1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 int iDb, /* Database the cursor belongs to, or -1 */ 245 u8 eCurType /* Type of the new cursor */ 246 ){ 247 /* Find the memory cell that will be used to store the blob of memory 248 ** required for this VdbeCursor structure. It is convenient to use a 249 ** vdbe memory cell to manage the memory allocation required for a 250 ** VdbeCursor structure for the following reasons: 251 ** 252 ** * Sometimes cursor numbers are used for a couple of different 253 ** purposes in a vdbe program. The different uses might require 254 ** different sized allocations. Memory cells provide growable 255 ** allocations. 256 ** 257 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 258 ** be freed lazily via the sqlite3_release_memory() API. This 259 ** minimizes the number of malloc calls made by the system. 260 ** 261 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 262 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 263 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 264 */ 265 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 266 267 int nByte; 268 VdbeCursor *pCx = 0; 269 nByte = 270 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 271 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 272 273 assert( iCur>=0 && iCur<p->nCursor ); 274 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 275 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 276 p->apCsr[iCur] = 0; 277 } 278 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 279 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 280 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 281 pCx->eCurType = eCurType; 282 pCx->iDb = iDb; 283 pCx->nField = nField; 284 pCx->aOffset = &pCx->aType[nField]; 285 if( eCurType==CURTYPE_BTREE ){ 286 pCx->uc.pCursor = (BtCursor*) 287 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 288 sqlite3BtreeCursorZero(pCx->uc.pCursor); 289 } 290 } 291 return pCx; 292 } 293 294 /* 295 ** The string in pRec is known to look like an integer and to have a 296 ** floating point value of rValue. Return true and set *piValue to the 297 ** integer value if the string is in range to be an integer. Otherwise, 298 ** return false. 299 */ 300 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 301 i64 iValue = (double)rValue; 302 if( sqlite3RealSameAsInt(rValue,iValue) ){ 303 *piValue = iValue; 304 return 1; 305 } 306 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 307 } 308 309 /* 310 ** Try to convert a value into a numeric representation if we can 311 ** do so without loss of information. In other words, if the string 312 ** looks like a number, convert it into a number. If it does not 313 ** look like a number, leave it alone. 314 ** 315 ** If the bTryForInt flag is true, then extra effort is made to give 316 ** an integer representation. Strings that look like floating point 317 ** values but which have no fractional component (example: '48.00') 318 ** will have a MEM_Int representation when bTryForInt is true. 319 ** 320 ** If bTryForInt is false, then if the input string contains a decimal 321 ** point or exponential notation, the result is only MEM_Real, even 322 ** if there is an exact integer representation of the quantity. 323 */ 324 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 325 double rValue; 326 u8 enc = pRec->enc; 327 int rc; 328 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 329 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 330 if( rc<=0 ) return; 331 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 332 pRec->flags |= MEM_Int; 333 }else{ 334 pRec->u.r = rValue; 335 pRec->flags |= MEM_Real; 336 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 337 } 338 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 339 ** string representation after computing a numeric equivalent, because the 340 ** string representation might not be the canonical representation for the 341 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 342 pRec->flags &= ~MEM_Str; 343 } 344 345 /* 346 ** Processing is determine by the affinity parameter: 347 ** 348 ** SQLITE_AFF_INTEGER: 349 ** SQLITE_AFF_REAL: 350 ** SQLITE_AFF_NUMERIC: 351 ** Try to convert pRec to an integer representation or a 352 ** floating-point representation if an integer representation 353 ** is not possible. Note that the integer representation is 354 ** always preferred, even if the affinity is REAL, because 355 ** an integer representation is more space efficient on disk. 356 ** 357 ** SQLITE_AFF_TEXT: 358 ** Convert pRec to a text representation. 359 ** 360 ** SQLITE_AFF_BLOB: 361 ** SQLITE_AFF_NONE: 362 ** No-op. pRec is unchanged. 363 */ 364 static void applyAffinity( 365 Mem *pRec, /* The value to apply affinity to */ 366 char affinity, /* The affinity to be applied */ 367 u8 enc /* Use this text encoding */ 368 ){ 369 if( affinity>=SQLITE_AFF_NUMERIC ){ 370 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 371 || affinity==SQLITE_AFF_NUMERIC ); 372 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 373 if( (pRec->flags & MEM_Real)==0 ){ 374 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 375 }else{ 376 sqlite3VdbeIntegerAffinity(pRec); 377 } 378 } 379 }else if( affinity==SQLITE_AFF_TEXT ){ 380 /* Only attempt the conversion to TEXT if there is an integer or real 381 ** representation (blob and NULL do not get converted) but no string 382 ** representation. It would be harmless to repeat the conversion if 383 ** there is already a string rep, but it is pointless to waste those 384 ** CPU cycles. */ 385 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 386 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 387 testcase( pRec->flags & MEM_Int ); 388 testcase( pRec->flags & MEM_Real ); 389 testcase( pRec->flags & MEM_IntReal ); 390 sqlite3VdbeMemStringify(pRec, enc, 1); 391 } 392 } 393 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 394 } 395 } 396 397 /* 398 ** Try to convert the type of a function argument or a result column 399 ** into a numeric representation. Use either INTEGER or REAL whichever 400 ** is appropriate. But only do the conversion if it is possible without 401 ** loss of information and return the revised type of the argument. 402 */ 403 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 404 int eType = sqlite3_value_type(pVal); 405 if( eType==SQLITE_TEXT ){ 406 Mem *pMem = (Mem*)pVal; 407 applyNumericAffinity(pMem, 0); 408 eType = sqlite3_value_type(pVal); 409 } 410 return eType; 411 } 412 413 /* 414 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 415 ** not the internal Mem* type. 416 */ 417 void sqlite3ValueApplyAffinity( 418 sqlite3_value *pVal, 419 u8 affinity, 420 u8 enc 421 ){ 422 applyAffinity((Mem *)pVal, affinity, enc); 423 } 424 425 /* 426 ** pMem currently only holds a string type (or maybe a BLOB that we can 427 ** interpret as a string if we want to). Compute its corresponding 428 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 429 ** accordingly. 430 */ 431 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 432 int rc; 433 sqlite3_int64 ix; 434 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 435 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 436 if( ExpandBlob(pMem) ){ 437 pMem->u.i = 0; 438 return MEM_Int; 439 } 440 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 441 if( rc<=0 ){ 442 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 443 pMem->u.i = ix; 444 return MEM_Int; 445 }else{ 446 return MEM_Real; 447 } 448 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 449 pMem->u.i = ix; 450 return MEM_Int; 451 } 452 return MEM_Real; 453 } 454 455 /* 456 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 457 ** none. 458 ** 459 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 460 ** But it does set pMem->u.r and pMem->u.i appropriately. 461 */ 462 static u16 numericType(Mem *pMem){ 463 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 464 testcase( pMem->flags & MEM_Int ); 465 testcase( pMem->flags & MEM_Real ); 466 testcase( pMem->flags & MEM_IntReal ); 467 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 468 } 469 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 470 testcase( pMem->flags & MEM_Str ); 471 testcase( pMem->flags & MEM_Blob ); 472 return computeNumericType(pMem); 473 } 474 return 0; 475 } 476 477 #ifdef SQLITE_DEBUG 478 /* 479 ** Write a nice string representation of the contents of cell pMem 480 ** into buffer zBuf, length nBuf. 481 */ 482 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 483 int f = pMem->flags; 484 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 485 if( f&MEM_Blob ){ 486 int i; 487 char c; 488 if( f & MEM_Dyn ){ 489 c = 'z'; 490 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 491 }else if( f & MEM_Static ){ 492 c = 't'; 493 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 494 }else if( f & MEM_Ephem ){ 495 c = 'e'; 496 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 497 }else{ 498 c = 's'; 499 } 500 sqlite3_str_appendf(pStr, "%cx[", c); 501 for(i=0; i<25 && i<pMem->n; i++){ 502 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 503 } 504 sqlite3_str_appendf(pStr, "|"); 505 for(i=0; i<25 && i<pMem->n; i++){ 506 char z = pMem->z[i]; 507 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 508 } 509 sqlite3_str_appendf(pStr,"]"); 510 if( f & MEM_Zero ){ 511 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 512 } 513 }else if( f & MEM_Str ){ 514 int j; 515 u8 c; 516 if( f & MEM_Dyn ){ 517 c = 'z'; 518 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 519 }else if( f & MEM_Static ){ 520 c = 't'; 521 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 522 }else if( f & MEM_Ephem ){ 523 c = 'e'; 524 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 525 }else{ 526 c = 's'; 527 } 528 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 529 for(j=0; j<25 && j<pMem->n; j++){ 530 c = pMem->z[j]; 531 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 532 } 533 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 534 } 535 } 536 #endif 537 538 #ifdef SQLITE_DEBUG 539 /* 540 ** Print the value of a register for tracing purposes: 541 */ 542 static void memTracePrint(Mem *p){ 543 if( p->flags & MEM_Undefined ){ 544 printf(" undefined"); 545 }else if( p->flags & MEM_Null ){ 546 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 547 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 548 printf(" si:%lld", p->u.i); 549 }else if( (p->flags & (MEM_IntReal))!=0 ){ 550 printf(" ir:%lld", p->u.i); 551 }else if( p->flags & MEM_Int ){ 552 printf(" i:%lld", p->u.i); 553 #ifndef SQLITE_OMIT_FLOATING_POINT 554 }else if( p->flags & MEM_Real ){ 555 printf(" r:%.17g", p->u.r); 556 #endif 557 }else if( sqlite3VdbeMemIsRowSet(p) ){ 558 printf(" (rowset)"); 559 }else{ 560 StrAccum acc; 561 char zBuf[1000]; 562 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 563 sqlite3VdbeMemPrettyPrint(p, &acc); 564 printf(" %s", sqlite3StrAccumFinish(&acc)); 565 } 566 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 567 } 568 static void registerTrace(int iReg, Mem *p){ 569 printf("R[%d] = ", iReg); 570 memTracePrint(p); 571 if( p->pScopyFrom ){ 572 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 573 } 574 printf("\n"); 575 sqlite3VdbeCheckMemInvariants(p); 576 } 577 #endif 578 579 #ifdef SQLITE_DEBUG 580 /* 581 ** Show the values of all registers in the virtual machine. Used for 582 ** interactive debugging. 583 */ 584 void sqlite3VdbeRegisterDump(Vdbe *v){ 585 int i; 586 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 587 } 588 #endif /* SQLITE_DEBUG */ 589 590 591 #ifdef SQLITE_DEBUG 592 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 593 #else 594 # define REGISTER_TRACE(R,M) 595 #endif 596 597 598 #ifdef VDBE_PROFILE 599 600 /* 601 ** hwtime.h contains inline assembler code for implementing 602 ** high-performance timing routines. 603 */ 604 #include "hwtime.h" 605 606 #endif 607 608 #ifndef NDEBUG 609 /* 610 ** This function is only called from within an assert() expression. It 611 ** checks that the sqlite3.nTransaction variable is correctly set to 612 ** the number of non-transaction savepoints currently in the 613 ** linked list starting at sqlite3.pSavepoint. 614 ** 615 ** Usage: 616 ** 617 ** assert( checkSavepointCount(db) ); 618 */ 619 static int checkSavepointCount(sqlite3 *db){ 620 int n = 0; 621 Savepoint *p; 622 for(p=db->pSavepoint; p; p=p->pNext) n++; 623 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 624 return 1; 625 } 626 #endif 627 628 /* 629 ** Return the register of pOp->p2 after first preparing it to be 630 ** overwritten with an integer value. 631 */ 632 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 633 sqlite3VdbeMemSetNull(pOut); 634 pOut->flags = MEM_Int; 635 return pOut; 636 } 637 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 638 Mem *pOut; 639 assert( pOp->p2>0 ); 640 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 641 pOut = &p->aMem[pOp->p2]; 642 memAboutToChange(p, pOut); 643 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 644 return out2PrereleaseWithClear(pOut); 645 }else{ 646 pOut->flags = MEM_Int; 647 return pOut; 648 } 649 } 650 651 652 /* 653 ** Execute as much of a VDBE program as we can. 654 ** This is the core of sqlite3_step(). 655 */ 656 int sqlite3VdbeExec( 657 Vdbe *p /* The VDBE */ 658 ){ 659 Op *aOp = p->aOp; /* Copy of p->aOp */ 660 Op *pOp = aOp; /* Current operation */ 661 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 662 Op *pOrigOp; /* Value of pOp at the top of the loop */ 663 #endif 664 #ifdef SQLITE_DEBUG 665 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 666 #endif 667 int rc = SQLITE_OK; /* Value to return */ 668 sqlite3 *db = p->db; /* The database */ 669 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 670 u8 encoding = ENC(db); /* The database encoding */ 671 int iCompare = 0; /* Result of last comparison */ 672 u64 nVmStep = 0; /* Number of virtual machine steps */ 673 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 674 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 675 #endif 676 Mem *aMem = p->aMem; /* Copy of p->aMem */ 677 Mem *pIn1 = 0; /* 1st input operand */ 678 Mem *pIn2 = 0; /* 2nd input operand */ 679 Mem *pIn3 = 0; /* 3rd input operand */ 680 Mem *pOut = 0; /* Output operand */ 681 #ifdef VDBE_PROFILE 682 u64 start; /* CPU clock count at start of opcode */ 683 #endif 684 /*** INSERT STACK UNION HERE ***/ 685 686 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 687 sqlite3VdbeEnter(p); 688 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 689 if( db->xProgress ){ 690 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 691 assert( 0 < db->nProgressOps ); 692 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 693 }else{ 694 nProgressLimit = LARGEST_UINT64; 695 } 696 #endif 697 if( p->rc==SQLITE_NOMEM ){ 698 /* This happens if a malloc() inside a call to sqlite3_column_text() or 699 ** sqlite3_column_text16() failed. */ 700 goto no_mem; 701 } 702 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 703 testcase( p->rc!=SQLITE_OK ); 704 p->rc = SQLITE_OK; 705 assert( p->bIsReader || p->readOnly!=0 ); 706 p->iCurrentTime = 0; 707 assert( p->explain==0 ); 708 p->pResultSet = 0; 709 db->busyHandler.nBusy = 0; 710 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 711 sqlite3VdbeIOTraceSql(p); 712 #ifdef SQLITE_DEBUG 713 sqlite3BeginBenignMalloc(); 714 if( p->pc==0 715 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 716 ){ 717 int i; 718 int once = 1; 719 sqlite3VdbePrintSql(p); 720 if( p->db->flags & SQLITE_VdbeListing ){ 721 printf("VDBE Program Listing:\n"); 722 for(i=0; i<p->nOp; i++){ 723 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 724 } 725 } 726 if( p->db->flags & SQLITE_VdbeEQP ){ 727 for(i=0; i<p->nOp; i++){ 728 if( aOp[i].opcode==OP_Explain ){ 729 if( once ) printf("VDBE Query Plan:\n"); 730 printf("%s\n", aOp[i].p4.z); 731 once = 0; 732 } 733 } 734 } 735 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 736 } 737 sqlite3EndBenignMalloc(); 738 #endif 739 for(pOp=&aOp[p->pc]; 1; pOp++){ 740 /* Errors are detected by individual opcodes, with an immediate 741 ** jumps to abort_due_to_error. */ 742 assert( rc==SQLITE_OK ); 743 744 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 745 #ifdef VDBE_PROFILE 746 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 747 #endif 748 nVmStep++; 749 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 750 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 751 #endif 752 753 /* Only allow tracing if SQLITE_DEBUG is defined. 754 */ 755 #ifdef SQLITE_DEBUG 756 if( db->flags & SQLITE_VdbeTrace ){ 757 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 758 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 759 } 760 #endif 761 762 763 /* Check to see if we need to simulate an interrupt. This only happens 764 ** if we have a special test build. 765 */ 766 #ifdef SQLITE_TEST 767 if( sqlite3_interrupt_count>0 ){ 768 sqlite3_interrupt_count--; 769 if( sqlite3_interrupt_count==0 ){ 770 sqlite3_interrupt(db); 771 } 772 } 773 #endif 774 775 /* Sanity checking on other operands */ 776 #ifdef SQLITE_DEBUG 777 { 778 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 779 if( (opProperty & OPFLG_IN1)!=0 ){ 780 assert( pOp->p1>0 ); 781 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 782 assert( memIsValid(&aMem[pOp->p1]) ); 783 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 784 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 785 } 786 if( (opProperty & OPFLG_IN2)!=0 ){ 787 assert( pOp->p2>0 ); 788 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 789 assert( memIsValid(&aMem[pOp->p2]) ); 790 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 791 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 792 } 793 if( (opProperty & OPFLG_IN3)!=0 ){ 794 assert( pOp->p3>0 ); 795 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 796 assert( memIsValid(&aMem[pOp->p3]) ); 797 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 798 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 799 } 800 if( (opProperty & OPFLG_OUT2)!=0 ){ 801 assert( pOp->p2>0 ); 802 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 803 memAboutToChange(p, &aMem[pOp->p2]); 804 } 805 if( (opProperty & OPFLG_OUT3)!=0 ){ 806 assert( pOp->p3>0 ); 807 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 808 memAboutToChange(p, &aMem[pOp->p3]); 809 } 810 } 811 #endif 812 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 813 pOrigOp = pOp; 814 #endif 815 816 switch( pOp->opcode ){ 817 818 /***************************************************************************** 819 ** What follows is a massive switch statement where each case implements a 820 ** separate instruction in the virtual machine. If we follow the usual 821 ** indentation conventions, each case should be indented by 6 spaces. But 822 ** that is a lot of wasted space on the left margin. So the code within 823 ** the switch statement will break with convention and be flush-left. Another 824 ** big comment (similar to this one) will mark the point in the code where 825 ** we transition back to normal indentation. 826 ** 827 ** The formatting of each case is important. The makefile for SQLite 828 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 829 ** file looking for lines that begin with "case OP_". The opcodes.h files 830 ** will be filled with #defines that give unique integer values to each 831 ** opcode and the opcodes.c file is filled with an array of strings where 832 ** each string is the symbolic name for the corresponding opcode. If the 833 ** case statement is followed by a comment of the form "/# same as ... #/" 834 ** that comment is used to determine the particular value of the opcode. 835 ** 836 ** Other keywords in the comment that follows each case are used to 837 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 838 ** Keywords include: in1, in2, in3, out2, out3. See 839 ** the mkopcodeh.awk script for additional information. 840 ** 841 ** Documentation about VDBE opcodes is generated by scanning this file 842 ** for lines of that contain "Opcode:". That line and all subsequent 843 ** comment lines are used in the generation of the opcode.html documentation 844 ** file. 845 ** 846 ** SUMMARY: 847 ** 848 ** Formatting is important to scripts that scan this file. 849 ** Do not deviate from the formatting style currently in use. 850 ** 851 *****************************************************************************/ 852 853 /* Opcode: Goto * P2 * * * 854 ** 855 ** An unconditional jump to address P2. 856 ** The next instruction executed will be 857 ** the one at index P2 from the beginning of 858 ** the program. 859 ** 860 ** The P1 parameter is not actually used by this opcode. However, it 861 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 862 ** that this Goto is the bottom of a loop and that the lines from P2 down 863 ** to the current line should be indented for EXPLAIN output. 864 */ 865 case OP_Goto: { /* jump */ 866 867 #ifdef SQLITE_DEBUG 868 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 869 ** means we should really jump back to the preceeding OP_ReleaseReg 870 ** instruction. */ 871 if( pOp->p5 ){ 872 assert( pOp->p2 < (int)(pOp - aOp) ); 873 assert( pOp->p2 > 1 ); 874 pOp = &aOp[pOp->p2 - 2]; 875 assert( pOp[1].opcode==OP_ReleaseReg ); 876 goto check_for_interrupt; 877 } 878 #endif 879 880 jump_to_p2_and_check_for_interrupt: 881 pOp = &aOp[pOp->p2 - 1]; 882 883 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 884 ** OP_VNext, or OP_SorterNext) all jump here upon 885 ** completion. Check to see if sqlite3_interrupt() has been called 886 ** or if the progress callback needs to be invoked. 887 ** 888 ** This code uses unstructured "goto" statements and does not look clean. 889 ** But that is not due to sloppy coding habits. The code is written this 890 ** way for performance, to avoid having to run the interrupt and progress 891 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 892 ** faster according to "valgrind --tool=cachegrind" */ 893 check_for_interrupt: 894 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 895 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 896 /* Call the progress callback if it is configured and the required number 897 ** of VDBE ops have been executed (either since this invocation of 898 ** sqlite3VdbeExec() or since last time the progress callback was called). 899 ** If the progress callback returns non-zero, exit the virtual machine with 900 ** a return code SQLITE_ABORT. 901 */ 902 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 903 assert( db->nProgressOps!=0 ); 904 nProgressLimit += db->nProgressOps; 905 if( db->xProgress(db->pProgressArg) ){ 906 nProgressLimit = LARGEST_UINT64; 907 rc = SQLITE_INTERRUPT; 908 goto abort_due_to_error; 909 } 910 } 911 #endif 912 913 break; 914 } 915 916 /* Opcode: Gosub P1 P2 * * * 917 ** 918 ** Write the current address onto register P1 919 ** and then jump to address P2. 920 */ 921 case OP_Gosub: { /* jump */ 922 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 923 pIn1 = &aMem[pOp->p1]; 924 assert( VdbeMemDynamic(pIn1)==0 ); 925 memAboutToChange(p, pIn1); 926 pIn1->flags = MEM_Int; 927 pIn1->u.i = (int)(pOp-aOp); 928 REGISTER_TRACE(pOp->p1, pIn1); 929 930 /* Most jump operations do a goto to this spot in order to update 931 ** the pOp pointer. */ 932 jump_to_p2: 933 pOp = &aOp[pOp->p2 - 1]; 934 break; 935 } 936 937 /* Opcode: Return P1 * * * * 938 ** 939 ** Jump to the next instruction after the address in register P1. After 940 ** the jump, register P1 becomes undefined. 941 */ 942 case OP_Return: { /* in1 */ 943 pIn1 = &aMem[pOp->p1]; 944 assert( pIn1->flags==MEM_Int ); 945 pOp = &aOp[pIn1->u.i]; 946 pIn1->flags = MEM_Undefined; 947 break; 948 } 949 950 /* Opcode: InitCoroutine P1 P2 P3 * * 951 ** 952 ** Set up register P1 so that it will Yield to the coroutine 953 ** located at address P3. 954 ** 955 ** If P2!=0 then the coroutine implementation immediately follows 956 ** this opcode. So jump over the coroutine implementation to 957 ** address P2. 958 ** 959 ** See also: EndCoroutine 960 */ 961 case OP_InitCoroutine: { /* jump */ 962 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 963 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 964 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 965 pOut = &aMem[pOp->p1]; 966 assert( !VdbeMemDynamic(pOut) ); 967 pOut->u.i = pOp->p3 - 1; 968 pOut->flags = MEM_Int; 969 if( pOp->p2 ) goto jump_to_p2; 970 break; 971 } 972 973 /* Opcode: EndCoroutine P1 * * * * 974 ** 975 ** The instruction at the address in register P1 is a Yield. 976 ** Jump to the P2 parameter of that Yield. 977 ** After the jump, register P1 becomes undefined. 978 ** 979 ** See also: InitCoroutine 980 */ 981 case OP_EndCoroutine: { /* in1 */ 982 VdbeOp *pCaller; 983 pIn1 = &aMem[pOp->p1]; 984 assert( pIn1->flags==MEM_Int ); 985 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 986 pCaller = &aOp[pIn1->u.i]; 987 assert( pCaller->opcode==OP_Yield ); 988 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 989 pOp = &aOp[pCaller->p2 - 1]; 990 pIn1->flags = MEM_Undefined; 991 break; 992 } 993 994 /* Opcode: Yield P1 P2 * * * 995 ** 996 ** Swap the program counter with the value in register P1. This 997 ** has the effect of yielding to a coroutine. 998 ** 999 ** If the coroutine that is launched by this instruction ends with 1000 ** Yield or Return then continue to the next instruction. But if 1001 ** the coroutine launched by this instruction ends with 1002 ** EndCoroutine, then jump to P2 rather than continuing with the 1003 ** next instruction. 1004 ** 1005 ** See also: InitCoroutine 1006 */ 1007 case OP_Yield: { /* in1, jump */ 1008 int pcDest; 1009 pIn1 = &aMem[pOp->p1]; 1010 assert( VdbeMemDynamic(pIn1)==0 ); 1011 pIn1->flags = MEM_Int; 1012 pcDest = (int)pIn1->u.i; 1013 pIn1->u.i = (int)(pOp - aOp); 1014 REGISTER_TRACE(pOp->p1, pIn1); 1015 pOp = &aOp[pcDest]; 1016 break; 1017 } 1018 1019 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1020 ** Synopsis: if r[P3]=null halt 1021 ** 1022 ** Check the value in register P3. If it is NULL then Halt using 1023 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1024 ** value in register P3 is not NULL, then this routine is a no-op. 1025 ** The P5 parameter should be 1. 1026 */ 1027 case OP_HaltIfNull: { /* in3 */ 1028 pIn3 = &aMem[pOp->p3]; 1029 #ifdef SQLITE_DEBUG 1030 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1031 #endif 1032 if( (pIn3->flags & MEM_Null)==0 ) break; 1033 /* Fall through into OP_Halt */ 1034 /* no break */ deliberate_fall_through 1035 } 1036 1037 /* Opcode: Halt P1 P2 * P4 P5 1038 ** 1039 ** Exit immediately. All open cursors, etc are closed 1040 ** automatically. 1041 ** 1042 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1043 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1044 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1045 ** whether or not to rollback the current transaction. Do not rollback 1046 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1047 ** then back out all changes that have occurred during this execution of the 1048 ** VDBE, but do not rollback the transaction. 1049 ** 1050 ** If P4 is not null then it is an error message string. 1051 ** 1052 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1053 ** 1054 ** 0: (no change) 1055 ** 1: NOT NULL contraint failed: P4 1056 ** 2: UNIQUE constraint failed: P4 1057 ** 3: CHECK constraint failed: P4 1058 ** 4: FOREIGN KEY constraint failed: P4 1059 ** 1060 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1061 ** omitted. 1062 ** 1063 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1064 ** every program. So a jump past the last instruction of the program 1065 ** is the same as executing Halt. 1066 */ 1067 case OP_Halt: { 1068 VdbeFrame *pFrame; 1069 int pcx; 1070 1071 pcx = (int)(pOp - aOp); 1072 #ifdef SQLITE_DEBUG 1073 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1074 #endif 1075 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1076 /* Halt the sub-program. Return control to the parent frame. */ 1077 pFrame = p->pFrame; 1078 p->pFrame = pFrame->pParent; 1079 p->nFrame--; 1080 sqlite3VdbeSetChanges(db, p->nChange); 1081 pcx = sqlite3VdbeFrameRestore(pFrame); 1082 if( pOp->p2==OE_Ignore ){ 1083 /* Instruction pcx is the OP_Program that invoked the sub-program 1084 ** currently being halted. If the p2 instruction of this OP_Halt 1085 ** instruction is set to OE_Ignore, then the sub-program is throwing 1086 ** an IGNORE exception. In this case jump to the address specified 1087 ** as the p2 of the calling OP_Program. */ 1088 pcx = p->aOp[pcx].p2-1; 1089 } 1090 aOp = p->aOp; 1091 aMem = p->aMem; 1092 pOp = &aOp[pcx]; 1093 break; 1094 } 1095 p->rc = pOp->p1; 1096 p->errorAction = (u8)pOp->p2; 1097 p->pc = pcx; 1098 assert( pOp->p5<=4 ); 1099 if( p->rc ){ 1100 if( pOp->p5 ){ 1101 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1102 "FOREIGN KEY" }; 1103 testcase( pOp->p5==1 ); 1104 testcase( pOp->p5==2 ); 1105 testcase( pOp->p5==3 ); 1106 testcase( pOp->p5==4 ); 1107 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1108 if( pOp->p4.z ){ 1109 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1110 } 1111 }else{ 1112 sqlite3VdbeError(p, "%s", pOp->p4.z); 1113 } 1114 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1115 } 1116 rc = sqlite3VdbeHalt(p); 1117 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1118 if( rc==SQLITE_BUSY ){ 1119 p->rc = SQLITE_BUSY; 1120 }else{ 1121 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1122 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1123 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1124 } 1125 goto vdbe_return; 1126 } 1127 1128 /* Opcode: Integer P1 P2 * * * 1129 ** Synopsis: r[P2]=P1 1130 ** 1131 ** The 32-bit integer value P1 is written into register P2. 1132 */ 1133 case OP_Integer: { /* out2 */ 1134 pOut = out2Prerelease(p, pOp); 1135 pOut->u.i = pOp->p1; 1136 break; 1137 } 1138 1139 /* Opcode: Int64 * P2 * P4 * 1140 ** Synopsis: r[P2]=P4 1141 ** 1142 ** P4 is a pointer to a 64-bit integer value. 1143 ** Write that value into register P2. 1144 */ 1145 case OP_Int64: { /* out2 */ 1146 pOut = out2Prerelease(p, pOp); 1147 assert( pOp->p4.pI64!=0 ); 1148 pOut->u.i = *pOp->p4.pI64; 1149 break; 1150 } 1151 1152 #ifndef SQLITE_OMIT_FLOATING_POINT 1153 /* Opcode: Real * P2 * P4 * 1154 ** Synopsis: r[P2]=P4 1155 ** 1156 ** P4 is a pointer to a 64-bit floating point value. 1157 ** Write that value into register P2. 1158 */ 1159 case OP_Real: { /* same as TK_FLOAT, out2 */ 1160 pOut = out2Prerelease(p, pOp); 1161 pOut->flags = MEM_Real; 1162 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1163 pOut->u.r = *pOp->p4.pReal; 1164 break; 1165 } 1166 #endif 1167 1168 /* Opcode: String8 * P2 * P4 * 1169 ** Synopsis: r[P2]='P4' 1170 ** 1171 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1172 ** into a String opcode before it is executed for the first time. During 1173 ** this transformation, the length of string P4 is computed and stored 1174 ** as the P1 parameter. 1175 */ 1176 case OP_String8: { /* same as TK_STRING, out2 */ 1177 assert( pOp->p4.z!=0 ); 1178 pOut = out2Prerelease(p, pOp); 1179 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1180 1181 #ifndef SQLITE_OMIT_UTF16 1182 if( encoding!=SQLITE_UTF8 ){ 1183 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1184 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1185 if( rc ) goto too_big; 1186 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1187 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1188 assert( VdbeMemDynamic(pOut)==0 ); 1189 pOut->szMalloc = 0; 1190 pOut->flags |= MEM_Static; 1191 if( pOp->p4type==P4_DYNAMIC ){ 1192 sqlite3DbFree(db, pOp->p4.z); 1193 } 1194 pOp->p4type = P4_DYNAMIC; 1195 pOp->p4.z = pOut->z; 1196 pOp->p1 = pOut->n; 1197 } 1198 #endif 1199 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1200 goto too_big; 1201 } 1202 pOp->opcode = OP_String; 1203 assert( rc==SQLITE_OK ); 1204 /* Fall through to the next case, OP_String */ 1205 /* no break */ deliberate_fall_through 1206 } 1207 1208 /* Opcode: String P1 P2 P3 P4 P5 1209 ** Synopsis: r[P2]='P4' (len=P1) 1210 ** 1211 ** The string value P4 of length P1 (bytes) is stored in register P2. 1212 ** 1213 ** If P3 is not zero and the content of register P3 is equal to P5, then 1214 ** the datatype of the register P2 is converted to BLOB. The content is 1215 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1216 ** of a string, as if it had been CAST. In other words: 1217 ** 1218 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1219 */ 1220 case OP_String: { /* out2 */ 1221 assert( pOp->p4.z!=0 ); 1222 pOut = out2Prerelease(p, pOp); 1223 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1224 pOut->z = pOp->p4.z; 1225 pOut->n = pOp->p1; 1226 pOut->enc = encoding; 1227 UPDATE_MAX_BLOBSIZE(pOut); 1228 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1229 if( pOp->p3>0 ){ 1230 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1231 pIn3 = &aMem[pOp->p3]; 1232 assert( pIn3->flags & MEM_Int ); 1233 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1234 } 1235 #endif 1236 break; 1237 } 1238 1239 /* Opcode: Null P1 P2 P3 * * 1240 ** Synopsis: r[P2..P3]=NULL 1241 ** 1242 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1243 ** NULL into register P3 and every register in between P2 and P3. If P3 1244 ** is less than P2 (typically P3 is zero) then only register P2 is 1245 ** set to NULL. 1246 ** 1247 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1248 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1249 ** OP_Ne or OP_Eq. 1250 */ 1251 case OP_Null: { /* out2 */ 1252 int cnt; 1253 u16 nullFlag; 1254 pOut = out2Prerelease(p, pOp); 1255 cnt = pOp->p3-pOp->p2; 1256 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1257 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1258 pOut->n = 0; 1259 #ifdef SQLITE_DEBUG 1260 pOut->uTemp = 0; 1261 #endif 1262 while( cnt>0 ){ 1263 pOut++; 1264 memAboutToChange(p, pOut); 1265 sqlite3VdbeMemSetNull(pOut); 1266 pOut->flags = nullFlag; 1267 pOut->n = 0; 1268 cnt--; 1269 } 1270 break; 1271 } 1272 1273 /* Opcode: SoftNull P1 * * * * 1274 ** Synopsis: r[P1]=NULL 1275 ** 1276 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1277 ** instruction, but do not free any string or blob memory associated with 1278 ** the register, so that if the value was a string or blob that was 1279 ** previously copied using OP_SCopy, the copies will continue to be valid. 1280 */ 1281 case OP_SoftNull: { 1282 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1283 pOut = &aMem[pOp->p1]; 1284 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1285 break; 1286 } 1287 1288 /* Opcode: Blob P1 P2 * P4 * 1289 ** Synopsis: r[P2]=P4 (len=P1) 1290 ** 1291 ** P4 points to a blob of data P1 bytes long. Store this 1292 ** blob in register P2. 1293 */ 1294 case OP_Blob: { /* out2 */ 1295 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1296 pOut = out2Prerelease(p, pOp); 1297 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1298 pOut->enc = encoding; 1299 UPDATE_MAX_BLOBSIZE(pOut); 1300 break; 1301 } 1302 1303 /* Opcode: Variable P1 P2 * P4 * 1304 ** Synopsis: r[P2]=parameter(P1,P4) 1305 ** 1306 ** Transfer the values of bound parameter P1 into register P2 1307 ** 1308 ** If the parameter is named, then its name appears in P4. 1309 ** The P4 value is used by sqlite3_bind_parameter_name(). 1310 */ 1311 case OP_Variable: { /* out2 */ 1312 Mem *pVar; /* Value being transferred */ 1313 1314 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1315 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1316 pVar = &p->aVar[pOp->p1 - 1]; 1317 if( sqlite3VdbeMemTooBig(pVar) ){ 1318 goto too_big; 1319 } 1320 pOut = &aMem[pOp->p2]; 1321 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1322 memcpy(pOut, pVar, MEMCELLSIZE); 1323 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1324 pOut->flags |= MEM_Static|MEM_FromBind; 1325 UPDATE_MAX_BLOBSIZE(pOut); 1326 break; 1327 } 1328 1329 /* Opcode: Move P1 P2 P3 * * 1330 ** Synopsis: r[P2@P3]=r[P1@P3] 1331 ** 1332 ** Move the P3 values in register P1..P1+P3-1 over into 1333 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1334 ** left holding a NULL. It is an error for register ranges 1335 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1336 ** for P3 to be less than 1. 1337 */ 1338 case OP_Move: { 1339 int n; /* Number of registers left to copy */ 1340 int p1; /* Register to copy from */ 1341 int p2; /* Register to copy to */ 1342 1343 n = pOp->p3; 1344 p1 = pOp->p1; 1345 p2 = pOp->p2; 1346 assert( n>0 && p1>0 && p2>0 ); 1347 assert( p1+n<=p2 || p2+n<=p1 ); 1348 1349 pIn1 = &aMem[p1]; 1350 pOut = &aMem[p2]; 1351 do{ 1352 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1353 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1354 assert( memIsValid(pIn1) ); 1355 memAboutToChange(p, pOut); 1356 sqlite3VdbeMemMove(pOut, pIn1); 1357 #ifdef SQLITE_DEBUG 1358 pIn1->pScopyFrom = 0; 1359 { int i; 1360 for(i=1; i<p->nMem; i++){ 1361 if( aMem[i].pScopyFrom==pIn1 ){ 1362 aMem[i].pScopyFrom = pOut; 1363 } 1364 } 1365 } 1366 #endif 1367 Deephemeralize(pOut); 1368 REGISTER_TRACE(p2++, pOut); 1369 pIn1++; 1370 pOut++; 1371 }while( --n ); 1372 break; 1373 } 1374 1375 /* Opcode: Copy P1 P2 P3 * * 1376 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1377 ** 1378 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1379 ** 1380 ** This instruction makes a deep copy of the value. A duplicate 1381 ** is made of any string or blob constant. See also OP_SCopy. 1382 */ 1383 case OP_Copy: { 1384 int n; 1385 1386 n = pOp->p3; 1387 pIn1 = &aMem[pOp->p1]; 1388 pOut = &aMem[pOp->p2]; 1389 assert( pOut!=pIn1 ); 1390 while( 1 ){ 1391 memAboutToChange(p, pOut); 1392 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1393 Deephemeralize(pOut); 1394 #ifdef SQLITE_DEBUG 1395 pOut->pScopyFrom = 0; 1396 #endif 1397 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1398 if( (n--)==0 ) break; 1399 pOut++; 1400 pIn1++; 1401 } 1402 break; 1403 } 1404 1405 /* Opcode: SCopy P1 P2 * * * 1406 ** Synopsis: r[P2]=r[P1] 1407 ** 1408 ** Make a shallow copy of register P1 into register P2. 1409 ** 1410 ** This instruction makes a shallow copy of the value. If the value 1411 ** is a string or blob, then the copy is only a pointer to the 1412 ** original and hence if the original changes so will the copy. 1413 ** Worse, if the original is deallocated, the copy becomes invalid. 1414 ** Thus the program must guarantee that the original will not change 1415 ** during the lifetime of the copy. Use OP_Copy to make a complete 1416 ** copy. 1417 */ 1418 case OP_SCopy: { /* out2 */ 1419 pIn1 = &aMem[pOp->p1]; 1420 pOut = &aMem[pOp->p2]; 1421 assert( pOut!=pIn1 ); 1422 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1423 #ifdef SQLITE_DEBUG 1424 pOut->pScopyFrom = pIn1; 1425 pOut->mScopyFlags = pIn1->flags; 1426 #endif 1427 break; 1428 } 1429 1430 /* Opcode: IntCopy P1 P2 * * * 1431 ** Synopsis: r[P2]=r[P1] 1432 ** 1433 ** Transfer the integer value held in register P1 into register P2. 1434 ** 1435 ** This is an optimized version of SCopy that works only for integer 1436 ** values. 1437 */ 1438 case OP_IntCopy: { /* out2 */ 1439 pIn1 = &aMem[pOp->p1]; 1440 assert( (pIn1->flags & MEM_Int)!=0 ); 1441 pOut = &aMem[pOp->p2]; 1442 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1443 break; 1444 } 1445 1446 /* Opcode: ChngCntRow P1 P2 * * * 1447 ** Synopsis: output=r[P1] 1448 ** 1449 ** Output value in register P1 as the chance count for a DML statement, 1450 ** due to the "PRAGMA count_changes=ON" setting. Or, if there was a 1451 ** foreign key error in the statement, trigger the error now. 1452 ** 1453 ** This opcode is a variant of OP_ResultRow that checks the foreign key 1454 ** immediate constraint count and throws an error if the count is 1455 ** non-zero. The P2 opcode must be 1. 1456 */ 1457 case OP_ChngCntRow: { 1458 assert( pOp->p2==1 ); 1459 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1460 goto abort_due_to_error; 1461 } 1462 /* Fall through to the next case, OP_ResultRow */ 1463 /* no break */ deliberate_fall_through 1464 } 1465 1466 /* Opcode: ResultRow P1 P2 * * * 1467 ** Synopsis: output=r[P1@P2] 1468 ** 1469 ** The registers P1 through P1+P2-1 contain a single row of 1470 ** results. This opcode causes the sqlite3_step() call to terminate 1471 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1472 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1473 ** the result row. 1474 */ 1475 case OP_ResultRow: { 1476 Mem *pMem; 1477 int i; 1478 assert( p->nResColumn==pOp->p2 ); 1479 assert( pOp->p1>0 || CORRUPT_DB ); 1480 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1481 1482 /* Invalidate all ephemeral cursor row caches */ 1483 p->cacheCtr = (p->cacheCtr + 2)|1; 1484 1485 /* Make sure the results of the current row are \000 terminated 1486 ** and have an assigned type. The results are de-ephemeralized as 1487 ** a side effect. 1488 */ 1489 pMem = p->pResultSet = &aMem[pOp->p1]; 1490 for(i=0; i<pOp->p2; i++){ 1491 assert( memIsValid(&pMem[i]) ); 1492 Deephemeralize(&pMem[i]); 1493 assert( (pMem[i].flags & MEM_Ephem)==0 1494 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1495 sqlite3VdbeMemNulTerminate(&pMem[i]); 1496 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1497 #ifdef SQLITE_DEBUG 1498 /* The registers in the result will not be used again when the 1499 ** prepared statement restarts. This is because sqlite3_column() 1500 ** APIs might have caused type conversions of made other changes to 1501 ** the register values. Therefore, we can go ahead and break any 1502 ** OP_SCopy dependencies. */ 1503 pMem[i].pScopyFrom = 0; 1504 #endif 1505 } 1506 if( db->mallocFailed ) goto no_mem; 1507 1508 if( db->mTrace & SQLITE_TRACE_ROW ){ 1509 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1510 } 1511 1512 1513 /* Return SQLITE_ROW 1514 */ 1515 p->pc = (int)(pOp - aOp) + 1; 1516 rc = SQLITE_ROW; 1517 goto vdbe_return; 1518 } 1519 1520 /* Opcode: Concat P1 P2 P3 * * 1521 ** Synopsis: r[P3]=r[P2]+r[P1] 1522 ** 1523 ** Add the text in register P1 onto the end of the text in 1524 ** register P2 and store the result in register P3. 1525 ** If either the P1 or P2 text are NULL then store NULL in P3. 1526 ** 1527 ** P3 = P2 || P1 1528 ** 1529 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1530 ** if P3 is the same register as P2, the implementation is able 1531 ** to avoid a memcpy(). 1532 */ 1533 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1534 i64 nByte; /* Total size of the output string or blob */ 1535 u16 flags1; /* Initial flags for P1 */ 1536 u16 flags2; /* Initial flags for P2 */ 1537 1538 pIn1 = &aMem[pOp->p1]; 1539 pIn2 = &aMem[pOp->p2]; 1540 pOut = &aMem[pOp->p3]; 1541 testcase( pOut==pIn2 ); 1542 assert( pIn1!=pOut ); 1543 flags1 = pIn1->flags; 1544 testcase( flags1 & MEM_Null ); 1545 testcase( pIn2->flags & MEM_Null ); 1546 if( (flags1 | pIn2->flags) & MEM_Null ){ 1547 sqlite3VdbeMemSetNull(pOut); 1548 break; 1549 } 1550 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1551 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1552 flags1 = pIn1->flags & ~MEM_Str; 1553 }else if( (flags1 & MEM_Zero)!=0 ){ 1554 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1555 flags1 = pIn1->flags & ~MEM_Str; 1556 } 1557 flags2 = pIn2->flags; 1558 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1559 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1560 flags2 = pIn2->flags & ~MEM_Str; 1561 }else if( (flags2 & MEM_Zero)!=0 ){ 1562 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1563 flags2 = pIn2->flags & ~MEM_Str; 1564 } 1565 nByte = pIn1->n + pIn2->n; 1566 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1567 goto too_big; 1568 } 1569 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1570 goto no_mem; 1571 } 1572 MemSetTypeFlag(pOut, MEM_Str); 1573 if( pOut!=pIn2 ){ 1574 memcpy(pOut->z, pIn2->z, pIn2->n); 1575 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1576 pIn2->flags = flags2; 1577 } 1578 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1579 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1580 pIn1->flags = flags1; 1581 pOut->z[nByte]=0; 1582 pOut->z[nByte+1] = 0; 1583 pOut->z[nByte+2] = 0; 1584 pOut->flags |= MEM_Term; 1585 pOut->n = (int)nByte; 1586 pOut->enc = encoding; 1587 UPDATE_MAX_BLOBSIZE(pOut); 1588 break; 1589 } 1590 1591 /* Opcode: Add P1 P2 P3 * * 1592 ** Synopsis: r[P3]=r[P1]+r[P2] 1593 ** 1594 ** Add the value in register P1 to the value in register P2 1595 ** and store the result in register P3. 1596 ** If either input is NULL, the result is NULL. 1597 */ 1598 /* Opcode: Multiply P1 P2 P3 * * 1599 ** Synopsis: r[P3]=r[P1]*r[P2] 1600 ** 1601 ** 1602 ** Multiply the value in register P1 by the value in register P2 1603 ** and store the result in register P3. 1604 ** If either input is NULL, the result is NULL. 1605 */ 1606 /* Opcode: Subtract P1 P2 P3 * * 1607 ** Synopsis: r[P3]=r[P2]-r[P1] 1608 ** 1609 ** Subtract the value in register P1 from the value in register P2 1610 ** and store the result in register P3. 1611 ** If either input is NULL, the result is NULL. 1612 */ 1613 /* Opcode: Divide P1 P2 P3 * * 1614 ** Synopsis: r[P3]=r[P2]/r[P1] 1615 ** 1616 ** Divide the value in register P1 by the value in register P2 1617 ** and store the result in register P3 (P3=P2/P1). If the value in 1618 ** register P1 is zero, then the result is NULL. If either input is 1619 ** NULL, the result is NULL. 1620 */ 1621 /* Opcode: Remainder P1 P2 P3 * * 1622 ** Synopsis: r[P3]=r[P2]%r[P1] 1623 ** 1624 ** Compute the remainder after integer register P2 is divided by 1625 ** register P1 and store the result in register P3. 1626 ** If the value in register P1 is zero the result is NULL. 1627 ** If either operand is NULL, the result is NULL. 1628 */ 1629 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1630 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1631 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1632 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1633 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1634 u16 flags; /* Combined MEM_* flags from both inputs */ 1635 u16 type1; /* Numeric type of left operand */ 1636 u16 type2; /* Numeric type of right operand */ 1637 i64 iA; /* Integer value of left operand */ 1638 i64 iB; /* Integer value of right operand */ 1639 double rA; /* Real value of left operand */ 1640 double rB; /* Real value of right operand */ 1641 1642 pIn1 = &aMem[pOp->p1]; 1643 type1 = numericType(pIn1); 1644 pIn2 = &aMem[pOp->p2]; 1645 type2 = numericType(pIn2); 1646 pOut = &aMem[pOp->p3]; 1647 flags = pIn1->flags | pIn2->flags; 1648 if( (type1 & type2 & MEM_Int)!=0 ){ 1649 iA = pIn1->u.i; 1650 iB = pIn2->u.i; 1651 switch( pOp->opcode ){ 1652 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1653 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1654 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1655 case OP_Divide: { 1656 if( iA==0 ) goto arithmetic_result_is_null; 1657 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1658 iB /= iA; 1659 break; 1660 } 1661 default: { 1662 if( iA==0 ) goto arithmetic_result_is_null; 1663 if( iA==-1 ) iA = 1; 1664 iB %= iA; 1665 break; 1666 } 1667 } 1668 pOut->u.i = iB; 1669 MemSetTypeFlag(pOut, MEM_Int); 1670 }else if( (flags & MEM_Null)!=0 ){ 1671 goto arithmetic_result_is_null; 1672 }else{ 1673 fp_math: 1674 rA = sqlite3VdbeRealValue(pIn1); 1675 rB = sqlite3VdbeRealValue(pIn2); 1676 switch( pOp->opcode ){ 1677 case OP_Add: rB += rA; break; 1678 case OP_Subtract: rB -= rA; break; 1679 case OP_Multiply: rB *= rA; break; 1680 case OP_Divide: { 1681 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1682 if( rA==(double)0 ) goto arithmetic_result_is_null; 1683 rB /= rA; 1684 break; 1685 } 1686 default: { 1687 iA = sqlite3VdbeIntValue(pIn1); 1688 iB = sqlite3VdbeIntValue(pIn2); 1689 if( iA==0 ) goto arithmetic_result_is_null; 1690 if( iA==-1 ) iA = 1; 1691 rB = (double)(iB % iA); 1692 break; 1693 } 1694 } 1695 #ifdef SQLITE_OMIT_FLOATING_POINT 1696 pOut->u.i = rB; 1697 MemSetTypeFlag(pOut, MEM_Int); 1698 #else 1699 if( sqlite3IsNaN(rB) ){ 1700 goto arithmetic_result_is_null; 1701 } 1702 pOut->u.r = rB; 1703 MemSetTypeFlag(pOut, MEM_Real); 1704 #endif 1705 } 1706 break; 1707 1708 arithmetic_result_is_null: 1709 sqlite3VdbeMemSetNull(pOut); 1710 break; 1711 } 1712 1713 /* Opcode: CollSeq P1 * * P4 1714 ** 1715 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1716 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1717 ** be returned. This is used by the built-in min(), max() and nullif() 1718 ** functions. 1719 ** 1720 ** If P1 is not zero, then it is a register that a subsequent min() or 1721 ** max() aggregate will set to 1 if the current row is not the minimum or 1722 ** maximum. The P1 register is initialized to 0 by this instruction. 1723 ** 1724 ** The interface used by the implementation of the aforementioned functions 1725 ** to retrieve the collation sequence set by this opcode is not available 1726 ** publicly. Only built-in functions have access to this feature. 1727 */ 1728 case OP_CollSeq: { 1729 assert( pOp->p4type==P4_COLLSEQ ); 1730 if( pOp->p1 ){ 1731 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1732 } 1733 break; 1734 } 1735 1736 /* Opcode: BitAnd P1 P2 P3 * * 1737 ** Synopsis: r[P3]=r[P1]&r[P2] 1738 ** 1739 ** Take the bit-wise AND of the values in register P1 and P2 and 1740 ** store the result in register P3. 1741 ** If either input is NULL, the result is NULL. 1742 */ 1743 /* Opcode: BitOr P1 P2 P3 * * 1744 ** Synopsis: r[P3]=r[P1]|r[P2] 1745 ** 1746 ** Take the bit-wise OR of the values in register P1 and P2 and 1747 ** store the result in register P3. 1748 ** If either input is NULL, the result is NULL. 1749 */ 1750 /* Opcode: ShiftLeft P1 P2 P3 * * 1751 ** Synopsis: r[P3]=r[P2]<<r[P1] 1752 ** 1753 ** Shift the integer value in register P2 to the left by the 1754 ** number of bits specified by the integer in register P1. 1755 ** Store the result in register P3. 1756 ** If either input is NULL, the result is NULL. 1757 */ 1758 /* Opcode: ShiftRight P1 P2 P3 * * 1759 ** Synopsis: r[P3]=r[P2]>>r[P1] 1760 ** 1761 ** Shift the integer value in register P2 to the right by the 1762 ** number of bits specified by the integer in register P1. 1763 ** Store the result in register P3. 1764 ** If either input is NULL, the result is NULL. 1765 */ 1766 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1767 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1768 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1769 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1770 i64 iA; 1771 u64 uA; 1772 i64 iB; 1773 u8 op; 1774 1775 pIn1 = &aMem[pOp->p1]; 1776 pIn2 = &aMem[pOp->p2]; 1777 pOut = &aMem[pOp->p3]; 1778 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1779 sqlite3VdbeMemSetNull(pOut); 1780 break; 1781 } 1782 iA = sqlite3VdbeIntValue(pIn2); 1783 iB = sqlite3VdbeIntValue(pIn1); 1784 op = pOp->opcode; 1785 if( op==OP_BitAnd ){ 1786 iA &= iB; 1787 }else if( op==OP_BitOr ){ 1788 iA |= iB; 1789 }else if( iB!=0 ){ 1790 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1791 1792 /* If shifting by a negative amount, shift in the other direction */ 1793 if( iB<0 ){ 1794 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1795 op = 2*OP_ShiftLeft + 1 - op; 1796 iB = iB>(-64) ? -iB : 64; 1797 } 1798 1799 if( iB>=64 ){ 1800 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1801 }else{ 1802 memcpy(&uA, &iA, sizeof(uA)); 1803 if( op==OP_ShiftLeft ){ 1804 uA <<= iB; 1805 }else{ 1806 uA >>= iB; 1807 /* Sign-extend on a right shift of a negative number */ 1808 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1809 } 1810 memcpy(&iA, &uA, sizeof(iA)); 1811 } 1812 } 1813 pOut->u.i = iA; 1814 MemSetTypeFlag(pOut, MEM_Int); 1815 break; 1816 } 1817 1818 /* Opcode: AddImm P1 P2 * * * 1819 ** Synopsis: r[P1]=r[P1]+P2 1820 ** 1821 ** Add the constant P2 to the value in register P1. 1822 ** The result is always an integer. 1823 ** 1824 ** To force any register to be an integer, just add 0. 1825 */ 1826 case OP_AddImm: { /* in1 */ 1827 pIn1 = &aMem[pOp->p1]; 1828 memAboutToChange(p, pIn1); 1829 sqlite3VdbeMemIntegerify(pIn1); 1830 pIn1->u.i += pOp->p2; 1831 break; 1832 } 1833 1834 /* Opcode: MustBeInt P1 P2 * * * 1835 ** 1836 ** Force the value in register P1 to be an integer. If the value 1837 ** in P1 is not an integer and cannot be converted into an integer 1838 ** without data loss, then jump immediately to P2, or if P2==0 1839 ** raise an SQLITE_MISMATCH exception. 1840 */ 1841 case OP_MustBeInt: { /* jump, in1 */ 1842 pIn1 = &aMem[pOp->p1]; 1843 if( (pIn1->flags & MEM_Int)==0 ){ 1844 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1845 if( (pIn1->flags & MEM_Int)==0 ){ 1846 VdbeBranchTaken(1, 2); 1847 if( pOp->p2==0 ){ 1848 rc = SQLITE_MISMATCH; 1849 goto abort_due_to_error; 1850 }else{ 1851 goto jump_to_p2; 1852 } 1853 } 1854 } 1855 VdbeBranchTaken(0, 2); 1856 MemSetTypeFlag(pIn1, MEM_Int); 1857 break; 1858 } 1859 1860 #ifndef SQLITE_OMIT_FLOATING_POINT 1861 /* Opcode: RealAffinity P1 * * * * 1862 ** 1863 ** If register P1 holds an integer convert it to a real value. 1864 ** 1865 ** This opcode is used when extracting information from a column that 1866 ** has REAL affinity. Such column values may still be stored as 1867 ** integers, for space efficiency, but after extraction we want them 1868 ** to have only a real value. 1869 */ 1870 case OP_RealAffinity: { /* in1 */ 1871 pIn1 = &aMem[pOp->p1]; 1872 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1873 testcase( pIn1->flags & MEM_Int ); 1874 testcase( pIn1->flags & MEM_IntReal ); 1875 sqlite3VdbeMemRealify(pIn1); 1876 REGISTER_TRACE(pOp->p1, pIn1); 1877 } 1878 break; 1879 } 1880 #endif 1881 1882 #ifndef SQLITE_OMIT_CAST 1883 /* Opcode: Cast P1 P2 * * * 1884 ** Synopsis: affinity(r[P1]) 1885 ** 1886 ** Force the value in register P1 to be the type defined by P2. 1887 ** 1888 ** <ul> 1889 ** <li> P2=='A' → BLOB 1890 ** <li> P2=='B' → TEXT 1891 ** <li> P2=='C' → NUMERIC 1892 ** <li> P2=='D' → INTEGER 1893 ** <li> P2=='E' → REAL 1894 ** </ul> 1895 ** 1896 ** A NULL value is not changed by this routine. It remains NULL. 1897 */ 1898 case OP_Cast: { /* in1 */ 1899 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1900 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1901 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1902 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1903 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1904 testcase( pOp->p2==SQLITE_AFF_REAL ); 1905 pIn1 = &aMem[pOp->p1]; 1906 memAboutToChange(p, pIn1); 1907 rc = ExpandBlob(pIn1); 1908 if( rc ) goto abort_due_to_error; 1909 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1910 if( rc ) goto abort_due_to_error; 1911 UPDATE_MAX_BLOBSIZE(pIn1); 1912 REGISTER_TRACE(pOp->p1, pIn1); 1913 break; 1914 } 1915 #endif /* SQLITE_OMIT_CAST */ 1916 1917 /* Opcode: Eq P1 P2 P3 P4 P5 1918 ** Synopsis: IF r[P3]==r[P1] 1919 ** 1920 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1921 ** jump to address P2. 1922 ** 1923 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1924 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1925 ** to coerce both inputs according to this affinity before the 1926 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1927 ** affinity is used. Note that the affinity conversions are stored 1928 ** back into the input registers P1 and P3. So this opcode can cause 1929 ** persistent changes to registers P1 and P3. 1930 ** 1931 ** Once any conversions have taken place, and neither value is NULL, 1932 ** the values are compared. If both values are blobs then memcmp() is 1933 ** used to determine the results of the comparison. If both values 1934 ** are text, then the appropriate collating function specified in 1935 ** P4 is used to do the comparison. If P4 is not specified then 1936 ** memcmp() is used to compare text string. If both values are 1937 ** numeric, then a numeric comparison is used. If the two values 1938 ** are of different types, then numbers are considered less than 1939 ** strings and strings are considered less than blobs. 1940 ** 1941 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1942 ** true or false and is never NULL. If both operands are NULL then the result 1943 ** of comparison is true. If either operand is NULL then the result is false. 1944 ** If neither operand is NULL the result is the same as it would be if 1945 ** the SQLITE_NULLEQ flag were omitted from P5. 1946 ** 1947 ** This opcode saves the result of comparison for use by the new 1948 ** OP_Jump opcode. 1949 */ 1950 /* Opcode: Ne P1 P2 P3 P4 P5 1951 ** Synopsis: IF r[P3]!=r[P1] 1952 ** 1953 ** This works just like the Eq opcode except that the jump is taken if 1954 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1955 ** additional information. 1956 */ 1957 /* Opcode: Lt P1 P2 P3 P4 P5 1958 ** Synopsis: IF r[P3]<r[P1] 1959 ** 1960 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1961 ** jump to address P2. 1962 ** 1963 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1964 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1965 ** bit is clear then fall through if either operand is NULL. 1966 ** 1967 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1968 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1969 ** to coerce both inputs according to this affinity before the 1970 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1971 ** affinity is used. Note that the affinity conversions are stored 1972 ** back into the input registers P1 and P3. So this opcode can cause 1973 ** persistent changes to registers P1 and P3. 1974 ** 1975 ** Once any conversions have taken place, and neither value is NULL, 1976 ** the values are compared. If both values are blobs then memcmp() is 1977 ** used to determine the results of the comparison. If both values 1978 ** are text, then the appropriate collating function specified in 1979 ** P4 is used to do the comparison. If P4 is not specified then 1980 ** memcmp() is used to compare text string. If both values are 1981 ** numeric, then a numeric comparison is used. If the two values 1982 ** are of different types, then numbers are considered less than 1983 ** strings and strings are considered less than blobs. 1984 ** 1985 ** This opcode saves the result of comparison for use by the new 1986 ** OP_Jump opcode. 1987 */ 1988 /* Opcode: Le P1 P2 P3 P4 P5 1989 ** Synopsis: IF r[P3]<=r[P1] 1990 ** 1991 ** This works just like the Lt opcode except that the jump is taken if 1992 ** the content of register P3 is less than or equal to the content of 1993 ** register P1. See the Lt opcode for additional information. 1994 */ 1995 /* Opcode: Gt P1 P2 P3 P4 P5 1996 ** Synopsis: IF r[P3]>r[P1] 1997 ** 1998 ** This works just like the Lt opcode except that the jump is taken if 1999 ** the content of register P3 is greater than the content of 2000 ** register P1. See the Lt opcode for additional information. 2001 */ 2002 /* Opcode: Ge P1 P2 P3 P4 P5 2003 ** Synopsis: IF r[P3]>=r[P1] 2004 ** 2005 ** This works just like the Lt opcode except that the jump is taken if 2006 ** the content of register P3 is greater than or equal to the content of 2007 ** register P1. See the Lt opcode for additional information. 2008 */ 2009 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2010 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2011 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2012 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2013 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2014 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2015 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2016 char affinity; /* Affinity to use for comparison */ 2017 u16 flags1; /* Copy of initial value of pIn1->flags */ 2018 u16 flags3; /* Copy of initial value of pIn3->flags */ 2019 2020 pIn1 = &aMem[pOp->p1]; 2021 pIn3 = &aMem[pOp->p3]; 2022 flags1 = pIn1->flags; 2023 flags3 = pIn3->flags; 2024 if( (flags1 | flags3)&MEM_Null ){ 2025 /* One or both operands are NULL */ 2026 if( pOp->p5 & SQLITE_NULLEQ ){ 2027 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2028 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2029 ** or not both operands are null. 2030 */ 2031 assert( (flags1 & MEM_Cleared)==0 ); 2032 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2033 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2034 if( (flags1&flags3&MEM_Null)!=0 2035 && (flags3&MEM_Cleared)==0 2036 ){ 2037 res = 0; /* Operands are equal */ 2038 }else{ 2039 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2040 } 2041 }else{ 2042 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2043 ** then the result is always NULL. 2044 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2045 */ 2046 iCompare = 1; /* Operands are not equal */ 2047 VdbeBranchTaken(2,3); 2048 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2049 goto jump_to_p2; 2050 } 2051 break; 2052 } 2053 }else{ 2054 /* Neither operand is NULL. Do a comparison. */ 2055 affinity = pOp->p5 & SQLITE_AFF_MASK; 2056 if( affinity>=SQLITE_AFF_NUMERIC ){ 2057 if( (flags1 | flags3)&MEM_Str ){ 2058 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2059 applyNumericAffinity(pIn1,0); 2060 testcase( flags3==pIn3->flags ); 2061 flags3 = pIn3->flags; 2062 } 2063 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2064 applyNumericAffinity(pIn3,0); 2065 } 2066 } 2067 /* Handle the common case of integer comparison here, as an 2068 ** optimization, to avoid a call to sqlite3MemCompare() */ 2069 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 2070 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 2071 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 2072 res = 0; 2073 goto compare_op; 2074 } 2075 }else if( affinity==SQLITE_AFF_TEXT ){ 2076 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2077 testcase( pIn1->flags & MEM_Int ); 2078 testcase( pIn1->flags & MEM_Real ); 2079 testcase( pIn1->flags & MEM_IntReal ); 2080 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2081 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2082 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2083 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 2084 } 2085 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2086 testcase( pIn3->flags & MEM_Int ); 2087 testcase( pIn3->flags & MEM_Real ); 2088 testcase( pIn3->flags & MEM_IntReal ); 2089 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2090 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2091 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2092 } 2093 } 2094 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2095 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2096 } 2097 compare_op: 2098 /* At this point, res is negative, zero, or positive if reg[P1] is 2099 ** less than, equal to, or greater than reg[P3], respectively. Compute 2100 ** the answer to this operator in res2, depending on what the comparison 2101 ** operator actually is. The next block of code depends on the fact 2102 ** that the 6 comparison operators are consecutive integers in this 2103 ** order: NE, EQ, GT, LE, LT, GE */ 2104 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2105 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2106 if( res<0 ){ 2107 res2 = sqlite3aLTb[pOp->opcode]; 2108 }else if( res==0 ){ 2109 res2 = sqlite3aEQb[pOp->opcode]; 2110 }else{ 2111 res2 = sqlite3aGTb[pOp->opcode]; 2112 } 2113 iCompare = res; 2114 2115 /* Undo any changes made by applyAffinity() to the input registers. */ 2116 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2117 pIn3->flags = flags3; 2118 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2119 pIn1->flags = flags1; 2120 2121 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2122 if( res2 ){ 2123 goto jump_to_p2; 2124 } 2125 break; 2126 } 2127 2128 /* Opcode: ElseEq * P2 * * * 2129 ** 2130 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2131 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2132 ** opcodes are allowed to occur between this instruction and the previous 2133 ** OP_Lt or OP_Gt. 2134 ** 2135 ** If result of an OP_Eq comparison on the same two operands as the 2136 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2137 ** If the result of an OP_Eq comparison on the two previous 2138 ** operands would have been false or NULL, then fall through. 2139 */ 2140 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2141 2142 #ifdef SQLITE_DEBUG 2143 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2144 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2145 int iAddr; 2146 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2147 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2148 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2149 break; 2150 } 2151 #endif /* SQLITE_DEBUG */ 2152 VdbeBranchTaken(iCompare==0, 2); 2153 if( iCompare==0 ) goto jump_to_p2; 2154 break; 2155 } 2156 2157 2158 /* Opcode: Permutation * * * P4 * 2159 ** 2160 ** Set the permutation used by the OP_Compare operator in the next 2161 ** instruction. The permutation is stored in the P4 operand. 2162 ** 2163 ** The permutation is only valid until the next OP_Compare that has 2164 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2165 ** occur immediately prior to the OP_Compare. 2166 ** 2167 ** The first integer in the P4 integer array is the length of the array 2168 ** and does not become part of the permutation. 2169 */ 2170 case OP_Permutation: { 2171 assert( pOp->p4type==P4_INTARRAY ); 2172 assert( pOp->p4.ai ); 2173 assert( pOp[1].opcode==OP_Compare ); 2174 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2175 break; 2176 } 2177 2178 /* Opcode: Compare P1 P2 P3 P4 P5 2179 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2180 ** 2181 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2182 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2183 ** the comparison for use by the next OP_Jump instruct. 2184 ** 2185 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2186 ** determined by the most recent OP_Permutation operator. If the 2187 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2188 ** order. 2189 ** 2190 ** P4 is a KeyInfo structure that defines collating sequences and sort 2191 ** orders for the comparison. The permutation applies to registers 2192 ** only. The KeyInfo elements are used sequentially. 2193 ** 2194 ** The comparison is a sort comparison, so NULLs compare equal, 2195 ** NULLs are less than numbers, numbers are less than strings, 2196 ** and strings are less than blobs. 2197 */ 2198 case OP_Compare: { 2199 int n; 2200 int i; 2201 int p1; 2202 int p2; 2203 const KeyInfo *pKeyInfo; 2204 u32 idx; 2205 CollSeq *pColl; /* Collating sequence to use on this term */ 2206 int bRev; /* True for DESCENDING sort order */ 2207 u32 *aPermute; /* The permutation */ 2208 2209 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2210 aPermute = 0; 2211 }else{ 2212 assert( pOp>aOp ); 2213 assert( pOp[-1].opcode==OP_Permutation ); 2214 assert( pOp[-1].p4type==P4_INTARRAY ); 2215 aPermute = pOp[-1].p4.ai + 1; 2216 assert( aPermute!=0 ); 2217 } 2218 n = pOp->p3; 2219 pKeyInfo = pOp->p4.pKeyInfo; 2220 assert( n>0 ); 2221 assert( pKeyInfo!=0 ); 2222 p1 = pOp->p1; 2223 p2 = pOp->p2; 2224 #ifdef SQLITE_DEBUG 2225 if( aPermute ){ 2226 int k, mx = 0; 2227 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2228 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2229 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2230 }else{ 2231 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2232 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2233 } 2234 #endif /* SQLITE_DEBUG */ 2235 for(i=0; i<n; i++){ 2236 idx = aPermute ? aPermute[i] : (u32)i; 2237 assert( memIsValid(&aMem[p1+idx]) ); 2238 assert( memIsValid(&aMem[p2+idx]) ); 2239 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2240 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2241 assert( i<pKeyInfo->nKeyField ); 2242 pColl = pKeyInfo->aColl[i]; 2243 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2244 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2245 if( iCompare ){ 2246 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2247 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2248 ){ 2249 iCompare = -iCompare; 2250 } 2251 if( bRev ) iCompare = -iCompare; 2252 break; 2253 } 2254 } 2255 break; 2256 } 2257 2258 /* Opcode: Jump P1 P2 P3 * * 2259 ** 2260 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2261 ** in the most recent OP_Compare instruction the P1 vector was less than 2262 ** equal to, or greater than the P2 vector, respectively. 2263 */ 2264 case OP_Jump: { /* jump */ 2265 if( iCompare<0 ){ 2266 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2267 }else if( iCompare==0 ){ 2268 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2269 }else{ 2270 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2271 } 2272 break; 2273 } 2274 2275 /* Opcode: And P1 P2 P3 * * 2276 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2277 ** 2278 ** Take the logical AND of the values in registers P1 and P2 and 2279 ** write the result into register P3. 2280 ** 2281 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2282 ** the other input is NULL. A NULL and true or two NULLs give 2283 ** a NULL output. 2284 */ 2285 /* Opcode: Or P1 P2 P3 * * 2286 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2287 ** 2288 ** Take the logical OR of the values in register P1 and P2 and 2289 ** store the answer in register P3. 2290 ** 2291 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2292 ** even if the other input is NULL. A NULL and false or two NULLs 2293 ** give a NULL output. 2294 */ 2295 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2296 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2297 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2298 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2299 2300 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2301 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2302 if( pOp->opcode==OP_And ){ 2303 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2304 v1 = and_logic[v1*3+v2]; 2305 }else{ 2306 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2307 v1 = or_logic[v1*3+v2]; 2308 } 2309 pOut = &aMem[pOp->p3]; 2310 if( v1==2 ){ 2311 MemSetTypeFlag(pOut, MEM_Null); 2312 }else{ 2313 pOut->u.i = v1; 2314 MemSetTypeFlag(pOut, MEM_Int); 2315 } 2316 break; 2317 } 2318 2319 /* Opcode: IsTrue P1 P2 P3 P4 * 2320 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2321 ** 2322 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2323 ** IS NOT FALSE operators. 2324 ** 2325 ** Interpret the value in register P1 as a boolean value. Store that 2326 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2327 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2328 ** is 1. 2329 ** 2330 ** The logic is summarized like this: 2331 ** 2332 ** <ul> 2333 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2334 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2335 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2336 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2337 ** </ul> 2338 */ 2339 case OP_IsTrue: { /* in1, out2 */ 2340 assert( pOp->p4type==P4_INT32 ); 2341 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2342 assert( pOp->p3==0 || pOp->p3==1 ); 2343 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2344 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2345 break; 2346 } 2347 2348 /* Opcode: Not P1 P2 * * * 2349 ** Synopsis: r[P2]= !r[P1] 2350 ** 2351 ** Interpret the value in register P1 as a boolean value. Store the 2352 ** boolean complement in register P2. If the value in register P1 is 2353 ** NULL, then a NULL is stored in P2. 2354 */ 2355 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2356 pIn1 = &aMem[pOp->p1]; 2357 pOut = &aMem[pOp->p2]; 2358 if( (pIn1->flags & MEM_Null)==0 ){ 2359 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2360 }else{ 2361 sqlite3VdbeMemSetNull(pOut); 2362 } 2363 break; 2364 } 2365 2366 /* Opcode: BitNot P1 P2 * * * 2367 ** Synopsis: r[P2]= ~r[P1] 2368 ** 2369 ** Interpret the content of register P1 as an integer. Store the 2370 ** ones-complement of the P1 value into register P2. If P1 holds 2371 ** a NULL then store a NULL in P2. 2372 */ 2373 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2374 pIn1 = &aMem[pOp->p1]; 2375 pOut = &aMem[pOp->p2]; 2376 sqlite3VdbeMemSetNull(pOut); 2377 if( (pIn1->flags & MEM_Null)==0 ){ 2378 pOut->flags = MEM_Int; 2379 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2380 } 2381 break; 2382 } 2383 2384 /* Opcode: Once P1 P2 * * * 2385 ** 2386 ** Fall through to the next instruction the first time this opcode is 2387 ** encountered on each invocation of the byte-code program. Jump to P2 2388 ** on the second and all subsequent encounters during the same invocation. 2389 ** 2390 ** Top-level programs determine first invocation by comparing the P1 2391 ** operand against the P1 operand on the OP_Init opcode at the beginning 2392 ** of the program. If the P1 values differ, then fall through and make 2393 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2394 ** the same then take the jump. 2395 ** 2396 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2397 ** whether or not the jump should be taken. The bitmask is necessary 2398 ** because the self-altering code trick does not work for recursive 2399 ** triggers. 2400 */ 2401 case OP_Once: { /* jump */ 2402 u32 iAddr; /* Address of this instruction */ 2403 assert( p->aOp[0].opcode==OP_Init ); 2404 if( p->pFrame ){ 2405 iAddr = (int)(pOp - p->aOp); 2406 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2407 VdbeBranchTaken(1, 2); 2408 goto jump_to_p2; 2409 } 2410 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2411 }else{ 2412 if( p->aOp[0].p1==pOp->p1 ){ 2413 VdbeBranchTaken(1, 2); 2414 goto jump_to_p2; 2415 } 2416 } 2417 VdbeBranchTaken(0, 2); 2418 pOp->p1 = p->aOp[0].p1; 2419 break; 2420 } 2421 2422 /* Opcode: If P1 P2 P3 * * 2423 ** 2424 ** Jump to P2 if the value in register P1 is true. The value 2425 ** is considered true if it is numeric and non-zero. If the value 2426 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2427 */ 2428 case OP_If: { /* jump, in1 */ 2429 int c; 2430 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2431 VdbeBranchTaken(c!=0, 2); 2432 if( c ) goto jump_to_p2; 2433 break; 2434 } 2435 2436 /* Opcode: IfNot P1 P2 P3 * * 2437 ** 2438 ** Jump to P2 if the value in register P1 is False. The value 2439 ** is considered false if it has a numeric value of zero. If the value 2440 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2441 */ 2442 case OP_IfNot: { /* jump, in1 */ 2443 int c; 2444 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2445 VdbeBranchTaken(c!=0, 2); 2446 if( c ) goto jump_to_p2; 2447 break; 2448 } 2449 2450 /* Opcode: IsNull P1 P2 * * * 2451 ** Synopsis: if r[P1]==NULL goto P2 2452 ** 2453 ** Jump to P2 if the value in register P1 is NULL. 2454 */ 2455 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2456 pIn1 = &aMem[pOp->p1]; 2457 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2458 if( (pIn1->flags & MEM_Null)!=0 ){ 2459 goto jump_to_p2; 2460 } 2461 break; 2462 } 2463 2464 /* Opcode: ZeroOrNull P1 P2 P3 * * 2465 ** Synopsis: r[P2] = 0 OR NULL 2466 ** 2467 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2468 ** register P2. If either registers P1 or P3 are NULL then put 2469 ** a NULL in register P2. 2470 */ 2471 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2472 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2473 || (aMem[pOp->p3].flags & MEM_Null)!=0 2474 ){ 2475 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2476 }else{ 2477 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2478 } 2479 break; 2480 } 2481 2482 /* Opcode: NotNull P1 P2 * * * 2483 ** Synopsis: if r[P1]!=NULL goto P2 2484 ** 2485 ** Jump to P2 if the value in register P1 is not NULL. 2486 */ 2487 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2488 pIn1 = &aMem[pOp->p1]; 2489 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2490 if( (pIn1->flags & MEM_Null)==0 ){ 2491 goto jump_to_p2; 2492 } 2493 break; 2494 } 2495 2496 /* Opcode: IfNullRow P1 P2 P3 * * 2497 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2498 ** 2499 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2500 ** If it is, then set register P3 to NULL and jump immediately to P2. 2501 ** If P1 is not on a NULL row, then fall through without making any 2502 ** changes. 2503 */ 2504 case OP_IfNullRow: { /* jump */ 2505 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2506 assert( p->apCsr[pOp->p1]!=0 ); 2507 if( p->apCsr[pOp->p1]->nullRow ){ 2508 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2509 goto jump_to_p2; 2510 } 2511 break; 2512 } 2513 2514 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2515 /* Opcode: Offset P1 P2 P3 * * 2516 ** Synopsis: r[P3] = sqlite_offset(P1) 2517 ** 2518 ** Store in register r[P3] the byte offset into the database file that is the 2519 ** start of the payload for the record at which that cursor P1 is currently 2520 ** pointing. 2521 ** 2522 ** P2 is the column number for the argument to the sqlite_offset() function. 2523 ** This opcode does not use P2 itself, but the P2 value is used by the 2524 ** code generator. The P1, P2, and P3 operands to this opcode are the 2525 ** same as for OP_Column. 2526 ** 2527 ** This opcode is only available if SQLite is compiled with the 2528 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2529 */ 2530 case OP_Offset: { /* out3 */ 2531 VdbeCursor *pC; /* The VDBE cursor */ 2532 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2533 pC = p->apCsr[pOp->p1]; 2534 pOut = &p->aMem[pOp->p3]; 2535 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2536 sqlite3VdbeMemSetNull(pOut); 2537 }else{ 2538 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2539 } 2540 break; 2541 } 2542 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2543 2544 /* Opcode: Column P1 P2 P3 P4 P5 2545 ** Synopsis: r[P3]=PX 2546 ** 2547 ** Interpret the data that cursor P1 points to as a structure built using 2548 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2549 ** information about the format of the data.) Extract the P2-th column 2550 ** from this record. If there are less that (P2+1) 2551 ** values in the record, extract a NULL. 2552 ** 2553 ** The value extracted is stored in register P3. 2554 ** 2555 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2556 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2557 ** the result. 2558 ** 2559 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2560 ** the result is guaranteed to only be used as the argument of a length() 2561 ** or typeof() function, respectively. The loading of large blobs can be 2562 ** skipped for length() and all content loading can be skipped for typeof(). 2563 */ 2564 case OP_Column: { 2565 u32 p2; /* column number to retrieve */ 2566 VdbeCursor *pC; /* The VDBE cursor */ 2567 BtCursor *pCrsr; /* The BTree cursor */ 2568 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2569 int len; /* The length of the serialized data for the column */ 2570 int i; /* Loop counter */ 2571 Mem *pDest; /* Where to write the extracted value */ 2572 Mem sMem; /* For storing the record being decoded */ 2573 const u8 *zData; /* Part of the record being decoded */ 2574 const u8 *zHdr; /* Next unparsed byte of the header */ 2575 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2576 u64 offset64; /* 64-bit offset */ 2577 u32 t; /* A type code from the record header */ 2578 Mem *pReg; /* PseudoTable input register */ 2579 2580 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2581 pC = p->apCsr[pOp->p1]; 2582 assert( pC!=0 ); 2583 p2 = (u32)pOp->p2; 2584 2585 /* If the cursor cache is stale (meaning it is not currently point at 2586 ** the correct row) then bring it up-to-date by doing the necessary 2587 ** B-Tree seek. */ 2588 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2589 if( rc ) goto abort_due_to_error; 2590 2591 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2592 pDest = &aMem[pOp->p3]; 2593 memAboutToChange(p, pDest); 2594 assert( pC!=0 ); 2595 assert( p2<(u32)pC->nField ); 2596 aOffset = pC->aOffset; 2597 assert( pC->eCurType!=CURTYPE_VTAB ); 2598 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2599 assert( pC->eCurType!=CURTYPE_SORTER ); 2600 2601 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2602 if( pC->nullRow ){ 2603 if( pC->eCurType==CURTYPE_PSEUDO ){ 2604 /* For the special case of as pseudo-cursor, the seekResult field 2605 ** identifies the register that holds the record */ 2606 assert( pC->seekResult>0 ); 2607 pReg = &aMem[pC->seekResult]; 2608 assert( pReg->flags & MEM_Blob ); 2609 assert( memIsValid(pReg) ); 2610 pC->payloadSize = pC->szRow = pReg->n; 2611 pC->aRow = (u8*)pReg->z; 2612 }else{ 2613 sqlite3VdbeMemSetNull(pDest); 2614 goto op_column_out; 2615 } 2616 }else{ 2617 pCrsr = pC->uc.pCursor; 2618 assert( pC->eCurType==CURTYPE_BTREE ); 2619 assert( pCrsr ); 2620 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2621 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2622 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2623 assert( pC->szRow<=pC->payloadSize ); 2624 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2625 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2626 goto too_big; 2627 } 2628 } 2629 pC->cacheStatus = p->cacheCtr; 2630 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2631 pC->nHdrParsed = 0; 2632 2633 2634 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2635 /* pC->aRow does not have to hold the entire row, but it does at least 2636 ** need to cover the header of the record. If pC->aRow does not contain 2637 ** the complete header, then set it to zero, forcing the header to be 2638 ** dynamically allocated. */ 2639 pC->aRow = 0; 2640 pC->szRow = 0; 2641 2642 /* Make sure a corrupt database has not given us an oversize header. 2643 ** Do this now to avoid an oversize memory allocation. 2644 ** 2645 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2646 ** types use so much data space that there can only be 4096 and 32 of 2647 ** them, respectively. So the maximum header length results from a 2648 ** 3-byte type for each of the maximum of 32768 columns plus three 2649 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2650 */ 2651 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2652 goto op_column_corrupt; 2653 } 2654 }else{ 2655 /* This is an optimization. By skipping over the first few tests 2656 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2657 ** measurable performance gain. 2658 ** 2659 ** This branch is taken even if aOffset[0]==0. Such a record is never 2660 ** generated by SQLite, and could be considered corruption, but we 2661 ** accept it for historical reasons. When aOffset[0]==0, the code this 2662 ** branch jumps to reads past the end of the record, but never more 2663 ** than a few bytes. Even if the record occurs at the end of the page 2664 ** content area, the "page header" comes after the page content and so 2665 ** this overread is harmless. Similar overreads can occur for a corrupt 2666 ** database file. 2667 */ 2668 zData = pC->aRow; 2669 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2670 testcase( aOffset[0]==0 ); 2671 goto op_column_read_header; 2672 } 2673 } 2674 2675 /* Make sure at least the first p2+1 entries of the header have been 2676 ** parsed and valid information is in aOffset[] and pC->aType[]. 2677 */ 2678 if( pC->nHdrParsed<=p2 ){ 2679 /* If there is more header available for parsing in the record, try 2680 ** to extract additional fields up through the p2+1-th field 2681 */ 2682 if( pC->iHdrOffset<aOffset[0] ){ 2683 /* Make sure zData points to enough of the record to cover the header. */ 2684 if( pC->aRow==0 ){ 2685 memset(&sMem, 0, sizeof(sMem)); 2686 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2687 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2688 zData = (u8*)sMem.z; 2689 }else{ 2690 zData = pC->aRow; 2691 } 2692 2693 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2694 op_column_read_header: 2695 i = pC->nHdrParsed; 2696 offset64 = aOffset[i]; 2697 zHdr = zData + pC->iHdrOffset; 2698 zEndHdr = zData + aOffset[0]; 2699 testcase( zHdr>=zEndHdr ); 2700 do{ 2701 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2702 zHdr++; 2703 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2704 }else{ 2705 zHdr += sqlite3GetVarint32(zHdr, &t); 2706 pC->aType[i] = t; 2707 offset64 += sqlite3VdbeSerialTypeLen(t); 2708 } 2709 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2710 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2711 2712 /* The record is corrupt if any of the following are true: 2713 ** (1) the bytes of the header extend past the declared header size 2714 ** (2) the entire header was used but not all data was used 2715 ** (3) the end of the data extends beyond the end of the record. 2716 */ 2717 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2718 || (offset64 > pC->payloadSize) 2719 ){ 2720 if( aOffset[0]==0 ){ 2721 i = 0; 2722 zHdr = zEndHdr; 2723 }else{ 2724 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2725 goto op_column_corrupt; 2726 } 2727 } 2728 2729 pC->nHdrParsed = i; 2730 pC->iHdrOffset = (u32)(zHdr - zData); 2731 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2732 }else{ 2733 t = 0; 2734 } 2735 2736 /* If after trying to extract new entries from the header, nHdrParsed is 2737 ** still not up to p2, that means that the record has fewer than p2 2738 ** columns. So the result will be either the default value or a NULL. 2739 */ 2740 if( pC->nHdrParsed<=p2 ){ 2741 if( pOp->p4type==P4_MEM ){ 2742 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2743 }else{ 2744 sqlite3VdbeMemSetNull(pDest); 2745 } 2746 goto op_column_out; 2747 } 2748 }else{ 2749 t = pC->aType[p2]; 2750 } 2751 2752 /* Extract the content for the p2+1-th column. Control can only 2753 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2754 ** all valid. 2755 */ 2756 assert( p2<pC->nHdrParsed ); 2757 assert( rc==SQLITE_OK ); 2758 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2759 if( VdbeMemDynamic(pDest) ){ 2760 sqlite3VdbeMemSetNull(pDest); 2761 } 2762 assert( t==pC->aType[p2] ); 2763 if( pC->szRow>=aOffset[p2+1] ){ 2764 /* This is the common case where the desired content fits on the original 2765 ** page - where the content is not on an overflow page */ 2766 zData = pC->aRow + aOffset[p2]; 2767 if( t<12 ){ 2768 sqlite3VdbeSerialGet(zData, t, pDest); 2769 }else{ 2770 /* If the column value is a string, we need a persistent value, not 2771 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2772 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2773 */ 2774 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2775 pDest->n = len = (t-12)/2; 2776 pDest->enc = encoding; 2777 if( pDest->szMalloc < len+2 ){ 2778 pDest->flags = MEM_Null; 2779 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2780 }else{ 2781 pDest->z = pDest->zMalloc; 2782 } 2783 memcpy(pDest->z, zData, len); 2784 pDest->z[len] = 0; 2785 pDest->z[len+1] = 0; 2786 pDest->flags = aFlag[t&1]; 2787 } 2788 }else{ 2789 pDest->enc = encoding; 2790 /* This branch happens only when content is on overflow pages */ 2791 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2792 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2793 || (len = sqlite3VdbeSerialTypeLen(t))==0 2794 ){ 2795 /* Content is irrelevant for 2796 ** 1. the typeof() function, 2797 ** 2. the length(X) function if X is a blob, and 2798 ** 3. if the content length is zero. 2799 ** So we might as well use bogus content rather than reading 2800 ** content from disk. 2801 ** 2802 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2803 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2804 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2805 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2806 ** and it begins with a bunch of zeros. 2807 */ 2808 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2809 }else{ 2810 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2811 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2812 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2813 pDest->flags &= ~MEM_Ephem; 2814 } 2815 } 2816 2817 op_column_out: 2818 UPDATE_MAX_BLOBSIZE(pDest); 2819 REGISTER_TRACE(pOp->p3, pDest); 2820 break; 2821 2822 op_column_corrupt: 2823 if( aOp[0].p3>0 ){ 2824 pOp = &aOp[aOp[0].p3-1]; 2825 break; 2826 }else{ 2827 rc = SQLITE_CORRUPT_BKPT; 2828 goto abort_due_to_error; 2829 } 2830 } 2831 2832 /* Opcode: Affinity P1 P2 * P4 * 2833 ** Synopsis: affinity(r[P1@P2]) 2834 ** 2835 ** Apply affinities to a range of P2 registers starting with P1. 2836 ** 2837 ** P4 is a string that is P2 characters long. The N-th character of the 2838 ** string indicates the column affinity that should be used for the N-th 2839 ** memory cell in the range. 2840 */ 2841 case OP_Affinity: { 2842 const char *zAffinity; /* The affinity to be applied */ 2843 2844 zAffinity = pOp->p4.z; 2845 assert( zAffinity!=0 ); 2846 assert( pOp->p2>0 ); 2847 assert( zAffinity[pOp->p2]==0 ); 2848 pIn1 = &aMem[pOp->p1]; 2849 while( 1 /*exit-by-break*/ ){ 2850 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2851 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 2852 applyAffinity(pIn1, zAffinity[0], encoding); 2853 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 2854 /* When applying REAL affinity, if the result is still an MEM_Int 2855 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2856 ** so that we keep the high-resolution integer value but know that 2857 ** the type really wants to be REAL. */ 2858 testcase( pIn1->u.i==140737488355328LL ); 2859 testcase( pIn1->u.i==140737488355327LL ); 2860 testcase( pIn1->u.i==-140737488355328LL ); 2861 testcase( pIn1->u.i==-140737488355329LL ); 2862 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 2863 pIn1->flags |= MEM_IntReal; 2864 pIn1->flags &= ~MEM_Int; 2865 }else{ 2866 pIn1->u.r = (double)pIn1->u.i; 2867 pIn1->flags |= MEM_Real; 2868 pIn1->flags &= ~MEM_Int; 2869 } 2870 } 2871 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 2872 zAffinity++; 2873 if( zAffinity[0]==0 ) break; 2874 pIn1++; 2875 } 2876 break; 2877 } 2878 2879 /* Opcode: MakeRecord P1 P2 P3 P4 * 2880 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2881 ** 2882 ** Convert P2 registers beginning with P1 into the [record format] 2883 ** use as a data record in a database table or as a key 2884 ** in an index. The OP_Column opcode can decode the record later. 2885 ** 2886 ** P4 may be a string that is P2 characters long. The N-th character of the 2887 ** string indicates the column affinity that should be used for the N-th 2888 ** field of the index key. 2889 ** 2890 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2891 ** macros defined in sqliteInt.h. 2892 ** 2893 ** If P4 is NULL then all index fields have the affinity BLOB. 2894 ** 2895 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 2896 ** compile-time option is enabled: 2897 ** 2898 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 2899 ** of the right-most table that can be null-trimmed. 2900 ** 2901 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 2902 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 2903 ** accept no-change records with serial_type 10. This value is 2904 ** only used inside an assert() and does not affect the end result. 2905 */ 2906 case OP_MakeRecord: { 2907 Mem *pRec; /* The new record */ 2908 u64 nData; /* Number of bytes of data space */ 2909 int nHdr; /* Number of bytes of header space */ 2910 i64 nByte; /* Data space required for this record */ 2911 i64 nZero; /* Number of zero bytes at the end of the record */ 2912 int nVarint; /* Number of bytes in a varint */ 2913 u32 serial_type; /* Type field */ 2914 Mem *pData0; /* First field to be combined into the record */ 2915 Mem *pLast; /* Last field of the record */ 2916 int nField; /* Number of fields in the record */ 2917 char *zAffinity; /* The affinity string for the record */ 2918 int file_format; /* File format to use for encoding */ 2919 u32 len; /* Length of a field */ 2920 u8 *zHdr; /* Where to write next byte of the header */ 2921 u8 *zPayload; /* Where to write next byte of the payload */ 2922 2923 /* Assuming the record contains N fields, the record format looks 2924 ** like this: 2925 ** 2926 ** ------------------------------------------------------------------------ 2927 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2928 ** ------------------------------------------------------------------------ 2929 ** 2930 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2931 ** and so forth. 2932 ** 2933 ** Each type field is a varint representing the serial type of the 2934 ** corresponding data element (see sqlite3VdbeSerialType()). The 2935 ** hdr-size field is also a varint which is the offset from the beginning 2936 ** of the record to data0. 2937 */ 2938 nData = 0; /* Number of bytes of data space */ 2939 nHdr = 0; /* Number of bytes of header space */ 2940 nZero = 0; /* Number of zero bytes at the end of the record */ 2941 nField = pOp->p1; 2942 zAffinity = pOp->p4.z; 2943 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2944 pData0 = &aMem[nField]; 2945 nField = pOp->p2; 2946 pLast = &pData0[nField-1]; 2947 file_format = p->minWriteFileFormat; 2948 2949 /* Identify the output register */ 2950 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2951 pOut = &aMem[pOp->p3]; 2952 memAboutToChange(p, pOut); 2953 2954 /* Apply the requested affinity to all inputs 2955 */ 2956 assert( pData0<=pLast ); 2957 if( zAffinity ){ 2958 pRec = pData0; 2959 do{ 2960 applyAffinity(pRec, zAffinity[0], encoding); 2961 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 2962 pRec->flags |= MEM_IntReal; 2963 pRec->flags &= ~(MEM_Int); 2964 } 2965 REGISTER_TRACE((int)(pRec-aMem), pRec); 2966 zAffinity++; 2967 pRec++; 2968 assert( zAffinity[0]==0 || pRec<=pLast ); 2969 }while( zAffinity[0] ); 2970 } 2971 2972 #ifdef SQLITE_ENABLE_NULL_TRIM 2973 /* NULLs can be safely trimmed from the end of the record, as long as 2974 ** as the schema format is 2 or more and none of the omitted columns 2975 ** have a non-NULL default value. Also, the record must be left with 2976 ** at least one field. If P5>0 then it will be one more than the 2977 ** index of the right-most column with a non-NULL default value */ 2978 if( pOp->p5 ){ 2979 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2980 pLast--; 2981 nField--; 2982 } 2983 } 2984 #endif 2985 2986 /* Loop through the elements that will make up the record to figure 2987 ** out how much space is required for the new record. After this loop, 2988 ** the Mem.uTemp field of each term should hold the serial-type that will 2989 ** be used for that term in the generated record: 2990 ** 2991 ** Mem.uTemp value type 2992 ** --------------- --------------- 2993 ** 0 NULL 2994 ** 1 1-byte signed integer 2995 ** 2 2-byte signed integer 2996 ** 3 3-byte signed integer 2997 ** 4 4-byte signed integer 2998 ** 5 6-byte signed integer 2999 ** 6 8-byte signed integer 3000 ** 7 IEEE float 3001 ** 8 Integer constant 0 3002 ** 9 Integer constant 1 3003 ** 10,11 reserved for expansion 3004 ** N>=12 and even BLOB 3005 ** N>=13 and odd text 3006 ** 3007 ** The following additional values are computed: 3008 ** nHdr Number of bytes needed for the record header 3009 ** nData Number of bytes of data space needed for the record 3010 ** nZero Zero bytes at the end of the record 3011 */ 3012 pRec = pLast; 3013 do{ 3014 assert( memIsValid(pRec) ); 3015 if( pRec->flags & MEM_Null ){ 3016 if( pRec->flags & MEM_Zero ){ 3017 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3018 ** table methods that never invoke sqlite3_result_xxxxx() while 3019 ** computing an unchanging column value in an UPDATE statement. 3020 ** Give such values a special internal-use-only serial-type of 10 3021 ** so that they can be passed through to xUpdate and have 3022 ** a true sqlite3_value_nochange(). */ 3023 #ifndef SQLITE_ENABLE_NULL_TRIM 3024 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3025 #endif 3026 pRec->uTemp = 10; 3027 }else{ 3028 pRec->uTemp = 0; 3029 } 3030 nHdr++; 3031 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3032 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3033 i64 i = pRec->u.i; 3034 u64 uu; 3035 testcase( pRec->flags & MEM_Int ); 3036 testcase( pRec->flags & MEM_IntReal ); 3037 if( i<0 ){ 3038 uu = ~i; 3039 }else{ 3040 uu = i; 3041 } 3042 nHdr++; 3043 testcase( uu==127 ); testcase( uu==128 ); 3044 testcase( uu==32767 ); testcase( uu==32768 ); 3045 testcase( uu==8388607 ); testcase( uu==8388608 ); 3046 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3047 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3048 if( uu<=127 ){ 3049 if( (i&1)==i && file_format>=4 ){ 3050 pRec->uTemp = 8+(u32)uu; 3051 }else{ 3052 nData++; 3053 pRec->uTemp = 1; 3054 } 3055 }else if( uu<=32767 ){ 3056 nData += 2; 3057 pRec->uTemp = 2; 3058 }else if( uu<=8388607 ){ 3059 nData += 3; 3060 pRec->uTemp = 3; 3061 }else if( uu<=2147483647 ){ 3062 nData += 4; 3063 pRec->uTemp = 4; 3064 }else if( uu<=140737488355327LL ){ 3065 nData += 6; 3066 pRec->uTemp = 5; 3067 }else{ 3068 nData += 8; 3069 if( pRec->flags & MEM_IntReal ){ 3070 /* If the value is IntReal and is going to take up 8 bytes to store 3071 ** as an integer, then we might as well make it an 8-byte floating 3072 ** point value */ 3073 pRec->u.r = (double)pRec->u.i; 3074 pRec->flags &= ~MEM_IntReal; 3075 pRec->flags |= MEM_Real; 3076 pRec->uTemp = 7; 3077 }else{ 3078 pRec->uTemp = 6; 3079 } 3080 } 3081 }else if( pRec->flags & MEM_Real ){ 3082 nHdr++; 3083 nData += 8; 3084 pRec->uTemp = 7; 3085 }else{ 3086 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3087 assert( pRec->n>=0 ); 3088 len = (u32)pRec->n; 3089 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3090 if( pRec->flags & MEM_Zero ){ 3091 serial_type += pRec->u.nZero*2; 3092 if( nData ){ 3093 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3094 len += pRec->u.nZero; 3095 }else{ 3096 nZero += pRec->u.nZero; 3097 } 3098 } 3099 nData += len; 3100 nHdr += sqlite3VarintLen(serial_type); 3101 pRec->uTemp = serial_type; 3102 } 3103 if( pRec==pData0 ) break; 3104 pRec--; 3105 }while(1); 3106 3107 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3108 ** which determines the total number of bytes in the header. The varint 3109 ** value is the size of the header in bytes including the size varint 3110 ** itself. */ 3111 testcase( nHdr==126 ); 3112 testcase( nHdr==127 ); 3113 if( nHdr<=126 ){ 3114 /* The common case */ 3115 nHdr += 1; 3116 }else{ 3117 /* Rare case of a really large header */ 3118 nVarint = sqlite3VarintLen(nHdr); 3119 nHdr += nVarint; 3120 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3121 } 3122 nByte = nHdr+nData; 3123 3124 /* Make sure the output register has a buffer large enough to store 3125 ** the new record. The output register (pOp->p3) is not allowed to 3126 ** be one of the input registers (because the following call to 3127 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3128 */ 3129 if( nByte+nZero<=pOut->szMalloc ){ 3130 /* The output register is already large enough to hold the record. 3131 ** No error checks or buffer enlargement is required */ 3132 pOut->z = pOut->zMalloc; 3133 }else{ 3134 /* Need to make sure that the output is not too big and then enlarge 3135 ** the output register to hold the full result */ 3136 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3137 goto too_big; 3138 } 3139 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3140 goto no_mem; 3141 } 3142 } 3143 pOut->n = (int)nByte; 3144 pOut->flags = MEM_Blob; 3145 if( nZero ){ 3146 pOut->u.nZero = nZero; 3147 pOut->flags |= MEM_Zero; 3148 } 3149 UPDATE_MAX_BLOBSIZE(pOut); 3150 zHdr = (u8 *)pOut->z; 3151 zPayload = zHdr + nHdr; 3152 3153 /* Write the record */ 3154 zHdr += putVarint32(zHdr, nHdr); 3155 assert( pData0<=pLast ); 3156 pRec = pData0; 3157 do{ 3158 serial_type = pRec->uTemp; 3159 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3160 ** additional varints, one per column. */ 3161 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3162 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3163 ** immediately follow the header. */ 3164 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3165 }while( (++pRec)<=pLast ); 3166 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3167 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3168 3169 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3170 REGISTER_TRACE(pOp->p3, pOut); 3171 break; 3172 } 3173 3174 /* Opcode: Count P1 P2 p3 * * 3175 ** Synopsis: r[P2]=count() 3176 ** 3177 ** Store the number of entries (an integer value) in the table or index 3178 ** opened by cursor P1 in register P2. 3179 ** 3180 ** If P3==0, then an exact count is obtained, which involves visiting 3181 ** every btree page of the table. But if P3 is non-zero, an estimate 3182 ** is returned based on the current cursor position. 3183 */ 3184 case OP_Count: { /* out2 */ 3185 i64 nEntry; 3186 BtCursor *pCrsr; 3187 3188 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3189 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3190 assert( pCrsr ); 3191 if( pOp->p3 ){ 3192 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3193 }else{ 3194 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3195 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3196 if( rc ) goto abort_due_to_error; 3197 } 3198 pOut = out2Prerelease(p, pOp); 3199 pOut->u.i = nEntry; 3200 goto check_for_interrupt; 3201 } 3202 3203 /* Opcode: Savepoint P1 * * P4 * 3204 ** 3205 ** Open, release or rollback the savepoint named by parameter P4, depending 3206 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3207 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3208 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3209 */ 3210 case OP_Savepoint: { 3211 int p1; /* Value of P1 operand */ 3212 char *zName; /* Name of savepoint */ 3213 int nName; 3214 Savepoint *pNew; 3215 Savepoint *pSavepoint; 3216 Savepoint *pTmp; 3217 int iSavepoint; 3218 int ii; 3219 3220 p1 = pOp->p1; 3221 zName = pOp->p4.z; 3222 3223 /* Assert that the p1 parameter is valid. Also that if there is no open 3224 ** transaction, then there cannot be any savepoints. 3225 */ 3226 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3227 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3228 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3229 assert( checkSavepointCount(db) ); 3230 assert( p->bIsReader ); 3231 3232 if( p1==SAVEPOINT_BEGIN ){ 3233 if( db->nVdbeWrite>0 ){ 3234 /* A new savepoint cannot be created if there are active write 3235 ** statements (i.e. open read/write incremental blob handles). 3236 */ 3237 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3238 rc = SQLITE_BUSY; 3239 }else{ 3240 nName = sqlite3Strlen30(zName); 3241 3242 #ifndef SQLITE_OMIT_VIRTUALTABLE 3243 /* This call is Ok even if this savepoint is actually a transaction 3244 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3245 ** If this is a transaction savepoint being opened, it is guaranteed 3246 ** that the db->aVTrans[] array is empty. */ 3247 assert( db->autoCommit==0 || db->nVTrans==0 ); 3248 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3249 db->nStatement+db->nSavepoint); 3250 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3251 #endif 3252 3253 /* Create a new savepoint structure. */ 3254 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3255 if( pNew ){ 3256 pNew->zName = (char *)&pNew[1]; 3257 memcpy(pNew->zName, zName, nName+1); 3258 3259 /* If there is no open transaction, then mark this as a special 3260 ** "transaction savepoint". */ 3261 if( db->autoCommit ){ 3262 db->autoCommit = 0; 3263 db->isTransactionSavepoint = 1; 3264 }else{ 3265 db->nSavepoint++; 3266 } 3267 3268 /* Link the new savepoint into the database handle's list. */ 3269 pNew->pNext = db->pSavepoint; 3270 db->pSavepoint = pNew; 3271 pNew->nDeferredCons = db->nDeferredCons; 3272 pNew->nDeferredImmCons = db->nDeferredImmCons; 3273 } 3274 } 3275 }else{ 3276 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3277 iSavepoint = 0; 3278 3279 /* Find the named savepoint. If there is no such savepoint, then an 3280 ** an error is returned to the user. */ 3281 for( 3282 pSavepoint = db->pSavepoint; 3283 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3284 pSavepoint = pSavepoint->pNext 3285 ){ 3286 iSavepoint++; 3287 } 3288 if( !pSavepoint ){ 3289 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3290 rc = SQLITE_ERROR; 3291 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3292 /* It is not possible to release (commit) a savepoint if there are 3293 ** active write statements. 3294 */ 3295 sqlite3VdbeError(p, "cannot release savepoint - " 3296 "SQL statements in progress"); 3297 rc = SQLITE_BUSY; 3298 }else{ 3299 3300 /* Determine whether or not this is a transaction savepoint. If so, 3301 ** and this is a RELEASE command, then the current transaction 3302 ** is committed. 3303 */ 3304 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3305 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3306 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3307 goto vdbe_return; 3308 } 3309 db->autoCommit = 1; 3310 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3311 p->pc = (int)(pOp - aOp); 3312 db->autoCommit = 0; 3313 p->rc = rc = SQLITE_BUSY; 3314 goto vdbe_return; 3315 } 3316 rc = p->rc; 3317 if( rc ){ 3318 db->autoCommit = 0; 3319 }else{ 3320 db->isTransactionSavepoint = 0; 3321 } 3322 }else{ 3323 int isSchemaChange; 3324 iSavepoint = db->nSavepoint - iSavepoint - 1; 3325 if( p1==SAVEPOINT_ROLLBACK ){ 3326 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3327 for(ii=0; ii<db->nDb; ii++){ 3328 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3329 SQLITE_ABORT_ROLLBACK, 3330 isSchemaChange==0); 3331 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3332 } 3333 }else{ 3334 assert( p1==SAVEPOINT_RELEASE ); 3335 isSchemaChange = 0; 3336 } 3337 for(ii=0; ii<db->nDb; ii++){ 3338 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3339 if( rc!=SQLITE_OK ){ 3340 goto abort_due_to_error; 3341 } 3342 } 3343 if( isSchemaChange ){ 3344 sqlite3ExpirePreparedStatements(db, 0); 3345 sqlite3ResetAllSchemasOfConnection(db); 3346 db->mDbFlags |= DBFLAG_SchemaChange; 3347 } 3348 } 3349 if( rc ) goto abort_due_to_error; 3350 3351 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3352 ** savepoints nested inside of the savepoint being operated on. */ 3353 while( db->pSavepoint!=pSavepoint ){ 3354 pTmp = db->pSavepoint; 3355 db->pSavepoint = pTmp->pNext; 3356 sqlite3DbFree(db, pTmp); 3357 db->nSavepoint--; 3358 } 3359 3360 /* If it is a RELEASE, then destroy the savepoint being operated on 3361 ** too. If it is a ROLLBACK TO, then set the number of deferred 3362 ** constraint violations present in the database to the value stored 3363 ** when the savepoint was created. */ 3364 if( p1==SAVEPOINT_RELEASE ){ 3365 assert( pSavepoint==db->pSavepoint ); 3366 db->pSavepoint = pSavepoint->pNext; 3367 sqlite3DbFree(db, pSavepoint); 3368 if( !isTransaction ){ 3369 db->nSavepoint--; 3370 } 3371 }else{ 3372 assert( p1==SAVEPOINT_ROLLBACK ); 3373 db->nDeferredCons = pSavepoint->nDeferredCons; 3374 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3375 } 3376 3377 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3378 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3379 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3380 } 3381 } 3382 } 3383 if( rc ) goto abort_due_to_error; 3384 3385 break; 3386 } 3387 3388 /* Opcode: AutoCommit P1 P2 * * * 3389 ** 3390 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3391 ** back any currently active btree transactions. If there are any active 3392 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3393 ** there are active writing VMs or active VMs that use shared cache. 3394 ** 3395 ** This instruction causes the VM to halt. 3396 */ 3397 case OP_AutoCommit: { 3398 int desiredAutoCommit; 3399 int iRollback; 3400 3401 desiredAutoCommit = pOp->p1; 3402 iRollback = pOp->p2; 3403 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3404 assert( desiredAutoCommit==1 || iRollback==0 ); 3405 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3406 assert( p->bIsReader ); 3407 3408 if( desiredAutoCommit!=db->autoCommit ){ 3409 if( iRollback ){ 3410 assert( desiredAutoCommit==1 ); 3411 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3412 db->autoCommit = 1; 3413 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3414 /* If this instruction implements a COMMIT and other VMs are writing 3415 ** return an error indicating that the other VMs must complete first. 3416 */ 3417 sqlite3VdbeError(p, "cannot commit transaction - " 3418 "SQL statements in progress"); 3419 rc = SQLITE_BUSY; 3420 goto abort_due_to_error; 3421 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3422 goto vdbe_return; 3423 }else{ 3424 db->autoCommit = (u8)desiredAutoCommit; 3425 } 3426 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3427 p->pc = (int)(pOp - aOp); 3428 db->autoCommit = (u8)(1-desiredAutoCommit); 3429 p->rc = rc = SQLITE_BUSY; 3430 goto vdbe_return; 3431 } 3432 sqlite3CloseSavepoints(db); 3433 if( p->rc==SQLITE_OK ){ 3434 rc = SQLITE_DONE; 3435 }else{ 3436 rc = SQLITE_ERROR; 3437 } 3438 goto vdbe_return; 3439 }else{ 3440 sqlite3VdbeError(p, 3441 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3442 (iRollback)?"cannot rollback - no transaction is active": 3443 "cannot commit - no transaction is active")); 3444 3445 rc = SQLITE_ERROR; 3446 goto abort_due_to_error; 3447 } 3448 /*NOTREACHED*/ assert(0); 3449 } 3450 3451 /* Opcode: Transaction P1 P2 P3 P4 P5 3452 ** 3453 ** Begin a transaction on database P1 if a transaction is not already 3454 ** active. 3455 ** If P2 is non-zero, then a write-transaction is started, or if a 3456 ** read-transaction is already active, it is upgraded to a write-transaction. 3457 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3458 ** then an exclusive transaction is started. 3459 ** 3460 ** P1 is the index of the database file on which the transaction is 3461 ** started. Index 0 is the main database file and index 1 is the 3462 ** file used for temporary tables. Indices of 2 or more are used for 3463 ** attached databases. 3464 ** 3465 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3466 ** true (this flag is set if the Vdbe may modify more than one row and may 3467 ** throw an ABORT exception), a statement transaction may also be opened. 3468 ** More specifically, a statement transaction is opened iff the database 3469 ** connection is currently not in autocommit mode, or if there are other 3470 ** active statements. A statement transaction allows the changes made by this 3471 ** VDBE to be rolled back after an error without having to roll back the 3472 ** entire transaction. If no error is encountered, the statement transaction 3473 ** will automatically commit when the VDBE halts. 3474 ** 3475 ** If P5!=0 then this opcode also checks the schema cookie against P3 3476 ** and the schema generation counter against P4. 3477 ** The cookie changes its value whenever the database schema changes. 3478 ** This operation is used to detect when that the cookie has changed 3479 ** and that the current process needs to reread the schema. If the schema 3480 ** cookie in P3 differs from the schema cookie in the database header or 3481 ** if the schema generation counter in P4 differs from the current 3482 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3483 ** halts. The sqlite3_step() wrapper function might then reprepare the 3484 ** statement and rerun it from the beginning. 3485 */ 3486 case OP_Transaction: { 3487 Btree *pBt; 3488 int iMeta = 0; 3489 3490 assert( p->bIsReader ); 3491 assert( p->readOnly==0 || pOp->p2==0 ); 3492 assert( pOp->p2>=0 && pOp->p2<=2 ); 3493 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3494 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3495 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3496 rc = SQLITE_READONLY; 3497 goto abort_due_to_error; 3498 } 3499 pBt = db->aDb[pOp->p1].pBt; 3500 3501 if( pBt ){ 3502 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3503 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3504 testcase( rc==SQLITE_BUSY_RECOVERY ); 3505 if( rc!=SQLITE_OK ){ 3506 if( (rc&0xff)==SQLITE_BUSY ){ 3507 p->pc = (int)(pOp - aOp); 3508 p->rc = rc; 3509 goto vdbe_return; 3510 } 3511 goto abort_due_to_error; 3512 } 3513 3514 if( p->usesStmtJournal 3515 && pOp->p2 3516 && (db->autoCommit==0 || db->nVdbeRead>1) 3517 ){ 3518 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3519 if( p->iStatement==0 ){ 3520 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3521 db->nStatement++; 3522 p->iStatement = db->nSavepoint + db->nStatement; 3523 } 3524 3525 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3526 if( rc==SQLITE_OK ){ 3527 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3528 } 3529 3530 /* Store the current value of the database handles deferred constraint 3531 ** counter. If the statement transaction needs to be rolled back, 3532 ** the value of this counter needs to be restored too. */ 3533 p->nStmtDefCons = db->nDeferredCons; 3534 p->nStmtDefImmCons = db->nDeferredImmCons; 3535 } 3536 } 3537 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3538 if( pOp->p5 3539 && (iMeta!=pOp->p3 3540 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3541 ){ 3542 /* 3543 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3544 ** version is checked to ensure that the schema has not changed since the 3545 ** SQL statement was prepared. 3546 */ 3547 sqlite3DbFree(db, p->zErrMsg); 3548 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3549 /* If the schema-cookie from the database file matches the cookie 3550 ** stored with the in-memory representation of the schema, do 3551 ** not reload the schema from the database file. 3552 ** 3553 ** If virtual-tables are in use, this is not just an optimization. 3554 ** Often, v-tables store their data in other SQLite tables, which 3555 ** are queried from within xNext() and other v-table methods using 3556 ** prepared queries. If such a query is out-of-date, we do not want to 3557 ** discard the database schema, as the user code implementing the 3558 ** v-table would have to be ready for the sqlite3_vtab structure itself 3559 ** to be invalidated whenever sqlite3_step() is called from within 3560 ** a v-table method. 3561 */ 3562 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3563 sqlite3ResetOneSchema(db, pOp->p1); 3564 } 3565 p->expired = 1; 3566 rc = SQLITE_SCHEMA; 3567 } 3568 if( rc ) goto abort_due_to_error; 3569 break; 3570 } 3571 3572 /* Opcode: ReadCookie P1 P2 P3 * * 3573 ** 3574 ** Read cookie number P3 from database P1 and write it into register P2. 3575 ** P3==1 is the schema version. P3==2 is the database format. 3576 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3577 ** the main database file and P1==1 is the database file used to store 3578 ** temporary tables. 3579 ** 3580 ** There must be a read-lock on the database (either a transaction 3581 ** must be started or there must be an open cursor) before 3582 ** executing this instruction. 3583 */ 3584 case OP_ReadCookie: { /* out2 */ 3585 int iMeta; 3586 int iDb; 3587 int iCookie; 3588 3589 assert( p->bIsReader ); 3590 iDb = pOp->p1; 3591 iCookie = pOp->p3; 3592 assert( pOp->p3<SQLITE_N_BTREE_META ); 3593 assert( iDb>=0 && iDb<db->nDb ); 3594 assert( db->aDb[iDb].pBt!=0 ); 3595 assert( DbMaskTest(p->btreeMask, iDb) ); 3596 3597 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3598 pOut = out2Prerelease(p, pOp); 3599 pOut->u.i = iMeta; 3600 break; 3601 } 3602 3603 /* Opcode: SetCookie P1 P2 P3 * P5 3604 ** 3605 ** Write the integer value P3 into cookie number P2 of database P1. 3606 ** P2==1 is the schema version. P2==2 is the database format. 3607 ** P2==3 is the recommended pager cache 3608 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3609 ** database file used to store temporary tables. 3610 ** 3611 ** A transaction must be started before executing this opcode. 3612 ** 3613 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3614 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3615 ** has P5 set to 1, so that the internal schema version will be different 3616 ** from the database schema version, resulting in a schema reset. 3617 */ 3618 case OP_SetCookie: { 3619 Db *pDb; 3620 3621 sqlite3VdbeIncrWriteCounter(p, 0); 3622 assert( pOp->p2<SQLITE_N_BTREE_META ); 3623 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3624 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3625 assert( p->readOnly==0 ); 3626 pDb = &db->aDb[pOp->p1]; 3627 assert( pDb->pBt!=0 ); 3628 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3629 /* See note about index shifting on OP_ReadCookie */ 3630 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3631 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3632 /* When the schema cookie changes, record the new cookie internally */ 3633 pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5; 3634 db->mDbFlags |= DBFLAG_SchemaChange; 3635 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3636 /* Record changes in the file format */ 3637 pDb->pSchema->file_format = pOp->p3; 3638 } 3639 if( pOp->p1==1 ){ 3640 /* Invalidate all prepared statements whenever the TEMP database 3641 ** schema is changed. Ticket #1644 */ 3642 sqlite3ExpirePreparedStatements(db, 0); 3643 p->expired = 0; 3644 } 3645 if( rc ) goto abort_due_to_error; 3646 break; 3647 } 3648 3649 /* Opcode: OpenRead P1 P2 P3 P4 P5 3650 ** Synopsis: root=P2 iDb=P3 3651 ** 3652 ** Open a read-only cursor for the database table whose root page is 3653 ** P2 in a database file. The database file is determined by P3. 3654 ** P3==0 means the main database, P3==1 means the database used for 3655 ** temporary tables, and P3>1 means used the corresponding attached 3656 ** database. Give the new cursor an identifier of P1. The P1 3657 ** values need not be contiguous but all P1 values should be small integers. 3658 ** It is an error for P1 to be negative. 3659 ** 3660 ** Allowed P5 bits: 3661 ** <ul> 3662 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3663 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3664 ** of OP_SeekLE/OP_IdxLT) 3665 ** </ul> 3666 ** 3667 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3668 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3669 ** object, then table being opened must be an [index b-tree] where the 3670 ** KeyInfo object defines the content and collating 3671 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3672 ** value, then the table being opened must be a [table b-tree] with a 3673 ** number of columns no less than the value of P4. 3674 ** 3675 ** See also: OpenWrite, ReopenIdx 3676 */ 3677 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3678 ** Synopsis: root=P2 iDb=P3 3679 ** 3680 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3681 ** checks to see if the cursor on P1 is already open on the same 3682 ** b-tree and if it is this opcode becomes a no-op. In other words, 3683 ** if the cursor is already open, do not reopen it. 3684 ** 3685 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3686 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3687 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3688 ** number. 3689 ** 3690 ** Allowed P5 bits: 3691 ** <ul> 3692 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3693 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3694 ** of OP_SeekLE/OP_IdxLT) 3695 ** </ul> 3696 ** 3697 ** See also: OP_OpenRead, OP_OpenWrite 3698 */ 3699 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3700 ** Synopsis: root=P2 iDb=P3 3701 ** 3702 ** Open a read/write cursor named P1 on the table or index whose root 3703 ** page is P2 (or whose root page is held in register P2 if the 3704 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3705 ** 3706 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3707 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3708 ** object, then table being opened must be an [index b-tree] where the 3709 ** KeyInfo object defines the content and collating 3710 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3711 ** value, then the table being opened must be a [table b-tree] with a 3712 ** number of columns no less than the value of P4. 3713 ** 3714 ** Allowed P5 bits: 3715 ** <ul> 3716 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3717 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3718 ** of OP_SeekLE/OP_IdxLT) 3719 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3720 ** and subsequently delete entries in an index btree. This is a 3721 ** hint to the storage engine that the storage engine is allowed to 3722 ** ignore. The hint is not used by the official SQLite b*tree storage 3723 ** engine, but is used by COMDB2. 3724 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3725 ** as the root page, not the value of P2 itself. 3726 ** </ul> 3727 ** 3728 ** This instruction works like OpenRead except that it opens the cursor 3729 ** in read/write mode. 3730 ** 3731 ** See also: OP_OpenRead, OP_ReopenIdx 3732 */ 3733 case OP_ReopenIdx: { 3734 int nField; 3735 KeyInfo *pKeyInfo; 3736 u32 p2; 3737 int iDb; 3738 int wrFlag; 3739 Btree *pX; 3740 VdbeCursor *pCur; 3741 Db *pDb; 3742 3743 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3744 assert( pOp->p4type==P4_KEYINFO ); 3745 pCur = p->apCsr[pOp->p1]; 3746 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3747 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3748 goto open_cursor_set_hints; 3749 } 3750 /* If the cursor is not currently open or is open on a different 3751 ** index, then fall through into OP_OpenRead to force a reopen */ 3752 case OP_OpenRead: 3753 case OP_OpenWrite: 3754 3755 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3756 assert( p->bIsReader ); 3757 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3758 || p->readOnly==0 ); 3759 3760 if( p->expired==1 ){ 3761 rc = SQLITE_ABORT_ROLLBACK; 3762 goto abort_due_to_error; 3763 } 3764 3765 nField = 0; 3766 pKeyInfo = 0; 3767 p2 = (u32)pOp->p2; 3768 iDb = pOp->p3; 3769 assert( iDb>=0 && iDb<db->nDb ); 3770 assert( DbMaskTest(p->btreeMask, iDb) ); 3771 pDb = &db->aDb[iDb]; 3772 pX = pDb->pBt; 3773 assert( pX!=0 ); 3774 if( pOp->opcode==OP_OpenWrite ){ 3775 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3776 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3777 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3778 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3779 p->minWriteFileFormat = pDb->pSchema->file_format; 3780 } 3781 }else{ 3782 wrFlag = 0; 3783 } 3784 if( pOp->p5 & OPFLAG_P2ISREG ){ 3785 assert( p2>0 ); 3786 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 3787 assert( pOp->opcode==OP_OpenWrite ); 3788 pIn2 = &aMem[p2]; 3789 assert( memIsValid(pIn2) ); 3790 assert( (pIn2->flags & MEM_Int)!=0 ); 3791 sqlite3VdbeMemIntegerify(pIn2); 3792 p2 = (int)pIn2->u.i; 3793 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3794 ** that opcode will always set the p2 value to 2 or more or else fail. 3795 ** If there were a failure, the prepared statement would have halted 3796 ** before reaching this instruction. */ 3797 assert( p2>=2 ); 3798 } 3799 if( pOp->p4type==P4_KEYINFO ){ 3800 pKeyInfo = pOp->p4.pKeyInfo; 3801 assert( pKeyInfo->enc==ENC(db) ); 3802 assert( pKeyInfo->db==db ); 3803 nField = pKeyInfo->nAllField; 3804 }else if( pOp->p4type==P4_INT32 ){ 3805 nField = pOp->p4.i; 3806 } 3807 assert( pOp->p1>=0 ); 3808 assert( nField>=0 ); 3809 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3810 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3811 if( pCur==0 ) goto no_mem; 3812 pCur->nullRow = 1; 3813 pCur->isOrdered = 1; 3814 pCur->pgnoRoot = p2; 3815 #ifdef SQLITE_DEBUG 3816 pCur->wrFlag = wrFlag; 3817 #endif 3818 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3819 pCur->pKeyInfo = pKeyInfo; 3820 /* Set the VdbeCursor.isTable variable. Previous versions of 3821 ** SQLite used to check if the root-page flags were sane at this point 3822 ** and report database corruption if they were not, but this check has 3823 ** since moved into the btree layer. */ 3824 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3825 3826 open_cursor_set_hints: 3827 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3828 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3829 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3830 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3831 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3832 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3833 if( rc ) goto abort_due_to_error; 3834 break; 3835 } 3836 3837 /* Opcode: OpenDup P1 P2 * * * 3838 ** 3839 ** Open a new cursor P1 that points to the same ephemeral table as 3840 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3841 ** opcode. Only ephemeral cursors may be duplicated. 3842 ** 3843 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3844 */ 3845 case OP_OpenDup: { 3846 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3847 VdbeCursor *pCx; /* The new cursor */ 3848 3849 pOrig = p->apCsr[pOp->p2]; 3850 assert( pOrig ); 3851 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 3852 3853 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3854 if( pCx==0 ) goto no_mem; 3855 pCx->nullRow = 1; 3856 pCx->isEphemeral = 1; 3857 pCx->pKeyInfo = pOrig->pKeyInfo; 3858 pCx->isTable = pOrig->isTable; 3859 pCx->pgnoRoot = pOrig->pgnoRoot; 3860 pCx->isOrdered = pOrig->isOrdered; 3861 pCx->pBtx = pOrig->pBtx; 3862 pCx->hasBeenDuped = 1; 3863 pOrig->hasBeenDuped = 1; 3864 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3865 pCx->pKeyInfo, pCx->uc.pCursor); 3866 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3867 ** opened for a database. Since there is already an open cursor when this 3868 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3869 assert( rc==SQLITE_OK ); 3870 break; 3871 } 3872 3873 3874 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 3875 ** Synopsis: nColumn=P2 3876 ** 3877 ** Open a new cursor P1 to a transient table. 3878 ** The cursor is always opened read/write even if 3879 ** the main database is read-only. The ephemeral 3880 ** table is deleted automatically when the cursor is closed. 3881 ** 3882 ** If the cursor P1 is already opened on an ephemeral table, the table 3883 ** is cleared (all content is erased). 3884 ** 3885 ** P2 is the number of columns in the ephemeral table. 3886 ** The cursor points to a BTree table if P4==0 and to a BTree index 3887 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3888 ** that defines the format of keys in the index. 3889 ** 3890 ** The P5 parameter can be a mask of the BTREE_* flags defined 3891 ** in btree.h. These flags control aspects of the operation of 3892 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3893 ** added automatically. 3894 ** 3895 ** If P3 is positive, then reg[P3] is modified slightly so that it 3896 ** can be used as zero-length data for OP_Insert. This is an optimization 3897 ** that avoids an extra OP_Blob opcode to initialize that register. 3898 */ 3899 /* Opcode: OpenAutoindex P1 P2 * P4 * 3900 ** Synopsis: nColumn=P2 3901 ** 3902 ** This opcode works the same as OP_OpenEphemeral. It has a 3903 ** different name to distinguish its use. Tables created using 3904 ** by this opcode will be used for automatically created transient 3905 ** indices in joins. 3906 */ 3907 case OP_OpenAutoindex: 3908 case OP_OpenEphemeral: { 3909 VdbeCursor *pCx; 3910 KeyInfo *pKeyInfo; 3911 3912 static const int vfsFlags = 3913 SQLITE_OPEN_READWRITE | 3914 SQLITE_OPEN_CREATE | 3915 SQLITE_OPEN_EXCLUSIVE | 3916 SQLITE_OPEN_DELETEONCLOSE | 3917 SQLITE_OPEN_TRANSIENT_DB; 3918 assert( pOp->p1>=0 ); 3919 assert( pOp->p2>=0 ); 3920 if( pOp->p3>0 ){ 3921 /* Make register reg[P3] into a value that can be used as the data 3922 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 3923 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 3924 assert( pOp->opcode==OP_OpenEphemeral ); 3925 assert( aMem[pOp->p3].flags & MEM_Null ); 3926 aMem[pOp->p3].n = 0; 3927 aMem[pOp->p3].z = ""; 3928 } 3929 pCx = p->apCsr[pOp->p1]; 3930 if( pCx && !pCx->hasBeenDuped ){ 3931 /* If the ephermeral table is already open and has no duplicates from 3932 ** OP_OpenDup, then erase all existing content so that the table is 3933 ** empty again, rather than creating a new table. */ 3934 assert( pCx->isEphemeral ); 3935 pCx->seqCount = 0; 3936 pCx->cacheStatus = CACHE_STALE; 3937 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 3938 }else{ 3939 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3940 if( pCx==0 ) goto no_mem; 3941 pCx->isEphemeral = 1; 3942 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3943 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 3944 vfsFlags); 3945 if( rc==SQLITE_OK ){ 3946 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3947 if( rc==SQLITE_OK ){ 3948 /* If a transient index is required, create it by calling 3949 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3950 ** opening it. If a transient table is required, just use the 3951 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3952 */ 3953 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3954 assert( pOp->p4type==P4_KEYINFO ); 3955 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pCx->pgnoRoot, 3956 BTREE_BLOBKEY | pOp->p5); 3957 if( rc==SQLITE_OK ){ 3958 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 3959 assert( pKeyInfo->db==db ); 3960 assert( pKeyInfo->enc==ENC(db) ); 3961 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3962 pKeyInfo, pCx->uc.pCursor); 3963 } 3964 pCx->isTable = 0; 3965 }else{ 3966 pCx->pgnoRoot = SCHEMA_ROOT; 3967 rc = sqlite3BtreeCursor(pCx->pBtx, SCHEMA_ROOT, BTREE_WRCSR, 3968 0, pCx->uc.pCursor); 3969 pCx->isTable = 1; 3970 } 3971 } 3972 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3973 if( rc ){ 3974 sqlite3BtreeClose(pCx->pBtx); 3975 } 3976 } 3977 } 3978 if( rc ) goto abort_due_to_error; 3979 pCx->nullRow = 1; 3980 break; 3981 } 3982 3983 /* Opcode: SorterOpen P1 P2 P3 P4 * 3984 ** 3985 ** This opcode works like OP_OpenEphemeral except that it opens 3986 ** a transient index that is specifically designed to sort large 3987 ** tables using an external merge-sort algorithm. 3988 ** 3989 ** If argument P3 is non-zero, then it indicates that the sorter may 3990 ** assume that a stable sort considering the first P3 fields of each 3991 ** key is sufficient to produce the required results. 3992 */ 3993 case OP_SorterOpen: { 3994 VdbeCursor *pCx; 3995 3996 assert( pOp->p1>=0 ); 3997 assert( pOp->p2>=0 ); 3998 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3999 if( pCx==0 ) goto no_mem; 4000 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4001 assert( pCx->pKeyInfo->db==db ); 4002 assert( pCx->pKeyInfo->enc==ENC(db) ); 4003 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4004 if( rc ) goto abort_due_to_error; 4005 break; 4006 } 4007 4008 /* Opcode: SequenceTest P1 P2 * * * 4009 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4010 ** 4011 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4012 ** to P2. Regardless of whether or not the jump is taken, increment the 4013 ** the sequence value. 4014 */ 4015 case OP_SequenceTest: { 4016 VdbeCursor *pC; 4017 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4018 pC = p->apCsr[pOp->p1]; 4019 assert( isSorter(pC) ); 4020 if( (pC->seqCount++)==0 ){ 4021 goto jump_to_p2; 4022 } 4023 break; 4024 } 4025 4026 /* Opcode: OpenPseudo P1 P2 P3 * * 4027 ** Synopsis: P3 columns in r[P2] 4028 ** 4029 ** Open a new cursor that points to a fake table that contains a single 4030 ** row of data. The content of that one row is the content of memory 4031 ** register P2. In other words, cursor P1 becomes an alias for the 4032 ** MEM_Blob content contained in register P2. 4033 ** 4034 ** A pseudo-table created by this opcode is used to hold a single 4035 ** row output from the sorter so that the row can be decomposed into 4036 ** individual columns using the OP_Column opcode. The OP_Column opcode 4037 ** is the only cursor opcode that works with a pseudo-table. 4038 ** 4039 ** P3 is the number of fields in the records that will be stored by 4040 ** the pseudo-table. 4041 */ 4042 case OP_OpenPseudo: { 4043 VdbeCursor *pCx; 4044 4045 assert( pOp->p1>=0 ); 4046 assert( pOp->p3>=0 ); 4047 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 4048 if( pCx==0 ) goto no_mem; 4049 pCx->nullRow = 1; 4050 pCx->seekResult = pOp->p2; 4051 pCx->isTable = 1; 4052 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4053 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4054 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4055 ** which is a performance optimization */ 4056 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4057 assert( pOp->p5==0 ); 4058 break; 4059 } 4060 4061 /* Opcode: Close P1 * * * * 4062 ** 4063 ** Close a cursor previously opened as P1. If P1 is not 4064 ** currently open, this instruction is a no-op. 4065 */ 4066 case OP_Close: { 4067 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4068 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4069 p->apCsr[pOp->p1] = 0; 4070 break; 4071 } 4072 4073 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4074 /* Opcode: ColumnsUsed P1 * * P4 * 4075 ** 4076 ** This opcode (which only exists if SQLite was compiled with 4077 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4078 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4079 ** (P4_INT64) in which the first 63 bits are one for each of the 4080 ** first 63 columns of the table or index that are actually used 4081 ** by the cursor. The high-order bit is set if any column after 4082 ** the 64th is used. 4083 */ 4084 case OP_ColumnsUsed: { 4085 VdbeCursor *pC; 4086 pC = p->apCsr[pOp->p1]; 4087 assert( pC->eCurType==CURTYPE_BTREE ); 4088 pC->maskUsed = *(u64*)pOp->p4.pI64; 4089 break; 4090 } 4091 #endif 4092 4093 /* Opcode: SeekGE P1 P2 P3 P4 * 4094 ** Synopsis: key=r[P3@P4] 4095 ** 4096 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4097 ** use the value in register P3 as the key. If cursor P1 refers 4098 ** to an SQL index, then P3 is the first in an array of P4 registers 4099 ** that are used as an unpacked index key. 4100 ** 4101 ** Reposition cursor P1 so that it points to the smallest entry that 4102 ** is greater than or equal to the key value. If there are no records 4103 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4104 ** 4105 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4106 ** opcode will either land on a record that exactly matches the key, or 4107 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4108 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4109 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4110 ** IdxGT opcode will be used on subsequent loop iterations. The 4111 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4112 ** is an equality search. 4113 ** 4114 ** This opcode leaves the cursor configured to move in forward order, 4115 ** from the beginning toward the end. In other words, the cursor is 4116 ** configured to use Next, not Prev. 4117 ** 4118 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4119 */ 4120 /* Opcode: SeekGT P1 P2 P3 P4 * 4121 ** Synopsis: key=r[P3@P4] 4122 ** 4123 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4124 ** use the value in register P3 as a key. If cursor P1 refers 4125 ** to an SQL index, then P3 is the first in an array of P4 registers 4126 ** that are used as an unpacked index key. 4127 ** 4128 ** Reposition cursor P1 so that it points to the smallest entry that 4129 ** is greater than the key value. If there are no records greater than 4130 ** the key and P2 is not zero, then jump to P2. 4131 ** 4132 ** This opcode leaves the cursor configured to move in forward order, 4133 ** from the beginning toward the end. In other words, the cursor is 4134 ** configured to use Next, not Prev. 4135 ** 4136 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4137 */ 4138 /* Opcode: SeekLT P1 P2 P3 P4 * 4139 ** Synopsis: key=r[P3@P4] 4140 ** 4141 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4142 ** use the value in register P3 as a key. If cursor P1 refers 4143 ** to an SQL index, then P3 is the first in an array of P4 registers 4144 ** that are used as an unpacked index key. 4145 ** 4146 ** Reposition cursor P1 so that it points to the largest entry that 4147 ** is less than the key value. If there are no records less than 4148 ** the key and P2 is not zero, then jump to P2. 4149 ** 4150 ** This opcode leaves the cursor configured to move in reverse order, 4151 ** from the end toward the beginning. In other words, the cursor is 4152 ** configured to use Prev, not Next. 4153 ** 4154 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4155 */ 4156 /* Opcode: SeekLE P1 P2 P3 P4 * 4157 ** Synopsis: key=r[P3@P4] 4158 ** 4159 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4160 ** use the value in register P3 as a key. If cursor P1 refers 4161 ** to an SQL index, then P3 is the first in an array of P4 registers 4162 ** that are used as an unpacked index key. 4163 ** 4164 ** Reposition cursor P1 so that it points to the largest entry that 4165 ** is less than or equal to the key value. If there are no records 4166 ** less than or equal to the key and P2 is not zero, then jump to P2. 4167 ** 4168 ** This opcode leaves the cursor configured to move in reverse order, 4169 ** from the end toward the beginning. In other words, the cursor is 4170 ** configured to use Prev, not Next. 4171 ** 4172 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4173 ** opcode will either land on a record that exactly matches the key, or 4174 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4175 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4176 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4177 ** IdxGE opcode will be used on subsequent loop iterations. The 4178 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4179 ** is an equality search. 4180 ** 4181 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4182 */ 4183 case OP_SeekLT: /* jump, in3, group */ 4184 case OP_SeekLE: /* jump, in3, group */ 4185 case OP_SeekGE: /* jump, in3, group */ 4186 case OP_SeekGT: { /* jump, in3, group */ 4187 int res; /* Comparison result */ 4188 int oc; /* Opcode */ 4189 VdbeCursor *pC; /* The cursor to seek */ 4190 UnpackedRecord r; /* The key to seek for */ 4191 int nField; /* Number of columns or fields in the key */ 4192 i64 iKey; /* The rowid we are to seek to */ 4193 int eqOnly; /* Only interested in == results */ 4194 4195 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4196 assert( pOp->p2!=0 ); 4197 pC = p->apCsr[pOp->p1]; 4198 assert( pC!=0 ); 4199 assert( pC->eCurType==CURTYPE_BTREE ); 4200 assert( OP_SeekLE == OP_SeekLT+1 ); 4201 assert( OP_SeekGE == OP_SeekLT+2 ); 4202 assert( OP_SeekGT == OP_SeekLT+3 ); 4203 assert( pC->isOrdered ); 4204 assert( pC->uc.pCursor!=0 ); 4205 oc = pOp->opcode; 4206 eqOnly = 0; 4207 pC->nullRow = 0; 4208 #ifdef SQLITE_DEBUG 4209 pC->seekOp = pOp->opcode; 4210 #endif 4211 4212 pC->deferredMoveto = 0; 4213 pC->cacheStatus = CACHE_STALE; 4214 if( pC->isTable ){ 4215 u16 flags3, newType; 4216 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4217 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4218 || CORRUPT_DB ); 4219 4220 /* The input value in P3 might be of any type: integer, real, string, 4221 ** blob, or NULL. But it needs to be an integer before we can do 4222 ** the seek, so convert it. */ 4223 pIn3 = &aMem[pOp->p3]; 4224 flags3 = pIn3->flags; 4225 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4226 applyNumericAffinity(pIn3, 0); 4227 } 4228 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4229 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4230 pIn3->flags = flags3; /* But convert the type back to its original */ 4231 4232 /* If the P3 value could not be converted into an integer without 4233 ** loss of information, then special processing is required... */ 4234 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4235 if( (newType & MEM_Real)==0 ){ 4236 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4237 VdbeBranchTaken(1,2); 4238 goto jump_to_p2; 4239 }else{ 4240 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4241 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4242 goto seek_not_found; 4243 } 4244 }else 4245 4246 /* If the approximation iKey is larger than the actual real search 4247 ** term, substitute >= for > and < for <=. e.g. if the search term 4248 ** is 4.9 and the integer approximation 5: 4249 ** 4250 ** (x > 4.9) -> (x >= 5) 4251 ** (x <= 4.9) -> (x < 5) 4252 */ 4253 if( pIn3->u.r<(double)iKey ){ 4254 assert( OP_SeekGE==(OP_SeekGT-1) ); 4255 assert( OP_SeekLT==(OP_SeekLE-1) ); 4256 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4257 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4258 } 4259 4260 /* If the approximation iKey is smaller than the actual real search 4261 ** term, substitute <= for < and > for >=. */ 4262 else if( pIn3->u.r>(double)iKey ){ 4263 assert( OP_SeekLE==(OP_SeekLT+1) ); 4264 assert( OP_SeekGT==(OP_SeekGE+1) ); 4265 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4266 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4267 } 4268 } 4269 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 4270 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4271 if( rc!=SQLITE_OK ){ 4272 goto abort_due_to_error; 4273 } 4274 }else{ 4275 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4276 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4277 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4278 ** with the same key. 4279 */ 4280 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4281 eqOnly = 1; 4282 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4283 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4284 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4285 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4286 assert( pOp[1].p1==pOp[0].p1 ); 4287 assert( pOp[1].p2==pOp[0].p2 ); 4288 assert( pOp[1].p3==pOp[0].p3 ); 4289 assert( pOp[1].p4.i==pOp[0].p4.i ); 4290 } 4291 4292 nField = pOp->p4.i; 4293 assert( pOp->p4type==P4_INT32 ); 4294 assert( nField>0 ); 4295 r.pKeyInfo = pC->pKeyInfo; 4296 r.nField = (u16)nField; 4297 4298 /* The next line of code computes as follows, only faster: 4299 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4300 ** r.default_rc = -1; 4301 ** }else{ 4302 ** r.default_rc = +1; 4303 ** } 4304 */ 4305 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4306 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4307 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4308 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4309 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4310 4311 r.aMem = &aMem[pOp->p3]; 4312 #ifdef SQLITE_DEBUG 4313 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4314 #endif 4315 r.eqSeen = 0; 4316 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4317 if( rc!=SQLITE_OK ){ 4318 goto abort_due_to_error; 4319 } 4320 if( eqOnly && r.eqSeen==0 ){ 4321 assert( res!=0 ); 4322 goto seek_not_found; 4323 } 4324 } 4325 #ifdef SQLITE_TEST 4326 sqlite3_search_count++; 4327 #endif 4328 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4329 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4330 res = 0; 4331 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4332 if( rc!=SQLITE_OK ){ 4333 if( rc==SQLITE_DONE ){ 4334 rc = SQLITE_OK; 4335 res = 1; 4336 }else{ 4337 goto abort_due_to_error; 4338 } 4339 } 4340 }else{ 4341 res = 0; 4342 } 4343 }else{ 4344 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4345 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4346 res = 0; 4347 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4348 if( rc!=SQLITE_OK ){ 4349 if( rc==SQLITE_DONE ){ 4350 rc = SQLITE_OK; 4351 res = 1; 4352 }else{ 4353 goto abort_due_to_error; 4354 } 4355 } 4356 }else{ 4357 /* res might be negative because the table is empty. Check to 4358 ** see if this is the case. 4359 */ 4360 res = sqlite3BtreeEof(pC->uc.pCursor); 4361 } 4362 } 4363 seek_not_found: 4364 assert( pOp->p2>0 ); 4365 VdbeBranchTaken(res!=0,2); 4366 if( res ){ 4367 goto jump_to_p2; 4368 }else if( eqOnly ){ 4369 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4370 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4371 } 4372 break; 4373 } 4374 4375 4376 /* Opcode: SeekScan P1 P2 * * * 4377 ** Synopsis: Scan-ahead up to P1 rows 4378 ** 4379 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4380 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4381 ** checked by assert() statements. 4382 ** 4383 ** This opcode uses the P1 through P4 operands of the subsequent 4384 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4385 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4386 ** the P1 and P2 operands of this opcode are also used, and are called 4387 ** This.P1 and This.P2. 4388 ** 4389 ** This opcode helps to optimize IN operators on a multi-column index 4390 ** where the IN operator is on the later terms of the index by avoiding 4391 ** unnecessary seeks on the btree, substituting steps to the next row 4392 ** of the b-tree instead. A correct answer is obtained if this opcode 4393 ** is omitted or is a no-op. 4394 ** 4395 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4396 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4397 ** to. Call this SeekGE.P4/P5 row the "target". 4398 ** 4399 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4400 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4401 ** 4402 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4403 ** might be the target row, or it might be near and slightly before the 4404 ** target row. This opcode attempts to position the cursor on the target 4405 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4406 ** between 0 and This.P1 times. 4407 ** 4408 ** There are three possible outcomes from this opcode:<ol> 4409 ** 4410 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4411 ** is earlier in the btree than the target row, then fall through 4412 ** into the subsquence OP_SeekGE opcode. 4413 ** 4414 ** <li> If the cursor is successfully moved to the target row by 0 or more 4415 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4416 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4417 ** 4418 ** <li> If the cursor ends up past the target row (indicating the the target 4419 ** row does not exist in the btree) then jump to SeekOP.P2. 4420 ** </ol> 4421 */ 4422 case OP_SeekScan: { 4423 VdbeCursor *pC; 4424 int res; 4425 int nStep; 4426 UnpackedRecord r; 4427 4428 assert( pOp[1].opcode==OP_SeekGE ); 4429 4430 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4431 ** follows the OP_SeekGE. */ 4432 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4433 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4434 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4435 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4436 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4437 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4438 4439 assert( pOp->p1>0 ); 4440 pC = p->apCsr[pOp[1].p1]; 4441 assert( pC!=0 ); 4442 assert( pC->eCurType==CURTYPE_BTREE ); 4443 assert( !pC->isTable ); 4444 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4445 #ifdef SQLITE_DEBUG 4446 if( db->flags&SQLITE_VdbeTrace ){ 4447 printf("... cursor not valid - fall through\n"); 4448 } 4449 #endif 4450 break; 4451 } 4452 nStep = pOp->p1; 4453 assert( nStep>=1 ); 4454 r.pKeyInfo = pC->pKeyInfo; 4455 r.nField = (u16)pOp[1].p4.i; 4456 r.default_rc = 0; 4457 r.aMem = &aMem[pOp[1].p3]; 4458 #ifdef SQLITE_DEBUG 4459 { 4460 int i; 4461 for(i=0; i<r.nField; i++){ 4462 assert( memIsValid(&r.aMem[i]) ); 4463 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4464 } 4465 } 4466 #endif 4467 res = 0; /* Not needed. Only used to silence a warning. */ 4468 while(1){ 4469 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4470 if( rc ) goto abort_due_to_error; 4471 if( res>0 ){ 4472 seekscan_search_fail: 4473 #ifdef SQLITE_DEBUG 4474 if( db->flags&SQLITE_VdbeTrace ){ 4475 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4476 } 4477 #endif 4478 VdbeBranchTaken(1,3); 4479 pOp++; 4480 goto jump_to_p2; 4481 } 4482 if( res==0 ){ 4483 #ifdef SQLITE_DEBUG 4484 if( db->flags&SQLITE_VdbeTrace ){ 4485 printf("... %d steps and then success\n", pOp->p1 - nStep); 4486 } 4487 #endif 4488 VdbeBranchTaken(2,3); 4489 goto jump_to_p2; 4490 break; 4491 } 4492 if( nStep<=0 ){ 4493 #ifdef SQLITE_DEBUG 4494 if( db->flags&SQLITE_VdbeTrace ){ 4495 printf("... fall through after %d steps\n", pOp->p1); 4496 } 4497 #endif 4498 VdbeBranchTaken(0,3); 4499 break; 4500 } 4501 nStep--; 4502 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4503 if( rc ){ 4504 if( rc==SQLITE_DONE ){ 4505 rc = SQLITE_OK; 4506 goto seekscan_search_fail; 4507 }else{ 4508 goto abort_due_to_error; 4509 } 4510 } 4511 } 4512 4513 break; 4514 } 4515 4516 4517 /* Opcode: SeekHit P1 P2 P3 * * 4518 ** Synopsis: set P2<=seekHit<=P3 4519 ** 4520 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4521 ** so that it is no less than P2 and no greater than P3. 4522 ** 4523 ** The seekHit integer represents the maximum of terms in an index for which 4524 ** there is known to be at least one match. If the seekHit value is smaller 4525 ** than the total number of equality terms in an index lookup, then the 4526 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4527 ** early, thus saving work. This is part of the IN-early-out optimization. 4528 ** 4529 ** P1 must be a valid b-tree cursor. 4530 */ 4531 case OP_SeekHit: { 4532 VdbeCursor *pC; 4533 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4534 pC = p->apCsr[pOp->p1]; 4535 assert( pC!=0 ); 4536 assert( pOp->p3>=pOp->p2 ); 4537 if( pC->seekHit<pOp->p2 ){ 4538 #ifdef SQLITE_DEBUG 4539 if( db->flags&SQLITE_VdbeTrace ){ 4540 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4541 } 4542 #endif 4543 pC->seekHit = pOp->p2; 4544 }else if( pC->seekHit>pOp->p3 ){ 4545 #ifdef SQLITE_DEBUG 4546 if( db->flags&SQLITE_VdbeTrace ){ 4547 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4548 } 4549 #endif 4550 pC->seekHit = pOp->p3; 4551 } 4552 break; 4553 } 4554 4555 /* Opcode: IfNotOpen P1 P2 * * * 4556 ** Synopsis: if( !csr[P1] ) goto P2 4557 ** 4558 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4559 */ 4560 case OP_IfNotOpen: { /* jump */ 4561 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4562 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4563 if( !p->apCsr[pOp->p1] ){ 4564 goto jump_to_p2_and_check_for_interrupt; 4565 } 4566 break; 4567 } 4568 4569 /* Opcode: Found P1 P2 P3 P4 * 4570 ** Synopsis: key=r[P3@P4] 4571 ** 4572 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4573 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4574 ** record. 4575 ** 4576 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4577 ** is a prefix of any entry in P1 then a jump is made to P2 and 4578 ** P1 is left pointing at the matching entry. 4579 ** 4580 ** This operation leaves the cursor in a state where it can be 4581 ** advanced in the forward direction. The Next instruction will work, 4582 ** but not the Prev instruction. 4583 ** 4584 ** See also: NotFound, NoConflict, NotExists. SeekGe 4585 */ 4586 /* Opcode: NotFound P1 P2 P3 P4 * 4587 ** Synopsis: key=r[P3@P4] 4588 ** 4589 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4590 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4591 ** record. 4592 ** 4593 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4594 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4595 ** does contain an entry whose prefix matches the P3/P4 record then control 4596 ** falls through to the next instruction and P1 is left pointing at the 4597 ** matching entry. 4598 ** 4599 ** This operation leaves the cursor in a state where it cannot be 4600 ** advanced in either direction. In other words, the Next and Prev 4601 ** opcodes do not work after this operation. 4602 ** 4603 ** See also: Found, NotExists, NoConflict, IfNoHope 4604 */ 4605 /* Opcode: IfNoHope P1 P2 P3 P4 * 4606 ** Synopsis: key=r[P3@P4] 4607 ** 4608 ** Register P3 is the first of P4 registers that form an unpacked 4609 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4610 ** In other words, the operands to this opcode are the same as the 4611 ** operands to OP_NotFound and OP_IdxGT. 4612 ** 4613 ** This opcode is an optimization attempt only. If this opcode always 4614 ** falls through, the correct answer is still obtained, but extra works 4615 ** is performed. 4616 ** 4617 ** A value of N in the seekHit flag of cursor P1 means that there exists 4618 ** a key P3:N that will match some record in the index. We want to know 4619 ** if it is possible for a record P3:P4 to match some record in the 4620 ** index. If it is not possible, we can skips some work. So if seekHit 4621 ** is less than P4, attempt to find out if a match is possible by running 4622 ** OP_NotFound. 4623 ** 4624 ** This opcode is used in IN clause processing for a multi-column key. 4625 ** If an IN clause is attached to an element of the key other than the 4626 ** left-most element, and if there are no matches on the most recent 4627 ** seek over the whole key, then it might be that one of the key element 4628 ** to the left is prohibiting a match, and hence there is "no hope" of 4629 ** any match regardless of how many IN clause elements are checked. 4630 ** In such a case, we abandon the IN clause search early, using this 4631 ** opcode. The opcode name comes from the fact that the 4632 ** jump is taken if there is "no hope" of achieving a match. 4633 ** 4634 ** See also: NotFound, SeekHit 4635 */ 4636 /* Opcode: NoConflict P1 P2 P3 P4 * 4637 ** Synopsis: key=r[P3@P4] 4638 ** 4639 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4640 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4641 ** record. 4642 ** 4643 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4644 ** contains any NULL value, jump immediately to P2. If all terms of the 4645 ** record are not-NULL then a check is done to determine if any row in the 4646 ** P1 index btree has a matching key prefix. If there are no matches, jump 4647 ** immediately to P2. If there is a match, fall through and leave the P1 4648 ** cursor pointing to the matching row. 4649 ** 4650 ** This opcode is similar to OP_NotFound with the exceptions that the 4651 ** branch is always taken if any part of the search key input is NULL. 4652 ** 4653 ** This operation leaves the cursor in a state where it cannot be 4654 ** advanced in either direction. In other words, the Next and Prev 4655 ** opcodes do not work after this operation. 4656 ** 4657 ** See also: NotFound, Found, NotExists 4658 */ 4659 case OP_IfNoHope: { /* jump, in3 */ 4660 VdbeCursor *pC; 4661 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4662 pC = p->apCsr[pOp->p1]; 4663 assert( pC!=0 ); 4664 #ifdef SQLITE_DEBUG 4665 if( db->flags&SQLITE_VdbeTrace ){ 4666 printf("seekHit is %d\n", pC->seekHit); 4667 } 4668 #endif 4669 if( pC->seekHit>=pOp->p4.i ) break; 4670 /* Fall through into OP_NotFound */ 4671 /* no break */ deliberate_fall_through 4672 } 4673 case OP_NoConflict: /* jump, in3 */ 4674 case OP_NotFound: /* jump, in3 */ 4675 case OP_Found: { /* jump, in3 */ 4676 int alreadyExists; 4677 int takeJump; 4678 int ii; 4679 VdbeCursor *pC; 4680 int res; 4681 UnpackedRecord *pFree; 4682 UnpackedRecord *pIdxKey; 4683 UnpackedRecord r; 4684 4685 #ifdef SQLITE_TEST 4686 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4687 #endif 4688 4689 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4690 assert( pOp->p4type==P4_INT32 ); 4691 pC = p->apCsr[pOp->p1]; 4692 assert( pC!=0 ); 4693 #ifdef SQLITE_DEBUG 4694 pC->seekOp = pOp->opcode; 4695 #endif 4696 pIn3 = &aMem[pOp->p3]; 4697 assert( pC->eCurType==CURTYPE_BTREE ); 4698 assert( pC->uc.pCursor!=0 ); 4699 assert( pC->isTable==0 ); 4700 if( pOp->p4.i>0 ){ 4701 r.pKeyInfo = pC->pKeyInfo; 4702 r.nField = (u16)pOp->p4.i; 4703 r.aMem = pIn3; 4704 #ifdef SQLITE_DEBUG 4705 for(ii=0; ii<r.nField; ii++){ 4706 assert( memIsValid(&r.aMem[ii]) ); 4707 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4708 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4709 } 4710 #endif 4711 pIdxKey = &r; 4712 pFree = 0; 4713 }else{ 4714 assert( pIn3->flags & MEM_Blob ); 4715 rc = ExpandBlob(pIn3); 4716 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4717 if( rc ) goto no_mem; 4718 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4719 if( pIdxKey==0 ) goto no_mem; 4720 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4721 } 4722 pIdxKey->default_rc = 0; 4723 takeJump = 0; 4724 if( pOp->opcode==OP_NoConflict ){ 4725 /* For the OP_NoConflict opcode, take the jump if any of the 4726 ** input fields are NULL, since any key with a NULL will not 4727 ** conflict */ 4728 for(ii=0; ii<pIdxKey->nField; ii++){ 4729 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4730 takeJump = 1; 4731 break; 4732 } 4733 } 4734 } 4735 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4736 if( pFree ) sqlite3DbFreeNN(db, pFree); 4737 if( rc!=SQLITE_OK ){ 4738 goto abort_due_to_error; 4739 } 4740 pC->seekResult = res; 4741 alreadyExists = (res==0); 4742 pC->nullRow = 1-alreadyExists; 4743 pC->deferredMoveto = 0; 4744 pC->cacheStatus = CACHE_STALE; 4745 if( pOp->opcode==OP_Found ){ 4746 VdbeBranchTaken(alreadyExists!=0,2); 4747 if( alreadyExists ) goto jump_to_p2; 4748 }else{ 4749 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4750 if( takeJump || !alreadyExists ) goto jump_to_p2; 4751 if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i; 4752 } 4753 break; 4754 } 4755 4756 /* Opcode: SeekRowid P1 P2 P3 * * 4757 ** Synopsis: intkey=r[P3] 4758 ** 4759 ** P1 is the index of a cursor open on an SQL table btree (with integer 4760 ** keys). If register P3 does not contain an integer or if P1 does not 4761 ** contain a record with rowid P3 then jump immediately to P2. 4762 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4763 ** a record with rowid P3 then 4764 ** leave the cursor pointing at that record and fall through to the next 4765 ** instruction. 4766 ** 4767 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4768 ** the P3 register must be guaranteed to contain an integer value. With this 4769 ** opcode, register P3 might not contain an integer. 4770 ** 4771 ** The OP_NotFound opcode performs the same operation on index btrees 4772 ** (with arbitrary multi-value keys). 4773 ** 4774 ** This opcode leaves the cursor in a state where it cannot be advanced 4775 ** in either direction. In other words, the Next and Prev opcodes will 4776 ** not work following this opcode. 4777 ** 4778 ** See also: Found, NotFound, NoConflict, SeekRowid 4779 */ 4780 /* Opcode: NotExists P1 P2 P3 * * 4781 ** Synopsis: intkey=r[P3] 4782 ** 4783 ** P1 is the index of a cursor open on an SQL table btree (with integer 4784 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4785 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4786 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4787 ** leave the cursor pointing at that record and fall through to the next 4788 ** instruction. 4789 ** 4790 ** The OP_SeekRowid opcode performs the same operation but also allows the 4791 ** P3 register to contain a non-integer value, in which case the jump is 4792 ** always taken. This opcode requires that P3 always contain an integer. 4793 ** 4794 ** The OP_NotFound opcode performs the same operation on index btrees 4795 ** (with arbitrary multi-value keys). 4796 ** 4797 ** This opcode leaves the cursor in a state where it cannot be advanced 4798 ** in either direction. In other words, the Next and Prev opcodes will 4799 ** not work following this opcode. 4800 ** 4801 ** See also: Found, NotFound, NoConflict, SeekRowid 4802 */ 4803 case OP_SeekRowid: { /* jump, in3 */ 4804 VdbeCursor *pC; 4805 BtCursor *pCrsr; 4806 int res; 4807 u64 iKey; 4808 4809 pIn3 = &aMem[pOp->p3]; 4810 testcase( pIn3->flags & MEM_Int ); 4811 testcase( pIn3->flags & MEM_IntReal ); 4812 testcase( pIn3->flags & MEM_Real ); 4813 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 4814 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 4815 /* If pIn3->u.i does not contain an integer, compute iKey as the 4816 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 4817 ** into an integer without loss of information. Take care to avoid 4818 ** changing the datatype of pIn3, however, as it is used by other 4819 ** parts of the prepared statement. */ 4820 Mem x = pIn3[0]; 4821 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 4822 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 4823 iKey = x.u.i; 4824 goto notExistsWithKey; 4825 } 4826 /* Fall through into OP_NotExists */ 4827 /* no break */ deliberate_fall_through 4828 case OP_NotExists: /* jump, in3 */ 4829 pIn3 = &aMem[pOp->p3]; 4830 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 4831 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4832 iKey = pIn3->u.i; 4833 notExistsWithKey: 4834 pC = p->apCsr[pOp->p1]; 4835 assert( pC!=0 ); 4836 #ifdef SQLITE_DEBUG 4837 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 4838 #endif 4839 assert( pC->isTable ); 4840 assert( pC->eCurType==CURTYPE_BTREE ); 4841 pCrsr = pC->uc.pCursor; 4842 assert( pCrsr!=0 ); 4843 res = 0; 4844 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4845 assert( rc==SQLITE_OK || res==0 ); 4846 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4847 pC->nullRow = 0; 4848 pC->cacheStatus = CACHE_STALE; 4849 pC->deferredMoveto = 0; 4850 VdbeBranchTaken(res!=0,2); 4851 pC->seekResult = res; 4852 if( res!=0 ){ 4853 assert( rc==SQLITE_OK ); 4854 if( pOp->p2==0 ){ 4855 rc = SQLITE_CORRUPT_BKPT; 4856 }else{ 4857 goto jump_to_p2; 4858 } 4859 } 4860 if( rc ) goto abort_due_to_error; 4861 break; 4862 } 4863 4864 /* Opcode: Sequence P1 P2 * * * 4865 ** Synopsis: r[P2]=cursor[P1].ctr++ 4866 ** 4867 ** Find the next available sequence number for cursor P1. 4868 ** Write the sequence number into register P2. 4869 ** The sequence number on the cursor is incremented after this 4870 ** instruction. 4871 */ 4872 case OP_Sequence: { /* out2 */ 4873 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4874 assert( p->apCsr[pOp->p1]!=0 ); 4875 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4876 pOut = out2Prerelease(p, pOp); 4877 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4878 break; 4879 } 4880 4881 4882 /* Opcode: NewRowid P1 P2 P3 * * 4883 ** Synopsis: r[P2]=rowid 4884 ** 4885 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4886 ** The record number is not previously used as a key in the database 4887 ** table that cursor P1 points to. The new record number is written 4888 ** written to register P2. 4889 ** 4890 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4891 ** the largest previously generated record number. No new record numbers are 4892 ** allowed to be less than this value. When this value reaches its maximum, 4893 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4894 ** generated record number. This P3 mechanism is used to help implement the 4895 ** AUTOINCREMENT feature. 4896 */ 4897 case OP_NewRowid: { /* out2 */ 4898 i64 v; /* The new rowid */ 4899 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4900 int res; /* Result of an sqlite3BtreeLast() */ 4901 int cnt; /* Counter to limit the number of searches */ 4902 #ifndef SQLITE_OMIT_AUTOINCREMENT 4903 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4904 VdbeFrame *pFrame; /* Root frame of VDBE */ 4905 #endif 4906 4907 v = 0; 4908 res = 0; 4909 pOut = out2Prerelease(p, pOp); 4910 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4911 pC = p->apCsr[pOp->p1]; 4912 assert( pC!=0 ); 4913 assert( pC->isTable ); 4914 assert( pC->eCurType==CURTYPE_BTREE ); 4915 assert( pC->uc.pCursor!=0 ); 4916 { 4917 /* The next rowid or record number (different terms for the same 4918 ** thing) is obtained in a two-step algorithm. 4919 ** 4920 ** First we attempt to find the largest existing rowid and add one 4921 ** to that. But if the largest existing rowid is already the maximum 4922 ** positive integer, we have to fall through to the second 4923 ** probabilistic algorithm 4924 ** 4925 ** The second algorithm is to select a rowid at random and see if 4926 ** it already exists in the table. If it does not exist, we have 4927 ** succeeded. If the random rowid does exist, we select a new one 4928 ** and try again, up to 100 times. 4929 */ 4930 assert( pC->isTable ); 4931 4932 #ifdef SQLITE_32BIT_ROWID 4933 # define MAX_ROWID 0x7fffffff 4934 #else 4935 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4936 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4937 ** to provide the constant while making all compilers happy. 4938 */ 4939 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4940 #endif 4941 4942 if( !pC->useRandomRowid ){ 4943 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4944 if( rc!=SQLITE_OK ){ 4945 goto abort_due_to_error; 4946 } 4947 if( res ){ 4948 v = 1; /* IMP: R-61914-48074 */ 4949 }else{ 4950 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4951 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4952 if( v>=MAX_ROWID ){ 4953 pC->useRandomRowid = 1; 4954 }else{ 4955 v++; /* IMP: R-29538-34987 */ 4956 } 4957 } 4958 } 4959 4960 #ifndef SQLITE_OMIT_AUTOINCREMENT 4961 if( pOp->p3 ){ 4962 /* Assert that P3 is a valid memory cell. */ 4963 assert( pOp->p3>0 ); 4964 if( p->pFrame ){ 4965 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4966 /* Assert that P3 is a valid memory cell. */ 4967 assert( pOp->p3<=pFrame->nMem ); 4968 pMem = &pFrame->aMem[pOp->p3]; 4969 }else{ 4970 /* Assert that P3 is a valid memory cell. */ 4971 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4972 pMem = &aMem[pOp->p3]; 4973 memAboutToChange(p, pMem); 4974 } 4975 assert( memIsValid(pMem) ); 4976 4977 REGISTER_TRACE(pOp->p3, pMem); 4978 sqlite3VdbeMemIntegerify(pMem); 4979 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4980 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4981 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4982 goto abort_due_to_error; 4983 } 4984 if( v<pMem->u.i+1 ){ 4985 v = pMem->u.i + 1; 4986 } 4987 pMem->u.i = v; 4988 } 4989 #endif 4990 if( pC->useRandomRowid ){ 4991 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4992 ** largest possible integer (9223372036854775807) then the database 4993 ** engine starts picking positive candidate ROWIDs at random until 4994 ** it finds one that is not previously used. */ 4995 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4996 ** an AUTOINCREMENT table. */ 4997 cnt = 0; 4998 do{ 4999 sqlite3_randomness(sizeof(v), &v); 5000 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5001 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 5002 0, &res))==SQLITE_OK) 5003 && (res==0) 5004 && (++cnt<100)); 5005 if( rc ) goto abort_due_to_error; 5006 if( res==0 ){ 5007 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5008 goto abort_due_to_error; 5009 } 5010 assert( v>0 ); /* EV: R-40812-03570 */ 5011 } 5012 pC->deferredMoveto = 0; 5013 pC->cacheStatus = CACHE_STALE; 5014 } 5015 pOut->u.i = v; 5016 break; 5017 } 5018 5019 /* Opcode: Insert P1 P2 P3 P4 P5 5020 ** Synopsis: intkey=r[P3] data=r[P2] 5021 ** 5022 ** Write an entry into the table of cursor P1. A new entry is 5023 ** created if it doesn't already exist or the data for an existing 5024 ** entry is overwritten. The data is the value MEM_Blob stored in register 5025 ** number P2. The key is stored in register P3. The key must 5026 ** be a MEM_Int. 5027 ** 5028 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5029 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5030 ** then rowid is stored for subsequent return by the 5031 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5032 ** 5033 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5034 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5035 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5036 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5037 ** 5038 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5039 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5040 ** is part of an INSERT operation. The difference is only important to 5041 ** the update hook. 5042 ** 5043 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5044 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5045 ** following a successful insert. 5046 ** 5047 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5048 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5049 ** and register P2 becomes ephemeral. If the cursor is changed, the 5050 ** value of register P2 will then change. Make sure this does not 5051 ** cause any problems.) 5052 ** 5053 ** This instruction only works on tables. The equivalent instruction 5054 ** for indices is OP_IdxInsert. 5055 */ 5056 case OP_Insert: { 5057 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5058 Mem *pKey; /* MEM cell holding key for the record */ 5059 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5060 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5061 const char *zDb; /* database name - used by the update hook */ 5062 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5063 BtreePayload x; /* Payload to be inserted */ 5064 5065 pData = &aMem[pOp->p2]; 5066 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5067 assert( memIsValid(pData) ); 5068 pC = p->apCsr[pOp->p1]; 5069 assert( pC!=0 ); 5070 assert( pC->eCurType==CURTYPE_BTREE ); 5071 assert( pC->deferredMoveto==0 ); 5072 assert( pC->uc.pCursor!=0 ); 5073 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5074 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5075 REGISTER_TRACE(pOp->p2, pData); 5076 sqlite3VdbeIncrWriteCounter(p, pC); 5077 5078 pKey = &aMem[pOp->p3]; 5079 assert( pKey->flags & MEM_Int ); 5080 assert( memIsValid(pKey) ); 5081 REGISTER_TRACE(pOp->p3, pKey); 5082 x.nKey = pKey->u.i; 5083 5084 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5085 assert( pC->iDb>=0 ); 5086 zDb = db->aDb[pC->iDb].zDbSName; 5087 pTab = pOp->p4.pTab; 5088 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5089 }else{ 5090 pTab = 0; 5091 zDb = 0; /* Not needed. Silence a compiler warning. */ 5092 } 5093 5094 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5095 /* Invoke the pre-update hook, if any */ 5096 if( pTab ){ 5097 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5098 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5099 } 5100 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5101 /* Prevent post-update hook from running in cases when it should not */ 5102 pTab = 0; 5103 } 5104 } 5105 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5106 #endif 5107 5108 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5109 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5110 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5111 x.pData = pData->z; 5112 x.nData = pData->n; 5113 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5114 if( pData->flags & MEM_Zero ){ 5115 x.nZero = pData->u.nZero; 5116 }else{ 5117 x.nZero = 0; 5118 } 5119 x.pKey = 0; 5120 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5121 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5122 seekResult 5123 ); 5124 pC->deferredMoveto = 0; 5125 pC->cacheStatus = CACHE_STALE; 5126 5127 /* Invoke the update-hook if required. */ 5128 if( rc ) goto abort_due_to_error; 5129 if( pTab ){ 5130 assert( db->xUpdateCallback!=0 ); 5131 assert( pTab->aCol!=0 ); 5132 db->xUpdateCallback(db->pUpdateArg, 5133 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5134 zDb, pTab->zName, x.nKey); 5135 } 5136 break; 5137 } 5138 5139 /* Opcode: RowCell P1 P2 P3 * * 5140 ** 5141 ** P1 and P2 are both open cursors. Both must be opened on the same type 5142 ** of table - intkey or index. This opcode is used as part of copying 5143 ** the current row from P2 into P1. If the cursors are opened on intkey 5144 ** tables, register P3 contains the rowid to use with the new record in 5145 ** P1. If they are opened on index tables, P3 is not used. 5146 ** 5147 ** This opcode must be followed by either an Insert or InsertIdx opcode 5148 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5149 */ 5150 case OP_RowCell: { 5151 VdbeCursor *pDest; /* Cursor to write to */ 5152 VdbeCursor *pSrc; /* Cursor to read from */ 5153 i64 iKey; /* Rowid value to insert with */ 5154 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5155 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5156 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5157 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5158 pDest = p->apCsr[pOp->p1]; 5159 pSrc = p->apCsr[pOp->p2]; 5160 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5161 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5162 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5163 break; 5164 }; 5165 5166 /* Opcode: Delete P1 P2 P3 P4 P5 5167 ** 5168 ** Delete the record at which the P1 cursor is currently pointing. 5169 ** 5170 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5171 ** the cursor will be left pointing at either the next or the previous 5172 ** record in the table. If it is left pointing at the next record, then 5173 ** the next Next instruction will be a no-op. As a result, in this case 5174 ** it is ok to delete a record from within a Next loop. If 5175 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5176 ** left in an undefined state. 5177 ** 5178 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5179 ** delete one of several associated with deleting a table row and all its 5180 ** associated index entries. Exactly one of those deletes is the "primary" 5181 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5182 ** marked with the AUXDELETE flag. 5183 ** 5184 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5185 ** change count is incremented (otherwise not). 5186 ** 5187 ** P1 must not be pseudo-table. It has to be a real table with 5188 ** multiple rows. 5189 ** 5190 ** If P4 is not NULL then it points to a Table object. In this case either 5191 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5192 ** have been positioned using OP_NotFound prior to invoking this opcode in 5193 ** this case. Specifically, if one is configured, the pre-update hook is 5194 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5195 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5196 ** 5197 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5198 ** of the memory cell that contains the value that the rowid of the row will 5199 ** be set to by the update. 5200 */ 5201 case OP_Delete: { 5202 VdbeCursor *pC; 5203 const char *zDb; 5204 Table *pTab; 5205 int opflags; 5206 5207 opflags = pOp->p2; 5208 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5209 pC = p->apCsr[pOp->p1]; 5210 assert( pC!=0 ); 5211 assert( pC->eCurType==CURTYPE_BTREE ); 5212 assert( pC->uc.pCursor!=0 ); 5213 assert( pC->deferredMoveto==0 ); 5214 sqlite3VdbeIncrWriteCounter(p, pC); 5215 5216 #ifdef SQLITE_DEBUG 5217 if( pOp->p4type==P4_TABLE 5218 && HasRowid(pOp->p4.pTab) 5219 && pOp->p5==0 5220 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5221 ){ 5222 /* If p5 is zero, the seek operation that positioned the cursor prior to 5223 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5224 ** the row that is being deleted */ 5225 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5226 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5227 } 5228 #endif 5229 5230 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5231 ** the name of the db to pass as to it. Also set local pTab to a copy 5232 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5233 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5234 ** VdbeCursor.movetoTarget to the current rowid. */ 5235 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5236 assert( pC->iDb>=0 ); 5237 assert( pOp->p4.pTab!=0 ); 5238 zDb = db->aDb[pC->iDb].zDbSName; 5239 pTab = pOp->p4.pTab; 5240 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5241 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5242 } 5243 }else{ 5244 zDb = 0; /* Not needed. Silence a compiler warning. */ 5245 pTab = 0; /* Not needed. Silence a compiler warning. */ 5246 } 5247 5248 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5249 /* Invoke the pre-update-hook if required. */ 5250 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 5251 assert( !(opflags & OPFLAG_ISUPDATE) 5252 || HasRowid(pTab)==0 5253 || (aMem[pOp->p3].flags & MEM_Int) 5254 ); 5255 sqlite3VdbePreUpdateHook(p, pC, 5256 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5257 zDb, pTab, pC->movetoTarget, 5258 pOp->p3, -1 5259 ); 5260 } 5261 if( opflags & OPFLAG_ISNOOP ) break; 5262 #endif 5263 5264 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5265 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5266 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5267 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5268 5269 #ifdef SQLITE_DEBUG 5270 if( p->pFrame==0 ){ 5271 if( pC->isEphemeral==0 5272 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5273 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5274 ){ 5275 nExtraDelete++; 5276 } 5277 if( pOp->p2 & OPFLAG_NCHANGE ){ 5278 nExtraDelete--; 5279 } 5280 } 5281 #endif 5282 5283 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5284 pC->cacheStatus = CACHE_STALE; 5285 pC->seekResult = 0; 5286 if( rc ) goto abort_due_to_error; 5287 5288 /* Invoke the update-hook if required. */ 5289 if( opflags & OPFLAG_NCHANGE ){ 5290 p->nChange++; 5291 if( db->xUpdateCallback && HasRowid(pTab) ){ 5292 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5293 pC->movetoTarget); 5294 assert( pC->iDb>=0 ); 5295 } 5296 } 5297 5298 break; 5299 } 5300 /* Opcode: ResetCount * * * * * 5301 ** 5302 ** The value of the change counter is copied to the database handle 5303 ** change counter (returned by subsequent calls to sqlite3_changes()). 5304 ** Then the VMs internal change counter resets to 0. 5305 ** This is used by trigger programs. 5306 */ 5307 case OP_ResetCount: { 5308 sqlite3VdbeSetChanges(db, p->nChange); 5309 p->nChange = 0; 5310 break; 5311 } 5312 5313 /* Opcode: SorterCompare P1 P2 P3 P4 5314 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5315 ** 5316 ** P1 is a sorter cursor. This instruction compares a prefix of the 5317 ** record blob in register P3 against a prefix of the entry that 5318 ** the sorter cursor currently points to. Only the first P4 fields 5319 ** of r[P3] and the sorter record are compared. 5320 ** 5321 ** If either P3 or the sorter contains a NULL in one of their significant 5322 ** fields (not counting the P4 fields at the end which are ignored) then 5323 ** the comparison is assumed to be equal. 5324 ** 5325 ** Fall through to next instruction if the two records compare equal to 5326 ** each other. Jump to P2 if they are different. 5327 */ 5328 case OP_SorterCompare: { 5329 VdbeCursor *pC; 5330 int res; 5331 int nKeyCol; 5332 5333 pC = p->apCsr[pOp->p1]; 5334 assert( isSorter(pC) ); 5335 assert( pOp->p4type==P4_INT32 ); 5336 pIn3 = &aMem[pOp->p3]; 5337 nKeyCol = pOp->p4.i; 5338 res = 0; 5339 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5340 VdbeBranchTaken(res!=0,2); 5341 if( rc ) goto abort_due_to_error; 5342 if( res ) goto jump_to_p2; 5343 break; 5344 }; 5345 5346 /* Opcode: SorterData P1 P2 P3 * * 5347 ** Synopsis: r[P2]=data 5348 ** 5349 ** Write into register P2 the current sorter data for sorter cursor P1. 5350 ** Then clear the column header cache on cursor P3. 5351 ** 5352 ** This opcode is normally use to move a record out of the sorter and into 5353 ** a register that is the source for a pseudo-table cursor created using 5354 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5355 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5356 ** us from having to issue a separate NullRow instruction to clear that cache. 5357 */ 5358 case OP_SorterData: { 5359 VdbeCursor *pC; 5360 5361 pOut = &aMem[pOp->p2]; 5362 pC = p->apCsr[pOp->p1]; 5363 assert( isSorter(pC) ); 5364 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5365 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5366 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5367 if( rc ) goto abort_due_to_error; 5368 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5369 break; 5370 } 5371 5372 /* Opcode: RowData P1 P2 P3 * * 5373 ** Synopsis: r[P2]=data 5374 ** 5375 ** Write into register P2 the complete row content for the row at 5376 ** which cursor P1 is currently pointing. 5377 ** There is no interpretation of the data. 5378 ** It is just copied onto the P2 register exactly as 5379 ** it is found in the database file. 5380 ** 5381 ** If cursor P1 is an index, then the content is the key of the row. 5382 ** If cursor P2 is a table, then the content extracted is the data. 5383 ** 5384 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5385 ** of a real table, not a pseudo-table. 5386 ** 5387 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5388 ** into the database page. That means that the content of the output 5389 ** register will be invalidated as soon as the cursor moves - including 5390 ** moves caused by other cursors that "save" the current cursors 5391 ** position in order that they can write to the same table. If P3==0 5392 ** then a copy of the data is made into memory. P3!=0 is faster, but 5393 ** P3==0 is safer. 5394 ** 5395 ** If P3!=0 then the content of the P2 register is unsuitable for use 5396 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5397 ** The P2 register content is invalidated by opcodes like OP_Function or 5398 ** by any use of another cursor pointing to the same table. 5399 */ 5400 case OP_RowData: { 5401 VdbeCursor *pC; 5402 BtCursor *pCrsr; 5403 u32 n; 5404 5405 pOut = out2Prerelease(p, pOp); 5406 5407 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5408 pC = p->apCsr[pOp->p1]; 5409 assert( pC!=0 ); 5410 assert( pC->eCurType==CURTYPE_BTREE ); 5411 assert( isSorter(pC)==0 ); 5412 assert( pC->nullRow==0 ); 5413 assert( pC->uc.pCursor!=0 ); 5414 pCrsr = pC->uc.pCursor; 5415 5416 /* The OP_RowData opcodes always follow OP_NotExists or 5417 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5418 ** that might invalidate the cursor. 5419 ** If this where not the case, on of the following assert()s 5420 ** would fail. Should this ever change (because of changes in the code 5421 ** generator) then the fix would be to insert a call to 5422 ** sqlite3VdbeCursorMoveto(). 5423 */ 5424 assert( pC->deferredMoveto==0 ); 5425 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5426 5427 n = sqlite3BtreePayloadSize(pCrsr); 5428 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5429 goto too_big; 5430 } 5431 testcase( n==0 ); 5432 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5433 if( rc ) goto abort_due_to_error; 5434 if( !pOp->p3 ) Deephemeralize(pOut); 5435 UPDATE_MAX_BLOBSIZE(pOut); 5436 REGISTER_TRACE(pOp->p2, pOut); 5437 break; 5438 } 5439 5440 /* Opcode: Rowid P1 P2 * * * 5441 ** Synopsis: r[P2]=rowid 5442 ** 5443 ** Store in register P2 an integer which is the key of the table entry that 5444 ** P1 is currently point to. 5445 ** 5446 ** P1 can be either an ordinary table or a virtual table. There used to 5447 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5448 ** one opcode now works for both table types. 5449 */ 5450 case OP_Rowid: { /* out2 */ 5451 VdbeCursor *pC; 5452 i64 v; 5453 sqlite3_vtab *pVtab; 5454 const sqlite3_module *pModule; 5455 5456 pOut = out2Prerelease(p, pOp); 5457 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5458 pC = p->apCsr[pOp->p1]; 5459 assert( pC!=0 ); 5460 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5461 if( pC->nullRow ){ 5462 pOut->flags = MEM_Null; 5463 break; 5464 }else if( pC->deferredMoveto ){ 5465 v = pC->movetoTarget; 5466 #ifndef SQLITE_OMIT_VIRTUALTABLE 5467 }else if( pC->eCurType==CURTYPE_VTAB ){ 5468 assert( pC->uc.pVCur!=0 ); 5469 pVtab = pC->uc.pVCur->pVtab; 5470 pModule = pVtab->pModule; 5471 assert( pModule->xRowid ); 5472 rc = pModule->xRowid(pC->uc.pVCur, &v); 5473 sqlite3VtabImportErrmsg(p, pVtab); 5474 if( rc ) goto abort_due_to_error; 5475 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5476 }else{ 5477 assert( pC->eCurType==CURTYPE_BTREE ); 5478 assert( pC->uc.pCursor!=0 ); 5479 rc = sqlite3VdbeCursorRestore(pC); 5480 if( rc ) goto abort_due_to_error; 5481 if( pC->nullRow ){ 5482 pOut->flags = MEM_Null; 5483 break; 5484 } 5485 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5486 } 5487 pOut->u.i = v; 5488 break; 5489 } 5490 5491 /* Opcode: NullRow P1 * * * * 5492 ** 5493 ** Move the cursor P1 to a null row. Any OP_Column operations 5494 ** that occur while the cursor is on the null row will always 5495 ** write a NULL. 5496 */ 5497 case OP_NullRow: { 5498 VdbeCursor *pC; 5499 5500 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5501 pC = p->apCsr[pOp->p1]; 5502 assert( pC!=0 ); 5503 pC->nullRow = 1; 5504 pC->cacheStatus = CACHE_STALE; 5505 if( pC->eCurType==CURTYPE_BTREE ){ 5506 assert( pC->uc.pCursor!=0 ); 5507 sqlite3BtreeClearCursor(pC->uc.pCursor); 5508 } 5509 #ifdef SQLITE_DEBUG 5510 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5511 #endif 5512 break; 5513 } 5514 5515 /* Opcode: SeekEnd P1 * * * * 5516 ** 5517 ** Position cursor P1 at the end of the btree for the purpose of 5518 ** appending a new entry onto the btree. 5519 ** 5520 ** It is assumed that the cursor is used only for appending and so 5521 ** if the cursor is valid, then the cursor must already be pointing 5522 ** at the end of the btree and so no changes are made to 5523 ** the cursor. 5524 */ 5525 /* Opcode: Last P1 P2 * * * 5526 ** 5527 ** The next use of the Rowid or Column or Prev instruction for P1 5528 ** will refer to the last entry in the database table or index. 5529 ** If the table or index is empty and P2>0, then jump immediately to P2. 5530 ** If P2 is 0 or if the table or index is not empty, fall through 5531 ** to the following instruction. 5532 ** 5533 ** This opcode leaves the cursor configured to move in reverse order, 5534 ** from the end toward the beginning. In other words, the cursor is 5535 ** configured to use Prev, not Next. 5536 */ 5537 case OP_SeekEnd: 5538 case OP_Last: { /* jump */ 5539 VdbeCursor *pC; 5540 BtCursor *pCrsr; 5541 int res; 5542 5543 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5544 pC = p->apCsr[pOp->p1]; 5545 assert( pC!=0 ); 5546 assert( pC->eCurType==CURTYPE_BTREE ); 5547 pCrsr = pC->uc.pCursor; 5548 res = 0; 5549 assert( pCrsr!=0 ); 5550 #ifdef SQLITE_DEBUG 5551 pC->seekOp = pOp->opcode; 5552 #endif 5553 if( pOp->opcode==OP_SeekEnd ){ 5554 assert( pOp->p2==0 ); 5555 pC->seekResult = -1; 5556 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5557 break; 5558 } 5559 } 5560 rc = sqlite3BtreeLast(pCrsr, &res); 5561 pC->nullRow = (u8)res; 5562 pC->deferredMoveto = 0; 5563 pC->cacheStatus = CACHE_STALE; 5564 if( rc ) goto abort_due_to_error; 5565 if( pOp->p2>0 ){ 5566 VdbeBranchTaken(res!=0,2); 5567 if( res ) goto jump_to_p2; 5568 } 5569 break; 5570 } 5571 5572 /* Opcode: IfSmaller P1 P2 P3 * * 5573 ** 5574 ** Estimate the number of rows in the table P1. Jump to P2 if that 5575 ** estimate is less than approximately 2**(0.1*P3). 5576 */ 5577 case OP_IfSmaller: { /* jump */ 5578 VdbeCursor *pC; 5579 BtCursor *pCrsr; 5580 int res; 5581 i64 sz; 5582 5583 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5584 pC = p->apCsr[pOp->p1]; 5585 assert( pC!=0 ); 5586 pCrsr = pC->uc.pCursor; 5587 assert( pCrsr ); 5588 rc = sqlite3BtreeFirst(pCrsr, &res); 5589 if( rc ) goto abort_due_to_error; 5590 if( res==0 ){ 5591 sz = sqlite3BtreeRowCountEst(pCrsr); 5592 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5593 } 5594 VdbeBranchTaken(res!=0,2); 5595 if( res ) goto jump_to_p2; 5596 break; 5597 } 5598 5599 5600 /* Opcode: SorterSort P1 P2 * * * 5601 ** 5602 ** After all records have been inserted into the Sorter object 5603 ** identified by P1, invoke this opcode to actually do the sorting. 5604 ** Jump to P2 if there are no records to be sorted. 5605 ** 5606 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5607 ** for Sorter objects. 5608 */ 5609 /* Opcode: Sort P1 P2 * * * 5610 ** 5611 ** This opcode does exactly the same thing as OP_Rewind except that 5612 ** it increments an undocumented global variable used for testing. 5613 ** 5614 ** Sorting is accomplished by writing records into a sorting index, 5615 ** then rewinding that index and playing it back from beginning to 5616 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5617 ** rewinding so that the global variable will be incremented and 5618 ** regression tests can determine whether or not the optimizer is 5619 ** correctly optimizing out sorts. 5620 */ 5621 case OP_SorterSort: /* jump */ 5622 case OP_Sort: { /* jump */ 5623 #ifdef SQLITE_TEST 5624 sqlite3_sort_count++; 5625 sqlite3_search_count--; 5626 #endif 5627 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5628 /* Fall through into OP_Rewind */ 5629 /* no break */ deliberate_fall_through 5630 } 5631 /* Opcode: Rewind P1 P2 * * * 5632 ** 5633 ** The next use of the Rowid or Column or Next instruction for P1 5634 ** will refer to the first entry in the database table or index. 5635 ** If the table or index is empty, jump immediately to P2. 5636 ** If the table or index is not empty, fall through to the following 5637 ** instruction. 5638 ** 5639 ** This opcode leaves the cursor configured to move in forward order, 5640 ** from the beginning toward the end. In other words, the cursor is 5641 ** configured to use Next, not Prev. 5642 */ 5643 case OP_Rewind: { /* jump */ 5644 VdbeCursor *pC; 5645 BtCursor *pCrsr; 5646 int res; 5647 5648 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5649 assert( pOp->p5==0 ); 5650 pC = p->apCsr[pOp->p1]; 5651 assert( pC!=0 ); 5652 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5653 res = 1; 5654 #ifdef SQLITE_DEBUG 5655 pC->seekOp = OP_Rewind; 5656 #endif 5657 if( isSorter(pC) ){ 5658 rc = sqlite3VdbeSorterRewind(pC, &res); 5659 }else{ 5660 assert( pC->eCurType==CURTYPE_BTREE ); 5661 pCrsr = pC->uc.pCursor; 5662 assert( pCrsr ); 5663 rc = sqlite3BtreeFirst(pCrsr, &res); 5664 pC->deferredMoveto = 0; 5665 pC->cacheStatus = CACHE_STALE; 5666 } 5667 if( rc ) goto abort_due_to_error; 5668 pC->nullRow = (u8)res; 5669 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5670 VdbeBranchTaken(res!=0,2); 5671 if( res ) goto jump_to_p2; 5672 break; 5673 } 5674 5675 /* Opcode: Next P1 P2 P3 P4 P5 5676 ** 5677 ** Advance cursor P1 so that it points to the next key/data pair in its 5678 ** table or index. If there are no more key/value pairs then fall through 5679 ** to the following instruction. But if the cursor advance was successful, 5680 ** jump immediately to P2. 5681 ** 5682 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5683 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5684 ** to follow SeekLT, SeekLE, or OP_Last. 5685 ** 5686 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5687 ** been opened prior to this opcode or the program will segfault. 5688 ** 5689 ** The P3 value is a hint to the btree implementation. If P3==1, that 5690 ** means P1 is an SQL index and that this instruction could have been 5691 ** omitted if that index had been unique. P3 is usually 0. P3 is 5692 ** always either 0 or 1. 5693 ** 5694 ** P4 is always of type P4_ADVANCE. The function pointer points to 5695 ** sqlite3BtreeNext(). 5696 ** 5697 ** If P5 is positive and the jump is taken, then event counter 5698 ** number P5-1 in the prepared statement is incremented. 5699 ** 5700 ** See also: Prev 5701 */ 5702 /* Opcode: Prev P1 P2 P3 P4 P5 5703 ** 5704 ** Back up cursor P1 so that it points to the previous key/data pair in its 5705 ** table or index. If there is no previous key/value pairs then fall through 5706 ** to the following instruction. But if the cursor backup was successful, 5707 ** jump immediately to P2. 5708 ** 5709 ** 5710 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5711 ** OP_Last opcode used to position the cursor. Prev is not allowed 5712 ** to follow SeekGT, SeekGE, or OP_Rewind. 5713 ** 5714 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5715 ** not open then the behavior is undefined. 5716 ** 5717 ** The P3 value is a hint to the btree implementation. If P3==1, that 5718 ** means P1 is an SQL index and that this instruction could have been 5719 ** omitted if that index had been unique. P3 is usually 0. P3 is 5720 ** always either 0 or 1. 5721 ** 5722 ** P4 is always of type P4_ADVANCE. The function pointer points to 5723 ** sqlite3BtreePrevious(). 5724 ** 5725 ** If P5 is positive and the jump is taken, then event counter 5726 ** number P5-1 in the prepared statement is incremented. 5727 */ 5728 /* Opcode: SorterNext P1 P2 * * P5 5729 ** 5730 ** This opcode works just like OP_Next except that P1 must be a 5731 ** sorter object for which the OP_SorterSort opcode has been 5732 ** invoked. This opcode advances the cursor to the next sorted 5733 ** record, or jumps to P2 if there are no more sorted records. 5734 */ 5735 case OP_SorterNext: { /* jump */ 5736 VdbeCursor *pC; 5737 5738 pC = p->apCsr[pOp->p1]; 5739 assert( isSorter(pC) ); 5740 rc = sqlite3VdbeSorterNext(db, pC); 5741 goto next_tail; 5742 case OP_Prev: /* jump */ 5743 case OP_Next: /* jump */ 5744 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5745 assert( pOp->p5<ArraySize(p->aCounter) ); 5746 pC = p->apCsr[pOp->p1]; 5747 assert( pC!=0 ); 5748 assert( pC->deferredMoveto==0 ); 5749 assert( pC->eCurType==CURTYPE_BTREE ); 5750 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5751 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5752 5753 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5754 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5755 assert( pOp->opcode!=OP_Next 5756 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5757 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5758 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5759 || pC->seekOp==OP_IfNoHope); 5760 assert( pOp->opcode!=OP_Prev 5761 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5762 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5763 || pC->seekOp==OP_NullRow); 5764 5765 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5766 next_tail: 5767 pC->cacheStatus = CACHE_STALE; 5768 VdbeBranchTaken(rc==SQLITE_OK,2); 5769 if( rc==SQLITE_OK ){ 5770 pC->nullRow = 0; 5771 p->aCounter[pOp->p5]++; 5772 #ifdef SQLITE_TEST 5773 sqlite3_search_count++; 5774 #endif 5775 goto jump_to_p2_and_check_for_interrupt; 5776 } 5777 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5778 rc = SQLITE_OK; 5779 pC->nullRow = 1; 5780 goto check_for_interrupt; 5781 } 5782 5783 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5784 ** Synopsis: key=r[P2] 5785 ** 5786 ** Register P2 holds an SQL index key made using the 5787 ** MakeRecord instructions. This opcode writes that key 5788 ** into the index P1. Data for the entry is nil. 5789 ** 5790 ** If P4 is not zero, then it is the number of values in the unpacked 5791 ** key of reg(P2). In that case, P3 is the index of the first register 5792 ** for the unpacked key. The availability of the unpacked key can sometimes 5793 ** be an optimization. 5794 ** 5795 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5796 ** that this insert is likely to be an append. 5797 ** 5798 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5799 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5800 ** then the change counter is unchanged. 5801 ** 5802 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5803 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5804 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5805 ** seeks on the cursor or if the most recent seek used a key equivalent 5806 ** to P2. 5807 ** 5808 ** This instruction only works for indices. The equivalent instruction 5809 ** for tables is OP_Insert. 5810 */ 5811 case OP_IdxInsert: { /* in2 */ 5812 VdbeCursor *pC; 5813 BtreePayload x; 5814 5815 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5816 pC = p->apCsr[pOp->p1]; 5817 sqlite3VdbeIncrWriteCounter(p, pC); 5818 assert( pC!=0 ); 5819 assert( !isSorter(pC) ); 5820 pIn2 = &aMem[pOp->p2]; 5821 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 5822 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5823 assert( pC->eCurType==CURTYPE_BTREE ); 5824 assert( pC->isTable==0 ); 5825 rc = ExpandBlob(pIn2); 5826 if( rc ) goto abort_due_to_error; 5827 x.nKey = pIn2->n; 5828 x.pKey = pIn2->z; 5829 x.aMem = aMem + pOp->p3; 5830 x.nMem = (u16)pOp->p4.i; 5831 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5832 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5833 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5834 ); 5835 assert( pC->deferredMoveto==0 ); 5836 pC->cacheStatus = CACHE_STALE; 5837 if( rc) goto abort_due_to_error; 5838 break; 5839 } 5840 5841 /* Opcode: SorterInsert P1 P2 * * * 5842 ** Synopsis: key=r[P2] 5843 ** 5844 ** Register P2 holds an SQL index key made using the 5845 ** MakeRecord instructions. This opcode writes that key 5846 ** into the sorter P1. Data for the entry is nil. 5847 */ 5848 case OP_SorterInsert: { /* in2 */ 5849 VdbeCursor *pC; 5850 5851 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5852 pC = p->apCsr[pOp->p1]; 5853 sqlite3VdbeIncrWriteCounter(p, pC); 5854 assert( pC!=0 ); 5855 assert( isSorter(pC) ); 5856 pIn2 = &aMem[pOp->p2]; 5857 assert( pIn2->flags & MEM_Blob ); 5858 assert( pC->isTable==0 ); 5859 rc = ExpandBlob(pIn2); 5860 if( rc ) goto abort_due_to_error; 5861 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5862 if( rc) goto abort_due_to_error; 5863 break; 5864 } 5865 5866 /* Opcode: IdxDelete P1 P2 P3 * P5 5867 ** Synopsis: key=r[P2@P3] 5868 ** 5869 ** The content of P3 registers starting at register P2 form 5870 ** an unpacked index key. This opcode removes that entry from the 5871 ** index opened by cursor P1. 5872 ** 5873 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 5874 ** if no matching index entry is found. This happens when running 5875 ** an UPDATE or DELETE statement and the index entry to be updated 5876 ** or deleted is not found. For some uses of IdxDelete 5877 ** (example: the EXCEPT operator) it does not matter that no matching 5878 ** entry is found. For those cases, P5 is zero. 5879 */ 5880 case OP_IdxDelete: { 5881 VdbeCursor *pC; 5882 BtCursor *pCrsr; 5883 int res; 5884 UnpackedRecord r; 5885 5886 assert( pOp->p3>0 ); 5887 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5888 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5889 pC = p->apCsr[pOp->p1]; 5890 assert( pC!=0 ); 5891 assert( pC->eCurType==CURTYPE_BTREE ); 5892 sqlite3VdbeIncrWriteCounter(p, pC); 5893 pCrsr = pC->uc.pCursor; 5894 assert( pCrsr!=0 ); 5895 r.pKeyInfo = pC->pKeyInfo; 5896 r.nField = (u16)pOp->p3; 5897 r.default_rc = 0; 5898 r.aMem = &aMem[pOp->p2]; 5899 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5900 if( rc ) goto abort_due_to_error; 5901 if( res==0 ){ 5902 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5903 if( rc ) goto abort_due_to_error; 5904 }else if( pOp->p5 ){ 5905 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 5906 goto abort_due_to_error; 5907 } 5908 assert( pC->deferredMoveto==0 ); 5909 pC->cacheStatus = CACHE_STALE; 5910 pC->seekResult = 0; 5911 break; 5912 } 5913 5914 /* Opcode: DeferredSeek P1 * P3 P4 * 5915 ** Synopsis: Move P3 to P1.rowid if needed 5916 ** 5917 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5918 ** table. This opcode does a deferred seek of the P3 table cursor 5919 ** to the row that corresponds to the current row of P1. 5920 ** 5921 ** This is a deferred seek. Nothing actually happens until 5922 ** the cursor is used to read a record. That way, if no reads 5923 ** occur, no unnecessary I/O happens. 5924 ** 5925 ** P4 may be an array of integers (type P4_INTARRAY) containing 5926 ** one entry for each column in the P3 table. If array entry a(i) 5927 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5928 ** equivalent to performing the deferred seek and then reading column i 5929 ** from P1. This information is stored in P3 and used to redirect 5930 ** reads against P3 over to P1, thus possibly avoiding the need to 5931 ** seek and read cursor P3. 5932 */ 5933 /* Opcode: IdxRowid P1 P2 * * * 5934 ** Synopsis: r[P2]=rowid 5935 ** 5936 ** Write into register P2 an integer which is the last entry in the record at 5937 ** the end of the index key pointed to by cursor P1. This integer should be 5938 ** the rowid of the table entry to which this index entry points. 5939 ** 5940 ** See also: Rowid, MakeRecord. 5941 */ 5942 case OP_DeferredSeek: 5943 case OP_IdxRowid: { /* out2 */ 5944 VdbeCursor *pC; /* The P1 index cursor */ 5945 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5946 i64 rowid; /* Rowid that P1 current points to */ 5947 5948 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5949 pC = p->apCsr[pOp->p1]; 5950 assert( pC!=0 ); 5951 assert( pC->eCurType==CURTYPE_BTREE ); 5952 assert( pC->uc.pCursor!=0 ); 5953 assert( pC->isTable==0 ); 5954 assert( pC->deferredMoveto==0 ); 5955 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5956 5957 /* The IdxRowid and Seek opcodes are combined because of the commonality 5958 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5959 rc = sqlite3VdbeCursorRestore(pC); 5960 5961 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5962 ** out from under the cursor. That will never happens for an IdxRowid 5963 ** or Seek opcode */ 5964 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5965 5966 if( !pC->nullRow ){ 5967 rowid = 0; /* Not needed. Only used to silence a warning. */ 5968 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5969 if( rc!=SQLITE_OK ){ 5970 goto abort_due_to_error; 5971 } 5972 if( pOp->opcode==OP_DeferredSeek ){ 5973 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5974 pTabCur = p->apCsr[pOp->p3]; 5975 assert( pTabCur!=0 ); 5976 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5977 assert( pTabCur->uc.pCursor!=0 ); 5978 assert( pTabCur->isTable ); 5979 pTabCur->nullRow = 0; 5980 pTabCur->movetoTarget = rowid; 5981 pTabCur->deferredMoveto = 1; 5982 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5983 pTabCur->aAltMap = pOp->p4.ai; 5984 assert( !pC->isEphemeral ); 5985 assert( !pTabCur->isEphemeral ); 5986 pTabCur->pAltCursor = pC; 5987 }else{ 5988 pOut = out2Prerelease(p, pOp); 5989 pOut->u.i = rowid; 5990 } 5991 }else{ 5992 assert( pOp->opcode==OP_IdxRowid ); 5993 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5994 } 5995 break; 5996 } 5997 5998 /* Opcode: FinishSeek P1 * * * * 5999 ** 6000 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6001 ** seek operation now, without further delay. If the cursor seek has 6002 ** already occurred, this instruction is a no-op. 6003 */ 6004 case OP_FinishSeek: { 6005 VdbeCursor *pC; /* The P1 index cursor */ 6006 6007 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6008 pC = p->apCsr[pOp->p1]; 6009 if( pC->deferredMoveto ){ 6010 rc = sqlite3VdbeFinishMoveto(pC); 6011 if( rc ) goto abort_due_to_error; 6012 } 6013 break; 6014 } 6015 6016 /* Opcode: IdxGE P1 P2 P3 P4 * 6017 ** Synopsis: key=r[P3@P4] 6018 ** 6019 ** The P4 register values beginning with P3 form an unpacked index 6020 ** key that omits the PRIMARY KEY. Compare this key value against the index 6021 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6022 ** fields at the end. 6023 ** 6024 ** If the P1 index entry is greater than or equal to the key value 6025 ** then jump to P2. Otherwise fall through to the next instruction. 6026 */ 6027 /* Opcode: IdxGT P1 P2 P3 P4 * 6028 ** Synopsis: key=r[P3@P4] 6029 ** 6030 ** The P4 register values beginning with P3 form an unpacked index 6031 ** key that omits the PRIMARY KEY. Compare this key value against the index 6032 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6033 ** fields at the end. 6034 ** 6035 ** If the P1 index entry is greater than the key value 6036 ** then jump to P2. Otherwise fall through to the next instruction. 6037 */ 6038 /* Opcode: IdxLT P1 P2 P3 P4 * 6039 ** Synopsis: key=r[P3@P4] 6040 ** 6041 ** The P4 register values beginning with P3 form an unpacked index 6042 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6043 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6044 ** ROWID on the P1 index. 6045 ** 6046 ** If the P1 index entry is less than the key value then jump to P2. 6047 ** Otherwise fall through to the next instruction. 6048 */ 6049 /* Opcode: IdxLE P1 P2 P3 P4 * 6050 ** Synopsis: key=r[P3@P4] 6051 ** 6052 ** The P4 register values beginning with P3 form an unpacked index 6053 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6054 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6055 ** ROWID on the P1 index. 6056 ** 6057 ** If the P1 index entry is less than or equal to the key value then jump 6058 ** to P2. Otherwise fall through to the next instruction. 6059 */ 6060 case OP_IdxLE: /* jump */ 6061 case OP_IdxGT: /* jump */ 6062 case OP_IdxLT: /* jump */ 6063 case OP_IdxGE: { /* jump */ 6064 VdbeCursor *pC; 6065 int res; 6066 UnpackedRecord r; 6067 6068 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6069 pC = p->apCsr[pOp->p1]; 6070 assert( pC!=0 ); 6071 assert( pC->isOrdered ); 6072 assert( pC->eCurType==CURTYPE_BTREE ); 6073 assert( pC->uc.pCursor!=0); 6074 assert( pC->deferredMoveto==0 ); 6075 assert( pOp->p4type==P4_INT32 ); 6076 r.pKeyInfo = pC->pKeyInfo; 6077 r.nField = (u16)pOp->p4.i; 6078 if( pOp->opcode<OP_IdxLT ){ 6079 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6080 r.default_rc = -1; 6081 }else{ 6082 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6083 r.default_rc = 0; 6084 } 6085 r.aMem = &aMem[pOp->p3]; 6086 #ifdef SQLITE_DEBUG 6087 { 6088 int i; 6089 for(i=0; i<r.nField; i++){ 6090 assert( memIsValid(&r.aMem[i]) ); 6091 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6092 } 6093 } 6094 #endif 6095 6096 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6097 { 6098 i64 nCellKey = 0; 6099 BtCursor *pCur; 6100 Mem m; 6101 6102 assert( pC->eCurType==CURTYPE_BTREE ); 6103 pCur = pC->uc.pCursor; 6104 assert( sqlite3BtreeCursorIsValid(pCur) ); 6105 nCellKey = sqlite3BtreePayloadSize(pCur); 6106 /* nCellKey will always be between 0 and 0xffffffff because of the way 6107 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6108 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6109 rc = SQLITE_CORRUPT_BKPT; 6110 goto abort_due_to_error; 6111 } 6112 sqlite3VdbeMemInit(&m, db, 0); 6113 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6114 if( rc ) goto abort_due_to_error; 6115 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6116 sqlite3VdbeMemRelease(&m); 6117 } 6118 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6119 6120 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6121 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6122 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6123 res = -res; 6124 }else{ 6125 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6126 res++; 6127 } 6128 VdbeBranchTaken(res>0,2); 6129 assert( rc==SQLITE_OK ); 6130 if( res>0 ) goto jump_to_p2; 6131 break; 6132 } 6133 6134 /* Opcode: Destroy P1 P2 P3 * * 6135 ** 6136 ** Delete an entire database table or index whose root page in the database 6137 ** file is given by P1. 6138 ** 6139 ** The table being destroyed is in the main database file if P3==0. If 6140 ** P3==1 then the table to be clear is in the auxiliary database file 6141 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6142 ** 6143 ** If AUTOVACUUM is enabled then it is possible that another root page 6144 ** might be moved into the newly deleted root page in order to keep all 6145 ** root pages contiguous at the beginning of the database. The former 6146 ** value of the root page that moved - its value before the move occurred - 6147 ** is stored in register P2. If no page movement was required (because the 6148 ** table being dropped was already the last one in the database) then a 6149 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6150 ** is stored in register P2. 6151 ** 6152 ** This opcode throws an error if there are any active reader VMs when 6153 ** it is invoked. This is done to avoid the difficulty associated with 6154 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6155 ** database. This error is thrown even if the database is not an AUTOVACUUM 6156 ** db in order to avoid introducing an incompatibility between autovacuum 6157 ** and non-autovacuum modes. 6158 ** 6159 ** See also: Clear 6160 */ 6161 case OP_Destroy: { /* out2 */ 6162 int iMoved; 6163 int iDb; 6164 6165 sqlite3VdbeIncrWriteCounter(p, 0); 6166 assert( p->readOnly==0 ); 6167 assert( pOp->p1>1 ); 6168 pOut = out2Prerelease(p, pOp); 6169 pOut->flags = MEM_Null; 6170 if( db->nVdbeRead > db->nVDestroy+1 ){ 6171 rc = SQLITE_LOCKED; 6172 p->errorAction = OE_Abort; 6173 goto abort_due_to_error; 6174 }else{ 6175 iDb = pOp->p3; 6176 assert( DbMaskTest(p->btreeMask, iDb) ); 6177 iMoved = 0; /* Not needed. Only to silence a warning. */ 6178 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6179 pOut->flags = MEM_Int; 6180 pOut->u.i = iMoved; 6181 if( rc ) goto abort_due_to_error; 6182 #ifndef SQLITE_OMIT_AUTOVACUUM 6183 if( iMoved!=0 ){ 6184 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6185 /* All OP_Destroy operations occur on the same btree */ 6186 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6187 resetSchemaOnFault = iDb+1; 6188 } 6189 #endif 6190 } 6191 break; 6192 } 6193 6194 /* Opcode: Clear P1 P2 P3 6195 ** 6196 ** Delete all contents of the database table or index whose root page 6197 ** in the database file is given by P1. But, unlike Destroy, do not 6198 ** remove the table or index from the database file. 6199 ** 6200 ** The table being clear is in the main database file if P2==0. If 6201 ** P2==1 then the table to be clear is in the auxiliary database file 6202 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6203 ** 6204 ** If the P3 value is non-zero, then the table referred to must be an 6205 ** intkey table (an SQL table, not an index). In this case the row change 6206 ** count is incremented by the number of rows in the table being cleared. 6207 ** If P3 is greater than zero, then the value stored in register P3 is 6208 ** also incremented by the number of rows in the table being cleared. 6209 ** 6210 ** See also: Destroy 6211 */ 6212 case OP_Clear: { 6213 int nChange; 6214 6215 sqlite3VdbeIncrWriteCounter(p, 0); 6216 nChange = 0; 6217 assert( p->readOnly==0 ); 6218 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6219 rc = sqlite3BtreeClearTable( 6220 db->aDb[pOp->p2].pBt, (u32)pOp->p1, (pOp->p3 ? &nChange : 0) 6221 ); 6222 if( pOp->p3 ){ 6223 p->nChange += nChange; 6224 if( pOp->p3>0 ){ 6225 assert( memIsValid(&aMem[pOp->p3]) ); 6226 memAboutToChange(p, &aMem[pOp->p3]); 6227 aMem[pOp->p3].u.i += nChange; 6228 } 6229 } 6230 if( rc ) goto abort_due_to_error; 6231 break; 6232 } 6233 6234 /* Opcode: ResetSorter P1 * * * * 6235 ** 6236 ** Delete all contents from the ephemeral table or sorter 6237 ** that is open on cursor P1. 6238 ** 6239 ** This opcode only works for cursors used for sorting and 6240 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6241 */ 6242 case OP_ResetSorter: { 6243 VdbeCursor *pC; 6244 6245 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6246 pC = p->apCsr[pOp->p1]; 6247 assert( pC!=0 ); 6248 if( isSorter(pC) ){ 6249 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6250 }else{ 6251 assert( pC->eCurType==CURTYPE_BTREE ); 6252 assert( pC->isEphemeral ); 6253 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6254 if( rc ) goto abort_due_to_error; 6255 } 6256 break; 6257 } 6258 6259 /* Opcode: CreateBtree P1 P2 P3 * * 6260 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6261 ** 6262 ** Allocate a new b-tree in the main database file if P1==0 or in the 6263 ** TEMP database file if P1==1 or in an attached database if 6264 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6265 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6266 ** The root page number of the new b-tree is stored in register P2. 6267 */ 6268 case OP_CreateBtree: { /* out2 */ 6269 Pgno pgno; 6270 Db *pDb; 6271 6272 sqlite3VdbeIncrWriteCounter(p, 0); 6273 pOut = out2Prerelease(p, pOp); 6274 pgno = 0; 6275 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6276 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6277 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6278 assert( p->readOnly==0 ); 6279 pDb = &db->aDb[pOp->p1]; 6280 assert( pDb->pBt!=0 ); 6281 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6282 if( rc ) goto abort_due_to_error; 6283 pOut->u.i = pgno; 6284 break; 6285 } 6286 6287 /* Opcode: SqlExec * * * P4 * 6288 ** 6289 ** Run the SQL statement or statements specified in the P4 string. 6290 */ 6291 case OP_SqlExec: { 6292 sqlite3VdbeIncrWriteCounter(p, 0); 6293 db->nSqlExec++; 6294 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6295 db->nSqlExec--; 6296 if( rc ) goto abort_due_to_error; 6297 break; 6298 } 6299 6300 /* Opcode: ParseSchema P1 * * P4 * 6301 ** 6302 ** Read and parse all entries from the schema table of database P1 6303 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6304 ** entire schema for P1 is reparsed. 6305 ** 6306 ** This opcode invokes the parser to create a new virtual machine, 6307 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6308 */ 6309 case OP_ParseSchema: { 6310 int iDb; 6311 const char *zSchema; 6312 char *zSql; 6313 InitData initData; 6314 6315 /* Any prepared statement that invokes this opcode will hold mutexes 6316 ** on every btree. This is a prerequisite for invoking 6317 ** sqlite3InitCallback(). 6318 */ 6319 #ifdef SQLITE_DEBUG 6320 for(iDb=0; iDb<db->nDb; iDb++){ 6321 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6322 } 6323 #endif 6324 6325 iDb = pOp->p1; 6326 assert( iDb>=0 && iDb<db->nDb ); 6327 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) || db->mallocFailed ); 6328 6329 #ifndef SQLITE_OMIT_ALTERTABLE 6330 if( pOp->p4.z==0 ){ 6331 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6332 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6333 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6334 db->mDbFlags |= DBFLAG_SchemaChange; 6335 p->expired = 0; 6336 }else 6337 #endif 6338 { 6339 zSchema = DFLT_SCHEMA_TABLE; 6340 initData.db = db; 6341 initData.iDb = iDb; 6342 initData.pzErrMsg = &p->zErrMsg; 6343 initData.mInitFlags = 0; 6344 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6345 zSql = sqlite3MPrintf(db, 6346 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6347 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6348 if( zSql==0 ){ 6349 rc = SQLITE_NOMEM_BKPT; 6350 }else{ 6351 assert( db->init.busy==0 ); 6352 db->init.busy = 1; 6353 initData.rc = SQLITE_OK; 6354 initData.nInitRow = 0; 6355 assert( !db->mallocFailed ); 6356 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6357 if( rc==SQLITE_OK ) rc = initData.rc; 6358 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6359 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6360 ** at least one SQL statement. Any less than that indicates that 6361 ** the sqlite_schema table is corrupt. */ 6362 rc = SQLITE_CORRUPT_BKPT; 6363 } 6364 sqlite3DbFreeNN(db, zSql); 6365 db->init.busy = 0; 6366 } 6367 } 6368 if( rc ){ 6369 sqlite3ResetAllSchemasOfConnection(db); 6370 if( rc==SQLITE_NOMEM ){ 6371 goto no_mem; 6372 } 6373 goto abort_due_to_error; 6374 } 6375 break; 6376 } 6377 6378 #if !defined(SQLITE_OMIT_ANALYZE) 6379 /* Opcode: LoadAnalysis P1 * * * * 6380 ** 6381 ** Read the sqlite_stat1 table for database P1 and load the content 6382 ** of that table into the internal index hash table. This will cause 6383 ** the analysis to be used when preparing all subsequent queries. 6384 */ 6385 case OP_LoadAnalysis: { 6386 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6387 rc = sqlite3AnalysisLoad(db, pOp->p1); 6388 if( rc ) goto abort_due_to_error; 6389 break; 6390 } 6391 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6392 6393 /* Opcode: DropTable P1 * * P4 * 6394 ** 6395 ** Remove the internal (in-memory) data structures that describe 6396 ** the table named P4 in database P1. This is called after a table 6397 ** is dropped from disk (using the Destroy opcode) in order to keep 6398 ** the internal representation of the 6399 ** schema consistent with what is on disk. 6400 */ 6401 case OP_DropTable: { 6402 sqlite3VdbeIncrWriteCounter(p, 0); 6403 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6404 break; 6405 } 6406 6407 /* Opcode: DropIndex P1 * * P4 * 6408 ** 6409 ** Remove the internal (in-memory) data structures that describe 6410 ** the index named P4 in database P1. This is called after an index 6411 ** is dropped from disk (using the Destroy opcode) 6412 ** in order to keep the internal representation of the 6413 ** schema consistent with what is on disk. 6414 */ 6415 case OP_DropIndex: { 6416 sqlite3VdbeIncrWriteCounter(p, 0); 6417 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6418 break; 6419 } 6420 6421 /* Opcode: DropTrigger P1 * * P4 * 6422 ** 6423 ** Remove the internal (in-memory) data structures that describe 6424 ** the trigger named P4 in database P1. This is called after a trigger 6425 ** is dropped from disk (using the Destroy opcode) in order to keep 6426 ** the internal representation of the 6427 ** schema consistent with what is on disk. 6428 */ 6429 case OP_DropTrigger: { 6430 sqlite3VdbeIncrWriteCounter(p, 0); 6431 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6432 break; 6433 } 6434 6435 6436 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6437 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6438 ** 6439 ** Do an analysis of the currently open database. Store in 6440 ** register P1 the text of an error message describing any problems. 6441 ** If no problems are found, store a NULL in register P1. 6442 ** 6443 ** The register P3 contains one less than the maximum number of allowed errors. 6444 ** At most reg(P3) errors will be reported. 6445 ** In other words, the analysis stops as soon as reg(P1) errors are 6446 ** seen. Reg(P1) is updated with the number of errors remaining. 6447 ** 6448 ** The root page numbers of all tables in the database are integers 6449 ** stored in P4_INTARRAY argument. 6450 ** 6451 ** If P5 is not zero, the check is done on the auxiliary database 6452 ** file, not the main database file. 6453 ** 6454 ** This opcode is used to implement the integrity_check pragma. 6455 */ 6456 case OP_IntegrityCk: { 6457 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6458 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6459 int nErr; /* Number of errors reported */ 6460 char *z; /* Text of the error report */ 6461 Mem *pnErr; /* Register keeping track of errors remaining */ 6462 6463 assert( p->bIsReader ); 6464 nRoot = pOp->p2; 6465 aRoot = pOp->p4.ai; 6466 assert( nRoot>0 ); 6467 assert( aRoot[0]==(Pgno)nRoot ); 6468 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6469 pnErr = &aMem[pOp->p3]; 6470 assert( (pnErr->flags & MEM_Int)!=0 ); 6471 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6472 pIn1 = &aMem[pOp->p1]; 6473 assert( pOp->p5<db->nDb ); 6474 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6475 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6476 (int)pnErr->u.i+1, &nErr); 6477 sqlite3VdbeMemSetNull(pIn1); 6478 if( nErr==0 ){ 6479 assert( z==0 ); 6480 }else if( z==0 ){ 6481 goto no_mem; 6482 }else{ 6483 pnErr->u.i -= nErr-1; 6484 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6485 } 6486 UPDATE_MAX_BLOBSIZE(pIn1); 6487 sqlite3VdbeChangeEncoding(pIn1, encoding); 6488 goto check_for_interrupt; 6489 } 6490 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6491 6492 /* Opcode: RowSetAdd P1 P2 * * * 6493 ** Synopsis: rowset(P1)=r[P2] 6494 ** 6495 ** Insert the integer value held by register P2 into a RowSet object 6496 ** held in register P1. 6497 ** 6498 ** An assertion fails if P2 is not an integer. 6499 */ 6500 case OP_RowSetAdd: { /* in1, in2 */ 6501 pIn1 = &aMem[pOp->p1]; 6502 pIn2 = &aMem[pOp->p2]; 6503 assert( (pIn2->flags & MEM_Int)!=0 ); 6504 if( (pIn1->flags & MEM_Blob)==0 ){ 6505 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6506 } 6507 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6508 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6509 break; 6510 } 6511 6512 /* Opcode: RowSetRead P1 P2 P3 * * 6513 ** Synopsis: r[P3]=rowset(P1) 6514 ** 6515 ** Extract the smallest value from the RowSet object in P1 6516 ** and put that value into register P3. 6517 ** Or, if RowSet object P1 is initially empty, leave P3 6518 ** unchanged and jump to instruction P2. 6519 */ 6520 case OP_RowSetRead: { /* jump, in1, out3 */ 6521 i64 val; 6522 6523 pIn1 = &aMem[pOp->p1]; 6524 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6525 if( (pIn1->flags & MEM_Blob)==0 6526 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6527 ){ 6528 /* The boolean index is empty */ 6529 sqlite3VdbeMemSetNull(pIn1); 6530 VdbeBranchTaken(1,2); 6531 goto jump_to_p2_and_check_for_interrupt; 6532 }else{ 6533 /* A value was pulled from the index */ 6534 VdbeBranchTaken(0,2); 6535 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6536 } 6537 goto check_for_interrupt; 6538 } 6539 6540 /* Opcode: RowSetTest P1 P2 P3 P4 6541 ** Synopsis: if r[P3] in rowset(P1) goto P2 6542 ** 6543 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6544 ** contains a RowSet object and that RowSet object contains 6545 ** the value held in P3, jump to register P2. Otherwise, insert the 6546 ** integer in P3 into the RowSet and continue on to the 6547 ** next opcode. 6548 ** 6549 ** The RowSet object is optimized for the case where sets of integers 6550 ** are inserted in distinct phases, which each set contains no duplicates. 6551 ** Each set is identified by a unique P4 value. The first set 6552 ** must have P4==0, the final set must have P4==-1, and for all other sets 6553 ** must have P4>0. 6554 ** 6555 ** This allows optimizations: (a) when P4==0 there is no need to test 6556 ** the RowSet object for P3, as it is guaranteed not to contain it, 6557 ** (b) when P4==-1 there is no need to insert the value, as it will 6558 ** never be tested for, and (c) when a value that is part of set X is 6559 ** inserted, there is no need to search to see if the same value was 6560 ** previously inserted as part of set X (only if it was previously 6561 ** inserted as part of some other set). 6562 */ 6563 case OP_RowSetTest: { /* jump, in1, in3 */ 6564 int iSet; 6565 int exists; 6566 6567 pIn1 = &aMem[pOp->p1]; 6568 pIn3 = &aMem[pOp->p3]; 6569 iSet = pOp->p4.i; 6570 assert( pIn3->flags&MEM_Int ); 6571 6572 /* If there is anything other than a rowset object in memory cell P1, 6573 ** delete it now and initialize P1 with an empty rowset 6574 */ 6575 if( (pIn1->flags & MEM_Blob)==0 ){ 6576 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6577 } 6578 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6579 assert( pOp->p4type==P4_INT32 ); 6580 assert( iSet==-1 || iSet>=0 ); 6581 if( iSet ){ 6582 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6583 VdbeBranchTaken(exists!=0,2); 6584 if( exists ) goto jump_to_p2; 6585 } 6586 if( iSet>=0 ){ 6587 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6588 } 6589 break; 6590 } 6591 6592 6593 #ifndef SQLITE_OMIT_TRIGGER 6594 6595 /* Opcode: Program P1 P2 P3 P4 P5 6596 ** 6597 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6598 ** 6599 ** P1 contains the address of the memory cell that contains the first memory 6600 ** cell in an array of values used as arguments to the sub-program. P2 6601 ** contains the address to jump to if the sub-program throws an IGNORE 6602 ** exception using the RAISE() function. Register P3 contains the address 6603 ** of a memory cell in this (the parent) VM that is used to allocate the 6604 ** memory required by the sub-vdbe at runtime. 6605 ** 6606 ** P4 is a pointer to the VM containing the trigger program. 6607 ** 6608 ** If P5 is non-zero, then recursive program invocation is enabled. 6609 */ 6610 case OP_Program: { /* jump */ 6611 int nMem; /* Number of memory registers for sub-program */ 6612 int nByte; /* Bytes of runtime space required for sub-program */ 6613 Mem *pRt; /* Register to allocate runtime space */ 6614 Mem *pMem; /* Used to iterate through memory cells */ 6615 Mem *pEnd; /* Last memory cell in new array */ 6616 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6617 SubProgram *pProgram; /* Sub-program to execute */ 6618 void *t; /* Token identifying trigger */ 6619 6620 pProgram = pOp->p4.pProgram; 6621 pRt = &aMem[pOp->p3]; 6622 assert( pProgram->nOp>0 ); 6623 6624 /* If the p5 flag is clear, then recursive invocation of triggers is 6625 ** disabled for backwards compatibility (p5 is set if this sub-program 6626 ** is really a trigger, not a foreign key action, and the flag set 6627 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6628 ** 6629 ** It is recursive invocation of triggers, at the SQL level, that is 6630 ** disabled. In some cases a single trigger may generate more than one 6631 ** SubProgram (if the trigger may be executed with more than one different 6632 ** ON CONFLICT algorithm). SubProgram structures associated with a 6633 ** single trigger all have the same value for the SubProgram.token 6634 ** variable. */ 6635 if( pOp->p5 ){ 6636 t = pProgram->token; 6637 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6638 if( pFrame ) break; 6639 } 6640 6641 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6642 rc = SQLITE_ERROR; 6643 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6644 goto abort_due_to_error; 6645 } 6646 6647 /* Register pRt is used to store the memory required to save the state 6648 ** of the current program, and the memory required at runtime to execute 6649 ** the trigger program. If this trigger has been fired before, then pRt 6650 ** is already allocated. Otherwise, it must be initialized. */ 6651 if( (pRt->flags&MEM_Blob)==0 ){ 6652 /* SubProgram.nMem is set to the number of memory cells used by the 6653 ** program stored in SubProgram.aOp. As well as these, one memory 6654 ** cell is required for each cursor used by the program. Set local 6655 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6656 */ 6657 nMem = pProgram->nMem + pProgram->nCsr; 6658 assert( nMem>0 ); 6659 if( pProgram->nCsr==0 ) nMem++; 6660 nByte = ROUND8(sizeof(VdbeFrame)) 6661 + nMem * sizeof(Mem) 6662 + pProgram->nCsr * sizeof(VdbeCursor*) 6663 + (pProgram->nOp + 7)/8; 6664 pFrame = sqlite3DbMallocZero(db, nByte); 6665 if( !pFrame ){ 6666 goto no_mem; 6667 } 6668 sqlite3VdbeMemRelease(pRt); 6669 pRt->flags = MEM_Blob|MEM_Dyn; 6670 pRt->z = (char*)pFrame; 6671 pRt->n = nByte; 6672 pRt->xDel = sqlite3VdbeFrameMemDel; 6673 6674 pFrame->v = p; 6675 pFrame->nChildMem = nMem; 6676 pFrame->nChildCsr = pProgram->nCsr; 6677 pFrame->pc = (int)(pOp - aOp); 6678 pFrame->aMem = p->aMem; 6679 pFrame->nMem = p->nMem; 6680 pFrame->apCsr = p->apCsr; 6681 pFrame->nCursor = p->nCursor; 6682 pFrame->aOp = p->aOp; 6683 pFrame->nOp = p->nOp; 6684 pFrame->token = pProgram->token; 6685 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6686 pFrame->anExec = p->anExec; 6687 #endif 6688 #ifdef SQLITE_DEBUG 6689 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6690 #endif 6691 6692 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6693 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6694 pMem->flags = MEM_Undefined; 6695 pMem->db = db; 6696 } 6697 }else{ 6698 pFrame = (VdbeFrame*)pRt->z; 6699 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6700 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6701 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6702 assert( pProgram->nCsr==pFrame->nChildCsr ); 6703 assert( (int)(pOp - aOp)==pFrame->pc ); 6704 } 6705 6706 p->nFrame++; 6707 pFrame->pParent = p->pFrame; 6708 pFrame->lastRowid = db->lastRowid; 6709 pFrame->nChange = p->nChange; 6710 pFrame->nDbChange = p->db->nChange; 6711 assert( pFrame->pAuxData==0 ); 6712 pFrame->pAuxData = p->pAuxData; 6713 p->pAuxData = 0; 6714 p->nChange = 0; 6715 p->pFrame = pFrame; 6716 p->aMem = aMem = VdbeFrameMem(pFrame); 6717 p->nMem = pFrame->nChildMem; 6718 p->nCursor = (u16)pFrame->nChildCsr; 6719 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6720 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6721 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6722 p->aOp = aOp = pProgram->aOp; 6723 p->nOp = pProgram->nOp; 6724 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6725 p->anExec = 0; 6726 #endif 6727 #ifdef SQLITE_DEBUG 6728 /* Verify that second and subsequent executions of the same trigger do not 6729 ** try to reuse register values from the first use. */ 6730 { 6731 int i; 6732 for(i=0; i<p->nMem; i++){ 6733 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6734 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6735 } 6736 } 6737 #endif 6738 pOp = &aOp[-1]; 6739 goto check_for_interrupt; 6740 } 6741 6742 /* Opcode: Param P1 P2 * * * 6743 ** 6744 ** This opcode is only ever present in sub-programs called via the 6745 ** OP_Program instruction. Copy a value currently stored in a memory 6746 ** cell of the calling (parent) frame to cell P2 in the current frames 6747 ** address space. This is used by trigger programs to access the new.* 6748 ** and old.* values. 6749 ** 6750 ** The address of the cell in the parent frame is determined by adding 6751 ** the value of the P1 argument to the value of the P1 argument to the 6752 ** calling OP_Program instruction. 6753 */ 6754 case OP_Param: { /* out2 */ 6755 VdbeFrame *pFrame; 6756 Mem *pIn; 6757 pOut = out2Prerelease(p, pOp); 6758 pFrame = p->pFrame; 6759 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6760 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6761 break; 6762 } 6763 6764 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6765 6766 #ifndef SQLITE_OMIT_FOREIGN_KEY 6767 /* Opcode: FkCounter P1 P2 * * * 6768 ** Synopsis: fkctr[P1]+=P2 6769 ** 6770 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6771 ** If P1 is non-zero, the database constraint counter is incremented 6772 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6773 ** statement counter is incremented (immediate foreign key constraints). 6774 */ 6775 case OP_FkCounter: { 6776 if( db->flags & SQLITE_DeferFKs ){ 6777 db->nDeferredImmCons += pOp->p2; 6778 }else if( pOp->p1 ){ 6779 db->nDeferredCons += pOp->p2; 6780 }else{ 6781 p->nFkConstraint += pOp->p2; 6782 } 6783 break; 6784 } 6785 6786 /* Opcode: FkIfZero P1 P2 * * * 6787 ** Synopsis: if fkctr[P1]==0 goto P2 6788 ** 6789 ** This opcode tests if a foreign key constraint-counter is currently zero. 6790 ** If so, jump to instruction P2. Otherwise, fall through to the next 6791 ** instruction. 6792 ** 6793 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6794 ** is zero (the one that counts deferred constraint violations). If P1 is 6795 ** zero, the jump is taken if the statement constraint-counter is zero 6796 ** (immediate foreign key constraint violations). 6797 */ 6798 case OP_FkIfZero: { /* jump */ 6799 if( pOp->p1 ){ 6800 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6801 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6802 }else{ 6803 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6804 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6805 } 6806 break; 6807 } 6808 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6809 6810 #ifndef SQLITE_OMIT_AUTOINCREMENT 6811 /* Opcode: MemMax P1 P2 * * * 6812 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6813 ** 6814 ** P1 is a register in the root frame of this VM (the root frame is 6815 ** different from the current frame if this instruction is being executed 6816 ** within a sub-program). Set the value of register P1 to the maximum of 6817 ** its current value and the value in register P2. 6818 ** 6819 ** This instruction throws an error if the memory cell is not initially 6820 ** an integer. 6821 */ 6822 case OP_MemMax: { /* in2 */ 6823 VdbeFrame *pFrame; 6824 if( p->pFrame ){ 6825 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6826 pIn1 = &pFrame->aMem[pOp->p1]; 6827 }else{ 6828 pIn1 = &aMem[pOp->p1]; 6829 } 6830 assert( memIsValid(pIn1) ); 6831 sqlite3VdbeMemIntegerify(pIn1); 6832 pIn2 = &aMem[pOp->p2]; 6833 sqlite3VdbeMemIntegerify(pIn2); 6834 if( pIn1->u.i<pIn2->u.i){ 6835 pIn1->u.i = pIn2->u.i; 6836 } 6837 break; 6838 } 6839 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6840 6841 /* Opcode: IfPos P1 P2 P3 * * 6842 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6843 ** 6844 ** Register P1 must contain an integer. 6845 ** If the value of register P1 is 1 or greater, subtract P3 from the 6846 ** value in P1 and jump to P2. 6847 ** 6848 ** If the initial value of register P1 is less than 1, then the 6849 ** value is unchanged and control passes through to the next instruction. 6850 */ 6851 case OP_IfPos: { /* jump, in1 */ 6852 pIn1 = &aMem[pOp->p1]; 6853 assert( pIn1->flags&MEM_Int ); 6854 VdbeBranchTaken( pIn1->u.i>0, 2); 6855 if( pIn1->u.i>0 ){ 6856 pIn1->u.i -= pOp->p3; 6857 goto jump_to_p2; 6858 } 6859 break; 6860 } 6861 6862 /* Opcode: OffsetLimit P1 P2 P3 * * 6863 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6864 ** 6865 ** This opcode performs a commonly used computation associated with 6866 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6867 ** holds the offset counter. The opcode computes the combined value 6868 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6869 ** value computed is the total number of rows that will need to be 6870 ** visited in order to complete the query. 6871 ** 6872 ** If r[P3] is zero or negative, that means there is no OFFSET 6873 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6874 ** 6875 ** if r[P1] is zero or negative, that means there is no LIMIT 6876 ** and r[P2] is set to -1. 6877 ** 6878 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6879 */ 6880 case OP_OffsetLimit: { /* in1, out2, in3 */ 6881 i64 x; 6882 pIn1 = &aMem[pOp->p1]; 6883 pIn3 = &aMem[pOp->p3]; 6884 pOut = out2Prerelease(p, pOp); 6885 assert( pIn1->flags & MEM_Int ); 6886 assert( pIn3->flags & MEM_Int ); 6887 x = pIn1->u.i; 6888 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6889 /* If the LIMIT is less than or equal to zero, loop forever. This 6890 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6891 ** also loop forever. This is undocumented. In fact, one could argue 6892 ** that the loop should terminate. But assuming 1 billion iterations 6893 ** per second (far exceeding the capabilities of any current hardware) 6894 ** it would take nearly 300 years to actually reach the limit. So 6895 ** looping forever is a reasonable approximation. */ 6896 pOut->u.i = -1; 6897 }else{ 6898 pOut->u.i = x; 6899 } 6900 break; 6901 } 6902 6903 /* Opcode: IfNotZero P1 P2 * * * 6904 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6905 ** 6906 ** Register P1 must contain an integer. If the content of register P1 is 6907 ** initially greater than zero, then decrement the value in register P1. 6908 ** If it is non-zero (negative or positive) and then also jump to P2. 6909 ** If register P1 is initially zero, leave it unchanged and fall through. 6910 */ 6911 case OP_IfNotZero: { /* jump, in1 */ 6912 pIn1 = &aMem[pOp->p1]; 6913 assert( pIn1->flags&MEM_Int ); 6914 VdbeBranchTaken(pIn1->u.i<0, 2); 6915 if( pIn1->u.i ){ 6916 if( pIn1->u.i>0 ) pIn1->u.i--; 6917 goto jump_to_p2; 6918 } 6919 break; 6920 } 6921 6922 /* Opcode: DecrJumpZero P1 P2 * * * 6923 ** Synopsis: if (--r[P1])==0 goto P2 6924 ** 6925 ** Register P1 must hold an integer. Decrement the value in P1 6926 ** and jump to P2 if the new value is exactly zero. 6927 */ 6928 case OP_DecrJumpZero: { /* jump, in1 */ 6929 pIn1 = &aMem[pOp->p1]; 6930 assert( pIn1->flags&MEM_Int ); 6931 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6932 VdbeBranchTaken(pIn1->u.i==0, 2); 6933 if( pIn1->u.i==0 ) goto jump_to_p2; 6934 break; 6935 } 6936 6937 6938 /* Opcode: AggStep * P2 P3 P4 P5 6939 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6940 ** 6941 ** Execute the xStep function for an aggregate. 6942 ** The function has P5 arguments. P4 is a pointer to the 6943 ** FuncDef structure that specifies the function. Register P3 is the 6944 ** accumulator. 6945 ** 6946 ** The P5 arguments are taken from register P2 and its 6947 ** successors. 6948 */ 6949 /* Opcode: AggInverse * P2 P3 P4 P5 6950 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6951 ** 6952 ** Execute the xInverse function for an aggregate. 6953 ** The function has P5 arguments. P4 is a pointer to the 6954 ** FuncDef structure that specifies the function. Register P3 is the 6955 ** accumulator. 6956 ** 6957 ** The P5 arguments are taken from register P2 and its 6958 ** successors. 6959 */ 6960 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6961 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6962 ** 6963 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6964 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6965 ** FuncDef structure that specifies the function. Register P3 is the 6966 ** accumulator. 6967 ** 6968 ** The P5 arguments are taken from register P2 and its 6969 ** successors. 6970 ** 6971 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6972 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6973 ** the opcode is changed. In this way, the initialization of the 6974 ** sqlite3_context only happens once, instead of on each call to the 6975 ** step function. 6976 */ 6977 case OP_AggInverse: 6978 case OP_AggStep: { 6979 int n; 6980 sqlite3_context *pCtx; 6981 6982 assert( pOp->p4type==P4_FUNCDEF ); 6983 n = pOp->p5; 6984 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6985 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6986 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6987 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6988 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6989 if( pCtx==0 ) goto no_mem; 6990 pCtx->pMem = 0; 6991 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6992 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6993 pCtx->pFunc = pOp->p4.pFunc; 6994 pCtx->iOp = (int)(pOp - aOp); 6995 pCtx->pVdbe = p; 6996 pCtx->skipFlag = 0; 6997 pCtx->isError = 0; 6998 pCtx->argc = n; 6999 pOp->p4type = P4_FUNCCTX; 7000 pOp->p4.pCtx = pCtx; 7001 7002 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7003 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7004 7005 pOp->opcode = OP_AggStep1; 7006 /* Fall through into OP_AggStep */ 7007 /* no break */ deliberate_fall_through 7008 } 7009 case OP_AggStep1: { 7010 int i; 7011 sqlite3_context *pCtx; 7012 Mem *pMem; 7013 7014 assert( pOp->p4type==P4_FUNCCTX ); 7015 pCtx = pOp->p4.pCtx; 7016 pMem = &aMem[pOp->p3]; 7017 7018 #ifdef SQLITE_DEBUG 7019 if( pOp->p1 ){ 7020 /* This is an OP_AggInverse call. Verify that xStep has always 7021 ** been called at least once prior to any xInverse call. */ 7022 assert( pMem->uTemp==0x1122e0e3 ); 7023 }else{ 7024 /* This is an OP_AggStep call. Mark it as such. */ 7025 pMem->uTemp = 0x1122e0e3; 7026 } 7027 #endif 7028 7029 /* If this function is inside of a trigger, the register array in aMem[] 7030 ** might change from one evaluation to the next. The next block of code 7031 ** checks to see if the register array has changed, and if so it 7032 ** reinitializes the relavant parts of the sqlite3_context object */ 7033 if( pCtx->pMem != pMem ){ 7034 pCtx->pMem = pMem; 7035 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7036 } 7037 7038 #ifdef SQLITE_DEBUG 7039 for(i=0; i<pCtx->argc; i++){ 7040 assert( memIsValid(pCtx->argv[i]) ); 7041 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7042 } 7043 #endif 7044 7045 pMem->n++; 7046 assert( pCtx->pOut->flags==MEM_Null ); 7047 assert( pCtx->isError==0 ); 7048 assert( pCtx->skipFlag==0 ); 7049 #ifndef SQLITE_OMIT_WINDOWFUNC 7050 if( pOp->p1 ){ 7051 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7052 }else 7053 #endif 7054 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7055 7056 if( pCtx->isError ){ 7057 if( pCtx->isError>0 ){ 7058 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7059 rc = pCtx->isError; 7060 } 7061 if( pCtx->skipFlag ){ 7062 assert( pOp[-1].opcode==OP_CollSeq ); 7063 i = pOp[-1].p1; 7064 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7065 pCtx->skipFlag = 0; 7066 } 7067 sqlite3VdbeMemRelease(pCtx->pOut); 7068 pCtx->pOut->flags = MEM_Null; 7069 pCtx->isError = 0; 7070 if( rc ) goto abort_due_to_error; 7071 } 7072 assert( pCtx->pOut->flags==MEM_Null ); 7073 assert( pCtx->skipFlag==0 ); 7074 break; 7075 } 7076 7077 /* Opcode: AggFinal P1 P2 * P4 * 7078 ** Synopsis: accum=r[P1] N=P2 7079 ** 7080 ** P1 is the memory location that is the accumulator for an aggregate 7081 ** or window function. Execute the finalizer function 7082 ** for an aggregate and store the result in P1. 7083 ** 7084 ** P2 is the number of arguments that the step function takes and 7085 ** P4 is a pointer to the FuncDef for this function. The P2 7086 ** argument is not used by this opcode. It is only there to disambiguate 7087 ** functions that can take varying numbers of arguments. The 7088 ** P4 argument is only needed for the case where 7089 ** the step function was not previously called. 7090 */ 7091 /* Opcode: AggValue * P2 P3 P4 * 7092 ** Synopsis: r[P3]=value N=P2 7093 ** 7094 ** Invoke the xValue() function and store the result in register P3. 7095 ** 7096 ** P2 is the number of arguments that the step function takes and 7097 ** P4 is a pointer to the FuncDef for this function. The P2 7098 ** argument is not used by this opcode. It is only there to disambiguate 7099 ** functions that can take varying numbers of arguments. The 7100 ** P4 argument is only needed for the case where 7101 ** the step function was not previously called. 7102 */ 7103 case OP_AggValue: 7104 case OP_AggFinal: { 7105 Mem *pMem; 7106 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7107 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7108 pMem = &aMem[pOp->p1]; 7109 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7110 #ifndef SQLITE_OMIT_WINDOWFUNC 7111 if( pOp->p3 ){ 7112 memAboutToChange(p, &aMem[pOp->p3]); 7113 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7114 pMem = &aMem[pOp->p3]; 7115 }else 7116 #endif 7117 { 7118 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7119 } 7120 7121 if( rc ){ 7122 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7123 goto abort_due_to_error; 7124 } 7125 sqlite3VdbeChangeEncoding(pMem, encoding); 7126 UPDATE_MAX_BLOBSIZE(pMem); 7127 if( sqlite3VdbeMemTooBig(pMem) ){ 7128 goto too_big; 7129 } 7130 break; 7131 } 7132 7133 #ifndef SQLITE_OMIT_WAL 7134 /* Opcode: Checkpoint P1 P2 P3 * * 7135 ** 7136 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7137 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7138 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7139 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7140 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7141 ** in the WAL that have been checkpointed after the checkpoint 7142 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7143 ** mem[P3+2] are initialized to -1. 7144 */ 7145 case OP_Checkpoint: { 7146 int i; /* Loop counter */ 7147 int aRes[3]; /* Results */ 7148 Mem *pMem; /* Write results here */ 7149 7150 assert( p->readOnly==0 ); 7151 aRes[0] = 0; 7152 aRes[1] = aRes[2] = -1; 7153 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7154 || pOp->p2==SQLITE_CHECKPOINT_FULL 7155 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7156 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7157 ); 7158 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7159 if( rc ){ 7160 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7161 rc = SQLITE_OK; 7162 aRes[0] = 1; 7163 } 7164 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7165 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7166 } 7167 break; 7168 }; 7169 #endif 7170 7171 #ifndef SQLITE_OMIT_PRAGMA 7172 /* Opcode: JournalMode P1 P2 P3 * * 7173 ** 7174 ** Change the journal mode of database P1 to P3. P3 must be one of the 7175 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7176 ** modes (delete, truncate, persist, off and memory), this is a simple 7177 ** operation. No IO is required. 7178 ** 7179 ** If changing into or out of WAL mode the procedure is more complicated. 7180 ** 7181 ** Write a string containing the final journal-mode to register P2. 7182 */ 7183 case OP_JournalMode: { /* out2 */ 7184 Btree *pBt; /* Btree to change journal mode of */ 7185 Pager *pPager; /* Pager associated with pBt */ 7186 int eNew; /* New journal mode */ 7187 int eOld; /* The old journal mode */ 7188 #ifndef SQLITE_OMIT_WAL 7189 const char *zFilename; /* Name of database file for pPager */ 7190 #endif 7191 7192 pOut = out2Prerelease(p, pOp); 7193 eNew = pOp->p3; 7194 assert( eNew==PAGER_JOURNALMODE_DELETE 7195 || eNew==PAGER_JOURNALMODE_TRUNCATE 7196 || eNew==PAGER_JOURNALMODE_PERSIST 7197 || eNew==PAGER_JOURNALMODE_OFF 7198 || eNew==PAGER_JOURNALMODE_MEMORY 7199 || eNew==PAGER_JOURNALMODE_WAL 7200 || eNew==PAGER_JOURNALMODE_QUERY 7201 ); 7202 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7203 assert( p->readOnly==0 ); 7204 7205 pBt = db->aDb[pOp->p1].pBt; 7206 pPager = sqlite3BtreePager(pBt); 7207 eOld = sqlite3PagerGetJournalMode(pPager); 7208 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7209 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7210 7211 #ifndef SQLITE_OMIT_WAL 7212 zFilename = sqlite3PagerFilename(pPager, 1); 7213 7214 /* Do not allow a transition to journal_mode=WAL for a database 7215 ** in temporary storage or if the VFS does not support shared memory 7216 */ 7217 if( eNew==PAGER_JOURNALMODE_WAL 7218 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7219 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7220 ){ 7221 eNew = eOld; 7222 } 7223 7224 if( (eNew!=eOld) 7225 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7226 ){ 7227 if( !db->autoCommit || db->nVdbeRead>1 ){ 7228 rc = SQLITE_ERROR; 7229 sqlite3VdbeError(p, 7230 "cannot change %s wal mode from within a transaction", 7231 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7232 ); 7233 goto abort_due_to_error; 7234 }else{ 7235 7236 if( eOld==PAGER_JOURNALMODE_WAL ){ 7237 /* If leaving WAL mode, close the log file. If successful, the call 7238 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7239 ** file. An EXCLUSIVE lock may still be held on the database file 7240 ** after a successful return. 7241 */ 7242 rc = sqlite3PagerCloseWal(pPager, db); 7243 if( rc==SQLITE_OK ){ 7244 sqlite3PagerSetJournalMode(pPager, eNew); 7245 } 7246 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7247 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7248 ** as an intermediate */ 7249 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7250 } 7251 7252 /* Open a transaction on the database file. Regardless of the journal 7253 ** mode, this transaction always uses a rollback journal. 7254 */ 7255 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7256 if( rc==SQLITE_OK ){ 7257 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7258 } 7259 } 7260 } 7261 #endif /* ifndef SQLITE_OMIT_WAL */ 7262 7263 if( rc ) eNew = eOld; 7264 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7265 7266 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7267 pOut->z = (char *)sqlite3JournalModename(eNew); 7268 pOut->n = sqlite3Strlen30(pOut->z); 7269 pOut->enc = SQLITE_UTF8; 7270 sqlite3VdbeChangeEncoding(pOut, encoding); 7271 if( rc ) goto abort_due_to_error; 7272 break; 7273 }; 7274 #endif /* SQLITE_OMIT_PRAGMA */ 7275 7276 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7277 /* Opcode: Vacuum P1 P2 * * * 7278 ** 7279 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7280 ** for an attached database. The "temp" database may not be vacuumed. 7281 ** 7282 ** If P2 is not zero, then it is a register holding a string which is 7283 ** the file into which the result of vacuum should be written. When 7284 ** P2 is zero, the vacuum overwrites the original database. 7285 */ 7286 case OP_Vacuum: { 7287 assert( p->readOnly==0 ); 7288 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7289 pOp->p2 ? &aMem[pOp->p2] : 0); 7290 if( rc ) goto abort_due_to_error; 7291 break; 7292 } 7293 #endif 7294 7295 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7296 /* Opcode: IncrVacuum P1 P2 * * * 7297 ** 7298 ** Perform a single step of the incremental vacuum procedure on 7299 ** the P1 database. If the vacuum has finished, jump to instruction 7300 ** P2. Otherwise, fall through to the next instruction. 7301 */ 7302 case OP_IncrVacuum: { /* jump */ 7303 Btree *pBt; 7304 7305 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7306 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7307 assert( p->readOnly==0 ); 7308 pBt = db->aDb[pOp->p1].pBt; 7309 rc = sqlite3BtreeIncrVacuum(pBt); 7310 VdbeBranchTaken(rc==SQLITE_DONE,2); 7311 if( rc ){ 7312 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7313 rc = SQLITE_OK; 7314 goto jump_to_p2; 7315 } 7316 break; 7317 } 7318 #endif 7319 7320 /* Opcode: Expire P1 P2 * * * 7321 ** 7322 ** Cause precompiled statements to expire. When an expired statement 7323 ** is executed using sqlite3_step() it will either automatically 7324 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7325 ** or it will fail with SQLITE_SCHEMA. 7326 ** 7327 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7328 ** then only the currently executing statement is expired. 7329 ** 7330 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7331 ** then running SQL statements are allowed to continue to run to completion. 7332 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7333 ** that might help the statement run faster but which does not affect the 7334 ** correctness of operation. 7335 */ 7336 case OP_Expire: { 7337 assert( pOp->p2==0 || pOp->p2==1 ); 7338 if( !pOp->p1 ){ 7339 sqlite3ExpirePreparedStatements(db, pOp->p2); 7340 }else{ 7341 p->expired = pOp->p2+1; 7342 } 7343 break; 7344 } 7345 7346 /* Opcode: CursorLock P1 * * * * 7347 ** 7348 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7349 ** written by an other cursor. 7350 */ 7351 case OP_CursorLock: { 7352 VdbeCursor *pC; 7353 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7354 pC = p->apCsr[pOp->p1]; 7355 assert( pC!=0 ); 7356 assert( pC->eCurType==CURTYPE_BTREE ); 7357 sqlite3BtreeCursorPin(pC->uc.pCursor); 7358 break; 7359 } 7360 7361 /* Opcode: CursorUnlock P1 * * * * 7362 ** 7363 ** Unlock the btree to which cursor P1 is pointing so that it can be 7364 ** written by other cursors. 7365 */ 7366 case OP_CursorUnlock: { 7367 VdbeCursor *pC; 7368 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7369 pC = p->apCsr[pOp->p1]; 7370 assert( pC!=0 ); 7371 assert( pC->eCurType==CURTYPE_BTREE ); 7372 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7373 break; 7374 } 7375 7376 #ifndef SQLITE_OMIT_SHARED_CACHE 7377 /* Opcode: TableLock P1 P2 P3 P4 * 7378 ** Synopsis: iDb=P1 root=P2 write=P3 7379 ** 7380 ** Obtain a lock on a particular table. This instruction is only used when 7381 ** the shared-cache feature is enabled. 7382 ** 7383 ** P1 is the index of the database in sqlite3.aDb[] of the database 7384 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7385 ** a write lock if P3==1. 7386 ** 7387 ** P2 contains the root-page of the table to lock. 7388 ** 7389 ** P4 contains a pointer to the name of the table being locked. This is only 7390 ** used to generate an error message if the lock cannot be obtained. 7391 */ 7392 case OP_TableLock: { 7393 u8 isWriteLock = (u8)pOp->p3; 7394 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7395 int p1 = pOp->p1; 7396 assert( p1>=0 && p1<db->nDb ); 7397 assert( DbMaskTest(p->btreeMask, p1) ); 7398 assert( isWriteLock==0 || isWriteLock==1 ); 7399 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7400 if( rc ){ 7401 if( (rc&0xFF)==SQLITE_LOCKED ){ 7402 const char *z = pOp->p4.z; 7403 sqlite3VdbeError(p, "database table is locked: %s", z); 7404 } 7405 goto abort_due_to_error; 7406 } 7407 } 7408 break; 7409 } 7410 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7411 7412 #ifndef SQLITE_OMIT_VIRTUALTABLE 7413 /* Opcode: VBegin * * * P4 * 7414 ** 7415 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7416 ** xBegin method for that table. 7417 ** 7418 ** Also, whether or not P4 is set, check that this is not being called from 7419 ** within a callback to a virtual table xSync() method. If it is, the error 7420 ** code will be set to SQLITE_LOCKED. 7421 */ 7422 case OP_VBegin: { 7423 VTable *pVTab; 7424 pVTab = pOp->p4.pVtab; 7425 rc = sqlite3VtabBegin(db, pVTab); 7426 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7427 if( rc ) goto abort_due_to_error; 7428 break; 7429 } 7430 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7431 7432 #ifndef SQLITE_OMIT_VIRTUALTABLE 7433 /* Opcode: VCreate P1 P2 * * * 7434 ** 7435 ** P2 is a register that holds the name of a virtual table in database 7436 ** P1. Call the xCreate method for that table. 7437 */ 7438 case OP_VCreate: { 7439 Mem sMem; /* For storing the record being decoded */ 7440 const char *zTab; /* Name of the virtual table */ 7441 7442 memset(&sMem, 0, sizeof(sMem)); 7443 sMem.db = db; 7444 /* Because P2 is always a static string, it is impossible for the 7445 ** sqlite3VdbeMemCopy() to fail */ 7446 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7447 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7448 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7449 assert( rc==SQLITE_OK ); 7450 zTab = (const char*)sqlite3_value_text(&sMem); 7451 assert( zTab || db->mallocFailed ); 7452 if( zTab ){ 7453 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7454 } 7455 sqlite3VdbeMemRelease(&sMem); 7456 if( rc ) goto abort_due_to_error; 7457 break; 7458 } 7459 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7460 7461 #ifndef SQLITE_OMIT_VIRTUALTABLE 7462 /* Opcode: VDestroy P1 * * P4 * 7463 ** 7464 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7465 ** of that table. 7466 */ 7467 case OP_VDestroy: { 7468 db->nVDestroy++; 7469 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7470 db->nVDestroy--; 7471 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7472 if( rc ) goto abort_due_to_error; 7473 break; 7474 } 7475 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7476 7477 #ifndef SQLITE_OMIT_VIRTUALTABLE 7478 /* Opcode: VOpen P1 * * P4 * 7479 ** 7480 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7481 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7482 ** table and stores that cursor in P1. 7483 */ 7484 case OP_VOpen: { 7485 VdbeCursor *pCur; 7486 sqlite3_vtab_cursor *pVCur; 7487 sqlite3_vtab *pVtab; 7488 const sqlite3_module *pModule; 7489 7490 assert( p->bIsReader ); 7491 pCur = 0; 7492 pVCur = 0; 7493 pVtab = pOp->p4.pVtab->pVtab; 7494 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7495 rc = SQLITE_LOCKED; 7496 goto abort_due_to_error; 7497 } 7498 pModule = pVtab->pModule; 7499 rc = pModule->xOpen(pVtab, &pVCur); 7500 sqlite3VtabImportErrmsg(p, pVtab); 7501 if( rc ) goto abort_due_to_error; 7502 7503 /* Initialize sqlite3_vtab_cursor base class */ 7504 pVCur->pVtab = pVtab; 7505 7506 /* Initialize vdbe cursor object */ 7507 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7508 if( pCur ){ 7509 pCur->uc.pVCur = pVCur; 7510 pVtab->nRef++; 7511 }else{ 7512 assert( db->mallocFailed ); 7513 pModule->xClose(pVCur); 7514 goto no_mem; 7515 } 7516 break; 7517 } 7518 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7519 7520 #ifndef SQLITE_OMIT_VIRTUALTABLE 7521 /* Opcode: VFilter P1 P2 P3 P4 * 7522 ** Synopsis: iplan=r[P3] zplan='P4' 7523 ** 7524 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7525 ** the filtered result set is empty. 7526 ** 7527 ** P4 is either NULL or a string that was generated by the xBestIndex 7528 ** method of the module. The interpretation of the P4 string is left 7529 ** to the module implementation. 7530 ** 7531 ** This opcode invokes the xFilter method on the virtual table specified 7532 ** by P1. The integer query plan parameter to xFilter is stored in register 7533 ** P3. Register P3+1 stores the argc parameter to be passed to the 7534 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7535 ** additional parameters which are passed to 7536 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7537 ** 7538 ** A jump is made to P2 if the result set after filtering would be empty. 7539 */ 7540 case OP_VFilter: { /* jump */ 7541 int nArg; 7542 int iQuery; 7543 const sqlite3_module *pModule; 7544 Mem *pQuery; 7545 Mem *pArgc; 7546 sqlite3_vtab_cursor *pVCur; 7547 sqlite3_vtab *pVtab; 7548 VdbeCursor *pCur; 7549 int res; 7550 int i; 7551 Mem **apArg; 7552 7553 pQuery = &aMem[pOp->p3]; 7554 pArgc = &pQuery[1]; 7555 pCur = p->apCsr[pOp->p1]; 7556 assert( memIsValid(pQuery) ); 7557 REGISTER_TRACE(pOp->p3, pQuery); 7558 assert( pCur->eCurType==CURTYPE_VTAB ); 7559 pVCur = pCur->uc.pVCur; 7560 pVtab = pVCur->pVtab; 7561 pModule = pVtab->pModule; 7562 7563 /* Grab the index number and argc parameters */ 7564 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7565 nArg = (int)pArgc->u.i; 7566 iQuery = (int)pQuery->u.i; 7567 7568 /* Invoke the xFilter method */ 7569 res = 0; 7570 apArg = p->apArg; 7571 for(i = 0; i<nArg; i++){ 7572 apArg[i] = &pArgc[i+1]; 7573 } 7574 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7575 sqlite3VtabImportErrmsg(p, pVtab); 7576 if( rc ) goto abort_due_to_error; 7577 res = pModule->xEof(pVCur); 7578 pCur->nullRow = 0; 7579 VdbeBranchTaken(res!=0,2); 7580 if( res ) goto jump_to_p2; 7581 break; 7582 } 7583 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7584 7585 #ifndef SQLITE_OMIT_VIRTUALTABLE 7586 /* Opcode: VColumn P1 P2 P3 * P5 7587 ** Synopsis: r[P3]=vcolumn(P2) 7588 ** 7589 ** Store in register P3 the value of the P2-th column of 7590 ** the current row of the virtual-table of cursor P1. 7591 ** 7592 ** If the VColumn opcode is being used to fetch the value of 7593 ** an unchanging column during an UPDATE operation, then the P5 7594 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7595 ** function to return true inside the xColumn method of the virtual 7596 ** table implementation. The P5 column might also contain other 7597 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7598 ** unused by OP_VColumn. 7599 */ 7600 case OP_VColumn: { 7601 sqlite3_vtab *pVtab; 7602 const sqlite3_module *pModule; 7603 Mem *pDest; 7604 sqlite3_context sContext; 7605 7606 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7607 assert( pCur->eCurType==CURTYPE_VTAB ); 7608 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7609 pDest = &aMem[pOp->p3]; 7610 memAboutToChange(p, pDest); 7611 if( pCur->nullRow ){ 7612 sqlite3VdbeMemSetNull(pDest); 7613 break; 7614 } 7615 pVtab = pCur->uc.pVCur->pVtab; 7616 pModule = pVtab->pModule; 7617 assert( pModule->xColumn ); 7618 memset(&sContext, 0, sizeof(sContext)); 7619 sContext.pOut = pDest; 7620 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7621 if( pOp->p5 & OPFLAG_NOCHNG ){ 7622 sqlite3VdbeMemSetNull(pDest); 7623 pDest->flags = MEM_Null|MEM_Zero; 7624 pDest->u.nZero = 0; 7625 }else{ 7626 MemSetTypeFlag(pDest, MEM_Null); 7627 } 7628 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7629 sqlite3VtabImportErrmsg(p, pVtab); 7630 if( sContext.isError>0 ){ 7631 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7632 rc = sContext.isError; 7633 } 7634 sqlite3VdbeChangeEncoding(pDest, encoding); 7635 REGISTER_TRACE(pOp->p3, pDest); 7636 UPDATE_MAX_BLOBSIZE(pDest); 7637 7638 if( sqlite3VdbeMemTooBig(pDest) ){ 7639 goto too_big; 7640 } 7641 if( rc ) goto abort_due_to_error; 7642 break; 7643 } 7644 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7645 7646 #ifndef SQLITE_OMIT_VIRTUALTABLE 7647 /* Opcode: VNext P1 P2 * * * 7648 ** 7649 ** Advance virtual table P1 to the next row in its result set and 7650 ** jump to instruction P2. Or, if the virtual table has reached 7651 ** the end of its result set, then fall through to the next instruction. 7652 */ 7653 case OP_VNext: { /* jump */ 7654 sqlite3_vtab *pVtab; 7655 const sqlite3_module *pModule; 7656 int res; 7657 VdbeCursor *pCur; 7658 7659 res = 0; 7660 pCur = p->apCsr[pOp->p1]; 7661 assert( pCur->eCurType==CURTYPE_VTAB ); 7662 if( pCur->nullRow ){ 7663 break; 7664 } 7665 pVtab = pCur->uc.pVCur->pVtab; 7666 pModule = pVtab->pModule; 7667 assert( pModule->xNext ); 7668 7669 /* Invoke the xNext() method of the module. There is no way for the 7670 ** underlying implementation to return an error if one occurs during 7671 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7672 ** data is available) and the error code returned when xColumn or 7673 ** some other method is next invoked on the save virtual table cursor. 7674 */ 7675 rc = pModule->xNext(pCur->uc.pVCur); 7676 sqlite3VtabImportErrmsg(p, pVtab); 7677 if( rc ) goto abort_due_to_error; 7678 res = pModule->xEof(pCur->uc.pVCur); 7679 VdbeBranchTaken(!res,2); 7680 if( !res ){ 7681 /* If there is data, jump to P2 */ 7682 goto jump_to_p2_and_check_for_interrupt; 7683 } 7684 goto check_for_interrupt; 7685 } 7686 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7687 7688 #ifndef SQLITE_OMIT_VIRTUALTABLE 7689 /* Opcode: VRename P1 * * P4 * 7690 ** 7691 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7692 ** This opcode invokes the corresponding xRename method. The value 7693 ** in register P1 is passed as the zName argument to the xRename method. 7694 */ 7695 case OP_VRename: { 7696 sqlite3_vtab *pVtab; 7697 Mem *pName; 7698 int isLegacy; 7699 7700 isLegacy = (db->flags & SQLITE_LegacyAlter); 7701 db->flags |= SQLITE_LegacyAlter; 7702 pVtab = pOp->p4.pVtab->pVtab; 7703 pName = &aMem[pOp->p1]; 7704 assert( pVtab->pModule->xRename ); 7705 assert( memIsValid(pName) ); 7706 assert( p->readOnly==0 ); 7707 REGISTER_TRACE(pOp->p1, pName); 7708 assert( pName->flags & MEM_Str ); 7709 testcase( pName->enc==SQLITE_UTF8 ); 7710 testcase( pName->enc==SQLITE_UTF16BE ); 7711 testcase( pName->enc==SQLITE_UTF16LE ); 7712 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7713 if( rc ) goto abort_due_to_error; 7714 rc = pVtab->pModule->xRename(pVtab, pName->z); 7715 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7716 sqlite3VtabImportErrmsg(p, pVtab); 7717 p->expired = 0; 7718 if( rc ) goto abort_due_to_error; 7719 break; 7720 } 7721 #endif 7722 7723 #ifndef SQLITE_OMIT_VIRTUALTABLE 7724 /* Opcode: VUpdate P1 P2 P3 P4 P5 7725 ** Synopsis: data=r[P3@P2] 7726 ** 7727 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7728 ** This opcode invokes the corresponding xUpdate method. P2 values 7729 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7730 ** invocation. The value in register (P3+P2-1) corresponds to the 7731 ** p2th element of the argv array passed to xUpdate. 7732 ** 7733 ** The xUpdate method will do a DELETE or an INSERT or both. 7734 ** The argv[0] element (which corresponds to memory cell P3) 7735 ** is the rowid of a row to delete. If argv[0] is NULL then no 7736 ** deletion occurs. The argv[1] element is the rowid of the new 7737 ** row. This can be NULL to have the virtual table select the new 7738 ** rowid for itself. The subsequent elements in the array are 7739 ** the values of columns in the new row. 7740 ** 7741 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7742 ** a row to delete. 7743 ** 7744 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7745 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7746 ** is set to the value of the rowid for the row just inserted. 7747 ** 7748 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7749 ** apply in the case of a constraint failure on an insert or update. 7750 */ 7751 case OP_VUpdate: { 7752 sqlite3_vtab *pVtab; 7753 const sqlite3_module *pModule; 7754 int nArg; 7755 int i; 7756 sqlite_int64 rowid; 7757 Mem **apArg; 7758 Mem *pX; 7759 7760 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7761 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7762 ); 7763 assert( p->readOnly==0 ); 7764 if( db->mallocFailed ) goto no_mem; 7765 sqlite3VdbeIncrWriteCounter(p, 0); 7766 pVtab = pOp->p4.pVtab->pVtab; 7767 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7768 rc = SQLITE_LOCKED; 7769 goto abort_due_to_error; 7770 } 7771 pModule = pVtab->pModule; 7772 nArg = pOp->p2; 7773 assert( pOp->p4type==P4_VTAB ); 7774 if( ALWAYS(pModule->xUpdate) ){ 7775 u8 vtabOnConflict = db->vtabOnConflict; 7776 apArg = p->apArg; 7777 pX = &aMem[pOp->p3]; 7778 for(i=0; i<nArg; i++){ 7779 assert( memIsValid(pX) ); 7780 memAboutToChange(p, pX); 7781 apArg[i] = pX; 7782 pX++; 7783 } 7784 db->vtabOnConflict = pOp->p5; 7785 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7786 db->vtabOnConflict = vtabOnConflict; 7787 sqlite3VtabImportErrmsg(p, pVtab); 7788 if( rc==SQLITE_OK && pOp->p1 ){ 7789 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7790 db->lastRowid = rowid; 7791 } 7792 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7793 if( pOp->p5==OE_Ignore ){ 7794 rc = SQLITE_OK; 7795 }else{ 7796 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7797 } 7798 }else{ 7799 p->nChange++; 7800 } 7801 if( rc ) goto abort_due_to_error; 7802 } 7803 break; 7804 } 7805 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7806 7807 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7808 /* Opcode: Pagecount P1 P2 * * * 7809 ** 7810 ** Write the current number of pages in database P1 to memory cell P2. 7811 */ 7812 case OP_Pagecount: { /* out2 */ 7813 pOut = out2Prerelease(p, pOp); 7814 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7815 break; 7816 } 7817 #endif 7818 7819 7820 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7821 /* Opcode: MaxPgcnt P1 P2 P3 * * 7822 ** 7823 ** Try to set the maximum page count for database P1 to the value in P3. 7824 ** Do not let the maximum page count fall below the current page count and 7825 ** do not change the maximum page count value if P3==0. 7826 ** 7827 ** Store the maximum page count after the change in register P2. 7828 */ 7829 case OP_MaxPgcnt: { /* out2 */ 7830 unsigned int newMax; 7831 Btree *pBt; 7832 7833 pOut = out2Prerelease(p, pOp); 7834 pBt = db->aDb[pOp->p1].pBt; 7835 newMax = 0; 7836 if( pOp->p3 ){ 7837 newMax = sqlite3BtreeLastPage(pBt); 7838 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7839 } 7840 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7841 break; 7842 } 7843 #endif 7844 7845 /* Opcode: Function P1 P2 P3 P4 * 7846 ** Synopsis: r[P3]=func(r[P2@NP]) 7847 ** 7848 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7849 ** contains a pointer to the function to be run) with arguments taken 7850 ** from register P2 and successors. The number of arguments is in 7851 ** the sqlite3_context object that P4 points to. 7852 ** The result of the function is stored 7853 ** in register P3. Register P3 must not be one of the function inputs. 7854 ** 7855 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7856 ** function was determined to be constant at compile time. If the first 7857 ** argument was constant then bit 0 of P1 is set. This is used to determine 7858 ** whether meta data associated with a user function argument using the 7859 ** sqlite3_set_auxdata() API may be safely retained until the next 7860 ** invocation of this opcode. 7861 ** 7862 ** See also: AggStep, AggFinal, PureFunc 7863 */ 7864 /* Opcode: PureFunc P1 P2 P3 P4 * 7865 ** Synopsis: r[P3]=func(r[P2@NP]) 7866 ** 7867 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7868 ** contains a pointer to the function to be run) with arguments taken 7869 ** from register P2 and successors. The number of arguments is in 7870 ** the sqlite3_context object that P4 points to. 7871 ** The result of the function is stored 7872 ** in register P3. Register P3 must not be one of the function inputs. 7873 ** 7874 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7875 ** function was determined to be constant at compile time. If the first 7876 ** argument was constant then bit 0 of P1 is set. This is used to determine 7877 ** whether meta data associated with a user function argument using the 7878 ** sqlite3_set_auxdata() API may be safely retained until the next 7879 ** invocation of this opcode. 7880 ** 7881 ** This opcode works exactly like OP_Function. The only difference is in 7882 ** its name. This opcode is used in places where the function must be 7883 ** purely non-deterministic. Some built-in date/time functions can be 7884 ** either determinitic of non-deterministic, depending on their arguments. 7885 ** When those function are used in a non-deterministic way, they will check 7886 ** to see if they were called using OP_PureFunc instead of OP_Function, and 7887 ** if they were, they throw an error. 7888 ** 7889 ** See also: AggStep, AggFinal, Function 7890 */ 7891 case OP_PureFunc: /* group */ 7892 case OP_Function: { /* group */ 7893 int i; 7894 sqlite3_context *pCtx; 7895 7896 assert( pOp->p4type==P4_FUNCCTX ); 7897 pCtx = pOp->p4.pCtx; 7898 7899 /* If this function is inside of a trigger, the register array in aMem[] 7900 ** might change from one evaluation to the next. The next block of code 7901 ** checks to see if the register array has changed, and if so it 7902 ** reinitializes the relavant parts of the sqlite3_context object */ 7903 pOut = &aMem[pOp->p3]; 7904 if( pCtx->pOut != pOut ){ 7905 pCtx->pVdbe = p; 7906 pCtx->pOut = pOut; 7907 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7908 } 7909 assert( pCtx->pVdbe==p ); 7910 7911 memAboutToChange(p, pOut); 7912 #ifdef SQLITE_DEBUG 7913 for(i=0; i<pCtx->argc; i++){ 7914 assert( memIsValid(pCtx->argv[i]) ); 7915 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7916 } 7917 #endif 7918 MemSetTypeFlag(pOut, MEM_Null); 7919 assert( pCtx->isError==0 ); 7920 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7921 7922 /* If the function returned an error, throw an exception */ 7923 if( pCtx->isError ){ 7924 if( pCtx->isError>0 ){ 7925 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7926 rc = pCtx->isError; 7927 } 7928 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7929 pCtx->isError = 0; 7930 if( rc ) goto abort_due_to_error; 7931 } 7932 7933 /* Copy the result of the function into register P3 */ 7934 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7935 sqlite3VdbeChangeEncoding(pOut, encoding); 7936 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7937 } 7938 7939 REGISTER_TRACE(pOp->p3, pOut); 7940 UPDATE_MAX_BLOBSIZE(pOut); 7941 break; 7942 } 7943 7944 /* Opcode: Trace P1 P2 * P4 * 7945 ** 7946 ** Write P4 on the statement trace output if statement tracing is 7947 ** enabled. 7948 ** 7949 ** Operand P1 must be 0x7fffffff and P2 must positive. 7950 */ 7951 /* Opcode: Init P1 P2 P3 P4 * 7952 ** Synopsis: Start at P2 7953 ** 7954 ** Programs contain a single instance of this opcode as the very first 7955 ** opcode. 7956 ** 7957 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7958 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7959 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7960 ** 7961 ** If P2 is not zero, jump to instruction P2. 7962 ** 7963 ** Increment the value of P1 so that OP_Once opcodes will jump the 7964 ** first time they are evaluated for this run. 7965 ** 7966 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7967 ** error is encountered. 7968 */ 7969 case OP_Trace: 7970 case OP_Init: { /* jump */ 7971 int i; 7972 #ifndef SQLITE_OMIT_TRACE 7973 char *zTrace; 7974 #endif 7975 7976 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7977 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7978 ** 7979 ** This assert() provides evidence for: 7980 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7981 ** would have been returned by the legacy sqlite3_trace() interface by 7982 ** using the X argument when X begins with "--" and invoking 7983 ** sqlite3_expanded_sql(P) otherwise. 7984 */ 7985 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7986 7987 /* OP_Init is always instruction 0 */ 7988 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7989 7990 #ifndef SQLITE_OMIT_TRACE 7991 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7992 && !p->doingRerun 7993 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7994 ){ 7995 #ifndef SQLITE_OMIT_DEPRECATED 7996 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7997 char *z = sqlite3VdbeExpandSql(p, zTrace); 7998 db->trace.xLegacy(db->pTraceArg, z); 7999 sqlite3_free(z); 8000 }else 8001 #endif 8002 if( db->nVdbeExec>1 ){ 8003 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8004 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8005 sqlite3DbFree(db, z); 8006 }else{ 8007 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8008 } 8009 } 8010 #ifdef SQLITE_USE_FCNTL_TRACE 8011 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8012 if( zTrace ){ 8013 int j; 8014 for(j=0; j<db->nDb; j++){ 8015 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8016 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8017 } 8018 } 8019 #endif /* SQLITE_USE_FCNTL_TRACE */ 8020 #ifdef SQLITE_DEBUG 8021 if( (db->flags & SQLITE_SqlTrace)!=0 8022 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8023 ){ 8024 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8025 } 8026 #endif /* SQLITE_DEBUG */ 8027 #endif /* SQLITE_OMIT_TRACE */ 8028 assert( pOp->p2>0 ); 8029 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8030 if( pOp->opcode==OP_Trace ) break; 8031 for(i=1; i<p->nOp; i++){ 8032 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8033 } 8034 pOp->p1 = 0; 8035 } 8036 pOp->p1++; 8037 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8038 goto jump_to_p2; 8039 } 8040 8041 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8042 /* Opcode: CursorHint P1 * * P4 * 8043 ** 8044 ** Provide a hint to cursor P1 that it only needs to return rows that 8045 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8046 ** to values currently held in registers. TK_COLUMN terms in the P4 8047 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8048 */ 8049 case OP_CursorHint: { 8050 VdbeCursor *pC; 8051 8052 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8053 assert( pOp->p4type==P4_EXPR ); 8054 pC = p->apCsr[pOp->p1]; 8055 if( pC ){ 8056 assert( pC->eCurType==CURTYPE_BTREE ); 8057 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8058 pOp->p4.pExpr, aMem); 8059 } 8060 break; 8061 } 8062 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8063 8064 #ifdef SQLITE_DEBUG 8065 /* Opcode: Abortable * * * * * 8066 ** 8067 ** Verify that an Abort can happen. Assert if an Abort at this point 8068 ** might cause database corruption. This opcode only appears in debugging 8069 ** builds. 8070 ** 8071 ** An Abort is safe if either there have been no writes, or if there is 8072 ** an active statement journal. 8073 */ 8074 case OP_Abortable: { 8075 sqlite3VdbeAssertAbortable(p); 8076 break; 8077 } 8078 #endif 8079 8080 #ifdef SQLITE_DEBUG 8081 /* Opcode: ReleaseReg P1 P2 P3 * P5 8082 ** Synopsis: release r[P1@P2] mask P3 8083 ** 8084 ** Release registers from service. Any content that was in the 8085 ** the registers is unreliable after this opcode completes. 8086 ** 8087 ** The registers released will be the P2 registers starting at P1, 8088 ** except if bit ii of P3 set, then do not release register P1+ii. 8089 ** In other words, P3 is a mask of registers to preserve. 8090 ** 8091 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8092 ** that if the content of the released register was set using OP_SCopy, 8093 ** a change to the value of the source register for the OP_SCopy will no longer 8094 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8095 ** 8096 ** If P5 is set, then all released registers have their type set 8097 ** to MEM_Undefined so that any subsequent attempt to read the released 8098 ** register (before it is reinitialized) will generate an assertion fault. 8099 ** 8100 ** P5 ought to be set on every call to this opcode. 8101 ** However, there are places in the code generator will release registers 8102 ** before their are used, under the (valid) assumption that the registers 8103 ** will not be reallocated for some other purpose before they are used and 8104 ** hence are safe to release. 8105 ** 8106 ** This opcode is only available in testing and debugging builds. It is 8107 ** not generated for release builds. The purpose of this opcode is to help 8108 ** validate the generated bytecode. This opcode does not actually contribute 8109 ** to computing an answer. 8110 */ 8111 case OP_ReleaseReg: { 8112 Mem *pMem; 8113 int i; 8114 u32 constMask; 8115 assert( pOp->p1>0 ); 8116 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8117 pMem = &aMem[pOp->p1]; 8118 constMask = pOp->p3; 8119 for(i=0; i<pOp->p2; i++, pMem++){ 8120 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8121 pMem->pScopyFrom = 0; 8122 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8123 } 8124 } 8125 break; 8126 } 8127 #endif 8128 8129 /* Opcode: Noop * * * * * 8130 ** 8131 ** Do nothing. This instruction is often useful as a jump 8132 ** destination. 8133 */ 8134 /* 8135 ** The magic Explain opcode are only inserted when explain==2 (which 8136 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8137 ** This opcode records information from the optimizer. It is the 8138 ** the same as a no-op. This opcodesnever appears in a real VM program. 8139 */ 8140 default: { /* This is really OP_Noop, OP_Explain */ 8141 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8142 8143 break; 8144 } 8145 8146 /***************************************************************************** 8147 ** The cases of the switch statement above this line should all be indented 8148 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8149 ** readability. From this point on down, the normal indentation rules are 8150 ** restored. 8151 *****************************************************************************/ 8152 } 8153 8154 #ifdef VDBE_PROFILE 8155 { 8156 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8157 if( endTime>start ) pOrigOp->cycles += endTime - start; 8158 pOrigOp->cnt++; 8159 } 8160 #endif 8161 8162 /* The following code adds nothing to the actual functionality 8163 ** of the program. It is only here for testing and debugging. 8164 ** On the other hand, it does burn CPU cycles every time through 8165 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8166 */ 8167 #ifndef NDEBUG 8168 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8169 8170 #ifdef SQLITE_DEBUG 8171 if( db->flags & SQLITE_VdbeTrace ){ 8172 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8173 if( rc!=0 ) printf("rc=%d\n",rc); 8174 if( opProperty & (OPFLG_OUT2) ){ 8175 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8176 } 8177 if( opProperty & OPFLG_OUT3 ){ 8178 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8179 } 8180 if( opProperty==0xff ){ 8181 /* Never happens. This code exists to avoid a harmless linkage 8182 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8183 ** used. */ 8184 sqlite3VdbeRegisterDump(p); 8185 } 8186 } 8187 #endif /* SQLITE_DEBUG */ 8188 #endif /* NDEBUG */ 8189 } /* The end of the for(;;) loop the loops through opcodes */ 8190 8191 /* If we reach this point, it means that execution is finished with 8192 ** an error of some kind. 8193 */ 8194 abort_due_to_error: 8195 if( db->mallocFailed ){ 8196 rc = SQLITE_NOMEM_BKPT; 8197 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8198 rc = SQLITE_CORRUPT_BKPT; 8199 } 8200 assert( rc ); 8201 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8202 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8203 } 8204 p->rc = rc; 8205 sqlite3SystemError(db, rc); 8206 testcase( sqlite3GlobalConfig.xLog!=0 ); 8207 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8208 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8209 sqlite3VdbeHalt(p); 8210 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8211 rc = SQLITE_ERROR; 8212 if( resetSchemaOnFault>0 ){ 8213 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8214 } 8215 8216 /* This is the only way out of this procedure. We have to 8217 ** release the mutexes on btrees that were acquired at the 8218 ** top. */ 8219 vdbe_return: 8220 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8221 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8222 nProgressLimit += db->nProgressOps; 8223 if( db->xProgress(db->pProgressArg) ){ 8224 nProgressLimit = LARGEST_UINT64; 8225 rc = SQLITE_INTERRUPT; 8226 goto abort_due_to_error; 8227 } 8228 } 8229 #endif 8230 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8231 sqlite3VdbeLeave(p); 8232 assert( rc!=SQLITE_OK || nExtraDelete==0 8233 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8234 ); 8235 return rc; 8236 8237 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8238 ** is encountered. 8239 */ 8240 too_big: 8241 sqlite3VdbeError(p, "string or blob too big"); 8242 rc = SQLITE_TOOBIG; 8243 goto abort_due_to_error; 8244 8245 /* Jump to here if a malloc() fails. 8246 */ 8247 no_mem: 8248 sqlite3OomFault(db); 8249 sqlite3VdbeError(p, "out of memory"); 8250 rc = SQLITE_NOMEM_BKPT; 8251 goto abort_due_to_error; 8252 8253 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8254 ** flag. 8255 */ 8256 abort_due_to_interrupt: 8257 assert( AtomicLoad(&db->u1.isInterrupted) ); 8258 rc = SQLITE_INTERRUPT; 8259 goto abort_due_to_error; 8260 } 8261