** then back out all changes that have occurred during this execution of the 1127 ** VDBE, but do not rollback the transaction. 1128 ** 1129 ** If P4 is not null then it is an error message string. 1130 ** 1131 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1132 ** 1133 ** 0: (no change) 1134 ** 1: NOT NULL contraint failed: P4 1135 ** 2: UNIQUE constraint failed: P4 1136 ** 3: CHECK constraint failed: P4 1137 ** 4: FOREIGN KEY constraint failed: P4 1138 ** 1139 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1140 ** omitted. 1141 ** 1142 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1143 ** every program. So a jump past the last instruction of the program 1144 ** is the same as executing Halt. 1145 */ 1146 case OP_Halt: { 1147 VdbeFrame *pFrame; 1148 int pcx; 1149 1150 #ifdef SQLITE_DEBUG 1151 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1152 #endif 1153 if( p->pFrame && pOp->p1==SQLITE_OK ){ 1154 /* Halt the sub-program. Return control to the parent frame. */ 1155 pFrame = p->pFrame; 1156 p->pFrame = pFrame->pParent; 1157 p->nFrame--; 1158 sqlite3VdbeSetChanges(db, p->nChange); 1159 pcx = sqlite3VdbeFrameRestore(pFrame); 1160 if( pOp->p2==OE_Ignore ){ 1161 /* Instruction pcx is the OP_Program that invoked the sub-program 1162 ** currently being halted. If the p2 instruction of this OP_Halt 1163 ** instruction is set to OE_Ignore, then the sub-program is throwing 1164 ** an IGNORE exception. In this case jump to the address specified 1165 ** as the p2 of the calling OP_Program. */ 1166 pcx = p->aOp[pcx].p2-1; 1167 } 1168 aOp = p->aOp; 1169 aMem = p->aMem; 1170 pOp = &aOp[pcx]; 1171 break; 1172 } 1173 p->rc = pOp->p1; 1174 p->errorAction = (u8)pOp->p2; 1175 assert( pOp->p5<=4 ); 1176 if( p->rc ){ 1177 if( pOp->p5 ){ 1178 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1179 "FOREIGN KEY" }; 1180 testcase( pOp->p5==1 ); 1181 testcase( pOp->p5==2 ); 1182 testcase( pOp->p5==3 ); 1183 testcase( pOp->p5==4 ); 1184 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1185 if( pOp->p4.z ){ 1186 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1187 } 1188 }else{ 1189 sqlite3VdbeError(p, "%s", pOp->p4.z); 1190 } 1191 pcx = (int)(pOp - aOp); 1192 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1193 } 1194 rc = sqlite3VdbeHalt(p); 1195 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1196 if( rc==SQLITE_BUSY ){ 1197 p->rc = SQLITE_BUSY; 1198 }else{ 1199 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1200 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1201 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1202 } 1203 goto vdbe_return; 1204 } 1205 1206 /* Opcode: Integer P1 P2 * * * 1207 ** Synopsis: r[P2]=P1 1208 ** 1209 ** The 32-bit integer value P1 is written into register P2. 1210 */ 1211 case OP_Integer: { /* out2 */ 1212 pOut = out2Prerelease(p, pOp); 1213 pOut->u.i = pOp->p1; 1214 break; 1215 } 1216 1217 /* Opcode: Int64 * P2 * P4 * 1218 ** Synopsis: r[P2]=P4 1219 ** 1220 ** P4 is a pointer to a 64-bit integer value. 1221 ** Write that value into register P2. 1222 */ 1223 case OP_Int64: { /* out2 */ 1224 pOut = out2Prerelease(p, pOp); 1225 assert( pOp->p4.pI64!=0 ); 1226 pOut->u.i = *pOp->p4.pI64; 1227 break; 1228 } 1229 1230 #ifndef SQLITE_OMIT_FLOATING_POINT 1231 /* Opcode: Real * P2 * P4 * 1232 ** Synopsis: r[P2]=P4 1233 ** 1234 ** P4 is a pointer to a 64-bit floating point value. 1235 ** Write that value into register P2. 1236 */ 1237 case OP_Real: { /* same as TK_FLOAT, out2 */ 1238 pOut = out2Prerelease(p, pOp); 1239 pOut->flags = MEM_Real; 1240 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1241 pOut->u.r = *pOp->p4.pReal; 1242 break; 1243 } 1244 #endif 1245 1246 /* Opcode: String8 * P2 * P4 * 1247 ** Synopsis: r[P2]='P4' 1248 ** 1249 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1250 ** into a String opcode before it is executed for the first time. During 1251 ** this transformation, the length of string P4 is computed and stored 1252 ** as the P1 parameter. 1253 */ 1254 case OP_String8: { /* same as TK_STRING, out2 */ 1255 assert( pOp->p4.z!=0 ); 1256 pOut = out2Prerelease(p, pOp); 1257 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1258 1259 #ifndef SQLITE_OMIT_UTF16 1260 if( encoding!=SQLITE_UTF8 ){ 1261 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1262 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1263 if( rc ) goto too_big; 1264 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1265 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1266 assert( VdbeMemDynamic(pOut)==0 ); 1267 pOut->szMalloc = 0; 1268 pOut->flags |= MEM_Static; 1269 if( pOp->p4type==P4_DYNAMIC ){ 1270 sqlite3DbFree(db, pOp->p4.z); 1271 } 1272 pOp->p4type = P4_DYNAMIC; 1273 pOp->p4.z = pOut->z; 1274 pOp->p1 = pOut->n; 1275 } 1276 #endif 1277 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1278 goto too_big; 1279 } 1280 pOp->opcode = OP_String; 1281 assert( rc==SQLITE_OK ); 1282 /* Fall through to the next case, OP_String */ 1283 /* no break */ deliberate_fall_through 1284 } 1285 1286 /* Opcode: String P1 P2 P3 P4 P5 1287 ** Synopsis: r[P2]='P4' (len=P1) 1288 ** 1289 ** The string value P4 of length P1 (bytes) is stored in register P2. 1290 ** 1291 ** If P3 is not zero and the content of register P3 is equal to P5, then 1292 ** the datatype of the register P2 is converted to BLOB. The content is 1293 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1294 ** of a string, as if it had been CAST. In other words: 1295 ** 1296 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1297 */ 1298 case OP_String: { /* out2 */ 1299 assert( pOp->p4.z!=0 ); 1300 pOut = out2Prerelease(p, pOp); 1301 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1302 pOut->z = pOp->p4.z; 1303 pOut->n = pOp->p1; 1304 pOut->enc = encoding; 1305 UPDATE_MAX_BLOBSIZE(pOut); 1306 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1307 if( pOp->p3>0 ){ 1308 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1309 pIn3 = &aMem[pOp->p3]; 1310 assert( pIn3->flags & MEM_Int ); 1311 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1312 } 1313 #endif 1314 break; 1315 } 1316 1317 /* Opcode: BeginSubrtn * P2 * * * 1318 ** Synopsis: r[P2]=NULL 1319 ** 1320 ** Mark the beginning of a subroutine that can be entered in-line 1321 ** or that can be called using OP_Gosub. The subroutine should 1322 ** be terminated by an OP_Return instruction that has a P1 operand that 1323 ** is the same as the P2 operand to this opcode and that has P3 set to 1. 1324 ** If the subroutine is entered in-line, then the OP_Return will simply 1325 ** fall through. But if the subroutine is entered using OP_Gosub, then 1326 ** the OP_Return will jump back to the first instruction after the OP_Gosub. 1327 ** 1328 ** This routine works by loading a NULL into the P2 register. When the 1329 ** return address register contains a NULL, the OP_Return instruction is 1330 ** a no-op that simply falls through to the next instruction (assuming that 1331 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is 1332 ** entered in-line, then the OP_Return will cause in-line execution to 1333 ** continue. But if the subroutine is entered via OP_Gosub, then the 1334 ** OP_Return will cause a return to the address following the OP_Gosub. 1335 ** 1336 ** This opcode is identical to OP_Null. It has a different name 1337 ** only to make the byte code easier to read and verify. 1338 */ 1339 /* Opcode: Null P1 P2 P3 * * 1340 ** Synopsis: r[P2..P3]=NULL 1341 ** 1342 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1343 ** NULL into register P3 and every register in between P2 and P3. If P3 1344 ** is less than P2 (typically P3 is zero) then only register P2 is 1345 ** set to NULL. 1346 ** 1347 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1348 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1349 ** OP_Ne or OP_Eq. 1350 */ 1351 case OP_BeginSubrtn: 1352 case OP_Null: { /* out2 */ 1353 int cnt; 1354 u16 nullFlag; 1355 pOut = out2Prerelease(p, pOp); 1356 cnt = pOp->p3-pOp->p2; 1357 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1358 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1359 pOut->n = 0; 1360 #ifdef SQLITE_DEBUG 1361 pOut->uTemp = 0; 1362 #endif 1363 while( cnt>0 ){ 1364 pOut++; 1365 memAboutToChange(p, pOut); 1366 sqlite3VdbeMemSetNull(pOut); 1367 pOut->flags = nullFlag; 1368 pOut->n = 0; 1369 cnt--; 1370 } 1371 break; 1372 } 1373 1374 /* Opcode: SoftNull P1 * * * * 1375 ** Synopsis: r[P1]=NULL 1376 ** 1377 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1378 ** instruction, but do not free any string or blob memory associated with 1379 ** the register, so that if the value was a string or blob that was 1380 ** previously copied using OP_SCopy, the copies will continue to be valid. 1381 */ 1382 case OP_SoftNull: { 1383 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1384 pOut = &aMem[pOp->p1]; 1385 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1386 break; 1387 } 1388 1389 /* Opcode: Blob P1 P2 * P4 * 1390 ** Synopsis: r[P2]=P4 (len=P1) 1391 ** 1392 ** P4 points to a blob of data P1 bytes long. Store this 1393 ** blob in register P2. If P4 is a NULL pointer, then construct 1394 ** a zero-filled blob that is P1 bytes long in P2. 1395 */ 1396 case OP_Blob: { /* out2 */ 1397 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1398 pOut = out2Prerelease(p, pOp); 1399 if( pOp->p4.z==0 ){ 1400 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 1401 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 1402 }else{ 1403 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1404 } 1405 pOut->enc = encoding; 1406 UPDATE_MAX_BLOBSIZE(pOut); 1407 break; 1408 } 1409 1410 /* Opcode: Variable P1 P2 * P4 * 1411 ** Synopsis: r[P2]=parameter(P1,P4) 1412 ** 1413 ** Transfer the values of bound parameter P1 into register P2 1414 ** 1415 ** If the parameter is named, then its name appears in P4. 1416 ** The P4 value is used by sqlite3_bind_parameter_name(). 1417 */ 1418 case OP_Variable: { /* out2 */ 1419 Mem *pVar; /* Value being transferred */ 1420 1421 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1422 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1423 pVar = &p->aVar[pOp->p1 - 1]; 1424 if( sqlite3VdbeMemTooBig(pVar) ){ 1425 goto too_big; 1426 } 1427 pOut = &aMem[pOp->p2]; 1428 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1429 memcpy(pOut, pVar, MEMCELLSIZE); 1430 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1431 pOut->flags |= MEM_Static|MEM_FromBind; 1432 UPDATE_MAX_BLOBSIZE(pOut); 1433 break; 1434 } 1435 1436 /* Opcode: Move P1 P2 P3 * * 1437 ** Synopsis: r[P2@P3]=r[P1@P3] 1438 ** 1439 ** Move the P3 values in register P1..P1+P3-1 over into 1440 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1441 ** left holding a NULL. It is an error for register ranges 1442 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1443 ** for P3 to be less than 1. 1444 */ 1445 case OP_Move: { 1446 int n; /* Number of registers left to copy */ 1447 int p1; /* Register to copy from */ 1448 int p2; /* Register to copy to */ 1449 1450 n = pOp->p3; 1451 p1 = pOp->p1; 1452 p2 = pOp->p2; 1453 assert( n>0 && p1>0 && p2>0 ); 1454 assert( p1+n<=p2 || p2+n<=p1 ); 1455 1456 pIn1 = &aMem[p1]; 1457 pOut = &aMem[p2]; 1458 do{ 1459 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1460 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1461 assert( memIsValid(pIn1) ); 1462 memAboutToChange(p, pOut); 1463 sqlite3VdbeMemMove(pOut, pIn1); 1464 #ifdef SQLITE_DEBUG 1465 pIn1->pScopyFrom = 0; 1466 { int i; 1467 for(i=1; i<p->nMem; i++){ 1468 if( aMem[i].pScopyFrom==pIn1 ){ 1469 aMem[i].pScopyFrom = pOut; 1470 } 1471 } 1472 } 1473 #endif 1474 Deephemeralize(pOut); 1475 REGISTER_TRACE(p2++, pOut); 1476 pIn1++; 1477 pOut++; 1478 }while( --n ); 1479 break; 1480 } 1481 1482 /* Opcode: Copy P1 P2 P3 * P5 1483 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1484 ** 1485 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1486 ** 1487 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the 1488 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot 1489 ** be merged. The 0x0001 bit is used by the query planner and does not 1490 ** come into play during query execution. 1491 ** 1492 ** This instruction makes a deep copy of the value. A duplicate 1493 ** is made of any string or blob constant. See also OP_SCopy. 1494 */ 1495 case OP_Copy: { 1496 int n; 1497 1498 n = pOp->p3; 1499 pIn1 = &aMem[pOp->p1]; 1500 pOut = &aMem[pOp->p2]; 1501 assert( pOut!=pIn1 ); 1502 while( 1 ){ 1503 memAboutToChange(p, pOut); 1504 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1505 Deephemeralize(pOut); 1506 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ 1507 pOut->flags &= ~MEM_Subtype; 1508 } 1509 #ifdef SQLITE_DEBUG 1510 pOut->pScopyFrom = 0; 1511 #endif 1512 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1513 if( (n--)==0 ) break; 1514 pOut++; 1515 pIn1++; 1516 } 1517 break; 1518 } 1519 1520 /* Opcode: SCopy P1 P2 * * * 1521 ** Synopsis: r[P2]=r[P1] 1522 ** 1523 ** Make a shallow copy of register P1 into register P2. 1524 ** 1525 ** This instruction makes a shallow copy of the value. If the value 1526 ** is a string or blob, then the copy is only a pointer to the 1527 ** original and hence if the original changes so will the copy. 1528 ** Worse, if the original is deallocated, the copy becomes invalid. 1529 ** Thus the program must guarantee that the original will not change 1530 ** during the lifetime of the copy. Use OP_Copy to make a complete 1531 ** copy. 1532 */ 1533 case OP_SCopy: { /* out2 */ 1534 pIn1 = &aMem[pOp->p1]; 1535 pOut = &aMem[pOp->p2]; 1536 assert( pOut!=pIn1 ); 1537 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1538 #ifdef SQLITE_DEBUG 1539 pOut->pScopyFrom = pIn1; 1540 pOut->mScopyFlags = pIn1->flags; 1541 #endif 1542 break; 1543 } 1544 1545 /* Opcode: IntCopy P1 P2 * * * 1546 ** Synopsis: r[P2]=r[P1] 1547 ** 1548 ** Transfer the integer value held in register P1 into register P2. 1549 ** 1550 ** This is an optimized version of SCopy that works only for integer 1551 ** values. 1552 */ 1553 case OP_IntCopy: { /* out2 */ 1554 pIn1 = &aMem[pOp->p1]; 1555 assert( (pIn1->flags & MEM_Int)!=0 ); 1556 pOut = &aMem[pOp->p2]; 1557 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1558 break; 1559 } 1560 1561 /* Opcode: FkCheck * * * * * 1562 ** 1563 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 1564 ** foreign key constraint violations. If there are no foreign key 1565 ** constraint violations, this is a no-op. 1566 ** 1567 ** FK constraint violations are also checked when the prepared statement 1568 ** exits. This opcode is used to raise foreign key constraint errors prior 1569 ** to returning results such as a row change count or the result of a 1570 ** RETURNING clause. 1571 */ 1572 case OP_FkCheck: { 1573 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1574 goto abort_due_to_error; 1575 } 1576 break; 1577 } 1578 1579 /* Opcode: ResultRow P1 P2 * * * 1580 ** Synopsis: output=r[P1@P2] 1581 ** 1582 ** The registers P1 through P1+P2-1 contain a single row of 1583 ** results. This opcode causes the sqlite3_step() call to terminate 1584 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1585 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1586 ** the result row. 1587 */ 1588 case OP_ResultRow: { 1589 assert( p->nResColumn==pOp->p2 ); 1590 assert( pOp->p1>0 || CORRUPT_DB ); 1591 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1592 1593 p->cacheCtr = (p->cacheCtr + 2)|1; 1594 p->pResultSet = &aMem[pOp->p1]; 1595 #ifdef SQLITE_DEBUG 1596 { 1597 Mem *pMem = p->pResultSet; 1598 int i; 1599 for(i=0; i<pOp->p2; i++){ 1600 assert( memIsValid(&pMem[i]) ); 1601 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1602 /* The registers in the result will not be used again when the 1603 ** prepared statement restarts. This is because sqlite3_column() 1604 ** APIs might have caused type conversions of made other changes to 1605 ** the register values. Therefore, we can go ahead and break any 1606 ** OP_SCopy dependencies. */ 1607 pMem[i].pScopyFrom = 0; 1608 } 1609 } 1610 #endif 1611 if( db->mallocFailed ) goto no_mem; 1612 if( db->mTrace & SQLITE_TRACE_ROW ){ 1613 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1614 } 1615 p->pc = (int)(pOp - aOp) + 1; 1616 rc = SQLITE_ROW; 1617 goto vdbe_return; 1618 } 1619 1620 /* Opcode: Concat P1 P2 P3 * * 1621 ** Synopsis: r[P3]=r[P2]+r[P1] 1622 ** 1623 ** Add the text in register P1 onto the end of the text in 1624 ** register P2 and store the result in register P3. 1625 ** If either the P1 or P2 text are NULL then store NULL in P3. 1626 ** 1627 ** P3 = P2 || P1 1628 ** 1629 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1630 ** if P3 is the same register as P2, the implementation is able 1631 ** to avoid a memcpy(). 1632 */ 1633 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1634 i64 nByte; /* Total size of the output string or blob */ 1635 u16 flags1; /* Initial flags for P1 */ 1636 u16 flags2; /* Initial flags for P2 */ 1637 1638 pIn1 = &aMem[pOp->p1]; 1639 pIn2 = &aMem[pOp->p2]; 1640 pOut = &aMem[pOp->p3]; 1641 testcase( pOut==pIn2 ); 1642 assert( pIn1!=pOut ); 1643 flags1 = pIn1->flags; 1644 testcase( flags1 & MEM_Null ); 1645 testcase( pIn2->flags & MEM_Null ); 1646 if( (flags1 | pIn2->flags) & MEM_Null ){ 1647 sqlite3VdbeMemSetNull(pOut); 1648 break; 1649 } 1650 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1651 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1652 flags1 = pIn1->flags & ~MEM_Str; 1653 }else if( (flags1 & MEM_Zero)!=0 ){ 1654 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1655 flags1 = pIn1->flags & ~MEM_Str; 1656 } 1657 flags2 = pIn2->flags; 1658 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1659 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1660 flags2 = pIn2->flags & ~MEM_Str; 1661 }else if( (flags2 & MEM_Zero)!=0 ){ 1662 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1663 flags2 = pIn2->flags & ~MEM_Str; 1664 } 1665 nByte = pIn1->n + pIn2->n; 1666 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1667 goto too_big; 1668 } 1669 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1670 goto no_mem; 1671 } 1672 MemSetTypeFlag(pOut, MEM_Str); 1673 if( pOut!=pIn2 ){ 1674 memcpy(pOut->z, pIn2->z, pIn2->n); 1675 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1676 pIn2->flags = flags2; 1677 } 1678 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1679 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1680 pIn1->flags = flags1; 1681 if( encoding>SQLITE_UTF8 ) nByte &= ~1; 1682 pOut->z[nByte]=0; 1683 pOut->z[nByte+1] = 0; 1684 pOut->flags |= MEM_Term; 1685 pOut->n = (int)nByte; 1686 pOut->enc = encoding; 1687 UPDATE_MAX_BLOBSIZE(pOut); 1688 break; 1689 } 1690 1691 /* Opcode: Add P1 P2 P3 * * 1692 ** Synopsis: r[P3]=r[P1]+r[P2] 1693 ** 1694 ** Add the value in register P1 to the value in register P2 1695 ** and store the result in register P3. 1696 ** If either input is NULL, the result is NULL. 1697 */ 1698 /* Opcode: Multiply P1 P2 P3 * * 1699 ** Synopsis: r[P3]=r[P1]*r[P2] 1700 ** 1701 ** 1702 ** Multiply the value in register P1 by the value in register P2 1703 ** and store the result in register P3. 1704 ** If either input is NULL, the result is NULL. 1705 */ 1706 /* Opcode: Subtract P1 P2 P3 * * 1707 ** Synopsis: r[P3]=r[P2]-r[P1] 1708 ** 1709 ** Subtract the value in register P1 from the value in register P2 1710 ** and store the result in register P3. 1711 ** If either input is NULL, the result is NULL. 1712 */ 1713 /* Opcode: Divide P1 P2 P3 * * 1714 ** Synopsis: r[P3]=r[P2]/r[P1] 1715 ** 1716 ** Divide the value in register P1 by the value in register P2 1717 ** and store the result in register P3 (P3=P2/P1). If the value in 1718 ** register P1 is zero, then the result is NULL. If either input is 1719 ** NULL, the result is NULL. 1720 */ 1721 /* Opcode: Remainder P1 P2 P3 * * 1722 ** Synopsis: r[P3]=r[P2]%r[P1] 1723 ** 1724 ** Compute the remainder after integer register P2 is divided by 1725 ** register P1 and store the result in register P3. 1726 ** If the value in register P1 is zero the result is NULL. 1727 ** If either operand is NULL, the result is NULL. 1728 */ 1729 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1730 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1731 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1732 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1733 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1734 u16 flags; /* Combined MEM_* flags from both inputs */ 1735 u16 type1; /* Numeric type of left operand */ 1736 u16 type2; /* Numeric type of right operand */ 1737 i64 iA; /* Integer value of left operand */ 1738 i64 iB; /* Integer value of right operand */ 1739 double rA; /* Real value of left operand */ 1740 double rB; /* Real value of right operand */ 1741 1742 pIn1 = &aMem[pOp->p1]; 1743 type1 = numericType(pIn1); 1744 pIn2 = &aMem[pOp->p2]; 1745 type2 = numericType(pIn2); 1746 pOut = &aMem[pOp->p3]; 1747 flags = pIn1->flags | pIn2->flags; 1748 if( (type1 & type2 & MEM_Int)!=0 ){ 1749 iA = pIn1->u.i; 1750 iB = pIn2->u.i; 1751 switch( pOp->opcode ){ 1752 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1753 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1754 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1755 case OP_Divide: { 1756 if( iA==0 ) goto arithmetic_result_is_null; 1757 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1758 iB /= iA; 1759 break; 1760 } 1761 default: { 1762 if( iA==0 ) goto arithmetic_result_is_null; 1763 if( iA==-1 ) iA = 1; 1764 iB %= iA; 1765 break; 1766 } 1767 } 1768 pOut->u.i = iB; 1769 MemSetTypeFlag(pOut, MEM_Int); 1770 }else if( (flags & MEM_Null)!=0 ){ 1771 goto arithmetic_result_is_null; 1772 }else{ 1773 fp_math: 1774 rA = sqlite3VdbeRealValue(pIn1); 1775 rB = sqlite3VdbeRealValue(pIn2); 1776 switch( pOp->opcode ){ 1777 case OP_Add: rB += rA; break; 1778 case OP_Subtract: rB -= rA; break; 1779 case OP_Multiply: rB *= rA; break; 1780 case OP_Divide: { 1781 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1782 if( rA==(double)0 ) goto arithmetic_result_is_null; 1783 rB /= rA; 1784 break; 1785 } 1786 default: { 1787 iA = sqlite3VdbeIntValue(pIn1); 1788 iB = sqlite3VdbeIntValue(pIn2); 1789 if( iA==0 ) goto arithmetic_result_is_null; 1790 if( iA==-1 ) iA = 1; 1791 rB = (double)(iB % iA); 1792 break; 1793 } 1794 } 1795 #ifdef SQLITE_OMIT_FLOATING_POINT 1796 pOut->u.i = rB; 1797 MemSetTypeFlag(pOut, MEM_Int); 1798 #else 1799 if( sqlite3IsNaN(rB) ){ 1800 goto arithmetic_result_is_null; 1801 } 1802 pOut->u.r = rB; 1803 MemSetTypeFlag(pOut, MEM_Real); 1804 #endif 1805 } 1806 break; 1807 1808 arithmetic_result_is_null: 1809 sqlite3VdbeMemSetNull(pOut); 1810 break; 1811 } 1812 1813 /* Opcode: CollSeq P1 * * P4 1814 ** 1815 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1816 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1817 ** be returned. This is used by the built-in min(), max() and nullif() 1818 ** functions. 1819 ** 1820 ** If P1 is not zero, then it is a register that a subsequent min() or 1821 ** max() aggregate will set to 1 if the current row is not the minimum or 1822 ** maximum. The P1 register is initialized to 0 by this instruction. 1823 ** 1824 ** The interface used by the implementation of the aforementioned functions 1825 ** to retrieve the collation sequence set by this opcode is not available 1826 ** publicly. Only built-in functions have access to this feature. 1827 */ 1828 case OP_CollSeq: { 1829 assert( pOp->p4type==P4_COLLSEQ ); 1830 if( pOp->p1 ){ 1831 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1832 } 1833 break; 1834 } 1835 1836 /* Opcode: BitAnd P1 P2 P3 * * 1837 ** Synopsis: r[P3]=r[P1]&r[P2] 1838 ** 1839 ** Take the bit-wise AND of the values in register P1 and P2 and 1840 ** store the result in register P3. 1841 ** If either input is NULL, the result is NULL. 1842 */ 1843 /* Opcode: BitOr P1 P2 P3 * * 1844 ** Synopsis: r[P3]=r[P1]|r[P2] 1845 ** 1846 ** Take the bit-wise OR of the values in register P1 and P2 and 1847 ** store the result in register P3. 1848 ** If either input is NULL, the result is NULL. 1849 */ 1850 /* Opcode: ShiftLeft P1 P2 P3 * * 1851 ** Synopsis: r[P3]=r[P2]<<r[P1] 1852 ** 1853 ** Shift the integer value in register P2 to the left by the 1854 ** number of bits specified by the integer in register P1. 1855 ** Store the result in register P3. 1856 ** If either input is NULL, the result is NULL. 1857 */ 1858 /* Opcode: ShiftRight P1 P2 P3 * * 1859 ** Synopsis: r[P3]=r[P2]>>r[P1] 1860 ** 1861 ** Shift the integer value in register P2 to the right by the 1862 ** number of bits specified by the integer in register P1. 1863 ** Store the result in register P3. 1864 ** If either input is NULL, the result is NULL. 1865 */ 1866 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1867 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1868 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1869 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1870 i64 iA; 1871 u64 uA; 1872 i64 iB; 1873 u8 op; 1874 1875 pIn1 = &aMem[pOp->p1]; 1876 pIn2 = &aMem[pOp->p2]; 1877 pOut = &aMem[pOp->p3]; 1878 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1879 sqlite3VdbeMemSetNull(pOut); 1880 break; 1881 } 1882 iA = sqlite3VdbeIntValue(pIn2); 1883 iB = sqlite3VdbeIntValue(pIn1); 1884 op = pOp->opcode; 1885 if( op==OP_BitAnd ){ 1886 iA &= iB; 1887 }else if( op==OP_BitOr ){ 1888 iA |= iB; 1889 }else if( iB!=0 ){ 1890 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1891 1892 /* If shifting by a negative amount, shift in the other direction */ 1893 if( iB<0 ){ 1894 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1895 op = 2*OP_ShiftLeft + 1 - op; 1896 iB = iB>(-64) ? -iB : 64; 1897 } 1898 1899 if( iB>=64 ){ 1900 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1901 }else{ 1902 memcpy(&uA, &iA, sizeof(uA)); 1903 if( op==OP_ShiftLeft ){ 1904 uA <<= iB; 1905 }else{ 1906 uA >>= iB; 1907 /* Sign-extend on a right shift of a negative number */ 1908 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1909 } 1910 memcpy(&iA, &uA, sizeof(iA)); 1911 } 1912 } 1913 pOut->u.i = iA; 1914 MemSetTypeFlag(pOut, MEM_Int); 1915 break; 1916 } 1917 1918 /* Opcode: AddImm P1 P2 * * * 1919 ** Synopsis: r[P1]=r[P1]+P2 1920 ** 1921 ** Add the constant P2 to the value in register P1. 1922 ** The result is always an integer. 1923 ** 1924 ** To force any register to be an integer, just add 0. 1925 */ 1926 case OP_AddImm: { /* in1 */ 1927 pIn1 = &aMem[pOp->p1]; 1928 memAboutToChange(p, pIn1); 1929 sqlite3VdbeMemIntegerify(pIn1); 1930 pIn1->u.i += pOp->p2; 1931 break; 1932 } 1933 1934 /* Opcode: MustBeInt P1 P2 * * * 1935 ** 1936 ** Force the value in register P1 to be an integer. If the value 1937 ** in P1 is not an integer and cannot be converted into an integer 1938 ** without data loss, then jump immediately to P2, or if P2==0 1939 ** raise an SQLITE_MISMATCH exception. 1940 */ 1941 case OP_MustBeInt: { /* jump, in1 */ 1942 pIn1 = &aMem[pOp->p1]; 1943 if( (pIn1->flags & MEM_Int)==0 ){ 1944 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1945 if( (pIn1->flags & MEM_Int)==0 ){ 1946 VdbeBranchTaken(1, 2); 1947 if( pOp->p2==0 ){ 1948 rc = SQLITE_MISMATCH; 1949 goto abort_due_to_error; 1950 }else{ 1951 goto jump_to_p2; 1952 } 1953 } 1954 } 1955 VdbeBranchTaken(0, 2); 1956 MemSetTypeFlag(pIn1, MEM_Int); 1957 break; 1958 } 1959 1960 #ifndef SQLITE_OMIT_FLOATING_POINT 1961 /* Opcode: RealAffinity P1 * * * * 1962 ** 1963 ** If register P1 holds an integer convert it to a real value. 1964 ** 1965 ** This opcode is used when extracting information from a column that 1966 ** has REAL affinity. Such column values may still be stored as 1967 ** integers, for space efficiency, but after extraction we want them 1968 ** to have only a real value. 1969 */ 1970 case OP_RealAffinity: { /* in1 */ 1971 pIn1 = &aMem[pOp->p1]; 1972 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1973 testcase( pIn1->flags & MEM_Int ); 1974 testcase( pIn1->flags & MEM_IntReal ); 1975 sqlite3VdbeMemRealify(pIn1); 1976 REGISTER_TRACE(pOp->p1, pIn1); 1977 } 1978 break; 1979 } 1980 #endif 1981 1982 #ifndef SQLITE_OMIT_CAST 1983 /* Opcode: Cast P1 P2 * * * 1984 ** Synopsis: affinity(r[P1]) 1985 ** 1986 ** Force the value in register P1 to be the type defined by P2. 1987 ** 1988 ** <ul> 1989 ** <li> P2=='A' → BLOB 1990 ** <li> P2=='B' → TEXT 1991 ** <li> P2=='C' → NUMERIC 1992 ** <li> P2=='D' → INTEGER 1993 ** <li> P2=='E' → REAL 1994 ** </ul> 1995 ** 1996 ** A NULL value is not changed by this routine. It remains NULL. 1997 */ 1998 case OP_Cast: { /* in1 */ 1999 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 2000 testcase( pOp->p2==SQLITE_AFF_TEXT ); 2001 testcase( pOp->p2==SQLITE_AFF_BLOB ); 2002 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 2003 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 2004 testcase( pOp->p2==SQLITE_AFF_REAL ); 2005 pIn1 = &aMem[pOp->p1]; 2006 memAboutToChange(p, pIn1); 2007 rc = ExpandBlob(pIn1); 2008 if( rc ) goto abort_due_to_error; 2009 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 2010 if( rc ) goto abort_due_to_error; 2011 UPDATE_MAX_BLOBSIZE(pIn1); 2012 REGISTER_TRACE(pOp->p1, pIn1); 2013 break; 2014 } 2015 #endif /* SQLITE_OMIT_CAST */ 2016 2017 /* Opcode: Eq P1 P2 P3 P4 P5 2018 ** Synopsis: IF r[P3]==r[P1] 2019 ** 2020 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 2021 ** jump to address P2. 2022 ** 2023 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2024 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2025 ** to coerce both inputs according to this affinity before the 2026 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2027 ** affinity is used. Note that the affinity conversions are stored 2028 ** back into the input registers P1 and P3. So this opcode can cause 2029 ** persistent changes to registers P1 and P3. 2030 ** 2031 ** Once any conversions have taken place, and neither value is NULL, 2032 ** the values are compared. If both values are blobs then memcmp() is 2033 ** used to determine the results of the comparison. If both values 2034 ** are text, then the appropriate collating function specified in 2035 ** P4 is used to do the comparison. If P4 is not specified then 2036 ** memcmp() is used to compare text string. If both values are 2037 ** numeric, then a numeric comparison is used. If the two values 2038 ** are of different types, then numbers are considered less than 2039 ** strings and strings are considered less than blobs. 2040 ** 2041 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 2042 ** true or false and is never NULL. If both operands are NULL then the result 2043 ** of comparison is true. If either operand is NULL then the result is false. 2044 ** If neither operand is NULL the result is the same as it would be if 2045 ** the SQLITE_NULLEQ flag were omitted from P5. 2046 ** 2047 ** This opcode saves the result of comparison for use by the new 2048 ** OP_Jump opcode. 2049 */ 2050 /* Opcode: Ne P1 P2 P3 P4 P5 2051 ** Synopsis: IF r[P3]!=r[P1] 2052 ** 2053 ** This works just like the Eq opcode except that the jump is taken if 2054 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 2055 ** additional information. 2056 */ 2057 /* Opcode: Lt P1 P2 P3 P4 P5 2058 ** Synopsis: IF r[P3]<r[P1] 2059 ** 2060 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 2061 ** jump to address P2. 2062 ** 2063 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2064 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2065 ** bit is clear then fall through if either operand is NULL. 2066 ** 2067 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2068 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2069 ** to coerce both inputs according to this affinity before the 2070 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2071 ** affinity is used. Note that the affinity conversions are stored 2072 ** back into the input registers P1 and P3. So this opcode can cause 2073 ** persistent changes to registers P1 and P3. 2074 ** 2075 ** Once any conversions have taken place, and neither value is NULL, 2076 ** the values are compared. If both values are blobs then memcmp() is 2077 ** used to determine the results of the comparison. If both values 2078 ** are text, then the appropriate collating function specified in 2079 ** P4 is used to do the comparison. If P4 is not specified then 2080 ** memcmp() is used to compare text string. If both values are 2081 ** numeric, then a numeric comparison is used. If the two values 2082 ** are of different types, then numbers are considered less than 2083 ** strings and strings are considered less than blobs. 2084 ** 2085 ** This opcode saves the result of comparison for use by the new 2086 ** OP_Jump opcode. 2087 */ 2088 /* Opcode: Le P1 P2 P3 P4 P5 2089 ** Synopsis: IF r[P3]<=r[P1] 2090 ** 2091 ** This works just like the Lt opcode except that the jump is taken if 2092 ** the content of register P3 is less than or equal to the content of 2093 ** register P1. See the Lt opcode for additional information. 2094 */ 2095 /* Opcode: Gt P1 P2 P3 P4 P5 2096 ** Synopsis: IF r[P3]>r[P1] 2097 ** 2098 ** This works just like the Lt opcode except that the jump is taken if 2099 ** the content of register P3 is greater than the content of 2100 ** register P1. See the Lt opcode for additional information. 2101 */ 2102 /* Opcode: Ge P1 P2 P3 P4 P5 2103 ** Synopsis: IF r[P3]>=r[P1] 2104 ** 2105 ** This works just like the Lt opcode except that the jump is taken if 2106 ** the content of register P3 is greater than or equal to the content of 2107 ** register P1. See the Lt opcode for additional information. 2108 */ 2109 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2110 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2111 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2112 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2113 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2114 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2115 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2116 char affinity; /* Affinity to use for comparison */ 2117 u16 flags1; /* Copy of initial value of pIn1->flags */ 2118 u16 flags3; /* Copy of initial value of pIn3->flags */ 2119 2120 pIn1 = &aMem[pOp->p1]; 2121 pIn3 = &aMem[pOp->p3]; 2122 flags1 = pIn1->flags; 2123 flags3 = pIn3->flags; 2124 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2125 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2126 /* Common case of comparison of two integers */ 2127 if( pIn3->u.i > pIn1->u.i ){ 2128 if( sqlite3aGTb[pOp->opcode] ){ 2129 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2130 goto jump_to_p2; 2131 } 2132 iCompare = +1; 2133 }else if( pIn3->u.i < pIn1->u.i ){ 2134 if( sqlite3aLTb[pOp->opcode] ){ 2135 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2136 goto jump_to_p2; 2137 } 2138 iCompare = -1; 2139 }else{ 2140 if( sqlite3aEQb[pOp->opcode] ){ 2141 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2142 goto jump_to_p2; 2143 } 2144 iCompare = 0; 2145 } 2146 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2147 break; 2148 } 2149 if( (flags1 | flags3)&MEM_Null ){ 2150 /* One or both operands are NULL */ 2151 if( pOp->p5 & SQLITE_NULLEQ ){ 2152 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2153 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2154 ** or not both operands are null. 2155 */ 2156 assert( (flags1 & MEM_Cleared)==0 ); 2157 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2158 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2159 if( (flags1&flags3&MEM_Null)!=0 2160 && (flags3&MEM_Cleared)==0 2161 ){ 2162 res = 0; /* Operands are equal */ 2163 }else{ 2164 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2165 } 2166 }else{ 2167 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2168 ** then the result is always NULL. 2169 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2170 */ 2171 VdbeBranchTaken(2,3); 2172 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2173 goto jump_to_p2; 2174 } 2175 iCompare = 1; /* Operands are not equal */ 2176 break; 2177 } 2178 }else{ 2179 /* Neither operand is NULL and we couldn't do the special high-speed 2180 ** integer comparison case. So do a general-case comparison. */ 2181 affinity = pOp->p5 & SQLITE_AFF_MASK; 2182 if( affinity>=SQLITE_AFF_NUMERIC ){ 2183 if( (flags1 | flags3)&MEM_Str ){ 2184 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2185 applyNumericAffinity(pIn1,0); 2186 testcase( flags3==pIn3->flags ); 2187 flags3 = pIn3->flags; 2188 } 2189 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2190 applyNumericAffinity(pIn3,0); 2191 } 2192 } 2193 }else if( affinity==SQLITE_AFF_TEXT ){ 2194 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2195 testcase( pIn1->flags & MEM_Int ); 2196 testcase( pIn1->flags & MEM_Real ); 2197 testcase( pIn1->flags & MEM_IntReal ); 2198 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2199 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2200 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2201 if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str; 2202 } 2203 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2204 testcase( pIn3->flags & MEM_Int ); 2205 testcase( pIn3->flags & MEM_Real ); 2206 testcase( pIn3->flags & MEM_IntReal ); 2207 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2208 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2209 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2210 } 2211 } 2212 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2213 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2214 } 2215 2216 /* At this point, res is negative, zero, or positive if reg[P1] is 2217 ** less than, equal to, or greater than reg[P3], respectively. Compute 2218 ** the answer to this operator in res2, depending on what the comparison 2219 ** operator actually is. The next block of code depends on the fact 2220 ** that the 6 comparison operators are consecutive integers in this 2221 ** order: NE, EQ, GT, LE, LT, GE */ 2222 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2223 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2224 if( res<0 ){ 2225 res2 = sqlite3aLTb[pOp->opcode]; 2226 }else if( res==0 ){ 2227 res2 = sqlite3aEQb[pOp->opcode]; 2228 }else{ 2229 res2 = sqlite3aGTb[pOp->opcode]; 2230 } 2231 iCompare = res; 2232 2233 /* Undo any changes made by applyAffinity() to the input registers. */ 2234 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2235 pIn3->flags = flags3; 2236 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2237 pIn1->flags = flags1; 2238 2239 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2240 if( res2 ){ 2241 goto jump_to_p2; 2242 } 2243 break; 2244 } 2245 2246 /* Opcode: ElseEq * P2 * * * 2247 ** 2248 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2249 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2250 ** opcodes are allowed to occur between this instruction and the previous 2251 ** OP_Lt or OP_Gt. 2252 ** 2253 ** If result of an OP_Eq comparison on the same two operands as the 2254 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2255 ** If the result of an OP_Eq comparison on the two previous 2256 ** operands would have been false or NULL, then fall through. 2257 */ 2258 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2259 2260 #ifdef SQLITE_DEBUG 2261 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2262 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2263 int iAddr; 2264 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2265 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2266 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2267 break; 2268 } 2269 #endif /* SQLITE_DEBUG */ 2270 VdbeBranchTaken(iCompare==0, 2); 2271 if( iCompare==0 ) goto jump_to_p2; 2272 break; 2273 } 2274 2275 2276 /* Opcode: Permutation * * * P4 * 2277 ** 2278 ** Set the permutation used by the OP_Compare operator in the next 2279 ** instruction. The permutation is stored in the P4 operand. 2280 ** 2281 ** The permutation is only valid for the next opcode which must be 2282 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. 2283 ** 2284 ** The first integer in the P4 integer array is the length of the array 2285 ** and does not become part of the permutation. 2286 */ 2287 case OP_Permutation: { 2288 assert( pOp->p4type==P4_INTARRAY ); 2289 assert( pOp->p4.ai ); 2290 assert( pOp[1].opcode==OP_Compare ); 2291 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2292 break; 2293 } 2294 2295 /* Opcode: Compare P1 P2 P3 P4 P5 2296 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2297 ** 2298 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2299 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2300 ** the comparison for use by the next OP_Jump instruct. 2301 ** 2302 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2303 ** determined by the most recent OP_Permutation operator. If the 2304 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2305 ** order. 2306 ** 2307 ** P4 is a KeyInfo structure that defines collating sequences and sort 2308 ** orders for the comparison. The permutation applies to registers 2309 ** only. The KeyInfo elements are used sequentially. 2310 ** 2311 ** The comparison is a sort comparison, so NULLs compare equal, 2312 ** NULLs are less than numbers, numbers are less than strings, 2313 ** and strings are less than blobs. 2314 ** 2315 ** This opcode must be immediately followed by an OP_Jump opcode. 2316 */ 2317 case OP_Compare: { 2318 int n; 2319 int i; 2320 int p1; 2321 int p2; 2322 const KeyInfo *pKeyInfo; 2323 u32 idx; 2324 CollSeq *pColl; /* Collating sequence to use on this term */ 2325 int bRev; /* True for DESCENDING sort order */ 2326 u32 *aPermute; /* The permutation */ 2327 2328 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2329 aPermute = 0; 2330 }else{ 2331 assert( pOp>aOp ); 2332 assert( pOp[-1].opcode==OP_Permutation ); 2333 assert( pOp[-1].p4type==P4_INTARRAY ); 2334 aPermute = pOp[-1].p4.ai + 1; 2335 assert( aPermute!=0 ); 2336 } 2337 n = pOp->p3; 2338 pKeyInfo = pOp->p4.pKeyInfo; 2339 assert( n>0 ); 2340 assert( pKeyInfo!=0 ); 2341 p1 = pOp->p1; 2342 p2 = pOp->p2; 2343 #ifdef SQLITE_DEBUG 2344 if( aPermute ){ 2345 int k, mx = 0; 2346 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2347 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2348 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2349 }else{ 2350 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2351 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2352 } 2353 #endif /* SQLITE_DEBUG */ 2354 for(i=0; i<n; i++){ 2355 idx = aPermute ? aPermute[i] : (u32)i; 2356 assert( memIsValid(&aMem[p1+idx]) ); 2357 assert( memIsValid(&aMem[p2+idx]) ); 2358 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2359 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2360 assert( i<pKeyInfo->nKeyField ); 2361 pColl = pKeyInfo->aColl[i]; 2362 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2363 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2364 if( iCompare ){ 2365 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2366 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2367 ){ 2368 iCompare = -iCompare; 2369 } 2370 if( bRev ) iCompare = -iCompare; 2371 break; 2372 } 2373 } 2374 assert( pOp[1].opcode==OP_Jump ); 2375 break; 2376 } 2377 2378 /* Opcode: Jump P1 P2 P3 * * 2379 ** 2380 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2381 ** in the most recent OP_Compare instruction the P1 vector was less than 2382 ** equal to, or greater than the P2 vector, respectively. 2383 ** 2384 ** This opcode must immediately follow an OP_Compare opcode. 2385 */ 2386 case OP_Jump: { /* jump */ 2387 assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); 2388 if( iCompare<0 ){ 2389 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2390 }else if( iCompare==0 ){ 2391 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2392 }else{ 2393 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2394 } 2395 break; 2396 } 2397 2398 /* Opcode: And P1 P2 P3 * * 2399 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2400 ** 2401 ** Take the logical AND of the values in registers P1 and P2 and 2402 ** write the result into register P3. 2403 ** 2404 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2405 ** the other input is NULL. A NULL and true or two NULLs give 2406 ** a NULL output. 2407 */ 2408 /* Opcode: Or P1 P2 P3 * * 2409 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2410 ** 2411 ** Take the logical OR of the values in register P1 and P2 and 2412 ** store the answer in register P3. 2413 ** 2414 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2415 ** even if the other input is NULL. A NULL and false or two NULLs 2416 ** give a NULL output. 2417 */ 2418 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2419 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2420 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2421 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2422 2423 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2424 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2425 if( pOp->opcode==OP_And ){ 2426 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2427 v1 = and_logic[v1*3+v2]; 2428 }else{ 2429 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2430 v1 = or_logic[v1*3+v2]; 2431 } 2432 pOut = &aMem[pOp->p3]; 2433 if( v1==2 ){ 2434 MemSetTypeFlag(pOut, MEM_Null); 2435 }else{ 2436 pOut->u.i = v1; 2437 MemSetTypeFlag(pOut, MEM_Int); 2438 } 2439 break; 2440 } 2441 2442 /* Opcode: IsTrue P1 P2 P3 P4 * 2443 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2444 ** 2445 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2446 ** IS NOT FALSE operators. 2447 ** 2448 ** Interpret the value in register P1 as a boolean value. Store that 2449 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2450 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2451 ** is 1. 2452 ** 2453 ** The logic is summarized like this: 2454 ** 2455 ** <ul> 2456 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2457 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2458 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2459 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2460 ** </ul> 2461 */ 2462 case OP_IsTrue: { /* in1, out2 */ 2463 assert( pOp->p4type==P4_INT32 ); 2464 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2465 assert( pOp->p3==0 || pOp->p3==1 ); 2466 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2467 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2468 break; 2469 } 2470 2471 /* Opcode: Not P1 P2 * * * 2472 ** Synopsis: r[P2]= !r[P1] 2473 ** 2474 ** Interpret the value in register P1 as a boolean value. Store the 2475 ** boolean complement in register P2. If the value in register P1 is 2476 ** NULL, then a NULL is stored in P2. 2477 */ 2478 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2479 pIn1 = &aMem[pOp->p1]; 2480 pOut = &aMem[pOp->p2]; 2481 if( (pIn1->flags & MEM_Null)==0 ){ 2482 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2483 }else{ 2484 sqlite3VdbeMemSetNull(pOut); 2485 } 2486 break; 2487 } 2488 2489 /* Opcode: BitNot P1 P2 * * * 2490 ** Synopsis: r[P2]= ~r[P1] 2491 ** 2492 ** Interpret the content of register P1 as an integer. Store the 2493 ** ones-complement of the P1 value into register P2. If P1 holds 2494 ** a NULL then store a NULL in P2. 2495 */ 2496 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2497 pIn1 = &aMem[pOp->p1]; 2498 pOut = &aMem[pOp->p2]; 2499 sqlite3VdbeMemSetNull(pOut); 2500 if( (pIn1->flags & MEM_Null)==0 ){ 2501 pOut->flags = MEM_Int; 2502 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2503 } 2504 break; 2505 } 2506 2507 /* Opcode: Once P1 P2 * * * 2508 ** 2509 ** Fall through to the next instruction the first time this opcode is 2510 ** encountered on each invocation of the byte-code program. Jump to P2 2511 ** on the second and all subsequent encounters during the same invocation. 2512 ** 2513 ** Top-level programs determine first invocation by comparing the P1 2514 ** operand against the P1 operand on the OP_Init opcode at the beginning 2515 ** of the program. If the P1 values differ, then fall through and make 2516 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2517 ** the same then take the jump. 2518 ** 2519 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2520 ** whether or not the jump should be taken. The bitmask is necessary 2521 ** because the self-altering code trick does not work for recursive 2522 ** triggers. 2523 */ 2524 case OP_Once: { /* jump */ 2525 u32 iAddr; /* Address of this instruction */ 2526 assert( p->aOp[0].opcode==OP_Init ); 2527 if( p->pFrame ){ 2528 iAddr = (int)(pOp - p->aOp); 2529 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2530 VdbeBranchTaken(1, 2); 2531 goto jump_to_p2; 2532 } 2533 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2534 }else{ 2535 if( p->aOp[0].p1==pOp->p1 ){ 2536 VdbeBranchTaken(1, 2); 2537 goto jump_to_p2; 2538 } 2539 } 2540 VdbeBranchTaken(0, 2); 2541 pOp->p1 = p->aOp[0].p1; 2542 break; 2543 } 2544 2545 /* Opcode: If P1 P2 P3 * * 2546 ** 2547 ** Jump to P2 if the value in register P1 is true. The value 2548 ** is considered true if it is numeric and non-zero. If the value 2549 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2550 */ 2551 case OP_If: { /* jump, in1 */ 2552 int c; 2553 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2554 VdbeBranchTaken(c!=0, 2); 2555 if( c ) goto jump_to_p2; 2556 break; 2557 } 2558 2559 /* Opcode: IfNot P1 P2 P3 * * 2560 ** 2561 ** Jump to P2 if the value in register P1 is False. The value 2562 ** is considered false if it has a numeric value of zero. If the value 2563 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2564 */ 2565 case OP_IfNot: { /* jump, in1 */ 2566 int c; 2567 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2568 VdbeBranchTaken(c!=0, 2); 2569 if( c ) goto jump_to_p2; 2570 break; 2571 } 2572 2573 /* Opcode: IsNull P1 P2 * * * 2574 ** Synopsis: if r[P1]==NULL goto P2 2575 ** 2576 ** Jump to P2 if the value in register P1 is NULL. 2577 */ 2578 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2579 pIn1 = &aMem[pOp->p1]; 2580 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2581 if( (pIn1->flags & MEM_Null)!=0 ){ 2582 goto jump_to_p2; 2583 } 2584 break; 2585 } 2586 2587 /* Opcode: IsNullOrType P1 P2 P3 * * 2588 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2 2589 ** 2590 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3. 2591 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT, 2592 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT. 2593 */ 2594 case OP_IsNullOrType: { /* jump, in1 */ 2595 int doTheJump; 2596 pIn1 = &aMem[pOp->p1]; 2597 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3; 2598 VdbeBranchTaken( doTheJump, 2); 2599 if( doTheJump ) goto jump_to_p2; 2600 break; 2601 } 2602 2603 /* Opcode: ZeroOrNull P1 P2 P3 * * 2604 ** Synopsis: r[P2] = 0 OR NULL 2605 ** 2606 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2607 ** register P2. If either registers P1 or P3 are NULL then put 2608 ** a NULL in register P2. 2609 */ 2610 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2611 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2612 || (aMem[pOp->p3].flags & MEM_Null)!=0 2613 ){ 2614 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2615 }else{ 2616 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2617 } 2618 break; 2619 } 2620 2621 /* Opcode: NotNull P1 P2 * * * 2622 ** Synopsis: if r[P1]!=NULL goto P2 2623 ** 2624 ** Jump to P2 if the value in register P1 is not NULL. 2625 */ 2626 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2627 pIn1 = &aMem[pOp->p1]; 2628 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2629 if( (pIn1->flags & MEM_Null)==0 ){ 2630 goto jump_to_p2; 2631 } 2632 break; 2633 } 2634 2635 /* Opcode: IfNullRow P1 P2 P3 * * 2636 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2637 ** 2638 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2639 ** If it is, then set register P3 to NULL and jump immediately to P2. 2640 ** If P1 is not on a NULL row, then fall through without making any 2641 ** changes. 2642 ** 2643 ** If P1 is not an open cursor, then this opcode is a no-op. 2644 */ 2645 case OP_IfNullRow: { /* jump */ 2646 VdbeCursor *pC; 2647 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2648 pC = p->apCsr[pOp->p1]; 2649 if( ALWAYS(pC) && pC->nullRow ){ 2650 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2651 goto jump_to_p2; 2652 } 2653 break; 2654 } 2655 2656 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2657 /* Opcode: Offset P1 P2 P3 * * 2658 ** Synopsis: r[P3] = sqlite_offset(P1) 2659 ** 2660 ** Store in register r[P3] the byte offset into the database file that is the 2661 ** start of the payload for the record at which that cursor P1 is currently 2662 ** pointing. 2663 ** 2664 ** P2 is the column number for the argument to the sqlite_offset() function. 2665 ** This opcode does not use P2 itself, but the P2 value is used by the 2666 ** code generator. The P1, P2, and P3 operands to this opcode are the 2667 ** same as for OP_Column. 2668 ** 2669 ** This opcode is only available if SQLite is compiled with the 2670 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2671 */ 2672 case OP_Offset: { /* out3 */ 2673 VdbeCursor *pC; /* The VDBE cursor */ 2674 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2675 pC = p->apCsr[pOp->p1]; 2676 pOut = &p->aMem[pOp->p3]; 2677 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ 2678 sqlite3VdbeMemSetNull(pOut); 2679 }else{ 2680 if( pC->deferredMoveto ){ 2681 rc = sqlite3VdbeFinishMoveto(pC); 2682 if( rc ) goto abort_due_to_error; 2683 } 2684 if( sqlite3BtreeEof(pC->uc.pCursor) ){ 2685 sqlite3VdbeMemSetNull(pOut); 2686 }else{ 2687 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2688 } 2689 } 2690 break; 2691 } 2692 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2693 2694 /* Opcode: Column P1 P2 P3 P4 P5 2695 ** Synopsis: r[P3]=PX cursor P1 column P2 2696 ** 2697 ** Interpret the data that cursor P1 points to as a structure built using 2698 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2699 ** information about the format of the data.) Extract the P2-th column 2700 ** from this record. If there are less that (P2+1) 2701 ** values in the record, extract a NULL. 2702 ** 2703 ** The value extracted is stored in register P3. 2704 ** 2705 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2706 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2707 ** the result. 2708 ** 2709 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2710 ** the result is guaranteed to only be used as the argument of a length() 2711 ** or typeof() function, respectively. The loading of large blobs can be 2712 ** skipped for length() and all content loading can be skipped for typeof(). 2713 */ 2714 case OP_Column: { 2715 u32 p2; /* column number to retrieve */ 2716 VdbeCursor *pC; /* The VDBE cursor */ 2717 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 2718 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2719 int len; /* The length of the serialized data for the column */ 2720 int i; /* Loop counter */ 2721 Mem *pDest; /* Where to write the extracted value */ 2722 Mem sMem; /* For storing the record being decoded */ 2723 const u8 *zData; /* Part of the record being decoded */ 2724 const u8 *zHdr; /* Next unparsed byte of the header */ 2725 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2726 u64 offset64; /* 64-bit offset */ 2727 u32 t; /* A type code from the record header */ 2728 Mem *pReg; /* PseudoTable input register */ 2729 2730 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2731 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2732 pC = p->apCsr[pOp->p1]; 2733 p2 = (u32)pOp->p2; 2734 2735 op_column_restart: 2736 assert( pC!=0 ); 2737 assert( p2<(u32)pC->nField 2738 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); 2739 aOffset = pC->aOffset; 2740 assert( aOffset==pC->aType+pC->nField ); 2741 assert( pC->eCurType!=CURTYPE_VTAB ); 2742 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2743 assert( pC->eCurType!=CURTYPE_SORTER ); 2744 2745 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2746 if( pC->nullRow ){ 2747 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ 2748 /* For the special case of as pseudo-cursor, the seekResult field 2749 ** identifies the register that holds the record */ 2750 pReg = &aMem[pC->seekResult]; 2751 assert( pReg->flags & MEM_Blob ); 2752 assert( memIsValid(pReg) ); 2753 pC->payloadSize = pC->szRow = pReg->n; 2754 pC->aRow = (u8*)pReg->z; 2755 }else{ 2756 pDest = &aMem[pOp->p3]; 2757 memAboutToChange(p, pDest); 2758 sqlite3VdbeMemSetNull(pDest); 2759 goto op_column_out; 2760 } 2761 }else{ 2762 pCrsr = pC->uc.pCursor; 2763 if( pC->deferredMoveto ){ 2764 u32 iMap; 2765 assert( !pC->isEphemeral ); 2766 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 2767 pC = pC->pAltCursor; 2768 p2 = iMap - 1; 2769 goto op_column_restart; 2770 } 2771 rc = sqlite3VdbeFinishMoveto(pC); 2772 if( rc ) goto abort_due_to_error; 2773 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 2774 rc = sqlite3VdbeHandleMovedCursor(pC); 2775 if( rc ) goto abort_due_to_error; 2776 goto op_column_restart; 2777 } 2778 assert( pC->eCurType==CURTYPE_BTREE ); 2779 assert( pCrsr ); 2780 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2781 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2782 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2783 assert( pC->szRow<=pC->payloadSize ); 2784 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2785 } 2786 pC->cacheStatus = p->cacheCtr; 2787 if( (aOffset[0] = pC->aRow[0])<0x80 ){ 2788 pC->iHdrOffset = 1; 2789 }else{ 2790 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); 2791 } 2792 pC->nHdrParsed = 0; 2793 2794 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2795 /* pC->aRow does not have to hold the entire row, but it does at least 2796 ** need to cover the header of the record. If pC->aRow does not contain 2797 ** the complete header, then set it to zero, forcing the header to be 2798 ** dynamically allocated. */ 2799 pC->aRow = 0; 2800 pC->szRow = 0; 2801 2802 /* Make sure a corrupt database has not given us an oversize header. 2803 ** Do this now to avoid an oversize memory allocation. 2804 ** 2805 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2806 ** types use so much data space that there can only be 4096 and 32 of 2807 ** them, respectively. So the maximum header length results from a 2808 ** 3-byte type for each of the maximum of 32768 columns plus three 2809 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2810 */ 2811 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2812 goto op_column_corrupt; 2813 } 2814 }else{ 2815 /* This is an optimization. By skipping over the first few tests 2816 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2817 ** measurable performance gain. 2818 ** 2819 ** This branch is taken even if aOffset[0]==0. Such a record is never 2820 ** generated by SQLite, and could be considered corruption, but we 2821 ** accept it for historical reasons. When aOffset[0]==0, the code this 2822 ** branch jumps to reads past the end of the record, but never more 2823 ** than a few bytes. Even if the record occurs at the end of the page 2824 ** content area, the "page header" comes after the page content and so 2825 ** this overread is harmless. Similar overreads can occur for a corrupt 2826 ** database file. 2827 */ 2828 zData = pC->aRow; 2829 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2830 testcase( aOffset[0]==0 ); 2831 goto op_column_read_header; 2832 } 2833 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 2834 rc = sqlite3VdbeHandleMovedCursor(pC); 2835 if( rc ) goto abort_due_to_error; 2836 goto op_column_restart; 2837 } 2838 2839 /* Make sure at least the first p2+1 entries of the header have been 2840 ** parsed and valid information is in aOffset[] and pC->aType[]. 2841 */ 2842 if( pC->nHdrParsed<=p2 ){ 2843 /* If there is more header available for parsing in the record, try 2844 ** to extract additional fields up through the p2+1-th field 2845 */ 2846 if( pC->iHdrOffset<aOffset[0] ){ 2847 /* Make sure zData points to enough of the record to cover the header. */ 2848 if( pC->aRow==0 ){ 2849 memset(&sMem, 0, sizeof(sMem)); 2850 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2851 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2852 zData = (u8*)sMem.z; 2853 }else{ 2854 zData = pC->aRow; 2855 } 2856 2857 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2858 op_column_read_header: 2859 i = pC->nHdrParsed; 2860 offset64 = aOffset[i]; 2861 zHdr = zData + pC->iHdrOffset; 2862 zEndHdr = zData + aOffset[0]; 2863 testcase( zHdr>=zEndHdr ); 2864 do{ 2865 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2866 zHdr++; 2867 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2868 }else{ 2869 zHdr += sqlite3GetVarint32(zHdr, &t); 2870 pC->aType[i] = t; 2871 offset64 += sqlite3VdbeSerialTypeLen(t); 2872 } 2873 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2874 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2875 2876 /* The record is corrupt if any of the following are true: 2877 ** (1) the bytes of the header extend past the declared header size 2878 ** (2) the entire header was used but not all data was used 2879 ** (3) the end of the data extends beyond the end of the record. 2880 */ 2881 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2882 || (offset64 > pC->payloadSize) 2883 ){ 2884 if( aOffset[0]==0 ){ 2885 i = 0; 2886 zHdr = zEndHdr; 2887 }else{ 2888 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2889 goto op_column_corrupt; 2890 } 2891 } 2892 2893 pC->nHdrParsed = i; 2894 pC->iHdrOffset = (u32)(zHdr - zData); 2895 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2896 }else{ 2897 t = 0; 2898 } 2899 2900 /* If after trying to extract new entries from the header, nHdrParsed is 2901 ** still not up to p2, that means that the record has fewer than p2 2902 ** columns. So the result will be either the default value or a NULL. 2903 */ 2904 if( pC->nHdrParsed<=p2 ){ 2905 pDest = &aMem[pOp->p3]; 2906 memAboutToChange(p, pDest); 2907 if( pOp->p4type==P4_MEM ){ 2908 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2909 }else{ 2910 sqlite3VdbeMemSetNull(pDest); 2911 } 2912 goto op_column_out; 2913 } 2914 }else{ 2915 t = pC->aType[p2]; 2916 } 2917 2918 /* Extract the content for the p2+1-th column. Control can only 2919 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2920 ** all valid. 2921 */ 2922 assert( p2<pC->nHdrParsed ); 2923 assert( rc==SQLITE_OK ); 2924 pDest = &aMem[pOp->p3]; 2925 memAboutToChange(p, pDest); 2926 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2927 if( VdbeMemDynamic(pDest) ){ 2928 sqlite3VdbeMemSetNull(pDest); 2929 } 2930 assert( t==pC->aType[p2] ); 2931 if( pC->szRow>=aOffset[p2+1] ){ 2932 /* This is the common case where the desired content fits on the original 2933 ** page - where the content is not on an overflow page */ 2934 zData = pC->aRow + aOffset[p2]; 2935 if( t<12 ){ 2936 sqlite3VdbeSerialGet(zData, t, pDest); 2937 }else{ 2938 /* If the column value is a string, we need a persistent value, not 2939 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2940 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2941 */ 2942 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2943 pDest->n = len = (t-12)/2; 2944 pDest->enc = encoding; 2945 if( pDest->szMalloc < len+2 ){ 2946 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2947 pDest->flags = MEM_Null; 2948 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2949 }else{ 2950 pDest->z = pDest->zMalloc; 2951 } 2952 memcpy(pDest->z, zData, len); 2953 pDest->z[len] = 0; 2954 pDest->z[len+1] = 0; 2955 pDest->flags = aFlag[t&1]; 2956 } 2957 }else{ 2958 pDest->enc = encoding; 2959 /* This branch happens only when content is on overflow pages */ 2960 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2961 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2962 || (len = sqlite3VdbeSerialTypeLen(t))==0 2963 ){ 2964 /* Content is irrelevant for 2965 ** 1. the typeof() function, 2966 ** 2. the length(X) function if X is a blob, and 2967 ** 3. if the content length is zero. 2968 ** So we might as well use bogus content rather than reading 2969 ** content from disk. 2970 ** 2971 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2972 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2973 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2974 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2975 ** and it begins with a bunch of zeros. 2976 */ 2977 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2978 }else{ 2979 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2980 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2981 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2982 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2983 pDest->flags &= ~MEM_Ephem; 2984 } 2985 } 2986 2987 op_column_out: 2988 UPDATE_MAX_BLOBSIZE(pDest); 2989 REGISTER_TRACE(pOp->p3, pDest); 2990 break; 2991 2992 op_column_corrupt: 2993 if( aOp[0].p3>0 ){ 2994 pOp = &aOp[aOp[0].p3-1]; 2995 break; 2996 }else{ 2997 rc = SQLITE_CORRUPT_BKPT; 2998 goto abort_due_to_error; 2999 } 3000 } 3001 3002 /* Opcode: TypeCheck P1 P2 P3 P4 * 3003 ** Synopsis: typecheck(r[P1@P2]) 3004 ** 3005 ** Apply affinities to the range of P2 registers beginning with P1. 3006 ** Take the affinities from the Table object in P4. If any value 3007 ** cannot be coerced into the correct type, then raise an error. 3008 ** 3009 ** This opcode is similar to OP_Affinity except that this opcode 3010 ** forces the register type to the Table column type. This is used 3011 ** to implement "strict affinity". 3012 ** 3013 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 3014 ** is zero. When P3 is non-zero, no type checking occurs for 3015 ** static generated columns. Virtual columns are computed at query time 3016 ** and so they are never checked. 3017 ** 3018 ** Preconditions: 3019 ** 3020 ** <ul> 3021 ** <li> P2 should be the number of non-virtual columns in the 3022 ** table of P4. 3023 ** <li> Table P4 should be a STRICT table. 3024 ** </ul> 3025 ** 3026 ** If any precondition is false, an assertion fault occurs. 3027 */ 3028 case OP_TypeCheck: { 3029 Table *pTab; 3030 Column *aCol; 3031 int i; 3032 3033 assert( pOp->p4type==P4_TABLE ); 3034 pTab = pOp->p4.pTab; 3035 assert( pTab->tabFlags & TF_Strict ); 3036 assert( pTab->nNVCol==pOp->p2 ); 3037 aCol = pTab->aCol; 3038 pIn1 = &aMem[pOp->p1]; 3039 for(i=0; i<pTab->nCol; i++){ 3040 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 3041 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 3042 if( pOp->p3 ){ pIn1++; continue; } 3043 } 3044 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 3045 applyAffinity(pIn1, aCol[i].affinity, encoding); 3046 if( (pIn1->flags & MEM_Null)==0 ){ 3047 switch( aCol[i].eCType ){ 3048 case COLTYPE_BLOB: { 3049 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 3050 break; 3051 } 3052 case COLTYPE_INTEGER: 3053 case COLTYPE_INT: { 3054 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 3055 break; 3056 } 3057 case COLTYPE_TEXT: { 3058 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 3059 break; 3060 } 3061 case COLTYPE_REAL: { 3062 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 3063 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal ); 3064 if( pIn1->flags & MEM_Int ){ 3065 /* When applying REAL affinity, if the result is still an MEM_Int 3066 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3067 ** so that we keep the high-resolution integer value but know that 3068 ** the type really wants to be REAL. */ 3069 testcase( pIn1->u.i==140737488355328LL ); 3070 testcase( pIn1->u.i==140737488355327LL ); 3071 testcase( pIn1->u.i==-140737488355328LL ); 3072 testcase( pIn1->u.i==-140737488355329LL ); 3073 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 3074 pIn1->flags |= MEM_IntReal; 3075 pIn1->flags &= ~MEM_Int; 3076 }else{ 3077 pIn1->u.r = (double)pIn1->u.i; 3078 pIn1->flags |= MEM_Real; 3079 pIn1->flags &= ~MEM_Int; 3080 } 3081 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 3082 goto vdbe_type_error; 3083 } 3084 break; 3085 } 3086 default: { 3087 /* COLTYPE_ANY. Accept anything. */ 3088 break; 3089 } 3090 } 3091 } 3092 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3093 pIn1++; 3094 } 3095 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 3096 break; 3097 3098 vdbe_type_error: 3099 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 3100 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 3101 pTab->zName, aCol[i].zCnName); 3102 rc = SQLITE_CONSTRAINT_DATATYPE; 3103 goto abort_due_to_error; 3104 } 3105 3106 /* Opcode: Affinity P1 P2 * P4 * 3107 ** Synopsis: affinity(r[P1@P2]) 3108 ** 3109 ** Apply affinities to a range of P2 registers starting with P1. 3110 ** 3111 ** P4 is a string that is P2 characters long. The N-th character of the 3112 ** string indicates the column affinity that should be used for the N-th 3113 ** memory cell in the range. 3114 */ 3115 case OP_Affinity: { 3116 const char *zAffinity; /* The affinity to be applied */ 3117 3118 zAffinity = pOp->p4.z; 3119 assert( zAffinity!=0 ); 3120 assert( pOp->p2>0 ); 3121 assert( zAffinity[pOp->p2]==0 ); 3122 pIn1 = &aMem[pOp->p1]; 3123 while( 1 /*exit-by-break*/ ){ 3124 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3125 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3126 applyAffinity(pIn1, zAffinity[0], encoding); 3127 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3128 /* When applying REAL affinity, if the result is still an MEM_Int 3129 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3130 ** so that we keep the high-resolution integer value but know that 3131 ** the type really wants to be REAL. */ 3132 testcase( pIn1->u.i==140737488355328LL ); 3133 testcase( pIn1->u.i==140737488355327LL ); 3134 testcase( pIn1->u.i==-140737488355328LL ); 3135 testcase( pIn1->u.i==-140737488355329LL ); 3136 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3137 pIn1->flags |= MEM_IntReal; 3138 pIn1->flags &= ~MEM_Int; 3139 }else{ 3140 pIn1->u.r = (double)pIn1->u.i; 3141 pIn1->flags |= MEM_Real; 3142 pIn1->flags &= ~MEM_Int; 3143 } 3144 } 3145 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3146 zAffinity++; 3147 if( zAffinity[0]==0 ) break; 3148 pIn1++; 3149 } 3150 break; 3151 } 3152 3153 /* Opcode: MakeRecord P1 P2 P3 P4 * 3154 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3155 ** 3156 ** Convert P2 registers beginning with P1 into the [record format] 3157 ** use as a data record in a database table or as a key 3158 ** in an index. The OP_Column opcode can decode the record later. 3159 ** 3160 ** P4 may be a string that is P2 characters long. The N-th character of the 3161 ** string indicates the column affinity that should be used for the N-th 3162 ** field of the index key. 3163 ** 3164 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3165 ** macros defined in sqliteInt.h. 3166 ** 3167 ** If P4 is NULL then all index fields have the affinity BLOB. 3168 ** 3169 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3170 ** compile-time option is enabled: 3171 ** 3172 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3173 ** of the right-most table that can be null-trimmed. 3174 ** 3175 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3176 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3177 ** accept no-change records with serial_type 10. This value is 3178 ** only used inside an assert() and does not affect the end result. 3179 */ 3180 case OP_MakeRecord: { 3181 Mem *pRec; /* The new record */ 3182 u64 nData; /* Number of bytes of data space */ 3183 int nHdr; /* Number of bytes of header space */ 3184 i64 nByte; /* Data space required for this record */ 3185 i64 nZero; /* Number of zero bytes at the end of the record */ 3186 int nVarint; /* Number of bytes in a varint */ 3187 u32 serial_type; /* Type field */ 3188 Mem *pData0; /* First field to be combined into the record */ 3189 Mem *pLast; /* Last field of the record */ 3190 int nField; /* Number of fields in the record */ 3191 char *zAffinity; /* The affinity string for the record */ 3192 u32 len; /* Length of a field */ 3193 u8 *zHdr; /* Where to write next byte of the header */ 3194 u8 *zPayload; /* Where to write next byte of the payload */ 3195 3196 /* Assuming the record contains N fields, the record format looks 3197 ** like this: 3198 ** 3199 ** ------------------------------------------------------------------------ 3200 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3201 ** ------------------------------------------------------------------------ 3202 ** 3203 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3204 ** and so forth. 3205 ** 3206 ** Each type field is a varint representing the serial type of the 3207 ** corresponding data element (see sqlite3VdbeSerialType()). The 3208 ** hdr-size field is also a varint which is the offset from the beginning 3209 ** of the record to data0. 3210 */ 3211 nData = 0; /* Number of bytes of data space */ 3212 nHdr = 0; /* Number of bytes of header space */ 3213 nZero = 0; /* Number of zero bytes at the end of the record */ 3214 nField = pOp->p1; 3215 zAffinity = pOp->p4.z; 3216 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3217 pData0 = &aMem[nField]; 3218 nField = pOp->p2; 3219 pLast = &pData0[nField-1]; 3220 3221 /* Identify the output register */ 3222 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3223 pOut = &aMem[pOp->p3]; 3224 memAboutToChange(p, pOut); 3225 3226 /* Apply the requested affinity to all inputs 3227 */ 3228 assert( pData0<=pLast ); 3229 if( zAffinity ){ 3230 pRec = pData0; 3231 do{ 3232 applyAffinity(pRec, zAffinity[0], encoding); 3233 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3234 pRec->flags |= MEM_IntReal; 3235 pRec->flags &= ~(MEM_Int); 3236 } 3237 REGISTER_TRACE((int)(pRec-aMem), pRec); 3238 zAffinity++; 3239 pRec++; 3240 assert( zAffinity[0]==0 || pRec<=pLast ); 3241 }while( zAffinity[0] ); 3242 } 3243 3244 #ifdef SQLITE_ENABLE_NULL_TRIM 3245 /* NULLs can be safely trimmed from the end of the record, as long as 3246 ** as the schema format is 2 or more and none of the omitted columns 3247 ** have a non-NULL default value. Also, the record must be left with 3248 ** at least one field. If P5>0 then it will be one more than the 3249 ** index of the right-most column with a non-NULL default value */ 3250 if( pOp->p5 ){ 3251 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3252 pLast--; 3253 nField--; 3254 } 3255 } 3256 #endif 3257 3258 /* Loop through the elements that will make up the record to figure 3259 ** out how much space is required for the new record. After this loop, 3260 ** the Mem.uTemp field of each term should hold the serial-type that will 3261 ** be used for that term in the generated record: 3262 ** 3263 ** Mem.uTemp value type 3264 ** --------------- --------------- 3265 ** 0 NULL 3266 ** 1 1-byte signed integer 3267 ** 2 2-byte signed integer 3268 ** 3 3-byte signed integer 3269 ** 4 4-byte signed integer 3270 ** 5 6-byte signed integer 3271 ** 6 8-byte signed integer 3272 ** 7 IEEE float 3273 ** 8 Integer constant 0 3274 ** 9 Integer constant 1 3275 ** 10,11 reserved for expansion 3276 ** N>=12 and even BLOB 3277 ** N>=13 and odd text 3278 ** 3279 ** The following additional values are computed: 3280 ** nHdr Number of bytes needed for the record header 3281 ** nData Number of bytes of data space needed for the record 3282 ** nZero Zero bytes at the end of the record 3283 */ 3284 pRec = pLast; 3285 do{ 3286 assert( memIsValid(pRec) ); 3287 if( pRec->flags & MEM_Null ){ 3288 if( pRec->flags & MEM_Zero ){ 3289 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3290 ** table methods that never invoke sqlite3_result_xxxxx() while 3291 ** computing an unchanging column value in an UPDATE statement. 3292 ** Give such values a special internal-use-only serial-type of 10 3293 ** so that they can be passed through to xUpdate and have 3294 ** a true sqlite3_value_nochange(). */ 3295 #ifndef SQLITE_ENABLE_NULL_TRIM 3296 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3297 #endif 3298 pRec->uTemp = 10; 3299 }else{ 3300 pRec->uTemp = 0; 3301 } 3302 nHdr++; 3303 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3304 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3305 i64 i = pRec->u.i; 3306 u64 uu; 3307 testcase( pRec->flags & MEM_Int ); 3308 testcase( pRec->flags & MEM_IntReal ); 3309 if( i<0 ){ 3310 uu = ~i; 3311 }else{ 3312 uu = i; 3313 } 3314 nHdr++; 3315 testcase( uu==127 ); testcase( uu==128 ); 3316 testcase( uu==32767 ); testcase( uu==32768 ); 3317 testcase( uu==8388607 ); testcase( uu==8388608 ); 3318 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 3319 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3320 if( uu<=127 ){ 3321 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 3322 pRec->uTemp = 8+(u32)uu; 3323 }else{ 3324 nData++; 3325 pRec->uTemp = 1; 3326 } 3327 }else if( uu<=32767 ){ 3328 nData += 2; 3329 pRec->uTemp = 2; 3330 }else if( uu<=8388607 ){ 3331 nData += 3; 3332 pRec->uTemp = 3; 3333 }else if( uu<=2147483647 ){ 3334 nData += 4; 3335 pRec->uTemp = 4; 3336 }else if( uu<=140737488355327LL ){ 3337 nData += 6; 3338 pRec->uTemp = 5; 3339 }else{ 3340 nData += 8; 3341 if( pRec->flags & MEM_IntReal ){ 3342 /* If the value is IntReal and is going to take up 8 bytes to store 3343 ** as an integer, then we might as well make it an 8-byte floating 3344 ** point value */ 3345 pRec->u.r = (double)pRec->u.i; 3346 pRec->flags &= ~MEM_IntReal; 3347 pRec->flags |= MEM_Real; 3348 pRec->uTemp = 7; 3349 }else{ 3350 pRec->uTemp = 6; 3351 } 3352 } 3353 }else if( pRec->flags & MEM_Real ){ 3354 nHdr++; 3355 nData += 8; 3356 pRec->uTemp = 7; 3357 }else{ 3358 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3359 assert( pRec->n>=0 ); 3360 len = (u32)pRec->n; 3361 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3362 if( pRec->flags & MEM_Zero ){ 3363 serial_type += pRec->u.nZero*2; 3364 if( nData ){ 3365 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3366 len += pRec->u.nZero; 3367 }else{ 3368 nZero += pRec->u.nZero; 3369 } 3370 } 3371 nData += len; 3372 nHdr += sqlite3VarintLen(serial_type); 3373 pRec->uTemp = serial_type; 3374 } 3375 if( pRec==pData0 ) break; 3376 pRec--; 3377 }while(1); 3378 3379 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3380 ** which determines the total number of bytes in the header. The varint 3381 ** value is the size of the header in bytes including the size varint 3382 ** itself. */ 3383 testcase( nHdr==126 ); 3384 testcase( nHdr==127 ); 3385 if( nHdr<=126 ){ 3386 /* The common case */ 3387 nHdr += 1; 3388 }else{ 3389 /* Rare case of a really large header */ 3390 nVarint = sqlite3VarintLen(nHdr); 3391 nHdr += nVarint; 3392 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3393 } 3394 nByte = nHdr+nData; 3395 3396 /* Make sure the output register has a buffer large enough to store 3397 ** the new record. The output register (pOp->p3) is not allowed to 3398 ** be one of the input registers (because the following call to 3399 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3400 */ 3401 if( nByte+nZero<=pOut->szMalloc ){ 3402 /* The output register is already large enough to hold the record. 3403 ** No error checks or buffer enlargement is required */ 3404 pOut->z = pOut->zMalloc; 3405 }else{ 3406 /* Need to make sure that the output is not too big and then enlarge 3407 ** the output register to hold the full result */ 3408 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3409 goto too_big; 3410 } 3411 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3412 goto no_mem; 3413 } 3414 } 3415 pOut->n = (int)nByte; 3416 pOut->flags = MEM_Blob; 3417 if( nZero ){ 3418 pOut->u.nZero = nZero; 3419 pOut->flags |= MEM_Zero; 3420 } 3421 UPDATE_MAX_BLOBSIZE(pOut); 3422 zHdr = (u8 *)pOut->z; 3423 zPayload = zHdr + nHdr; 3424 3425 /* Write the record */ 3426 if( nHdr<0x80 ){ 3427 *(zHdr++) = nHdr; 3428 }else{ 3429 zHdr += sqlite3PutVarint(zHdr,nHdr); 3430 } 3431 assert( pData0<=pLast ); 3432 pRec = pData0; 3433 while( 1 /*exit-by-break*/ ){ 3434 serial_type = pRec->uTemp; 3435 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3436 ** additional varints, one per column. 3437 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record 3438 ** immediately follow the header. */ 3439 if( serial_type<=7 ){ 3440 *(zHdr++) = serial_type; 3441 if( serial_type==0 ){ 3442 /* NULL value. No change in zPayload */ 3443 }else{ 3444 u64 v; 3445 u32 i; 3446 if( serial_type==7 ){ 3447 assert( sizeof(v)==sizeof(pRec->u.r) ); 3448 memcpy(&v, &pRec->u.r, sizeof(v)); 3449 swapMixedEndianFloat(v); 3450 }else{ 3451 v = pRec->u.i; 3452 } 3453 len = i = sqlite3SmallTypeSizes[serial_type]; 3454 assert( i>0 ); 3455 while( 1 /*exit-by-break*/ ){ 3456 zPayload[--i] = (u8)(v&0xFF); 3457 if( i==0 ) break; 3458 v >>= 8; 3459 } 3460 zPayload += len; 3461 } 3462 }else if( serial_type<0x80 ){ 3463 *(zHdr++) = serial_type; 3464 if( serial_type>=14 && pRec->n>0 ){ 3465 assert( pRec->z!=0 ); 3466 memcpy(zPayload, pRec->z, pRec->n); 3467 zPayload += pRec->n; 3468 } 3469 }else{ 3470 zHdr += sqlite3PutVarint(zHdr, serial_type); 3471 if( pRec->n ){ 3472 assert( pRec->z!=0 ); 3473 memcpy(zPayload, pRec->z, pRec->n); 3474 zPayload += pRec->n; 3475 } 3476 } 3477 if( pRec==pLast ) break; 3478 pRec++; 3479 } 3480 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3481 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3482 3483 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3484 REGISTER_TRACE(pOp->p3, pOut); 3485 break; 3486 } 3487 3488 /* Opcode: Count P1 P2 P3 * * 3489 ** Synopsis: r[P2]=count() 3490 ** 3491 ** Store the number of entries (an integer value) in the table or index 3492 ** opened by cursor P1 in register P2. 3493 ** 3494 ** If P3==0, then an exact count is obtained, which involves visiting 3495 ** every btree page of the table. But if P3 is non-zero, an estimate 3496 ** is returned based on the current cursor position. 3497 */ 3498 case OP_Count: { /* out2 */ 3499 i64 nEntry; 3500 BtCursor *pCrsr; 3501 3502 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3503 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3504 assert( pCrsr ); 3505 if( pOp->p3 ){ 3506 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3507 }else{ 3508 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3509 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3510 if( rc ) goto abort_due_to_error; 3511 } 3512 pOut = out2Prerelease(p, pOp); 3513 pOut->u.i = nEntry; 3514 goto check_for_interrupt; 3515 } 3516 3517 /* Opcode: Savepoint P1 * * P4 * 3518 ** 3519 ** Open, release or rollback the savepoint named by parameter P4, depending 3520 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3521 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3522 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3523 */ 3524 case OP_Savepoint: { 3525 int p1; /* Value of P1 operand */ 3526 char *zName; /* Name of savepoint */ 3527 int nName; 3528 Savepoint *pNew; 3529 Savepoint *pSavepoint; 3530 Savepoint *pTmp; 3531 int iSavepoint; 3532 int ii; 3533 3534 p1 = pOp->p1; 3535 zName = pOp->p4.z; 3536 3537 /* Assert that the p1 parameter is valid. Also that if there is no open 3538 ** transaction, then there cannot be any savepoints. 3539 */ 3540 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3541 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3542 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3543 assert( checkSavepointCount(db) ); 3544 assert( p->bIsReader ); 3545 3546 if( p1==SAVEPOINT_BEGIN ){ 3547 if( db->nVdbeWrite>0 ){ 3548 /* A new savepoint cannot be created if there are active write 3549 ** statements (i.e. open read/write incremental blob handles). 3550 */ 3551 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3552 rc = SQLITE_BUSY; 3553 }else{ 3554 nName = sqlite3Strlen30(zName); 3555 3556 #ifndef SQLITE_OMIT_VIRTUALTABLE 3557 /* This call is Ok even if this savepoint is actually a transaction 3558 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3559 ** If this is a transaction savepoint being opened, it is guaranteed 3560 ** that the db->aVTrans[] array is empty. */ 3561 assert( db->autoCommit==0 || db->nVTrans==0 ); 3562 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3563 db->nStatement+db->nSavepoint); 3564 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3565 #endif 3566 3567 /* Create a new savepoint structure. */ 3568 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3569 if( pNew ){ 3570 pNew->zName = (char *)&pNew[1]; 3571 memcpy(pNew->zName, zName, nName+1); 3572 3573 /* If there is no open transaction, then mark this as a special 3574 ** "transaction savepoint". */ 3575 if( db->autoCommit ){ 3576 db->autoCommit = 0; 3577 db->isTransactionSavepoint = 1; 3578 }else{ 3579 db->nSavepoint++; 3580 } 3581 3582 /* Link the new savepoint into the database handle's list. */ 3583 pNew->pNext = db->pSavepoint; 3584 db->pSavepoint = pNew; 3585 pNew->nDeferredCons = db->nDeferredCons; 3586 pNew->nDeferredImmCons = db->nDeferredImmCons; 3587 } 3588 } 3589 }else{ 3590 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3591 iSavepoint = 0; 3592 3593 /* Find the named savepoint. If there is no such savepoint, then an 3594 ** an error is returned to the user. */ 3595 for( 3596 pSavepoint = db->pSavepoint; 3597 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3598 pSavepoint = pSavepoint->pNext 3599 ){ 3600 iSavepoint++; 3601 } 3602 if( !pSavepoint ){ 3603 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3604 rc = SQLITE_ERROR; 3605 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3606 /* It is not possible to release (commit) a savepoint if there are 3607 ** active write statements. 3608 */ 3609 sqlite3VdbeError(p, "cannot release savepoint - " 3610 "SQL statements in progress"); 3611 rc = SQLITE_BUSY; 3612 }else{ 3613 3614 /* Determine whether or not this is a transaction savepoint. If so, 3615 ** and this is a RELEASE command, then the current transaction 3616 ** is committed. 3617 */ 3618 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3619 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3620 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3621 goto vdbe_return; 3622 } 3623 db->autoCommit = 1; 3624 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3625 p->pc = (int)(pOp - aOp); 3626 db->autoCommit = 0; 3627 p->rc = rc = SQLITE_BUSY; 3628 goto vdbe_return; 3629 } 3630 rc = p->rc; 3631 if( rc ){ 3632 db->autoCommit = 0; 3633 }else{ 3634 db->isTransactionSavepoint = 0; 3635 } 3636 }else{ 3637 int isSchemaChange; 3638 iSavepoint = db->nSavepoint - iSavepoint - 1; 3639 if( p1==SAVEPOINT_ROLLBACK ){ 3640 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3641 for(ii=0; ii<db->nDb; ii++){ 3642 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3643 SQLITE_ABORT_ROLLBACK, 3644 isSchemaChange==0); 3645 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3646 } 3647 }else{ 3648 assert( p1==SAVEPOINT_RELEASE ); 3649 isSchemaChange = 0; 3650 } 3651 for(ii=0; ii<db->nDb; ii++){ 3652 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3653 if( rc!=SQLITE_OK ){ 3654 goto abort_due_to_error; 3655 } 3656 } 3657 if( isSchemaChange ){ 3658 sqlite3ExpirePreparedStatements(db, 0); 3659 sqlite3ResetAllSchemasOfConnection(db); 3660 db->mDbFlags |= DBFLAG_SchemaChange; 3661 } 3662 } 3663 if( rc ) goto abort_due_to_error; 3664 3665 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3666 ** savepoints nested inside of the savepoint being operated on. */ 3667 while( db->pSavepoint!=pSavepoint ){ 3668 pTmp = db->pSavepoint; 3669 db->pSavepoint = pTmp->pNext; 3670 sqlite3DbFree(db, pTmp); 3671 db->nSavepoint--; 3672 } 3673 3674 /* If it is a RELEASE, then destroy the savepoint being operated on 3675 ** too. If it is a ROLLBACK TO, then set the number of deferred 3676 ** constraint violations present in the database to the value stored 3677 ** when the savepoint was created. */ 3678 if( p1==SAVEPOINT_RELEASE ){ 3679 assert( pSavepoint==db->pSavepoint ); 3680 db->pSavepoint = pSavepoint->pNext; 3681 sqlite3DbFree(db, pSavepoint); 3682 if( !isTransaction ){ 3683 db->nSavepoint--; 3684 } 3685 }else{ 3686 assert( p1==SAVEPOINT_ROLLBACK ); 3687 db->nDeferredCons = pSavepoint->nDeferredCons; 3688 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3689 } 3690 3691 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3692 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3693 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3694 } 3695 } 3696 } 3697 if( rc ) goto abort_due_to_error; 3698 if( p->eVdbeState==VDBE_HALT_STATE ){ 3699 rc = SQLITE_DONE; 3700 goto vdbe_return; 3701 } 3702 break; 3703 } 3704 3705 /* Opcode: AutoCommit P1 P2 * * * 3706 ** 3707 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3708 ** back any currently active btree transactions. If there are any active 3709 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3710 ** there are active writing VMs or active VMs that use shared cache. 3711 ** 3712 ** This instruction causes the VM to halt. 3713 */ 3714 case OP_AutoCommit: { 3715 int desiredAutoCommit; 3716 int iRollback; 3717 3718 desiredAutoCommit = pOp->p1; 3719 iRollback = pOp->p2; 3720 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3721 assert( desiredAutoCommit==1 || iRollback==0 ); 3722 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3723 assert( p->bIsReader ); 3724 3725 if( desiredAutoCommit!=db->autoCommit ){ 3726 if( iRollback ){ 3727 assert( desiredAutoCommit==1 ); 3728 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3729 db->autoCommit = 1; 3730 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3731 /* If this instruction implements a COMMIT and other VMs are writing 3732 ** return an error indicating that the other VMs must complete first. 3733 */ 3734 sqlite3VdbeError(p, "cannot commit transaction - " 3735 "SQL statements in progress"); 3736 rc = SQLITE_BUSY; 3737 goto abort_due_to_error; 3738 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3739 goto vdbe_return; 3740 }else{ 3741 db->autoCommit = (u8)desiredAutoCommit; 3742 } 3743 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3744 p->pc = (int)(pOp - aOp); 3745 db->autoCommit = (u8)(1-desiredAutoCommit); 3746 p->rc = rc = SQLITE_BUSY; 3747 goto vdbe_return; 3748 } 3749 sqlite3CloseSavepoints(db); 3750 if( p->rc==SQLITE_OK ){ 3751 rc = SQLITE_DONE; 3752 }else{ 3753 rc = SQLITE_ERROR; 3754 } 3755 goto vdbe_return; 3756 }else{ 3757 sqlite3VdbeError(p, 3758 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3759 (iRollback)?"cannot rollback - no transaction is active": 3760 "cannot commit - no transaction is active")); 3761 3762 rc = SQLITE_ERROR; 3763 goto abort_due_to_error; 3764 } 3765 /*NOTREACHED*/ assert(0); 3766 } 3767 3768 /* Opcode: Transaction P1 P2 P3 P4 P5 3769 ** 3770 ** Begin a transaction on database P1 if a transaction is not already 3771 ** active. 3772 ** If P2 is non-zero, then a write-transaction is started, or if a 3773 ** read-transaction is already active, it is upgraded to a write-transaction. 3774 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3775 ** then an exclusive transaction is started. 3776 ** 3777 ** P1 is the index of the database file on which the transaction is 3778 ** started. Index 0 is the main database file and index 1 is the 3779 ** file used for temporary tables. Indices of 2 or more are used for 3780 ** attached databases. 3781 ** 3782 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3783 ** true (this flag is set if the Vdbe may modify more than one row and may 3784 ** throw an ABORT exception), a statement transaction may also be opened. 3785 ** More specifically, a statement transaction is opened iff the database 3786 ** connection is currently not in autocommit mode, or if there are other 3787 ** active statements. A statement transaction allows the changes made by this 3788 ** VDBE to be rolled back after an error without having to roll back the 3789 ** entire transaction. If no error is encountered, the statement transaction 3790 ** will automatically commit when the VDBE halts. 3791 ** 3792 ** If P5!=0 then this opcode also checks the schema cookie against P3 3793 ** and the schema generation counter against P4. 3794 ** The cookie changes its value whenever the database schema changes. 3795 ** This operation is used to detect when that the cookie has changed 3796 ** and that the current process needs to reread the schema. If the schema 3797 ** cookie in P3 differs from the schema cookie in the database header or 3798 ** if the schema generation counter in P4 differs from the current 3799 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3800 ** halts. The sqlite3_step() wrapper function might then reprepare the 3801 ** statement and rerun it from the beginning. 3802 */ 3803 case OP_Transaction: { 3804 Btree *pBt; 3805 Db *pDb; 3806 int iMeta = 0; 3807 3808 assert( p->bIsReader ); 3809 assert( p->readOnly==0 || pOp->p2==0 ); 3810 assert( pOp->p2>=0 && pOp->p2<=2 ); 3811 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3812 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3813 assert( rc==SQLITE_OK ); 3814 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3815 if( db->flags & SQLITE_QueryOnly ){ 3816 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3817 rc = SQLITE_READONLY; 3818 }else{ 3819 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3820 ** transaction */ 3821 rc = SQLITE_CORRUPT; 3822 } 3823 goto abort_due_to_error; 3824 } 3825 pDb = &db->aDb[pOp->p1]; 3826 pBt = pDb->pBt; 3827 3828 if( pBt ){ 3829 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3830 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3831 testcase( rc==SQLITE_BUSY_RECOVERY ); 3832 if( rc!=SQLITE_OK ){ 3833 if( (rc&0xff)==SQLITE_BUSY ){ 3834 p->pc = (int)(pOp - aOp); 3835 p->rc = rc; 3836 goto vdbe_return; 3837 } 3838 goto abort_due_to_error; 3839 } 3840 3841 if( p->usesStmtJournal 3842 && pOp->p2 3843 && (db->autoCommit==0 || db->nVdbeRead>1) 3844 ){ 3845 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3846 if( p->iStatement==0 ){ 3847 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3848 db->nStatement++; 3849 p->iStatement = db->nSavepoint + db->nStatement; 3850 } 3851 3852 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3853 if( rc==SQLITE_OK ){ 3854 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3855 } 3856 3857 /* Store the current value of the database handles deferred constraint 3858 ** counter. If the statement transaction needs to be rolled back, 3859 ** the value of this counter needs to be restored too. */ 3860 p->nStmtDefCons = db->nDeferredCons; 3861 p->nStmtDefImmCons = db->nDeferredImmCons; 3862 } 3863 } 3864 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3865 if( rc==SQLITE_OK 3866 && pOp->p5 3867 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) 3868 ){ 3869 /* 3870 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3871 ** version is checked to ensure that the schema has not changed since the 3872 ** SQL statement was prepared. 3873 */ 3874 sqlite3DbFree(db, p->zErrMsg); 3875 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3876 /* If the schema-cookie from the database file matches the cookie 3877 ** stored with the in-memory representation of the schema, do 3878 ** not reload the schema from the database file. 3879 ** 3880 ** If virtual-tables are in use, this is not just an optimization. 3881 ** Often, v-tables store their data in other SQLite tables, which 3882 ** are queried from within xNext() and other v-table methods using 3883 ** prepared queries. If such a query is out-of-date, we do not want to 3884 ** discard the database schema, as the user code implementing the 3885 ** v-table would have to be ready for the sqlite3_vtab structure itself 3886 ** to be invalidated whenever sqlite3_step() is called from within 3887 ** a v-table method. 3888 */ 3889 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3890 sqlite3ResetOneSchema(db, pOp->p1); 3891 } 3892 p->expired = 1; 3893 rc = SQLITE_SCHEMA; 3894 3895 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() 3896 ** from being modified in sqlite3VdbeHalt(). If this statement is 3897 ** reprepared, changeCntOn will be set again. */ 3898 p->changeCntOn = 0; 3899 } 3900 if( rc ) goto abort_due_to_error; 3901 break; 3902 } 3903 3904 /* Opcode: ReadCookie P1 P2 P3 * * 3905 ** 3906 ** Read cookie number P3 from database P1 and write it into register P2. 3907 ** P3==1 is the schema version. P3==2 is the database format. 3908 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3909 ** the main database file and P1==1 is the database file used to store 3910 ** temporary tables. 3911 ** 3912 ** There must be a read-lock on the database (either a transaction 3913 ** must be started or there must be an open cursor) before 3914 ** executing this instruction. 3915 */ 3916 case OP_ReadCookie: { /* out2 */ 3917 int iMeta; 3918 int iDb; 3919 int iCookie; 3920 3921 assert( p->bIsReader ); 3922 iDb = pOp->p1; 3923 iCookie = pOp->p3; 3924 assert( pOp->p3<SQLITE_N_BTREE_META ); 3925 assert( iDb>=0 && iDb<db->nDb ); 3926 assert( db->aDb[iDb].pBt!=0 ); 3927 assert( DbMaskTest(p->btreeMask, iDb) ); 3928 3929 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3930 pOut = out2Prerelease(p, pOp); 3931 pOut->u.i = iMeta; 3932 break; 3933 } 3934 3935 /* Opcode: SetCookie P1 P2 P3 * P5 3936 ** 3937 ** Write the integer value P3 into cookie number P2 of database P1. 3938 ** P2==1 is the schema version. P2==2 is the database format. 3939 ** P2==3 is the recommended pager cache 3940 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3941 ** database file used to store temporary tables. 3942 ** 3943 ** A transaction must be started before executing this opcode. 3944 ** 3945 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3946 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3947 ** has P5 set to 1, so that the internal schema version will be different 3948 ** from the database schema version, resulting in a schema reset. 3949 */ 3950 case OP_SetCookie: { 3951 Db *pDb; 3952 3953 sqlite3VdbeIncrWriteCounter(p, 0); 3954 assert( pOp->p2<SQLITE_N_BTREE_META ); 3955 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3956 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3957 assert( p->readOnly==0 ); 3958 pDb = &db->aDb[pOp->p1]; 3959 assert( pDb->pBt!=0 ); 3960 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3961 /* See note about index shifting on OP_ReadCookie */ 3962 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3963 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3964 /* When the schema cookie changes, record the new cookie internally */ 3965 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; 3966 db->mDbFlags |= DBFLAG_SchemaChange; 3967 sqlite3FkClearTriggerCache(db, pOp->p1); 3968 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3969 /* Record changes in the file format */ 3970 pDb->pSchema->file_format = pOp->p3; 3971 } 3972 if( pOp->p1==1 ){ 3973 /* Invalidate all prepared statements whenever the TEMP database 3974 ** schema is changed. Ticket #1644 */ 3975 sqlite3ExpirePreparedStatements(db, 0); 3976 p->expired = 0; 3977 } 3978 if( rc ) goto abort_due_to_error; 3979 break; 3980 } 3981 3982 /* Opcode: OpenRead P1 P2 P3 P4 P5 3983 ** Synopsis: root=P2 iDb=P3 3984 ** 3985 ** Open a read-only cursor for the database table whose root page is 3986 ** P2 in a database file. The database file is determined by P3. 3987 ** P3==0 means the main database, P3==1 means the database used for 3988 ** temporary tables, and P3>1 means used the corresponding attached 3989 ** database. Give the new cursor an identifier of P1. The P1 3990 ** values need not be contiguous but all P1 values should be small integers. 3991 ** It is an error for P1 to be negative. 3992 ** 3993 ** Allowed P5 bits: 3994 ** <ul> 3995 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3996 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3997 ** of OP_SeekLE/OP_IdxLT) 3998 ** </ul> 3999 ** 4000 ** The P4 value may be either an integer (P4_INT32) or a pointer to 4001 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 4002 ** object, then table being opened must be an [index b-tree] where the 4003 ** KeyInfo object defines the content and collating 4004 ** sequence of that index b-tree. Otherwise, if P4 is an integer 4005 ** value, then the table being opened must be a [table b-tree] with a 4006 ** number of columns no less than the value of P4. 4007 ** 4008 ** See also: OpenWrite, ReopenIdx 4009 */ 4010 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 4011 ** Synopsis: root=P2 iDb=P3 4012 ** 4013 ** The ReopenIdx opcode works like OP_OpenRead except that it first 4014 ** checks to see if the cursor on P1 is already open on the same 4015 ** b-tree and if it is this opcode becomes a no-op. In other words, 4016 ** if the cursor is already open, do not reopen it. 4017 ** 4018 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 4019 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 4020 ** be the same as every other ReopenIdx or OpenRead for the same cursor 4021 ** number. 4022 ** 4023 ** Allowed P5 bits: 4024 ** <ul> 4025 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4026 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4027 ** of OP_SeekLE/OP_IdxLT) 4028 ** </ul> 4029 ** 4030 ** See also: OP_OpenRead, OP_OpenWrite 4031 */ 4032 /* Opcode: OpenWrite P1 P2 P3 P4 P5 4033 ** Synopsis: root=P2 iDb=P3 4034 ** 4035 ** Open a read/write cursor named P1 on the table or index whose root 4036 ** page is P2 (or whose root page is held in register P2 if the 4037 ** OPFLAG_P2ISREG bit is set in P5 - see below). 4038 ** 4039 ** The P4 value may be either an integer (P4_INT32) or a pointer to 4040 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 4041 ** object, then table being opened must be an [index b-tree] where the 4042 ** KeyInfo object defines the content and collating 4043 ** sequence of that index b-tree. Otherwise, if P4 is an integer 4044 ** value, then the table being opened must be a [table b-tree] with a 4045 ** number of columns no less than the value of P4. 4046 ** 4047 ** Allowed P5 bits: 4048 ** <ul> 4049 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4050 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4051 ** of OP_SeekLE/OP_IdxLT) 4052 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 4053 ** and subsequently delete entries in an index btree. This is a 4054 ** hint to the storage engine that the storage engine is allowed to 4055 ** ignore. The hint is not used by the official SQLite b*tree storage 4056 ** engine, but is used by COMDB2. 4057 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 4058 ** as the root page, not the value of P2 itself. 4059 ** </ul> 4060 ** 4061 ** This instruction works like OpenRead except that it opens the cursor 4062 ** in read/write mode. 4063 ** 4064 ** See also: OP_OpenRead, OP_ReopenIdx 4065 */ 4066 case OP_ReopenIdx: { 4067 int nField; 4068 KeyInfo *pKeyInfo; 4069 u32 p2; 4070 int iDb; 4071 int wrFlag; 4072 Btree *pX; 4073 VdbeCursor *pCur; 4074 Db *pDb; 4075 4076 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4077 assert( pOp->p4type==P4_KEYINFO ); 4078 pCur = p->apCsr[pOp->p1]; 4079 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 4080 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 4081 assert( pCur->eCurType==CURTYPE_BTREE ); 4082 sqlite3BtreeClearCursor(pCur->uc.pCursor); 4083 goto open_cursor_set_hints; 4084 } 4085 /* If the cursor is not currently open or is open on a different 4086 ** index, then fall through into OP_OpenRead to force a reopen */ 4087 case OP_OpenRead: 4088 case OP_OpenWrite: 4089 4090 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4091 assert( p->bIsReader ); 4092 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 4093 || p->readOnly==0 ); 4094 4095 if( p->expired==1 ){ 4096 rc = SQLITE_ABORT_ROLLBACK; 4097 goto abort_due_to_error; 4098 } 4099 4100 nField = 0; 4101 pKeyInfo = 0; 4102 p2 = (u32)pOp->p2; 4103 iDb = pOp->p3; 4104 assert( iDb>=0 && iDb<db->nDb ); 4105 assert( DbMaskTest(p->btreeMask, iDb) ); 4106 pDb = &db->aDb[iDb]; 4107 pX = pDb->pBt; 4108 assert( pX!=0 ); 4109 if( pOp->opcode==OP_OpenWrite ){ 4110 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 4111 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 4112 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4113 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 4114 p->minWriteFileFormat = pDb->pSchema->file_format; 4115 } 4116 }else{ 4117 wrFlag = 0; 4118 } 4119 if( pOp->p5 & OPFLAG_P2ISREG ){ 4120 assert( p2>0 ); 4121 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 4122 assert( pOp->opcode==OP_OpenWrite ); 4123 pIn2 = &aMem[p2]; 4124 assert( memIsValid(pIn2) ); 4125 assert( (pIn2->flags & MEM_Int)!=0 ); 4126 sqlite3VdbeMemIntegerify(pIn2); 4127 p2 = (int)pIn2->u.i; 4128 /* The p2 value always comes from a prior OP_CreateBtree opcode and 4129 ** that opcode will always set the p2 value to 2 or more or else fail. 4130 ** If there were a failure, the prepared statement would have halted 4131 ** before reaching this instruction. */ 4132 assert( p2>=2 ); 4133 } 4134 if( pOp->p4type==P4_KEYINFO ){ 4135 pKeyInfo = pOp->p4.pKeyInfo; 4136 assert( pKeyInfo->enc==ENC(db) ); 4137 assert( pKeyInfo->db==db ); 4138 nField = pKeyInfo->nAllField; 4139 }else if( pOp->p4type==P4_INT32 ){ 4140 nField = pOp->p4.i; 4141 } 4142 assert( pOp->p1>=0 ); 4143 assert( nField>=0 ); 4144 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 4145 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 4146 if( pCur==0 ) goto no_mem; 4147 pCur->iDb = iDb; 4148 pCur->nullRow = 1; 4149 pCur->isOrdered = 1; 4150 pCur->pgnoRoot = p2; 4151 #ifdef SQLITE_DEBUG 4152 pCur->wrFlag = wrFlag; 4153 #endif 4154 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4155 pCur->pKeyInfo = pKeyInfo; 4156 /* Set the VdbeCursor.isTable variable. Previous versions of 4157 ** SQLite used to check if the root-page flags were sane at this point 4158 ** and report database corruption if they were not, but this check has 4159 ** since moved into the btree layer. */ 4160 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4161 4162 open_cursor_set_hints: 4163 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4164 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4165 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4166 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4167 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4168 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4169 if( rc ) goto abort_due_to_error; 4170 break; 4171 } 4172 4173 /* Opcode: OpenDup P1 P2 * * * 4174 ** 4175 ** Open a new cursor P1 that points to the same ephemeral table as 4176 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4177 ** opcode. Only ephemeral cursors may be duplicated. 4178 ** 4179 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4180 */ 4181 case OP_OpenDup: { 4182 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4183 VdbeCursor *pCx; /* The new cursor */ 4184 4185 pOrig = p->apCsr[pOp->p2]; 4186 assert( pOrig ); 4187 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4188 4189 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 4190 if( pCx==0 ) goto no_mem; 4191 pCx->nullRow = 1; 4192 pCx->isEphemeral = 1; 4193 pCx->pKeyInfo = pOrig->pKeyInfo; 4194 pCx->isTable = pOrig->isTable; 4195 pCx->pgnoRoot = pOrig->pgnoRoot; 4196 pCx->isOrdered = pOrig->isOrdered; 4197 pCx->ub.pBtx = pOrig->ub.pBtx; 4198 pCx->noReuse = 1; 4199 pOrig->noReuse = 1; 4200 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4201 pCx->pKeyInfo, pCx->uc.pCursor); 4202 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4203 ** opened for a database. Since there is already an open cursor when this 4204 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4205 assert( rc==SQLITE_OK ); 4206 break; 4207 } 4208 4209 4210 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4211 ** Synopsis: nColumn=P2 4212 ** 4213 ** Open a new cursor P1 to a transient table. 4214 ** The cursor is always opened read/write even if 4215 ** the main database is read-only. The ephemeral 4216 ** table is deleted automatically when the cursor is closed. 4217 ** 4218 ** If the cursor P1 is already opened on an ephemeral table, the table 4219 ** is cleared (all content is erased). 4220 ** 4221 ** P2 is the number of columns in the ephemeral table. 4222 ** The cursor points to a BTree table if P4==0 and to a BTree index 4223 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4224 ** that defines the format of keys in the index. 4225 ** 4226 ** The P5 parameter can be a mask of the BTREE_* flags defined 4227 ** in btree.h. These flags control aspects of the operation of 4228 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4229 ** added automatically. 4230 ** 4231 ** If P3 is positive, then reg[P3] is modified slightly so that it 4232 ** can be used as zero-length data for OP_Insert. This is an optimization 4233 ** that avoids an extra OP_Blob opcode to initialize that register. 4234 */ 4235 /* Opcode: OpenAutoindex P1 P2 * P4 * 4236 ** Synopsis: nColumn=P2 4237 ** 4238 ** This opcode works the same as OP_OpenEphemeral. It has a 4239 ** different name to distinguish its use. Tables created using 4240 ** by this opcode will be used for automatically created transient 4241 ** indices in joins. 4242 */ 4243 case OP_OpenAutoindex: 4244 case OP_OpenEphemeral: { 4245 VdbeCursor *pCx; 4246 KeyInfo *pKeyInfo; 4247 4248 static const int vfsFlags = 4249 SQLITE_OPEN_READWRITE | 4250 SQLITE_OPEN_CREATE | 4251 SQLITE_OPEN_EXCLUSIVE | 4252 SQLITE_OPEN_DELETEONCLOSE | 4253 SQLITE_OPEN_TRANSIENT_DB; 4254 assert( pOp->p1>=0 ); 4255 assert( pOp->p2>=0 ); 4256 if( pOp->p3>0 ){ 4257 /* Make register reg[P3] into a value that can be used as the data 4258 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4259 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4260 assert( pOp->opcode==OP_OpenEphemeral ); 4261 assert( aMem[pOp->p3].flags & MEM_Null ); 4262 aMem[pOp->p3].n = 0; 4263 aMem[pOp->p3].z = ""; 4264 } 4265 pCx = p->apCsr[pOp->p1]; 4266 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ 4267 /* If the ephermeral table is already open and has no duplicates from 4268 ** OP_OpenDup, then erase all existing content so that the table is 4269 ** empty again, rather than creating a new table. */ 4270 assert( pCx->isEphemeral ); 4271 pCx->seqCount = 0; 4272 pCx->cacheStatus = CACHE_STALE; 4273 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 4274 }else{ 4275 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 4276 if( pCx==0 ) goto no_mem; 4277 pCx->isEphemeral = 1; 4278 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 4279 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4280 vfsFlags); 4281 if( rc==SQLITE_OK ){ 4282 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 4283 if( rc==SQLITE_OK ){ 4284 /* If a transient index is required, create it by calling 4285 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4286 ** opening it. If a transient table is required, just use the 4287 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4288 */ 4289 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4290 assert( pOp->p4type==P4_KEYINFO ); 4291 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 4292 BTREE_BLOBKEY | pOp->p5); 4293 if( rc==SQLITE_OK ){ 4294 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4295 assert( pKeyInfo->db==db ); 4296 assert( pKeyInfo->enc==ENC(db) ); 4297 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4298 pKeyInfo, pCx->uc.pCursor); 4299 } 4300 pCx->isTable = 0; 4301 }else{ 4302 pCx->pgnoRoot = SCHEMA_ROOT; 4303 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4304 0, pCx->uc.pCursor); 4305 pCx->isTable = 1; 4306 } 4307 } 4308 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4309 if( rc ){ 4310 sqlite3BtreeClose(pCx->ub.pBtx); 4311 } 4312 } 4313 } 4314 if( rc ) goto abort_due_to_error; 4315 pCx->nullRow = 1; 4316 break; 4317 } 4318 4319 /* Opcode: SorterOpen P1 P2 P3 P4 * 4320 ** 4321 ** This opcode works like OP_OpenEphemeral except that it opens 4322 ** a transient index that is specifically designed to sort large 4323 ** tables using an external merge-sort algorithm. 4324 ** 4325 ** If argument P3 is non-zero, then it indicates that the sorter may 4326 ** assume that a stable sort considering the first P3 fields of each 4327 ** key is sufficient to produce the required results. 4328 */ 4329 case OP_SorterOpen: { 4330 VdbeCursor *pCx; 4331 4332 assert( pOp->p1>=0 ); 4333 assert( pOp->p2>=0 ); 4334 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 4335 if( pCx==0 ) goto no_mem; 4336 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4337 assert( pCx->pKeyInfo->db==db ); 4338 assert( pCx->pKeyInfo->enc==ENC(db) ); 4339 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4340 if( rc ) goto abort_due_to_error; 4341 break; 4342 } 4343 4344 /* Opcode: SequenceTest P1 P2 * * * 4345 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4346 ** 4347 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4348 ** to P2. Regardless of whether or not the jump is taken, increment the 4349 ** the sequence value. 4350 */ 4351 case OP_SequenceTest: { 4352 VdbeCursor *pC; 4353 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4354 pC = p->apCsr[pOp->p1]; 4355 assert( isSorter(pC) ); 4356 if( (pC->seqCount++)==0 ){ 4357 goto jump_to_p2; 4358 } 4359 break; 4360 } 4361 4362 /* Opcode: OpenPseudo P1 P2 P3 * * 4363 ** Synopsis: P3 columns in r[P2] 4364 ** 4365 ** Open a new cursor that points to a fake table that contains a single 4366 ** row of data. The content of that one row is the content of memory 4367 ** register P2. In other words, cursor P1 becomes an alias for the 4368 ** MEM_Blob content contained in register P2. 4369 ** 4370 ** A pseudo-table created by this opcode is used to hold a single 4371 ** row output from the sorter so that the row can be decomposed into 4372 ** individual columns using the OP_Column opcode. The OP_Column opcode 4373 ** is the only cursor opcode that works with a pseudo-table. 4374 ** 4375 ** P3 is the number of fields in the records that will be stored by 4376 ** the pseudo-table. 4377 */ 4378 case OP_OpenPseudo: { 4379 VdbeCursor *pCx; 4380 4381 assert( pOp->p1>=0 ); 4382 assert( pOp->p3>=0 ); 4383 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 4384 if( pCx==0 ) goto no_mem; 4385 pCx->nullRow = 1; 4386 pCx->seekResult = pOp->p2; 4387 pCx->isTable = 1; 4388 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4389 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4390 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4391 ** which is a performance optimization */ 4392 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4393 assert( pOp->p5==0 ); 4394 break; 4395 } 4396 4397 /* Opcode: Close P1 * * * * 4398 ** 4399 ** Close a cursor previously opened as P1. If P1 is not 4400 ** currently open, this instruction is a no-op. 4401 */ 4402 case OP_Close: { 4403 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4404 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4405 p->apCsr[pOp->p1] = 0; 4406 break; 4407 } 4408 4409 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4410 /* Opcode: ColumnsUsed P1 * * P4 * 4411 ** 4412 ** This opcode (which only exists if SQLite was compiled with 4413 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4414 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4415 ** (P4_INT64) in which the first 63 bits are one for each of the 4416 ** first 63 columns of the table or index that are actually used 4417 ** by the cursor. The high-order bit is set if any column after 4418 ** the 64th is used. 4419 */ 4420 case OP_ColumnsUsed: { 4421 VdbeCursor *pC; 4422 pC = p->apCsr[pOp->p1]; 4423 assert( pC->eCurType==CURTYPE_BTREE ); 4424 pC->maskUsed = *(u64*)pOp->p4.pI64; 4425 break; 4426 } 4427 #endif 4428 4429 /* Opcode: SeekGE P1 P2 P3 P4 * 4430 ** Synopsis: key=r[P3@P4] 4431 ** 4432 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4433 ** use the value in register P3 as the key. If cursor P1 refers 4434 ** to an SQL index, then P3 is the first in an array of P4 registers 4435 ** that are used as an unpacked index key. 4436 ** 4437 ** Reposition cursor P1 so that it points to the smallest entry that 4438 ** is greater than or equal to the key value. If there are no records 4439 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4440 ** 4441 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4442 ** opcode will either land on a record that exactly matches the key, or 4443 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4444 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4445 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4446 ** IdxGT opcode will be used on subsequent loop iterations. The 4447 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4448 ** is an equality search. 4449 ** 4450 ** This opcode leaves the cursor configured to move in forward order, 4451 ** from the beginning toward the end. In other words, the cursor is 4452 ** configured to use Next, not Prev. 4453 ** 4454 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4455 */ 4456 /* Opcode: SeekGT P1 P2 P3 P4 * 4457 ** Synopsis: key=r[P3@P4] 4458 ** 4459 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4460 ** use the value in register P3 as a key. If cursor P1 refers 4461 ** to an SQL index, then P3 is the first in an array of P4 registers 4462 ** that are used as an unpacked index key. 4463 ** 4464 ** Reposition cursor P1 so that it points to the smallest entry that 4465 ** is greater than the key value. If there are no records greater than 4466 ** the key and P2 is not zero, then jump to P2. 4467 ** 4468 ** This opcode leaves the cursor configured to move in forward order, 4469 ** from the beginning toward the end. In other words, the cursor is 4470 ** configured to use Next, not Prev. 4471 ** 4472 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4473 */ 4474 /* Opcode: SeekLT P1 P2 P3 P4 * 4475 ** Synopsis: key=r[P3@P4] 4476 ** 4477 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4478 ** use the value in register P3 as a key. If cursor P1 refers 4479 ** to an SQL index, then P3 is the first in an array of P4 registers 4480 ** that are used as an unpacked index key. 4481 ** 4482 ** Reposition cursor P1 so that it points to the largest entry that 4483 ** is less than the key value. If there are no records less than 4484 ** the key and P2 is not zero, then jump to P2. 4485 ** 4486 ** This opcode leaves the cursor configured to move in reverse order, 4487 ** from the end toward the beginning. In other words, the cursor is 4488 ** configured to use Prev, not Next. 4489 ** 4490 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4491 */ 4492 /* Opcode: SeekLE P1 P2 P3 P4 * 4493 ** Synopsis: key=r[P3@P4] 4494 ** 4495 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4496 ** use the value in register P3 as a key. If cursor P1 refers 4497 ** to an SQL index, then P3 is the first in an array of P4 registers 4498 ** that are used as an unpacked index key. 4499 ** 4500 ** Reposition cursor P1 so that it points to the largest entry that 4501 ** is less than or equal to the key value. If there are no records 4502 ** less than or equal to the key and P2 is not zero, then jump to P2. 4503 ** 4504 ** This opcode leaves the cursor configured to move in reverse order, 4505 ** from the end toward the beginning. In other words, the cursor is 4506 ** configured to use Prev, not Next. 4507 ** 4508 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4509 ** opcode will either land on a record that exactly matches the key, or 4510 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4511 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4512 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4513 ** IdxGE opcode will be used on subsequent loop iterations. The 4514 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4515 ** is an equality search. 4516 ** 4517 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4518 */ 4519 case OP_SeekLT: /* jump, in3, group */ 4520 case OP_SeekLE: /* jump, in3, group */ 4521 case OP_SeekGE: /* jump, in3, group */ 4522 case OP_SeekGT: { /* jump, in3, group */ 4523 int res; /* Comparison result */ 4524 int oc; /* Opcode */ 4525 VdbeCursor *pC; /* The cursor to seek */ 4526 UnpackedRecord r; /* The key to seek for */ 4527 int nField; /* Number of columns or fields in the key */ 4528 i64 iKey; /* The rowid we are to seek to */ 4529 int eqOnly; /* Only interested in == results */ 4530 4531 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4532 assert( pOp->p2!=0 ); 4533 pC = p->apCsr[pOp->p1]; 4534 assert( pC!=0 ); 4535 assert( pC->eCurType==CURTYPE_BTREE ); 4536 assert( OP_SeekLE == OP_SeekLT+1 ); 4537 assert( OP_SeekGE == OP_SeekLT+2 ); 4538 assert( OP_SeekGT == OP_SeekLT+3 ); 4539 assert( pC->isOrdered ); 4540 assert( pC->uc.pCursor!=0 ); 4541 oc = pOp->opcode; 4542 eqOnly = 0; 4543 pC->nullRow = 0; 4544 #ifdef SQLITE_DEBUG 4545 pC->seekOp = pOp->opcode; 4546 #endif 4547 4548 pC->deferredMoveto = 0; 4549 pC->cacheStatus = CACHE_STALE; 4550 if( pC->isTable ){ 4551 u16 flags3, newType; 4552 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4553 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4554 || CORRUPT_DB ); 4555 4556 /* The input value in P3 might be of any type: integer, real, string, 4557 ** blob, or NULL. But it needs to be an integer before we can do 4558 ** the seek, so convert it. */ 4559 pIn3 = &aMem[pOp->p3]; 4560 flags3 = pIn3->flags; 4561 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4562 applyNumericAffinity(pIn3, 0); 4563 } 4564 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4565 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4566 pIn3->flags = flags3; /* But convert the type back to its original */ 4567 4568 /* If the P3 value could not be converted into an integer without 4569 ** loss of information, then special processing is required... */ 4570 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4571 int c; 4572 if( (newType & MEM_Real)==0 ){ 4573 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4574 VdbeBranchTaken(1,2); 4575 goto jump_to_p2; 4576 }else{ 4577 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4578 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4579 goto seek_not_found; 4580 } 4581 } 4582 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4583 4584 /* If the approximation iKey is larger than the actual real search 4585 ** term, substitute >= for > and < for <=. e.g. if the search term 4586 ** is 4.9 and the integer approximation 5: 4587 ** 4588 ** (x > 4.9) -> (x >= 5) 4589 ** (x <= 4.9) -> (x < 5) 4590 */ 4591 if( c>0 ){ 4592 assert( OP_SeekGE==(OP_SeekGT-1) ); 4593 assert( OP_SeekLT==(OP_SeekLE-1) ); 4594 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4595 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4596 } 4597 4598 /* If the approximation iKey is smaller than the actual real search 4599 ** term, substitute <= for < and > for >=. */ 4600 else if( c<0 ){ 4601 assert( OP_SeekLE==(OP_SeekLT+1) ); 4602 assert( OP_SeekGT==(OP_SeekGE+1) ); 4603 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4604 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4605 } 4606 } 4607 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4608 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4609 if( rc!=SQLITE_OK ){ 4610 goto abort_due_to_error; 4611 } 4612 }else{ 4613 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4614 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4615 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4616 ** with the same key. 4617 */ 4618 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4619 eqOnly = 1; 4620 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4621 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4622 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4623 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4624 assert( pOp[1].p1==pOp[0].p1 ); 4625 assert( pOp[1].p2==pOp[0].p2 ); 4626 assert( pOp[1].p3==pOp[0].p3 ); 4627 assert( pOp[1].p4.i==pOp[0].p4.i ); 4628 } 4629 4630 nField = pOp->p4.i; 4631 assert( pOp->p4type==P4_INT32 ); 4632 assert( nField>0 ); 4633 r.pKeyInfo = pC->pKeyInfo; 4634 r.nField = (u16)nField; 4635 4636 /* The next line of code computes as follows, only faster: 4637 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4638 ** r.default_rc = -1; 4639 ** }else{ 4640 ** r.default_rc = +1; 4641 ** } 4642 */ 4643 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4644 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4645 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4646 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4647 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4648 4649 r.aMem = &aMem[pOp->p3]; 4650 #ifdef SQLITE_DEBUG 4651 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4652 #endif 4653 r.eqSeen = 0; 4654 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4655 if( rc!=SQLITE_OK ){ 4656 goto abort_due_to_error; 4657 } 4658 if( eqOnly && r.eqSeen==0 ){ 4659 assert( res!=0 ); 4660 goto seek_not_found; 4661 } 4662 } 4663 #ifdef SQLITE_TEST 4664 sqlite3_search_count++; 4665 #endif 4666 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4667 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4668 res = 0; 4669 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4670 if( rc!=SQLITE_OK ){ 4671 if( rc==SQLITE_DONE ){ 4672 rc = SQLITE_OK; 4673 res = 1; 4674 }else{ 4675 goto abort_due_to_error; 4676 } 4677 } 4678 }else{ 4679 res = 0; 4680 } 4681 }else{ 4682 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4683 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4684 res = 0; 4685 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4686 if( rc!=SQLITE_OK ){ 4687 if( rc==SQLITE_DONE ){ 4688 rc = SQLITE_OK; 4689 res = 1; 4690 }else{ 4691 goto abort_due_to_error; 4692 } 4693 } 4694 }else{ 4695 /* res might be negative because the table is empty. Check to 4696 ** see if this is the case. 4697 */ 4698 res = sqlite3BtreeEof(pC->uc.pCursor); 4699 } 4700 } 4701 seek_not_found: 4702 assert( pOp->p2>0 ); 4703 VdbeBranchTaken(res!=0,2); 4704 if( res ){ 4705 goto jump_to_p2; 4706 }else if( eqOnly ){ 4707 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4708 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4709 } 4710 break; 4711 } 4712 4713 4714 /* Opcode: SeekScan P1 P2 * * * 4715 ** Synopsis: Scan-ahead up to P1 rows 4716 ** 4717 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4718 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4719 ** checked by assert() statements. 4720 ** 4721 ** This opcode uses the P1 through P4 operands of the subsequent 4722 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4723 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4724 ** the P1 and P2 operands of this opcode are also used, and are called 4725 ** This.P1 and This.P2. 4726 ** 4727 ** This opcode helps to optimize IN operators on a multi-column index 4728 ** where the IN operator is on the later terms of the index by avoiding 4729 ** unnecessary seeks on the btree, substituting steps to the next row 4730 ** of the b-tree instead. A correct answer is obtained if this opcode 4731 ** is omitted or is a no-op. 4732 ** 4733 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4734 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4735 ** to. Call this SeekGE.P4/P5 row the "target". 4736 ** 4737 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4738 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4739 ** 4740 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4741 ** might be the target row, or it might be near and slightly before the 4742 ** target row. This opcode attempts to position the cursor on the target 4743 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4744 ** between 0 and This.P1 times. 4745 ** 4746 ** There are three possible outcomes from this opcode:<ol> 4747 ** 4748 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4749 ** is earlier in the btree than the target row, then fall through 4750 ** into the subsquence OP_SeekGE opcode. 4751 ** 4752 ** <li> If the cursor is successfully moved to the target row by 0 or more 4753 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4754 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4755 ** 4756 ** <li> If the cursor ends up past the target row (indicating the the target 4757 ** row does not exist in the btree) then jump to SeekOP.P2. 4758 ** </ol> 4759 */ 4760 case OP_SeekScan: { 4761 VdbeCursor *pC; 4762 int res; 4763 int nStep; 4764 UnpackedRecord r; 4765 4766 assert( pOp[1].opcode==OP_SeekGE ); 4767 4768 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4769 ** follows the OP_SeekGE. */ 4770 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4771 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4772 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4773 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4774 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4775 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4776 4777 assert( pOp->p1>0 ); 4778 pC = p->apCsr[pOp[1].p1]; 4779 assert( pC!=0 ); 4780 assert( pC->eCurType==CURTYPE_BTREE ); 4781 assert( !pC->isTable ); 4782 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4783 #ifdef SQLITE_DEBUG 4784 if( db->flags&SQLITE_VdbeTrace ){ 4785 printf("... cursor not valid - fall through\n"); 4786 } 4787 #endif 4788 break; 4789 } 4790 nStep = pOp->p1; 4791 assert( nStep>=1 ); 4792 r.pKeyInfo = pC->pKeyInfo; 4793 r.nField = (u16)pOp[1].p4.i; 4794 r.default_rc = 0; 4795 r.aMem = &aMem[pOp[1].p3]; 4796 #ifdef SQLITE_DEBUG 4797 { 4798 int i; 4799 for(i=0; i<r.nField; i++){ 4800 assert( memIsValid(&r.aMem[i]) ); 4801 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4802 } 4803 } 4804 #endif 4805 res = 0; /* Not needed. Only used to silence a warning. */ 4806 while(1){ 4807 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4808 if( rc ) goto abort_due_to_error; 4809 if( res>0 ){ 4810 seekscan_search_fail: 4811 #ifdef SQLITE_DEBUG 4812 if( db->flags&SQLITE_VdbeTrace ){ 4813 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4814 } 4815 #endif 4816 VdbeBranchTaken(1,3); 4817 pOp++; 4818 goto jump_to_p2; 4819 } 4820 if( res==0 ){ 4821 #ifdef SQLITE_DEBUG 4822 if( db->flags&SQLITE_VdbeTrace ){ 4823 printf("... %d steps and then success\n", pOp->p1 - nStep); 4824 } 4825 #endif 4826 VdbeBranchTaken(2,3); 4827 goto jump_to_p2; 4828 break; 4829 } 4830 if( nStep<=0 ){ 4831 #ifdef SQLITE_DEBUG 4832 if( db->flags&SQLITE_VdbeTrace ){ 4833 printf("... fall through after %d steps\n", pOp->p1); 4834 } 4835 #endif 4836 VdbeBranchTaken(0,3); 4837 break; 4838 } 4839 nStep--; 4840 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4841 if( rc ){ 4842 if( rc==SQLITE_DONE ){ 4843 rc = SQLITE_OK; 4844 goto seekscan_search_fail; 4845 }else{ 4846 goto abort_due_to_error; 4847 } 4848 } 4849 } 4850 4851 break; 4852 } 4853 4854 4855 /* Opcode: SeekHit P1 P2 P3 * * 4856 ** Synopsis: set P2<=seekHit<=P3 4857 ** 4858 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4859 ** so that it is no less than P2 and no greater than P3. 4860 ** 4861 ** The seekHit integer represents the maximum of terms in an index for which 4862 ** there is known to be at least one match. If the seekHit value is smaller 4863 ** than the total number of equality terms in an index lookup, then the 4864 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4865 ** early, thus saving work. This is part of the IN-early-out optimization. 4866 ** 4867 ** P1 must be a valid b-tree cursor. 4868 */ 4869 case OP_SeekHit: { 4870 VdbeCursor *pC; 4871 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4872 pC = p->apCsr[pOp->p1]; 4873 assert( pC!=0 ); 4874 assert( pOp->p3>=pOp->p2 ); 4875 if( pC->seekHit<pOp->p2 ){ 4876 #ifdef SQLITE_DEBUG 4877 if( db->flags&SQLITE_VdbeTrace ){ 4878 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4879 } 4880 #endif 4881 pC->seekHit = pOp->p2; 4882 }else if( pC->seekHit>pOp->p3 ){ 4883 #ifdef SQLITE_DEBUG 4884 if( db->flags&SQLITE_VdbeTrace ){ 4885 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4886 } 4887 #endif 4888 pC->seekHit = pOp->p3; 4889 } 4890 break; 4891 } 4892 4893 /* Opcode: IfNotOpen P1 P2 * * * 4894 ** Synopsis: if( !csr[P1] ) goto P2 4895 ** 4896 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4897 */ 4898 case OP_IfNotOpen: { /* jump */ 4899 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4900 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4901 if( !p->apCsr[pOp->p1] ){ 4902 goto jump_to_p2_and_check_for_interrupt; 4903 } 4904 break; 4905 } 4906 4907 /* Opcode: Found P1 P2 P3 P4 * 4908 ** Synopsis: key=r[P3@P4] 4909 ** 4910 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4911 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4912 ** record. 4913 ** 4914 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4915 ** is a prefix of any entry in P1 then a jump is made to P2 and 4916 ** P1 is left pointing at the matching entry. 4917 ** 4918 ** This operation leaves the cursor in a state where it can be 4919 ** advanced in the forward direction. The Next instruction will work, 4920 ** but not the Prev instruction. 4921 ** 4922 ** See also: NotFound, NoConflict, NotExists. SeekGe 4923 */ 4924 /* Opcode: NotFound P1 P2 P3 P4 * 4925 ** Synopsis: key=r[P3@P4] 4926 ** 4927 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4928 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4929 ** record. 4930 ** 4931 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4932 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4933 ** does contain an entry whose prefix matches the P3/P4 record then control 4934 ** falls through to the next instruction and P1 is left pointing at the 4935 ** matching entry. 4936 ** 4937 ** This operation leaves the cursor in a state where it cannot be 4938 ** advanced in either direction. In other words, the Next and Prev 4939 ** opcodes do not work after this operation. 4940 ** 4941 ** See also: Found, NotExists, NoConflict, IfNoHope 4942 */ 4943 /* Opcode: IfNoHope P1 P2 P3 P4 * 4944 ** Synopsis: key=r[P3@P4] 4945 ** 4946 ** Register P3 is the first of P4 registers that form an unpacked 4947 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4948 ** In other words, the operands to this opcode are the same as the 4949 ** operands to OP_NotFound and OP_IdxGT. 4950 ** 4951 ** This opcode is an optimization attempt only. If this opcode always 4952 ** falls through, the correct answer is still obtained, but extra works 4953 ** is performed. 4954 ** 4955 ** A value of N in the seekHit flag of cursor P1 means that there exists 4956 ** a key P3:N that will match some record in the index. We want to know 4957 ** if it is possible for a record P3:P4 to match some record in the 4958 ** index. If it is not possible, we can skips some work. So if seekHit 4959 ** is less than P4, attempt to find out if a match is possible by running 4960 ** OP_NotFound. 4961 ** 4962 ** This opcode is used in IN clause processing for a multi-column key. 4963 ** If an IN clause is attached to an element of the key other than the 4964 ** left-most element, and if there are no matches on the most recent 4965 ** seek over the whole key, then it might be that one of the key element 4966 ** to the left is prohibiting a match, and hence there is "no hope" of 4967 ** any match regardless of how many IN clause elements are checked. 4968 ** In such a case, we abandon the IN clause search early, using this 4969 ** opcode. The opcode name comes from the fact that the 4970 ** jump is taken if there is "no hope" of achieving a match. 4971 ** 4972 ** See also: NotFound, SeekHit 4973 */ 4974 /* Opcode: NoConflict P1 P2 P3 P4 * 4975 ** Synopsis: key=r[P3@P4] 4976 ** 4977 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4978 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4979 ** record. 4980 ** 4981 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4982 ** contains any NULL value, jump immediately to P2. If all terms of the 4983 ** record are not-NULL then a check is done to determine if any row in the 4984 ** P1 index btree has a matching key prefix. If there are no matches, jump 4985 ** immediately to P2. If there is a match, fall through and leave the P1 4986 ** cursor pointing to the matching row. 4987 ** 4988 ** This opcode is similar to OP_NotFound with the exceptions that the 4989 ** branch is always taken if any part of the search key input is NULL. 4990 ** 4991 ** This operation leaves the cursor in a state where it cannot be 4992 ** advanced in either direction. In other words, the Next and Prev 4993 ** opcodes do not work after this operation. 4994 ** 4995 ** See also: NotFound, Found, NotExists 4996 */ 4997 case OP_IfNoHope: { /* jump, in3 */ 4998 VdbeCursor *pC; 4999 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5000 pC = p->apCsr[pOp->p1]; 5001 assert( pC!=0 ); 5002 #ifdef SQLITE_DEBUG 5003 if( db->flags&SQLITE_VdbeTrace ){ 5004 printf("seekHit is %d\n", pC->seekHit); 5005 } 5006 #endif 5007 if( pC->seekHit>=pOp->p4.i ) break; 5008 /* Fall through into OP_NotFound */ 5009 /* no break */ deliberate_fall_through 5010 } 5011 case OP_NoConflict: /* jump, in3 */ 5012 case OP_NotFound: /* jump, in3 */ 5013 case OP_Found: { /* jump, in3 */ 5014 int alreadyExists; 5015 int ii; 5016 VdbeCursor *pC; 5017 UnpackedRecord *pIdxKey; 5018 UnpackedRecord r; 5019 5020 #ifdef SQLITE_TEST 5021 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 5022 #endif 5023 5024 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5025 assert( pOp->p4type==P4_INT32 ); 5026 pC = p->apCsr[pOp->p1]; 5027 assert( pC!=0 ); 5028 #ifdef SQLITE_DEBUG 5029 pC->seekOp = pOp->opcode; 5030 #endif 5031 r.aMem = &aMem[pOp->p3]; 5032 assert( pC->eCurType==CURTYPE_BTREE ); 5033 assert( pC->uc.pCursor!=0 ); 5034 assert( pC->isTable==0 ); 5035 r.nField = (u16)pOp->p4.i; 5036 if( r.nField>0 ){ 5037 /* Key values in an array of registers */ 5038 r.pKeyInfo = pC->pKeyInfo; 5039 r.default_rc = 0; 5040 #ifdef SQLITE_DEBUG 5041 for(ii=0; ii<r.nField; ii++){ 5042 assert( memIsValid(&r.aMem[ii]) ); 5043 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 5044 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 5045 } 5046 #endif 5047 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); 5048 }else{ 5049 /* Composite key generated by OP_MakeRecord */ 5050 assert( r.aMem->flags & MEM_Blob ); 5051 assert( pOp->opcode!=OP_NoConflict ); 5052 rc = ExpandBlob(r.aMem); 5053 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5054 if( rc ) goto no_mem; 5055 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 5056 if( pIdxKey==0 ) goto no_mem; 5057 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); 5058 pIdxKey->default_rc = 0; 5059 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); 5060 sqlite3DbFreeNN(db, pIdxKey); 5061 } 5062 if( rc!=SQLITE_OK ){ 5063 goto abort_due_to_error; 5064 } 5065 alreadyExists = (pC->seekResult==0); 5066 pC->nullRow = 1-alreadyExists; 5067 pC->deferredMoveto = 0; 5068 pC->cacheStatus = CACHE_STALE; 5069 if( pOp->opcode==OP_Found ){ 5070 VdbeBranchTaken(alreadyExists!=0,2); 5071 if( alreadyExists ) goto jump_to_p2; 5072 }else{ 5073 if( !alreadyExists ){ 5074 VdbeBranchTaken(1,2); 5075 goto jump_to_p2; 5076 } 5077 if( pOp->opcode==OP_NoConflict ){ 5078 /* For the OP_NoConflict opcode, take the jump if any of the 5079 ** input fields are NULL, since any key with a NULL will not 5080 ** conflict */ 5081 for(ii=0; ii<r.nField; ii++){ 5082 if( r.aMem[ii].flags & MEM_Null ){ 5083 VdbeBranchTaken(1,2); 5084 goto jump_to_p2; 5085 } 5086 } 5087 } 5088 VdbeBranchTaken(0,2); 5089 if( pOp->opcode==OP_IfNoHope ){ 5090 pC->seekHit = pOp->p4.i; 5091 } 5092 } 5093 break; 5094 } 5095 5096 /* Opcode: SeekRowid P1 P2 P3 * * 5097 ** Synopsis: intkey=r[P3] 5098 ** 5099 ** P1 is the index of a cursor open on an SQL table btree (with integer 5100 ** keys). If register P3 does not contain an integer or if P1 does not 5101 ** contain a record with rowid P3 then jump immediately to P2. 5102 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 5103 ** a record with rowid P3 then 5104 ** leave the cursor pointing at that record and fall through to the next 5105 ** instruction. 5106 ** 5107 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 5108 ** the P3 register must be guaranteed to contain an integer value. With this 5109 ** opcode, register P3 might not contain an integer. 5110 ** 5111 ** The OP_NotFound opcode performs the same operation on index btrees 5112 ** (with arbitrary multi-value keys). 5113 ** 5114 ** This opcode leaves the cursor in a state where it cannot be advanced 5115 ** in either direction. In other words, the Next and Prev opcodes will 5116 ** not work following this opcode. 5117 ** 5118 ** See also: Found, NotFound, NoConflict, SeekRowid 5119 */ 5120 /* Opcode: NotExists P1 P2 P3 * * 5121 ** Synopsis: intkey=r[P3] 5122 ** 5123 ** P1 is the index of a cursor open on an SQL table btree (with integer 5124 ** keys). P3 is an integer rowid. If P1 does not contain a record with 5125 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 5126 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 5127 ** leave the cursor pointing at that record and fall through to the next 5128 ** instruction. 5129 ** 5130 ** The OP_SeekRowid opcode performs the same operation but also allows the 5131 ** P3 register to contain a non-integer value, in which case the jump is 5132 ** always taken. This opcode requires that P3 always contain an integer. 5133 ** 5134 ** The OP_NotFound opcode performs the same operation on index btrees 5135 ** (with arbitrary multi-value keys). 5136 ** 5137 ** This opcode leaves the cursor in a state where it cannot be advanced 5138 ** in either direction. In other words, the Next and Prev opcodes will 5139 ** not work following this opcode. 5140 ** 5141 ** See also: Found, NotFound, NoConflict, SeekRowid 5142 */ 5143 case OP_SeekRowid: { /* jump, in3 */ 5144 VdbeCursor *pC; 5145 BtCursor *pCrsr; 5146 int res; 5147 u64 iKey; 5148 5149 pIn3 = &aMem[pOp->p3]; 5150 testcase( pIn3->flags & MEM_Int ); 5151 testcase( pIn3->flags & MEM_IntReal ); 5152 testcase( pIn3->flags & MEM_Real ); 5153 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 5154 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5155 /* If pIn3->u.i does not contain an integer, compute iKey as the 5156 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5157 ** into an integer without loss of information. Take care to avoid 5158 ** changing the datatype of pIn3, however, as it is used by other 5159 ** parts of the prepared statement. */ 5160 Mem x = pIn3[0]; 5161 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5162 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5163 iKey = x.u.i; 5164 goto notExistsWithKey; 5165 } 5166 /* Fall through into OP_NotExists */ 5167 /* no break */ deliberate_fall_through 5168 case OP_NotExists: /* jump, in3 */ 5169 pIn3 = &aMem[pOp->p3]; 5170 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5171 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5172 iKey = pIn3->u.i; 5173 notExistsWithKey: 5174 pC = p->apCsr[pOp->p1]; 5175 assert( pC!=0 ); 5176 #ifdef SQLITE_DEBUG 5177 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5178 #endif 5179 assert( pC->isTable ); 5180 assert( pC->eCurType==CURTYPE_BTREE ); 5181 pCrsr = pC->uc.pCursor; 5182 assert( pCrsr!=0 ); 5183 res = 0; 5184 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5185 assert( rc==SQLITE_OK || res==0 ); 5186 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5187 pC->nullRow = 0; 5188 pC->cacheStatus = CACHE_STALE; 5189 pC->deferredMoveto = 0; 5190 VdbeBranchTaken(res!=0,2); 5191 pC->seekResult = res; 5192 if( res!=0 ){ 5193 assert( rc==SQLITE_OK ); 5194 if( pOp->p2==0 ){ 5195 rc = SQLITE_CORRUPT_BKPT; 5196 }else{ 5197 goto jump_to_p2; 5198 } 5199 } 5200 if( rc ) goto abort_due_to_error; 5201 break; 5202 } 5203 5204 /* Opcode: Sequence P1 P2 * * * 5205 ** Synopsis: r[P2]=cursor[P1].ctr++ 5206 ** 5207 ** Find the next available sequence number for cursor P1. 5208 ** Write the sequence number into register P2. 5209 ** The sequence number on the cursor is incremented after this 5210 ** instruction. 5211 */ 5212 case OP_Sequence: { /* out2 */ 5213 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5214 assert( p->apCsr[pOp->p1]!=0 ); 5215 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5216 pOut = out2Prerelease(p, pOp); 5217 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5218 break; 5219 } 5220 5221 5222 /* Opcode: NewRowid P1 P2 P3 * * 5223 ** Synopsis: r[P2]=rowid 5224 ** 5225 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5226 ** The record number is not previously used as a key in the database 5227 ** table that cursor P1 points to. The new record number is written 5228 ** written to register P2. 5229 ** 5230 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5231 ** the largest previously generated record number. No new record numbers are 5232 ** allowed to be less than this value. When this value reaches its maximum, 5233 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5234 ** generated record number. This P3 mechanism is used to help implement the 5235 ** AUTOINCREMENT feature. 5236 */ 5237 case OP_NewRowid: { /* out2 */ 5238 i64 v; /* The new rowid */ 5239 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5240 int res; /* Result of an sqlite3BtreeLast() */ 5241 int cnt; /* Counter to limit the number of searches */ 5242 #ifndef SQLITE_OMIT_AUTOINCREMENT 5243 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5244 VdbeFrame *pFrame; /* Root frame of VDBE */ 5245 #endif 5246 5247 v = 0; 5248 res = 0; 5249 pOut = out2Prerelease(p, pOp); 5250 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5251 pC = p->apCsr[pOp->p1]; 5252 assert( pC!=0 ); 5253 assert( pC->isTable ); 5254 assert( pC->eCurType==CURTYPE_BTREE ); 5255 assert( pC->uc.pCursor!=0 ); 5256 { 5257 /* The next rowid or record number (different terms for the same 5258 ** thing) is obtained in a two-step algorithm. 5259 ** 5260 ** First we attempt to find the largest existing rowid and add one 5261 ** to that. But if the largest existing rowid is already the maximum 5262 ** positive integer, we have to fall through to the second 5263 ** probabilistic algorithm 5264 ** 5265 ** The second algorithm is to select a rowid at random and see if 5266 ** it already exists in the table. If it does not exist, we have 5267 ** succeeded. If the random rowid does exist, we select a new one 5268 ** and try again, up to 100 times. 5269 */ 5270 assert( pC->isTable ); 5271 5272 #ifdef SQLITE_32BIT_ROWID 5273 # define MAX_ROWID 0x7fffffff 5274 #else 5275 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5276 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5277 ** to provide the constant while making all compilers happy. 5278 */ 5279 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5280 #endif 5281 5282 if( !pC->useRandomRowid ){ 5283 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5284 if( rc!=SQLITE_OK ){ 5285 goto abort_due_to_error; 5286 } 5287 if( res ){ 5288 v = 1; /* IMP: R-61914-48074 */ 5289 }else{ 5290 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5291 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5292 if( v>=MAX_ROWID ){ 5293 pC->useRandomRowid = 1; 5294 }else{ 5295 v++; /* IMP: R-29538-34987 */ 5296 } 5297 } 5298 } 5299 5300 #ifndef SQLITE_OMIT_AUTOINCREMENT 5301 if( pOp->p3 ){ 5302 /* Assert that P3 is a valid memory cell. */ 5303 assert( pOp->p3>0 ); 5304 if( p->pFrame ){ 5305 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5306 /* Assert that P3 is a valid memory cell. */ 5307 assert( pOp->p3<=pFrame->nMem ); 5308 pMem = &pFrame->aMem[pOp->p3]; 5309 }else{ 5310 /* Assert that P3 is a valid memory cell. */ 5311 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5312 pMem = &aMem[pOp->p3]; 5313 memAboutToChange(p, pMem); 5314 } 5315 assert( memIsValid(pMem) ); 5316 5317 REGISTER_TRACE(pOp->p3, pMem); 5318 sqlite3VdbeMemIntegerify(pMem); 5319 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5320 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5321 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5322 goto abort_due_to_error; 5323 } 5324 if( v<pMem->u.i+1 ){ 5325 v = pMem->u.i + 1; 5326 } 5327 pMem->u.i = v; 5328 } 5329 #endif 5330 if( pC->useRandomRowid ){ 5331 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5332 ** largest possible integer (9223372036854775807) then the database 5333 ** engine starts picking positive candidate ROWIDs at random until 5334 ** it finds one that is not previously used. */ 5335 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5336 ** an AUTOINCREMENT table. */ 5337 cnt = 0; 5338 do{ 5339 sqlite3_randomness(sizeof(v), &v); 5340 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5341 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5342 0, &res))==SQLITE_OK) 5343 && (res==0) 5344 && (++cnt<100)); 5345 if( rc ) goto abort_due_to_error; 5346 if( res==0 ){ 5347 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5348 goto abort_due_to_error; 5349 } 5350 assert( v>0 ); /* EV: R-40812-03570 */ 5351 } 5352 pC->deferredMoveto = 0; 5353 pC->cacheStatus = CACHE_STALE; 5354 } 5355 pOut->u.i = v; 5356 break; 5357 } 5358 5359 /* Opcode: Insert P1 P2 P3 P4 P5 5360 ** Synopsis: intkey=r[P3] data=r[P2] 5361 ** 5362 ** Write an entry into the table of cursor P1. A new entry is 5363 ** created if it doesn't already exist or the data for an existing 5364 ** entry is overwritten. The data is the value MEM_Blob stored in register 5365 ** number P2. The key is stored in register P3. The key must 5366 ** be a MEM_Int. 5367 ** 5368 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5369 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5370 ** then rowid is stored for subsequent return by the 5371 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5372 ** 5373 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5374 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5375 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5376 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5377 ** 5378 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5379 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5380 ** is part of an INSERT operation. The difference is only important to 5381 ** the update hook. 5382 ** 5383 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5384 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5385 ** following a successful insert. 5386 ** 5387 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5388 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5389 ** and register P2 becomes ephemeral. If the cursor is changed, the 5390 ** value of register P2 will then change. Make sure this does not 5391 ** cause any problems.) 5392 ** 5393 ** This instruction only works on tables. The equivalent instruction 5394 ** for indices is OP_IdxInsert. 5395 */ 5396 case OP_Insert: { 5397 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5398 Mem *pKey; /* MEM cell holding key for the record */ 5399 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5400 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5401 const char *zDb; /* database name - used by the update hook */ 5402 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5403 BtreePayload x; /* Payload to be inserted */ 5404 5405 pData = &aMem[pOp->p2]; 5406 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5407 assert( memIsValid(pData) ); 5408 pC = p->apCsr[pOp->p1]; 5409 assert( pC!=0 ); 5410 assert( pC->eCurType==CURTYPE_BTREE ); 5411 assert( pC->deferredMoveto==0 ); 5412 assert( pC->uc.pCursor!=0 ); 5413 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5414 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5415 REGISTER_TRACE(pOp->p2, pData); 5416 sqlite3VdbeIncrWriteCounter(p, pC); 5417 5418 pKey = &aMem[pOp->p3]; 5419 assert( pKey->flags & MEM_Int ); 5420 assert( memIsValid(pKey) ); 5421 REGISTER_TRACE(pOp->p3, pKey); 5422 x.nKey = pKey->u.i; 5423 5424 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5425 assert( pC->iDb>=0 ); 5426 zDb = db->aDb[pC->iDb].zDbSName; 5427 pTab = pOp->p4.pTab; 5428 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5429 }else{ 5430 pTab = 0; 5431 zDb = 0; 5432 } 5433 5434 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5435 /* Invoke the pre-update hook, if any */ 5436 if( pTab ){ 5437 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5438 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5439 } 5440 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5441 /* Prevent post-update hook from running in cases when it should not */ 5442 pTab = 0; 5443 } 5444 } 5445 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5446 #endif 5447 5448 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5449 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5450 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5451 x.pData = pData->z; 5452 x.nData = pData->n; 5453 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5454 if( pData->flags & MEM_Zero ){ 5455 x.nZero = pData->u.nZero; 5456 }else{ 5457 x.nZero = 0; 5458 } 5459 x.pKey = 0; 5460 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5461 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5462 seekResult 5463 ); 5464 pC->deferredMoveto = 0; 5465 pC->cacheStatus = CACHE_STALE; 5466 5467 /* Invoke the update-hook if required. */ 5468 if( rc ) goto abort_due_to_error; 5469 if( pTab ){ 5470 assert( db->xUpdateCallback!=0 ); 5471 assert( pTab->aCol!=0 ); 5472 db->xUpdateCallback(db->pUpdateArg, 5473 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5474 zDb, pTab->zName, x.nKey); 5475 } 5476 break; 5477 } 5478 5479 /* Opcode: RowCell P1 P2 P3 * * 5480 ** 5481 ** P1 and P2 are both open cursors. Both must be opened on the same type 5482 ** of table - intkey or index. This opcode is used as part of copying 5483 ** the current row from P2 into P1. If the cursors are opened on intkey 5484 ** tables, register P3 contains the rowid to use with the new record in 5485 ** P1. If they are opened on index tables, P3 is not used. 5486 ** 5487 ** This opcode must be followed by either an Insert or InsertIdx opcode 5488 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5489 */ 5490 case OP_RowCell: { 5491 VdbeCursor *pDest; /* Cursor to write to */ 5492 VdbeCursor *pSrc; /* Cursor to read from */ 5493 i64 iKey; /* Rowid value to insert with */ 5494 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5495 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5496 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5497 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5498 pDest = p->apCsr[pOp->p1]; 5499 pSrc = p->apCsr[pOp->p2]; 5500 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5501 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5502 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5503 break; 5504 }; 5505 5506 /* Opcode: Delete P1 P2 P3 P4 P5 5507 ** 5508 ** Delete the record at which the P1 cursor is currently pointing. 5509 ** 5510 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5511 ** the cursor will be left pointing at either the next or the previous 5512 ** record in the table. If it is left pointing at the next record, then 5513 ** the next Next instruction will be a no-op. As a result, in this case 5514 ** it is ok to delete a record from within a Next loop. If 5515 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5516 ** left in an undefined state. 5517 ** 5518 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5519 ** delete one of several associated with deleting a table row and all its 5520 ** associated index entries. Exactly one of those deletes is the "primary" 5521 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5522 ** marked with the AUXDELETE flag. 5523 ** 5524 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5525 ** change count is incremented (otherwise not). 5526 ** 5527 ** P1 must not be pseudo-table. It has to be a real table with 5528 ** multiple rows. 5529 ** 5530 ** If P4 is not NULL then it points to a Table object. In this case either 5531 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5532 ** have been positioned using OP_NotFound prior to invoking this opcode in 5533 ** this case. Specifically, if one is configured, the pre-update hook is 5534 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5535 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5536 ** 5537 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5538 ** of the memory cell that contains the value that the rowid of the row will 5539 ** be set to by the update. 5540 */ 5541 case OP_Delete: { 5542 VdbeCursor *pC; 5543 const char *zDb; 5544 Table *pTab; 5545 int opflags; 5546 5547 opflags = pOp->p2; 5548 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5549 pC = p->apCsr[pOp->p1]; 5550 assert( pC!=0 ); 5551 assert( pC->eCurType==CURTYPE_BTREE ); 5552 assert( pC->uc.pCursor!=0 ); 5553 assert( pC->deferredMoveto==0 ); 5554 sqlite3VdbeIncrWriteCounter(p, pC); 5555 5556 #ifdef SQLITE_DEBUG 5557 if( pOp->p4type==P4_TABLE 5558 && HasRowid(pOp->p4.pTab) 5559 && pOp->p5==0 5560 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5561 ){ 5562 /* If p5 is zero, the seek operation that positioned the cursor prior to 5563 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5564 ** the row that is being deleted */ 5565 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5566 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5567 } 5568 #endif 5569 5570 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5571 ** the name of the db to pass as to it. Also set local pTab to a copy 5572 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5573 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5574 ** VdbeCursor.movetoTarget to the current rowid. */ 5575 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5576 assert( pC->iDb>=0 ); 5577 assert( pOp->p4.pTab!=0 ); 5578 zDb = db->aDb[pC->iDb].zDbSName; 5579 pTab = pOp->p4.pTab; 5580 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5581 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5582 } 5583 }else{ 5584 zDb = 0; 5585 pTab = 0; 5586 } 5587 5588 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5589 /* Invoke the pre-update-hook if required. */ 5590 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5591 if( db->xPreUpdateCallback && pTab ){ 5592 assert( !(opflags & OPFLAG_ISUPDATE) 5593 || HasRowid(pTab)==0 5594 || (aMem[pOp->p3].flags & MEM_Int) 5595 ); 5596 sqlite3VdbePreUpdateHook(p, pC, 5597 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5598 zDb, pTab, pC->movetoTarget, 5599 pOp->p3, -1 5600 ); 5601 } 5602 if( opflags & OPFLAG_ISNOOP ) break; 5603 #endif 5604 5605 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5606 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5607 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5608 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5609 5610 #ifdef SQLITE_DEBUG 5611 if( p->pFrame==0 ){ 5612 if( pC->isEphemeral==0 5613 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5614 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5615 ){ 5616 nExtraDelete++; 5617 } 5618 if( pOp->p2 & OPFLAG_NCHANGE ){ 5619 nExtraDelete--; 5620 } 5621 } 5622 #endif 5623 5624 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5625 pC->cacheStatus = CACHE_STALE; 5626 pC->seekResult = 0; 5627 if( rc ) goto abort_due_to_error; 5628 5629 /* Invoke the update-hook if required. */ 5630 if( opflags & OPFLAG_NCHANGE ){ 5631 p->nChange++; 5632 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5633 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5634 pC->movetoTarget); 5635 assert( pC->iDb>=0 ); 5636 } 5637 } 5638 5639 break; 5640 } 5641 /* Opcode: ResetCount * * * * * 5642 ** 5643 ** The value of the change counter is copied to the database handle 5644 ** change counter (returned by subsequent calls to sqlite3_changes()). 5645 ** Then the VMs internal change counter resets to 0. 5646 ** This is used by trigger programs. 5647 */ 5648 case OP_ResetCount: { 5649 sqlite3VdbeSetChanges(db, p->nChange); 5650 p->nChange = 0; 5651 break; 5652 } 5653 5654 /* Opcode: SorterCompare P1 P2 P3 P4 5655 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5656 ** 5657 ** P1 is a sorter cursor. This instruction compares a prefix of the 5658 ** record blob in register P3 against a prefix of the entry that 5659 ** the sorter cursor currently points to. Only the first P4 fields 5660 ** of r[P3] and the sorter record are compared. 5661 ** 5662 ** If either P3 or the sorter contains a NULL in one of their significant 5663 ** fields (not counting the P4 fields at the end which are ignored) then 5664 ** the comparison is assumed to be equal. 5665 ** 5666 ** Fall through to next instruction if the two records compare equal to 5667 ** each other. Jump to P2 if they are different. 5668 */ 5669 case OP_SorterCompare: { 5670 VdbeCursor *pC; 5671 int res; 5672 int nKeyCol; 5673 5674 pC = p->apCsr[pOp->p1]; 5675 assert( isSorter(pC) ); 5676 assert( pOp->p4type==P4_INT32 ); 5677 pIn3 = &aMem[pOp->p3]; 5678 nKeyCol = pOp->p4.i; 5679 res = 0; 5680 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5681 VdbeBranchTaken(res!=0,2); 5682 if( rc ) goto abort_due_to_error; 5683 if( res ) goto jump_to_p2; 5684 break; 5685 }; 5686 5687 /* Opcode: SorterData P1 P2 P3 * * 5688 ** Synopsis: r[P2]=data 5689 ** 5690 ** Write into register P2 the current sorter data for sorter cursor P1. 5691 ** Then clear the column header cache on cursor P3. 5692 ** 5693 ** This opcode is normally use to move a record out of the sorter and into 5694 ** a register that is the source for a pseudo-table cursor created using 5695 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5696 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5697 ** us from having to issue a separate NullRow instruction to clear that cache. 5698 */ 5699 case OP_SorterData: { 5700 VdbeCursor *pC; 5701 5702 pOut = &aMem[pOp->p2]; 5703 pC = p->apCsr[pOp->p1]; 5704 assert( isSorter(pC) ); 5705 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5706 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5707 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5708 if( rc ) goto abort_due_to_error; 5709 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5710 break; 5711 } 5712 5713 /* Opcode: RowData P1 P2 P3 * * 5714 ** Synopsis: r[P2]=data 5715 ** 5716 ** Write into register P2 the complete row content for the row at 5717 ** which cursor P1 is currently pointing. 5718 ** There is no interpretation of the data. 5719 ** It is just copied onto the P2 register exactly as 5720 ** it is found in the database file. 5721 ** 5722 ** If cursor P1 is an index, then the content is the key of the row. 5723 ** If cursor P2 is a table, then the content extracted is the data. 5724 ** 5725 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5726 ** of a real table, not a pseudo-table. 5727 ** 5728 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5729 ** into the database page. That means that the content of the output 5730 ** register will be invalidated as soon as the cursor moves - including 5731 ** moves caused by other cursors that "save" the current cursors 5732 ** position in order that they can write to the same table. If P3==0 5733 ** then a copy of the data is made into memory. P3!=0 is faster, but 5734 ** P3==0 is safer. 5735 ** 5736 ** If P3!=0 then the content of the P2 register is unsuitable for use 5737 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5738 ** The P2 register content is invalidated by opcodes like OP_Function or 5739 ** by any use of another cursor pointing to the same table. 5740 */ 5741 case OP_RowData: { 5742 VdbeCursor *pC; 5743 BtCursor *pCrsr; 5744 u32 n; 5745 5746 pOut = out2Prerelease(p, pOp); 5747 5748 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5749 pC = p->apCsr[pOp->p1]; 5750 assert( pC!=0 ); 5751 assert( pC->eCurType==CURTYPE_BTREE ); 5752 assert( isSorter(pC)==0 ); 5753 assert( pC->nullRow==0 ); 5754 assert( pC->uc.pCursor!=0 ); 5755 pCrsr = pC->uc.pCursor; 5756 5757 /* The OP_RowData opcodes always follow OP_NotExists or 5758 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5759 ** that might invalidate the cursor. 5760 ** If this where not the case, on of the following assert()s 5761 ** would fail. Should this ever change (because of changes in the code 5762 ** generator) then the fix would be to insert a call to 5763 ** sqlite3VdbeCursorMoveto(). 5764 */ 5765 assert( pC->deferredMoveto==0 ); 5766 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5767 5768 n = sqlite3BtreePayloadSize(pCrsr); 5769 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5770 goto too_big; 5771 } 5772 testcase( n==0 ); 5773 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5774 if( rc ) goto abort_due_to_error; 5775 if( !pOp->p3 ) Deephemeralize(pOut); 5776 UPDATE_MAX_BLOBSIZE(pOut); 5777 REGISTER_TRACE(pOp->p2, pOut); 5778 break; 5779 } 5780 5781 /* Opcode: Rowid P1 P2 * * * 5782 ** Synopsis: r[P2]=PX rowid of P1 5783 ** 5784 ** Store in register P2 an integer which is the key of the table entry that 5785 ** P1 is currently point to. 5786 ** 5787 ** P1 can be either an ordinary table or a virtual table. There used to 5788 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5789 ** one opcode now works for both table types. 5790 */ 5791 case OP_Rowid: { /* out2 */ 5792 VdbeCursor *pC; 5793 i64 v; 5794 sqlite3_vtab *pVtab; 5795 const sqlite3_module *pModule; 5796 5797 pOut = out2Prerelease(p, pOp); 5798 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5799 pC = p->apCsr[pOp->p1]; 5800 assert( pC!=0 ); 5801 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5802 if( pC->nullRow ){ 5803 pOut->flags = MEM_Null; 5804 break; 5805 }else if( pC->deferredMoveto ){ 5806 v = pC->movetoTarget; 5807 #ifndef SQLITE_OMIT_VIRTUALTABLE 5808 }else if( pC->eCurType==CURTYPE_VTAB ){ 5809 assert( pC->uc.pVCur!=0 ); 5810 pVtab = pC->uc.pVCur->pVtab; 5811 pModule = pVtab->pModule; 5812 assert( pModule->xRowid ); 5813 rc = pModule->xRowid(pC->uc.pVCur, &v); 5814 sqlite3VtabImportErrmsg(p, pVtab); 5815 if( rc ) goto abort_due_to_error; 5816 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5817 }else{ 5818 assert( pC->eCurType==CURTYPE_BTREE ); 5819 assert( pC->uc.pCursor!=0 ); 5820 rc = sqlite3VdbeCursorRestore(pC); 5821 if( rc ) goto abort_due_to_error; 5822 if( pC->nullRow ){ 5823 pOut->flags = MEM_Null; 5824 break; 5825 } 5826 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5827 } 5828 pOut->u.i = v; 5829 break; 5830 } 5831 5832 /* Opcode: NullRow P1 * * * * 5833 ** 5834 ** Move the cursor P1 to a null row. Any OP_Column operations 5835 ** that occur while the cursor is on the null row will always 5836 ** write a NULL. 5837 ** 5838 ** If cursor P1 is not previously opened, open it now to a special 5839 ** pseudo-cursor that always returns NULL for every column. 5840 */ 5841 case OP_NullRow: { 5842 VdbeCursor *pC; 5843 5844 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5845 pC = p->apCsr[pOp->p1]; 5846 if( pC==0 ){ 5847 /* If the cursor is not already open, create a special kind of 5848 ** pseudo-cursor that always gives null rows. */ 5849 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); 5850 if( pC==0 ) goto no_mem; 5851 pC->seekResult = 0; 5852 pC->isTable = 1; 5853 pC->noReuse = 1; 5854 pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); 5855 } 5856 pC->nullRow = 1; 5857 pC->cacheStatus = CACHE_STALE; 5858 if( pC->eCurType==CURTYPE_BTREE ){ 5859 assert( pC->uc.pCursor!=0 ); 5860 sqlite3BtreeClearCursor(pC->uc.pCursor); 5861 } 5862 #ifdef SQLITE_DEBUG 5863 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5864 #endif 5865 break; 5866 } 5867 5868 /* Opcode: SeekEnd P1 * * * * 5869 ** 5870 ** Position cursor P1 at the end of the btree for the purpose of 5871 ** appending a new entry onto the btree. 5872 ** 5873 ** It is assumed that the cursor is used only for appending and so 5874 ** if the cursor is valid, then the cursor must already be pointing 5875 ** at the end of the btree and so no changes are made to 5876 ** the cursor. 5877 */ 5878 /* Opcode: Last P1 P2 * * * 5879 ** 5880 ** The next use of the Rowid or Column or Prev instruction for P1 5881 ** will refer to the last entry in the database table or index. 5882 ** If the table or index is empty and P2>0, then jump immediately to P2. 5883 ** If P2 is 0 or if the table or index is not empty, fall through 5884 ** to the following instruction. 5885 ** 5886 ** This opcode leaves the cursor configured to move in reverse order, 5887 ** from the end toward the beginning. In other words, the cursor is 5888 ** configured to use Prev, not Next. 5889 */ 5890 case OP_SeekEnd: 5891 case OP_Last: { /* jump */ 5892 VdbeCursor *pC; 5893 BtCursor *pCrsr; 5894 int res; 5895 5896 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5897 pC = p->apCsr[pOp->p1]; 5898 assert( pC!=0 ); 5899 assert( pC->eCurType==CURTYPE_BTREE ); 5900 pCrsr = pC->uc.pCursor; 5901 res = 0; 5902 assert( pCrsr!=0 ); 5903 #ifdef SQLITE_DEBUG 5904 pC->seekOp = pOp->opcode; 5905 #endif 5906 if( pOp->opcode==OP_SeekEnd ){ 5907 assert( pOp->p2==0 ); 5908 pC->seekResult = -1; 5909 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5910 break; 5911 } 5912 } 5913 rc = sqlite3BtreeLast(pCrsr, &res); 5914 pC->nullRow = (u8)res; 5915 pC->deferredMoveto = 0; 5916 pC->cacheStatus = CACHE_STALE; 5917 if( rc ) goto abort_due_to_error; 5918 if( pOp->p2>0 ){ 5919 VdbeBranchTaken(res!=0,2); 5920 if( res ) goto jump_to_p2; 5921 } 5922 break; 5923 } 5924 5925 /* Opcode: IfSmaller P1 P2 P3 * * 5926 ** 5927 ** Estimate the number of rows in the table P1. Jump to P2 if that 5928 ** estimate is less than approximately 2**(0.1*P3). 5929 */ 5930 case OP_IfSmaller: { /* jump */ 5931 VdbeCursor *pC; 5932 BtCursor *pCrsr; 5933 int res; 5934 i64 sz; 5935 5936 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5937 pC = p->apCsr[pOp->p1]; 5938 assert( pC!=0 ); 5939 pCrsr = pC->uc.pCursor; 5940 assert( pCrsr ); 5941 rc = sqlite3BtreeFirst(pCrsr, &res); 5942 if( rc ) goto abort_due_to_error; 5943 if( res==0 ){ 5944 sz = sqlite3BtreeRowCountEst(pCrsr); 5945 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5946 } 5947 VdbeBranchTaken(res!=0,2); 5948 if( res ) goto jump_to_p2; 5949 break; 5950 } 5951 5952 5953 /* Opcode: SorterSort P1 P2 * * * 5954 ** 5955 ** After all records have been inserted into the Sorter object 5956 ** identified by P1, invoke this opcode to actually do the sorting. 5957 ** Jump to P2 if there are no records to be sorted. 5958 ** 5959 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5960 ** for Sorter objects. 5961 */ 5962 /* Opcode: Sort P1 P2 * * * 5963 ** 5964 ** This opcode does exactly the same thing as OP_Rewind except that 5965 ** it increments an undocumented global variable used for testing. 5966 ** 5967 ** Sorting is accomplished by writing records into a sorting index, 5968 ** then rewinding that index and playing it back from beginning to 5969 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5970 ** rewinding so that the global variable will be incremented and 5971 ** regression tests can determine whether or not the optimizer is 5972 ** correctly optimizing out sorts. 5973 */ 5974 case OP_SorterSort: /* jump */ 5975 case OP_Sort: { /* jump */ 5976 #ifdef SQLITE_TEST 5977 sqlite3_sort_count++; 5978 sqlite3_search_count--; 5979 #endif 5980 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5981 /* Fall through into OP_Rewind */ 5982 /* no break */ deliberate_fall_through 5983 } 5984 /* Opcode: Rewind P1 P2 * * * 5985 ** 5986 ** The next use of the Rowid or Column or Next instruction for P1 5987 ** will refer to the first entry in the database table or index. 5988 ** If the table or index is empty, jump immediately to P2. 5989 ** If the table or index is not empty, fall through to the following 5990 ** instruction. 5991 ** 5992 ** This opcode leaves the cursor configured to move in forward order, 5993 ** from the beginning toward the end. In other words, the cursor is 5994 ** configured to use Next, not Prev. 5995 */ 5996 case OP_Rewind: { /* jump */ 5997 VdbeCursor *pC; 5998 BtCursor *pCrsr; 5999 int res; 6000 6001 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6002 assert( pOp->p5==0 ); 6003 pC = p->apCsr[pOp->p1]; 6004 assert( pC!=0 ); 6005 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 6006 res = 1; 6007 #ifdef SQLITE_DEBUG 6008 pC->seekOp = OP_Rewind; 6009 #endif 6010 if( isSorter(pC) ){ 6011 rc = sqlite3VdbeSorterRewind(pC, &res); 6012 }else{ 6013 assert( pC->eCurType==CURTYPE_BTREE ); 6014 pCrsr = pC->uc.pCursor; 6015 assert( pCrsr ); 6016 rc = sqlite3BtreeFirst(pCrsr, &res); 6017 pC->deferredMoveto = 0; 6018 pC->cacheStatus = CACHE_STALE; 6019 } 6020 if( rc ) goto abort_due_to_error; 6021 pC->nullRow = (u8)res; 6022 assert( pOp->p2>0 && pOp->p2<p->nOp ); 6023 VdbeBranchTaken(res!=0,2); 6024 if( res ) goto jump_to_p2; 6025 break; 6026 } 6027 6028 /* Opcode: Next P1 P2 P3 * P5 6029 ** 6030 ** Advance cursor P1 so that it points to the next key/data pair in its 6031 ** table or index. If there are no more key/value pairs then fall through 6032 ** to the following instruction. But if the cursor advance was successful, 6033 ** jump immediately to P2. 6034 ** 6035 ** The Next opcode is only valid following an SeekGT, SeekGE, or 6036 ** OP_Rewind opcode used to position the cursor. Next is not allowed 6037 ** to follow SeekLT, SeekLE, or OP_Last. 6038 ** 6039 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 6040 ** been opened prior to this opcode or the program will segfault. 6041 ** 6042 ** The P3 value is a hint to the btree implementation. If P3==1, that 6043 ** means P1 is an SQL index and that this instruction could have been 6044 ** omitted if that index had been unique. P3 is usually 0. P3 is 6045 ** always either 0 or 1. 6046 ** 6047 ** If P5 is positive and the jump is taken, then event counter 6048 ** number P5-1 in the prepared statement is incremented. 6049 ** 6050 ** See also: Prev 6051 */ 6052 /* Opcode: Prev P1 P2 P3 * P5 6053 ** 6054 ** Back up cursor P1 so that it points to the previous key/data pair in its 6055 ** table or index. If there is no previous key/value pairs then fall through 6056 ** to the following instruction. But if the cursor backup was successful, 6057 ** jump immediately to P2. 6058 ** 6059 ** 6060 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 6061 ** OP_Last opcode used to position the cursor. Prev is not allowed 6062 ** to follow SeekGT, SeekGE, or OP_Rewind. 6063 ** 6064 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 6065 ** not open then the behavior is undefined. 6066 ** 6067 ** The P3 value is a hint to the btree implementation. If P3==1, that 6068 ** means P1 is an SQL index and that this instruction could have been 6069 ** omitted if that index had been unique. P3 is usually 0. P3 is 6070 ** always either 0 or 1. 6071 ** 6072 ** If P5 is positive and the jump is taken, then event counter 6073 ** number P5-1 in the prepared statement is incremented. 6074 */ 6075 /* Opcode: SorterNext P1 P2 * * P5 6076 ** 6077 ** This opcode works just like OP_Next except that P1 must be a 6078 ** sorter object for which the OP_SorterSort opcode has been 6079 ** invoked. This opcode advances the cursor to the next sorted 6080 ** record, or jumps to P2 if there are no more sorted records. 6081 */ 6082 case OP_SorterNext: { /* jump */ 6083 VdbeCursor *pC; 6084 6085 pC = p->apCsr[pOp->p1]; 6086 assert( isSorter(pC) ); 6087 rc = sqlite3VdbeSorterNext(db, pC); 6088 goto next_tail; 6089 6090 case OP_Prev: /* jump */ 6091 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6092 assert( pOp->p5<ArraySize(p->aCounter) ); 6093 pC = p->apCsr[pOp->p1]; 6094 assert( pC!=0 ); 6095 assert( pC->deferredMoveto==0 ); 6096 assert( pC->eCurType==CURTYPE_BTREE ); 6097 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 6098 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 6099 || pC->seekOp==OP_NullRow); 6100 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 6101 goto next_tail; 6102 6103 case OP_Next: /* jump */ 6104 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6105 assert( pOp->p5<ArraySize(p->aCounter) ); 6106 pC = p->apCsr[pOp->p1]; 6107 assert( pC!=0 ); 6108 assert( pC->deferredMoveto==0 ); 6109 assert( pC->eCurType==CURTYPE_BTREE ); 6110 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 6111 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 6112 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 6113 || pC->seekOp==OP_IfNoHope); 6114 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 6115 6116 next_tail: 6117 pC->cacheStatus = CACHE_STALE; 6118 VdbeBranchTaken(rc==SQLITE_OK,2); 6119 if( rc==SQLITE_OK ){ 6120 pC->nullRow = 0; 6121 p->aCounter[pOp->p5]++; 6122 #ifdef SQLITE_TEST 6123 sqlite3_search_count++; 6124 #endif 6125 goto jump_to_p2_and_check_for_interrupt; 6126 } 6127 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6128 rc = SQLITE_OK; 6129 pC->nullRow = 1; 6130 goto check_for_interrupt; 6131 } 6132 6133 /* Opcode: IdxInsert P1 P2 P3 P4 P5 6134 ** Synopsis: key=r[P2] 6135 ** 6136 ** Register P2 holds an SQL index key made using the 6137 ** MakeRecord instructions. This opcode writes that key 6138 ** into the index P1. Data for the entry is nil. 6139 ** 6140 ** If P4 is not zero, then it is the number of values in the unpacked 6141 ** key of reg(P2). In that case, P3 is the index of the first register 6142 ** for the unpacked key. The availability of the unpacked key can sometimes 6143 ** be an optimization. 6144 ** 6145 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 6146 ** that this insert is likely to be an append. 6147 ** 6148 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 6149 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 6150 ** then the change counter is unchanged. 6151 ** 6152 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 6153 ** run faster by avoiding an unnecessary seek on cursor P1. However, 6154 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 6155 ** seeks on the cursor or if the most recent seek used a key equivalent 6156 ** to P2. 6157 ** 6158 ** This instruction only works for indices. The equivalent instruction 6159 ** for tables is OP_Insert. 6160 */ 6161 case OP_IdxInsert: { /* in2 */ 6162 VdbeCursor *pC; 6163 BtreePayload x; 6164 6165 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6166 pC = p->apCsr[pOp->p1]; 6167 sqlite3VdbeIncrWriteCounter(p, pC); 6168 assert( pC!=0 ); 6169 assert( !isSorter(pC) ); 6170 pIn2 = &aMem[pOp->p2]; 6171 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6172 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6173 assert( pC->eCurType==CURTYPE_BTREE ); 6174 assert( pC->isTable==0 ); 6175 rc = ExpandBlob(pIn2); 6176 if( rc ) goto abort_due_to_error; 6177 x.nKey = pIn2->n; 6178 x.pKey = pIn2->z; 6179 x.aMem = aMem + pOp->p3; 6180 x.nMem = (u16)pOp->p4.i; 6181 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6182 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6183 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6184 ); 6185 assert( pC->deferredMoveto==0 ); 6186 pC->cacheStatus = CACHE_STALE; 6187 if( rc) goto abort_due_to_error; 6188 break; 6189 } 6190 6191 /* Opcode: SorterInsert P1 P2 * * * 6192 ** Synopsis: key=r[P2] 6193 ** 6194 ** Register P2 holds an SQL index key made using the 6195 ** MakeRecord instructions. This opcode writes that key 6196 ** into the sorter P1. Data for the entry is nil. 6197 */ 6198 case OP_SorterInsert: { /* in2 */ 6199 VdbeCursor *pC; 6200 6201 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6202 pC = p->apCsr[pOp->p1]; 6203 sqlite3VdbeIncrWriteCounter(p, pC); 6204 assert( pC!=0 ); 6205 assert( isSorter(pC) ); 6206 pIn2 = &aMem[pOp->p2]; 6207 assert( pIn2->flags & MEM_Blob ); 6208 assert( pC->isTable==0 ); 6209 rc = ExpandBlob(pIn2); 6210 if( rc ) goto abort_due_to_error; 6211 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6212 if( rc) goto abort_due_to_error; 6213 break; 6214 } 6215 6216 /* Opcode: IdxDelete P1 P2 P3 * P5 6217 ** Synopsis: key=r[P2@P3] 6218 ** 6219 ** The content of P3 registers starting at register P2 form 6220 ** an unpacked index key. This opcode removes that entry from the 6221 ** index opened by cursor P1. 6222 ** 6223 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6224 ** if no matching index entry is found. This happens when running 6225 ** an UPDATE or DELETE statement and the index entry to be updated 6226 ** or deleted is not found. For some uses of IdxDelete 6227 ** (example: the EXCEPT operator) it does not matter that no matching 6228 ** entry is found. For those cases, P5 is zero. Also, do not raise 6229 ** this (self-correcting and non-critical) error if in writable_schema mode. 6230 */ 6231 case OP_IdxDelete: { 6232 VdbeCursor *pC; 6233 BtCursor *pCrsr; 6234 int res; 6235 UnpackedRecord r; 6236 6237 assert( pOp->p3>0 ); 6238 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6239 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6240 pC = p->apCsr[pOp->p1]; 6241 assert( pC!=0 ); 6242 assert( pC->eCurType==CURTYPE_BTREE ); 6243 sqlite3VdbeIncrWriteCounter(p, pC); 6244 pCrsr = pC->uc.pCursor; 6245 assert( pCrsr!=0 ); 6246 r.pKeyInfo = pC->pKeyInfo; 6247 r.nField = (u16)pOp->p3; 6248 r.default_rc = 0; 6249 r.aMem = &aMem[pOp->p2]; 6250 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6251 if( rc ) goto abort_due_to_error; 6252 if( res==0 ){ 6253 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6254 if( rc ) goto abort_due_to_error; 6255 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6256 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6257 goto abort_due_to_error; 6258 } 6259 assert( pC->deferredMoveto==0 ); 6260 pC->cacheStatus = CACHE_STALE; 6261 pC->seekResult = 0; 6262 break; 6263 } 6264 6265 /* Opcode: DeferredSeek P1 * P3 P4 * 6266 ** Synopsis: Move P3 to P1.rowid if needed 6267 ** 6268 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6269 ** table. This opcode does a deferred seek of the P3 table cursor 6270 ** to the row that corresponds to the current row of P1. 6271 ** 6272 ** This is a deferred seek. Nothing actually happens until 6273 ** the cursor is used to read a record. That way, if no reads 6274 ** occur, no unnecessary I/O happens. 6275 ** 6276 ** P4 may be an array of integers (type P4_INTARRAY) containing 6277 ** one entry for each column in the P3 table. If array entry a(i) 6278 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6279 ** equivalent to performing the deferred seek and then reading column i 6280 ** from P1. This information is stored in P3 and used to redirect 6281 ** reads against P3 over to P1, thus possibly avoiding the need to 6282 ** seek and read cursor P3. 6283 */ 6284 /* Opcode: IdxRowid P1 P2 * * * 6285 ** Synopsis: r[P2]=rowid 6286 ** 6287 ** Write into register P2 an integer which is the last entry in the record at 6288 ** the end of the index key pointed to by cursor P1. This integer should be 6289 ** the rowid of the table entry to which this index entry points. 6290 ** 6291 ** See also: Rowid, MakeRecord. 6292 */ 6293 case OP_DeferredSeek: 6294 case OP_IdxRowid: { /* out2 */ 6295 VdbeCursor *pC; /* The P1 index cursor */ 6296 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6297 i64 rowid; /* Rowid that P1 current points to */ 6298 6299 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6300 pC = p->apCsr[pOp->p1]; 6301 assert( pC!=0 ); 6302 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); 6303 assert( pC->uc.pCursor!=0 ); 6304 assert( pC->isTable==0 || IsNullCursor(pC) ); 6305 assert( pC->deferredMoveto==0 ); 6306 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6307 6308 /* The IdxRowid and Seek opcodes are combined because of the commonality 6309 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6310 rc = sqlite3VdbeCursorRestore(pC); 6311 6312 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 6313 ** out from under the cursor. That will never happens for an IdxRowid 6314 ** or Seek opcode */ 6315 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 6316 6317 if( !pC->nullRow ){ 6318 rowid = 0; /* Not needed. Only used to silence a warning. */ 6319 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6320 if( rc!=SQLITE_OK ){ 6321 goto abort_due_to_error; 6322 } 6323 if( pOp->opcode==OP_DeferredSeek ){ 6324 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6325 pTabCur = p->apCsr[pOp->p3]; 6326 assert( pTabCur!=0 ); 6327 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6328 assert( pTabCur->uc.pCursor!=0 ); 6329 assert( pTabCur->isTable ); 6330 pTabCur->nullRow = 0; 6331 pTabCur->movetoTarget = rowid; 6332 pTabCur->deferredMoveto = 1; 6333 pTabCur->cacheStatus = CACHE_STALE; 6334 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6335 assert( !pTabCur->isEphemeral ); 6336 pTabCur->ub.aAltMap = pOp->p4.ai; 6337 assert( !pC->isEphemeral ); 6338 pTabCur->pAltCursor = pC; 6339 }else{ 6340 pOut = out2Prerelease(p, pOp); 6341 pOut->u.i = rowid; 6342 } 6343 }else{ 6344 assert( pOp->opcode==OP_IdxRowid ); 6345 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6346 } 6347 break; 6348 } 6349 6350 /* Opcode: FinishSeek P1 * * * * 6351 ** 6352 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6353 ** seek operation now, without further delay. If the cursor seek has 6354 ** already occurred, this instruction is a no-op. 6355 */ 6356 case OP_FinishSeek: { 6357 VdbeCursor *pC; /* The P1 index cursor */ 6358 6359 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6360 pC = p->apCsr[pOp->p1]; 6361 if( pC->deferredMoveto ){ 6362 rc = sqlite3VdbeFinishMoveto(pC); 6363 if( rc ) goto abort_due_to_error; 6364 } 6365 break; 6366 } 6367 6368 /* Opcode: IdxGE P1 P2 P3 P4 * 6369 ** Synopsis: key=r[P3@P4] 6370 ** 6371 ** The P4 register values beginning with P3 form an unpacked index 6372 ** key that omits the PRIMARY KEY. Compare this key value against the index 6373 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6374 ** fields at the end. 6375 ** 6376 ** If the P1 index entry is greater than or equal to the key value 6377 ** then jump to P2. Otherwise fall through to the next instruction. 6378 */ 6379 /* Opcode: IdxGT P1 P2 P3 P4 * 6380 ** Synopsis: key=r[P3@P4] 6381 ** 6382 ** The P4 register values beginning with P3 form an unpacked index 6383 ** key that omits the PRIMARY KEY. Compare this key value against the index 6384 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6385 ** fields at the end. 6386 ** 6387 ** If the P1 index entry is greater than the key value 6388 ** then jump to P2. Otherwise fall through to the next instruction. 6389 */ 6390 /* Opcode: IdxLT P1 P2 P3 P4 * 6391 ** Synopsis: key=r[P3@P4] 6392 ** 6393 ** The P4 register values beginning with P3 form an unpacked index 6394 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6395 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6396 ** ROWID on the P1 index. 6397 ** 6398 ** If the P1 index entry is less than the key value then jump to P2. 6399 ** Otherwise fall through to the next instruction. 6400 */ 6401 /* Opcode: IdxLE P1 P2 P3 P4 * 6402 ** Synopsis: key=r[P3@P4] 6403 ** 6404 ** The P4 register values beginning with P3 form an unpacked index 6405 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6406 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6407 ** ROWID on the P1 index. 6408 ** 6409 ** If the P1 index entry is less than or equal to the key value then jump 6410 ** to P2. Otherwise fall through to the next instruction. 6411 */ 6412 case OP_IdxLE: /* jump */ 6413 case OP_IdxGT: /* jump */ 6414 case OP_IdxLT: /* jump */ 6415 case OP_IdxGE: { /* jump */ 6416 VdbeCursor *pC; 6417 int res; 6418 UnpackedRecord r; 6419 6420 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6421 pC = p->apCsr[pOp->p1]; 6422 assert( pC!=0 ); 6423 assert( pC->isOrdered ); 6424 assert( pC->eCurType==CURTYPE_BTREE ); 6425 assert( pC->uc.pCursor!=0); 6426 assert( pC->deferredMoveto==0 ); 6427 assert( pOp->p4type==P4_INT32 ); 6428 r.pKeyInfo = pC->pKeyInfo; 6429 r.nField = (u16)pOp->p4.i; 6430 if( pOp->opcode<OP_IdxLT ){ 6431 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6432 r.default_rc = -1; 6433 }else{ 6434 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6435 r.default_rc = 0; 6436 } 6437 r.aMem = &aMem[pOp->p3]; 6438 #ifdef SQLITE_DEBUG 6439 { 6440 int i; 6441 for(i=0; i<r.nField; i++){ 6442 assert( memIsValid(&r.aMem[i]) ); 6443 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6444 } 6445 } 6446 #endif 6447 6448 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6449 { 6450 i64 nCellKey = 0; 6451 BtCursor *pCur; 6452 Mem m; 6453 6454 assert( pC->eCurType==CURTYPE_BTREE ); 6455 pCur = pC->uc.pCursor; 6456 assert( sqlite3BtreeCursorIsValid(pCur) ); 6457 nCellKey = sqlite3BtreePayloadSize(pCur); 6458 /* nCellKey will always be between 0 and 0xffffffff because of the way 6459 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6460 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6461 rc = SQLITE_CORRUPT_BKPT; 6462 goto abort_due_to_error; 6463 } 6464 sqlite3VdbeMemInit(&m, db, 0); 6465 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6466 if( rc ) goto abort_due_to_error; 6467 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6468 sqlite3VdbeMemReleaseMalloc(&m); 6469 } 6470 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6471 6472 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6473 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6474 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6475 res = -res; 6476 }else{ 6477 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6478 res++; 6479 } 6480 VdbeBranchTaken(res>0,2); 6481 assert( rc==SQLITE_OK ); 6482 if( res>0 ) goto jump_to_p2; 6483 break; 6484 } 6485 6486 /* Opcode: Destroy P1 P2 P3 * * 6487 ** 6488 ** Delete an entire database table or index whose root page in the database 6489 ** file is given by P1. 6490 ** 6491 ** The table being destroyed is in the main database file if P3==0. If 6492 ** P3==1 then the table to be clear is in the auxiliary database file 6493 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6494 ** 6495 ** If AUTOVACUUM is enabled then it is possible that another root page 6496 ** might be moved into the newly deleted root page in order to keep all 6497 ** root pages contiguous at the beginning of the database. The former 6498 ** value of the root page that moved - its value before the move occurred - 6499 ** is stored in register P2. If no page movement was required (because the 6500 ** table being dropped was already the last one in the database) then a 6501 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6502 ** is stored in register P2. 6503 ** 6504 ** This opcode throws an error if there are any active reader VMs when 6505 ** it is invoked. This is done to avoid the difficulty associated with 6506 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6507 ** database. This error is thrown even if the database is not an AUTOVACUUM 6508 ** db in order to avoid introducing an incompatibility between autovacuum 6509 ** and non-autovacuum modes. 6510 ** 6511 ** See also: Clear 6512 */ 6513 case OP_Destroy: { /* out2 */ 6514 int iMoved; 6515 int iDb; 6516 6517 sqlite3VdbeIncrWriteCounter(p, 0); 6518 assert( p->readOnly==0 ); 6519 assert( pOp->p1>1 ); 6520 pOut = out2Prerelease(p, pOp); 6521 pOut->flags = MEM_Null; 6522 if( db->nVdbeRead > db->nVDestroy+1 ){ 6523 rc = SQLITE_LOCKED; 6524 p->errorAction = OE_Abort; 6525 goto abort_due_to_error; 6526 }else{ 6527 iDb = pOp->p3; 6528 assert( DbMaskTest(p->btreeMask, iDb) ); 6529 iMoved = 0; /* Not needed. Only to silence a warning. */ 6530 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6531 pOut->flags = MEM_Int; 6532 pOut->u.i = iMoved; 6533 if( rc ) goto abort_due_to_error; 6534 #ifndef SQLITE_OMIT_AUTOVACUUM 6535 if( iMoved!=0 ){ 6536 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6537 /* All OP_Destroy operations occur on the same btree */ 6538 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6539 resetSchemaOnFault = iDb+1; 6540 } 6541 #endif 6542 } 6543 break; 6544 } 6545 6546 /* Opcode: Clear P1 P2 P3 6547 ** 6548 ** Delete all contents of the database table or index whose root page 6549 ** in the database file is given by P1. But, unlike Destroy, do not 6550 ** remove the table or index from the database file. 6551 ** 6552 ** The table being clear is in the main database file if P2==0. If 6553 ** P2==1 then the table to be clear is in the auxiliary database file 6554 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6555 ** 6556 ** If the P3 value is non-zero, then the row change count is incremented 6557 ** by the number of rows in the table being cleared. If P3 is greater 6558 ** than zero, then the value stored in register P3 is also incremented 6559 ** by the number of rows in the table being cleared. 6560 ** 6561 ** See also: Destroy 6562 */ 6563 case OP_Clear: { 6564 i64 nChange; 6565 6566 sqlite3VdbeIncrWriteCounter(p, 0); 6567 nChange = 0; 6568 assert( p->readOnly==0 ); 6569 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6570 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6571 if( pOp->p3 ){ 6572 p->nChange += nChange; 6573 if( pOp->p3>0 ){ 6574 assert( memIsValid(&aMem[pOp->p3]) ); 6575 memAboutToChange(p, &aMem[pOp->p3]); 6576 aMem[pOp->p3].u.i += nChange; 6577 } 6578 } 6579 if( rc ) goto abort_due_to_error; 6580 break; 6581 } 6582 6583 /* Opcode: ResetSorter P1 * * * * 6584 ** 6585 ** Delete all contents from the ephemeral table or sorter 6586 ** that is open on cursor P1. 6587 ** 6588 ** This opcode only works for cursors used for sorting and 6589 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6590 */ 6591 case OP_ResetSorter: { 6592 VdbeCursor *pC; 6593 6594 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6595 pC = p->apCsr[pOp->p1]; 6596 assert( pC!=0 ); 6597 if( isSorter(pC) ){ 6598 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6599 }else{ 6600 assert( pC->eCurType==CURTYPE_BTREE ); 6601 assert( pC->isEphemeral ); 6602 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6603 if( rc ) goto abort_due_to_error; 6604 } 6605 break; 6606 } 6607 6608 /* Opcode: CreateBtree P1 P2 P3 * * 6609 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6610 ** 6611 ** Allocate a new b-tree in the main database file if P1==0 or in the 6612 ** TEMP database file if P1==1 or in an attached database if 6613 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6614 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6615 ** The root page number of the new b-tree is stored in register P2. 6616 */ 6617 case OP_CreateBtree: { /* out2 */ 6618 Pgno pgno; 6619 Db *pDb; 6620 6621 sqlite3VdbeIncrWriteCounter(p, 0); 6622 pOut = out2Prerelease(p, pOp); 6623 pgno = 0; 6624 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6625 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6626 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6627 assert( p->readOnly==0 ); 6628 pDb = &db->aDb[pOp->p1]; 6629 assert( pDb->pBt!=0 ); 6630 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6631 if( rc ) goto abort_due_to_error; 6632 pOut->u.i = pgno; 6633 break; 6634 } 6635 6636 /* Opcode: SqlExec * * * P4 * 6637 ** 6638 ** Run the SQL statement or statements specified in the P4 string. 6639 */ 6640 case OP_SqlExec: { 6641 sqlite3VdbeIncrWriteCounter(p, 0); 6642 db->nSqlExec++; 6643 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6644 db->nSqlExec--; 6645 if( rc ) goto abort_due_to_error; 6646 break; 6647 } 6648 6649 /* Opcode: ParseSchema P1 * * P4 * 6650 ** 6651 ** Read and parse all entries from the schema table of database P1 6652 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6653 ** entire schema for P1 is reparsed. 6654 ** 6655 ** This opcode invokes the parser to create a new virtual machine, 6656 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6657 */ 6658 case OP_ParseSchema: { 6659 int iDb; 6660 const char *zSchema; 6661 char *zSql; 6662 InitData initData; 6663 6664 /* Any prepared statement that invokes this opcode will hold mutexes 6665 ** on every btree. This is a prerequisite for invoking 6666 ** sqlite3InitCallback(). 6667 */ 6668 #ifdef SQLITE_DEBUG 6669 for(iDb=0; iDb<db->nDb; iDb++){ 6670 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6671 } 6672 #endif 6673 6674 iDb = pOp->p1; 6675 assert( iDb>=0 && iDb<db->nDb ); 6676 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6677 || db->mallocFailed 6678 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6679 6680 #ifndef SQLITE_OMIT_ALTERTABLE 6681 if( pOp->p4.z==0 ){ 6682 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6683 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6684 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6685 db->mDbFlags |= DBFLAG_SchemaChange; 6686 p->expired = 0; 6687 }else 6688 #endif 6689 { 6690 zSchema = LEGACY_SCHEMA_TABLE; 6691 initData.db = db; 6692 initData.iDb = iDb; 6693 initData.pzErrMsg = &p->zErrMsg; 6694 initData.mInitFlags = 0; 6695 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6696 zSql = sqlite3MPrintf(db, 6697 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6698 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6699 if( zSql==0 ){ 6700 rc = SQLITE_NOMEM_BKPT; 6701 }else{ 6702 assert( db->init.busy==0 ); 6703 db->init.busy = 1; 6704 initData.rc = SQLITE_OK; 6705 initData.nInitRow = 0; 6706 assert( !db->mallocFailed ); 6707 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6708 if( rc==SQLITE_OK ) rc = initData.rc; 6709 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6710 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6711 ** at least one SQL statement. Any less than that indicates that 6712 ** the sqlite_schema table is corrupt. */ 6713 rc = SQLITE_CORRUPT_BKPT; 6714 } 6715 sqlite3DbFreeNN(db, zSql); 6716 db->init.busy = 0; 6717 } 6718 } 6719 if( rc ){ 6720 sqlite3ResetAllSchemasOfConnection(db); 6721 if( rc==SQLITE_NOMEM ){ 6722 goto no_mem; 6723 } 6724 goto abort_due_to_error; 6725 } 6726 break; 6727 } 6728 6729 #if !defined(SQLITE_OMIT_ANALYZE) 6730 /* Opcode: LoadAnalysis P1 * * * * 6731 ** 6732 ** Read the sqlite_stat1 table for database P1 and load the content 6733 ** of that table into the internal index hash table. This will cause 6734 ** the analysis to be used when preparing all subsequent queries. 6735 */ 6736 case OP_LoadAnalysis: { 6737 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6738 rc = sqlite3AnalysisLoad(db, pOp->p1); 6739 if( rc ) goto abort_due_to_error; 6740 break; 6741 } 6742 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6743 6744 /* Opcode: DropTable P1 * * P4 * 6745 ** 6746 ** Remove the internal (in-memory) data structures that describe 6747 ** the table named P4 in database P1. This is called after a table 6748 ** is dropped from disk (using the Destroy opcode) in order to keep 6749 ** the internal representation of the 6750 ** schema consistent with what is on disk. 6751 */ 6752 case OP_DropTable: { 6753 sqlite3VdbeIncrWriteCounter(p, 0); 6754 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6755 break; 6756 } 6757 6758 /* Opcode: DropIndex P1 * * P4 * 6759 ** 6760 ** Remove the internal (in-memory) data structures that describe 6761 ** the index named P4 in database P1. This is called after an index 6762 ** is dropped from disk (using the Destroy opcode) 6763 ** in order to keep the internal representation of the 6764 ** schema consistent with what is on disk. 6765 */ 6766 case OP_DropIndex: { 6767 sqlite3VdbeIncrWriteCounter(p, 0); 6768 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6769 break; 6770 } 6771 6772 /* Opcode: DropTrigger P1 * * P4 * 6773 ** 6774 ** Remove the internal (in-memory) data structures that describe 6775 ** the trigger named P4 in database P1. This is called after a trigger 6776 ** is dropped from disk (using the Destroy opcode) in order to keep 6777 ** the internal representation of the 6778 ** schema consistent with what is on disk. 6779 */ 6780 case OP_DropTrigger: { 6781 sqlite3VdbeIncrWriteCounter(p, 0); 6782 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6783 break; 6784 } 6785 6786 6787 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6788 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6789 ** 6790 ** Do an analysis of the currently open database. Store in 6791 ** register P1 the text of an error message describing any problems. 6792 ** If no problems are found, store a NULL in register P1. 6793 ** 6794 ** The register P3 contains one less than the maximum number of allowed errors. 6795 ** At most reg(P3) errors will be reported. 6796 ** In other words, the analysis stops as soon as reg(P1) errors are 6797 ** seen. Reg(P1) is updated with the number of errors remaining. 6798 ** 6799 ** The root page numbers of all tables in the database are integers 6800 ** stored in P4_INTARRAY argument. 6801 ** 6802 ** If P5 is not zero, the check is done on the auxiliary database 6803 ** file, not the main database file. 6804 ** 6805 ** This opcode is used to implement the integrity_check pragma. 6806 */ 6807 case OP_IntegrityCk: { 6808 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6809 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6810 int nErr; /* Number of errors reported */ 6811 char *z; /* Text of the error report */ 6812 Mem *pnErr; /* Register keeping track of errors remaining */ 6813 6814 assert( p->bIsReader ); 6815 nRoot = pOp->p2; 6816 aRoot = pOp->p4.ai; 6817 assert( nRoot>0 ); 6818 assert( aRoot[0]==(Pgno)nRoot ); 6819 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6820 pnErr = &aMem[pOp->p3]; 6821 assert( (pnErr->flags & MEM_Int)!=0 ); 6822 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6823 pIn1 = &aMem[pOp->p1]; 6824 assert( pOp->p5<db->nDb ); 6825 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6826 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6827 (int)pnErr->u.i+1, &nErr); 6828 sqlite3VdbeMemSetNull(pIn1); 6829 if( nErr==0 ){ 6830 assert( z==0 ); 6831 }else if( z==0 ){ 6832 goto no_mem; 6833 }else{ 6834 pnErr->u.i -= nErr-1; 6835 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6836 } 6837 UPDATE_MAX_BLOBSIZE(pIn1); 6838 sqlite3VdbeChangeEncoding(pIn1, encoding); 6839 goto check_for_interrupt; 6840 } 6841 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6842 6843 /* Opcode: RowSetAdd P1 P2 * * * 6844 ** Synopsis: rowset(P1)=r[P2] 6845 ** 6846 ** Insert the integer value held by register P2 into a RowSet object 6847 ** held in register P1. 6848 ** 6849 ** An assertion fails if P2 is not an integer. 6850 */ 6851 case OP_RowSetAdd: { /* in1, in2 */ 6852 pIn1 = &aMem[pOp->p1]; 6853 pIn2 = &aMem[pOp->p2]; 6854 assert( (pIn2->flags & MEM_Int)!=0 ); 6855 if( (pIn1->flags & MEM_Blob)==0 ){ 6856 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6857 } 6858 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6859 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6860 break; 6861 } 6862 6863 /* Opcode: RowSetRead P1 P2 P3 * * 6864 ** Synopsis: r[P3]=rowset(P1) 6865 ** 6866 ** Extract the smallest value from the RowSet object in P1 6867 ** and put that value into register P3. 6868 ** Or, if RowSet object P1 is initially empty, leave P3 6869 ** unchanged and jump to instruction P2. 6870 */ 6871 case OP_RowSetRead: { /* jump, in1, out3 */ 6872 i64 val; 6873 6874 pIn1 = &aMem[pOp->p1]; 6875 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6876 if( (pIn1->flags & MEM_Blob)==0 6877 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6878 ){ 6879 /* The boolean index is empty */ 6880 sqlite3VdbeMemSetNull(pIn1); 6881 VdbeBranchTaken(1,2); 6882 goto jump_to_p2_and_check_for_interrupt; 6883 }else{ 6884 /* A value was pulled from the index */ 6885 VdbeBranchTaken(0,2); 6886 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6887 } 6888 goto check_for_interrupt; 6889 } 6890 6891 /* Opcode: RowSetTest P1 P2 P3 P4 6892 ** Synopsis: if r[P3] in rowset(P1) goto P2 6893 ** 6894 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6895 ** contains a RowSet object and that RowSet object contains 6896 ** the value held in P3, jump to register P2. Otherwise, insert the 6897 ** integer in P3 into the RowSet and continue on to the 6898 ** next opcode. 6899 ** 6900 ** The RowSet object is optimized for the case where sets of integers 6901 ** are inserted in distinct phases, which each set contains no duplicates. 6902 ** Each set is identified by a unique P4 value. The first set 6903 ** must have P4==0, the final set must have P4==-1, and for all other sets 6904 ** must have P4>0. 6905 ** 6906 ** This allows optimizations: (a) when P4==0 there is no need to test 6907 ** the RowSet object for P3, as it is guaranteed not to contain it, 6908 ** (b) when P4==-1 there is no need to insert the value, as it will 6909 ** never be tested for, and (c) when a value that is part of set X is 6910 ** inserted, there is no need to search to see if the same value was 6911 ** previously inserted as part of set X (only if it was previously 6912 ** inserted as part of some other set). 6913 */ 6914 case OP_RowSetTest: { /* jump, in1, in3 */ 6915 int iSet; 6916 int exists; 6917 6918 pIn1 = &aMem[pOp->p1]; 6919 pIn3 = &aMem[pOp->p3]; 6920 iSet = pOp->p4.i; 6921 assert( pIn3->flags&MEM_Int ); 6922 6923 /* If there is anything other than a rowset object in memory cell P1, 6924 ** delete it now and initialize P1 with an empty rowset 6925 */ 6926 if( (pIn1->flags & MEM_Blob)==0 ){ 6927 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6928 } 6929 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6930 assert( pOp->p4type==P4_INT32 ); 6931 assert( iSet==-1 || iSet>=0 ); 6932 if( iSet ){ 6933 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6934 VdbeBranchTaken(exists!=0,2); 6935 if( exists ) goto jump_to_p2; 6936 } 6937 if( iSet>=0 ){ 6938 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6939 } 6940 break; 6941 } 6942 6943 6944 #ifndef SQLITE_OMIT_TRIGGER 6945 6946 /* Opcode: Program P1 P2 P3 P4 P5 6947 ** 6948 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6949 ** 6950 ** P1 contains the address of the memory cell that contains the first memory 6951 ** cell in an array of values used as arguments to the sub-program. P2 6952 ** contains the address to jump to if the sub-program throws an IGNORE 6953 ** exception using the RAISE() function. Register P3 contains the address 6954 ** of a memory cell in this (the parent) VM that is used to allocate the 6955 ** memory required by the sub-vdbe at runtime. 6956 ** 6957 ** P4 is a pointer to the VM containing the trigger program. 6958 ** 6959 ** If P5 is non-zero, then recursive program invocation is enabled. 6960 */ 6961 case OP_Program: { /* jump */ 6962 int nMem; /* Number of memory registers for sub-program */ 6963 int nByte; /* Bytes of runtime space required for sub-program */ 6964 Mem *pRt; /* Register to allocate runtime space */ 6965 Mem *pMem; /* Used to iterate through memory cells */ 6966 Mem *pEnd; /* Last memory cell in new array */ 6967 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6968 SubProgram *pProgram; /* Sub-program to execute */ 6969 void *t; /* Token identifying trigger */ 6970 6971 pProgram = pOp->p4.pProgram; 6972 pRt = &aMem[pOp->p3]; 6973 assert( pProgram->nOp>0 ); 6974 6975 /* If the p5 flag is clear, then recursive invocation of triggers is 6976 ** disabled for backwards compatibility (p5 is set if this sub-program 6977 ** is really a trigger, not a foreign key action, and the flag set 6978 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6979 ** 6980 ** It is recursive invocation of triggers, at the SQL level, that is 6981 ** disabled. In some cases a single trigger may generate more than one 6982 ** SubProgram (if the trigger may be executed with more than one different 6983 ** ON CONFLICT algorithm). SubProgram structures associated with a 6984 ** single trigger all have the same value for the SubProgram.token 6985 ** variable. */ 6986 if( pOp->p5 ){ 6987 t = pProgram->token; 6988 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6989 if( pFrame ) break; 6990 } 6991 6992 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6993 rc = SQLITE_ERROR; 6994 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6995 goto abort_due_to_error; 6996 } 6997 6998 /* Register pRt is used to store the memory required to save the state 6999 ** of the current program, and the memory required at runtime to execute 7000 ** the trigger program. If this trigger has been fired before, then pRt 7001 ** is already allocated. Otherwise, it must be initialized. */ 7002 if( (pRt->flags&MEM_Blob)==0 ){ 7003 /* SubProgram.nMem is set to the number of memory cells used by the 7004 ** program stored in SubProgram.aOp. As well as these, one memory 7005 ** cell is required for each cursor used by the program. Set local 7006 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 7007 */ 7008 nMem = pProgram->nMem + pProgram->nCsr; 7009 assert( nMem>0 ); 7010 if( pProgram->nCsr==0 ) nMem++; 7011 nByte = ROUND8(sizeof(VdbeFrame)) 7012 + nMem * sizeof(Mem) 7013 + pProgram->nCsr * sizeof(VdbeCursor*) 7014 + (pProgram->nOp + 7)/8; 7015 pFrame = sqlite3DbMallocZero(db, nByte); 7016 if( !pFrame ){ 7017 goto no_mem; 7018 } 7019 sqlite3VdbeMemRelease(pRt); 7020 pRt->flags = MEM_Blob|MEM_Dyn; 7021 pRt->z = (char*)pFrame; 7022 pRt->n = nByte; 7023 pRt->xDel = sqlite3VdbeFrameMemDel; 7024 7025 pFrame->v = p; 7026 pFrame->nChildMem = nMem; 7027 pFrame->nChildCsr = pProgram->nCsr; 7028 pFrame->pc = (int)(pOp - aOp); 7029 pFrame->aMem = p->aMem; 7030 pFrame->nMem = p->nMem; 7031 pFrame->apCsr = p->apCsr; 7032 pFrame->nCursor = p->nCursor; 7033 pFrame->aOp = p->aOp; 7034 pFrame->nOp = p->nOp; 7035 pFrame->token = pProgram->token; 7036 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 7037 pFrame->anExec = p->anExec; 7038 #endif 7039 #ifdef SQLITE_DEBUG 7040 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 7041 #endif 7042 7043 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 7044 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 7045 pMem->flags = MEM_Undefined; 7046 pMem->db = db; 7047 } 7048 }else{ 7049 pFrame = (VdbeFrame*)pRt->z; 7050 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 7051 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 7052 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 7053 assert( pProgram->nCsr==pFrame->nChildCsr ); 7054 assert( (int)(pOp - aOp)==pFrame->pc ); 7055 } 7056 7057 p->nFrame++; 7058 pFrame->pParent = p->pFrame; 7059 pFrame->lastRowid = db->lastRowid; 7060 pFrame->nChange = p->nChange; 7061 pFrame->nDbChange = p->db->nChange; 7062 assert( pFrame->pAuxData==0 ); 7063 pFrame->pAuxData = p->pAuxData; 7064 p->pAuxData = 0; 7065 p->nChange = 0; 7066 p->pFrame = pFrame; 7067 p->aMem = aMem = VdbeFrameMem(pFrame); 7068 p->nMem = pFrame->nChildMem; 7069 p->nCursor = (u16)pFrame->nChildCsr; 7070 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 7071 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 7072 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 7073 p->aOp = aOp = pProgram->aOp; 7074 p->nOp = pProgram->nOp; 7075 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 7076 p->anExec = 0; 7077 #endif 7078 #ifdef SQLITE_DEBUG 7079 /* Verify that second and subsequent executions of the same trigger do not 7080 ** try to reuse register values from the first use. */ 7081 { 7082 int i; 7083 for(i=0; i<p->nMem; i++){ 7084 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 7085 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 7086 } 7087 } 7088 #endif 7089 pOp = &aOp[-1]; 7090 goto check_for_interrupt; 7091 } 7092 7093 /* Opcode: Param P1 P2 * * * 7094 ** 7095 ** This opcode is only ever present in sub-programs called via the 7096 ** OP_Program instruction. Copy a value currently stored in a memory 7097 ** cell of the calling (parent) frame to cell P2 in the current frames 7098 ** address space. This is used by trigger programs to access the new.* 7099 ** and old.* values. 7100 ** 7101 ** The address of the cell in the parent frame is determined by adding 7102 ** the value of the P1 argument to the value of the P1 argument to the 7103 ** calling OP_Program instruction. 7104 */ 7105 case OP_Param: { /* out2 */ 7106 VdbeFrame *pFrame; 7107 Mem *pIn; 7108 pOut = out2Prerelease(p, pOp); 7109 pFrame = p->pFrame; 7110 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 7111 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 7112 break; 7113 } 7114 7115 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 7116 7117 #ifndef SQLITE_OMIT_FOREIGN_KEY 7118 /* Opcode: FkCounter P1 P2 * * * 7119 ** Synopsis: fkctr[P1]+=P2 7120 ** 7121 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 7122 ** If P1 is non-zero, the database constraint counter is incremented 7123 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 7124 ** statement counter is incremented (immediate foreign key constraints). 7125 */ 7126 case OP_FkCounter: { 7127 if( db->flags & SQLITE_DeferFKs ){ 7128 db->nDeferredImmCons += pOp->p2; 7129 }else if( pOp->p1 ){ 7130 db->nDeferredCons += pOp->p2; 7131 }else{ 7132 p->nFkConstraint += pOp->p2; 7133 } 7134 break; 7135 } 7136 7137 /* Opcode: FkIfZero P1 P2 * * * 7138 ** Synopsis: if fkctr[P1]==0 goto P2 7139 ** 7140 ** This opcode tests if a foreign key constraint-counter is currently zero. 7141 ** If so, jump to instruction P2. Otherwise, fall through to the next 7142 ** instruction. 7143 ** 7144 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 7145 ** is zero (the one that counts deferred constraint violations). If P1 is 7146 ** zero, the jump is taken if the statement constraint-counter is zero 7147 ** (immediate foreign key constraint violations). 7148 */ 7149 case OP_FkIfZero: { /* jump */ 7150 if( pOp->p1 ){ 7151 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 7152 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7153 }else{ 7154 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 7155 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7156 } 7157 break; 7158 } 7159 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 7160 7161 #ifndef SQLITE_OMIT_AUTOINCREMENT 7162 /* Opcode: MemMax P1 P2 * * * 7163 ** Synopsis: r[P1]=max(r[P1],r[P2]) 7164 ** 7165 ** P1 is a register in the root frame of this VM (the root frame is 7166 ** different from the current frame if this instruction is being executed 7167 ** within a sub-program). Set the value of register P1 to the maximum of 7168 ** its current value and the value in register P2. 7169 ** 7170 ** This instruction throws an error if the memory cell is not initially 7171 ** an integer. 7172 */ 7173 case OP_MemMax: { /* in2 */ 7174 VdbeFrame *pFrame; 7175 if( p->pFrame ){ 7176 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7177 pIn1 = &pFrame->aMem[pOp->p1]; 7178 }else{ 7179 pIn1 = &aMem[pOp->p1]; 7180 } 7181 assert( memIsValid(pIn1) ); 7182 sqlite3VdbeMemIntegerify(pIn1); 7183 pIn2 = &aMem[pOp->p2]; 7184 sqlite3VdbeMemIntegerify(pIn2); 7185 if( pIn1->u.i<pIn2->u.i){ 7186 pIn1->u.i = pIn2->u.i; 7187 } 7188 break; 7189 } 7190 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7191 7192 /* Opcode: IfPos P1 P2 P3 * * 7193 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7194 ** 7195 ** Register P1 must contain an integer. 7196 ** If the value of register P1 is 1 or greater, subtract P3 from the 7197 ** value in P1 and jump to P2. 7198 ** 7199 ** If the initial value of register P1 is less than 1, then the 7200 ** value is unchanged and control passes through to the next instruction. 7201 */ 7202 case OP_IfPos: { /* jump, in1 */ 7203 pIn1 = &aMem[pOp->p1]; 7204 assert( pIn1->flags&MEM_Int ); 7205 VdbeBranchTaken( pIn1->u.i>0, 2); 7206 if( pIn1->u.i>0 ){ 7207 pIn1->u.i -= pOp->p3; 7208 goto jump_to_p2; 7209 } 7210 break; 7211 } 7212 7213 /* Opcode: OffsetLimit P1 P2 P3 * * 7214 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7215 ** 7216 ** This opcode performs a commonly used computation associated with 7217 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 7218 ** holds the offset counter. The opcode computes the combined value 7219 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7220 ** value computed is the total number of rows that will need to be 7221 ** visited in order to complete the query. 7222 ** 7223 ** If r[P3] is zero or negative, that means there is no OFFSET 7224 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7225 ** 7226 ** if r[P1] is zero or negative, that means there is no LIMIT 7227 ** and r[P2] is set to -1. 7228 ** 7229 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7230 */ 7231 case OP_OffsetLimit: { /* in1, out2, in3 */ 7232 i64 x; 7233 pIn1 = &aMem[pOp->p1]; 7234 pIn3 = &aMem[pOp->p3]; 7235 pOut = out2Prerelease(p, pOp); 7236 assert( pIn1->flags & MEM_Int ); 7237 assert( pIn3->flags & MEM_Int ); 7238 x = pIn1->u.i; 7239 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7240 /* If the LIMIT is less than or equal to zero, loop forever. This 7241 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7242 ** also loop forever. This is undocumented. In fact, one could argue 7243 ** that the loop should terminate. But assuming 1 billion iterations 7244 ** per second (far exceeding the capabilities of any current hardware) 7245 ** it would take nearly 300 years to actually reach the limit. So 7246 ** looping forever is a reasonable approximation. */ 7247 pOut->u.i = -1; 7248 }else{ 7249 pOut->u.i = x; 7250 } 7251 break; 7252 } 7253 7254 /* Opcode: IfNotZero P1 P2 * * * 7255 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7256 ** 7257 ** Register P1 must contain an integer. If the content of register P1 is 7258 ** initially greater than zero, then decrement the value in register P1. 7259 ** If it is non-zero (negative or positive) and then also jump to P2. 7260 ** If register P1 is initially zero, leave it unchanged and fall through. 7261 */ 7262 case OP_IfNotZero: { /* jump, in1 */ 7263 pIn1 = &aMem[pOp->p1]; 7264 assert( pIn1->flags&MEM_Int ); 7265 VdbeBranchTaken(pIn1->u.i<0, 2); 7266 if( pIn1->u.i ){ 7267 if( pIn1->u.i>0 ) pIn1->u.i--; 7268 goto jump_to_p2; 7269 } 7270 break; 7271 } 7272 7273 /* Opcode: DecrJumpZero P1 P2 * * * 7274 ** Synopsis: if (--r[P1])==0 goto P2 7275 ** 7276 ** Register P1 must hold an integer. Decrement the value in P1 7277 ** and jump to P2 if the new value is exactly zero. 7278 */ 7279 case OP_DecrJumpZero: { /* jump, in1 */ 7280 pIn1 = &aMem[pOp->p1]; 7281 assert( pIn1->flags&MEM_Int ); 7282 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7283 VdbeBranchTaken(pIn1->u.i==0, 2); 7284 if( pIn1->u.i==0 ) goto jump_to_p2; 7285 break; 7286 } 7287 7288 7289 /* Opcode: AggStep * P2 P3 P4 P5 7290 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7291 ** 7292 ** Execute the xStep function for an aggregate. 7293 ** The function has P5 arguments. P4 is a pointer to the 7294 ** FuncDef structure that specifies the function. Register P3 is the 7295 ** accumulator. 7296 ** 7297 ** The P5 arguments are taken from register P2 and its 7298 ** successors. 7299 */ 7300 /* Opcode: AggInverse * P2 P3 P4 P5 7301 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7302 ** 7303 ** Execute the xInverse function for an aggregate. 7304 ** The function has P5 arguments. P4 is a pointer to the 7305 ** FuncDef structure that specifies the function. Register P3 is the 7306 ** accumulator. 7307 ** 7308 ** The P5 arguments are taken from register P2 and its 7309 ** successors. 7310 */ 7311 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7312 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7313 ** 7314 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7315 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7316 ** FuncDef structure that specifies the function. Register P3 is the 7317 ** accumulator. 7318 ** 7319 ** The P5 arguments are taken from register P2 and its 7320 ** successors. 7321 ** 7322 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7323 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7324 ** the opcode is changed. In this way, the initialization of the 7325 ** sqlite3_context only happens once, instead of on each call to the 7326 ** step function. 7327 */ 7328 case OP_AggInverse: 7329 case OP_AggStep: { 7330 int n; 7331 sqlite3_context *pCtx; 7332 7333 assert( pOp->p4type==P4_FUNCDEF ); 7334 n = pOp->p5; 7335 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7336 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7337 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7338 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7339 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7340 if( pCtx==0 ) goto no_mem; 7341 pCtx->pMem = 0; 7342 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7343 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7344 pCtx->pFunc = pOp->p4.pFunc; 7345 pCtx->iOp = (int)(pOp - aOp); 7346 pCtx->pVdbe = p; 7347 pCtx->skipFlag = 0; 7348 pCtx->isError = 0; 7349 pCtx->enc = encoding; 7350 pCtx->argc = n; 7351 pOp->p4type = P4_FUNCCTX; 7352 pOp->p4.pCtx = pCtx; 7353 7354 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7355 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7356 7357 pOp->opcode = OP_AggStep1; 7358 /* Fall through into OP_AggStep */ 7359 /* no break */ deliberate_fall_through 7360 } 7361 case OP_AggStep1: { 7362 int i; 7363 sqlite3_context *pCtx; 7364 Mem *pMem; 7365 7366 assert( pOp->p4type==P4_FUNCCTX ); 7367 pCtx = pOp->p4.pCtx; 7368 pMem = &aMem[pOp->p3]; 7369 7370 #ifdef SQLITE_DEBUG 7371 if( pOp->p1 ){ 7372 /* This is an OP_AggInverse call. Verify that xStep has always 7373 ** been called at least once prior to any xInverse call. */ 7374 assert( pMem->uTemp==0x1122e0e3 ); 7375 }else{ 7376 /* This is an OP_AggStep call. Mark it as such. */ 7377 pMem->uTemp = 0x1122e0e3; 7378 } 7379 #endif 7380 7381 /* If this function is inside of a trigger, the register array in aMem[] 7382 ** might change from one evaluation to the next. The next block of code 7383 ** checks to see if the register array has changed, and if so it 7384 ** reinitializes the relavant parts of the sqlite3_context object */ 7385 if( pCtx->pMem != pMem ){ 7386 pCtx->pMem = pMem; 7387 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7388 } 7389 7390 #ifdef SQLITE_DEBUG 7391 for(i=0; i<pCtx->argc; i++){ 7392 assert( memIsValid(pCtx->argv[i]) ); 7393 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7394 } 7395 #endif 7396 7397 pMem->n++; 7398 assert( pCtx->pOut->flags==MEM_Null ); 7399 assert( pCtx->isError==0 ); 7400 assert( pCtx->skipFlag==0 ); 7401 #ifndef SQLITE_OMIT_WINDOWFUNC 7402 if( pOp->p1 ){ 7403 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7404 }else 7405 #endif 7406 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7407 7408 if( pCtx->isError ){ 7409 if( pCtx->isError>0 ){ 7410 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7411 rc = pCtx->isError; 7412 } 7413 if( pCtx->skipFlag ){ 7414 assert( pOp[-1].opcode==OP_CollSeq ); 7415 i = pOp[-1].p1; 7416 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7417 pCtx->skipFlag = 0; 7418 } 7419 sqlite3VdbeMemRelease(pCtx->pOut); 7420 pCtx->pOut->flags = MEM_Null; 7421 pCtx->isError = 0; 7422 if( rc ) goto abort_due_to_error; 7423 } 7424 assert( pCtx->pOut->flags==MEM_Null ); 7425 assert( pCtx->skipFlag==0 ); 7426 break; 7427 } 7428 7429 /* Opcode: AggFinal P1 P2 * P4 * 7430 ** Synopsis: accum=r[P1] N=P2 7431 ** 7432 ** P1 is the memory location that is the accumulator for an aggregate 7433 ** or window function. Execute the finalizer function 7434 ** for an aggregate and store the result in P1. 7435 ** 7436 ** P2 is the number of arguments that the step function takes and 7437 ** P4 is a pointer to the FuncDef for this function. The P2 7438 ** argument is not used by this opcode. It is only there to disambiguate 7439 ** functions that can take varying numbers of arguments. The 7440 ** P4 argument is only needed for the case where 7441 ** the step function was not previously called. 7442 */ 7443 /* Opcode: AggValue * P2 P3 P4 * 7444 ** Synopsis: r[P3]=value N=P2 7445 ** 7446 ** Invoke the xValue() function and store the result in register P3. 7447 ** 7448 ** P2 is the number of arguments that the step function takes and 7449 ** P4 is a pointer to the FuncDef for this function. The P2 7450 ** argument is not used by this opcode. It is only there to disambiguate 7451 ** functions that can take varying numbers of arguments. The 7452 ** P4 argument is only needed for the case where 7453 ** the step function was not previously called. 7454 */ 7455 case OP_AggValue: 7456 case OP_AggFinal: { 7457 Mem *pMem; 7458 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7459 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7460 pMem = &aMem[pOp->p1]; 7461 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7462 #ifndef SQLITE_OMIT_WINDOWFUNC 7463 if( pOp->p3 ){ 7464 memAboutToChange(p, &aMem[pOp->p3]); 7465 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7466 pMem = &aMem[pOp->p3]; 7467 }else 7468 #endif 7469 { 7470 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7471 } 7472 7473 if( rc ){ 7474 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7475 goto abort_due_to_error; 7476 } 7477 sqlite3VdbeChangeEncoding(pMem, encoding); 7478 UPDATE_MAX_BLOBSIZE(pMem); 7479 break; 7480 } 7481 7482 #ifndef SQLITE_OMIT_WAL 7483 /* Opcode: Checkpoint P1 P2 P3 * * 7484 ** 7485 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7486 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7487 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7488 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7489 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7490 ** in the WAL that have been checkpointed after the checkpoint 7491 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7492 ** mem[P3+2] are initialized to -1. 7493 */ 7494 case OP_Checkpoint: { 7495 int i; /* Loop counter */ 7496 int aRes[3]; /* Results */ 7497 Mem *pMem; /* Write results here */ 7498 7499 assert( p->readOnly==0 ); 7500 aRes[0] = 0; 7501 aRes[1] = aRes[2] = -1; 7502 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7503 || pOp->p2==SQLITE_CHECKPOINT_FULL 7504 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7505 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7506 ); 7507 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7508 if( rc ){ 7509 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7510 rc = SQLITE_OK; 7511 aRes[0] = 1; 7512 } 7513 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7514 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7515 } 7516 break; 7517 }; 7518 #endif 7519 7520 #ifndef SQLITE_OMIT_PRAGMA 7521 /* Opcode: JournalMode P1 P2 P3 * * 7522 ** 7523 ** Change the journal mode of database P1 to P3. P3 must be one of the 7524 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7525 ** modes (delete, truncate, persist, off and memory), this is a simple 7526 ** operation. No IO is required. 7527 ** 7528 ** If changing into or out of WAL mode the procedure is more complicated. 7529 ** 7530 ** Write a string containing the final journal-mode to register P2. 7531 */ 7532 case OP_JournalMode: { /* out2 */ 7533 Btree *pBt; /* Btree to change journal mode of */ 7534 Pager *pPager; /* Pager associated with pBt */ 7535 int eNew; /* New journal mode */ 7536 int eOld; /* The old journal mode */ 7537 #ifndef SQLITE_OMIT_WAL 7538 const char *zFilename; /* Name of database file for pPager */ 7539 #endif 7540 7541 pOut = out2Prerelease(p, pOp); 7542 eNew = pOp->p3; 7543 assert( eNew==PAGER_JOURNALMODE_DELETE 7544 || eNew==PAGER_JOURNALMODE_TRUNCATE 7545 || eNew==PAGER_JOURNALMODE_PERSIST 7546 || eNew==PAGER_JOURNALMODE_OFF 7547 || eNew==PAGER_JOURNALMODE_MEMORY 7548 || eNew==PAGER_JOURNALMODE_WAL 7549 || eNew==PAGER_JOURNALMODE_QUERY 7550 ); 7551 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7552 assert( p->readOnly==0 ); 7553 7554 pBt = db->aDb[pOp->p1].pBt; 7555 pPager = sqlite3BtreePager(pBt); 7556 eOld = sqlite3PagerGetJournalMode(pPager); 7557 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7558 assert( sqlite3BtreeHoldsMutex(pBt) ); 7559 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7560 7561 #ifndef SQLITE_OMIT_WAL 7562 zFilename = sqlite3PagerFilename(pPager, 1); 7563 7564 /* Do not allow a transition to journal_mode=WAL for a database 7565 ** in temporary storage or if the VFS does not support shared memory 7566 */ 7567 if( eNew==PAGER_JOURNALMODE_WAL 7568 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7569 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7570 ){ 7571 eNew = eOld; 7572 } 7573 7574 if( (eNew!=eOld) 7575 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7576 ){ 7577 if( !db->autoCommit || db->nVdbeRead>1 ){ 7578 rc = SQLITE_ERROR; 7579 sqlite3VdbeError(p, 7580 "cannot change %s wal mode from within a transaction", 7581 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7582 ); 7583 goto abort_due_to_error; 7584 }else{ 7585 7586 if( eOld==PAGER_JOURNALMODE_WAL ){ 7587 /* If leaving WAL mode, close the log file. If successful, the call 7588 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7589 ** file. An EXCLUSIVE lock may still be held on the database file 7590 ** after a successful return. 7591 */ 7592 rc = sqlite3PagerCloseWal(pPager, db); 7593 if( rc==SQLITE_OK ){ 7594 sqlite3PagerSetJournalMode(pPager, eNew); 7595 } 7596 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7597 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7598 ** as an intermediate */ 7599 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7600 } 7601 7602 /* Open a transaction on the database file. Regardless of the journal 7603 ** mode, this transaction always uses a rollback journal. 7604 */ 7605 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7606 if( rc==SQLITE_OK ){ 7607 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7608 } 7609 } 7610 } 7611 #endif /* ifndef SQLITE_OMIT_WAL */ 7612 7613 if( rc ) eNew = eOld; 7614 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7615 7616 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7617 pOut->z = (char *)sqlite3JournalModename(eNew); 7618 pOut->n = sqlite3Strlen30(pOut->z); 7619 pOut->enc = SQLITE_UTF8; 7620 sqlite3VdbeChangeEncoding(pOut, encoding); 7621 if( rc ) goto abort_due_to_error; 7622 break; 7623 }; 7624 #endif /* SQLITE_OMIT_PRAGMA */ 7625 7626 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7627 /* Opcode: Vacuum P1 P2 * * * 7628 ** 7629 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7630 ** for an attached database. The "temp" database may not be vacuumed. 7631 ** 7632 ** If P2 is not zero, then it is a register holding a string which is 7633 ** the file into which the result of vacuum should be written. When 7634 ** P2 is zero, the vacuum overwrites the original database. 7635 */ 7636 case OP_Vacuum: { 7637 assert( p->readOnly==0 ); 7638 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7639 pOp->p2 ? &aMem[pOp->p2] : 0); 7640 if( rc ) goto abort_due_to_error; 7641 break; 7642 } 7643 #endif 7644 7645 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7646 /* Opcode: IncrVacuum P1 P2 * * * 7647 ** 7648 ** Perform a single step of the incremental vacuum procedure on 7649 ** the P1 database. If the vacuum has finished, jump to instruction 7650 ** P2. Otherwise, fall through to the next instruction. 7651 */ 7652 case OP_IncrVacuum: { /* jump */ 7653 Btree *pBt; 7654 7655 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7656 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7657 assert( p->readOnly==0 ); 7658 pBt = db->aDb[pOp->p1].pBt; 7659 rc = sqlite3BtreeIncrVacuum(pBt); 7660 VdbeBranchTaken(rc==SQLITE_DONE,2); 7661 if( rc ){ 7662 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7663 rc = SQLITE_OK; 7664 goto jump_to_p2; 7665 } 7666 break; 7667 } 7668 #endif 7669 7670 /* Opcode: Expire P1 P2 * * * 7671 ** 7672 ** Cause precompiled statements to expire. When an expired statement 7673 ** is executed using sqlite3_step() it will either automatically 7674 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7675 ** or it will fail with SQLITE_SCHEMA. 7676 ** 7677 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7678 ** then only the currently executing statement is expired. 7679 ** 7680 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7681 ** then running SQL statements are allowed to continue to run to completion. 7682 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7683 ** that might help the statement run faster but which does not affect the 7684 ** correctness of operation. 7685 */ 7686 case OP_Expire: { 7687 assert( pOp->p2==0 || pOp->p2==1 ); 7688 if( !pOp->p1 ){ 7689 sqlite3ExpirePreparedStatements(db, pOp->p2); 7690 }else{ 7691 p->expired = pOp->p2+1; 7692 } 7693 break; 7694 } 7695 7696 /* Opcode: CursorLock P1 * * * * 7697 ** 7698 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7699 ** written by an other cursor. 7700 */ 7701 case OP_CursorLock: { 7702 VdbeCursor *pC; 7703 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7704 pC = p->apCsr[pOp->p1]; 7705 assert( pC!=0 ); 7706 assert( pC->eCurType==CURTYPE_BTREE ); 7707 sqlite3BtreeCursorPin(pC->uc.pCursor); 7708 break; 7709 } 7710 7711 /* Opcode: CursorUnlock P1 * * * * 7712 ** 7713 ** Unlock the btree to which cursor P1 is pointing so that it can be 7714 ** written by other cursors. 7715 */ 7716 case OP_CursorUnlock: { 7717 VdbeCursor *pC; 7718 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7719 pC = p->apCsr[pOp->p1]; 7720 assert( pC!=0 ); 7721 assert( pC->eCurType==CURTYPE_BTREE ); 7722 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7723 break; 7724 } 7725 7726 #ifndef SQLITE_OMIT_SHARED_CACHE 7727 /* Opcode: TableLock P1 P2 P3 P4 * 7728 ** Synopsis: iDb=P1 root=P2 write=P3 7729 ** 7730 ** Obtain a lock on a particular table. This instruction is only used when 7731 ** the shared-cache feature is enabled. 7732 ** 7733 ** P1 is the index of the database in sqlite3.aDb[] of the database 7734 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7735 ** a write lock if P3==1. 7736 ** 7737 ** P2 contains the root-page of the table to lock. 7738 ** 7739 ** P4 contains a pointer to the name of the table being locked. This is only 7740 ** used to generate an error message if the lock cannot be obtained. 7741 */ 7742 case OP_TableLock: { 7743 u8 isWriteLock = (u8)pOp->p3; 7744 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7745 int p1 = pOp->p1; 7746 assert( p1>=0 && p1<db->nDb ); 7747 assert( DbMaskTest(p->btreeMask, p1) ); 7748 assert( isWriteLock==0 || isWriteLock==1 ); 7749 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7750 if( rc ){ 7751 if( (rc&0xFF)==SQLITE_LOCKED ){ 7752 const char *z = pOp->p4.z; 7753 sqlite3VdbeError(p, "database table is locked: %s", z); 7754 } 7755 goto abort_due_to_error; 7756 } 7757 } 7758 break; 7759 } 7760 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7761 7762 #ifndef SQLITE_OMIT_VIRTUALTABLE 7763 /* Opcode: VBegin * * * P4 * 7764 ** 7765 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7766 ** xBegin method for that table. 7767 ** 7768 ** Also, whether or not P4 is set, check that this is not being called from 7769 ** within a callback to a virtual table xSync() method. If it is, the error 7770 ** code will be set to SQLITE_LOCKED. 7771 */ 7772 case OP_VBegin: { 7773 VTable *pVTab; 7774 pVTab = pOp->p4.pVtab; 7775 rc = sqlite3VtabBegin(db, pVTab); 7776 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7777 if( rc ) goto abort_due_to_error; 7778 break; 7779 } 7780 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7781 7782 #ifndef SQLITE_OMIT_VIRTUALTABLE 7783 /* Opcode: VCreate P1 P2 * * * 7784 ** 7785 ** P2 is a register that holds the name of a virtual table in database 7786 ** P1. Call the xCreate method for that table. 7787 */ 7788 case OP_VCreate: { 7789 Mem sMem; /* For storing the record being decoded */ 7790 const char *zTab; /* Name of the virtual table */ 7791 7792 memset(&sMem, 0, sizeof(sMem)); 7793 sMem.db = db; 7794 /* Because P2 is always a static string, it is impossible for the 7795 ** sqlite3VdbeMemCopy() to fail */ 7796 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7797 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7798 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7799 assert( rc==SQLITE_OK ); 7800 zTab = (const char*)sqlite3_value_text(&sMem); 7801 assert( zTab || db->mallocFailed ); 7802 if( zTab ){ 7803 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7804 } 7805 sqlite3VdbeMemRelease(&sMem); 7806 if( rc ) goto abort_due_to_error; 7807 break; 7808 } 7809 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7810 7811 #ifndef SQLITE_OMIT_VIRTUALTABLE 7812 /* Opcode: VDestroy P1 * * P4 * 7813 ** 7814 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7815 ** of that table. 7816 */ 7817 case OP_VDestroy: { 7818 db->nVDestroy++; 7819 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7820 db->nVDestroy--; 7821 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7822 if( rc ) goto abort_due_to_error; 7823 break; 7824 } 7825 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7826 7827 #ifndef SQLITE_OMIT_VIRTUALTABLE 7828 /* Opcode: VOpen P1 * * P4 * 7829 ** 7830 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7831 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7832 ** table and stores that cursor in P1. 7833 */ 7834 case OP_VOpen: { 7835 VdbeCursor *pCur; 7836 sqlite3_vtab_cursor *pVCur; 7837 sqlite3_vtab *pVtab; 7838 const sqlite3_module *pModule; 7839 7840 assert( p->bIsReader ); 7841 pCur = 0; 7842 pVCur = 0; 7843 pVtab = pOp->p4.pVtab->pVtab; 7844 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7845 rc = SQLITE_LOCKED; 7846 goto abort_due_to_error; 7847 } 7848 pModule = pVtab->pModule; 7849 rc = pModule->xOpen(pVtab, &pVCur); 7850 sqlite3VtabImportErrmsg(p, pVtab); 7851 if( rc ) goto abort_due_to_error; 7852 7853 /* Initialize sqlite3_vtab_cursor base class */ 7854 pVCur->pVtab = pVtab; 7855 7856 /* Initialize vdbe cursor object */ 7857 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 7858 if( pCur ){ 7859 pCur->uc.pVCur = pVCur; 7860 pVtab->nRef++; 7861 }else{ 7862 assert( db->mallocFailed ); 7863 pModule->xClose(pVCur); 7864 goto no_mem; 7865 } 7866 break; 7867 } 7868 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7869 7870 #ifndef SQLITE_OMIT_VIRTUALTABLE 7871 /* Opcode: VInitIn P1 P2 P3 * * 7872 ** Synopsis: r[P2]=ValueList(P1,P3) 7873 ** 7874 ** Set register P2 to be a pointer to a ValueList object for cursor P1 7875 ** with cache register P3 and output register P3+1. This ValueList object 7876 ** can be used as the first argument to sqlite3_vtab_in_first() and 7877 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 7878 ** cursor. Register P3 is used to hold the values returned by 7879 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 7880 */ 7881 case OP_VInitIn: { /* out2 */ 7882 VdbeCursor *pC; /* The cursor containing the RHS values */ 7883 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 7884 7885 pC = p->apCsr[pOp->p1]; 7886 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 7887 if( pRhs==0 ) goto no_mem; 7888 pRhs->pCsr = pC->uc.pCursor; 7889 pRhs->pOut = &aMem[pOp->p3]; 7890 pOut = out2Prerelease(p, pOp); 7891 pOut->flags = MEM_Null; 7892 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free); 7893 break; 7894 } 7895 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7896 7897 7898 #ifndef SQLITE_OMIT_VIRTUALTABLE 7899 /* Opcode: VFilter P1 P2 P3 P4 * 7900 ** Synopsis: iplan=r[P3] zplan='P4' 7901 ** 7902 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7903 ** the filtered result set is empty. 7904 ** 7905 ** P4 is either NULL or a string that was generated by the xBestIndex 7906 ** method of the module. The interpretation of the P4 string is left 7907 ** to the module implementation. 7908 ** 7909 ** This opcode invokes the xFilter method on the virtual table specified 7910 ** by P1. The integer query plan parameter to xFilter is stored in register 7911 ** P3. Register P3+1 stores the argc parameter to be passed to the 7912 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7913 ** additional parameters which are passed to 7914 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7915 ** 7916 ** A jump is made to P2 if the result set after filtering would be empty. 7917 */ 7918 case OP_VFilter: { /* jump */ 7919 int nArg; 7920 int iQuery; 7921 const sqlite3_module *pModule; 7922 Mem *pQuery; 7923 Mem *pArgc; 7924 sqlite3_vtab_cursor *pVCur; 7925 sqlite3_vtab *pVtab; 7926 VdbeCursor *pCur; 7927 int res; 7928 int i; 7929 Mem **apArg; 7930 7931 pQuery = &aMem[pOp->p3]; 7932 pArgc = &pQuery[1]; 7933 pCur = p->apCsr[pOp->p1]; 7934 assert( memIsValid(pQuery) ); 7935 REGISTER_TRACE(pOp->p3, pQuery); 7936 assert( pCur!=0 ); 7937 assert( pCur->eCurType==CURTYPE_VTAB ); 7938 pVCur = pCur->uc.pVCur; 7939 pVtab = pVCur->pVtab; 7940 pModule = pVtab->pModule; 7941 7942 /* Grab the index number and argc parameters */ 7943 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7944 nArg = (int)pArgc->u.i; 7945 iQuery = (int)pQuery->u.i; 7946 7947 /* Invoke the xFilter method */ 7948 apArg = p->apArg; 7949 for(i = 0; i<nArg; i++){ 7950 apArg[i] = &pArgc[i+1]; 7951 } 7952 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7953 sqlite3VtabImportErrmsg(p, pVtab); 7954 if( rc ) goto abort_due_to_error; 7955 res = pModule->xEof(pVCur); 7956 pCur->nullRow = 0; 7957 VdbeBranchTaken(res!=0,2); 7958 if( res ) goto jump_to_p2; 7959 break; 7960 } 7961 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7962 7963 #ifndef SQLITE_OMIT_VIRTUALTABLE 7964 /* Opcode: VColumn P1 P2 P3 * P5 7965 ** Synopsis: r[P3]=vcolumn(P2) 7966 ** 7967 ** Store in register P3 the value of the P2-th column of 7968 ** the current row of the virtual-table of cursor P1. 7969 ** 7970 ** If the VColumn opcode is being used to fetch the value of 7971 ** an unchanging column during an UPDATE operation, then the P5 7972 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7973 ** function to return true inside the xColumn method of the virtual 7974 ** table implementation. The P5 column might also contain other 7975 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7976 ** unused by OP_VColumn. 7977 */ 7978 case OP_VColumn: { 7979 sqlite3_vtab *pVtab; 7980 const sqlite3_module *pModule; 7981 Mem *pDest; 7982 sqlite3_context sContext; 7983 7984 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7985 assert( pCur!=0 ); 7986 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7987 pDest = &aMem[pOp->p3]; 7988 memAboutToChange(p, pDest); 7989 if( pCur->nullRow ){ 7990 sqlite3VdbeMemSetNull(pDest); 7991 break; 7992 } 7993 assert( pCur->eCurType==CURTYPE_VTAB ); 7994 pVtab = pCur->uc.pVCur->pVtab; 7995 pModule = pVtab->pModule; 7996 assert( pModule->xColumn ); 7997 memset(&sContext, 0, sizeof(sContext)); 7998 sContext.pOut = pDest; 7999 sContext.enc = encoding; 8000 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 8001 if( pOp->p5 & OPFLAG_NOCHNG ){ 8002 sqlite3VdbeMemSetNull(pDest); 8003 pDest->flags = MEM_Null|MEM_Zero; 8004 pDest->u.nZero = 0; 8005 }else{ 8006 MemSetTypeFlag(pDest, MEM_Null); 8007 } 8008 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 8009 sqlite3VtabImportErrmsg(p, pVtab); 8010 if( sContext.isError>0 ){ 8011 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 8012 rc = sContext.isError; 8013 } 8014 sqlite3VdbeChangeEncoding(pDest, encoding); 8015 REGISTER_TRACE(pOp->p3, pDest); 8016 UPDATE_MAX_BLOBSIZE(pDest); 8017 8018 if( rc ) goto abort_due_to_error; 8019 break; 8020 } 8021 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8022 8023 #ifndef SQLITE_OMIT_VIRTUALTABLE 8024 /* Opcode: VNext P1 P2 * * * 8025 ** 8026 ** Advance virtual table P1 to the next row in its result set and 8027 ** jump to instruction P2. Or, if the virtual table has reached 8028 ** the end of its result set, then fall through to the next instruction. 8029 */ 8030 case OP_VNext: { /* jump */ 8031 sqlite3_vtab *pVtab; 8032 const sqlite3_module *pModule; 8033 int res; 8034 VdbeCursor *pCur; 8035 8036 pCur = p->apCsr[pOp->p1]; 8037 assert( pCur!=0 ); 8038 assert( pCur->eCurType==CURTYPE_VTAB ); 8039 if( pCur->nullRow ){ 8040 break; 8041 } 8042 pVtab = pCur->uc.pVCur->pVtab; 8043 pModule = pVtab->pModule; 8044 assert( pModule->xNext ); 8045 8046 /* Invoke the xNext() method of the module. There is no way for the 8047 ** underlying implementation to return an error if one occurs during 8048 ** xNext(). Instead, if an error occurs, true is returned (indicating that 8049 ** data is available) and the error code returned when xColumn or 8050 ** some other method is next invoked on the save virtual table cursor. 8051 */ 8052 rc = pModule->xNext(pCur->uc.pVCur); 8053 sqlite3VtabImportErrmsg(p, pVtab); 8054 if( rc ) goto abort_due_to_error; 8055 res = pModule->xEof(pCur->uc.pVCur); 8056 VdbeBranchTaken(!res,2); 8057 if( !res ){ 8058 /* If there is data, jump to P2 */ 8059 goto jump_to_p2_and_check_for_interrupt; 8060 } 8061 goto check_for_interrupt; 8062 } 8063 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8064 8065 #ifndef SQLITE_OMIT_VIRTUALTABLE 8066 /* Opcode: VRename P1 * * P4 * 8067 ** 8068 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8069 ** This opcode invokes the corresponding xRename method. The value 8070 ** in register P1 is passed as the zName argument to the xRename method. 8071 */ 8072 case OP_VRename: { 8073 sqlite3_vtab *pVtab; 8074 Mem *pName; 8075 int isLegacy; 8076 8077 isLegacy = (db->flags & SQLITE_LegacyAlter); 8078 db->flags |= SQLITE_LegacyAlter; 8079 pVtab = pOp->p4.pVtab->pVtab; 8080 pName = &aMem[pOp->p1]; 8081 assert( pVtab->pModule->xRename ); 8082 assert( memIsValid(pName) ); 8083 assert( p->readOnly==0 ); 8084 REGISTER_TRACE(pOp->p1, pName); 8085 assert( pName->flags & MEM_Str ); 8086 testcase( pName->enc==SQLITE_UTF8 ); 8087 testcase( pName->enc==SQLITE_UTF16BE ); 8088 testcase( pName->enc==SQLITE_UTF16LE ); 8089 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 8090 if( rc ) goto abort_due_to_error; 8091 rc = pVtab->pModule->xRename(pVtab, pName->z); 8092 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 8093 sqlite3VtabImportErrmsg(p, pVtab); 8094 p->expired = 0; 8095 if( rc ) goto abort_due_to_error; 8096 break; 8097 } 8098 #endif 8099 8100 #ifndef SQLITE_OMIT_VIRTUALTABLE 8101 /* Opcode: VUpdate P1 P2 P3 P4 P5 8102 ** Synopsis: data=r[P3@P2] 8103 ** 8104 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8105 ** This opcode invokes the corresponding xUpdate method. P2 values 8106 ** are contiguous memory cells starting at P3 to pass to the xUpdate 8107 ** invocation. The value in register (P3+P2-1) corresponds to the 8108 ** p2th element of the argv array passed to xUpdate. 8109 ** 8110 ** The xUpdate method will do a DELETE or an INSERT or both. 8111 ** The argv[0] element (which corresponds to memory cell P3) 8112 ** is the rowid of a row to delete. If argv[0] is NULL then no 8113 ** deletion occurs. The argv[1] element is the rowid of the new 8114 ** row. This can be NULL to have the virtual table select the new 8115 ** rowid for itself. The subsequent elements in the array are 8116 ** the values of columns in the new row. 8117 ** 8118 ** If P2==1 then no insert is performed. argv[0] is the rowid of 8119 ** a row to delete. 8120 ** 8121 ** P1 is a boolean flag. If it is set to true and the xUpdate call 8122 ** is successful, then the value returned by sqlite3_last_insert_rowid() 8123 ** is set to the value of the rowid for the row just inserted. 8124 ** 8125 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 8126 ** apply in the case of a constraint failure on an insert or update. 8127 */ 8128 case OP_VUpdate: { 8129 sqlite3_vtab *pVtab; 8130 const sqlite3_module *pModule; 8131 int nArg; 8132 int i; 8133 sqlite_int64 rowid = 0; 8134 Mem **apArg; 8135 Mem *pX; 8136 8137 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 8138 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 8139 ); 8140 assert( p->readOnly==0 ); 8141 if( db->mallocFailed ) goto no_mem; 8142 sqlite3VdbeIncrWriteCounter(p, 0); 8143 pVtab = pOp->p4.pVtab->pVtab; 8144 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 8145 rc = SQLITE_LOCKED; 8146 goto abort_due_to_error; 8147 } 8148 pModule = pVtab->pModule; 8149 nArg = pOp->p2; 8150 assert( pOp->p4type==P4_VTAB ); 8151 if( ALWAYS(pModule->xUpdate) ){ 8152 u8 vtabOnConflict = db->vtabOnConflict; 8153 apArg = p->apArg; 8154 pX = &aMem[pOp->p3]; 8155 for(i=0; i<nArg; i++){ 8156 assert( memIsValid(pX) ); 8157 memAboutToChange(p, pX); 8158 apArg[i] = pX; 8159 pX++; 8160 } 8161 db->vtabOnConflict = pOp->p5; 8162 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 8163 db->vtabOnConflict = vtabOnConflict; 8164 sqlite3VtabImportErrmsg(p, pVtab); 8165 if( rc==SQLITE_OK && pOp->p1 ){ 8166 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 8167 db->lastRowid = rowid; 8168 } 8169 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 8170 if( pOp->p5==OE_Ignore ){ 8171 rc = SQLITE_OK; 8172 }else{ 8173 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 8174 } 8175 }else{ 8176 p->nChange++; 8177 } 8178 if( rc ) goto abort_due_to_error; 8179 } 8180 break; 8181 } 8182 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8183 8184 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8185 /* Opcode: Pagecount P1 P2 * * * 8186 ** 8187 ** Write the current number of pages in database P1 to memory cell P2. 8188 */ 8189 case OP_Pagecount: { /* out2 */ 8190 pOut = out2Prerelease(p, pOp); 8191 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8192 break; 8193 } 8194 #endif 8195 8196 8197 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8198 /* Opcode: MaxPgcnt P1 P2 P3 * * 8199 ** 8200 ** Try to set the maximum page count for database P1 to the value in P3. 8201 ** Do not let the maximum page count fall below the current page count and 8202 ** do not change the maximum page count value if P3==0. 8203 ** 8204 ** Store the maximum page count after the change in register P2. 8205 */ 8206 case OP_MaxPgcnt: { /* out2 */ 8207 unsigned int newMax; 8208 Btree *pBt; 8209 8210 pOut = out2Prerelease(p, pOp); 8211 pBt = db->aDb[pOp->p1].pBt; 8212 newMax = 0; 8213 if( pOp->p3 ){ 8214 newMax = sqlite3BtreeLastPage(pBt); 8215 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8216 } 8217 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8218 break; 8219 } 8220 #endif 8221 8222 /* Opcode: Function P1 P2 P3 P4 * 8223 ** Synopsis: r[P3]=func(r[P2@NP]) 8224 ** 8225 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8226 ** contains a pointer to the function to be run) with arguments taken 8227 ** from register P2 and successors. The number of arguments is in 8228 ** the sqlite3_context object that P4 points to. 8229 ** The result of the function is stored 8230 ** in register P3. Register P3 must not be one of the function inputs. 8231 ** 8232 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8233 ** function was determined to be constant at compile time. If the first 8234 ** argument was constant then bit 0 of P1 is set. This is used to determine 8235 ** whether meta data associated with a user function argument using the 8236 ** sqlite3_set_auxdata() API may be safely retained until the next 8237 ** invocation of this opcode. 8238 ** 8239 ** See also: AggStep, AggFinal, PureFunc 8240 */ 8241 /* Opcode: PureFunc P1 P2 P3 P4 * 8242 ** Synopsis: r[P3]=func(r[P2@NP]) 8243 ** 8244 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8245 ** contains a pointer to the function to be run) with arguments taken 8246 ** from register P2 and successors. The number of arguments is in 8247 ** the sqlite3_context object that P4 points to. 8248 ** The result of the function is stored 8249 ** in register P3. Register P3 must not be one of the function inputs. 8250 ** 8251 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8252 ** function was determined to be constant at compile time. If the first 8253 ** argument was constant then bit 0 of P1 is set. This is used to determine 8254 ** whether meta data associated with a user function argument using the 8255 ** sqlite3_set_auxdata() API may be safely retained until the next 8256 ** invocation of this opcode. 8257 ** 8258 ** This opcode works exactly like OP_Function. The only difference is in 8259 ** its name. This opcode is used in places where the function must be 8260 ** purely non-deterministic. Some built-in date/time functions can be 8261 ** either determinitic of non-deterministic, depending on their arguments. 8262 ** When those function are used in a non-deterministic way, they will check 8263 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8264 ** if they were, they throw an error. 8265 ** 8266 ** See also: AggStep, AggFinal, Function 8267 */ 8268 case OP_PureFunc: /* group */ 8269 case OP_Function: { /* group */ 8270 int i; 8271 sqlite3_context *pCtx; 8272 8273 assert( pOp->p4type==P4_FUNCCTX ); 8274 pCtx = pOp->p4.pCtx; 8275 8276 /* If this function is inside of a trigger, the register array in aMem[] 8277 ** might change from one evaluation to the next. The next block of code 8278 ** checks to see if the register array has changed, and if so it 8279 ** reinitializes the relavant parts of the sqlite3_context object */ 8280 pOut = &aMem[pOp->p3]; 8281 if( pCtx->pOut != pOut ){ 8282 pCtx->pVdbe = p; 8283 pCtx->pOut = pOut; 8284 pCtx->enc = encoding; 8285 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8286 } 8287 assert( pCtx->pVdbe==p ); 8288 8289 memAboutToChange(p, pOut); 8290 #ifdef SQLITE_DEBUG 8291 for(i=0; i<pCtx->argc; i++){ 8292 assert( memIsValid(pCtx->argv[i]) ); 8293 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8294 } 8295 #endif 8296 MemSetTypeFlag(pOut, MEM_Null); 8297 assert( pCtx->isError==0 ); 8298 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8299 8300 /* If the function returned an error, throw an exception */ 8301 if( pCtx->isError ){ 8302 if( pCtx->isError>0 ){ 8303 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8304 rc = pCtx->isError; 8305 } 8306 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8307 pCtx->isError = 0; 8308 if( rc ) goto abort_due_to_error; 8309 } 8310 8311 assert( (pOut->flags&MEM_Str)==0 8312 || pOut->enc==encoding 8313 || db->mallocFailed ); 8314 assert( !sqlite3VdbeMemTooBig(pOut) ); 8315 8316 REGISTER_TRACE(pOp->p3, pOut); 8317 UPDATE_MAX_BLOBSIZE(pOut); 8318 break; 8319 } 8320 8321 /* Opcode: ClrSubtype P1 * * * * 8322 ** Synopsis: r[P1].subtype = 0 8323 ** 8324 ** Clear the subtype from register P1. 8325 */ 8326 case OP_ClrSubtype: { /* in1 */ 8327 pIn1 = &aMem[pOp->p1]; 8328 pIn1->flags &= ~MEM_Subtype; 8329 break; 8330 } 8331 8332 /* Opcode: FilterAdd P1 * P3 P4 * 8333 ** Synopsis: filter(P1) += key(P3@P4) 8334 ** 8335 ** Compute a hash on the P4 registers starting with r[P3] and 8336 ** add that hash to the bloom filter contained in r[P1]. 8337 */ 8338 case OP_FilterAdd: { 8339 u64 h; 8340 8341 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8342 pIn1 = &aMem[pOp->p1]; 8343 assert( pIn1->flags & MEM_Blob ); 8344 assert( pIn1->n>0 ); 8345 h = filterHash(aMem, pOp); 8346 #ifdef SQLITE_DEBUG 8347 if( db->flags&SQLITE_VdbeTrace ){ 8348 int ii; 8349 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8350 registerTrace(ii, &aMem[ii]); 8351 } 8352 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8353 } 8354 #endif 8355 h %= pIn1->n; 8356 pIn1->z[h/8] |= 1<<(h&7); 8357 break; 8358 } 8359 8360 /* Opcode: Filter P1 P2 P3 P4 * 8361 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 8362 ** 8363 ** Compute a hash on the key contained in the P4 registers starting 8364 ** with r[P3]. Check to see if that hash is found in the 8365 ** bloom filter hosted by register P1. If it is not present then 8366 ** maybe jump to P2. Otherwise fall through. 8367 ** 8368 ** False negatives are harmless. It is always safe to fall through, 8369 ** even if the value is in the bloom filter. A false negative causes 8370 ** more CPU cycles to be used, but it should still yield the correct 8371 ** answer. However, an incorrect answer may well arise from a 8372 ** false positive - if the jump is taken when it should fall through. 8373 */ 8374 case OP_Filter: { /* jump */ 8375 u64 h; 8376 8377 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8378 pIn1 = &aMem[pOp->p1]; 8379 assert( (pIn1->flags & MEM_Blob)!=0 ); 8380 assert( pIn1->n >= 1 ); 8381 h = filterHash(aMem, pOp); 8382 #ifdef SQLITE_DEBUG 8383 if( db->flags&SQLITE_VdbeTrace ){ 8384 int ii; 8385 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8386 registerTrace(ii, &aMem[ii]); 8387 } 8388 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8389 } 8390 #endif 8391 h %= pIn1->n; 8392 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 8393 VdbeBranchTaken(1, 2); 8394 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 8395 goto jump_to_p2; 8396 }else{ 8397 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 8398 VdbeBranchTaken(0, 2); 8399 } 8400 break; 8401 } 8402 8403 /* Opcode: Trace P1 P2 * P4 * 8404 ** 8405 ** Write P4 on the statement trace output if statement tracing is 8406 ** enabled. 8407 ** 8408 ** Operand P1 must be 0x7fffffff and P2 must positive. 8409 */ 8410 /* Opcode: Init P1 P2 P3 P4 * 8411 ** Synopsis: Start at P2 8412 ** 8413 ** Programs contain a single instance of this opcode as the very first 8414 ** opcode. 8415 ** 8416 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8417 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8418 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8419 ** 8420 ** If P2 is not zero, jump to instruction P2. 8421 ** 8422 ** Increment the value of P1 so that OP_Once opcodes will jump the 8423 ** first time they are evaluated for this run. 8424 ** 8425 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8426 ** error is encountered. 8427 */ 8428 case OP_Trace: 8429 case OP_Init: { /* jump */ 8430 int i; 8431 #ifndef SQLITE_OMIT_TRACE 8432 char *zTrace; 8433 #endif 8434 8435 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8436 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8437 ** 8438 ** This assert() provides evidence for: 8439 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8440 ** would have been returned by the legacy sqlite3_trace() interface by 8441 ** using the X argument when X begins with "--" and invoking 8442 ** sqlite3_expanded_sql(P) otherwise. 8443 */ 8444 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8445 8446 /* OP_Init is always instruction 0 */ 8447 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8448 8449 #ifndef SQLITE_OMIT_TRACE 8450 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8451 && p->minWriteFileFormat!=254 /* tag-20220401a */ 8452 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8453 ){ 8454 #ifndef SQLITE_OMIT_DEPRECATED 8455 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8456 char *z = sqlite3VdbeExpandSql(p, zTrace); 8457 db->trace.xLegacy(db->pTraceArg, z); 8458 sqlite3_free(z); 8459 }else 8460 #endif 8461 if( db->nVdbeExec>1 ){ 8462 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8463 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8464 sqlite3DbFree(db, z); 8465 }else{ 8466 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8467 } 8468 } 8469 #ifdef SQLITE_USE_FCNTL_TRACE 8470 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8471 if( zTrace ){ 8472 int j; 8473 for(j=0; j<db->nDb; j++){ 8474 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8475 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8476 } 8477 } 8478 #endif /* SQLITE_USE_FCNTL_TRACE */ 8479 #ifdef SQLITE_DEBUG 8480 if( (db->flags & SQLITE_SqlTrace)!=0 8481 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8482 ){ 8483 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8484 } 8485 #endif /* SQLITE_DEBUG */ 8486 #endif /* SQLITE_OMIT_TRACE */ 8487 assert( pOp->p2>0 ); 8488 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8489 if( pOp->opcode==OP_Trace ) break; 8490 for(i=1; i<p->nOp; i++){ 8491 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8492 } 8493 pOp->p1 = 0; 8494 } 8495 pOp->p1++; 8496 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8497 goto jump_to_p2; 8498 } 8499 8500 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8501 /* Opcode: CursorHint P1 * * P4 * 8502 ** 8503 ** Provide a hint to cursor P1 that it only needs to return rows that 8504 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8505 ** to values currently held in registers. TK_COLUMN terms in the P4 8506 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8507 */ 8508 case OP_CursorHint: { 8509 VdbeCursor *pC; 8510 8511 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8512 assert( pOp->p4type==P4_EXPR ); 8513 pC = p->apCsr[pOp->p1]; 8514 if( pC ){ 8515 assert( pC->eCurType==CURTYPE_BTREE ); 8516 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8517 pOp->p4.pExpr, aMem); 8518 } 8519 break; 8520 } 8521 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8522 8523 #ifdef SQLITE_DEBUG 8524 /* Opcode: Abortable * * * * * 8525 ** 8526 ** Verify that an Abort can happen. Assert if an Abort at this point 8527 ** might cause database corruption. This opcode only appears in debugging 8528 ** builds. 8529 ** 8530 ** An Abort is safe if either there have been no writes, or if there is 8531 ** an active statement journal. 8532 */ 8533 case OP_Abortable: { 8534 sqlite3VdbeAssertAbortable(p); 8535 break; 8536 } 8537 #endif 8538 8539 #ifdef SQLITE_DEBUG 8540 /* Opcode: ReleaseReg P1 P2 P3 * P5 8541 ** Synopsis: release r[P1@P2] mask P3 8542 ** 8543 ** Release registers from service. Any content that was in the 8544 ** the registers is unreliable after this opcode completes. 8545 ** 8546 ** The registers released will be the P2 registers starting at P1, 8547 ** except if bit ii of P3 set, then do not release register P1+ii. 8548 ** In other words, P3 is a mask of registers to preserve. 8549 ** 8550 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8551 ** that if the content of the released register was set using OP_SCopy, 8552 ** a change to the value of the source register for the OP_SCopy will no longer 8553 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8554 ** 8555 ** If P5 is set, then all released registers have their type set 8556 ** to MEM_Undefined so that any subsequent attempt to read the released 8557 ** register (before it is reinitialized) will generate an assertion fault. 8558 ** 8559 ** P5 ought to be set on every call to this opcode. 8560 ** However, there are places in the code generator will release registers 8561 ** before their are used, under the (valid) assumption that the registers 8562 ** will not be reallocated for some other purpose before they are used and 8563 ** hence are safe to release. 8564 ** 8565 ** This opcode is only available in testing and debugging builds. It is 8566 ** not generated for release builds. The purpose of this opcode is to help 8567 ** validate the generated bytecode. This opcode does not actually contribute 8568 ** to computing an answer. 8569 */ 8570 case OP_ReleaseReg: { 8571 Mem *pMem; 8572 int i; 8573 u32 constMask; 8574 assert( pOp->p1>0 ); 8575 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8576 pMem = &aMem[pOp->p1]; 8577 constMask = pOp->p3; 8578 for(i=0; i<pOp->p2; i++, pMem++){ 8579 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8580 pMem->pScopyFrom = 0; 8581 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8582 } 8583 } 8584 break; 8585 } 8586 #endif 8587 8588 /* Opcode: Noop * * * * * 8589 ** 8590 ** Do nothing. This instruction is often useful as a jump 8591 ** destination. 8592 */ 8593 /* 8594 ** The magic Explain opcode are only inserted when explain==2 (which 8595 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8596 ** This opcode records information from the optimizer. It is the 8597 ** the same as a no-op. This opcodesnever appears in a real VM program. 8598 */ 8599 default: { /* This is really OP_Noop, OP_Explain */ 8600 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8601 8602 break; 8603 } 8604 8605 /***************************************************************************** 8606 ** The cases of the switch statement above this line should all be indented 8607 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8608 ** readability. From this point on down, the normal indentation rules are 8609 ** restored. 8610 *****************************************************************************/ 8611 } 8612 8613 #ifdef VDBE_PROFILE 8614 { 8615 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8616 if( endTime>start ) pOrigOp->cycles += endTime - start; 8617 pOrigOp->cnt++; 8618 } 8619 #endif 8620 8621 /* The following code adds nothing to the actual functionality 8622 ** of the program. It is only here for testing and debugging. 8623 ** On the other hand, it does burn CPU cycles every time through 8624 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8625 */ 8626 #ifndef NDEBUG 8627 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8628 8629 #ifdef SQLITE_DEBUG 8630 if( db->flags & SQLITE_VdbeTrace ){ 8631 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8632 if( rc!=0 ) printf("rc=%d\n",rc); 8633 if( opProperty & (OPFLG_OUT2) ){ 8634 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8635 } 8636 if( opProperty & OPFLG_OUT3 ){ 8637 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8638 } 8639 if( opProperty==0xff ){ 8640 /* Never happens. This code exists to avoid a harmless linkage 8641 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8642 ** used. */ 8643 sqlite3VdbeRegisterDump(p); 8644 } 8645 } 8646 #endif /* SQLITE_DEBUG */ 8647 #endif /* NDEBUG */ 8648 } /* The end of the for(;;) loop the loops through opcodes */ 8649 8650 /* If we reach this point, it means that execution is finished with 8651 ** an error of some kind. 8652 */ 8653 abort_due_to_error: 8654 if( db->mallocFailed ){ 8655 rc = SQLITE_NOMEM_BKPT; 8656 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8657 rc = SQLITE_CORRUPT_BKPT; 8658 } 8659 assert( rc ); 8660 #ifdef SQLITE_DEBUG 8661 if( db->flags & SQLITE_VdbeTrace ){ 8662 const char *zTrace = p->zSql; 8663 if( zTrace==0 ){ 8664 if( aOp[0].opcode==OP_Trace ){ 8665 zTrace = aOp[0].p4.z; 8666 } 8667 if( zTrace==0 ) zTrace = "???"; 8668 } 8669 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8670 } 8671 #endif 8672 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8673 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8674 } 8675 p->rc = rc; 8676 sqlite3SystemError(db, rc); 8677 testcase( sqlite3GlobalConfig.xLog!=0 ); 8678 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8679 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8680 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 8681 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8682 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8683 db->flags |= SQLITE_CorruptRdOnly; 8684 } 8685 rc = SQLITE_ERROR; 8686 if( resetSchemaOnFault>0 ){ 8687 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8688 } 8689 8690 /* This is the only way out of this procedure. We have to 8691 ** release the mutexes on btrees that were acquired at the 8692 ** top. */ 8693 vdbe_return: 8694 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8695 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8696 nProgressLimit += db->nProgressOps; 8697 if( db->xProgress(db->pProgressArg) ){ 8698 nProgressLimit = LARGEST_UINT64; 8699 rc = SQLITE_INTERRUPT; 8700 goto abort_due_to_error; 8701 } 8702 } 8703 #endif 8704 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8705 sqlite3VdbeLeave(p); 8706 assert( rc!=SQLITE_OK || nExtraDelete==0 8707 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8708 ); 8709 return rc; 8710 8711 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8712 ** is encountered. 8713 */ 8714 too_big: 8715 sqlite3VdbeError(p, "string or blob too big"); 8716 rc = SQLITE_TOOBIG; 8717 goto abort_due_to_error; 8718 8719 /* Jump to here if a malloc() fails. 8720 */ 8721 no_mem: 8722 sqlite3OomFault(db); 8723 sqlite3VdbeError(p, "out of memory"); 8724 rc = SQLITE_NOMEM_BKPT; 8725 goto abort_due_to_error; 8726 8727 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8728 ** flag. 8729 */ 8730 abort_due_to_interrupt: 8731 assert( AtomicLoad(&db->u1.isInterrupted) ); 8732 rc = SQLITE_INTERRUPT; 8733 goto abort_due_to_error; 8734 } 8735