1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements execution method of the 13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") 14 ** handles housekeeping details such as creating and deleting 15 ** VDBE instances. This file is solely interested in executing 16 ** the VDBE program. 17 ** 18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer 19 ** to a VDBE. 20 ** 21 ** The SQL parser generates a program which is then executed by 22 ** the VDBE to do the work of the SQL statement. VDBE programs are 23 ** similar in form to assembly language. The program consists of 24 ** a linear sequence of operations. Each operation has an opcode 25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 26 ** is a null-terminated string. Operand P5 is an unsigned character. 27 ** Few opcodes use all 5 operands. 28 ** 29 ** Computation results are stored on a set of registers numbered beginning 30 ** with 1 and going up to Vdbe.nMem. Each register can store 31 ** either an integer, a null-terminated string, a floating point 32 ** number, or the SQL "NULL" value. An implicit conversion from one 33 ** type to the other occurs as necessary. 34 ** 35 ** Most of the code in this file is taken up by the sqlite3VdbeExec() 36 ** function which does the work of interpreting a VDBE program. 37 ** But other routines are also provided to help in building up 38 ** a program instruction by instruction. 39 ** 40 ** Various scripts scan this source file in order to generate HTML 41 ** documentation, headers files, or other derived files. The formatting 42 ** of the code in this file is, therefore, important. See other comments 43 ** in this file for details. If in doubt, do not deviate from existing 44 ** commenting and indentation practices when changing or adding code. 45 ** 46 ** $Id: vdbe.c,v 1.872 2009/07/14 18:35:45 drh Exp $ 47 */ 48 #include "sqliteInt.h" 49 #include "vdbeInt.h" 50 51 /* 52 ** The following global variable is incremented every time a cursor 53 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 54 ** procedures use this information to make sure that indices are 55 ** working correctly. This variable has no function other than to 56 ** help verify the correct operation of the library. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_search_count = 0; 60 #endif 61 62 /* 63 ** When this global variable is positive, it gets decremented once before 64 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted 65 ** field of the sqlite3 structure is set in order to simulate and interrupt. 66 ** 67 ** This facility is used for testing purposes only. It does not function 68 ** in an ordinary build. 69 */ 70 #ifdef SQLITE_TEST 71 int sqlite3_interrupt_count = 0; 72 #endif 73 74 /* 75 ** The next global variable is incremented each type the OP_Sort opcode 76 ** is executed. The test procedures use this information to make sure that 77 ** sorting is occurring or not occurring at appropriate times. This variable 78 ** has no function other than to help verify the correct operation of the 79 ** library. 80 */ 81 #ifdef SQLITE_TEST 82 int sqlite3_sort_count = 0; 83 #endif 84 85 /* 86 ** The next global variable records the size of the largest MEM_Blob 87 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 88 ** use this information to make sure that the zero-blob functionality 89 ** is working correctly. This variable has no function other than to 90 ** help verify the correct operation of the library. 91 */ 92 #ifdef SQLITE_TEST 93 int sqlite3_max_blobsize = 0; 94 static void updateMaxBlobsize(Mem *p){ 95 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 96 sqlite3_max_blobsize = p->n; 97 } 98 } 99 #endif 100 101 /* 102 ** Test a register to see if it exceeds the current maximum blob size. 103 ** If it does, record the new maximum blob size. 104 */ 105 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 106 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 107 #else 108 # define UPDATE_MAX_BLOBSIZE(P) 109 #endif 110 111 /* 112 ** Convert the given register into a string if it isn't one 113 ** already. Return non-zero if a malloc() fails. 114 */ 115 #define Stringify(P, enc) \ 116 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ 117 { goto no_mem; } 118 119 /* 120 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 121 ** a pointer to a dynamically allocated string where some other entity 122 ** is responsible for deallocating that string. Because the register 123 ** does not control the string, it might be deleted without the register 124 ** knowing it. 125 ** 126 ** This routine converts an ephemeral string into a dynamically allocated 127 ** string that the register itself controls. In other words, it 128 ** converts an MEM_Ephem string into an MEM_Dyn string. 129 */ 130 #define Deephemeralize(P) \ 131 if( ((P)->flags&MEM_Ephem)!=0 \ 132 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 133 134 /* 135 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) 136 ** P if required. 137 */ 138 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) 139 140 /* 141 ** Argument pMem points at a register that will be passed to a 142 ** user-defined function or returned to the user as the result of a query. 143 ** The second argument, 'db_enc' is the text encoding used by the vdbe for 144 ** register variables. This routine sets the pMem->enc and pMem->type 145 ** variables used by the sqlite3_value_*() routines. 146 */ 147 #define storeTypeInfo(A,B) _storeTypeInfo(A) 148 static void _storeTypeInfo(Mem *pMem){ 149 int flags = pMem->flags; 150 if( flags & MEM_Null ){ 151 pMem->type = SQLITE_NULL; 152 } 153 else if( flags & MEM_Int ){ 154 pMem->type = SQLITE_INTEGER; 155 } 156 else if( flags & MEM_Real ){ 157 pMem->type = SQLITE_FLOAT; 158 } 159 else if( flags & MEM_Str ){ 160 pMem->type = SQLITE_TEXT; 161 }else{ 162 pMem->type = SQLITE_BLOB; 163 } 164 } 165 166 /* 167 ** Properties of opcodes. The OPFLG_INITIALIZER macro is 168 ** created by mkopcodeh.awk during compilation. Data is obtained 169 ** from the comments following the "case OP_xxxx:" statements in 170 ** this file. 171 */ 172 static const unsigned char opcodeProperty[] = OPFLG_INITIALIZER; 173 174 /* 175 ** Return true if an opcode has any of the OPFLG_xxx properties 176 ** specified by mask. 177 */ 178 int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){ 179 assert( opcode>0 && opcode<(int)sizeof(opcodeProperty) ); 180 return (opcodeProperty[opcode]&mask)!=0; 181 } 182 183 /* 184 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 185 ** if we run out of memory. 186 */ 187 static VdbeCursor *allocateCursor( 188 Vdbe *p, /* The virtual machine */ 189 int iCur, /* Index of the new VdbeCursor */ 190 int nField, /* Number of fields in the table or index */ 191 int iDb, /* When database the cursor belongs to, or -1 */ 192 int isBtreeCursor /* True for B-Tree vs. pseudo-table or vtab */ 193 ){ 194 /* Find the memory cell that will be used to store the blob of memory 195 ** required for this VdbeCursor structure. It is convenient to use a 196 ** vdbe memory cell to manage the memory allocation required for a 197 ** VdbeCursor structure for the following reasons: 198 ** 199 ** * Sometimes cursor numbers are used for a couple of different 200 ** purposes in a vdbe program. The different uses might require 201 ** different sized allocations. Memory cells provide growable 202 ** allocations. 203 ** 204 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 205 ** be freed lazily via the sqlite3_release_memory() API. This 206 ** minimizes the number of malloc calls made by the system. 207 ** 208 ** Memory cells for cursors are allocated at the top of the address 209 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 210 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 211 */ 212 Mem *pMem = &p->aMem[p->nMem-iCur]; 213 214 int nByte; 215 VdbeCursor *pCx = 0; 216 nByte = 217 sizeof(VdbeCursor) + 218 (isBtreeCursor?sqlite3BtreeCursorSize():0) + 219 2*nField*sizeof(u32); 220 221 assert( iCur<p->nCursor ); 222 if( p->apCsr[iCur] ){ 223 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 224 p->apCsr[iCur] = 0; 225 } 226 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 227 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 228 memset(pMem->z, 0, nByte); 229 pCx->iDb = iDb; 230 pCx->nField = nField; 231 if( nField ){ 232 pCx->aType = (u32 *)&pMem->z[sizeof(VdbeCursor)]; 233 } 234 if( isBtreeCursor ){ 235 pCx->pCursor = (BtCursor*) 236 &pMem->z[sizeof(VdbeCursor)+2*nField*sizeof(u32)]; 237 } 238 } 239 return pCx; 240 } 241 242 /* 243 ** Try to convert a value into a numeric representation if we can 244 ** do so without loss of information. In other words, if the string 245 ** looks like a number, convert it into a number. If it does not 246 ** look like a number, leave it alone. 247 */ 248 static void applyNumericAffinity(Mem *pRec){ 249 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ 250 int realnum; 251 sqlite3VdbeMemNulTerminate(pRec); 252 if( (pRec->flags&MEM_Str) 253 && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){ 254 i64 value; 255 sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8); 256 if( !realnum && sqlite3Atoi64(pRec->z, &value) ){ 257 pRec->u.i = value; 258 MemSetTypeFlag(pRec, MEM_Int); 259 }else{ 260 sqlite3VdbeMemRealify(pRec); 261 } 262 } 263 } 264 } 265 266 /* 267 ** Processing is determine by the affinity parameter: 268 ** 269 ** SQLITE_AFF_INTEGER: 270 ** SQLITE_AFF_REAL: 271 ** SQLITE_AFF_NUMERIC: 272 ** Try to convert pRec to an integer representation or a 273 ** floating-point representation if an integer representation 274 ** is not possible. Note that the integer representation is 275 ** always preferred, even if the affinity is REAL, because 276 ** an integer representation is more space efficient on disk. 277 ** 278 ** SQLITE_AFF_TEXT: 279 ** Convert pRec to a text representation. 280 ** 281 ** SQLITE_AFF_NONE: 282 ** No-op. pRec is unchanged. 283 */ 284 static void applyAffinity( 285 Mem *pRec, /* The value to apply affinity to */ 286 char affinity, /* The affinity to be applied */ 287 u8 enc /* Use this text encoding */ 288 ){ 289 if( affinity==SQLITE_AFF_TEXT ){ 290 /* Only attempt the conversion to TEXT if there is an integer or real 291 ** representation (blob and NULL do not get converted) but no string 292 ** representation. 293 */ 294 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 295 sqlite3VdbeMemStringify(pRec, enc); 296 } 297 pRec->flags &= ~(MEM_Real|MEM_Int); 298 }else if( affinity!=SQLITE_AFF_NONE ){ 299 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 300 || affinity==SQLITE_AFF_NUMERIC ); 301 applyNumericAffinity(pRec); 302 if( pRec->flags & MEM_Real ){ 303 sqlite3VdbeIntegerAffinity(pRec); 304 } 305 } 306 } 307 308 /* 309 ** Try to convert the type of a function argument or a result column 310 ** into a numeric representation. Use either INTEGER or REAL whichever 311 ** is appropriate. But only do the conversion if it is possible without 312 ** loss of information and return the revised type of the argument. 313 ** 314 ** This is an EXPERIMENTAL api and is subject to change or removal. 315 */ 316 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 317 Mem *pMem = (Mem*)pVal; 318 applyNumericAffinity(pMem); 319 storeTypeInfo(pMem, 0); 320 return pMem->type; 321 } 322 323 /* 324 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 325 ** not the internal Mem* type. 326 */ 327 void sqlite3ValueApplyAffinity( 328 sqlite3_value *pVal, 329 u8 affinity, 330 u8 enc 331 ){ 332 applyAffinity((Mem *)pVal, affinity, enc); 333 } 334 335 #ifdef SQLITE_DEBUG 336 /* 337 ** Write a nice string representation of the contents of cell pMem 338 ** into buffer zBuf, length nBuf. 339 */ 340 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 341 char *zCsr = zBuf; 342 int f = pMem->flags; 343 344 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 345 346 if( f&MEM_Blob ){ 347 int i; 348 char c; 349 if( f & MEM_Dyn ){ 350 c = 'z'; 351 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 352 }else if( f & MEM_Static ){ 353 c = 't'; 354 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 355 }else if( f & MEM_Ephem ){ 356 c = 'e'; 357 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 358 }else{ 359 c = 's'; 360 } 361 362 sqlite3_snprintf(100, zCsr, "%c", c); 363 zCsr += sqlite3Strlen30(zCsr); 364 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 365 zCsr += sqlite3Strlen30(zCsr); 366 for(i=0; i<16 && i<pMem->n; i++){ 367 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 368 zCsr += sqlite3Strlen30(zCsr); 369 } 370 for(i=0; i<16 && i<pMem->n; i++){ 371 char z = pMem->z[i]; 372 if( z<32 || z>126 ) *zCsr++ = '.'; 373 else *zCsr++ = z; 374 } 375 376 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 377 zCsr += sqlite3Strlen30(zCsr); 378 if( f & MEM_Zero ){ 379 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 380 zCsr += sqlite3Strlen30(zCsr); 381 } 382 *zCsr = '\0'; 383 }else if( f & MEM_Str ){ 384 int j, k; 385 zBuf[0] = ' '; 386 if( f & MEM_Dyn ){ 387 zBuf[1] = 'z'; 388 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 389 }else if( f & MEM_Static ){ 390 zBuf[1] = 't'; 391 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 392 }else if( f & MEM_Ephem ){ 393 zBuf[1] = 'e'; 394 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 395 }else{ 396 zBuf[1] = 's'; 397 } 398 k = 2; 399 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 400 k += sqlite3Strlen30(&zBuf[k]); 401 zBuf[k++] = '['; 402 for(j=0; j<15 && j<pMem->n; j++){ 403 u8 c = pMem->z[j]; 404 if( c>=0x20 && c<0x7f ){ 405 zBuf[k++] = c; 406 }else{ 407 zBuf[k++] = '.'; 408 } 409 } 410 zBuf[k++] = ']'; 411 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 412 k += sqlite3Strlen30(&zBuf[k]); 413 zBuf[k++] = 0; 414 } 415 } 416 #endif 417 418 #ifdef SQLITE_DEBUG 419 /* 420 ** Print the value of a register for tracing purposes: 421 */ 422 static void memTracePrint(FILE *out, Mem *p){ 423 if( p->flags & MEM_Null ){ 424 fprintf(out, " NULL"); 425 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 426 fprintf(out, " si:%lld", p->u.i); 427 }else if( p->flags & MEM_Int ){ 428 fprintf(out, " i:%lld", p->u.i); 429 #ifndef SQLITE_OMIT_FLOATING_POINT 430 }else if( p->flags & MEM_Real ){ 431 fprintf(out, " r:%g", p->r); 432 #endif 433 }else if( p->flags & MEM_RowSet ){ 434 fprintf(out, " (rowset)"); 435 }else{ 436 char zBuf[200]; 437 sqlite3VdbeMemPrettyPrint(p, zBuf); 438 fprintf(out, " "); 439 fprintf(out, "%s", zBuf); 440 } 441 } 442 static void registerTrace(FILE *out, int iReg, Mem *p){ 443 fprintf(out, "REG[%d] = ", iReg); 444 memTracePrint(out, p); 445 fprintf(out, "\n"); 446 } 447 #endif 448 449 #ifdef SQLITE_DEBUG 450 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M) 451 #else 452 # define REGISTER_TRACE(R,M) 453 #endif 454 455 456 #ifdef VDBE_PROFILE 457 458 /* 459 ** hwtime.h contains inline assembler code for implementing 460 ** high-performance timing routines. 461 */ 462 #include "hwtime.h" 463 464 #endif 465 466 /* 467 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the 468 ** sqlite3_interrupt() routine has been called. If it has been, then 469 ** processing of the VDBE program is interrupted. 470 ** 471 ** This macro added to every instruction that does a jump in order to 472 ** implement a loop. This test used to be on every single instruction, 473 ** but that meant we more testing that we needed. By only testing the 474 ** flag on jump instructions, we get a (small) speed improvement. 475 */ 476 #define CHECK_FOR_INTERRUPT \ 477 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 478 479 #ifdef SQLITE_DEBUG 480 static int fileExists(sqlite3 *db, const char *zFile){ 481 int res = 0; 482 int rc = SQLITE_OK; 483 #ifdef SQLITE_TEST 484 /* If we are currently testing IO errors, then do not call OsAccess() to 485 ** test for the presence of zFile. This is because any IO error that 486 ** occurs here will not be reported, causing the test to fail. 487 */ 488 extern int sqlite3_io_error_pending; 489 if( sqlite3_io_error_pending<=0 ) 490 #endif 491 rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res); 492 return (res && rc==SQLITE_OK); 493 } 494 #endif 495 496 #ifndef NDEBUG 497 /* 498 ** This function is only called from within an assert() expression. It 499 ** checks that the sqlite3.nTransaction variable is correctly set to 500 ** the number of non-transaction savepoints currently in the 501 ** linked list starting at sqlite3.pSavepoint. 502 ** 503 ** Usage: 504 ** 505 ** assert( checkSavepointCount(db) ); 506 */ 507 static int checkSavepointCount(sqlite3 *db){ 508 int n = 0; 509 Savepoint *p; 510 for(p=db->pSavepoint; p; p=p->pNext) n++; 511 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 512 return 1; 513 } 514 #endif 515 516 /* 517 ** Execute as much of a VDBE program as we can then return. 518 ** 519 ** sqlite3VdbeMakeReady() must be called before this routine in order to 520 ** close the program with a final OP_Halt and to set up the callbacks 521 ** and the error message pointer. 522 ** 523 ** Whenever a row or result data is available, this routine will either 524 ** invoke the result callback (if there is one) or return with 525 ** SQLITE_ROW. 526 ** 527 ** If an attempt is made to open a locked database, then this routine 528 ** will either invoke the busy callback (if there is one) or it will 529 ** return SQLITE_BUSY. 530 ** 531 ** If an error occurs, an error message is written to memory obtained 532 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. 533 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. 534 ** 535 ** If the callback ever returns non-zero, then the program exits 536 ** immediately. There will be no error message but the p->rc field is 537 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. 538 ** 539 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this 540 ** routine to return SQLITE_ERROR. 541 ** 542 ** Other fatal errors return SQLITE_ERROR. 543 ** 544 ** After this routine has finished, sqlite3VdbeFinalize() should be 545 ** used to clean up the mess that was left behind. 546 */ 547 int sqlite3VdbeExec( 548 Vdbe *p /* The VDBE */ 549 ){ 550 int pc; /* The program counter */ 551 Op *pOp; /* Current operation */ 552 int rc = SQLITE_OK; /* Value to return */ 553 sqlite3 *db = p->db; /* The database */ 554 u8 encoding = ENC(db); /* The database encoding */ 555 Mem *pIn1 = 0; /* 1st input operand */ 556 Mem *pIn2 = 0; /* 2nd input operand */ 557 Mem *pIn3 = 0; /* 3rd input operand */ 558 Mem *pOut = 0; /* Output operand */ 559 u8 opProperty; 560 int iCompare = 0; /* Result of last OP_Compare operation */ 561 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 562 #ifdef VDBE_PROFILE 563 u64 start; /* CPU clock count at start of opcode */ 564 int origPc; /* Program counter at start of opcode */ 565 #endif 566 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 567 int nProgressOps = 0; /* Opcodes executed since progress callback. */ 568 #endif 569 /*** INSERT STACK UNION HERE ***/ 570 571 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 572 assert( db->magic==SQLITE_MAGIC_BUSY ); 573 sqlite3VdbeMutexArrayEnter(p); 574 if( p->rc==SQLITE_NOMEM ){ 575 /* This happens if a malloc() inside a call to sqlite3_column_text() or 576 ** sqlite3_column_text16() failed. */ 577 goto no_mem; 578 } 579 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 580 p->rc = SQLITE_OK; 581 assert( p->explain==0 ); 582 p->pResultSet = 0; 583 db->busyHandler.nBusy = 0; 584 CHECK_FOR_INTERRUPT; 585 sqlite3VdbeIOTraceSql(p); 586 #ifdef SQLITE_DEBUG 587 sqlite3BeginBenignMalloc(); 588 if( p->pc==0 589 && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain")) 590 ){ 591 int i; 592 printf("VDBE Program Listing:\n"); 593 sqlite3VdbePrintSql(p); 594 for(i=0; i<p->nOp; i++){ 595 sqlite3VdbePrintOp(stdout, i, &p->aOp[i]); 596 } 597 } 598 if( fileExists(db, "vdbe_trace") ){ 599 p->trace = stdout; 600 } 601 sqlite3EndBenignMalloc(); 602 #endif 603 for(pc=p->pc; rc==SQLITE_OK; pc++){ 604 assert( pc>=0 && pc<p->nOp ); 605 if( db->mallocFailed ) goto no_mem; 606 #ifdef VDBE_PROFILE 607 origPc = pc; 608 start = sqlite3Hwtime(); 609 #endif 610 pOp = &p->aOp[pc]; 611 612 /* Only allow tracing if SQLITE_DEBUG is defined. 613 */ 614 #ifdef SQLITE_DEBUG 615 if( p->trace ){ 616 if( pc==0 ){ 617 printf("VDBE Execution Trace:\n"); 618 sqlite3VdbePrintSql(p); 619 } 620 sqlite3VdbePrintOp(p->trace, pc, pOp); 621 } 622 if( p->trace==0 && pc==0 ){ 623 sqlite3BeginBenignMalloc(); 624 if( fileExists(db, "vdbe_sqltrace") ){ 625 sqlite3VdbePrintSql(p); 626 } 627 sqlite3EndBenignMalloc(); 628 } 629 #endif 630 631 632 /* Check to see if we need to simulate an interrupt. This only happens 633 ** if we have a special test build. 634 */ 635 #ifdef SQLITE_TEST 636 if( sqlite3_interrupt_count>0 ){ 637 sqlite3_interrupt_count--; 638 if( sqlite3_interrupt_count==0 ){ 639 sqlite3_interrupt(db); 640 } 641 } 642 #endif 643 644 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 645 /* Call the progress callback if it is configured and the required number 646 ** of VDBE ops have been executed (either since this invocation of 647 ** sqlite3VdbeExec() or since last time the progress callback was called). 648 ** If the progress callback returns non-zero, exit the virtual machine with 649 ** a return code SQLITE_ABORT. 650 */ 651 if( db->xProgress ){ 652 if( db->nProgressOps==nProgressOps ){ 653 int prc; 654 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 655 prc =db->xProgress(db->pProgressArg); 656 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 657 if( prc!=0 ){ 658 rc = SQLITE_INTERRUPT; 659 goto vdbe_error_halt; 660 } 661 nProgressOps = 0; 662 } 663 nProgressOps++; 664 } 665 #endif 666 667 /* Do common setup processing for any opcode that is marked 668 ** with the "out2-prerelease" tag. Such opcodes have a single 669 ** output which is specified by the P2 parameter. The P2 register 670 ** is initialized to a NULL. 671 */ 672 opProperty = opcodeProperty[pOp->opcode]; 673 if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){ 674 assert( pOp->p2>0 ); 675 assert( pOp->p2<=p->nMem ); 676 pOut = &p->aMem[pOp->p2]; 677 sqlite3VdbeMemReleaseExternal(pOut); 678 pOut->flags = MEM_Null; 679 pOut->n = 0; 680 }else 681 682 /* Do common setup for opcodes marked with one of the following 683 ** combinations of properties. 684 ** 685 ** in1 686 ** in1 in2 687 ** in1 in2 out3 688 ** in1 in3 689 ** 690 ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate 691 ** registers for inputs. Variable pOut points to the output register. 692 */ 693 if( (opProperty & OPFLG_IN1)!=0 ){ 694 assert( pOp->p1>0 ); 695 assert( pOp->p1<=p->nMem ); 696 pIn1 = &p->aMem[pOp->p1]; 697 REGISTER_TRACE(pOp->p1, pIn1); 698 if( (opProperty & OPFLG_IN2)!=0 ){ 699 assert( pOp->p2>0 ); 700 assert( pOp->p2<=p->nMem ); 701 pIn2 = &p->aMem[pOp->p2]; 702 REGISTER_TRACE(pOp->p2, pIn2); 703 if( (opProperty & OPFLG_OUT3)!=0 ){ 704 assert( pOp->p3>0 ); 705 assert( pOp->p3<=p->nMem ); 706 pOut = &p->aMem[pOp->p3]; 707 } 708 }else if( (opProperty & OPFLG_IN3)!=0 ){ 709 assert( pOp->p3>0 ); 710 assert( pOp->p3<=p->nMem ); 711 pIn3 = &p->aMem[pOp->p3]; 712 REGISTER_TRACE(pOp->p3, pIn3); 713 } 714 }else if( (opProperty & OPFLG_IN2)!=0 ){ 715 assert( pOp->p2>0 ); 716 assert( pOp->p2<=p->nMem ); 717 pIn2 = &p->aMem[pOp->p2]; 718 REGISTER_TRACE(pOp->p2, pIn2); 719 }else if( (opProperty & OPFLG_IN3)!=0 ){ 720 assert( pOp->p3>0 ); 721 assert( pOp->p3<=p->nMem ); 722 pIn3 = &p->aMem[pOp->p3]; 723 REGISTER_TRACE(pOp->p3, pIn3); 724 } 725 726 switch( pOp->opcode ){ 727 728 /***************************************************************************** 729 ** What follows is a massive switch statement where each case implements a 730 ** separate instruction in the virtual machine. If we follow the usual 731 ** indentation conventions, each case should be indented by 6 spaces. But 732 ** that is a lot of wasted space on the left margin. So the code within 733 ** the switch statement will break with convention and be flush-left. Another 734 ** big comment (similar to this one) will mark the point in the code where 735 ** we transition back to normal indentation. 736 ** 737 ** The formatting of each case is important. The makefile for SQLite 738 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 739 ** file looking for lines that begin with "case OP_". The opcodes.h files 740 ** will be filled with #defines that give unique integer values to each 741 ** opcode and the opcodes.c file is filled with an array of strings where 742 ** each string is the symbolic name for the corresponding opcode. If the 743 ** case statement is followed by a comment of the form "/# same as ... #/" 744 ** that comment is used to determine the particular value of the opcode. 745 ** 746 ** Other keywords in the comment that follows each case are used to 747 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 748 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 749 ** the mkopcodeh.awk script for additional information. 750 ** 751 ** Documentation about VDBE opcodes is generated by scanning this file 752 ** for lines of that contain "Opcode:". That line and all subsequent 753 ** comment lines are used in the generation of the opcode.html documentation 754 ** file. 755 ** 756 ** SUMMARY: 757 ** 758 ** Formatting is important to scripts that scan this file. 759 ** Do not deviate from the formatting style currently in use. 760 ** 761 *****************************************************************************/ 762 763 /* Opcode: Goto * P2 * * * 764 ** 765 ** An unconditional jump to address P2. 766 ** The next instruction executed will be 767 ** the one at index P2 from the beginning of 768 ** the program. 769 */ 770 case OP_Goto: { /* jump */ 771 CHECK_FOR_INTERRUPT; 772 pc = pOp->p2 - 1; 773 break; 774 } 775 776 /* Opcode: Gosub P1 P2 * * * 777 ** 778 ** Write the current address onto register P1 779 ** and then jump to address P2. 780 */ 781 case OP_Gosub: { /* jump */ 782 assert( pOp->p1>0 ); 783 assert( pOp->p1<=p->nMem ); 784 pIn1 = &p->aMem[pOp->p1]; 785 assert( (pIn1->flags & MEM_Dyn)==0 ); 786 pIn1->flags = MEM_Int; 787 pIn1->u.i = pc; 788 REGISTER_TRACE(pOp->p1, pIn1); 789 pc = pOp->p2 - 1; 790 break; 791 } 792 793 /* Opcode: Return P1 * * * * 794 ** 795 ** Jump to the next instruction after the address in register P1. 796 */ 797 case OP_Return: { /* in1 */ 798 assert( pIn1->flags & MEM_Int ); 799 pc = (int)pIn1->u.i; 800 break; 801 } 802 803 /* Opcode: Yield P1 * * * * 804 ** 805 ** Swap the program counter with the value in register P1. 806 */ 807 case OP_Yield: { /* in1 */ 808 int pcDest; 809 assert( (pIn1->flags & MEM_Dyn)==0 ); 810 pIn1->flags = MEM_Int; 811 pcDest = (int)pIn1->u.i; 812 pIn1->u.i = pc; 813 REGISTER_TRACE(pOp->p1, pIn1); 814 pc = pcDest; 815 break; 816 } 817 818 /* Opcode: HaltIfNull P1 P2 P3 P4 * 819 ** 820 ** Check the value in register P3. If is is NULL then Halt using 821 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 822 ** value in register P3 is not NULL, then this routine is a no-op. 823 */ 824 case OP_HaltIfNull: { /* in3 */ 825 if( (pIn3->flags & MEM_Null)==0 ) break; 826 /* Fall through into OP_Halt */ 827 } 828 829 /* Opcode: Halt P1 P2 * P4 * 830 ** 831 ** Exit immediately. All open cursors, etc are closed 832 ** automatically. 833 ** 834 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 835 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 836 ** For errors, it can be some other value. If P1!=0 then P2 will determine 837 ** whether or not to rollback the current transaction. Do not rollback 838 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 839 ** then back out all changes that have occurred during this execution of the 840 ** VDBE, but do not rollback the transaction. 841 ** 842 ** If P4 is not null then it is an error message string. 843 ** 844 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 845 ** every program. So a jump past the last instruction of the program 846 ** is the same as executing Halt. 847 */ 848 case OP_Halt: { 849 p->rc = pOp->p1; 850 p->pc = pc; 851 p->errorAction = (u8)pOp->p2; 852 if( pOp->p4.z ){ 853 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 854 } 855 rc = sqlite3VdbeHalt(p); 856 assert( rc==SQLITE_BUSY || rc==SQLITE_OK ); 857 if( rc==SQLITE_BUSY ){ 858 p->rc = rc = SQLITE_BUSY; 859 }else{ 860 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 861 } 862 goto vdbe_return; 863 } 864 865 /* Opcode: Integer P1 P2 * * * 866 ** 867 ** The 32-bit integer value P1 is written into register P2. 868 */ 869 case OP_Integer: { /* out2-prerelease */ 870 pOut->flags = MEM_Int; 871 pOut->u.i = pOp->p1; 872 break; 873 } 874 875 /* Opcode: Int64 * P2 * P4 * 876 ** 877 ** P4 is a pointer to a 64-bit integer value. 878 ** Write that value into register P2. 879 */ 880 case OP_Int64: { /* out2-prerelease */ 881 assert( pOp->p4.pI64!=0 ); 882 pOut->flags = MEM_Int; 883 pOut->u.i = *pOp->p4.pI64; 884 break; 885 } 886 887 /* Opcode: Real * P2 * P4 * 888 ** 889 ** P4 is a pointer to a 64-bit floating point value. 890 ** Write that value into register P2. 891 */ 892 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 893 pOut->flags = MEM_Real; 894 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 895 pOut->r = *pOp->p4.pReal; 896 break; 897 } 898 899 /* Opcode: String8 * P2 * P4 * 900 ** 901 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 902 ** into an OP_String before it is executed for the first time. 903 */ 904 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 905 assert( pOp->p4.z!=0 ); 906 pOp->opcode = OP_String; 907 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 908 909 #ifndef SQLITE_OMIT_UTF16 910 if( encoding!=SQLITE_UTF8 ){ 911 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 912 if( rc==SQLITE_TOOBIG ) goto too_big; 913 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 914 assert( pOut->zMalloc==pOut->z ); 915 assert( pOut->flags & MEM_Dyn ); 916 pOut->zMalloc = 0; 917 pOut->flags |= MEM_Static; 918 pOut->flags &= ~MEM_Dyn; 919 if( pOp->p4type==P4_DYNAMIC ){ 920 sqlite3DbFree(db, pOp->p4.z); 921 } 922 pOp->p4type = P4_DYNAMIC; 923 pOp->p4.z = pOut->z; 924 pOp->p1 = pOut->n; 925 } 926 #endif 927 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 928 goto too_big; 929 } 930 /* Fall through to the next case, OP_String */ 931 } 932 933 /* Opcode: String P1 P2 * P4 * 934 ** 935 ** The string value P4 of length P1 (bytes) is stored in register P2. 936 */ 937 case OP_String: { /* out2-prerelease */ 938 assert( pOp->p4.z!=0 ); 939 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 940 pOut->z = pOp->p4.z; 941 pOut->n = pOp->p1; 942 pOut->enc = encoding; 943 UPDATE_MAX_BLOBSIZE(pOut); 944 break; 945 } 946 947 /* Opcode: Null * P2 * * * 948 ** 949 ** Write a NULL into register P2. 950 */ 951 case OP_Null: { /* out2-prerelease */ 952 break; 953 } 954 955 956 /* Opcode: Blob P1 P2 * P4 957 ** 958 ** P4 points to a blob of data P1 bytes long. Store this 959 ** blob in register P2. This instruction is not coded directly 960 ** by the compiler. Instead, the compiler layer specifies 961 ** an OP_HexBlob opcode, with the hex string representation of 962 ** the blob as P4. This opcode is transformed to an OP_Blob 963 ** the first time it is executed. 964 */ 965 case OP_Blob: { /* out2-prerelease */ 966 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 967 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 968 pOut->enc = encoding; 969 UPDATE_MAX_BLOBSIZE(pOut); 970 break; 971 } 972 973 /* Opcode: Variable P1 P2 P3 P4 * 974 ** 975 ** Transfer the values of bound parameters P1..P1+P3-1 into registers 976 ** P2..P2+P3-1. 977 ** 978 ** If the parameter is named, then its name appears in P4 and P3==1. 979 ** The P4 value is used by sqlite3_bind_parameter_name(). 980 */ 981 case OP_Variable: { 982 int p1; /* Variable to copy from */ 983 int p2; /* Register to copy to */ 984 int n; /* Number of values left to copy */ 985 Mem *pVar; /* Value being transferred */ 986 987 p1 = pOp->p1 - 1; 988 p2 = pOp->p2; 989 n = pOp->p3; 990 assert( p1>=0 && p1+n<=p->nVar ); 991 assert( p2>=1 && p2+n-1<=p->nMem ); 992 assert( pOp->p4.z==0 || pOp->p3==1 ); 993 994 while( n-- > 0 ){ 995 pVar = &p->aVar[p1++]; 996 if( sqlite3VdbeMemTooBig(pVar) ){ 997 goto too_big; 998 } 999 pOut = &p->aMem[p2++]; 1000 sqlite3VdbeMemReleaseExternal(pOut); 1001 pOut->flags = MEM_Null; 1002 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1003 UPDATE_MAX_BLOBSIZE(pOut); 1004 } 1005 break; 1006 } 1007 1008 /* Opcode: Move P1 P2 P3 * * 1009 ** 1010 ** Move the values in register P1..P1+P3-1 over into 1011 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are 1012 ** left holding a NULL. It is an error for register ranges 1013 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. 1014 */ 1015 case OP_Move: { 1016 char *zMalloc; /* Holding variable for allocated memory */ 1017 int n; /* Number of registers left to copy */ 1018 int p1; /* Register to copy from */ 1019 int p2; /* Register to copy to */ 1020 1021 n = pOp->p3; 1022 p1 = pOp->p1; 1023 p2 = pOp->p2; 1024 assert( n>0 && p1>0 && p2>0 ); 1025 assert( p1+n<=p2 || p2+n<=p1 ); 1026 1027 pIn1 = &p->aMem[p1]; 1028 pOut = &p->aMem[p2]; 1029 while( n-- ){ 1030 assert( pOut<=&p->aMem[p->nMem] ); 1031 assert( pIn1<=&p->aMem[p->nMem] ); 1032 zMalloc = pOut->zMalloc; 1033 pOut->zMalloc = 0; 1034 sqlite3VdbeMemMove(pOut, pIn1); 1035 pIn1->zMalloc = zMalloc; 1036 REGISTER_TRACE(p2++, pOut); 1037 pIn1++; 1038 pOut++; 1039 } 1040 break; 1041 } 1042 1043 /* Opcode: Copy P1 P2 * * * 1044 ** 1045 ** Make a copy of register P1 into register P2. 1046 ** 1047 ** This instruction makes a deep copy of the value. A duplicate 1048 ** is made of any string or blob constant. See also OP_SCopy. 1049 */ 1050 case OP_Copy: { /* in1 */ 1051 assert( pOp->p2>0 ); 1052 assert( pOp->p2<=p->nMem ); 1053 pOut = &p->aMem[pOp->p2]; 1054 assert( pOut!=pIn1 ); 1055 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1056 Deephemeralize(pOut); 1057 REGISTER_TRACE(pOp->p2, pOut); 1058 break; 1059 } 1060 1061 /* Opcode: SCopy P1 P2 * * * 1062 ** 1063 ** Make a shallow copy of register P1 into register P2. 1064 ** 1065 ** This instruction makes a shallow copy of the value. If the value 1066 ** is a string or blob, then the copy is only a pointer to the 1067 ** original and hence if the original changes so will the copy. 1068 ** Worse, if the original is deallocated, the copy becomes invalid. 1069 ** Thus the program must guarantee that the original will not change 1070 ** during the lifetime of the copy. Use OP_Copy to make a complete 1071 ** copy. 1072 */ 1073 case OP_SCopy: { /* in1 */ 1074 REGISTER_TRACE(pOp->p1, pIn1); 1075 assert( pOp->p2>0 ); 1076 assert( pOp->p2<=p->nMem ); 1077 pOut = &p->aMem[pOp->p2]; 1078 assert( pOut!=pIn1 ); 1079 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1080 REGISTER_TRACE(pOp->p2, pOut); 1081 break; 1082 } 1083 1084 /* Opcode: ResultRow P1 P2 * * * 1085 ** 1086 ** The registers P1 through P1+P2-1 contain a single row of 1087 ** results. This opcode causes the sqlite3_step() call to terminate 1088 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1089 ** structure to provide access to the top P1 values as the result 1090 ** row. 1091 */ 1092 case OP_ResultRow: { 1093 Mem *pMem; 1094 int i; 1095 assert( p->nResColumn==pOp->p2 ); 1096 assert( pOp->p1>0 ); 1097 assert( pOp->p1+pOp->p2<=p->nMem+1 ); 1098 1099 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1100 ** DML statements invoke this opcode to return the number of rows 1101 ** modified to the user. This is the only way that a VM that 1102 ** opens a statement transaction may invoke this opcode. 1103 ** 1104 ** In case this is such a statement, close any statement transaction 1105 ** opened by this VM before returning control to the user. This is to 1106 ** ensure that statement-transactions are always nested, not overlapping. 1107 ** If the open statement-transaction is not closed here, then the user 1108 ** may step another VM that opens its own statement transaction. This 1109 ** may lead to overlapping statement transactions. 1110 ** 1111 ** The statement transaction is never a top-level transaction. Hence 1112 ** the RELEASE call below can never fail. 1113 */ 1114 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1115 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1116 if( NEVER(rc!=SQLITE_OK) ){ 1117 break; 1118 } 1119 1120 /* Invalidate all ephemeral cursor row caches */ 1121 p->cacheCtr = (p->cacheCtr + 2)|1; 1122 1123 /* Make sure the results of the current row are \000 terminated 1124 ** and have an assigned type. The results are de-ephemeralized as 1125 ** as side effect. 1126 */ 1127 pMem = p->pResultSet = &p->aMem[pOp->p1]; 1128 for(i=0; i<pOp->p2; i++){ 1129 sqlite3VdbeMemNulTerminate(&pMem[i]); 1130 storeTypeInfo(&pMem[i], encoding); 1131 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1132 } 1133 if( db->mallocFailed ) goto no_mem; 1134 1135 /* Return SQLITE_ROW 1136 */ 1137 p->pc = pc + 1; 1138 rc = SQLITE_ROW; 1139 goto vdbe_return; 1140 } 1141 1142 /* Opcode: Concat P1 P2 P3 * * 1143 ** 1144 ** Add the text in register P1 onto the end of the text in 1145 ** register P2 and store the result in register P3. 1146 ** If either the P1 or P2 text are NULL then store NULL in P3. 1147 ** 1148 ** P3 = P2 || P1 1149 ** 1150 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1151 ** if P3 is the same register as P2, the implementation is able 1152 ** to avoid a memcpy(). 1153 */ 1154 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1155 i64 nByte; 1156 1157 assert( pIn1!=pOut ); 1158 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1159 sqlite3VdbeMemSetNull(pOut); 1160 break; 1161 } 1162 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1163 Stringify(pIn1, encoding); 1164 Stringify(pIn2, encoding); 1165 nByte = pIn1->n + pIn2->n; 1166 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1167 goto too_big; 1168 } 1169 MemSetTypeFlag(pOut, MEM_Str); 1170 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1171 goto no_mem; 1172 } 1173 if( pOut!=pIn2 ){ 1174 memcpy(pOut->z, pIn2->z, pIn2->n); 1175 } 1176 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1177 pOut->z[nByte] = 0; 1178 pOut->z[nByte+1] = 0; 1179 pOut->flags |= MEM_Term; 1180 pOut->n = (int)nByte; 1181 pOut->enc = encoding; 1182 UPDATE_MAX_BLOBSIZE(pOut); 1183 break; 1184 } 1185 1186 /* Opcode: Add P1 P2 P3 * * 1187 ** 1188 ** Add the value in register P1 to the value in register P2 1189 ** and store the result in register P3. 1190 ** If either input is NULL, the result is NULL. 1191 */ 1192 /* Opcode: Multiply P1 P2 P3 * * 1193 ** 1194 ** 1195 ** Multiply the value in register P1 by the value in register P2 1196 ** and store the result in register P3. 1197 ** If either input is NULL, the result is NULL. 1198 */ 1199 /* Opcode: Subtract P1 P2 P3 * * 1200 ** 1201 ** Subtract the value in register P1 from the value in register P2 1202 ** and store the result in register P3. 1203 ** If either input is NULL, the result is NULL. 1204 */ 1205 /* Opcode: Divide P1 P2 P3 * * 1206 ** 1207 ** Divide the value in register P1 by the value in register P2 1208 ** and store the result in register P3. If the value in register P2 1209 ** is zero, then the result is NULL. 1210 ** If either input is NULL, the result is NULL. 1211 */ 1212 /* Opcode: Remainder P1 P2 P3 * * 1213 ** 1214 ** Compute the remainder after integer division of the value in 1215 ** register P1 by the value in register P2 and store the result in P3. 1216 ** If the value in register P2 is zero the result is NULL. 1217 ** If either operand is NULL, the result is NULL. 1218 */ 1219 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1220 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1221 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1222 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1223 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1224 int flags; /* Combined MEM_* flags from both inputs */ 1225 i64 iA; /* Integer value of left operand */ 1226 i64 iB; /* Integer value of right operand */ 1227 double rA; /* Real value of left operand */ 1228 double rB; /* Real value of right operand */ 1229 1230 applyNumericAffinity(pIn1); 1231 applyNumericAffinity(pIn2); 1232 flags = pIn1->flags | pIn2->flags; 1233 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1234 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ 1235 iA = pIn1->u.i; 1236 iB = pIn2->u.i; 1237 switch( pOp->opcode ){ 1238 case OP_Add: iB += iA; break; 1239 case OP_Subtract: iB -= iA; break; 1240 case OP_Multiply: iB *= iA; break; 1241 case OP_Divide: { 1242 if( iA==0 ) goto arithmetic_result_is_null; 1243 /* Dividing the largest possible negative 64-bit integer (1<<63) by 1244 ** -1 returns an integer too large to store in a 64-bit data-type. On 1245 ** some architectures, the value overflows to (1<<63). On others, 1246 ** a SIGFPE is issued. The following statement normalizes this 1247 ** behavior so that all architectures behave as if integer 1248 ** overflow occurred. 1249 */ 1250 if( iA==-1 && iB==SMALLEST_INT64 ) iA = 1; 1251 iB /= iA; 1252 break; 1253 } 1254 default: { 1255 if( iA==0 ) goto arithmetic_result_is_null; 1256 if( iA==-1 ) iA = 1; 1257 iB %= iA; 1258 break; 1259 } 1260 } 1261 pOut->u.i = iB; 1262 MemSetTypeFlag(pOut, MEM_Int); 1263 }else{ 1264 rA = sqlite3VdbeRealValue(pIn1); 1265 rB = sqlite3VdbeRealValue(pIn2); 1266 switch( pOp->opcode ){ 1267 case OP_Add: rB += rA; break; 1268 case OP_Subtract: rB -= rA; break; 1269 case OP_Multiply: rB *= rA; break; 1270 case OP_Divide: { 1271 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1272 if( rA==(double)0 ) goto arithmetic_result_is_null; 1273 rB /= rA; 1274 break; 1275 } 1276 default: { 1277 iA = (i64)rA; 1278 iB = (i64)rB; 1279 if( iA==0 ) goto arithmetic_result_is_null; 1280 if( iA==-1 ) iA = 1; 1281 rB = (double)(iB % iA); 1282 break; 1283 } 1284 } 1285 if( sqlite3IsNaN(rB) ){ 1286 goto arithmetic_result_is_null; 1287 } 1288 pOut->r = rB; 1289 MemSetTypeFlag(pOut, MEM_Real); 1290 if( (flags & MEM_Real)==0 ){ 1291 sqlite3VdbeIntegerAffinity(pOut); 1292 } 1293 } 1294 break; 1295 1296 arithmetic_result_is_null: 1297 sqlite3VdbeMemSetNull(pOut); 1298 break; 1299 } 1300 1301 /* Opcode: CollSeq * * P4 1302 ** 1303 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1304 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1305 ** be returned. This is used by the built-in min(), max() and nullif() 1306 ** functions. 1307 ** 1308 ** The interface used by the implementation of the aforementioned functions 1309 ** to retrieve the collation sequence set by this opcode is not available 1310 ** publicly, only to user functions defined in func.c. 1311 */ 1312 case OP_CollSeq: { 1313 assert( pOp->p4type==P4_COLLSEQ ); 1314 break; 1315 } 1316 1317 /* Opcode: Function P1 P2 P3 P4 P5 1318 ** 1319 ** Invoke a user function (P4 is a pointer to a Function structure that 1320 ** defines the function) with P5 arguments taken from register P2 and 1321 ** successors. The result of the function is stored in register P3. 1322 ** Register P3 must not be one of the function inputs. 1323 ** 1324 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1325 ** function was determined to be constant at compile time. If the first 1326 ** argument was constant then bit 0 of P1 is set. This is used to determine 1327 ** whether meta data associated with a user function argument using the 1328 ** sqlite3_set_auxdata() API may be safely retained until the next 1329 ** invocation of this opcode. 1330 ** 1331 ** See also: AggStep and AggFinal 1332 */ 1333 case OP_Function: { 1334 int i; 1335 Mem *pArg; 1336 sqlite3_context ctx; 1337 sqlite3_value **apVal; 1338 int n; 1339 1340 n = pOp->p5; 1341 apVal = p->apArg; 1342 assert( apVal || n==0 ); 1343 1344 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); 1345 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1346 pArg = &p->aMem[pOp->p2]; 1347 for(i=0; i<n; i++, pArg++){ 1348 apVal[i] = pArg; 1349 storeTypeInfo(pArg, encoding); 1350 REGISTER_TRACE(pOp->p2, pArg); 1351 } 1352 1353 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); 1354 if( pOp->p4type==P4_FUNCDEF ){ 1355 ctx.pFunc = pOp->p4.pFunc; 1356 ctx.pVdbeFunc = 0; 1357 }else{ 1358 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; 1359 ctx.pFunc = ctx.pVdbeFunc->pFunc; 1360 } 1361 1362 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 1363 pOut = &p->aMem[pOp->p3]; 1364 ctx.s.flags = MEM_Null; 1365 ctx.s.db = db; 1366 ctx.s.xDel = 0; 1367 ctx.s.zMalloc = 0; 1368 1369 /* The output cell may already have a buffer allocated. Move 1370 ** the pointer to ctx.s so in case the user-function can use 1371 ** the already allocated buffer instead of allocating a new one. 1372 */ 1373 sqlite3VdbeMemMove(&ctx.s, pOut); 1374 MemSetTypeFlag(&ctx.s, MEM_Null); 1375 1376 ctx.isError = 0; 1377 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 1378 assert( pOp>p->aOp ); 1379 assert( pOp[-1].p4type==P4_COLLSEQ ); 1380 assert( pOp[-1].opcode==OP_CollSeq ); 1381 ctx.pColl = pOp[-1].p4.pColl; 1382 } 1383 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 1384 (*ctx.pFunc->xFunc)(&ctx, n, apVal); 1385 if( sqlite3SafetyOn(db) ){ 1386 sqlite3VdbeMemRelease(&ctx.s); 1387 goto abort_due_to_misuse; 1388 } 1389 if( db->mallocFailed ){ 1390 /* Even though a malloc() has failed, the implementation of the 1391 ** user function may have called an sqlite3_result_XXX() function 1392 ** to return a value. The following call releases any resources 1393 ** associated with such a value. 1394 ** 1395 ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn() 1396 ** fails also (the if(...) statement above). But if people are 1397 ** misusing sqlite, they have bigger problems than a leaked value. 1398 */ 1399 sqlite3VdbeMemRelease(&ctx.s); 1400 goto no_mem; 1401 } 1402 1403 /* If any auxiliary data functions have been called by this user function, 1404 ** immediately call the destructor for any non-static values. 1405 */ 1406 if( ctx.pVdbeFunc ){ 1407 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); 1408 pOp->p4.pVdbeFunc = ctx.pVdbeFunc; 1409 pOp->p4type = P4_VDBEFUNC; 1410 } 1411 1412 /* If the function returned an error, throw an exception */ 1413 if( ctx.isError ){ 1414 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 1415 rc = ctx.isError; 1416 } 1417 1418 /* Copy the result of the function into register P3 */ 1419 sqlite3VdbeChangeEncoding(&ctx.s, encoding); 1420 sqlite3VdbeMemMove(pOut, &ctx.s); 1421 if( sqlite3VdbeMemTooBig(pOut) ){ 1422 goto too_big; 1423 } 1424 REGISTER_TRACE(pOp->p3, pOut); 1425 UPDATE_MAX_BLOBSIZE(pOut); 1426 break; 1427 } 1428 1429 /* Opcode: BitAnd P1 P2 P3 * * 1430 ** 1431 ** Take the bit-wise AND of the values in register P1 and P2 and 1432 ** store the result in register P3. 1433 ** If either input is NULL, the result is NULL. 1434 */ 1435 /* Opcode: BitOr P1 P2 P3 * * 1436 ** 1437 ** Take the bit-wise OR of the values in register P1 and P2 and 1438 ** store the result in register P3. 1439 ** If either input is NULL, the result is NULL. 1440 */ 1441 /* Opcode: ShiftLeft P1 P2 P3 * * 1442 ** 1443 ** Shift the integer value in register P2 to the left by the 1444 ** number of bits specified by the integer in regiser P1. 1445 ** Store the result in register P3. 1446 ** If either input is NULL, the result is NULL. 1447 */ 1448 /* Opcode: ShiftRight P1 P2 P3 * * 1449 ** 1450 ** Shift the integer value in register P2 to the right by the 1451 ** number of bits specified by the integer in register P1. 1452 ** Store the result in register P3. 1453 ** If either input is NULL, the result is NULL. 1454 */ 1455 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1456 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1457 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1458 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1459 i64 a; 1460 i64 b; 1461 1462 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1463 sqlite3VdbeMemSetNull(pOut); 1464 break; 1465 } 1466 a = sqlite3VdbeIntValue(pIn2); 1467 b = sqlite3VdbeIntValue(pIn1); 1468 switch( pOp->opcode ){ 1469 case OP_BitAnd: a &= b; break; 1470 case OP_BitOr: a |= b; break; 1471 case OP_ShiftLeft: a <<= b; break; 1472 default: assert( pOp->opcode==OP_ShiftRight ); 1473 a >>= b; break; 1474 } 1475 pOut->u.i = a; 1476 MemSetTypeFlag(pOut, MEM_Int); 1477 break; 1478 } 1479 1480 /* Opcode: AddImm P1 P2 * * * 1481 ** 1482 ** Add the constant P2 to the value in register P1. 1483 ** The result is always an integer. 1484 ** 1485 ** To force any register to be an integer, just add 0. 1486 */ 1487 case OP_AddImm: { /* in1 */ 1488 sqlite3VdbeMemIntegerify(pIn1); 1489 pIn1->u.i += pOp->p2; 1490 break; 1491 } 1492 1493 /* Opcode: MustBeInt P1 P2 * * * 1494 ** 1495 ** Force the value in register P1 to be an integer. If the value 1496 ** in P1 is not an integer and cannot be converted into an integer 1497 ** without data loss, then jump immediately to P2, or if P2==0 1498 ** raise an SQLITE_MISMATCH exception. 1499 */ 1500 case OP_MustBeInt: { /* jump, in1 */ 1501 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1502 if( (pIn1->flags & MEM_Int)==0 ){ 1503 if( pOp->p2==0 ){ 1504 rc = SQLITE_MISMATCH; 1505 goto abort_due_to_error; 1506 }else{ 1507 pc = pOp->p2 - 1; 1508 } 1509 }else{ 1510 MemSetTypeFlag(pIn1, MEM_Int); 1511 } 1512 break; 1513 } 1514 1515 /* Opcode: RealAffinity P1 * * * * 1516 ** 1517 ** If register P1 holds an integer convert it to a real value. 1518 ** 1519 ** This opcode is used when extracting information from a column that 1520 ** has REAL affinity. Such column values may still be stored as 1521 ** integers, for space efficiency, but after extraction we want them 1522 ** to have only a real value. 1523 */ 1524 case OP_RealAffinity: { /* in1 */ 1525 if( pIn1->flags & MEM_Int ){ 1526 sqlite3VdbeMemRealify(pIn1); 1527 } 1528 break; 1529 } 1530 1531 #ifndef SQLITE_OMIT_CAST 1532 /* Opcode: ToText P1 * * * * 1533 ** 1534 ** Force the value in register P1 to be text. 1535 ** If the value is numeric, convert it to a string using the 1536 ** equivalent of printf(). Blob values are unchanged and 1537 ** are afterwards simply interpreted as text. 1538 ** 1539 ** A NULL value is not changed by this routine. It remains NULL. 1540 */ 1541 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ 1542 if( pIn1->flags & MEM_Null ) break; 1543 assert( MEM_Str==(MEM_Blob>>3) ); 1544 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; 1545 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1546 rc = ExpandBlob(pIn1); 1547 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1548 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 1549 UPDATE_MAX_BLOBSIZE(pIn1); 1550 break; 1551 } 1552 1553 /* Opcode: ToBlob P1 * * * * 1554 ** 1555 ** Force the value in register P1 to be a BLOB. 1556 ** If the value is numeric, convert it to a string first. 1557 ** Strings are simply reinterpreted as blobs with no change 1558 ** to the underlying data. 1559 ** 1560 ** A NULL value is not changed by this routine. It remains NULL. 1561 */ 1562 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ 1563 if( pIn1->flags & MEM_Null ) break; 1564 if( (pIn1->flags & MEM_Blob)==0 ){ 1565 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1566 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1567 MemSetTypeFlag(pIn1, MEM_Blob); 1568 }else{ 1569 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); 1570 } 1571 UPDATE_MAX_BLOBSIZE(pIn1); 1572 break; 1573 } 1574 1575 /* Opcode: ToNumeric P1 * * * * 1576 ** 1577 ** Force the value in register P1 to be numeric (either an 1578 ** integer or a floating-point number.) 1579 ** If the value is text or blob, try to convert it to an using the 1580 ** equivalent of atoi() or atof() and store 0 if no such conversion 1581 ** is possible. 1582 ** 1583 ** A NULL value is not changed by this routine. It remains NULL. 1584 */ 1585 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ 1586 if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){ 1587 sqlite3VdbeMemNumerify(pIn1); 1588 } 1589 break; 1590 } 1591 #endif /* SQLITE_OMIT_CAST */ 1592 1593 /* Opcode: ToInt P1 * * * * 1594 ** 1595 ** Force the value in register P1 be an integer. If 1596 ** The value is currently a real number, drop its fractional part. 1597 ** If the value is text or blob, try to convert it to an integer using the 1598 ** equivalent of atoi() and store 0 if no such conversion is possible. 1599 ** 1600 ** A NULL value is not changed by this routine. It remains NULL. 1601 */ 1602 case OP_ToInt: { /* same as TK_TO_INT, in1 */ 1603 if( (pIn1->flags & MEM_Null)==0 ){ 1604 sqlite3VdbeMemIntegerify(pIn1); 1605 } 1606 break; 1607 } 1608 1609 #ifndef SQLITE_OMIT_CAST 1610 /* Opcode: ToReal P1 * * * * 1611 ** 1612 ** Force the value in register P1 to be a floating point number. 1613 ** If The value is currently an integer, convert it. 1614 ** If the value is text or blob, try to convert it to an integer using the 1615 ** equivalent of atoi() and store 0.0 if no such conversion is possible. 1616 ** 1617 ** A NULL value is not changed by this routine. It remains NULL. 1618 */ 1619 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ 1620 if( (pIn1->flags & MEM_Null)==0 ){ 1621 sqlite3VdbeMemRealify(pIn1); 1622 } 1623 break; 1624 } 1625 #endif /* SQLITE_OMIT_CAST */ 1626 1627 /* Opcode: Lt P1 P2 P3 P4 P5 1628 ** 1629 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1630 ** jump to address P2. 1631 ** 1632 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1633 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1634 ** bit is clear then fall thru if either operand is NULL. 1635 ** 1636 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1637 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1638 ** to coerce both inputs according to this affinity before the 1639 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1640 ** affinity is used. Note that the affinity conversions are stored 1641 ** back into the input registers P1 and P3. So this opcode can cause 1642 ** persistent changes to registers P1 and P3. 1643 ** 1644 ** Once any conversions have taken place, and neither value is NULL, 1645 ** the values are compared. If both values are blobs then memcmp() is 1646 ** used to determine the results of the comparison. If both values 1647 ** are text, then the appropriate collating function specified in 1648 ** P4 is used to do the comparison. If P4 is not specified then 1649 ** memcmp() is used to compare text string. If both values are 1650 ** numeric, then a numeric comparison is used. If the two values 1651 ** are of different types, then numbers are considered less than 1652 ** strings and strings are considered less than blobs. 1653 ** 1654 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1655 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1656 */ 1657 /* Opcode: Ne P1 P2 P3 P4 P5 1658 ** 1659 ** This works just like the Lt opcode except that the jump is taken if 1660 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1661 ** additional information. 1662 */ 1663 /* Opcode: Eq P1 P2 P3 P4 P5 1664 ** 1665 ** This works just like the Lt opcode except that the jump is taken if 1666 ** the operands in registers P1 and P3 are equal. 1667 ** See the Lt opcode for additional information. 1668 */ 1669 /* Opcode: Le P1 P2 P3 P4 P5 1670 ** 1671 ** This works just like the Lt opcode except that the jump is taken if 1672 ** the content of register P3 is less than or equal to the content of 1673 ** register P1. See the Lt opcode for additional information. 1674 */ 1675 /* Opcode: Gt P1 P2 P3 P4 P5 1676 ** 1677 ** This works just like the Lt opcode except that the jump is taken if 1678 ** the content of register P3 is greater than the content of 1679 ** register P1. See the Lt opcode for additional information. 1680 */ 1681 /* Opcode: Ge P1 P2 P3 P4 P5 1682 ** 1683 ** This works just like the Lt opcode except that the jump is taken if 1684 ** the content of register P3 is greater than or equal to the content of 1685 ** register P1. See the Lt opcode for additional information. 1686 */ 1687 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1688 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1689 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1690 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1691 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1692 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1693 int flags; 1694 int res; 1695 char affinity; 1696 1697 flags = pIn1->flags|pIn3->flags; 1698 1699 if( flags&MEM_Null ){ 1700 /* If either operand is NULL then the result is always NULL. 1701 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1702 */ 1703 if( pOp->p5 & SQLITE_STOREP2 ){ 1704 pOut = &p->aMem[pOp->p2]; 1705 MemSetTypeFlag(pOut, MEM_Null); 1706 REGISTER_TRACE(pOp->p2, pOut); 1707 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1708 pc = pOp->p2-1; 1709 } 1710 break; 1711 } 1712 1713 affinity = pOp->p5 & SQLITE_AFF_MASK; 1714 if( affinity ){ 1715 applyAffinity(pIn1, affinity, encoding); 1716 applyAffinity(pIn3, affinity, encoding); 1717 if( db->mallocFailed ) goto no_mem; 1718 } 1719 1720 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1721 ExpandBlob(pIn1); 1722 ExpandBlob(pIn3); 1723 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1724 switch( pOp->opcode ){ 1725 case OP_Eq: res = res==0; break; 1726 case OP_Ne: res = res!=0; break; 1727 case OP_Lt: res = res<0; break; 1728 case OP_Le: res = res<=0; break; 1729 case OP_Gt: res = res>0; break; 1730 default: res = res>=0; break; 1731 } 1732 1733 if( pOp->p5 & SQLITE_STOREP2 ){ 1734 pOut = &p->aMem[pOp->p2]; 1735 MemSetTypeFlag(pOut, MEM_Int); 1736 pOut->u.i = res; 1737 REGISTER_TRACE(pOp->p2, pOut); 1738 }else if( res ){ 1739 pc = pOp->p2-1; 1740 } 1741 break; 1742 } 1743 1744 /* Opcode: Permutation * * * P4 * 1745 ** 1746 ** Set the permutation used by the OP_Compare operator to be the array 1747 ** of integers in P4. 1748 ** 1749 ** The permutation is only valid until the next OP_Permutation, OP_Compare, 1750 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur 1751 ** immediately prior to the OP_Compare. 1752 */ 1753 case OP_Permutation: { 1754 assert( pOp->p4type==P4_INTARRAY ); 1755 assert( pOp->p4.ai ); 1756 aPermute = pOp->p4.ai; 1757 break; 1758 } 1759 1760 /* Opcode: Compare P1 P2 P3 P4 * 1761 ** 1762 ** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this 1763 ** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 1764 ** the comparison for use by the next OP_Jump instruct. 1765 ** 1766 ** P4 is a KeyInfo structure that defines collating sequences and sort 1767 ** orders for the comparison. The permutation applies to registers 1768 ** only. The KeyInfo elements are used sequentially. 1769 ** 1770 ** The comparison is a sort comparison, so NULLs compare equal, 1771 ** NULLs are less than numbers, numbers are less than strings, 1772 ** and strings are less than blobs. 1773 */ 1774 case OP_Compare: { 1775 int n; 1776 int i; 1777 int p1; 1778 int p2; 1779 const KeyInfo *pKeyInfo; 1780 int idx; 1781 CollSeq *pColl; /* Collating sequence to use on this term */ 1782 int bRev; /* True for DESCENDING sort order */ 1783 1784 n = pOp->p3; 1785 pKeyInfo = pOp->p4.pKeyInfo; 1786 assert( n>0 ); 1787 assert( pKeyInfo!=0 ); 1788 p1 = pOp->p1; 1789 assert( p1>0 && p1+n<=p->nMem+1 ); 1790 p2 = pOp->p2; 1791 assert( p2>0 && p2+n<=p->nMem+1 ); 1792 for(i=0; i<n; i++){ 1793 idx = aPermute ? aPermute[i] : i; 1794 REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]); 1795 REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]); 1796 assert( i<pKeyInfo->nField ); 1797 pColl = pKeyInfo->aColl[i]; 1798 bRev = pKeyInfo->aSortOrder[i]; 1799 iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl); 1800 if( iCompare ){ 1801 if( bRev ) iCompare = -iCompare; 1802 break; 1803 } 1804 } 1805 aPermute = 0; 1806 break; 1807 } 1808 1809 /* Opcode: Jump P1 P2 P3 * * 1810 ** 1811 ** Jump to the instruction at address P1, P2, or P3 depending on whether 1812 ** in the most recent OP_Compare instruction the P1 vector was less than 1813 ** equal to, or greater than the P2 vector, respectively. 1814 */ 1815 case OP_Jump: { /* jump */ 1816 if( iCompare<0 ){ 1817 pc = pOp->p1 - 1; 1818 }else if( iCompare==0 ){ 1819 pc = pOp->p2 - 1; 1820 }else{ 1821 pc = pOp->p3 - 1; 1822 } 1823 break; 1824 } 1825 1826 /* Opcode: And P1 P2 P3 * * 1827 ** 1828 ** Take the logical AND of the values in registers P1 and P2 and 1829 ** write the result into register P3. 1830 ** 1831 ** If either P1 or P2 is 0 (false) then the result is 0 even if 1832 ** the other input is NULL. A NULL and true or two NULLs give 1833 ** a NULL output. 1834 */ 1835 /* Opcode: Or P1 P2 P3 * * 1836 ** 1837 ** Take the logical OR of the values in register P1 and P2 and 1838 ** store the answer in register P3. 1839 ** 1840 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 1841 ** even if the other input is NULL. A NULL and false or two NULLs 1842 ** give a NULL output. 1843 */ 1844 case OP_And: /* same as TK_AND, in1, in2, out3 */ 1845 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 1846 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 1847 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 1848 1849 if( pIn1->flags & MEM_Null ){ 1850 v1 = 2; 1851 }else{ 1852 v1 = sqlite3VdbeIntValue(pIn1)!=0; 1853 } 1854 if( pIn2->flags & MEM_Null ){ 1855 v2 = 2; 1856 }else{ 1857 v2 = sqlite3VdbeIntValue(pIn2)!=0; 1858 } 1859 if( pOp->opcode==OP_And ){ 1860 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 1861 v1 = and_logic[v1*3+v2]; 1862 }else{ 1863 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 1864 v1 = or_logic[v1*3+v2]; 1865 } 1866 if( v1==2 ){ 1867 MemSetTypeFlag(pOut, MEM_Null); 1868 }else{ 1869 pOut->u.i = v1; 1870 MemSetTypeFlag(pOut, MEM_Int); 1871 } 1872 break; 1873 } 1874 1875 /* Opcode: Not P1 P2 * * * 1876 ** 1877 ** Interpret the value in register P1 as a boolean value. Store the 1878 ** boolean complement in register P2. If the value in register P1 is 1879 ** NULL, then a NULL is stored in P2. 1880 */ 1881 case OP_Not: { /* same as TK_NOT, in1 */ 1882 pOut = &p->aMem[pOp->p2]; 1883 if( pIn1->flags & MEM_Null ){ 1884 sqlite3VdbeMemSetNull(pOut); 1885 }else{ 1886 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); 1887 } 1888 break; 1889 } 1890 1891 /* Opcode: BitNot P1 P2 * * * 1892 ** 1893 ** Interpret the content of register P1 as an integer. Store the 1894 ** ones-complement of the P1 value into register P2. If P1 holds 1895 ** a NULL then store a NULL in P2. 1896 */ 1897 case OP_BitNot: { /* same as TK_BITNOT, in1 */ 1898 pOut = &p->aMem[pOp->p2]; 1899 if( pIn1->flags & MEM_Null ){ 1900 sqlite3VdbeMemSetNull(pOut); 1901 }else{ 1902 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); 1903 } 1904 break; 1905 } 1906 1907 /* Opcode: If P1 P2 P3 * * 1908 ** 1909 ** Jump to P2 if the value in register P1 is true. The value is 1910 ** is considered true if it is numeric and non-zero. If the value 1911 ** in P1 is NULL then take the jump if P3 is true. 1912 */ 1913 /* Opcode: IfNot P1 P2 P3 * * 1914 ** 1915 ** Jump to P2 if the value in register P1 is False. The value is 1916 ** is considered true if it has a numeric value of zero. If the value 1917 ** in P1 is NULL then take the jump if P3 is true. 1918 */ 1919 case OP_If: /* jump, in1 */ 1920 case OP_IfNot: { /* jump, in1 */ 1921 int c; 1922 if( pIn1->flags & MEM_Null ){ 1923 c = pOp->p3; 1924 }else{ 1925 #ifdef SQLITE_OMIT_FLOATING_POINT 1926 c = sqlite3VdbeIntValue(pIn1)!=0; 1927 #else 1928 c = sqlite3VdbeRealValue(pIn1)!=0.0; 1929 #endif 1930 if( pOp->opcode==OP_IfNot ) c = !c; 1931 } 1932 if( c ){ 1933 pc = pOp->p2-1; 1934 } 1935 break; 1936 } 1937 1938 /* Opcode: IsNull P1 P2 * * * 1939 ** 1940 ** Jump to P2 if the value in register P1 is NULL. 1941 */ 1942 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 1943 if( (pIn1->flags & MEM_Null)!=0 ){ 1944 pc = pOp->p2 - 1; 1945 } 1946 break; 1947 } 1948 1949 /* Opcode: NotNull P1 P2 * * * 1950 ** 1951 ** Jump to P2 if the value in register P1 is not NULL. 1952 */ 1953 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 1954 if( (pIn1->flags & MEM_Null)==0 ){ 1955 pc = pOp->p2 - 1; 1956 } 1957 break; 1958 } 1959 1960 /* Opcode: SetNumColumns * P2 * * * 1961 ** 1962 ** This opcode sets the number of columns for the cursor opened by the 1963 ** following instruction to P2. 1964 ** 1965 ** An OP_SetNumColumns is only useful if it occurs immediately before 1966 ** one of the following opcodes: 1967 ** 1968 ** OpenRead 1969 ** OpenWrite 1970 ** OpenPseudo 1971 ** 1972 ** If the OP_Column opcode is to be executed on a cursor, then 1973 ** this opcode must be present immediately before the opcode that 1974 ** opens the cursor. 1975 */ 1976 #if 0 1977 case OP_SetNumColumns: { 1978 break; 1979 } 1980 #endif 1981 1982 /* Opcode: Column P1 P2 P3 P4 * 1983 ** 1984 ** Interpret the data that cursor P1 points to as a structure built using 1985 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 1986 ** information about the format of the data.) Extract the P2-th column 1987 ** from this record. If there are less that (P2+1) 1988 ** values in the record, extract a NULL. 1989 ** 1990 ** The value extracted is stored in register P3. 1991 ** 1992 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 1993 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 1994 ** the result. 1995 */ 1996 case OP_Column: { 1997 u32 payloadSize; /* Number of bytes in the record */ 1998 i64 payloadSize64; /* Number of bytes in the record */ 1999 int p1; /* P1 value of the opcode */ 2000 int p2; /* column number to retrieve */ 2001 VdbeCursor *pC; /* The VDBE cursor */ 2002 char *zRec; /* Pointer to complete record-data */ 2003 BtCursor *pCrsr; /* The BTree cursor */ 2004 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ 2005 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2006 int nField; /* number of fields in the record */ 2007 int len; /* The length of the serialized data for the column */ 2008 int i; /* Loop counter */ 2009 char *zData; /* Part of the record being decoded */ 2010 Mem *pDest; /* Where to write the extracted value */ 2011 Mem sMem; /* For storing the record being decoded */ 2012 u8 *zIdx; /* Index into header */ 2013 u8 *zEndHdr; /* Pointer to first byte after the header */ 2014 u32 offset; /* Offset into the data */ 2015 u64 offset64; /* 64-bit offset. 64 bits needed to catch overflow */ 2016 int szHdr; /* Size of the header size field at start of record */ 2017 int avail; /* Number of bytes of available data */ 2018 2019 2020 p1 = pOp->p1; 2021 p2 = pOp->p2; 2022 pC = 0; 2023 memset(&sMem, 0, sizeof(sMem)); 2024 assert( p1<p->nCursor ); 2025 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 2026 pDest = &p->aMem[pOp->p3]; 2027 MemSetTypeFlag(pDest, MEM_Null); 2028 zRec = 0; 2029 2030 /* This block sets the variable payloadSize to be the total number of 2031 ** bytes in the record. 2032 ** 2033 ** zRec is set to be the complete text of the record if it is available. 2034 ** The complete record text is always available for pseudo-tables 2035 ** If the record is stored in a cursor, the complete record text 2036 ** might be available in the pC->aRow cache. Or it might not be. 2037 ** If the data is unavailable, zRec is set to NULL. 2038 ** 2039 ** We also compute the number of columns in the record. For cursors, 2040 ** the number of columns is stored in the VdbeCursor.nField element. 2041 */ 2042 pC = p->apCsr[p1]; 2043 assert( pC!=0 ); 2044 #ifndef SQLITE_OMIT_VIRTUALTABLE 2045 assert( pC->pVtabCursor==0 ); 2046 #endif 2047 pCrsr = pC->pCursor; 2048 if( pCrsr!=0 ){ 2049 /* The record is stored in a B-Tree */ 2050 rc = sqlite3VdbeCursorMoveto(pC); 2051 if( rc ) goto abort_due_to_error; 2052 if( pC->nullRow ){ 2053 payloadSize = 0; 2054 }else if( pC->cacheStatus==p->cacheCtr ){ 2055 payloadSize = pC->payloadSize; 2056 zRec = (char*)pC->aRow; 2057 }else if( pC->isIndex ){ 2058 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2059 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2060 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2061 ** payload size, so it is impossible for payloadSize64 to be 2062 ** larger than 32 bits. */ 2063 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2064 payloadSize = (u32)payloadSize64; 2065 }else{ 2066 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize); 2067 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2068 } 2069 }else if( pC->pseudoTable ){ 2070 /* The record is the sole entry of a pseudo-table */ 2071 payloadSize = pC->nData; 2072 zRec = pC->pData; 2073 pC->cacheStatus = CACHE_STALE; 2074 assert( payloadSize==0 || zRec!=0 ); 2075 }else{ 2076 /* Consider the row to be NULL */ 2077 payloadSize = 0; 2078 } 2079 2080 /* If payloadSize is 0, then just store a NULL */ 2081 if( payloadSize==0 ){ 2082 assert( pDest->flags&MEM_Null ); 2083 goto op_column_out; 2084 } 2085 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 ); 2086 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2087 goto too_big; 2088 } 2089 2090 nField = pC->nField; 2091 assert( p2<nField ); 2092 2093 /* Read and parse the table header. Store the results of the parse 2094 ** into the record header cache fields of the cursor. 2095 */ 2096 aType = pC->aType; 2097 if( pC->cacheStatus==p->cacheCtr ){ 2098 aOffset = pC->aOffset; 2099 }else{ 2100 assert(aType); 2101 avail = 0; 2102 pC->aOffset = aOffset = &aType[nField]; 2103 pC->payloadSize = payloadSize; 2104 pC->cacheStatus = p->cacheCtr; 2105 2106 /* Figure out how many bytes are in the header */ 2107 if( zRec ){ 2108 zData = zRec; 2109 }else{ 2110 if( pC->isIndex ){ 2111 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); 2112 }else{ 2113 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); 2114 } 2115 /* If KeyFetch()/DataFetch() managed to get the entire payload, 2116 ** save the payload in the pC->aRow cache. That will save us from 2117 ** having to make additional calls to fetch the content portion of 2118 ** the record. 2119 */ 2120 assert( avail>=0 ); 2121 if( payloadSize <= (u32)avail ){ 2122 zRec = zData; 2123 pC->aRow = (u8*)zData; 2124 }else{ 2125 pC->aRow = 0; 2126 } 2127 } 2128 /* The following assert is true in all cases accept when 2129 ** the database file has been corrupted externally. 2130 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ 2131 szHdr = getVarint32((u8*)zData, offset); 2132 2133 /* Make sure a corrupt database has not given us an oversize header. 2134 ** Do this now to avoid an oversize memory allocation. 2135 ** 2136 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2137 ** types use so much data space that there can only be 4096 and 32 of 2138 ** them, respectively. So the maximum header length results from a 2139 ** 3-byte type for each of the maximum of 32768 columns plus three 2140 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2141 */ 2142 if( offset > 98307 ){ 2143 rc = SQLITE_CORRUPT_BKPT; 2144 goto op_column_out; 2145 } 2146 2147 /* Compute in len the number of bytes of data we need to read in order 2148 ** to get nField type values. offset is an upper bound on this. But 2149 ** nField might be significantly less than the true number of columns 2150 ** in the table, and in that case, 5*nField+3 might be smaller than offset. 2151 ** We want to minimize len in order to limit the size of the memory 2152 ** allocation, especially if a corrupt database file has caused offset 2153 ** to be oversized. Offset is limited to 98307 above. But 98307 might 2154 ** still exceed Robson memory allocation limits on some configurations. 2155 ** On systems that cannot tolerate large memory allocations, nField*5+3 2156 ** will likely be much smaller since nField will likely be less than 2157 ** 20 or so. This insures that Robson memory allocation limits are 2158 ** not exceeded even for corrupt database files. 2159 */ 2160 len = nField*5 + 3; 2161 if( len > (int)offset ) len = (int)offset; 2162 2163 /* The KeyFetch() or DataFetch() above are fast and will get the entire 2164 ** record header in most cases. But they will fail to get the complete 2165 ** record header if the record header does not fit on a single page 2166 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to 2167 ** acquire the complete header text. 2168 */ 2169 if( !zRec && avail<len ){ 2170 sMem.flags = 0; 2171 sMem.db = 0; 2172 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem); 2173 if( rc!=SQLITE_OK ){ 2174 goto op_column_out; 2175 } 2176 zData = sMem.z; 2177 } 2178 zEndHdr = (u8 *)&zData[len]; 2179 zIdx = (u8 *)&zData[szHdr]; 2180 2181 /* Scan the header and use it to fill in the aType[] and aOffset[] 2182 ** arrays. aType[i] will contain the type integer for the i-th 2183 ** column and aOffset[i] will contain the offset from the beginning 2184 ** of the record to the start of the data for the i-th column 2185 */ 2186 offset64 = offset; 2187 for(i=0; i<nField; i++){ 2188 if( zIdx<zEndHdr ){ 2189 aOffset[i] = (u32)offset64; 2190 zIdx += getVarint32(zIdx, aType[i]); 2191 offset64 += sqlite3VdbeSerialTypeLen(aType[i]); 2192 }else{ 2193 /* If i is less that nField, then there are less fields in this 2194 ** record than SetNumColumns indicated there are columns in the 2195 ** table. Set the offset for any extra columns not present in 2196 ** the record to 0. This tells code below to store a NULL 2197 ** instead of deserializing a value from the record. 2198 */ 2199 aOffset[i] = 0; 2200 } 2201 } 2202 sqlite3VdbeMemRelease(&sMem); 2203 sMem.flags = MEM_Null; 2204 2205 /* If we have read more header data than was contained in the header, 2206 ** or if the end of the last field appears to be past the end of the 2207 ** record, or if the end of the last field appears to be before the end 2208 ** of the record (when all fields present), then we must be dealing 2209 ** with a corrupt database. 2210 */ 2211 if( (zIdx > zEndHdr)|| (offset64 > payloadSize) 2212 || (zIdx==zEndHdr && offset64!=(u64)payloadSize) ){ 2213 rc = SQLITE_CORRUPT_BKPT; 2214 goto op_column_out; 2215 } 2216 } 2217 2218 /* Get the column information. If aOffset[p2] is non-zero, then 2219 ** deserialize the value from the record. If aOffset[p2] is zero, 2220 ** then there are not enough fields in the record to satisfy the 2221 ** request. In this case, set the value NULL or to P4 if P4 is 2222 ** a pointer to a Mem object. 2223 */ 2224 if( aOffset[p2] ){ 2225 assert( rc==SQLITE_OK ); 2226 if( zRec ){ 2227 sqlite3VdbeMemReleaseExternal(pDest); 2228 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); 2229 }else{ 2230 len = sqlite3VdbeSerialTypeLen(aType[p2]); 2231 sqlite3VdbeMemMove(&sMem, pDest); 2232 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); 2233 if( rc!=SQLITE_OK ){ 2234 goto op_column_out; 2235 } 2236 zData = sMem.z; 2237 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); 2238 } 2239 pDest->enc = encoding; 2240 }else{ 2241 if( pOp->p4type==P4_MEM ){ 2242 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2243 }else{ 2244 assert( pDest->flags&MEM_Null ); 2245 } 2246 } 2247 2248 /* If we dynamically allocated space to hold the data (in the 2249 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that 2250 ** dynamically allocated space over to the pDest structure. 2251 ** This prevents a memory copy. 2252 */ 2253 if( sMem.zMalloc ){ 2254 assert( sMem.z==sMem.zMalloc ); 2255 assert( !(pDest->flags & MEM_Dyn) ); 2256 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); 2257 pDest->flags &= ~(MEM_Ephem|MEM_Static); 2258 pDest->flags |= MEM_Term; 2259 pDest->z = sMem.z; 2260 pDest->zMalloc = sMem.zMalloc; 2261 } 2262 2263 rc = sqlite3VdbeMemMakeWriteable(pDest); 2264 2265 op_column_out: 2266 UPDATE_MAX_BLOBSIZE(pDest); 2267 REGISTER_TRACE(pOp->p3, pDest); 2268 break; 2269 } 2270 2271 /* Opcode: Affinity P1 P2 * P4 * 2272 ** 2273 ** Apply affinities to a range of P2 registers starting with P1. 2274 ** 2275 ** P4 is a string that is P2 characters long. The nth character of the 2276 ** string indicates the column affinity that should be used for the nth 2277 ** memory cell in the range. 2278 */ 2279 case OP_Affinity: { 2280 char *zAffinity; /* The affinity to be applied */ 2281 Mem *pData0; /* First register to which to apply affinity */ 2282 Mem *pLast; /* Last register to which to apply affinity */ 2283 Mem *pRec; /* Current register */ 2284 2285 zAffinity = pOp->p4.z; 2286 pData0 = &p->aMem[pOp->p1]; 2287 pLast = &pData0[pOp->p2-1]; 2288 for(pRec=pData0; pRec<=pLast; pRec++){ 2289 ExpandBlob(pRec); 2290 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); 2291 } 2292 break; 2293 } 2294 2295 /* Opcode: MakeRecord P1 P2 P3 P4 * 2296 ** 2297 ** Convert P2 registers beginning with P1 into a single entry 2298 ** suitable for use as a data record in a database table or as a key 2299 ** in an index. The details of the format are irrelevant as long as 2300 ** the OP_Column opcode can decode the record later. 2301 ** Refer to source code comments for the details of the record 2302 ** format. 2303 ** 2304 ** P4 may be a string that is P2 characters long. The nth character of the 2305 ** string indicates the column affinity that should be used for the nth 2306 ** field of the index key. 2307 ** 2308 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2309 ** macros defined in sqliteInt.h. 2310 ** 2311 ** If P4 is NULL then all index fields have the affinity NONE. 2312 */ 2313 case OP_MakeRecord: { 2314 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2315 Mem *pRec; /* The new record */ 2316 u64 nData; /* Number of bytes of data space */ 2317 int nHdr; /* Number of bytes of header space */ 2318 i64 nByte; /* Data space required for this record */ 2319 int nZero; /* Number of zero bytes at the end of the record */ 2320 int nVarint; /* Number of bytes in a varint */ 2321 u32 serial_type; /* Type field */ 2322 Mem *pData0; /* First field to be combined into the record */ 2323 Mem *pLast; /* Last field of the record */ 2324 int nField; /* Number of fields in the record */ 2325 char *zAffinity; /* The affinity string for the record */ 2326 int file_format; /* File format to use for encoding */ 2327 int i; /* Space used in zNewRecord[] */ 2328 int len; /* Length of a field */ 2329 2330 /* Assuming the record contains N fields, the record format looks 2331 ** like this: 2332 ** 2333 ** ------------------------------------------------------------------------ 2334 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2335 ** ------------------------------------------------------------------------ 2336 ** 2337 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2338 ** and so froth. 2339 ** 2340 ** Each type field is a varint representing the serial type of the 2341 ** corresponding data element (see sqlite3VdbeSerialType()). The 2342 ** hdr-size field is also a varint which is the offset from the beginning 2343 ** of the record to data0. 2344 */ 2345 nData = 0; /* Number of bytes of data space */ 2346 nHdr = 0; /* Number of bytes of header space */ 2347 nByte = 0; /* Data space required for this record */ 2348 nZero = 0; /* Number of zero bytes at the end of the record */ 2349 nField = pOp->p1; 2350 zAffinity = pOp->p4.z; 2351 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); 2352 pData0 = &p->aMem[nField]; 2353 nField = pOp->p2; 2354 pLast = &pData0[nField-1]; 2355 file_format = p->minWriteFileFormat; 2356 2357 /* Loop through the elements that will make up the record to figure 2358 ** out how much space is required for the new record. 2359 */ 2360 for(pRec=pData0; pRec<=pLast; pRec++){ 2361 if( zAffinity ){ 2362 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); 2363 } 2364 if( pRec->flags&MEM_Zero && pRec->n>0 ){ 2365 sqlite3VdbeMemExpandBlob(pRec); 2366 } 2367 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2368 len = sqlite3VdbeSerialTypeLen(serial_type); 2369 nData += len; 2370 nHdr += sqlite3VarintLen(serial_type); 2371 if( pRec->flags & MEM_Zero ){ 2372 /* Only pure zero-filled BLOBs can be input to this Opcode. 2373 ** We do not allow blobs with a prefix and a zero-filled tail. */ 2374 nZero += pRec->u.nZero; 2375 }else if( len ){ 2376 nZero = 0; 2377 } 2378 } 2379 2380 /* Add the initial header varint and total the size */ 2381 nHdr += nVarint = sqlite3VarintLen(nHdr); 2382 if( nVarint<sqlite3VarintLen(nHdr) ){ 2383 nHdr++; 2384 } 2385 nByte = nHdr+nData-nZero; 2386 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2387 goto too_big; 2388 } 2389 2390 /* Make sure the output register has a buffer large enough to store 2391 ** the new record. The output register (pOp->p3) is not allowed to 2392 ** be one of the input registers (because the following call to 2393 ** sqlite3VdbeMemGrow() could clobber the value before it is used). 2394 */ 2395 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2396 pOut = &p->aMem[pOp->p3]; 2397 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ 2398 goto no_mem; 2399 } 2400 zNewRecord = (u8 *)pOut->z; 2401 2402 /* Write the record */ 2403 i = putVarint32(zNewRecord, nHdr); 2404 for(pRec=pData0; pRec<=pLast; pRec++){ 2405 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2406 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2407 } 2408 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ 2409 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format); 2410 } 2411 assert( i==nByte ); 2412 2413 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 2414 pOut->n = (int)nByte; 2415 pOut->flags = MEM_Blob | MEM_Dyn; 2416 pOut->xDel = 0; 2417 if( nZero ){ 2418 pOut->u.nZero = nZero; 2419 pOut->flags |= MEM_Zero; 2420 } 2421 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2422 REGISTER_TRACE(pOp->p3, pOut); 2423 UPDATE_MAX_BLOBSIZE(pOut); 2424 break; 2425 } 2426 2427 /* Opcode: Count P1 P2 * * * 2428 ** 2429 ** Store the number of entries (an integer value) in the table or index 2430 ** opened by cursor P1 in register P2 2431 */ 2432 #ifndef SQLITE_OMIT_BTREECOUNT 2433 case OP_Count: { /* out2-prerelease */ 2434 i64 nEntry; 2435 BtCursor *pCrsr; 2436 2437 pCrsr = p->apCsr[pOp->p1]->pCursor; 2438 if( pCrsr ){ 2439 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2440 }else{ 2441 nEntry = 0; 2442 } 2443 pOut->flags = MEM_Int; 2444 pOut->u.i = nEntry; 2445 break; 2446 } 2447 #endif 2448 2449 /* Opcode: Statement P1 * * * * 2450 ** 2451 ** Begin an individual statement transaction which is part of a larger 2452 ** transaction. This is needed so that the statement 2453 ** can be rolled back after an error without having to roll back the 2454 ** entire transaction. The statement transaction will automatically 2455 ** commit when the VDBE halts. 2456 ** 2457 ** If the database connection is currently in autocommit mode (that 2458 ** is to say, if it is in between BEGIN and COMMIT) 2459 ** and if there are no other active statements on the same database 2460 ** connection, then this operation is a no-op. No statement transaction 2461 ** is needed since any error can use the normal ROLLBACK process to 2462 ** undo changes. 2463 ** 2464 ** If a statement transaction is started, then a statement journal file 2465 ** will be allocated and initialized. 2466 ** 2467 ** The statement is begun on the database file with index P1. The main 2468 ** database file has an index of 0 and the file used for temporary tables 2469 ** has an index of 1. 2470 */ 2471 case OP_Statement: { 2472 Btree *pBt; 2473 if( db->autoCommit==0 || db->activeVdbeCnt>1 ){ 2474 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2475 assert( db->aDb[pOp->p1].pBt!=0 ); 2476 pBt = db->aDb[pOp->p1].pBt; 2477 assert( sqlite3BtreeIsInTrans(pBt) ); 2478 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 2479 if( p->iStatement==0 ){ 2480 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 2481 db->nStatement++; 2482 p->iStatement = db->nSavepoint + db->nStatement; 2483 } 2484 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 2485 } 2486 break; 2487 } 2488 2489 /* Opcode: Savepoint P1 * * P4 * 2490 ** 2491 ** Open, release or rollback the savepoint named by parameter P4, depending 2492 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2493 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2494 */ 2495 case OP_Savepoint: { 2496 int p1; /* Value of P1 operand */ 2497 char *zName; /* Name of savepoint */ 2498 int nName; 2499 Savepoint *pNew; 2500 Savepoint *pSavepoint; 2501 Savepoint *pTmp; 2502 int iSavepoint; 2503 int ii; 2504 2505 p1 = pOp->p1; 2506 zName = pOp->p4.z; 2507 2508 /* Assert that the p1 parameter is valid. Also that if there is no open 2509 ** transaction, then there cannot be any savepoints. 2510 */ 2511 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2512 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2513 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2514 assert( checkSavepointCount(db) ); 2515 2516 if( p1==SAVEPOINT_BEGIN ){ 2517 if( db->writeVdbeCnt>0 ){ 2518 /* A new savepoint cannot be created if there are active write 2519 ** statements (i.e. open read/write incremental blob handles). 2520 */ 2521 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2522 "SQL statements in progress"); 2523 rc = SQLITE_BUSY; 2524 }else{ 2525 nName = sqlite3Strlen30(zName); 2526 2527 /* Create a new savepoint structure. */ 2528 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2529 if( pNew ){ 2530 pNew->zName = (char *)&pNew[1]; 2531 memcpy(pNew->zName, zName, nName+1); 2532 2533 /* If there is no open transaction, then mark this as a special 2534 ** "transaction savepoint". */ 2535 if( db->autoCommit ){ 2536 db->autoCommit = 0; 2537 db->isTransactionSavepoint = 1; 2538 }else{ 2539 db->nSavepoint++; 2540 } 2541 2542 /* Link the new savepoint into the database handle's list. */ 2543 pNew->pNext = db->pSavepoint; 2544 db->pSavepoint = pNew; 2545 } 2546 } 2547 }else{ 2548 iSavepoint = 0; 2549 2550 /* Find the named savepoint. If there is no such savepoint, then an 2551 ** an error is returned to the user. */ 2552 for( 2553 pSavepoint = db->pSavepoint; 2554 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2555 pSavepoint = pSavepoint->pNext 2556 ){ 2557 iSavepoint++; 2558 } 2559 if( !pSavepoint ){ 2560 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2561 rc = SQLITE_ERROR; 2562 }else if( 2563 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1) 2564 ){ 2565 /* It is not possible to release (commit) a savepoint if there are 2566 ** active write statements. It is not possible to rollback a savepoint 2567 ** if there are any active statements at all. 2568 */ 2569 sqlite3SetString(&p->zErrMsg, db, 2570 "cannot %s savepoint - SQL statements in progress", 2571 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release") 2572 ); 2573 rc = SQLITE_BUSY; 2574 }else{ 2575 2576 /* Determine whether or not this is a transaction savepoint. If so, 2577 ** and this is a RELEASE command, then the current transaction 2578 ** is committed. 2579 */ 2580 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2581 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2582 db->autoCommit = 1; 2583 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2584 p->pc = pc; 2585 db->autoCommit = 0; 2586 p->rc = rc = SQLITE_BUSY; 2587 goto vdbe_return; 2588 } 2589 db->isTransactionSavepoint = 0; 2590 rc = p->rc; 2591 }else{ 2592 iSavepoint = db->nSavepoint - iSavepoint - 1; 2593 for(ii=0; ii<db->nDb; ii++){ 2594 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2595 if( rc!=SQLITE_OK ){ 2596 goto abort_due_to_error; 2597 } 2598 } 2599 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ 2600 sqlite3ExpirePreparedStatements(db); 2601 sqlite3ResetInternalSchema(db, 0); 2602 } 2603 } 2604 2605 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2606 ** savepoints nested inside of the savepoint being operated on. */ 2607 while( db->pSavepoint!=pSavepoint ){ 2608 pTmp = db->pSavepoint; 2609 db->pSavepoint = pTmp->pNext; 2610 sqlite3DbFree(db, pTmp); 2611 db->nSavepoint--; 2612 } 2613 2614 /* If it is a RELEASE, then destroy the savepoint being operated on too */ 2615 if( p1==SAVEPOINT_RELEASE ){ 2616 assert( pSavepoint==db->pSavepoint ); 2617 db->pSavepoint = pSavepoint->pNext; 2618 sqlite3DbFree(db, pSavepoint); 2619 if( !isTransaction ){ 2620 db->nSavepoint--; 2621 } 2622 } 2623 } 2624 } 2625 2626 break; 2627 } 2628 2629 /* Opcode: AutoCommit P1 P2 * * * 2630 ** 2631 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2632 ** back any currently active btree transactions. If there are any active 2633 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2634 ** there are active writing VMs or active VMs that use shared cache. 2635 ** 2636 ** This instruction causes the VM to halt. 2637 */ 2638 case OP_AutoCommit: { 2639 int desiredAutoCommit; 2640 int iRollback; 2641 int turnOnAC; 2642 2643 desiredAutoCommit = pOp->p1; 2644 iRollback = pOp->p2; 2645 turnOnAC = desiredAutoCommit && !db->autoCommit; 2646 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2647 assert( desiredAutoCommit==1 || iRollback==0 ); 2648 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ 2649 2650 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){ 2651 /* If this instruction implements a ROLLBACK and other VMs are 2652 ** still running, and a transaction is active, return an error indicating 2653 ** that the other VMs must complete first. 2654 */ 2655 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2656 "SQL statements in progress"); 2657 rc = SQLITE_BUSY; 2658 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){ 2659 /* If this instruction implements a COMMIT and other VMs are writing 2660 ** return an error indicating that the other VMs must complete first. 2661 */ 2662 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2663 "SQL statements in progress"); 2664 rc = SQLITE_BUSY; 2665 }else if( desiredAutoCommit!=db->autoCommit ){ 2666 if( iRollback ){ 2667 assert( desiredAutoCommit==1 ); 2668 sqlite3RollbackAll(db); 2669 db->autoCommit = 1; 2670 }else{ 2671 db->autoCommit = (u8)desiredAutoCommit; 2672 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2673 p->pc = pc; 2674 db->autoCommit = (u8)(1-desiredAutoCommit); 2675 p->rc = rc = SQLITE_BUSY; 2676 goto vdbe_return; 2677 } 2678 } 2679 assert( db->nStatement==0 ); 2680 sqlite3CloseSavepoints(db); 2681 if( p->rc==SQLITE_OK ){ 2682 rc = SQLITE_DONE; 2683 }else{ 2684 rc = SQLITE_ERROR; 2685 } 2686 goto vdbe_return; 2687 }else{ 2688 sqlite3SetString(&p->zErrMsg, db, 2689 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 2690 (iRollback)?"cannot rollback - no transaction is active": 2691 "cannot commit - no transaction is active")); 2692 2693 rc = SQLITE_ERROR; 2694 } 2695 break; 2696 } 2697 2698 /* Opcode: Transaction P1 P2 * * * 2699 ** 2700 ** Begin a transaction. The transaction ends when a Commit or Rollback 2701 ** opcode is encountered. Depending on the ON CONFLICT setting, the 2702 ** transaction might also be rolled back if an error is encountered. 2703 ** 2704 ** P1 is the index of the database file on which the transaction is 2705 ** started. Index 0 is the main database file and index 1 is the 2706 ** file used for temporary tables. Indices of 2 or more are used for 2707 ** attached databases. 2708 ** 2709 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is 2710 ** obtained on the database file when a write-transaction is started. No 2711 ** other process can start another write transaction while this transaction is 2712 ** underway. Starting a write transaction also creates a rollback journal. A 2713 ** write transaction must be started before any changes can be made to the 2714 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained 2715 ** on the file. 2716 ** 2717 ** If P2 is zero, then a read-lock is obtained on the database file. 2718 */ 2719 case OP_Transaction: { 2720 Btree *pBt; 2721 2722 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2723 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 2724 pBt = db->aDb[pOp->p1].pBt; 2725 2726 if( pBt ){ 2727 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 2728 if( rc==SQLITE_BUSY ){ 2729 p->pc = pc; 2730 p->rc = rc = SQLITE_BUSY; 2731 goto vdbe_return; 2732 } 2733 if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){ 2734 goto abort_due_to_error; 2735 } 2736 } 2737 break; 2738 } 2739 2740 /* Opcode: ReadCookie P1 P2 P3 * * 2741 ** 2742 ** Read cookie number P3 from database P1 and write it into register P2. 2743 ** P3==1 is the schema version. P3==2 is the database format. 2744 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 2745 ** the main database file and P1==1 is the database file used to store 2746 ** temporary tables. 2747 ** 2748 ** There must be a read-lock on the database (either a transaction 2749 ** must be started or there must be an open cursor) before 2750 ** executing this instruction. 2751 */ 2752 case OP_ReadCookie: { /* out2-prerelease */ 2753 int iMeta; 2754 int iDb; 2755 int iCookie; 2756 2757 iDb = pOp->p1; 2758 iCookie = pOp->p3; 2759 assert( pOp->p3<SQLITE_N_BTREE_META ); 2760 assert( iDb>=0 && iDb<db->nDb ); 2761 assert( db->aDb[iDb].pBt!=0 ); 2762 assert( (p->btreeMask & (1<<iDb))!=0 ); 2763 2764 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 2765 pOut->u.i = iMeta; 2766 MemSetTypeFlag(pOut, MEM_Int); 2767 break; 2768 } 2769 2770 /* Opcode: SetCookie P1 P2 P3 * * 2771 ** 2772 ** Write the content of register P3 (interpreted as an integer) 2773 ** into cookie number P2 of database P1. P2==1 is the schema version. 2774 ** P2==2 is the database format. P2==3 is the recommended pager cache 2775 ** size, and so forth. P1==0 is the main database file and P1==1 is the 2776 ** database file used to store temporary tables. 2777 ** 2778 ** A transaction must be started before executing this opcode. 2779 */ 2780 case OP_SetCookie: { /* in3 */ 2781 Db *pDb; 2782 assert( pOp->p2<SQLITE_N_BTREE_META ); 2783 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2784 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 2785 pDb = &db->aDb[pOp->p1]; 2786 assert( pDb->pBt!=0 ); 2787 sqlite3VdbeMemIntegerify(pIn3); 2788 /* See note about index shifting on OP_ReadCookie */ 2789 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 2790 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 2791 /* When the schema cookie changes, record the new cookie internally */ 2792 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 2793 db->flags |= SQLITE_InternChanges; 2794 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 2795 /* Record changes in the file format */ 2796 pDb->pSchema->file_format = (u8)pIn3->u.i; 2797 } 2798 if( pOp->p1==1 ){ 2799 /* Invalidate all prepared statements whenever the TEMP database 2800 ** schema is changed. Ticket #1644 */ 2801 sqlite3ExpirePreparedStatements(db); 2802 } 2803 break; 2804 } 2805 2806 /* Opcode: VerifyCookie P1 P2 * 2807 ** 2808 ** Check the value of global database parameter number 0 (the 2809 ** schema version) and make sure it is equal to P2. 2810 ** P1 is the database number which is 0 for the main database file 2811 ** and 1 for the file holding temporary tables and some higher number 2812 ** for auxiliary databases. 2813 ** 2814 ** The cookie changes its value whenever the database schema changes. 2815 ** This operation is used to detect when that the cookie has changed 2816 ** and that the current process needs to reread the schema. 2817 ** 2818 ** Either a transaction needs to have been started or an OP_Open needs 2819 ** to be executed (to establish a read lock) before this opcode is 2820 ** invoked. 2821 */ 2822 case OP_VerifyCookie: { 2823 int iMeta; 2824 Btree *pBt; 2825 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2826 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 2827 pBt = db->aDb[pOp->p1].pBt; 2828 if( pBt ){ 2829 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 2830 }else{ 2831 iMeta = 0; 2832 } 2833 if( iMeta!=pOp->p2 ){ 2834 sqlite3DbFree(db, p->zErrMsg); 2835 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 2836 /* If the schema-cookie from the database file matches the cookie 2837 ** stored with the in-memory representation of the schema, do 2838 ** not reload the schema from the database file. 2839 ** 2840 ** If virtual-tables are in use, this is not just an optimization. 2841 ** Often, v-tables store their data in other SQLite tables, which 2842 ** are queried from within xNext() and other v-table methods using 2843 ** prepared queries. If such a query is out-of-date, we do not want to 2844 ** discard the database schema, as the user code implementing the 2845 ** v-table would have to be ready for the sqlite3_vtab structure itself 2846 ** to be invalidated whenever sqlite3_step() is called from within 2847 ** a v-table method. 2848 */ 2849 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 2850 sqlite3ResetInternalSchema(db, pOp->p1); 2851 } 2852 2853 sqlite3ExpirePreparedStatements(db); 2854 rc = SQLITE_SCHEMA; 2855 } 2856 break; 2857 } 2858 2859 /* Opcode: OpenRead P1 P2 P3 P4 P5 2860 ** 2861 ** Open a read-only cursor for the database table whose root page is 2862 ** P2 in a database file. The database file is determined by P3. 2863 ** P3==0 means the main database, P3==1 means the database used for 2864 ** temporary tables, and P3>1 means used the corresponding attached 2865 ** database. Give the new cursor an identifier of P1. The P1 2866 ** values need not be contiguous but all P1 values should be small integers. 2867 ** It is an error for P1 to be negative. 2868 ** 2869 ** If P5!=0 then use the content of register P2 as the root page, not 2870 ** the value of P2 itself. 2871 ** 2872 ** There will be a read lock on the database whenever there is an 2873 ** open cursor. If the database was unlocked prior to this instruction 2874 ** then a read lock is acquired as part of this instruction. A read 2875 ** lock allows other processes to read the database but prohibits 2876 ** any other process from modifying the database. The read lock is 2877 ** released when all cursors are closed. If this instruction attempts 2878 ** to get a read lock but fails, the script terminates with an 2879 ** SQLITE_BUSY error code. 2880 ** 2881 ** The P4 value may be either an integer (P4_INT32) or a pointer to 2882 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 2883 ** structure, then said structure defines the content and collating 2884 ** sequence of the index being opened. Otherwise, if P4 is an integer 2885 ** value, it is set to the number of columns in the table. 2886 ** 2887 ** See also OpenWrite. 2888 */ 2889 /* Opcode: OpenWrite P1 P2 P3 P4 P5 2890 ** 2891 ** Open a read/write cursor named P1 on the table or index whose root 2892 ** page is P2. Or if P5!=0 use the content of register P2 to find the 2893 ** root page. 2894 ** 2895 ** The P4 value may be either an integer (P4_INT32) or a pointer to 2896 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 2897 ** structure, then said structure defines the content and collating 2898 ** sequence of the index being opened. Otherwise, if P4 is an integer 2899 ** value, it is set to the number of columns in the table, or to the 2900 ** largest index of any column of the table that is actually used. 2901 ** 2902 ** This instruction works just like OpenRead except that it opens the cursor 2903 ** in read/write mode. For a given table, there can be one or more read-only 2904 ** cursors or a single read/write cursor but not both. 2905 ** 2906 ** See also OpenRead. 2907 */ 2908 case OP_OpenRead: 2909 case OP_OpenWrite: { 2910 int nField; 2911 KeyInfo *pKeyInfo; 2912 int p2; 2913 int iDb; 2914 int wrFlag; 2915 Btree *pX; 2916 VdbeCursor *pCur; 2917 Db *pDb; 2918 2919 nField = 0; 2920 pKeyInfo = 0; 2921 p2 = pOp->p2; 2922 iDb = pOp->p3; 2923 assert( iDb>=0 && iDb<db->nDb ); 2924 assert( (p->btreeMask & (1<<iDb))!=0 ); 2925 pDb = &db->aDb[iDb]; 2926 pX = pDb->pBt; 2927 assert( pX!=0 ); 2928 if( pOp->opcode==OP_OpenWrite ){ 2929 wrFlag = 1; 2930 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 2931 p->minWriteFileFormat = pDb->pSchema->file_format; 2932 } 2933 }else{ 2934 wrFlag = 0; 2935 } 2936 if( pOp->p5 ){ 2937 assert( p2>0 ); 2938 assert( p2<=p->nMem ); 2939 pIn2 = &p->aMem[p2]; 2940 sqlite3VdbeMemIntegerify(pIn2); 2941 p2 = (int)pIn2->u.i; 2942 /* The p2 value always comes from a prior OP_CreateTable opcode and 2943 ** that opcode will always set the p2 value to 2 or more or else fail. 2944 ** If there were a failure, the prepared statement would have halted 2945 ** before reaching this instruction. */ 2946 if( NEVER(p2<2) ) { 2947 rc = SQLITE_CORRUPT_BKPT; 2948 goto abort_due_to_error; 2949 } 2950 } 2951 if( pOp->p4type==P4_KEYINFO ){ 2952 pKeyInfo = pOp->p4.pKeyInfo; 2953 pKeyInfo->enc = ENC(p->db); 2954 nField = pKeyInfo->nField+1; 2955 }else if( pOp->p4type==P4_INT32 ){ 2956 nField = pOp->p4.i; 2957 } 2958 assert( pOp->p1>=0 ); 2959 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 2960 if( pCur==0 ) goto no_mem; 2961 pCur->nullRow = 1; 2962 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 2963 pCur->pKeyInfo = pKeyInfo; 2964 2965 /* Since it performs no memory allocation or IO, the only values that 2966 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. 2967 ** SQLITE_EMPTY is only returned when attempting to open the table 2968 ** rooted at page 1 of a zero-byte database. */ 2969 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK ); 2970 if( rc==SQLITE_EMPTY ){ 2971 pCur->pCursor = 0; 2972 rc = SQLITE_OK; 2973 } 2974 2975 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of 2976 ** SQLite used to check if the root-page flags were sane at this point 2977 ** and report database corruption if they were not, but this check has 2978 ** since moved into the btree layer. */ 2979 pCur->isTable = pOp->p4type!=P4_KEYINFO; 2980 pCur->isIndex = !pCur->isTable; 2981 break; 2982 } 2983 2984 /* Opcode: OpenEphemeral P1 P2 * P4 * 2985 ** 2986 ** Open a new cursor P1 to a transient table. 2987 ** The cursor is always opened read/write even if 2988 ** the main database is read-only. The transient or virtual 2989 ** table is deleted automatically when the cursor is closed. 2990 ** 2991 ** P2 is the number of columns in the virtual table. 2992 ** The cursor points to a BTree table if P4==0 and to a BTree index 2993 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 2994 ** that defines the format of keys in the index. 2995 ** 2996 ** This opcode was once called OpenTemp. But that created 2997 ** confusion because the term "temp table", might refer either 2998 ** to a TEMP table at the SQL level, or to a table opened by 2999 ** this opcode. Then this opcode was call OpenVirtual. But 3000 ** that created confusion with the whole virtual-table idea. 3001 */ 3002 case OP_OpenEphemeral: { 3003 VdbeCursor *pCx; 3004 static const int openFlags = 3005 SQLITE_OPEN_READWRITE | 3006 SQLITE_OPEN_CREATE | 3007 SQLITE_OPEN_EXCLUSIVE | 3008 SQLITE_OPEN_DELETEONCLOSE | 3009 SQLITE_OPEN_TRANSIENT_DB; 3010 3011 assert( pOp->p1>=0 ); 3012 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3013 if( pCx==0 ) goto no_mem; 3014 pCx->nullRow = 1; 3015 rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags, 3016 &pCx->pBt); 3017 if( rc==SQLITE_OK ){ 3018 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3019 } 3020 if( rc==SQLITE_OK ){ 3021 /* If a transient index is required, create it by calling 3022 ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before 3023 ** opening it. If a transient table is required, just use the 3024 ** automatically created table with root-page 1 (an INTKEY table). 3025 */ 3026 if( pOp->p4.pKeyInfo ){ 3027 int pgno; 3028 assert( pOp->p4type==P4_KEYINFO ); 3029 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 3030 if( rc==SQLITE_OK ){ 3031 assert( pgno==MASTER_ROOT+1 ); 3032 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 3033 (KeyInfo*)pOp->p4.z, pCx->pCursor); 3034 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3035 pCx->pKeyInfo->enc = ENC(p->db); 3036 } 3037 pCx->isTable = 0; 3038 }else{ 3039 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3040 pCx->isTable = 1; 3041 } 3042 } 3043 pCx->isIndex = !pCx->isTable; 3044 break; 3045 } 3046 3047 /* Opcode: OpenPseudo P1 P2 P3 * * 3048 ** 3049 ** Open a new cursor that points to a fake table that contains a single 3050 ** row of data. Any attempt to write a second row of data causes the 3051 ** first row to be deleted. All data is deleted when the cursor is 3052 ** closed. 3053 ** 3054 ** A pseudo-table created by this opcode is useful for holding the 3055 ** NEW or OLD tables in a trigger. Also used to hold the a single 3056 ** row output from the sorter so that the row can be decomposed into 3057 ** individual columns using the OP_Column opcode. 3058 ** 3059 ** When OP_Insert is executed to insert a row in to the pseudo table, 3060 ** the pseudo-table cursor may or may not make it's own copy of the 3061 ** original row data. If P2 is 0, then the pseudo-table will copy the 3062 ** original row data. Otherwise, a pointer to the original memory cell 3063 ** is stored. In this case, the vdbe program must ensure that the 3064 ** memory cell containing the row data is not overwritten until the 3065 ** pseudo table is closed (or a new row is inserted into it). 3066 ** 3067 ** P3 is the number of fields in the records that will be stored by 3068 ** the pseudo-table. 3069 */ 3070 case OP_OpenPseudo: { 3071 VdbeCursor *pCx; 3072 3073 assert( pOp->p1>=0 ); 3074 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3075 if( pCx==0 ) goto no_mem; 3076 pCx->nullRow = 1; 3077 pCx->pseudoTable = 1; 3078 pCx->ephemPseudoTable = (u8)pOp->p2; 3079 pCx->isTable = 1; 3080 pCx->isIndex = 0; 3081 break; 3082 } 3083 3084 /* Opcode: Close P1 * * * * 3085 ** 3086 ** Close a cursor previously opened as P1. If P1 is not 3087 ** currently open, this instruction is a no-op. 3088 */ 3089 case OP_Close: { 3090 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3091 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3092 p->apCsr[pOp->p1] = 0; 3093 break; 3094 } 3095 3096 /* Opcode: SeekGe P1 P2 P3 P4 * 3097 ** 3098 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3099 ** use the value in register P3 as the key. If cursor P1 refers 3100 ** to an SQL index, then P3 is the first in an array of P4 registers 3101 ** that are used as an unpacked index key. 3102 ** 3103 ** Reposition cursor P1 so that it points to the smallest entry that 3104 ** is greater than or equal to the key value. If there are no records 3105 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3106 ** 3107 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe 3108 */ 3109 /* Opcode: SeekGt P1 P2 P3 P4 * 3110 ** 3111 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3112 ** use the value in register P3 as a key. If cursor P1 refers 3113 ** to an SQL index, then P3 is the first in an array of P4 registers 3114 ** that are used as an unpacked index key. 3115 ** 3116 ** Reposition cursor P1 so that it points to the smallest entry that 3117 ** is greater than the key value. If there are no records greater than 3118 ** the key and P2 is not zero, then jump to P2. 3119 ** 3120 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe 3121 */ 3122 /* Opcode: SeekLt P1 P2 P3 P4 * 3123 ** 3124 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3125 ** use the value in register P3 as a key. If cursor P1 refers 3126 ** to an SQL index, then P3 is the first in an array of P4 registers 3127 ** that are used as an unpacked index key. 3128 ** 3129 ** Reposition cursor P1 so that it points to the largest entry that 3130 ** is less than the key value. If there are no records less than 3131 ** the key and P2 is not zero, then jump to P2. 3132 ** 3133 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe 3134 */ 3135 /* Opcode: SeekLe P1 P2 P3 P4 * 3136 ** 3137 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3138 ** use the value in register P3 as a key. If cursor P1 refers 3139 ** to an SQL index, then P3 is the first in an array of P4 registers 3140 ** that are used as an unpacked index key. 3141 ** 3142 ** Reposition cursor P1 so that it points to the largest entry that 3143 ** is less than or equal to the key value. If there are no records 3144 ** less than or equal to the key and P2 is not zero, then jump to P2. 3145 ** 3146 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt 3147 */ 3148 case OP_SeekLt: /* jump, in3 */ 3149 case OP_SeekLe: /* jump, in3 */ 3150 case OP_SeekGe: /* jump, in3 */ 3151 case OP_SeekGt: { /* jump, in3 */ 3152 int res; 3153 int oc; 3154 VdbeCursor *pC; 3155 UnpackedRecord r; 3156 int nField; 3157 i64 iKey; /* The rowid we are to seek to */ 3158 3159 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3160 assert( pOp->p2!=0 ); 3161 pC = p->apCsr[pOp->p1]; 3162 assert( pC!=0 ); 3163 if( pC->pCursor!=0 ){ 3164 oc = pOp->opcode; 3165 pC->nullRow = 0; 3166 if( pC->isTable ){ 3167 /* The input value in P3 might be of any type: integer, real, string, 3168 ** blob, or NULL. But it needs to be an integer before we can do 3169 ** the seek, so covert it. */ 3170 applyNumericAffinity(pIn3); 3171 iKey = sqlite3VdbeIntValue(pIn3); 3172 pC->rowidIsValid = 0; 3173 3174 /* If the P3 value could not be converted into an integer without 3175 ** loss of information, then special processing is required... */ 3176 if( (pIn3->flags & MEM_Int)==0 ){ 3177 if( (pIn3->flags & MEM_Real)==0 ){ 3178 /* If the P3 value cannot be converted into any kind of a number, 3179 ** then the seek is not possible, so jump to P2 */ 3180 pc = pOp->p2 - 1; 3181 break; 3182 } 3183 /* If we reach this point, then the P3 value must be a floating 3184 ** point number. */ 3185 assert( (pIn3->flags & MEM_Real)!=0 ); 3186 3187 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){ 3188 /* The P3 value is too large in magnitude to be expressed as an 3189 ** integer. */ 3190 res = 1; 3191 if( pIn3->r<0 ){ 3192 if( oc==OP_SeekGt || oc==OP_SeekGe ){ 3193 rc = sqlite3BtreeFirst(pC->pCursor, &res); 3194 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3195 } 3196 }else{ 3197 if( oc==OP_SeekLt || oc==OP_SeekLe ){ 3198 rc = sqlite3BtreeLast(pC->pCursor, &res); 3199 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3200 } 3201 } 3202 if( res ){ 3203 pc = pOp->p2 - 1; 3204 } 3205 break; 3206 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){ 3207 /* Use the ceiling() function to convert real->int */ 3208 if( pIn3->r > (double)iKey ) iKey++; 3209 }else{ 3210 /* Use the floor() function to convert real->int */ 3211 assert( oc==OP_SeekLe || oc==OP_SeekGt ); 3212 if( pIn3->r < (double)iKey ) iKey--; 3213 } 3214 } 3215 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3216 if( rc!=SQLITE_OK ){ 3217 goto abort_due_to_error; 3218 } 3219 if( res==0 ){ 3220 pC->rowidIsValid = 1; 3221 pC->lastRowid = iKey; 3222 } 3223 }else{ 3224 nField = pOp->p4.i; 3225 assert( pOp->p4type==P4_INT32 ); 3226 assert( nField>0 ); 3227 r.pKeyInfo = pC->pKeyInfo; 3228 r.nField = (u16)nField; 3229 if( oc==OP_SeekGt || oc==OP_SeekLe ){ 3230 r.flags = UNPACKED_INCRKEY; 3231 }else{ 3232 r.flags = 0; 3233 } 3234 r.aMem = &p->aMem[pOp->p3]; 3235 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3236 if( rc!=SQLITE_OK ){ 3237 goto abort_due_to_error; 3238 } 3239 pC->rowidIsValid = 0; 3240 } 3241 pC->deferredMoveto = 0; 3242 pC->cacheStatus = CACHE_STALE; 3243 #ifdef SQLITE_TEST 3244 sqlite3_search_count++; 3245 #endif 3246 if( oc==OP_SeekGe || oc==OP_SeekGt ){ 3247 if( res<0 || (res==0 && oc==OP_SeekGt) ){ 3248 rc = sqlite3BtreeNext(pC->pCursor, &res); 3249 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3250 pC->rowidIsValid = 0; 3251 }else{ 3252 res = 0; 3253 } 3254 }else{ 3255 assert( oc==OP_SeekLt || oc==OP_SeekLe ); 3256 if( res>0 || (res==0 && oc==OP_SeekLt) ){ 3257 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3258 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3259 pC->rowidIsValid = 0; 3260 }else{ 3261 /* res might be negative because the table is empty. Check to 3262 ** see if this is the case. 3263 */ 3264 res = sqlite3BtreeEof(pC->pCursor); 3265 } 3266 } 3267 assert( pOp->p2>0 ); 3268 if( res ){ 3269 pc = pOp->p2 - 1; 3270 } 3271 }else{ 3272 /* This happens when attempting to open the sqlite3_master table 3273 ** for read access returns SQLITE_EMPTY. In this case always 3274 ** take the jump (since there are no records in the table). 3275 */ 3276 assert( pC->pseudoTable==0 ); 3277 pc = pOp->p2 - 1; 3278 } 3279 break; 3280 } 3281 3282 /* Opcode: Seek P1 P2 * * * 3283 ** 3284 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3285 ** for P1 to move so that it points to the rowid given by P2. 3286 ** 3287 ** This is actually a deferred seek. Nothing actually happens until 3288 ** the cursor is used to read a record. That way, if no reads 3289 ** occur, no unnecessary I/O happens. 3290 */ 3291 case OP_Seek: { /* in2 */ 3292 VdbeCursor *pC; 3293 3294 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3295 pC = p->apCsr[pOp->p1]; 3296 assert( pC!=0 ); 3297 if( ALWAYS(pC->pCursor!=0) ){ 3298 assert( pC->isTable ); 3299 pC->nullRow = 0; 3300 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3301 pC->rowidIsValid = 0; 3302 pC->deferredMoveto = 1; 3303 } 3304 break; 3305 } 3306 3307 3308 /* Opcode: Found P1 P2 P3 * * 3309 ** 3310 ** Register P3 holds a blob constructed by MakeRecord. P1 is an index. 3311 ** If an entry that matches the value in register p3 exists in P1 then 3312 ** jump to P2. If the P3 value does not match any entry in P1 3313 ** then fall thru. The P1 cursor is left pointing at the matching entry 3314 ** if it exists. 3315 ** 3316 ** This instruction is used to implement the IN operator where the 3317 ** left-hand side is a SELECT statement. P1 may be a true index, or it 3318 ** may be a temporary index that holds the results of the SELECT 3319 ** statement. This instruction is also used to implement the 3320 ** DISTINCT keyword in SELECT statements. 3321 ** 3322 ** This instruction checks if index P1 contains a record for which 3323 ** the first N serialized values exactly match the N serialized values 3324 ** in the record in register P3, where N is the total number of values in 3325 ** the P3 record (the P3 record is a prefix of the P1 record). 3326 ** 3327 ** See also: NotFound, IsUnique, NotExists 3328 */ 3329 /* Opcode: NotFound P1 P2 P3 * * 3330 ** 3331 ** Register P3 holds a blob constructed by MakeRecord. P1 is 3332 ** an index. If no entry exists in P1 that matches the blob then jump 3333 ** to P2. If an entry does existing, fall through. The cursor is left 3334 ** pointing to the entry that matches. 3335 ** 3336 ** See also: Found, NotExists, IsUnique 3337 */ 3338 case OP_NotFound: /* jump, in3 */ 3339 case OP_Found: { /* jump, in3 */ 3340 int alreadyExists; 3341 VdbeCursor *pC; 3342 int res; 3343 UnpackedRecord *pIdxKey; 3344 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; 3345 3346 alreadyExists = 0; 3347 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3348 pC = p->apCsr[pOp->p1]; 3349 assert( pC!=0 ); 3350 if( ALWAYS(pC->pCursor!=0) ){ 3351 3352 assert( pC->isTable==0 ); 3353 assert( pIn3->flags & MEM_Blob ); 3354 ExpandBlob(pIn3); 3355 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, 3356 aTempRec, sizeof(aTempRec)); 3357 if( pIdxKey==0 ){ 3358 goto no_mem; 3359 } 3360 if( pOp->opcode==OP_Found ){ 3361 pIdxKey->flags |= UNPACKED_PREFIX_MATCH; 3362 } 3363 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3364 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); 3365 if( rc!=SQLITE_OK ){ 3366 break; 3367 } 3368 alreadyExists = (res==0); 3369 pC->deferredMoveto = 0; 3370 pC->cacheStatus = CACHE_STALE; 3371 } 3372 if( pOp->opcode==OP_Found ){ 3373 if( alreadyExists ) pc = pOp->p2 - 1; 3374 }else{ 3375 if( !alreadyExists ) pc = pOp->p2 - 1; 3376 } 3377 break; 3378 } 3379 3380 /* Opcode: IsUnique P1 P2 P3 P4 * 3381 ** 3382 ** Cursor P1 is open on an index. So it has no data and its key consists 3383 ** of a record generated by OP_MakeRecord where the last field is the 3384 ** rowid of the entry that the index refers to. 3385 ** 3386 ** The P3 register contains an integer record number. Call this record 3387 ** number R. Register P4 is the first in a set of N contiguous registers 3388 ** that make up an unpacked index key that can be used with cursor P1. 3389 ** The value of N can be inferred from the cursor. N includes the rowid 3390 ** value appended to the end of the index record. This rowid value may 3391 ** or may not be the same as R. 3392 ** 3393 ** If any of the N registers beginning with register P4 contains a NULL 3394 ** value, jump immediately to P2. 3395 ** 3396 ** Otherwise, this instruction checks if cursor P1 contains an entry 3397 ** where the first (N-1) fields match but the rowid value at the end 3398 ** of the index entry is not R. If there is no such entry, control jumps 3399 ** to instruction P2. Otherwise, the rowid of the conflicting index 3400 ** entry is copied to register P3 and control falls through to the next 3401 ** instruction. 3402 ** 3403 ** See also: NotFound, NotExists, Found 3404 */ 3405 case OP_IsUnique: { /* jump, in3 */ 3406 u16 ii; 3407 VdbeCursor *pCx; 3408 BtCursor *pCrsr; 3409 u16 nField; 3410 Mem *aMem; 3411 UnpackedRecord r; /* B-Tree index search key */ 3412 i64 R; /* Rowid stored in register P3 */ 3413 3414 aMem = &p->aMem[pOp->p4.i]; 3415 /* Assert that the values of parameters P1 and P4 are in range. */ 3416 assert( pOp->p4type==P4_INT32 ); 3417 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); 3418 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3419 3420 /* Find the index cursor. */ 3421 pCx = p->apCsr[pOp->p1]; 3422 assert( pCx->deferredMoveto==0 ); 3423 pCx->seekResult = 0; 3424 pCx->cacheStatus = CACHE_STALE; 3425 pCrsr = pCx->pCursor; 3426 3427 /* If any of the values are NULL, take the jump. */ 3428 nField = pCx->pKeyInfo->nField; 3429 for(ii=0; ii<nField; ii++){ 3430 if( aMem[ii].flags & MEM_Null ){ 3431 pc = pOp->p2 - 1; 3432 pCrsr = 0; 3433 break; 3434 } 3435 } 3436 assert( (aMem[nField].flags & MEM_Null)==0 ); 3437 3438 if( pCrsr!=0 ){ 3439 /* Populate the index search key. */ 3440 r.pKeyInfo = pCx->pKeyInfo; 3441 r.nField = nField + 1; 3442 r.flags = UNPACKED_PREFIX_SEARCH; 3443 r.aMem = aMem; 3444 3445 /* Extract the value of R from register P3. */ 3446 sqlite3VdbeMemIntegerify(pIn3); 3447 R = pIn3->u.i; 3448 3449 /* Search the B-Tree index. If no conflicting record is found, jump 3450 ** to P2. Otherwise, copy the rowid of the conflicting record to 3451 ** register P3 and fall through to the next instruction. */ 3452 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult); 3453 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){ 3454 pc = pOp->p2 - 1; 3455 }else{ 3456 pIn3->u.i = r.rowid; 3457 } 3458 } 3459 break; 3460 } 3461 3462 /* Opcode: NotExists P1 P2 P3 * * 3463 ** 3464 ** Use the content of register P3 as a integer key. If a record 3465 ** with that key does not exist in table of P1, then jump to P2. 3466 ** If the record does exist, then fall thru. The cursor is left 3467 ** pointing to the record if it exists. 3468 ** 3469 ** The difference between this operation and NotFound is that this 3470 ** operation assumes the key is an integer and that P1 is a table whereas 3471 ** NotFound assumes key is a blob constructed from MakeRecord and 3472 ** P1 is an index. 3473 ** 3474 ** See also: Found, NotFound, IsUnique 3475 */ 3476 case OP_NotExists: { /* jump, in3 */ 3477 VdbeCursor *pC; 3478 BtCursor *pCrsr; 3479 int res; 3480 u64 iKey; 3481 3482 assert( pIn3->flags & MEM_Int ); 3483 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3484 pC = p->apCsr[pOp->p1]; 3485 assert( pC!=0 ); 3486 assert( pC->isTable ); 3487 pCrsr = pC->pCursor; 3488 if( pCrsr!=0 ){ 3489 res = 0; 3490 iKey = pIn3->u.i; 3491 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3492 pC->lastRowid = pIn3->u.i; 3493 pC->rowidIsValid = res==0 ?1:0; 3494 pC->nullRow = 0; 3495 pC->cacheStatus = CACHE_STALE; 3496 pC->deferredMoveto = 0; 3497 if( res!=0 ){ 3498 pc = pOp->p2 - 1; 3499 assert( pC->rowidIsValid==0 ); 3500 } 3501 pC->seekResult = res; 3502 }else{ 3503 /* This happens when an attempt to open a read cursor on the 3504 ** sqlite_master table returns SQLITE_EMPTY. 3505 */ 3506 assert( !pC->pseudoTable ); 3507 assert( pC->isTable ); 3508 pc = pOp->p2 - 1; 3509 assert( pC->rowidIsValid==0 ); 3510 pC->seekResult = 0; 3511 } 3512 break; 3513 } 3514 3515 /* Opcode: Sequence P1 P2 * * * 3516 ** 3517 ** Find the next available sequence number for cursor P1. 3518 ** Write the sequence number into register P2. 3519 ** The sequence number on the cursor is incremented after this 3520 ** instruction. 3521 */ 3522 case OP_Sequence: { /* out2-prerelease */ 3523 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3524 assert( p->apCsr[pOp->p1]!=0 ); 3525 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3526 MemSetTypeFlag(pOut, MEM_Int); 3527 break; 3528 } 3529 3530 3531 /* Opcode: NewRowid P1 P2 P3 * * 3532 ** 3533 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3534 ** The record number is not previously used as a key in the database 3535 ** table that cursor P1 points to. The new record number is written 3536 ** written to register P2. 3537 ** 3538 ** If P3>0 then P3 is a register that holds the largest previously 3539 ** generated record number. No new record numbers are allowed to be less 3540 ** than this value. When this value reaches its maximum, a SQLITE_FULL 3541 ** error is generated. The P3 register is updated with the generated 3542 ** record number. This P3 mechanism is used to help implement the 3543 ** AUTOINCREMENT feature. 3544 */ 3545 case OP_NewRowid: { /* out2-prerelease */ 3546 i64 v; /* The new rowid */ 3547 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3548 int res; /* Result of an sqlite3BtreeLast() */ 3549 int cnt; /* Counter to limit the number of searches */ 3550 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3551 3552 v = 0; 3553 res = 0; 3554 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3555 pC = p->apCsr[pOp->p1]; 3556 assert( pC!=0 ); 3557 if( NEVER(pC->pCursor==0) ){ 3558 /* The zero initialization above is all that is needed */ 3559 }else{ 3560 /* The next rowid or record number (different terms for the same 3561 ** thing) is obtained in a two-step algorithm. 3562 ** 3563 ** First we attempt to find the largest existing rowid and add one 3564 ** to that. But if the largest existing rowid is already the maximum 3565 ** positive integer, we have to fall through to the second 3566 ** probabilistic algorithm 3567 ** 3568 ** The second algorithm is to select a rowid at random and see if 3569 ** it already exists in the table. If it does not exist, we have 3570 ** succeeded. If the random rowid does exist, we select a new one 3571 ** and try again, up to 100 times. 3572 */ 3573 assert( pC->isTable ); 3574 cnt = 0; 3575 3576 #ifdef SQLITE_32BIT_ROWID 3577 # define MAX_ROWID 0x7fffffff 3578 #else 3579 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 3580 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 3581 ** to provide the constant while making all compilers happy. 3582 */ 3583 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 3584 #endif 3585 3586 if( !pC->useRandomRowid ){ 3587 v = sqlite3BtreeGetCachedRowid(pC->pCursor); 3588 if( v==0 ){ 3589 rc = sqlite3BtreeLast(pC->pCursor, &res); 3590 if( rc!=SQLITE_OK ){ 3591 goto abort_due_to_error; 3592 } 3593 if( res ){ 3594 v = 1; 3595 }else{ 3596 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 3597 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 3598 if( v==MAX_ROWID ){ 3599 pC->useRandomRowid = 1; 3600 }else{ 3601 v++; 3602 } 3603 } 3604 } 3605 3606 #ifndef SQLITE_OMIT_AUTOINCREMENT 3607 if( pOp->p3 ){ 3608 assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */ 3609 pMem = &p->aMem[pOp->p3]; 3610 REGISTER_TRACE(pOp->p3, pMem); 3611 sqlite3VdbeMemIntegerify(pMem); 3612 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 3613 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 3614 rc = SQLITE_FULL; 3615 goto abort_due_to_error; 3616 } 3617 if( v<pMem->u.i+1 ){ 3618 v = pMem->u.i + 1; 3619 } 3620 pMem->u.i = v; 3621 } 3622 #endif 3623 3624 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0); 3625 } 3626 if( pC->useRandomRowid ){ 3627 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 3628 ** an AUTOINCREMENT table. */ 3629 v = db->lastRowid; 3630 cnt = 0; 3631 do{ 3632 if( cnt==0 && (v&0xffffff)==v ){ 3633 v++; 3634 }else{ 3635 sqlite3_randomness(sizeof(v), &v); 3636 if( cnt<5 ) v &= 0xffffff; 3637 } 3638 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 0, &res); 3639 cnt++; 3640 }while( cnt<100 && rc==SQLITE_OK && res==0 ); 3641 if( rc==SQLITE_OK && res==0 ){ 3642 rc = SQLITE_FULL; 3643 goto abort_due_to_error; 3644 } 3645 } 3646 pC->rowidIsValid = 0; 3647 pC->deferredMoveto = 0; 3648 pC->cacheStatus = CACHE_STALE; 3649 } 3650 MemSetTypeFlag(pOut, MEM_Int); 3651 pOut->u.i = v; 3652 break; 3653 } 3654 3655 /* Opcode: Insert P1 P2 P3 P4 P5 3656 ** 3657 ** Write an entry into the table of cursor P1. A new entry is 3658 ** created if it doesn't already exist or the data for an existing 3659 ** entry is overwritten. The data is the value stored register 3660 ** number P2. The key is stored in register P3. The key must 3661 ** be an integer. 3662 ** 3663 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 3664 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 3665 ** then rowid is stored for subsequent return by the 3666 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 3667 ** 3668 ** Parameter P4 may point to a string containing the table-name, or 3669 ** may be NULL. If it is not NULL, then the update-hook 3670 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 3671 ** 3672 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 3673 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 3674 ** and register P2 becomes ephemeral. If the cursor is changed, the 3675 ** value of register P2 will then change. Make sure this does not 3676 ** cause any problems.) 3677 ** 3678 ** This instruction only works on tables. The equivalent instruction 3679 ** for indices is OP_IdxInsert. 3680 */ 3681 case OP_Insert: { 3682 Mem *pData; 3683 Mem *pKey; 3684 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 3685 VdbeCursor *pC; 3686 int nZero; 3687 int seekResult; 3688 const char *zDb; 3689 const char *zTbl; 3690 int op; 3691 3692 pData = &p->aMem[pOp->p2]; 3693 pKey = &p->aMem[pOp->p3]; 3694 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3695 pC = p->apCsr[pOp->p1]; 3696 assert( pC!=0 ); 3697 assert( pC->pCursor!=0 || pC->pseudoTable ); 3698 assert( pKey->flags & MEM_Int ); 3699 assert( pC->isTable ); 3700 REGISTER_TRACE(pOp->p2, pData); 3701 REGISTER_TRACE(pOp->p3, pKey); 3702 3703 iKey = pKey->u.i; 3704 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 3705 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i; 3706 if( pData->flags & MEM_Null ){ 3707 pData->z = 0; 3708 pData->n = 0; 3709 }else{ 3710 assert( pData->flags & (MEM_Blob|MEM_Str) ); 3711 } 3712 if( pC->pseudoTable ){ 3713 if( !pC->ephemPseudoTable ){ 3714 sqlite3DbFree(db, pC->pData); 3715 } 3716 pC->iKey = iKey; 3717 pC->nData = pData->n; 3718 if( pC->ephemPseudoTable || pData->z==pData->zMalloc ){ 3719 pC->pData = pData->z; 3720 if( !pC->ephemPseudoTable ){ 3721 pData->flags &= ~MEM_Dyn; 3722 pData->flags |= MEM_Ephem; 3723 pData->zMalloc = 0; 3724 } 3725 }else{ 3726 pC->pData = sqlite3Malloc( pC->nData+2 ); 3727 if( !pC->pData ) goto no_mem; 3728 memcpy(pC->pData, pData->z, pC->nData); 3729 pC->pData[pC->nData] = 0; 3730 pC->pData[pC->nData+1] = 0; 3731 } 3732 pC->nullRow = 0; 3733 }else{ 3734 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 3735 if( pData->flags & MEM_Zero ){ 3736 nZero = pData->u.nZero; 3737 }else{ 3738 nZero = 0; 3739 } 3740 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 3741 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 3742 pData->z, pData->n, nZero, 3743 pOp->p5 & OPFLAG_APPEND, seekResult 3744 ); 3745 } 3746 3747 pC->rowidIsValid = 0; 3748 pC->deferredMoveto = 0; 3749 pC->cacheStatus = CACHE_STALE; 3750 3751 /* Invoke the update-hook if required. */ 3752 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 3753 zDb = db->aDb[pC->iDb].zName; 3754 zTbl = pOp->p4.z; 3755 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 3756 assert( pC->isTable ); 3757 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 3758 assert( pC->iDb>=0 ); 3759 } 3760 break; 3761 } 3762 3763 /* Opcode: Delete P1 P2 * P4 * 3764 ** 3765 ** Delete the record at which the P1 cursor is currently pointing. 3766 ** 3767 ** The cursor will be left pointing at either the next or the previous 3768 ** record in the table. If it is left pointing at the next record, then 3769 ** the next Next instruction will be a no-op. Hence it is OK to delete 3770 ** a record from within an Next loop. 3771 ** 3772 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 3773 ** incremented (otherwise not). 3774 ** 3775 ** P1 must not be pseudo-table. It has to be a real table with 3776 ** multiple rows. 3777 ** 3778 ** If P4 is not NULL, then it is the name of the table that P1 is 3779 ** pointing to. The update hook will be invoked, if it exists. 3780 ** If P4 is not NULL then the P1 cursor must have been positioned 3781 ** using OP_NotFound prior to invoking this opcode. 3782 */ 3783 case OP_Delete: { 3784 i64 iKey; 3785 VdbeCursor *pC; 3786 3787 iKey = 0; 3788 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3789 pC = p->apCsr[pOp->p1]; 3790 assert( pC!=0 ); 3791 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 3792 3793 /* If the update-hook will be invoked, set iKey to the rowid of the 3794 ** row being deleted. 3795 */ 3796 if( db->xUpdateCallback && pOp->p4.z ){ 3797 assert( pC->isTable ); 3798 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ 3799 iKey = pC->lastRowid; 3800 } 3801 3802 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or 3803 ** OP_Column on the same table without any intervening operations that 3804 ** might move or invalidate the cursor. Hence cursor pC is always pointing 3805 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation 3806 ** below is always a no-op and cannot fail. We will run it anyhow, though, 3807 ** to guard against future changes to the code generator. 3808 **/ 3809 assert( pC->deferredMoveto==0 ); 3810 rc = sqlite3VdbeCursorMoveto(pC); 3811 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 3812 3813 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 3814 rc = sqlite3BtreeDelete(pC->pCursor); 3815 pC->cacheStatus = CACHE_STALE; 3816 3817 /* Invoke the update-hook if required. */ 3818 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 3819 const char *zDb = db->aDb[pC->iDb].zName; 3820 const char *zTbl = pOp->p4.z; 3821 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); 3822 assert( pC->iDb>=0 ); 3823 } 3824 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 3825 break; 3826 } 3827 3828 /* Opcode: ResetCount P1 * * 3829 ** 3830 ** This opcode resets the VMs internal change counter to 0. If P1 is true, 3831 ** then the value of the change counter is copied to the database handle 3832 ** change counter (returned by subsequent calls to sqlite3_changes()) 3833 ** before it is reset. This is used by trigger programs. 3834 */ 3835 case OP_ResetCount: { 3836 if( pOp->p1 ){ 3837 sqlite3VdbeSetChanges(db, p->nChange); 3838 } 3839 p->nChange = 0; 3840 break; 3841 } 3842 3843 /* Opcode: RowData P1 P2 * * * 3844 ** 3845 ** Write into register P2 the complete row data for cursor P1. 3846 ** There is no interpretation of the data. 3847 ** It is just copied onto the P2 register exactly as 3848 ** it is found in the database file. 3849 ** 3850 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 3851 ** of a real table, not a pseudo-table. 3852 */ 3853 /* Opcode: RowKey P1 P2 * * * 3854 ** 3855 ** Write into register P2 the complete row key for cursor P1. 3856 ** There is no interpretation of the data. 3857 ** The key is copied onto the P3 register exactly as 3858 ** it is found in the database file. 3859 ** 3860 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 3861 ** of a real table, not a pseudo-table. 3862 */ 3863 case OP_RowKey: 3864 case OP_RowData: { 3865 VdbeCursor *pC; 3866 BtCursor *pCrsr; 3867 u32 n; 3868 i64 n64; 3869 3870 pOut = &p->aMem[pOp->p2]; 3871 3872 /* Note that RowKey and RowData are really exactly the same instruction */ 3873 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3874 pC = p->apCsr[pOp->p1]; 3875 assert( pC->isTable || pOp->opcode==OP_RowKey ); 3876 assert( pC->isIndex || pOp->opcode==OP_RowData ); 3877 assert( pC!=0 ); 3878 assert( pC->nullRow==0 ); 3879 assert( pC->pseudoTable==0 ); 3880 assert( pC->pCursor!=0 ); 3881 pCrsr = pC->pCursor; 3882 3883 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 3884 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 3885 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always 3886 ** a no-op and can never fail. But we leave it in place as a safety. 3887 */ 3888 assert( pC->deferredMoveto==0 ); 3889 rc = sqlite3VdbeCursorMoveto(pC); 3890 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 3891 3892 if( pC->isIndex ){ 3893 assert( !pC->isTable ); 3894 rc = sqlite3BtreeKeySize(pCrsr, &n64); 3895 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 3896 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3897 goto too_big; 3898 } 3899 n = (u32)n64; 3900 }else{ 3901 rc = sqlite3BtreeDataSize(pCrsr, &n); 3902 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 3903 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3904 goto too_big; 3905 } 3906 } 3907 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ 3908 goto no_mem; 3909 } 3910 pOut->n = n; 3911 MemSetTypeFlag(pOut, MEM_Blob); 3912 if( pC->isIndex ){ 3913 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 3914 }else{ 3915 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 3916 } 3917 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 3918 UPDATE_MAX_BLOBSIZE(pOut); 3919 break; 3920 } 3921 3922 /* Opcode: Rowid P1 P2 * * * 3923 ** 3924 ** Store in register P2 an integer which is the key of the table entry that 3925 ** P1 is currently point to. 3926 ** 3927 ** P1 can be either an ordinary table or a virtual table. There used to 3928 ** be a separate OP_VRowid opcode for use with virtual tables, but this 3929 ** one opcode now works for both table types. 3930 */ 3931 case OP_Rowid: { /* out2-prerelease */ 3932 VdbeCursor *pC; 3933 i64 v; 3934 sqlite3_vtab *pVtab; 3935 const sqlite3_module *pModule; 3936 3937 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3938 pC = p->apCsr[pOp->p1]; 3939 assert( pC!=0 ); 3940 if( pC->nullRow ){ 3941 /* Do nothing so that reg[P2] remains NULL */ 3942 break; 3943 }else if( pC->deferredMoveto ){ 3944 v = pC->movetoTarget; 3945 }else if( pC->pseudoTable ){ 3946 v = pC->iKey; 3947 #ifndef SQLITE_OMIT_VIRTUALTABLE 3948 }else if( pC->pVtabCursor ){ 3949 pVtab = pC->pVtabCursor->pVtab; 3950 pModule = pVtab->pModule; 3951 assert( pModule->xRowid ); 3952 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 3953 rc = pModule->xRowid(pC->pVtabCursor, &v); 3954 sqlite3DbFree(db, p->zErrMsg); 3955 p->zErrMsg = pVtab->zErrMsg; 3956 pVtab->zErrMsg = 0; 3957 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 3958 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3959 }else{ 3960 assert( pC->pCursor!=0 ); 3961 rc = sqlite3VdbeCursorMoveto(pC); 3962 if( rc ) goto abort_due_to_error; 3963 if( pC->rowidIsValid ){ 3964 v = pC->lastRowid; 3965 }else{ 3966 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 3967 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ 3968 } 3969 } 3970 pOut->u.i = v; 3971 MemSetTypeFlag(pOut, MEM_Int); 3972 break; 3973 } 3974 3975 /* Opcode: NullRow P1 * * * * 3976 ** 3977 ** Move the cursor P1 to a null row. Any OP_Column operations 3978 ** that occur while the cursor is on the null row will always 3979 ** write a NULL. 3980 */ 3981 case OP_NullRow: { 3982 VdbeCursor *pC; 3983 3984 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3985 pC = p->apCsr[pOp->p1]; 3986 assert( pC!=0 ); 3987 pC->nullRow = 1; 3988 pC->rowidIsValid = 0; 3989 if( pC->pCursor ){ 3990 sqlite3BtreeClearCursor(pC->pCursor); 3991 } 3992 break; 3993 } 3994 3995 /* Opcode: Last P1 P2 * * * 3996 ** 3997 ** The next use of the Rowid or Column or Next instruction for P1 3998 ** will refer to the last entry in the database table or index. 3999 ** If the table or index is empty and P2>0, then jump immediately to P2. 4000 ** If P2 is 0 or if the table or index is not empty, fall through 4001 ** to the following instruction. 4002 */ 4003 case OP_Last: { /* jump */ 4004 VdbeCursor *pC; 4005 BtCursor *pCrsr; 4006 int res; 4007 4008 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4009 pC = p->apCsr[pOp->p1]; 4010 assert( pC!=0 ); 4011 pCrsr = pC->pCursor; 4012 if( pCrsr==0 ){ 4013 res = 1; 4014 }else{ 4015 rc = sqlite3BtreeLast(pCrsr, &res); 4016 } 4017 pC->nullRow = (u8)res; 4018 pC->deferredMoveto = 0; 4019 pC->rowidIsValid = 0; 4020 pC->cacheStatus = CACHE_STALE; 4021 if( pOp->p2>0 && res ){ 4022 pc = pOp->p2 - 1; 4023 } 4024 break; 4025 } 4026 4027 4028 /* Opcode: Sort P1 P2 * * * 4029 ** 4030 ** This opcode does exactly the same thing as OP_Rewind except that 4031 ** it increments an undocumented global variable used for testing. 4032 ** 4033 ** Sorting is accomplished by writing records into a sorting index, 4034 ** then rewinding that index and playing it back from beginning to 4035 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4036 ** rewinding so that the global variable will be incremented and 4037 ** regression tests can determine whether or not the optimizer is 4038 ** correctly optimizing out sorts. 4039 */ 4040 case OP_Sort: { /* jump */ 4041 #ifdef SQLITE_TEST 4042 sqlite3_sort_count++; 4043 sqlite3_search_count--; 4044 #endif 4045 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; 4046 /* Fall through into OP_Rewind */ 4047 } 4048 /* Opcode: Rewind P1 P2 * * * 4049 ** 4050 ** The next use of the Rowid or Column or Next instruction for P1 4051 ** will refer to the first entry in the database table or index. 4052 ** If the table or index is empty and P2>0, then jump immediately to P2. 4053 ** If P2 is 0 or if the table or index is not empty, fall through 4054 ** to the following instruction. 4055 */ 4056 case OP_Rewind: { /* jump */ 4057 VdbeCursor *pC; 4058 BtCursor *pCrsr; 4059 int res; 4060 4061 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4062 pC = p->apCsr[pOp->p1]; 4063 assert( pC!=0 ); 4064 if( (pCrsr = pC->pCursor)!=0 ){ 4065 rc = sqlite3BtreeFirst(pCrsr, &res); 4066 pC->atFirst = res==0 ?1:0; 4067 pC->deferredMoveto = 0; 4068 pC->cacheStatus = CACHE_STALE; 4069 pC->rowidIsValid = 0; 4070 }else{ 4071 res = 1; 4072 } 4073 pC->nullRow = (u8)res; 4074 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4075 if( res ){ 4076 pc = pOp->p2 - 1; 4077 } 4078 break; 4079 } 4080 4081 /* Opcode: Next P1 P2 * * * 4082 ** 4083 ** Advance cursor P1 so that it points to the next key/data pair in its 4084 ** table or index. If there are no more key/value pairs then fall through 4085 ** to the following instruction. But if the cursor advance was successful, 4086 ** jump immediately to P2. 4087 ** 4088 ** The P1 cursor must be for a real table, not a pseudo-table. 4089 ** 4090 ** See also: Prev 4091 */ 4092 /* Opcode: Prev P1 P2 * * * 4093 ** 4094 ** Back up cursor P1 so that it points to the previous key/data pair in its 4095 ** table or index. If there is no previous key/value pairs then fall through 4096 ** to the following instruction. But if the cursor backup was successful, 4097 ** jump immediately to P2. 4098 ** 4099 ** The P1 cursor must be for a real table, not a pseudo-table. 4100 */ 4101 case OP_Prev: /* jump */ 4102 case OP_Next: { /* jump */ 4103 VdbeCursor *pC; 4104 BtCursor *pCrsr; 4105 int res; 4106 4107 CHECK_FOR_INTERRUPT; 4108 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4109 pC = p->apCsr[pOp->p1]; 4110 if( pC==0 ){ 4111 break; /* See ticket #2273 */ 4112 } 4113 pCrsr = pC->pCursor; 4114 if( pCrsr==0 ){ 4115 pC->nullRow = 1; 4116 break; 4117 } 4118 res = 1; 4119 assert( pC->deferredMoveto==0 ); 4120 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : 4121 sqlite3BtreePrevious(pCrsr, &res); 4122 pC->nullRow = (u8)res; 4123 pC->cacheStatus = CACHE_STALE; 4124 if( res==0 ){ 4125 pc = pOp->p2 - 1; 4126 if( pOp->p5 ) p->aCounter[pOp->p5-1]++; 4127 #ifdef SQLITE_TEST 4128 sqlite3_search_count++; 4129 #endif 4130 } 4131 pC->rowidIsValid = 0; 4132 break; 4133 } 4134 4135 /* Opcode: IdxInsert P1 P2 P3 * P5 4136 ** 4137 ** Register P2 holds a SQL index key made using the 4138 ** MakeRecord instructions. This opcode writes that key 4139 ** into the index P1. Data for the entry is nil. 4140 ** 4141 ** P3 is a flag that provides a hint to the b-tree layer that this 4142 ** insert is likely to be an append. 4143 ** 4144 ** This instruction only works for indices. The equivalent instruction 4145 ** for tables is OP_Insert. 4146 */ 4147 case OP_IdxInsert: { /* in2 */ 4148 VdbeCursor *pC; 4149 BtCursor *pCrsr; 4150 int nKey; 4151 const char *zKey; 4152 4153 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4154 pC = p->apCsr[pOp->p1]; 4155 assert( pC!=0 ); 4156 assert( pIn2->flags & MEM_Blob ); 4157 pCrsr = pC->pCursor; 4158 if( ALWAYS(pCrsr!=0) ){ 4159 assert( pC->isTable==0 ); 4160 rc = ExpandBlob(pIn2); 4161 if( rc==SQLITE_OK ){ 4162 nKey = pIn2->n; 4163 zKey = pIn2->z; 4164 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4165 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4166 ); 4167 assert( pC->deferredMoveto==0 ); 4168 pC->cacheStatus = CACHE_STALE; 4169 } 4170 } 4171 break; 4172 } 4173 4174 /* Opcode: IdxDelete P1 P2 P3 * * 4175 ** 4176 ** The content of P3 registers starting at register P2 form 4177 ** an unpacked index key. This opcode removes that entry from the 4178 ** index opened by cursor P1. 4179 */ 4180 case OP_IdxDelete: { 4181 VdbeCursor *pC; 4182 BtCursor *pCrsr; 4183 int res; 4184 UnpackedRecord r; 4185 4186 assert( pOp->p3>0 ); 4187 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); 4188 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4189 pC = p->apCsr[pOp->p1]; 4190 assert( pC!=0 ); 4191 pCrsr = pC->pCursor; 4192 if( ALWAYS(pCrsr!=0) ){ 4193 r.pKeyInfo = pC->pKeyInfo; 4194 r.nField = (u16)pOp->p3; 4195 r.flags = 0; 4196 r.aMem = &p->aMem[pOp->p2]; 4197 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4198 if( rc==SQLITE_OK && res==0 ){ 4199 rc = sqlite3BtreeDelete(pCrsr); 4200 } 4201 assert( pC->deferredMoveto==0 ); 4202 pC->cacheStatus = CACHE_STALE; 4203 } 4204 break; 4205 } 4206 4207 /* Opcode: IdxRowid P1 P2 * * * 4208 ** 4209 ** Write into register P2 an integer which is the last entry in the record at 4210 ** the end of the index key pointed to by cursor P1. This integer should be 4211 ** the rowid of the table entry to which this index entry points. 4212 ** 4213 ** See also: Rowid, MakeRecord. 4214 */ 4215 case OP_IdxRowid: { /* out2-prerelease */ 4216 BtCursor *pCrsr; 4217 VdbeCursor *pC; 4218 i64 rowid; 4219 4220 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4221 pC = p->apCsr[pOp->p1]; 4222 assert( pC!=0 ); 4223 pCrsr = pC->pCursor; 4224 if( ALWAYS(pCrsr!=0) ){ 4225 rc = sqlite3VdbeCursorMoveto(pC); 4226 if( NEVER(rc) ) goto abort_due_to_error; 4227 assert( pC->deferredMoveto==0 ); 4228 assert( pC->isTable==0 ); 4229 if( !pC->nullRow ){ 4230 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4231 if( rc!=SQLITE_OK ){ 4232 goto abort_due_to_error; 4233 } 4234 MemSetTypeFlag(pOut, MEM_Int); 4235 pOut->u.i = rowid; 4236 } 4237 } 4238 break; 4239 } 4240 4241 /* Opcode: IdxGE P1 P2 P3 P4 P5 4242 ** 4243 ** The P4 register values beginning with P3 form an unpacked index 4244 ** key that omits the ROWID. Compare this key value against the index 4245 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4246 ** 4247 ** If the P1 index entry is greater than or equal to the key value 4248 ** then jump to P2. Otherwise fall through to the next instruction. 4249 ** 4250 ** If P5 is non-zero then the key value is increased by an epsilon 4251 ** prior to the comparison. This make the opcode work like IdxGT except 4252 ** that if the key from register P3 is a prefix of the key in the cursor, 4253 ** the result is false whereas it would be true with IdxGT. 4254 */ 4255 /* Opcode: IdxLT P1 P2 P3 * P5 4256 ** 4257 ** The P4 register values beginning with P3 form an unpacked index 4258 ** key that omits the ROWID. Compare this key value against the index 4259 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4260 ** 4261 ** If the P1 index entry is less than the key value then jump to P2. 4262 ** Otherwise fall through to the next instruction. 4263 ** 4264 ** If P5 is non-zero then the key value is increased by an epsilon prior 4265 ** to the comparison. This makes the opcode work like IdxLE. 4266 */ 4267 case OP_IdxLT: /* jump, in3 */ 4268 case OP_IdxGE: { /* jump, in3 */ 4269 VdbeCursor *pC; 4270 int res; 4271 UnpackedRecord r; 4272 4273 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4274 pC = p->apCsr[pOp->p1]; 4275 assert( pC!=0 ); 4276 if( ALWAYS(pC->pCursor!=0) ){ 4277 assert( pC->deferredMoveto==0 ); 4278 assert( pOp->p5==0 || pOp->p5==1 ); 4279 assert( pOp->p4type==P4_INT32 ); 4280 r.pKeyInfo = pC->pKeyInfo; 4281 r.nField = (u16)pOp->p4.i; 4282 if( pOp->p5 ){ 4283 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; 4284 }else{ 4285 r.flags = UNPACKED_IGNORE_ROWID; 4286 } 4287 r.aMem = &p->aMem[pOp->p3]; 4288 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); 4289 if( pOp->opcode==OP_IdxLT ){ 4290 res = -res; 4291 }else{ 4292 assert( pOp->opcode==OP_IdxGE ); 4293 res++; 4294 } 4295 if( res>0 ){ 4296 pc = pOp->p2 - 1 ; 4297 } 4298 } 4299 break; 4300 } 4301 4302 /* Opcode: Destroy P1 P2 P3 * * 4303 ** 4304 ** Delete an entire database table or index whose root page in the database 4305 ** file is given by P1. 4306 ** 4307 ** The table being destroyed is in the main database file if P3==0. If 4308 ** P3==1 then the table to be clear is in the auxiliary database file 4309 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4310 ** 4311 ** If AUTOVACUUM is enabled then it is possible that another root page 4312 ** might be moved into the newly deleted root page in order to keep all 4313 ** root pages contiguous at the beginning of the database. The former 4314 ** value of the root page that moved - its value before the move occurred - 4315 ** is stored in register P2. If no page 4316 ** movement was required (because the table being dropped was already 4317 ** the last one in the database) then a zero is stored in register P2. 4318 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4319 ** 4320 ** See also: Clear 4321 */ 4322 case OP_Destroy: { /* out2-prerelease */ 4323 int iMoved; 4324 int iCnt; 4325 Vdbe *pVdbe; 4326 int iDb; 4327 #ifndef SQLITE_OMIT_VIRTUALTABLE 4328 iCnt = 0; 4329 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4330 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ 4331 iCnt++; 4332 } 4333 } 4334 #else 4335 iCnt = db->activeVdbeCnt; 4336 #endif 4337 if( iCnt>1 ){ 4338 rc = SQLITE_LOCKED; 4339 p->errorAction = OE_Abort; 4340 }else{ 4341 iDb = pOp->p3; 4342 assert( iCnt==1 ); 4343 assert( (p->btreeMask & (1<<iDb))!=0 ); 4344 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4345 MemSetTypeFlag(pOut, MEM_Int); 4346 pOut->u.i = iMoved; 4347 #ifndef SQLITE_OMIT_AUTOVACUUM 4348 if( rc==SQLITE_OK && iMoved!=0 ){ 4349 sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1); 4350 } 4351 #endif 4352 } 4353 break; 4354 } 4355 4356 /* Opcode: Clear P1 P2 P3 4357 ** 4358 ** Delete all contents of the database table or index whose root page 4359 ** in the database file is given by P1. But, unlike Destroy, do not 4360 ** remove the table or index from the database file. 4361 ** 4362 ** The table being clear is in the main database file if P2==0. If 4363 ** P2==1 then the table to be clear is in the auxiliary database file 4364 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4365 ** 4366 ** If the P3 value is non-zero, then the table referred to must be an 4367 ** intkey table (an SQL table, not an index). In this case the row change 4368 ** count is incremented by the number of rows in the table being cleared. 4369 ** If P3 is greater than zero, then the value stored in register P3 is 4370 ** also incremented by the number of rows in the table being cleared. 4371 ** 4372 ** See also: Destroy 4373 */ 4374 case OP_Clear: { 4375 int nChange; 4376 4377 nChange = 0; 4378 assert( (p->btreeMask & (1<<pOp->p2))!=0 ); 4379 rc = sqlite3BtreeClearTable( 4380 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 4381 ); 4382 if( pOp->p3 ){ 4383 p->nChange += nChange; 4384 if( pOp->p3>0 ){ 4385 p->aMem[pOp->p3].u.i += nChange; 4386 } 4387 } 4388 break; 4389 } 4390 4391 /* Opcode: CreateTable P1 P2 * * * 4392 ** 4393 ** Allocate a new table in the main database file if P1==0 or in the 4394 ** auxiliary database file if P1==1 or in an attached database if 4395 ** P1>1. Write the root page number of the new table into 4396 ** register P2 4397 ** 4398 ** The difference between a table and an index is this: A table must 4399 ** have a 4-byte integer key and can have arbitrary data. An index 4400 ** has an arbitrary key but no data. 4401 ** 4402 ** See also: CreateIndex 4403 */ 4404 /* Opcode: CreateIndex P1 P2 * * * 4405 ** 4406 ** Allocate a new index in the main database file if P1==0 or in the 4407 ** auxiliary database file if P1==1 or in an attached database if 4408 ** P1>1. Write the root page number of the new table into 4409 ** register P2. 4410 ** 4411 ** See documentation on OP_CreateTable for additional information. 4412 */ 4413 case OP_CreateIndex: /* out2-prerelease */ 4414 case OP_CreateTable: { /* out2-prerelease */ 4415 int pgno; 4416 int flags; 4417 Db *pDb; 4418 4419 pgno = 0; 4420 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4421 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 4422 pDb = &db->aDb[pOp->p1]; 4423 assert( pDb->pBt!=0 ); 4424 if( pOp->opcode==OP_CreateTable ){ 4425 /* flags = BTREE_INTKEY; */ 4426 flags = BTREE_LEAFDATA|BTREE_INTKEY; 4427 }else{ 4428 flags = BTREE_ZERODATA; 4429 } 4430 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 4431 pOut->u.i = pgno; 4432 MemSetTypeFlag(pOut, MEM_Int); 4433 break; 4434 } 4435 4436 /* Opcode: ParseSchema P1 P2 * P4 * 4437 ** 4438 ** Read and parse all entries from the SQLITE_MASTER table of database P1 4439 ** that match the WHERE clause P4. P2 is the "force" flag. Always do 4440 ** the parsing if P2 is true. If P2 is false, then this routine is a 4441 ** no-op if the schema is not currently loaded. In other words, if P2 4442 ** is false, the SQLITE_MASTER table is only parsed if the rest of the 4443 ** schema is already loaded into the symbol table. 4444 ** 4445 ** This opcode invokes the parser to create a new virtual machine, 4446 ** then runs the new virtual machine. It is thus a re-entrant opcode. 4447 */ 4448 case OP_ParseSchema: { 4449 int iDb; 4450 const char *zMaster; 4451 char *zSql; 4452 InitData initData; 4453 4454 iDb = pOp->p1; 4455 assert( iDb>=0 && iDb<db->nDb ); 4456 4457 /* If pOp->p2 is 0, then this opcode is being executed to read a 4458 ** single row, for example the row corresponding to a new index 4459 ** created by this VDBE, from the sqlite_master table. It only 4460 ** does this if the corresponding in-memory schema is currently 4461 ** loaded. Otherwise, the new index definition can be loaded along 4462 ** with the rest of the schema when it is required. 4463 ** 4464 ** Although the mutex on the BtShared object that corresponds to 4465 ** database iDb (the database containing the sqlite_master table 4466 ** read by this instruction) is currently held, it is necessary to 4467 ** obtain the mutexes on all attached databases before checking if 4468 ** the schema of iDb is loaded. This is because, at the start of 4469 ** the sqlite3_exec() call below, SQLite will invoke 4470 ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the 4471 ** iDb mutex may be temporarily released to avoid deadlock. If 4472 ** this happens, then some other thread may delete the in-memory 4473 ** schema of database iDb before the SQL statement runs. The schema 4474 ** will not be reloaded becuase the db->init.busy flag is set. This 4475 ** can result in a "no such table: sqlite_master" or "malformed 4476 ** database schema" error being returned to the user. 4477 */ 4478 assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 4479 sqlite3BtreeEnterAll(db); 4480 if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){ 4481 zMaster = SCHEMA_TABLE(iDb); 4482 initData.db = db; 4483 initData.iDb = pOp->p1; 4484 initData.pzErrMsg = &p->zErrMsg; 4485 zSql = sqlite3MPrintf(db, 4486 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s", 4487 db->aDb[iDb].zName, zMaster, pOp->p4.z); 4488 if( zSql==0 ){ 4489 rc = SQLITE_NOMEM; 4490 }else{ 4491 (void)sqlite3SafetyOff(db); 4492 assert( db->init.busy==0 ); 4493 db->init.busy = 1; 4494 initData.rc = SQLITE_OK; 4495 assert( !db->mallocFailed ); 4496 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 4497 if( rc==SQLITE_OK ) rc = initData.rc; 4498 sqlite3DbFree(db, zSql); 4499 db->init.busy = 0; 4500 (void)sqlite3SafetyOn(db); 4501 } 4502 } 4503 sqlite3BtreeLeaveAll(db); 4504 if( rc==SQLITE_NOMEM ){ 4505 goto no_mem; 4506 } 4507 break; 4508 } 4509 4510 #if !defined(SQLITE_OMIT_ANALYZE) 4511 /* Opcode: LoadAnalysis P1 * * * * 4512 ** 4513 ** Read the sqlite_stat1 table for database P1 and load the content 4514 ** of that table into the internal index hash table. This will cause 4515 ** the analysis to be used when preparing all subsequent queries. 4516 */ 4517 case OP_LoadAnalysis: { 4518 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4519 rc = sqlite3AnalysisLoad(db, pOp->p1); 4520 break; 4521 } 4522 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 4523 4524 /* Opcode: DropTable P1 * * P4 * 4525 ** 4526 ** Remove the internal (in-memory) data structures that describe 4527 ** the table named P4 in database P1. This is called after a table 4528 ** is dropped in order to keep the internal representation of the 4529 ** schema consistent with what is on disk. 4530 */ 4531 case OP_DropTable: { 4532 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 4533 break; 4534 } 4535 4536 /* Opcode: DropIndex P1 * * P4 * 4537 ** 4538 ** Remove the internal (in-memory) data structures that describe 4539 ** the index named P4 in database P1. This is called after an index 4540 ** is dropped in order to keep the internal representation of the 4541 ** schema consistent with what is on disk. 4542 */ 4543 case OP_DropIndex: { 4544 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 4545 break; 4546 } 4547 4548 /* Opcode: DropTrigger P1 * * P4 * 4549 ** 4550 ** Remove the internal (in-memory) data structures that describe 4551 ** the trigger named P4 in database P1. This is called after a trigger 4552 ** is dropped in order to keep the internal representation of the 4553 ** schema consistent with what is on disk. 4554 */ 4555 case OP_DropTrigger: { 4556 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 4557 break; 4558 } 4559 4560 4561 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 4562 /* Opcode: IntegrityCk P1 P2 P3 * P5 4563 ** 4564 ** Do an analysis of the currently open database. Store in 4565 ** register P1 the text of an error message describing any problems. 4566 ** If no problems are found, store a NULL in register P1. 4567 ** 4568 ** The register P3 contains the maximum number of allowed errors. 4569 ** At most reg(P3) errors will be reported. 4570 ** In other words, the analysis stops as soon as reg(P1) errors are 4571 ** seen. Reg(P1) is updated with the number of errors remaining. 4572 ** 4573 ** The root page numbers of all tables in the database are integer 4574 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 4575 ** total. 4576 ** 4577 ** If P5 is not zero, the check is done on the auxiliary database 4578 ** file, not the main database file. 4579 ** 4580 ** This opcode is used to implement the integrity_check pragma. 4581 */ 4582 case OP_IntegrityCk: { 4583 int nRoot; /* Number of tables to check. (Number of root pages.) */ 4584 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 4585 int j; /* Loop counter */ 4586 int nErr; /* Number of errors reported */ 4587 char *z; /* Text of the error report */ 4588 Mem *pnErr; /* Register keeping track of errors remaining */ 4589 4590 nRoot = pOp->p2; 4591 assert( nRoot>0 ); 4592 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 4593 if( aRoot==0 ) goto no_mem; 4594 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 4595 pnErr = &p->aMem[pOp->p3]; 4596 assert( (pnErr->flags & MEM_Int)!=0 ); 4597 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 4598 pIn1 = &p->aMem[pOp->p1]; 4599 for(j=0; j<nRoot; j++){ 4600 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 4601 } 4602 aRoot[j] = 0; 4603 assert( pOp->p5<db->nDb ); 4604 assert( (p->btreeMask & (1<<pOp->p5))!=0 ); 4605 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 4606 (int)pnErr->u.i, &nErr); 4607 sqlite3DbFree(db, aRoot); 4608 pnErr->u.i -= nErr; 4609 sqlite3VdbeMemSetNull(pIn1); 4610 if( nErr==0 ){ 4611 assert( z==0 ); 4612 }else if( z==0 ){ 4613 goto no_mem; 4614 }else{ 4615 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 4616 } 4617 UPDATE_MAX_BLOBSIZE(pIn1); 4618 sqlite3VdbeChangeEncoding(pIn1, encoding); 4619 break; 4620 } 4621 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 4622 4623 /* Opcode: RowSetAdd P1 P2 * * * 4624 ** 4625 ** Insert the integer value held by register P2 into a boolean index 4626 ** held in register P1. 4627 ** 4628 ** An assertion fails if P2 is not an integer. 4629 */ 4630 case OP_RowSetAdd: { /* in2 */ 4631 Mem *pIdx; 4632 Mem *pVal; 4633 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 4634 pIdx = &p->aMem[pOp->p1]; 4635 assert( pOp->p2>0 && pOp->p2<=p->nMem ); 4636 pVal = &p->aMem[pOp->p2]; 4637 assert( (pVal->flags & MEM_Int)!=0 ); 4638 if( (pIdx->flags & MEM_RowSet)==0 ){ 4639 sqlite3VdbeMemSetRowSet(pIdx); 4640 if( (pIdx->flags & MEM_RowSet)==0 ) goto no_mem; 4641 } 4642 sqlite3RowSetInsert(pIdx->u.pRowSet, pVal->u.i); 4643 break; 4644 } 4645 4646 /* Opcode: RowSetRead P1 P2 P3 * * 4647 ** 4648 ** Extract the smallest value from boolean index P1 and put that value into 4649 ** register P3. Or, if boolean index P1 is initially empty, leave P3 4650 ** unchanged and jump to instruction P2. 4651 */ 4652 case OP_RowSetRead: { /* jump, out3 */ 4653 Mem *pIdx; 4654 i64 val; 4655 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 4656 CHECK_FOR_INTERRUPT; 4657 pIdx = &p->aMem[pOp->p1]; 4658 pOut = &p->aMem[pOp->p3]; 4659 if( (pIdx->flags & MEM_RowSet)==0 4660 || sqlite3RowSetNext(pIdx->u.pRowSet, &val)==0 4661 ){ 4662 /* The boolean index is empty */ 4663 sqlite3VdbeMemSetNull(pIdx); 4664 pc = pOp->p2 - 1; 4665 }else{ 4666 /* A value was pulled from the index */ 4667 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 4668 sqlite3VdbeMemSetInt64(pOut, val); 4669 } 4670 break; 4671 } 4672 4673 /* Opcode: RowSetTest P1 P2 P3 P4 4674 ** 4675 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 4676 ** contains a RowSet object and that RowSet object contains 4677 ** the value held in P3, jump to register P2. Otherwise, insert the 4678 ** integer in P3 into the RowSet and continue on to the 4679 ** next opcode. 4680 ** 4681 ** The RowSet object is optimized for the case where successive sets 4682 ** of integers, where each set contains no duplicates. Each set 4683 ** of values is identified by a unique P4 value. The first set 4684 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 4685 ** non-negative. For non-negative values of P4 only the lower 4 4686 ** bits are significant. 4687 ** 4688 ** This allows optimizations: (a) when P4==0 there is no need to test 4689 ** the rowset object for P3, as it is guaranteed not to contain it, 4690 ** (b) when P4==-1 there is no need to insert the value, as it will 4691 ** never be tested for, and (c) when a value that is part of set X is 4692 ** inserted, there is no need to search to see if the same value was 4693 ** previously inserted as part of set X (only if it was previously 4694 ** inserted as part of some other set). 4695 */ 4696 case OP_RowSetTest: { /* jump, in1, in3 */ 4697 int iSet; 4698 int exists; 4699 4700 iSet = pOp->p4.i; 4701 assert( pIn3->flags&MEM_Int ); 4702 4703 /* If there is anything other than a rowset object in memory cell P1, 4704 ** delete it now and initialize P1 with an empty rowset 4705 */ 4706 if( (pIn1->flags & MEM_RowSet)==0 ){ 4707 sqlite3VdbeMemSetRowSet(pIn1); 4708 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 4709 } 4710 4711 assert( pOp->p4type==P4_INT32 ); 4712 assert( iSet==-1 || iSet>=0 ); 4713 if( iSet ){ 4714 exists = sqlite3RowSetTest(pIn1->u.pRowSet, 4715 (u8)(iSet>=0 ? iSet & 0xf : 0xff), 4716 pIn3->u.i); 4717 if( exists ){ 4718 pc = pOp->p2 - 1; 4719 break; 4720 } 4721 } 4722 if( iSet>=0 ){ 4723 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 4724 } 4725 break; 4726 } 4727 4728 4729 #ifndef SQLITE_OMIT_TRIGGER 4730 /* Opcode: ContextPush * * * 4731 ** 4732 ** Save the current Vdbe context such that it can be restored by a ContextPop 4733 ** opcode. The context stores the last insert row id, the last statement change 4734 ** count, and the current statement change count. 4735 */ 4736 case OP_ContextPush: { 4737 int i; 4738 Context *pContext; 4739 4740 i = p->contextStackTop++; 4741 assert( i>=0 ); 4742 /* FIX ME: This should be allocated as part of the vdbe at compile-time */ 4743 if( i>=p->contextStackDepth ){ 4744 p->contextStackDepth = i+1; 4745 p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack, 4746 sizeof(Context)*(i+1)); 4747 if( p->contextStack==0 ) goto no_mem; 4748 } 4749 pContext = &p->contextStack[i]; 4750 pContext->lastRowid = db->lastRowid; 4751 pContext->nChange = p->nChange; 4752 break; 4753 } 4754 4755 /* Opcode: ContextPop * * * 4756 ** 4757 ** Restore the Vdbe context to the state it was in when contextPush was last 4758 ** executed. The context stores the last insert row id, the last statement 4759 ** change count, and the current statement change count. 4760 */ 4761 case OP_ContextPop: { 4762 Context *pContext; 4763 pContext = &p->contextStack[--p->contextStackTop]; 4764 assert( p->contextStackTop>=0 ); 4765 db->lastRowid = pContext->lastRowid; 4766 p->nChange = pContext->nChange; 4767 break; 4768 } 4769 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 4770 4771 #ifndef SQLITE_OMIT_AUTOINCREMENT 4772 /* Opcode: MemMax P1 P2 * * * 4773 ** 4774 ** Set the value of register P1 to the maximum of its current value 4775 ** and the value in register P2. 4776 ** 4777 ** This instruction throws an error if the memory cell is not initially 4778 ** an integer. 4779 */ 4780 case OP_MemMax: { /* in1, in2 */ 4781 sqlite3VdbeMemIntegerify(pIn1); 4782 sqlite3VdbeMemIntegerify(pIn2); 4783 if( pIn1->u.i<pIn2->u.i){ 4784 pIn1->u.i = pIn2->u.i; 4785 } 4786 break; 4787 } 4788 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 4789 4790 /* Opcode: IfPos P1 P2 * * * 4791 ** 4792 ** If the value of register P1 is 1 or greater, jump to P2. 4793 ** 4794 ** It is illegal to use this instruction on a register that does 4795 ** not contain an integer. An assertion fault will result if you try. 4796 */ 4797 case OP_IfPos: { /* jump, in1 */ 4798 assert( pIn1->flags&MEM_Int ); 4799 if( pIn1->u.i>0 ){ 4800 pc = pOp->p2 - 1; 4801 } 4802 break; 4803 } 4804 4805 /* Opcode: IfNeg P1 P2 * * * 4806 ** 4807 ** If the value of register P1 is less than zero, jump to P2. 4808 ** 4809 ** It is illegal to use this instruction on a register that does 4810 ** not contain an integer. An assertion fault will result if you try. 4811 */ 4812 case OP_IfNeg: { /* jump, in1 */ 4813 assert( pIn1->flags&MEM_Int ); 4814 if( pIn1->u.i<0 ){ 4815 pc = pOp->p2 - 1; 4816 } 4817 break; 4818 } 4819 4820 /* Opcode: IfZero P1 P2 * * * 4821 ** 4822 ** If the value of register P1 is exactly 0, jump to P2. 4823 ** 4824 ** It is illegal to use this instruction on a register that does 4825 ** not contain an integer. An assertion fault will result if you try. 4826 */ 4827 case OP_IfZero: { /* jump, in1 */ 4828 assert( pIn1->flags&MEM_Int ); 4829 if( pIn1->u.i==0 ){ 4830 pc = pOp->p2 - 1; 4831 } 4832 break; 4833 } 4834 4835 /* Opcode: AggStep * P2 P3 P4 P5 4836 ** 4837 ** Execute the step function for an aggregate. The 4838 ** function has P5 arguments. P4 is a pointer to the FuncDef 4839 ** structure that specifies the function. Use register 4840 ** P3 as the accumulator. 4841 ** 4842 ** The P5 arguments are taken from register P2 and its 4843 ** successors. 4844 */ 4845 case OP_AggStep: { 4846 int n; 4847 int i; 4848 Mem *pMem; 4849 Mem *pRec; 4850 sqlite3_context ctx; 4851 sqlite3_value **apVal; 4852 4853 n = pOp->p5; 4854 assert( n>=0 ); 4855 pRec = &p->aMem[pOp->p2]; 4856 apVal = p->apArg; 4857 assert( apVal || n==0 ); 4858 for(i=0; i<n; i++, pRec++){ 4859 apVal[i] = pRec; 4860 storeTypeInfo(pRec, encoding); 4861 } 4862 ctx.pFunc = pOp->p4.pFunc; 4863 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 4864 ctx.pMem = pMem = &p->aMem[pOp->p3]; 4865 pMem->n++; 4866 ctx.s.flags = MEM_Null; 4867 ctx.s.z = 0; 4868 ctx.s.zMalloc = 0; 4869 ctx.s.xDel = 0; 4870 ctx.s.db = db; 4871 ctx.isError = 0; 4872 ctx.pColl = 0; 4873 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 4874 assert( pOp>p->aOp ); 4875 assert( pOp[-1].p4type==P4_COLLSEQ ); 4876 assert( pOp[-1].opcode==OP_CollSeq ); 4877 ctx.pColl = pOp[-1].p4.pColl; 4878 } 4879 (ctx.pFunc->xStep)(&ctx, n, apVal); 4880 if( ctx.isError ){ 4881 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 4882 rc = ctx.isError; 4883 } 4884 sqlite3VdbeMemRelease(&ctx.s); 4885 break; 4886 } 4887 4888 /* Opcode: AggFinal P1 P2 * P4 * 4889 ** 4890 ** Execute the finalizer function for an aggregate. P1 is 4891 ** the memory location that is the accumulator for the aggregate. 4892 ** 4893 ** P2 is the number of arguments that the step function takes and 4894 ** P4 is a pointer to the FuncDef for this function. The P2 4895 ** argument is not used by this opcode. It is only there to disambiguate 4896 ** functions that can take varying numbers of arguments. The 4897 ** P4 argument is only needed for the degenerate case where 4898 ** the step function was not previously called. 4899 */ 4900 case OP_AggFinal: { 4901 Mem *pMem; 4902 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 4903 pMem = &p->aMem[pOp->p1]; 4904 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 4905 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 4906 if( rc ){ 4907 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 4908 } 4909 sqlite3VdbeChangeEncoding(pMem, encoding); 4910 UPDATE_MAX_BLOBSIZE(pMem); 4911 if( sqlite3VdbeMemTooBig(pMem) ){ 4912 goto too_big; 4913 } 4914 break; 4915 } 4916 4917 4918 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 4919 /* Opcode: Vacuum * * * * * 4920 ** 4921 ** Vacuum the entire database. This opcode will cause other virtual 4922 ** machines to be created and run. It may not be called from within 4923 ** a transaction. 4924 */ 4925 case OP_Vacuum: { 4926 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 4927 rc = sqlite3RunVacuum(&p->zErrMsg, db); 4928 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 4929 break; 4930 } 4931 #endif 4932 4933 #if !defined(SQLITE_OMIT_AUTOVACUUM) 4934 /* Opcode: IncrVacuum P1 P2 * * * 4935 ** 4936 ** Perform a single step of the incremental vacuum procedure on 4937 ** the P1 database. If the vacuum has finished, jump to instruction 4938 ** P2. Otherwise, fall through to the next instruction. 4939 */ 4940 case OP_IncrVacuum: { /* jump */ 4941 Btree *pBt; 4942 4943 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4944 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 4945 pBt = db->aDb[pOp->p1].pBt; 4946 rc = sqlite3BtreeIncrVacuum(pBt); 4947 if( rc==SQLITE_DONE ){ 4948 pc = pOp->p2 - 1; 4949 rc = SQLITE_OK; 4950 } 4951 break; 4952 } 4953 #endif 4954 4955 /* Opcode: Expire P1 * * * * 4956 ** 4957 ** Cause precompiled statements to become expired. An expired statement 4958 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 4959 ** (via sqlite3_step()). 4960 ** 4961 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 4962 ** then only the currently executing statement is affected. 4963 */ 4964 case OP_Expire: { 4965 if( !pOp->p1 ){ 4966 sqlite3ExpirePreparedStatements(db); 4967 }else{ 4968 p->expired = 1; 4969 } 4970 break; 4971 } 4972 4973 #ifndef SQLITE_OMIT_SHARED_CACHE 4974 /* Opcode: TableLock P1 P2 P3 P4 * 4975 ** 4976 ** Obtain a lock on a particular table. This instruction is only used when 4977 ** the shared-cache feature is enabled. 4978 ** 4979 ** P1 is the index of the database in sqlite3.aDb[] of the database 4980 ** on which the lock is acquired. A readlock is obtained if P3==0 or 4981 ** a write lock if P3==1. 4982 ** 4983 ** P2 contains the root-page of the table to lock. 4984 ** 4985 ** P4 contains a pointer to the name of the table being locked. This is only 4986 ** used to generate an error message if the lock cannot be obtained. 4987 */ 4988 case OP_TableLock: { 4989 u8 isWriteLock = (u8)pOp->p3; 4990 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 4991 int p1 = pOp->p1; 4992 assert( p1>=0 && p1<db->nDb ); 4993 assert( (p->btreeMask & (1<<p1))!=0 ); 4994 assert( isWriteLock==0 || isWriteLock==1 ); 4995 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 4996 if( (rc&0xFF)==SQLITE_LOCKED ){ 4997 const char *z = pOp->p4.z; 4998 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 4999 } 5000 } 5001 break; 5002 } 5003 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5004 5005 #ifndef SQLITE_OMIT_VIRTUALTABLE 5006 /* Opcode: VBegin * * * P4 * 5007 ** 5008 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5009 ** xBegin method for that table. 5010 ** 5011 ** Also, whether or not P4 is set, check that this is not being called from 5012 ** within a callback to a virtual table xSync() method. If it is, the error 5013 ** code will be set to SQLITE_LOCKED. 5014 */ 5015 case OP_VBegin: { 5016 sqlite3_vtab *pVtab; 5017 pVtab = pOp->p4.pVtab; 5018 rc = sqlite3VtabBegin(db, pVtab); 5019 if( pVtab ){ 5020 sqlite3DbFree(db, p->zErrMsg); 5021 p->zErrMsg = pVtab->zErrMsg; 5022 pVtab->zErrMsg = 0; 5023 } 5024 break; 5025 } 5026 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5027 5028 #ifndef SQLITE_OMIT_VIRTUALTABLE 5029 /* Opcode: VCreate P1 * * P4 * 5030 ** 5031 ** P4 is the name of a virtual table in database P1. Call the xCreate method 5032 ** for that table. 5033 */ 5034 case OP_VCreate: { 5035 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 5036 break; 5037 } 5038 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5039 5040 #ifndef SQLITE_OMIT_VIRTUALTABLE 5041 /* Opcode: VDestroy P1 * * P4 * 5042 ** 5043 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 5044 ** of that table. 5045 */ 5046 case OP_VDestroy: { 5047 p->inVtabMethod = 2; 5048 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 5049 p->inVtabMethod = 0; 5050 break; 5051 } 5052 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5053 5054 #ifndef SQLITE_OMIT_VIRTUALTABLE 5055 /* Opcode: VOpen P1 * * P4 * 5056 ** 5057 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5058 ** P1 is a cursor number. This opcode opens a cursor to the virtual 5059 ** table and stores that cursor in P1. 5060 */ 5061 case OP_VOpen: { 5062 VdbeCursor *pCur; 5063 sqlite3_vtab_cursor *pVtabCursor; 5064 sqlite3_vtab *pVtab; 5065 sqlite3_module *pModule; 5066 5067 pCur = 0; 5068 pVtabCursor = 0; 5069 pVtab = pOp->p4.pVtab; 5070 pModule = (sqlite3_module *)pVtab->pModule; 5071 assert(pVtab && pModule); 5072 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 5073 rc = pModule->xOpen(pVtab, &pVtabCursor); 5074 sqlite3DbFree(db, p->zErrMsg); 5075 p->zErrMsg = pVtab->zErrMsg; 5076 pVtab->zErrMsg = 0; 5077 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 5078 if( SQLITE_OK==rc ){ 5079 /* Initialize sqlite3_vtab_cursor base class */ 5080 pVtabCursor->pVtab = pVtab; 5081 5082 /* Initialise vdbe cursor object */ 5083 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 5084 if( pCur ){ 5085 pCur->pVtabCursor = pVtabCursor; 5086 pCur->pModule = pVtabCursor->pVtab->pModule; 5087 }else{ 5088 db->mallocFailed = 1; 5089 pModule->xClose(pVtabCursor); 5090 } 5091 } 5092 break; 5093 } 5094 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5095 5096 #ifndef SQLITE_OMIT_VIRTUALTABLE 5097 /* Opcode: VFilter P1 P2 P3 P4 * 5098 ** 5099 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 5100 ** the filtered result set is empty. 5101 ** 5102 ** P4 is either NULL or a string that was generated by the xBestIndex 5103 ** method of the module. The interpretation of the P4 string is left 5104 ** to the module implementation. 5105 ** 5106 ** This opcode invokes the xFilter method on the virtual table specified 5107 ** by P1. The integer query plan parameter to xFilter is stored in register 5108 ** P3. Register P3+1 stores the argc parameter to be passed to the 5109 ** xFilter method. Registers P3+2..P3+1+argc are the argc 5110 ** additional parameters which are passed to 5111 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 5112 ** 5113 ** A jump is made to P2 if the result set after filtering would be empty. 5114 */ 5115 case OP_VFilter: { /* jump */ 5116 int nArg; 5117 int iQuery; 5118 const sqlite3_module *pModule; 5119 Mem *pQuery; 5120 Mem *pArgc; 5121 sqlite3_vtab_cursor *pVtabCursor; 5122 sqlite3_vtab *pVtab; 5123 VdbeCursor *pCur; 5124 int res; 5125 int i; 5126 Mem **apArg; 5127 5128 pQuery = &p->aMem[pOp->p3]; 5129 pArgc = &pQuery[1]; 5130 pCur = p->apCsr[pOp->p1]; 5131 REGISTER_TRACE(pOp->p3, pQuery); 5132 assert( pCur->pVtabCursor ); 5133 pVtabCursor = pCur->pVtabCursor; 5134 pVtab = pVtabCursor->pVtab; 5135 pModule = pVtab->pModule; 5136 5137 /* Grab the index number and argc parameters */ 5138 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 5139 nArg = (int)pArgc->u.i; 5140 iQuery = (int)pQuery->u.i; 5141 5142 /* Invoke the xFilter method */ 5143 { 5144 res = 0; 5145 apArg = p->apArg; 5146 for(i = 0; i<nArg; i++){ 5147 apArg[i] = &pArgc[i+1]; 5148 storeTypeInfo(apArg[i], 0); 5149 } 5150 5151 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 5152 sqlite3VtabLock(pVtab); 5153 p->inVtabMethod = 1; 5154 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 5155 p->inVtabMethod = 0; 5156 sqlite3DbFree(db, p->zErrMsg); 5157 p->zErrMsg = pVtab->zErrMsg; 5158 pVtab->zErrMsg = 0; 5159 sqlite3VtabUnlock(db, pVtab); 5160 if( rc==SQLITE_OK ){ 5161 res = pModule->xEof(pVtabCursor); 5162 } 5163 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 5164 5165 if( res ){ 5166 pc = pOp->p2 - 1; 5167 } 5168 } 5169 pCur->nullRow = 0; 5170 5171 break; 5172 } 5173 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5174 5175 #ifndef SQLITE_OMIT_VIRTUALTABLE 5176 /* Opcode: VColumn P1 P2 P3 * * 5177 ** 5178 ** Store the value of the P2-th column of 5179 ** the row of the virtual-table that the 5180 ** P1 cursor is pointing to into register P3. 5181 */ 5182 case OP_VColumn: { 5183 sqlite3_vtab *pVtab; 5184 const sqlite3_module *pModule; 5185 Mem *pDest; 5186 sqlite3_context sContext; 5187 5188 VdbeCursor *pCur = p->apCsr[pOp->p1]; 5189 assert( pCur->pVtabCursor ); 5190 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 5191 pDest = &p->aMem[pOp->p3]; 5192 if( pCur->nullRow ){ 5193 sqlite3VdbeMemSetNull(pDest); 5194 break; 5195 } 5196 pVtab = pCur->pVtabCursor->pVtab; 5197 pModule = pVtab->pModule; 5198 assert( pModule->xColumn ); 5199 memset(&sContext, 0, sizeof(sContext)); 5200 5201 /* The output cell may already have a buffer allocated. Move 5202 ** the current contents to sContext.s so in case the user-function 5203 ** can use the already allocated buffer instead of allocating a 5204 ** new one. 5205 */ 5206 sqlite3VdbeMemMove(&sContext.s, pDest); 5207 MemSetTypeFlag(&sContext.s, MEM_Null); 5208 5209 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 5210 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 5211 sqlite3DbFree(db, p->zErrMsg); 5212 p->zErrMsg = pVtab->zErrMsg; 5213 pVtab->zErrMsg = 0; 5214 if( sContext.isError ){ 5215 rc = sContext.isError; 5216 } 5217 5218 /* Copy the result of the function to the P3 register. We 5219 ** do this regardless of whether or not an error occurred to ensure any 5220 ** dynamic allocation in sContext.s (a Mem struct) is released. 5221 */ 5222 sqlite3VdbeChangeEncoding(&sContext.s, encoding); 5223 REGISTER_TRACE(pOp->p3, pDest); 5224 sqlite3VdbeMemMove(pDest, &sContext.s); 5225 UPDATE_MAX_BLOBSIZE(pDest); 5226 5227 if( sqlite3SafetyOn(db) ){ 5228 goto abort_due_to_misuse; 5229 } 5230 if( sqlite3VdbeMemTooBig(pDest) ){ 5231 goto too_big; 5232 } 5233 break; 5234 } 5235 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5236 5237 #ifndef SQLITE_OMIT_VIRTUALTABLE 5238 /* Opcode: VNext P1 P2 * * * 5239 ** 5240 ** Advance virtual table P1 to the next row in its result set and 5241 ** jump to instruction P2. Or, if the virtual table has reached 5242 ** the end of its result set, then fall through to the next instruction. 5243 */ 5244 case OP_VNext: { /* jump */ 5245 sqlite3_vtab *pVtab; 5246 const sqlite3_module *pModule; 5247 int res; 5248 VdbeCursor *pCur; 5249 5250 res = 0; 5251 pCur = p->apCsr[pOp->p1]; 5252 assert( pCur->pVtabCursor ); 5253 if( pCur->nullRow ){ 5254 break; 5255 } 5256 pVtab = pCur->pVtabCursor->pVtab; 5257 pModule = pVtab->pModule; 5258 assert( pModule->xNext ); 5259 5260 /* Invoke the xNext() method of the module. There is no way for the 5261 ** underlying implementation to return an error if one occurs during 5262 ** xNext(). Instead, if an error occurs, true is returned (indicating that 5263 ** data is available) and the error code returned when xColumn or 5264 ** some other method is next invoked on the save virtual table cursor. 5265 */ 5266 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 5267 sqlite3VtabLock(pVtab); 5268 p->inVtabMethod = 1; 5269 rc = pModule->xNext(pCur->pVtabCursor); 5270 p->inVtabMethod = 0; 5271 sqlite3DbFree(db, p->zErrMsg); 5272 p->zErrMsg = pVtab->zErrMsg; 5273 pVtab->zErrMsg = 0; 5274 sqlite3VtabUnlock(db, pVtab); 5275 if( rc==SQLITE_OK ){ 5276 res = pModule->xEof(pCur->pVtabCursor); 5277 } 5278 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 5279 5280 if( !res ){ 5281 /* If there is data, jump to P2 */ 5282 pc = pOp->p2 - 1; 5283 } 5284 break; 5285 } 5286 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5287 5288 #ifndef SQLITE_OMIT_VIRTUALTABLE 5289 /* Opcode: VRename P1 * * P4 * 5290 ** 5291 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5292 ** This opcode invokes the corresponding xRename method. The value 5293 ** in register P1 is passed as the zName argument to the xRename method. 5294 */ 5295 case OP_VRename: { 5296 sqlite3_vtab *pVtab; 5297 Mem *pName; 5298 5299 pVtab = pOp->p4.pVtab; 5300 pName = &p->aMem[pOp->p1]; 5301 assert( pVtab->pModule->xRename ); 5302 REGISTER_TRACE(pOp->p1, pName); 5303 assert( pName->flags & MEM_Str ); 5304 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 5305 sqlite3VtabLock(pVtab); 5306 rc = pVtab->pModule->xRename(pVtab, pName->z); 5307 sqlite3DbFree(db, p->zErrMsg); 5308 p->zErrMsg = pVtab->zErrMsg; 5309 pVtab->zErrMsg = 0; 5310 sqlite3VtabUnlock(db, pVtab); 5311 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 5312 5313 break; 5314 } 5315 #endif 5316 5317 #ifndef SQLITE_OMIT_VIRTUALTABLE 5318 /* Opcode: VUpdate P1 P2 P3 P4 * 5319 ** 5320 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5321 ** This opcode invokes the corresponding xUpdate method. P2 values 5322 ** are contiguous memory cells starting at P3 to pass to the xUpdate 5323 ** invocation. The value in register (P3+P2-1) corresponds to the 5324 ** p2th element of the argv array passed to xUpdate. 5325 ** 5326 ** The xUpdate method will do a DELETE or an INSERT or both. 5327 ** The argv[0] element (which corresponds to memory cell P3) 5328 ** is the rowid of a row to delete. If argv[0] is NULL then no 5329 ** deletion occurs. The argv[1] element is the rowid of the new 5330 ** row. This can be NULL to have the virtual table select the new 5331 ** rowid for itself. The subsequent elements in the array are 5332 ** the values of columns in the new row. 5333 ** 5334 ** If P2==1 then no insert is performed. argv[0] is the rowid of 5335 ** a row to delete. 5336 ** 5337 ** P1 is a boolean flag. If it is set to true and the xUpdate call 5338 ** is successful, then the value returned by sqlite3_last_insert_rowid() 5339 ** is set to the value of the rowid for the row just inserted. 5340 */ 5341 case OP_VUpdate: { 5342 sqlite3_vtab *pVtab; 5343 sqlite3_module *pModule; 5344 int nArg; 5345 int i; 5346 sqlite_int64 rowid; 5347 Mem **apArg; 5348 Mem *pX; 5349 5350 pVtab = pOp->p4.pVtab; 5351 pModule = (sqlite3_module *)pVtab->pModule; 5352 nArg = pOp->p2; 5353 assert( pOp->p4type==P4_VTAB ); 5354 if( ALWAYS(pModule->xUpdate) ){ 5355 apArg = p->apArg; 5356 pX = &p->aMem[pOp->p3]; 5357 for(i=0; i<nArg; i++){ 5358 storeTypeInfo(pX, 0); 5359 apArg[i] = pX; 5360 pX++; 5361 } 5362 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 5363 sqlite3VtabLock(pVtab); 5364 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 5365 sqlite3DbFree(db, p->zErrMsg); 5366 p->zErrMsg = pVtab->zErrMsg; 5367 pVtab->zErrMsg = 0; 5368 sqlite3VtabUnlock(db, pVtab); 5369 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; 5370 if( rc==SQLITE_OK && pOp->p1 ){ 5371 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 5372 db->lastRowid = rowid; 5373 } 5374 p->nChange++; 5375 } 5376 break; 5377 } 5378 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5379 5380 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 5381 /* Opcode: Pagecount P1 P2 * * * 5382 ** 5383 ** Write the current number of pages in database P1 to memory cell P2. 5384 */ 5385 case OP_Pagecount: { /* out2-prerelease */ 5386 int p1; 5387 int nPage; 5388 Pager *pPager; 5389 5390 p1 = pOp->p1; 5391 pPager = sqlite3BtreePager(db->aDb[p1].pBt); 5392 rc = sqlite3PagerPagecount(pPager, &nPage); 5393 /* OP_Pagecount is always called from within a read transaction. The 5394 ** page count has already been successfully read and cached. So the 5395 ** sqlite3PagerPagecount() call above cannot fail. */ 5396 if( ALWAYS(rc==SQLITE_OK) ){ 5397 pOut->flags = MEM_Int; 5398 pOut->u.i = nPage; 5399 } 5400 break; 5401 } 5402 #endif 5403 5404 #ifndef SQLITE_OMIT_TRACE 5405 /* Opcode: Trace * * * P4 * 5406 ** 5407 ** If tracing is enabled (by the sqlite3_trace()) interface, then 5408 ** the UTF-8 string contained in P4 is emitted on the trace callback. 5409 */ 5410 case OP_Trace: { 5411 char *zTrace; 5412 5413 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 5414 if( zTrace ){ 5415 if( db->xTrace ){ 5416 db->xTrace(db->pTraceArg, zTrace); 5417 } 5418 #ifdef SQLITE_DEBUG 5419 if( (db->flags & SQLITE_SqlTrace)!=0 ){ 5420 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 5421 } 5422 #endif /* SQLITE_DEBUG */ 5423 } 5424 break; 5425 } 5426 #endif 5427 5428 5429 /* Opcode: Noop * * * * * 5430 ** 5431 ** Do nothing. This instruction is often useful as a jump 5432 ** destination. 5433 */ 5434 /* 5435 ** The magic Explain opcode are only inserted when explain==2 (which 5436 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 5437 ** This opcode records information from the optimizer. It is the 5438 ** the same as a no-op. This opcodesnever appears in a real VM program. 5439 */ 5440 default: { /* This is really OP_Noop and OP_Explain */ 5441 break; 5442 } 5443 5444 /***************************************************************************** 5445 ** The cases of the switch statement above this line should all be indented 5446 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 5447 ** readability. From this point on down, the normal indentation rules are 5448 ** restored. 5449 *****************************************************************************/ 5450 } 5451 5452 #ifdef VDBE_PROFILE 5453 { 5454 u64 elapsed = sqlite3Hwtime() - start; 5455 pOp->cycles += elapsed; 5456 pOp->cnt++; 5457 #if 0 5458 fprintf(stdout, "%10llu ", elapsed); 5459 sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]); 5460 #endif 5461 } 5462 #endif 5463 5464 /* The following code adds nothing to the actual functionality 5465 ** of the program. It is only here for testing and debugging. 5466 ** On the other hand, it does burn CPU cycles every time through 5467 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 5468 */ 5469 #ifndef NDEBUG 5470 assert( pc>=-1 && pc<p->nOp ); 5471 5472 #ifdef SQLITE_DEBUG 5473 if( p->trace ){ 5474 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); 5475 if( opProperty & OPFLG_OUT2_PRERELEASE ){ 5476 registerTrace(p->trace, pOp->p2, pOut); 5477 } 5478 if( opProperty & OPFLG_OUT3 ){ 5479 registerTrace(p->trace, pOp->p3, pOut); 5480 } 5481 } 5482 #endif /* SQLITE_DEBUG */ 5483 #endif /* NDEBUG */ 5484 } /* The end of the for(;;) loop the loops through opcodes */ 5485 5486 /* If we reach this point, it means that execution is finished with 5487 ** an error of some kind. 5488 */ 5489 vdbe_error_halt: 5490 assert( rc ); 5491 p->rc = rc; 5492 sqlite3VdbeHalt(p); 5493 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 5494 rc = SQLITE_ERROR; 5495 5496 /* This is the only way out of this procedure. We have to 5497 ** release the mutexes on btrees that were acquired at the 5498 ** top. */ 5499 vdbe_return: 5500 sqlite3BtreeMutexArrayLeave(&p->aMutex); 5501 return rc; 5502 5503 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 5504 ** is encountered. 5505 */ 5506 too_big: 5507 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 5508 rc = SQLITE_TOOBIG; 5509 goto vdbe_error_halt; 5510 5511 /* Jump to here if a malloc() fails. 5512 */ 5513 no_mem: 5514 db->mallocFailed = 1; 5515 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 5516 rc = SQLITE_NOMEM; 5517 goto vdbe_error_halt; 5518 5519 /* Jump to here for an SQLITE_MISUSE error. 5520 */ 5521 abort_due_to_misuse: 5522 rc = SQLITE_MISUSE; 5523 /* Fall thru into abort_due_to_error */ 5524 5525 /* Jump to here for any other kind of fatal error. The "rc" variable 5526 ** should hold the error number. 5527 */ 5528 abort_due_to_error: 5529 assert( p->zErrMsg==0 ); 5530 if( db->mallocFailed ) rc = SQLITE_NOMEM; 5531 if( rc!=SQLITE_IOERR_NOMEM ){ 5532 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 5533 } 5534 goto vdbe_error_halt; 5535 5536 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 5537 ** flag. 5538 */ 5539 abort_due_to_interrupt: 5540 assert( db->u1.isInterrupted ); 5541 rc = SQLITE_INTERRUPT; 5542 p->rc = rc; 5543 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 5544 goto vdbe_error_halt; 5545 } 5546