xref: /sqlite-3.40.0/src/vdbe.c (revision 49d77ee6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   u8 eCurType           /* Type of the new cursor */
245 ){
246   /* Find the memory cell that will be used to store the blob of memory
247   ** required for this VdbeCursor structure. It is convenient to use a
248   ** vdbe memory cell to manage the memory allocation required for a
249   ** VdbeCursor structure for the following reasons:
250   **
251   **   * Sometimes cursor numbers are used for a couple of different
252   **     purposes in a vdbe program. The different uses might require
253   **     different sized allocations. Memory cells provide growable
254   **     allocations.
255   **
256   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257   **     be freed lazily via the sqlite3_release_memory() API. This
258   **     minimizes the number of malloc calls made by the system.
259   **
260   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
262   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
263   */
264   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
265 
266   int nByte;
267   VdbeCursor *pCx = 0;
268   nByte =
269       ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
270       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
271 
272   assert( iCur>=0 && iCur<p->nCursor );
273   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
274     sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
275     p->apCsr[iCur] = 0;
276   }
277 
278   /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279   ** the pMem used to hold space for the cursor has enough storage available
280   ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
281   ** to hold cursors, it is faster to in-line the logic. */
282   assert( pMem->flags==MEM_Undefined );
283   assert( (pMem->flags & MEM_Dyn)==0 );
284   assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
285   if( pMem->szMalloc<nByte ){
286     if( pMem->szMalloc>0 ){
287       sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
288     }
289     pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
290     if( pMem->zMalloc==0 ){
291       pMem->szMalloc = 0;
292       return 0;
293     }
294     pMem->szMalloc = nByte;
295   }
296 
297   p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
298   memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
299   pCx->eCurType = eCurType;
300   pCx->nField = nField;
301   pCx->aOffset = &pCx->aType[nField];
302   if( eCurType==CURTYPE_BTREE ){
303     pCx->uc.pCursor = (BtCursor*)
304         &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
305     sqlite3BtreeCursorZero(pCx->uc.pCursor);
306   }
307   return pCx;
308 }
309 
310 /*
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue.  Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer.  Otherwise,
314 ** return false.
315 */
316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
317   i64 iValue;
318   iValue = sqlite3RealToI64(rValue);
319   if( sqlite3RealSameAsInt(rValue,iValue) ){
320     *piValue = iValue;
321     return 1;
322   }
323   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
324 }
325 
326 /*
327 ** Try to convert a value into a numeric representation if we can
328 ** do so without loss of information.  In other words, if the string
329 ** looks like a number, convert it into a number.  If it does not
330 ** look like a number, leave it alone.
331 **
332 ** If the bTryForInt flag is true, then extra effort is made to give
333 ** an integer representation.  Strings that look like floating point
334 ** values but which have no fractional component (example: '48.00')
335 ** will have a MEM_Int representation when bTryForInt is true.
336 **
337 ** If bTryForInt is false, then if the input string contains a decimal
338 ** point or exponential notation, the result is only MEM_Real, even
339 ** if there is an exact integer representation of the quantity.
340 */
341 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
342   double rValue;
343   u8 enc = pRec->enc;
344   int rc;
345   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
346   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
347   if( rc<=0 ) return;
348   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
349     pRec->flags |= MEM_Int;
350   }else{
351     pRec->u.r = rValue;
352     pRec->flags |= MEM_Real;
353     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
354   }
355   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
356   ** string representation after computing a numeric equivalent, because the
357   ** string representation might not be the canonical representation for the
358   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
359   pRec->flags &= ~MEM_Str;
360 }
361 
362 /*
363 ** Processing is determine by the affinity parameter:
364 **
365 ** SQLITE_AFF_INTEGER:
366 ** SQLITE_AFF_REAL:
367 ** SQLITE_AFF_NUMERIC:
368 **    Try to convert pRec to an integer representation or a
369 **    floating-point representation if an integer representation
370 **    is not possible.  Note that the integer representation is
371 **    always preferred, even if the affinity is REAL, because
372 **    an integer representation is more space efficient on disk.
373 **
374 ** SQLITE_AFF_TEXT:
375 **    Convert pRec to a text representation.
376 **
377 ** SQLITE_AFF_BLOB:
378 ** SQLITE_AFF_NONE:
379 **    No-op.  pRec is unchanged.
380 */
381 static void applyAffinity(
382   Mem *pRec,          /* The value to apply affinity to */
383   char affinity,      /* The affinity to be applied */
384   u8 enc              /* Use this text encoding */
385 ){
386   if( affinity>=SQLITE_AFF_NUMERIC ){
387     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
388              || affinity==SQLITE_AFF_NUMERIC );
389     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
390       if( (pRec->flags & MEM_Real)==0 ){
391         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
392       }else{
393         sqlite3VdbeIntegerAffinity(pRec);
394       }
395     }
396   }else if( affinity==SQLITE_AFF_TEXT ){
397     /* Only attempt the conversion to TEXT if there is an integer or real
398     ** representation (blob and NULL do not get converted) but no string
399     ** representation.  It would be harmless to repeat the conversion if
400     ** there is already a string rep, but it is pointless to waste those
401     ** CPU cycles. */
402     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
403       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
404         testcase( pRec->flags & MEM_Int );
405         testcase( pRec->flags & MEM_Real );
406         testcase( pRec->flags & MEM_IntReal );
407         sqlite3VdbeMemStringify(pRec, enc, 1);
408       }
409     }
410     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
411   }
412 }
413 
414 /*
415 ** Try to convert the type of a function argument or a result column
416 ** into a numeric representation.  Use either INTEGER or REAL whichever
417 ** is appropriate.  But only do the conversion if it is possible without
418 ** loss of information and return the revised type of the argument.
419 */
420 int sqlite3_value_numeric_type(sqlite3_value *pVal){
421   int eType = sqlite3_value_type(pVal);
422   if( eType==SQLITE_TEXT ){
423     Mem *pMem = (Mem*)pVal;
424     applyNumericAffinity(pMem, 0);
425     eType = sqlite3_value_type(pVal);
426   }
427   return eType;
428 }
429 
430 /*
431 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
432 ** not the internal Mem* type.
433 */
434 void sqlite3ValueApplyAffinity(
435   sqlite3_value *pVal,
436   u8 affinity,
437   u8 enc
438 ){
439   applyAffinity((Mem *)pVal, affinity, enc);
440 }
441 
442 /*
443 ** pMem currently only holds a string type (or maybe a BLOB that we can
444 ** interpret as a string if we want to).  Compute its corresponding
445 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
446 ** accordingly.
447 */
448 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
449   int rc;
450   sqlite3_int64 ix;
451   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
452   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
453   if( ExpandBlob(pMem) ){
454     pMem->u.i = 0;
455     return MEM_Int;
456   }
457   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
458   if( rc<=0 ){
459     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
460       pMem->u.i = ix;
461       return MEM_Int;
462     }else{
463       return MEM_Real;
464     }
465   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
466     pMem->u.i = ix;
467     return MEM_Int;
468   }
469   return MEM_Real;
470 }
471 
472 /*
473 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
474 ** none.
475 **
476 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
477 ** But it does set pMem->u.r and pMem->u.i appropriately.
478 */
479 static u16 numericType(Mem *pMem){
480   assert( (pMem->flags & MEM_Null)==0
481        || pMem->db==0 || pMem->db->mallocFailed );
482   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
483     testcase( pMem->flags & MEM_Int );
484     testcase( pMem->flags & MEM_Real );
485     testcase( pMem->flags & MEM_IntReal );
486     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
487   }
488   assert( pMem->flags & (MEM_Str|MEM_Blob) );
489   testcase( pMem->flags & MEM_Str );
490   testcase( pMem->flags & MEM_Blob );
491   return computeNumericType(pMem);
492   return 0;
493 }
494 
495 #ifdef SQLITE_DEBUG
496 /*
497 ** Write a nice string representation of the contents of cell pMem
498 ** into buffer zBuf, length nBuf.
499 */
500 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
501   int f = pMem->flags;
502   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
503   if( f&MEM_Blob ){
504     int i;
505     char c;
506     if( f & MEM_Dyn ){
507       c = 'z';
508       assert( (f & (MEM_Static|MEM_Ephem))==0 );
509     }else if( f & MEM_Static ){
510       c = 't';
511       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
512     }else if( f & MEM_Ephem ){
513       c = 'e';
514       assert( (f & (MEM_Static|MEM_Dyn))==0 );
515     }else{
516       c = 's';
517     }
518     sqlite3_str_appendf(pStr, "%cx[", c);
519     for(i=0; i<25 && i<pMem->n; i++){
520       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
521     }
522     sqlite3_str_appendf(pStr, "|");
523     for(i=0; i<25 && i<pMem->n; i++){
524       char z = pMem->z[i];
525       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
526     }
527     sqlite3_str_appendf(pStr,"]");
528     if( f & MEM_Zero ){
529       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
530     }
531   }else if( f & MEM_Str ){
532     int j;
533     u8 c;
534     if( f & MEM_Dyn ){
535       c = 'z';
536       assert( (f & (MEM_Static|MEM_Ephem))==0 );
537     }else if( f & MEM_Static ){
538       c = 't';
539       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
540     }else if( f & MEM_Ephem ){
541       c = 'e';
542       assert( (f & (MEM_Static|MEM_Dyn))==0 );
543     }else{
544       c = 's';
545     }
546     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
547     for(j=0; j<25 && j<pMem->n; j++){
548       c = pMem->z[j];
549       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
550     }
551     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
552   }
553 }
554 #endif
555 
556 #ifdef SQLITE_DEBUG
557 /*
558 ** Print the value of a register for tracing purposes:
559 */
560 static void memTracePrint(Mem *p){
561   if( p->flags & MEM_Undefined ){
562     printf(" undefined");
563   }else if( p->flags & MEM_Null ){
564     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
565   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
566     printf(" si:%lld", p->u.i);
567   }else if( (p->flags & (MEM_IntReal))!=0 ){
568     printf(" ir:%lld", p->u.i);
569   }else if( p->flags & MEM_Int ){
570     printf(" i:%lld", p->u.i);
571 #ifndef SQLITE_OMIT_FLOATING_POINT
572   }else if( p->flags & MEM_Real ){
573     printf(" r:%.17g", p->u.r);
574 #endif
575   }else if( sqlite3VdbeMemIsRowSet(p) ){
576     printf(" (rowset)");
577   }else{
578     StrAccum acc;
579     char zBuf[1000];
580     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
581     sqlite3VdbeMemPrettyPrint(p, &acc);
582     printf(" %s", sqlite3StrAccumFinish(&acc));
583   }
584   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
585 }
586 static void registerTrace(int iReg, Mem *p){
587   printf("R[%d] = ", iReg);
588   memTracePrint(p);
589   if( p->pScopyFrom ){
590     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
591   }
592   printf("\n");
593   sqlite3VdbeCheckMemInvariants(p);
594 }
595 /**/ void sqlite3PrintMem(Mem *pMem){
596   memTracePrint(pMem);
597   printf("\n");
598   fflush(stdout);
599 }
600 #endif
601 
602 #ifdef SQLITE_DEBUG
603 /*
604 ** Show the values of all registers in the virtual machine.  Used for
605 ** interactive debugging.
606 */
607 void sqlite3VdbeRegisterDump(Vdbe *v){
608   int i;
609   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
610 }
611 #endif /* SQLITE_DEBUG */
612 
613 
614 #ifdef SQLITE_DEBUG
615 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
616 #else
617 #  define REGISTER_TRACE(R,M)
618 #endif
619 
620 
621 #ifdef VDBE_PROFILE
622 
623 /*
624 ** hwtime.h contains inline assembler code for implementing
625 ** high-performance timing routines.
626 */
627 #include "hwtime.h"
628 
629 #endif
630 
631 #ifndef NDEBUG
632 /*
633 ** This function is only called from within an assert() expression. It
634 ** checks that the sqlite3.nTransaction variable is correctly set to
635 ** the number of non-transaction savepoints currently in the
636 ** linked list starting at sqlite3.pSavepoint.
637 **
638 ** Usage:
639 **
640 **     assert( checkSavepointCount(db) );
641 */
642 static int checkSavepointCount(sqlite3 *db){
643   int n = 0;
644   Savepoint *p;
645   for(p=db->pSavepoint; p; p=p->pNext) n++;
646   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
647   return 1;
648 }
649 #endif
650 
651 /*
652 ** Return the register of pOp->p2 after first preparing it to be
653 ** overwritten with an integer value.
654 */
655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
656   sqlite3VdbeMemSetNull(pOut);
657   pOut->flags = MEM_Int;
658   return pOut;
659 }
660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
661   Mem *pOut;
662   assert( pOp->p2>0 );
663   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
664   pOut = &p->aMem[pOp->p2];
665   memAboutToChange(p, pOut);
666   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
667     return out2PrereleaseWithClear(pOut);
668   }else{
669     pOut->flags = MEM_Int;
670     return pOut;
671   }
672 }
673 
674 /*
675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
676 ** with pOp->p3.  Return the hash.
677 */
678 static u64 filterHash(const Mem *aMem, const Op *pOp){
679   int i, mx;
680   u64 h = 0;
681 
682   assert( pOp->p4type==P4_INT32 );
683   for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
684     const Mem *p = &aMem[i];
685     if( p->flags & (MEM_Int|MEM_IntReal) ){
686       h += p->u.i;
687     }else if( p->flags & MEM_Real ){
688       h += sqlite3VdbeIntValue(p);
689     }else if( p->flags & (MEM_Str|MEM_Blob) ){
690       h += p->n;
691       if( p->flags & MEM_Zero ) h += p->u.nZero;
692     }
693   }
694   return h;
695 }
696 
697 /*
698 ** Return the symbolic name for the data type of a pMem
699 */
700 static const char *vdbeMemTypeName(Mem *pMem){
701   static const char *azTypes[] = {
702       /* SQLITE_INTEGER */ "INT",
703       /* SQLITE_FLOAT   */ "REAL",
704       /* SQLITE_TEXT    */ "TEXT",
705       /* SQLITE_BLOB    */ "BLOB",
706       /* SQLITE_NULL    */ "NULL"
707   };
708   return azTypes[sqlite3_value_type(pMem)-1];
709 }
710 
711 /*
712 ** Execute as much of a VDBE program as we can.
713 ** This is the core of sqlite3_step().
714 */
715 int sqlite3VdbeExec(
716   Vdbe *p                    /* The VDBE */
717 ){
718   Op *aOp = p->aOp;          /* Copy of p->aOp */
719   Op *pOp = aOp;             /* Current operation */
720 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
721   Op *pOrigOp;               /* Value of pOp at the top of the loop */
722 #endif
723 #ifdef SQLITE_DEBUG
724   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
725 #endif
726   int rc = SQLITE_OK;        /* Value to return */
727   sqlite3 *db = p->db;       /* The database */
728   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
729   u8 encoding = ENC(db);     /* The database encoding */
730   int iCompare = 0;          /* Result of last comparison */
731   u64 nVmStep = 0;           /* Number of virtual machine steps */
732 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
733   u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
734 #endif
735   Mem *aMem = p->aMem;       /* Copy of p->aMem */
736   Mem *pIn1 = 0;             /* 1st input operand */
737   Mem *pIn2 = 0;             /* 2nd input operand */
738   Mem *pIn3 = 0;             /* 3rd input operand */
739   Mem *pOut = 0;             /* Output operand */
740 #ifdef VDBE_PROFILE
741   u64 start;                 /* CPU clock count at start of opcode */
742 #endif
743   /*** INSERT STACK UNION HERE ***/
744 
745   assert( p->eVdbeState==VDBE_RUN_STATE );  /* sqlite3_step() verifies this */
746   sqlite3VdbeEnter(p);
747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
748   if( db->xProgress ){
749     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
750     assert( 0 < db->nProgressOps );
751     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
752   }else{
753     nProgressLimit = LARGEST_UINT64;
754   }
755 #endif
756   if( p->rc==SQLITE_NOMEM ){
757     /* This happens if a malloc() inside a call to sqlite3_column_text() or
758     ** sqlite3_column_text16() failed.  */
759     goto no_mem;
760   }
761   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
762   testcase( p->rc!=SQLITE_OK );
763   p->rc = SQLITE_OK;
764   assert( p->bIsReader || p->readOnly!=0 );
765   p->iCurrentTime = 0;
766   assert( p->explain==0 );
767   p->pResultSet = 0;
768   db->busyHandler.nBusy = 0;
769   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
770   sqlite3VdbeIOTraceSql(p);
771 #ifdef SQLITE_DEBUG
772   sqlite3BeginBenignMalloc();
773   if( p->pc==0
774    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
775   ){
776     int i;
777     int once = 1;
778     sqlite3VdbePrintSql(p);
779     if( p->db->flags & SQLITE_VdbeListing ){
780       printf("VDBE Program Listing:\n");
781       for(i=0; i<p->nOp; i++){
782         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
783       }
784     }
785     if( p->db->flags & SQLITE_VdbeEQP ){
786       for(i=0; i<p->nOp; i++){
787         if( aOp[i].opcode==OP_Explain ){
788           if( once ) printf("VDBE Query Plan:\n");
789           printf("%s\n", aOp[i].p4.z);
790           once = 0;
791         }
792       }
793     }
794     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
795   }
796   sqlite3EndBenignMalloc();
797 #endif
798   for(pOp=&aOp[p->pc]; 1; pOp++){
799     /* Errors are detected by individual opcodes, with an immediate
800     ** jumps to abort_due_to_error. */
801     assert( rc==SQLITE_OK );
802 
803     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
804 #ifdef VDBE_PROFILE
805     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
806 #endif
807     nVmStep++;
808 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
809     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
810 #endif
811 
812     /* Only allow tracing if SQLITE_DEBUG is defined.
813     */
814 #ifdef SQLITE_DEBUG
815     if( db->flags & SQLITE_VdbeTrace ){
816       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
817       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
818     }
819 #endif
820 
821 
822     /* Check to see if we need to simulate an interrupt.  This only happens
823     ** if we have a special test build.
824     */
825 #ifdef SQLITE_TEST
826     if( sqlite3_interrupt_count>0 ){
827       sqlite3_interrupt_count--;
828       if( sqlite3_interrupt_count==0 ){
829         sqlite3_interrupt(db);
830       }
831     }
832 #endif
833 
834     /* Sanity checking on other operands */
835 #ifdef SQLITE_DEBUG
836     {
837       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
838       if( (opProperty & OPFLG_IN1)!=0 ){
839         assert( pOp->p1>0 );
840         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
841         assert( memIsValid(&aMem[pOp->p1]) );
842         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
843         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
844       }
845       if( (opProperty & OPFLG_IN2)!=0 ){
846         assert( pOp->p2>0 );
847         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
848         assert( memIsValid(&aMem[pOp->p2]) );
849         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
850         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
851       }
852       if( (opProperty & OPFLG_IN3)!=0 ){
853         assert( pOp->p3>0 );
854         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
855         assert( memIsValid(&aMem[pOp->p3]) );
856         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
857         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
858       }
859       if( (opProperty & OPFLG_OUT2)!=0 ){
860         assert( pOp->p2>0 );
861         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
862         memAboutToChange(p, &aMem[pOp->p2]);
863       }
864       if( (opProperty & OPFLG_OUT3)!=0 ){
865         assert( pOp->p3>0 );
866         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
867         memAboutToChange(p, &aMem[pOp->p3]);
868       }
869     }
870 #endif
871 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
872     pOrigOp = pOp;
873 #endif
874 
875     switch( pOp->opcode ){
876 
877 /*****************************************************************************
878 ** What follows is a massive switch statement where each case implements a
879 ** separate instruction in the virtual machine.  If we follow the usual
880 ** indentation conventions, each case should be indented by 6 spaces.  But
881 ** that is a lot of wasted space on the left margin.  So the code within
882 ** the switch statement will break with convention and be flush-left. Another
883 ** big comment (similar to this one) will mark the point in the code where
884 ** we transition back to normal indentation.
885 **
886 ** The formatting of each case is important.  The makefile for SQLite
887 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
888 ** file looking for lines that begin with "case OP_".  The opcodes.h files
889 ** will be filled with #defines that give unique integer values to each
890 ** opcode and the opcodes.c file is filled with an array of strings where
891 ** each string is the symbolic name for the corresponding opcode.  If the
892 ** case statement is followed by a comment of the form "/# same as ... #/"
893 ** that comment is used to determine the particular value of the opcode.
894 **
895 ** Other keywords in the comment that follows each case are used to
896 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
897 ** Keywords include: in1, in2, in3, out2, out3.  See
898 ** the mkopcodeh.awk script for additional information.
899 **
900 ** Documentation about VDBE opcodes is generated by scanning this file
901 ** for lines of that contain "Opcode:".  That line and all subsequent
902 ** comment lines are used in the generation of the opcode.html documentation
903 ** file.
904 **
905 ** SUMMARY:
906 **
907 **     Formatting is important to scripts that scan this file.
908 **     Do not deviate from the formatting style currently in use.
909 **
910 *****************************************************************************/
911 
912 /* Opcode:  Goto * P2 * * *
913 **
914 ** An unconditional jump to address P2.
915 ** The next instruction executed will be
916 ** the one at index P2 from the beginning of
917 ** the program.
918 **
919 ** The P1 parameter is not actually used by this opcode.  However, it
920 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
921 ** that this Goto is the bottom of a loop and that the lines from P2 down
922 ** to the current line should be indented for EXPLAIN output.
923 */
924 case OP_Goto: {             /* jump */
925 
926 #ifdef SQLITE_DEBUG
927   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
928   ** means we should really jump back to the preceeding OP_ReleaseReg
929   ** instruction. */
930   if( pOp->p5 ){
931     assert( pOp->p2 < (int)(pOp - aOp) );
932     assert( pOp->p2 > 1 );
933     pOp = &aOp[pOp->p2 - 2];
934     assert( pOp[1].opcode==OP_ReleaseReg );
935     goto check_for_interrupt;
936   }
937 #endif
938 
939 jump_to_p2_and_check_for_interrupt:
940   pOp = &aOp[pOp->p2 - 1];
941 
942   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
943   ** OP_VNext, or OP_SorterNext) all jump here upon
944   ** completion.  Check to see if sqlite3_interrupt() has been called
945   ** or if the progress callback needs to be invoked.
946   **
947   ** This code uses unstructured "goto" statements and does not look clean.
948   ** But that is not due to sloppy coding habits. The code is written this
949   ** way for performance, to avoid having to run the interrupt and progress
950   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
951   ** faster according to "valgrind --tool=cachegrind" */
952 check_for_interrupt:
953   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
954 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
955   /* Call the progress callback if it is configured and the required number
956   ** of VDBE ops have been executed (either since this invocation of
957   ** sqlite3VdbeExec() or since last time the progress callback was called).
958   ** If the progress callback returns non-zero, exit the virtual machine with
959   ** a return code SQLITE_ABORT.
960   */
961   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
962     assert( db->nProgressOps!=0 );
963     nProgressLimit += db->nProgressOps;
964     if( db->xProgress(db->pProgressArg) ){
965       nProgressLimit = LARGEST_UINT64;
966       rc = SQLITE_INTERRUPT;
967       goto abort_due_to_error;
968     }
969   }
970 #endif
971 
972   break;
973 }
974 
975 /* Opcode:  Gosub P1 P2 * * *
976 **
977 ** Write the current address onto register P1
978 ** and then jump to address P2.
979 */
980 case OP_Gosub: {            /* jump */
981   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
982   pIn1 = &aMem[pOp->p1];
983   assert( VdbeMemDynamic(pIn1)==0 );
984   memAboutToChange(p, pIn1);
985   pIn1->flags = MEM_Int;
986   pIn1->u.i = (int)(pOp-aOp);
987   REGISTER_TRACE(pOp->p1, pIn1);
988   goto jump_to_p2_and_check_for_interrupt;
989 }
990 
991 /* Opcode:  Return P1 P2 P3 * *
992 **
993 ** Jump to the address stored in register P1.  If P1 is a return address
994 ** register, then this accomplishes a return from a subroutine.
995 **
996 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
997 ** values, otherwise execution falls through to the next opcode, and the
998 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
999 ** integer or else an assert() is raised.  P3 should be set to 1 when
1000 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1001 ** otherwise.
1002 **
1003 ** The value in register P1 is unchanged by this opcode.
1004 **
1005 ** P2 is not used by the byte-code engine.  However, if P2 is positive
1006 ** and also less than the current address, then the "EXPLAIN" output
1007 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1008 ** to be not including the current Return.   P2 should be the first opcode
1009 ** in the subroutine from which this opcode is returning.  Thus the P2
1010 ** value is a byte-code indentation hint.  See tag-20220407a in
1011 ** wherecode.c and shell.c.
1012 */
1013 case OP_Return: {           /* in1 */
1014   pIn1 = &aMem[pOp->p1];
1015   if( pIn1->flags & MEM_Int ){
1016     if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1017     pOp = &aOp[pIn1->u.i];
1018   }else if( ALWAYS(pOp->p3) ){
1019     VdbeBranchTaken(0, 2);
1020   }
1021   break;
1022 }
1023 
1024 /* Opcode: InitCoroutine P1 P2 P3 * *
1025 **
1026 ** Set up register P1 so that it will Yield to the coroutine
1027 ** located at address P3.
1028 **
1029 ** If P2!=0 then the coroutine implementation immediately follows
1030 ** this opcode.  So jump over the coroutine implementation to
1031 ** address P2.
1032 **
1033 ** See also: EndCoroutine
1034 */
1035 case OP_InitCoroutine: {     /* jump */
1036   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
1037   assert( pOp->p2>=0 && pOp->p2<p->nOp );
1038   assert( pOp->p3>=0 && pOp->p3<p->nOp );
1039   pOut = &aMem[pOp->p1];
1040   assert( !VdbeMemDynamic(pOut) );
1041   pOut->u.i = pOp->p3 - 1;
1042   pOut->flags = MEM_Int;
1043   if( pOp->p2==0 ) break;
1044 
1045   /* Most jump operations do a goto to this spot in order to update
1046   ** the pOp pointer. */
1047 jump_to_p2:
1048   assert( pOp->p2>0 );       /* There are never any jumps to instruction 0 */
1049   assert( pOp->p2<p->nOp );  /* Jumps must be in range */
1050   pOp = &aOp[pOp->p2 - 1];
1051   break;
1052 }
1053 
1054 /* Opcode:  EndCoroutine P1 * * * *
1055 **
1056 ** The instruction at the address in register P1 is a Yield.
1057 ** Jump to the P2 parameter of that Yield.
1058 ** After the jump, register P1 becomes undefined.
1059 **
1060 ** See also: InitCoroutine
1061 */
1062 case OP_EndCoroutine: {           /* in1 */
1063   VdbeOp *pCaller;
1064   pIn1 = &aMem[pOp->p1];
1065   assert( pIn1->flags==MEM_Int );
1066   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1067   pCaller = &aOp[pIn1->u.i];
1068   assert( pCaller->opcode==OP_Yield );
1069   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1070   pOp = &aOp[pCaller->p2 - 1];
1071   pIn1->flags = MEM_Undefined;
1072   break;
1073 }
1074 
1075 /* Opcode:  Yield P1 P2 * * *
1076 **
1077 ** Swap the program counter with the value in register P1.  This
1078 ** has the effect of yielding to a coroutine.
1079 **
1080 ** If the coroutine that is launched by this instruction ends with
1081 ** Yield or Return then continue to the next instruction.  But if
1082 ** the coroutine launched by this instruction ends with
1083 ** EndCoroutine, then jump to P2 rather than continuing with the
1084 ** next instruction.
1085 **
1086 ** See also: InitCoroutine
1087 */
1088 case OP_Yield: {            /* in1, jump */
1089   int pcDest;
1090   pIn1 = &aMem[pOp->p1];
1091   assert( VdbeMemDynamic(pIn1)==0 );
1092   pIn1->flags = MEM_Int;
1093   pcDest = (int)pIn1->u.i;
1094   pIn1->u.i = (int)(pOp - aOp);
1095   REGISTER_TRACE(pOp->p1, pIn1);
1096   pOp = &aOp[pcDest];
1097   break;
1098 }
1099 
1100 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1101 ** Synopsis: if r[P3]=null halt
1102 **
1103 ** Check the value in register P3.  If it is NULL then Halt using
1104 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1105 ** value in register P3 is not NULL, then this routine is a no-op.
1106 ** The P5 parameter should be 1.
1107 */
1108 case OP_HaltIfNull: {      /* in3 */
1109   pIn3 = &aMem[pOp->p3];
1110 #ifdef SQLITE_DEBUG
1111   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1112 #endif
1113   if( (pIn3->flags & MEM_Null)==0 ) break;
1114   /* Fall through into OP_Halt */
1115   /* no break */ deliberate_fall_through
1116 }
1117 
1118 /* Opcode:  Halt P1 P2 * P4 P5
1119 **
1120 ** Exit immediately.  All open cursors, etc are closed
1121 ** automatically.
1122 **
1123 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1124 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1125 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1126 ** whether or not to rollback the current transaction.  Do not rollback
1127 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1128 ** then back out all changes that have occurred during this execution of the
1129 ** VDBE, but do not rollback the transaction.
1130 **
1131 ** If P4 is not null then it is an error message string.
1132 **
1133 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1134 **
1135 **    0:  (no change)
1136 **    1:  NOT NULL contraint failed: P4
1137 **    2:  UNIQUE constraint failed: P4
1138 **    3:  CHECK constraint failed: P4
1139 **    4:  FOREIGN KEY constraint failed: P4
1140 **
1141 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1142 ** omitted.
1143 **
1144 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1145 ** every program.  So a jump past the last instruction of the program
1146 ** is the same as executing Halt.
1147 */
1148 case OP_Halt: {
1149   VdbeFrame *pFrame;
1150   int pcx;
1151 
1152 #ifdef SQLITE_DEBUG
1153   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1154 #endif
1155   if( p->pFrame && pOp->p1==SQLITE_OK ){
1156     /* Halt the sub-program. Return control to the parent frame. */
1157     pFrame = p->pFrame;
1158     p->pFrame = pFrame->pParent;
1159     p->nFrame--;
1160     sqlite3VdbeSetChanges(db, p->nChange);
1161     pcx = sqlite3VdbeFrameRestore(pFrame);
1162     if( pOp->p2==OE_Ignore ){
1163       /* Instruction pcx is the OP_Program that invoked the sub-program
1164       ** currently being halted. If the p2 instruction of this OP_Halt
1165       ** instruction is set to OE_Ignore, then the sub-program is throwing
1166       ** an IGNORE exception. In this case jump to the address specified
1167       ** as the p2 of the calling OP_Program.  */
1168       pcx = p->aOp[pcx].p2-1;
1169     }
1170     aOp = p->aOp;
1171     aMem = p->aMem;
1172     pOp = &aOp[pcx];
1173     break;
1174   }
1175   p->rc = pOp->p1;
1176   p->errorAction = (u8)pOp->p2;
1177   assert( pOp->p5<=4 );
1178   if( p->rc ){
1179     if( pOp->p5 ){
1180       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1181                                              "FOREIGN KEY" };
1182       testcase( pOp->p5==1 );
1183       testcase( pOp->p5==2 );
1184       testcase( pOp->p5==3 );
1185       testcase( pOp->p5==4 );
1186       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1187       if( pOp->p4.z ){
1188         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1189       }
1190     }else{
1191       sqlite3VdbeError(p, "%s", pOp->p4.z);
1192     }
1193     pcx = (int)(pOp - aOp);
1194     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1195   }
1196   rc = sqlite3VdbeHalt(p);
1197   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1198   if( rc==SQLITE_BUSY ){
1199     p->rc = SQLITE_BUSY;
1200   }else{
1201     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1202     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1203     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1204   }
1205   goto vdbe_return;
1206 }
1207 
1208 /* Opcode: Integer P1 P2 * * *
1209 ** Synopsis: r[P2]=P1
1210 **
1211 ** The 32-bit integer value P1 is written into register P2.
1212 */
1213 case OP_Integer: {         /* out2 */
1214   pOut = out2Prerelease(p, pOp);
1215   pOut->u.i = pOp->p1;
1216   break;
1217 }
1218 
1219 /* Opcode: Int64 * P2 * P4 *
1220 ** Synopsis: r[P2]=P4
1221 **
1222 ** P4 is a pointer to a 64-bit integer value.
1223 ** Write that value into register P2.
1224 */
1225 case OP_Int64: {           /* out2 */
1226   pOut = out2Prerelease(p, pOp);
1227   assert( pOp->p4.pI64!=0 );
1228   pOut->u.i = *pOp->p4.pI64;
1229   break;
1230 }
1231 
1232 #ifndef SQLITE_OMIT_FLOATING_POINT
1233 /* Opcode: Real * P2 * P4 *
1234 ** Synopsis: r[P2]=P4
1235 **
1236 ** P4 is a pointer to a 64-bit floating point value.
1237 ** Write that value into register P2.
1238 */
1239 case OP_Real: {            /* same as TK_FLOAT, out2 */
1240   pOut = out2Prerelease(p, pOp);
1241   pOut->flags = MEM_Real;
1242   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1243   pOut->u.r = *pOp->p4.pReal;
1244   break;
1245 }
1246 #endif
1247 
1248 /* Opcode: String8 * P2 * P4 *
1249 ** Synopsis: r[P2]='P4'
1250 **
1251 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1252 ** into a String opcode before it is executed for the first time.  During
1253 ** this transformation, the length of string P4 is computed and stored
1254 ** as the P1 parameter.
1255 */
1256 case OP_String8: {         /* same as TK_STRING, out2 */
1257   assert( pOp->p4.z!=0 );
1258   pOut = out2Prerelease(p, pOp);
1259   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1260 
1261 #ifndef SQLITE_OMIT_UTF16
1262   if( encoding!=SQLITE_UTF8 ){
1263     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1264     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1265     if( rc ) goto too_big;
1266     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1267     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1268     assert( VdbeMemDynamic(pOut)==0 );
1269     pOut->szMalloc = 0;
1270     pOut->flags |= MEM_Static;
1271     if( pOp->p4type==P4_DYNAMIC ){
1272       sqlite3DbFree(db, pOp->p4.z);
1273     }
1274     pOp->p4type = P4_DYNAMIC;
1275     pOp->p4.z = pOut->z;
1276     pOp->p1 = pOut->n;
1277   }
1278 #endif
1279   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1280     goto too_big;
1281   }
1282   pOp->opcode = OP_String;
1283   assert( rc==SQLITE_OK );
1284   /* Fall through to the next case, OP_String */
1285   /* no break */ deliberate_fall_through
1286 }
1287 
1288 /* Opcode: String P1 P2 P3 P4 P5
1289 ** Synopsis: r[P2]='P4' (len=P1)
1290 **
1291 ** The string value P4 of length P1 (bytes) is stored in register P2.
1292 **
1293 ** If P3 is not zero and the content of register P3 is equal to P5, then
1294 ** the datatype of the register P2 is converted to BLOB.  The content is
1295 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1296 ** of a string, as if it had been CAST.  In other words:
1297 **
1298 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1299 */
1300 case OP_String: {          /* out2 */
1301   assert( pOp->p4.z!=0 );
1302   pOut = out2Prerelease(p, pOp);
1303   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1304   pOut->z = pOp->p4.z;
1305   pOut->n = pOp->p1;
1306   pOut->enc = encoding;
1307   UPDATE_MAX_BLOBSIZE(pOut);
1308 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1309   if( pOp->p3>0 ){
1310     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1311     pIn3 = &aMem[pOp->p3];
1312     assert( pIn3->flags & MEM_Int );
1313     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1314   }
1315 #endif
1316   break;
1317 }
1318 
1319 /* Opcode: BeginSubrtn * P2 * * *
1320 ** Synopsis: r[P2]=NULL
1321 **
1322 ** Mark the beginning of a subroutine that can be entered in-line
1323 ** or that can be called using OP_Gosub.  The subroutine should
1324 ** be terminated by an OP_Return instruction that has a P1 operand that
1325 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1326 ** If the subroutine is entered in-line, then the OP_Return will simply
1327 ** fall through.  But if the subroutine is entered using OP_Gosub, then
1328 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1329 **
1330 ** This routine works by loading a NULL into the P2 register.  When the
1331 ** return address register contains a NULL, the OP_Return instruction is
1332 ** a no-op that simply falls through to the next instruction (assuming that
1333 ** the OP_Return opcode has a P3 value of 1).  Thus if the subroutine is
1334 ** entered in-line, then the OP_Return will cause in-line execution to
1335 ** continue.  But if the subroutine is entered via OP_Gosub, then the
1336 ** OP_Return will cause a return to the address following the OP_Gosub.
1337 **
1338 ** This opcode is identical to OP_Null.  It has a different name
1339 ** only to make the byte code easier to read and verify.
1340 */
1341 /* Opcode: Null P1 P2 P3 * *
1342 ** Synopsis: r[P2..P3]=NULL
1343 **
1344 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1345 ** NULL into register P3 and every register in between P2 and P3.  If P3
1346 ** is less than P2 (typically P3 is zero) then only register P2 is
1347 ** set to NULL.
1348 **
1349 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1350 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1351 ** OP_Ne or OP_Eq.
1352 */
1353 case OP_BeginSubrtn:
1354 case OP_Null: {           /* out2 */
1355   int cnt;
1356   u16 nullFlag;
1357   pOut = out2Prerelease(p, pOp);
1358   cnt = pOp->p3-pOp->p2;
1359   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1360   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1361   pOut->n = 0;
1362 #ifdef SQLITE_DEBUG
1363   pOut->uTemp = 0;
1364 #endif
1365   while( cnt>0 ){
1366     pOut++;
1367     memAboutToChange(p, pOut);
1368     sqlite3VdbeMemSetNull(pOut);
1369     pOut->flags = nullFlag;
1370     pOut->n = 0;
1371     cnt--;
1372   }
1373   break;
1374 }
1375 
1376 /* Opcode: SoftNull P1 * * * *
1377 ** Synopsis: r[P1]=NULL
1378 **
1379 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1380 ** instruction, but do not free any string or blob memory associated with
1381 ** the register, so that if the value was a string or blob that was
1382 ** previously copied using OP_SCopy, the copies will continue to be valid.
1383 */
1384 case OP_SoftNull: {
1385   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1386   pOut = &aMem[pOp->p1];
1387   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1388   break;
1389 }
1390 
1391 /* Opcode: Blob P1 P2 * P4 *
1392 ** Synopsis: r[P2]=P4 (len=P1)
1393 **
1394 ** P4 points to a blob of data P1 bytes long.  Store this
1395 ** blob in register P2.  If P4 is a NULL pointer, then construct
1396 ** a zero-filled blob that is P1 bytes long in P2.
1397 */
1398 case OP_Blob: {                /* out2 */
1399   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1400   pOut = out2Prerelease(p, pOp);
1401   if( pOp->p4.z==0 ){
1402     sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1403     if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1404   }else{
1405     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1406   }
1407   pOut->enc = encoding;
1408   UPDATE_MAX_BLOBSIZE(pOut);
1409   break;
1410 }
1411 
1412 /* Opcode: Variable P1 P2 * P4 *
1413 ** Synopsis: r[P2]=parameter(P1,P4)
1414 **
1415 ** Transfer the values of bound parameter P1 into register P2
1416 **
1417 ** If the parameter is named, then its name appears in P4.
1418 ** The P4 value is used by sqlite3_bind_parameter_name().
1419 */
1420 case OP_Variable: {            /* out2 */
1421   Mem *pVar;       /* Value being transferred */
1422 
1423   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1424   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1425   pVar = &p->aVar[pOp->p1 - 1];
1426   if( sqlite3VdbeMemTooBig(pVar) ){
1427     goto too_big;
1428   }
1429   pOut = &aMem[pOp->p2];
1430   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1431   memcpy(pOut, pVar, MEMCELLSIZE);
1432   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1433   pOut->flags |= MEM_Static|MEM_FromBind;
1434   UPDATE_MAX_BLOBSIZE(pOut);
1435   break;
1436 }
1437 
1438 /* Opcode: Move P1 P2 P3 * *
1439 ** Synopsis: r[P2@P3]=r[P1@P3]
1440 **
1441 ** Move the P3 values in register P1..P1+P3-1 over into
1442 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1443 ** left holding a NULL.  It is an error for register ranges
1444 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1445 ** for P3 to be less than 1.
1446 */
1447 case OP_Move: {
1448   int n;           /* Number of registers left to copy */
1449   int p1;          /* Register to copy from */
1450   int p2;          /* Register to copy to */
1451 
1452   n = pOp->p3;
1453   p1 = pOp->p1;
1454   p2 = pOp->p2;
1455   assert( n>0 && p1>0 && p2>0 );
1456   assert( p1+n<=p2 || p2+n<=p1 );
1457 
1458   pIn1 = &aMem[p1];
1459   pOut = &aMem[p2];
1460   do{
1461     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1462     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1463     assert( memIsValid(pIn1) );
1464     memAboutToChange(p, pOut);
1465     sqlite3VdbeMemMove(pOut, pIn1);
1466 #ifdef SQLITE_DEBUG
1467     pIn1->pScopyFrom = 0;
1468     { int i;
1469       for(i=1; i<p->nMem; i++){
1470         if( aMem[i].pScopyFrom==pIn1 ){
1471           aMem[i].pScopyFrom = pOut;
1472         }
1473       }
1474     }
1475 #endif
1476     Deephemeralize(pOut);
1477     REGISTER_TRACE(p2++, pOut);
1478     pIn1++;
1479     pOut++;
1480   }while( --n );
1481   break;
1482 }
1483 
1484 /* Opcode: Copy P1 P2 P3 * P5
1485 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1486 **
1487 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1488 **
1489 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1490 ** destination.  The 0x0001 bit of P5 indicates that this Copy opcode cannot
1491 ** be merged.  The 0x0001 bit is used by the query planner and does not
1492 ** come into play during query execution.
1493 **
1494 ** This instruction makes a deep copy of the value.  A duplicate
1495 ** is made of any string or blob constant.  See also OP_SCopy.
1496 */
1497 case OP_Copy: {
1498   int n;
1499 
1500   n = pOp->p3;
1501   pIn1 = &aMem[pOp->p1];
1502   pOut = &aMem[pOp->p2];
1503   assert( pOut!=pIn1 );
1504   while( 1 ){
1505     memAboutToChange(p, pOut);
1506     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1507     Deephemeralize(pOut);
1508     if( (pOut->flags & MEM_Subtype)!=0 &&  (pOp->p5 & 0x0002)!=0 ){
1509       pOut->flags &= ~MEM_Subtype;
1510     }
1511 #ifdef SQLITE_DEBUG
1512     pOut->pScopyFrom = 0;
1513 #endif
1514     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1515     if( (n--)==0 ) break;
1516     pOut++;
1517     pIn1++;
1518   }
1519   break;
1520 }
1521 
1522 /* Opcode: SCopy P1 P2 * * *
1523 ** Synopsis: r[P2]=r[P1]
1524 **
1525 ** Make a shallow copy of register P1 into register P2.
1526 **
1527 ** This instruction makes a shallow copy of the value.  If the value
1528 ** is a string or blob, then the copy is only a pointer to the
1529 ** original and hence if the original changes so will the copy.
1530 ** Worse, if the original is deallocated, the copy becomes invalid.
1531 ** Thus the program must guarantee that the original will not change
1532 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1533 ** copy.
1534 */
1535 case OP_SCopy: {            /* out2 */
1536   pIn1 = &aMem[pOp->p1];
1537   pOut = &aMem[pOp->p2];
1538   assert( pOut!=pIn1 );
1539   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1540 #ifdef SQLITE_DEBUG
1541   pOut->pScopyFrom = pIn1;
1542   pOut->mScopyFlags = pIn1->flags;
1543 #endif
1544   break;
1545 }
1546 
1547 /* Opcode: IntCopy P1 P2 * * *
1548 ** Synopsis: r[P2]=r[P1]
1549 **
1550 ** Transfer the integer value held in register P1 into register P2.
1551 **
1552 ** This is an optimized version of SCopy that works only for integer
1553 ** values.
1554 */
1555 case OP_IntCopy: {            /* out2 */
1556   pIn1 = &aMem[pOp->p1];
1557   assert( (pIn1->flags & MEM_Int)!=0 );
1558   pOut = &aMem[pOp->p2];
1559   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1560   break;
1561 }
1562 
1563 /* Opcode: FkCheck * * * * *
1564 **
1565 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1566 ** foreign key constraint violations.  If there are no foreign key
1567 ** constraint violations, this is a no-op.
1568 **
1569 ** FK constraint violations are also checked when the prepared statement
1570 ** exits.  This opcode is used to raise foreign key constraint errors prior
1571 ** to returning results such as a row change count or the result of a
1572 ** RETURNING clause.
1573 */
1574 case OP_FkCheck: {
1575   if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1576     goto abort_due_to_error;
1577   }
1578   break;
1579 }
1580 
1581 /* Opcode: ResultRow P1 P2 * * *
1582 ** Synopsis: output=r[P1@P2]
1583 **
1584 ** The registers P1 through P1+P2-1 contain a single row of
1585 ** results. This opcode causes the sqlite3_step() call to terminate
1586 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1587 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1588 ** the result row.
1589 */
1590 case OP_ResultRow: {
1591   assert( p->nResColumn==pOp->p2 );
1592   assert( pOp->p1>0 || CORRUPT_DB );
1593   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1594 
1595   p->cacheCtr = (p->cacheCtr + 2)|1;
1596   p->pResultSet = &aMem[pOp->p1];
1597 #ifdef SQLITE_DEBUG
1598   {
1599     Mem *pMem = p->pResultSet;
1600     int i;
1601     for(i=0; i<pOp->p2; i++){
1602       assert( memIsValid(&pMem[i]) );
1603       REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1604       /* The registers in the result will not be used again when the
1605       ** prepared statement restarts.  This is because sqlite3_column()
1606       ** APIs might have caused type conversions of made other changes to
1607       ** the register values.  Therefore, we can go ahead and break any
1608       ** OP_SCopy dependencies. */
1609       pMem[i].pScopyFrom = 0;
1610     }
1611   }
1612 #endif
1613   if( db->mallocFailed ) goto no_mem;
1614   if( db->mTrace & SQLITE_TRACE_ROW ){
1615     db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1616   }
1617   p->pc = (int)(pOp - aOp) + 1;
1618   rc = SQLITE_ROW;
1619   goto vdbe_return;
1620 }
1621 
1622 /* Opcode: Concat P1 P2 P3 * *
1623 ** Synopsis: r[P3]=r[P2]+r[P1]
1624 **
1625 ** Add the text in register P1 onto the end of the text in
1626 ** register P2 and store the result in register P3.
1627 ** If either the P1 or P2 text are NULL then store NULL in P3.
1628 **
1629 **   P3 = P2 || P1
1630 **
1631 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1632 ** if P3 is the same register as P2, the implementation is able
1633 ** to avoid a memcpy().
1634 */
1635 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1636   i64 nByte;          /* Total size of the output string or blob */
1637   u16 flags1;         /* Initial flags for P1 */
1638   u16 flags2;         /* Initial flags for P2 */
1639 
1640   pIn1 = &aMem[pOp->p1];
1641   pIn2 = &aMem[pOp->p2];
1642   pOut = &aMem[pOp->p3];
1643   testcase( pOut==pIn2 );
1644   assert( pIn1!=pOut );
1645   flags1 = pIn1->flags;
1646   testcase( flags1 & MEM_Null );
1647   testcase( pIn2->flags & MEM_Null );
1648   if( (flags1 | pIn2->flags) & MEM_Null ){
1649     sqlite3VdbeMemSetNull(pOut);
1650     break;
1651   }
1652   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1653     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1654     flags1 = pIn1->flags & ~MEM_Str;
1655   }else if( (flags1 & MEM_Zero)!=0 ){
1656     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1657     flags1 = pIn1->flags & ~MEM_Str;
1658   }
1659   flags2 = pIn2->flags;
1660   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1661     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1662     flags2 = pIn2->flags & ~MEM_Str;
1663   }else if( (flags2 & MEM_Zero)!=0 ){
1664     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1665     flags2 = pIn2->flags & ~MEM_Str;
1666   }
1667   nByte = pIn1->n + pIn2->n;
1668   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1669     goto too_big;
1670   }
1671   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1672     goto no_mem;
1673   }
1674   MemSetTypeFlag(pOut, MEM_Str);
1675   if( pOut!=pIn2 ){
1676     memcpy(pOut->z, pIn2->z, pIn2->n);
1677     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1678     pIn2->flags = flags2;
1679   }
1680   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1681   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1682   pIn1->flags = flags1;
1683   if( encoding>SQLITE_UTF8 ) nByte &= ~1;
1684   pOut->z[nByte]=0;
1685   pOut->z[nByte+1] = 0;
1686   pOut->flags |= MEM_Term;
1687   pOut->n = (int)nByte;
1688   pOut->enc = encoding;
1689   UPDATE_MAX_BLOBSIZE(pOut);
1690   break;
1691 }
1692 
1693 /* Opcode: Add P1 P2 P3 * *
1694 ** Synopsis: r[P3]=r[P1]+r[P2]
1695 **
1696 ** Add the value in register P1 to the value in register P2
1697 ** and store the result in register P3.
1698 ** If either input is NULL, the result is NULL.
1699 */
1700 /* Opcode: Multiply P1 P2 P3 * *
1701 ** Synopsis: r[P3]=r[P1]*r[P2]
1702 **
1703 **
1704 ** Multiply the value in register P1 by the value in register P2
1705 ** and store the result in register P3.
1706 ** If either input is NULL, the result is NULL.
1707 */
1708 /* Opcode: Subtract P1 P2 P3 * *
1709 ** Synopsis: r[P3]=r[P2]-r[P1]
1710 **
1711 ** Subtract the value in register P1 from the value in register P2
1712 ** and store the result in register P3.
1713 ** If either input is NULL, the result is NULL.
1714 */
1715 /* Opcode: Divide P1 P2 P3 * *
1716 ** Synopsis: r[P3]=r[P2]/r[P1]
1717 **
1718 ** Divide the value in register P1 by the value in register P2
1719 ** and store the result in register P3 (P3=P2/P1). If the value in
1720 ** register P1 is zero, then the result is NULL. If either input is
1721 ** NULL, the result is NULL.
1722 */
1723 /* Opcode: Remainder P1 P2 P3 * *
1724 ** Synopsis: r[P3]=r[P2]%r[P1]
1725 **
1726 ** Compute the remainder after integer register P2 is divided by
1727 ** register P1 and store the result in register P3.
1728 ** If the value in register P1 is zero the result is NULL.
1729 ** If either operand is NULL, the result is NULL.
1730 */
1731 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1732 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1733 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1734 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1735 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1736   u16 type1;      /* Numeric type of left operand */
1737   u16 type2;      /* Numeric type of right operand */
1738   i64 iA;         /* Integer value of left operand */
1739   i64 iB;         /* Integer value of right operand */
1740   double rA;      /* Real value of left operand */
1741   double rB;      /* Real value of right operand */
1742 
1743   pIn1 = &aMem[pOp->p1];
1744   type1 = pIn1->flags;
1745   pIn2 = &aMem[pOp->p2];
1746   type2 = pIn2->flags;
1747   pOut = &aMem[pOp->p3];
1748   if( (type1 & type2 & MEM_Int)!=0 ){
1749 int_math:
1750     iA = pIn1->u.i;
1751     iB = pIn2->u.i;
1752     switch( pOp->opcode ){
1753       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1754       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1755       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1756       case OP_Divide: {
1757         if( iA==0 ) goto arithmetic_result_is_null;
1758         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1759         iB /= iA;
1760         break;
1761       }
1762       default: {
1763         if( iA==0 ) goto arithmetic_result_is_null;
1764         if( iA==-1 ) iA = 1;
1765         iB %= iA;
1766         break;
1767       }
1768     }
1769     pOut->u.i = iB;
1770     MemSetTypeFlag(pOut, MEM_Int);
1771   }else if( ((type1 | type2) & MEM_Null)!=0 ){
1772     goto arithmetic_result_is_null;
1773   }else{
1774     type1 = numericType(pIn1);
1775     type2 = numericType(pIn2);
1776     if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
1777 fp_math:
1778     rA = sqlite3VdbeRealValue(pIn1);
1779     rB = sqlite3VdbeRealValue(pIn2);
1780     switch( pOp->opcode ){
1781       case OP_Add:         rB += rA;       break;
1782       case OP_Subtract:    rB -= rA;       break;
1783       case OP_Multiply:    rB *= rA;       break;
1784       case OP_Divide: {
1785         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1786         if( rA==(double)0 ) goto arithmetic_result_is_null;
1787         rB /= rA;
1788         break;
1789       }
1790       default: {
1791         iA = sqlite3VdbeIntValue(pIn1);
1792         iB = sqlite3VdbeIntValue(pIn2);
1793         if( iA==0 ) goto arithmetic_result_is_null;
1794         if( iA==-1 ) iA = 1;
1795         rB = (double)(iB % iA);
1796         break;
1797       }
1798     }
1799 #ifdef SQLITE_OMIT_FLOATING_POINT
1800     pOut->u.i = rB;
1801     MemSetTypeFlag(pOut, MEM_Int);
1802 #else
1803     if( sqlite3IsNaN(rB) ){
1804       goto arithmetic_result_is_null;
1805     }
1806     pOut->u.r = rB;
1807     MemSetTypeFlag(pOut, MEM_Real);
1808 #endif
1809   }
1810   break;
1811 
1812 arithmetic_result_is_null:
1813   sqlite3VdbeMemSetNull(pOut);
1814   break;
1815 }
1816 
1817 /* Opcode: CollSeq P1 * * P4
1818 **
1819 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1820 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1821 ** be returned. This is used by the built-in min(), max() and nullif()
1822 ** functions.
1823 **
1824 ** If P1 is not zero, then it is a register that a subsequent min() or
1825 ** max() aggregate will set to 1 if the current row is not the minimum or
1826 ** maximum.  The P1 register is initialized to 0 by this instruction.
1827 **
1828 ** The interface used by the implementation of the aforementioned functions
1829 ** to retrieve the collation sequence set by this opcode is not available
1830 ** publicly.  Only built-in functions have access to this feature.
1831 */
1832 case OP_CollSeq: {
1833   assert( pOp->p4type==P4_COLLSEQ );
1834   if( pOp->p1 ){
1835     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1836   }
1837   break;
1838 }
1839 
1840 /* Opcode: BitAnd P1 P2 P3 * *
1841 ** Synopsis: r[P3]=r[P1]&r[P2]
1842 **
1843 ** Take the bit-wise AND of the values in register P1 and P2 and
1844 ** store the result in register P3.
1845 ** If either input is NULL, the result is NULL.
1846 */
1847 /* Opcode: BitOr P1 P2 P3 * *
1848 ** Synopsis: r[P3]=r[P1]|r[P2]
1849 **
1850 ** Take the bit-wise OR of the values in register P1 and P2 and
1851 ** store the result in register P3.
1852 ** If either input is NULL, the result is NULL.
1853 */
1854 /* Opcode: ShiftLeft P1 P2 P3 * *
1855 ** Synopsis: r[P3]=r[P2]<<r[P1]
1856 **
1857 ** Shift the integer value in register P2 to the left by the
1858 ** number of bits specified by the integer in register P1.
1859 ** Store the result in register P3.
1860 ** If either input is NULL, the result is NULL.
1861 */
1862 /* Opcode: ShiftRight P1 P2 P3 * *
1863 ** Synopsis: r[P3]=r[P2]>>r[P1]
1864 **
1865 ** Shift the integer value in register P2 to the right by the
1866 ** number of bits specified by the integer in register P1.
1867 ** Store the result in register P3.
1868 ** If either input is NULL, the result is NULL.
1869 */
1870 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1871 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1872 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1873 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1874   i64 iA;
1875   u64 uA;
1876   i64 iB;
1877   u8 op;
1878 
1879   pIn1 = &aMem[pOp->p1];
1880   pIn2 = &aMem[pOp->p2];
1881   pOut = &aMem[pOp->p3];
1882   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1883     sqlite3VdbeMemSetNull(pOut);
1884     break;
1885   }
1886   iA = sqlite3VdbeIntValue(pIn2);
1887   iB = sqlite3VdbeIntValue(pIn1);
1888   op = pOp->opcode;
1889   if( op==OP_BitAnd ){
1890     iA &= iB;
1891   }else if( op==OP_BitOr ){
1892     iA |= iB;
1893   }else if( iB!=0 ){
1894     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1895 
1896     /* If shifting by a negative amount, shift in the other direction */
1897     if( iB<0 ){
1898       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1899       op = 2*OP_ShiftLeft + 1 - op;
1900       iB = iB>(-64) ? -iB : 64;
1901     }
1902 
1903     if( iB>=64 ){
1904       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1905     }else{
1906       memcpy(&uA, &iA, sizeof(uA));
1907       if( op==OP_ShiftLeft ){
1908         uA <<= iB;
1909       }else{
1910         uA >>= iB;
1911         /* Sign-extend on a right shift of a negative number */
1912         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1913       }
1914       memcpy(&iA, &uA, sizeof(iA));
1915     }
1916   }
1917   pOut->u.i = iA;
1918   MemSetTypeFlag(pOut, MEM_Int);
1919   break;
1920 }
1921 
1922 /* Opcode: AddImm  P1 P2 * * *
1923 ** Synopsis: r[P1]=r[P1]+P2
1924 **
1925 ** Add the constant P2 to the value in register P1.
1926 ** The result is always an integer.
1927 **
1928 ** To force any register to be an integer, just add 0.
1929 */
1930 case OP_AddImm: {            /* in1 */
1931   pIn1 = &aMem[pOp->p1];
1932   memAboutToChange(p, pIn1);
1933   sqlite3VdbeMemIntegerify(pIn1);
1934   pIn1->u.i += pOp->p2;
1935   break;
1936 }
1937 
1938 /* Opcode: MustBeInt P1 P2 * * *
1939 **
1940 ** Force the value in register P1 to be an integer.  If the value
1941 ** in P1 is not an integer and cannot be converted into an integer
1942 ** without data loss, then jump immediately to P2, or if P2==0
1943 ** raise an SQLITE_MISMATCH exception.
1944 */
1945 case OP_MustBeInt: {            /* jump, in1 */
1946   pIn1 = &aMem[pOp->p1];
1947   if( (pIn1->flags & MEM_Int)==0 ){
1948     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1949     if( (pIn1->flags & MEM_Int)==0 ){
1950       VdbeBranchTaken(1, 2);
1951       if( pOp->p2==0 ){
1952         rc = SQLITE_MISMATCH;
1953         goto abort_due_to_error;
1954       }else{
1955         goto jump_to_p2;
1956       }
1957     }
1958   }
1959   VdbeBranchTaken(0, 2);
1960   MemSetTypeFlag(pIn1, MEM_Int);
1961   break;
1962 }
1963 
1964 #ifndef SQLITE_OMIT_FLOATING_POINT
1965 /* Opcode: RealAffinity P1 * * * *
1966 **
1967 ** If register P1 holds an integer convert it to a real value.
1968 **
1969 ** This opcode is used when extracting information from a column that
1970 ** has REAL affinity.  Such column values may still be stored as
1971 ** integers, for space efficiency, but after extraction we want them
1972 ** to have only a real value.
1973 */
1974 case OP_RealAffinity: {                  /* in1 */
1975   pIn1 = &aMem[pOp->p1];
1976   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1977     testcase( pIn1->flags & MEM_Int );
1978     testcase( pIn1->flags & MEM_IntReal );
1979     sqlite3VdbeMemRealify(pIn1);
1980     REGISTER_TRACE(pOp->p1, pIn1);
1981   }
1982   break;
1983 }
1984 #endif
1985 
1986 #ifndef SQLITE_OMIT_CAST
1987 /* Opcode: Cast P1 P2 * * *
1988 ** Synopsis: affinity(r[P1])
1989 **
1990 ** Force the value in register P1 to be the type defined by P2.
1991 **
1992 ** <ul>
1993 ** <li> P2=='A' &rarr; BLOB
1994 ** <li> P2=='B' &rarr; TEXT
1995 ** <li> P2=='C' &rarr; NUMERIC
1996 ** <li> P2=='D' &rarr; INTEGER
1997 ** <li> P2=='E' &rarr; REAL
1998 ** </ul>
1999 **
2000 ** A NULL value is not changed by this routine.  It remains NULL.
2001 */
2002 case OP_Cast: {                  /* in1 */
2003   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
2004   testcase( pOp->p2==SQLITE_AFF_TEXT );
2005   testcase( pOp->p2==SQLITE_AFF_BLOB );
2006   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
2007   testcase( pOp->p2==SQLITE_AFF_INTEGER );
2008   testcase( pOp->p2==SQLITE_AFF_REAL );
2009   pIn1 = &aMem[pOp->p1];
2010   memAboutToChange(p, pIn1);
2011   rc = ExpandBlob(pIn1);
2012   if( rc ) goto abort_due_to_error;
2013   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2014   if( rc ) goto abort_due_to_error;
2015   UPDATE_MAX_BLOBSIZE(pIn1);
2016   REGISTER_TRACE(pOp->p1, pIn1);
2017   break;
2018 }
2019 #endif /* SQLITE_OMIT_CAST */
2020 
2021 /* Opcode: Eq P1 P2 P3 P4 P5
2022 ** Synopsis: IF r[P3]==r[P1]
2023 **
2024 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
2025 ** jump to address P2.
2026 **
2027 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2028 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2029 ** to coerce both inputs according to this affinity before the
2030 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2031 ** affinity is used. Note that the affinity conversions are stored
2032 ** back into the input registers P1 and P3.  So this opcode can cause
2033 ** persistent changes to registers P1 and P3.
2034 **
2035 ** Once any conversions have taken place, and neither value is NULL,
2036 ** the values are compared. If both values are blobs then memcmp() is
2037 ** used to determine the results of the comparison.  If both values
2038 ** are text, then the appropriate collating function specified in
2039 ** P4 is used to do the comparison.  If P4 is not specified then
2040 ** memcmp() is used to compare text string.  If both values are
2041 ** numeric, then a numeric comparison is used. If the two values
2042 ** are of different types, then numbers are considered less than
2043 ** strings and strings are considered less than blobs.
2044 **
2045 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2046 ** true or false and is never NULL.  If both operands are NULL then the result
2047 ** of comparison is true.  If either operand is NULL then the result is false.
2048 ** If neither operand is NULL the result is the same as it would be if
2049 ** the SQLITE_NULLEQ flag were omitted from P5.
2050 **
2051 ** This opcode saves the result of comparison for use by the new
2052 ** OP_Jump opcode.
2053 */
2054 /* Opcode: Ne P1 P2 P3 P4 P5
2055 ** Synopsis: IF r[P3]!=r[P1]
2056 **
2057 ** This works just like the Eq opcode except that the jump is taken if
2058 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
2059 ** additional information.
2060 */
2061 /* Opcode: Lt P1 P2 P3 P4 P5
2062 ** Synopsis: IF r[P3]<r[P1]
2063 **
2064 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
2065 ** jump to address P2.
2066 **
2067 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2068 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
2069 ** bit is clear then fall through if either operand is NULL.
2070 **
2071 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2072 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2073 ** to coerce both inputs according to this affinity before the
2074 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2075 ** affinity is used. Note that the affinity conversions are stored
2076 ** back into the input registers P1 and P3.  So this opcode can cause
2077 ** persistent changes to registers P1 and P3.
2078 **
2079 ** Once any conversions have taken place, and neither value is NULL,
2080 ** the values are compared. If both values are blobs then memcmp() is
2081 ** used to determine the results of the comparison.  If both values
2082 ** are text, then the appropriate collating function specified in
2083 ** P4 is  used to do the comparison.  If P4 is not specified then
2084 ** memcmp() is used to compare text string.  If both values are
2085 ** numeric, then a numeric comparison is used. If the two values
2086 ** are of different types, then numbers are considered less than
2087 ** strings and strings are considered less than blobs.
2088 **
2089 ** This opcode saves the result of comparison for use by the new
2090 ** OP_Jump opcode.
2091 */
2092 /* Opcode: Le P1 P2 P3 P4 P5
2093 ** Synopsis: IF r[P3]<=r[P1]
2094 **
2095 ** This works just like the Lt opcode except that the jump is taken if
2096 ** the content of register P3 is less than or equal to the content of
2097 ** register P1.  See the Lt opcode for additional information.
2098 */
2099 /* Opcode: Gt P1 P2 P3 P4 P5
2100 ** Synopsis: IF r[P3]>r[P1]
2101 **
2102 ** This works just like the Lt opcode except that the jump is taken if
2103 ** the content of register P3 is greater than the content of
2104 ** register P1.  See the Lt opcode for additional information.
2105 */
2106 /* Opcode: Ge P1 P2 P3 P4 P5
2107 ** Synopsis: IF r[P3]>=r[P1]
2108 **
2109 ** This works just like the Lt opcode except that the jump is taken if
2110 ** the content of register P3 is greater than or equal to the content of
2111 ** register P1.  See the Lt opcode for additional information.
2112 */
2113 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2114 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2115 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2116 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2117 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2118 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2119   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2120   char affinity;      /* Affinity to use for comparison */
2121   u16 flags1;         /* Copy of initial value of pIn1->flags */
2122   u16 flags3;         /* Copy of initial value of pIn3->flags */
2123 
2124   pIn1 = &aMem[pOp->p1];
2125   pIn3 = &aMem[pOp->p3];
2126   flags1 = pIn1->flags;
2127   flags3 = pIn3->flags;
2128   if( (flags1 & flags3 & MEM_Int)!=0 ){
2129     assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
2130     /* Common case of comparison of two integers */
2131     if( pIn3->u.i > pIn1->u.i ){
2132       if( sqlite3aGTb[pOp->opcode] ){
2133         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2134         goto jump_to_p2;
2135       }
2136       iCompare = +1;
2137     }else if( pIn3->u.i < pIn1->u.i ){
2138       if( sqlite3aLTb[pOp->opcode] ){
2139         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2140         goto jump_to_p2;
2141       }
2142       iCompare = -1;
2143     }else{
2144       if( sqlite3aEQb[pOp->opcode] ){
2145         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2146         goto jump_to_p2;
2147       }
2148       iCompare = 0;
2149     }
2150     VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2151     break;
2152   }
2153   if( (flags1 | flags3)&MEM_Null ){
2154     /* One or both operands are NULL */
2155     if( pOp->p5 & SQLITE_NULLEQ ){
2156       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2157       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2158       ** or not both operands are null.
2159       */
2160       assert( (flags1 & MEM_Cleared)==0 );
2161       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2162       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2163       if( (flags1&flags3&MEM_Null)!=0
2164        && (flags3&MEM_Cleared)==0
2165       ){
2166         res = 0;  /* Operands are equal */
2167       }else{
2168         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2169       }
2170     }else{
2171       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2172       ** then the result is always NULL.
2173       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2174       */
2175       VdbeBranchTaken(2,3);
2176       if( pOp->p5 & SQLITE_JUMPIFNULL ){
2177         goto jump_to_p2;
2178       }
2179       iCompare = 1;    /* Operands are not equal */
2180       break;
2181     }
2182   }else{
2183     /* Neither operand is NULL and we couldn't do the special high-speed
2184     ** integer comparison case.  So do a general-case comparison. */
2185     affinity = pOp->p5 & SQLITE_AFF_MASK;
2186     if( affinity>=SQLITE_AFF_NUMERIC ){
2187       if( (flags1 | flags3)&MEM_Str ){
2188         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2189           applyNumericAffinity(pIn1,0);
2190           testcase( flags3==pIn3->flags );
2191           flags3 = pIn3->flags;
2192         }
2193         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2194           applyNumericAffinity(pIn3,0);
2195         }
2196       }
2197     }else if( affinity==SQLITE_AFF_TEXT ){
2198       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2199         testcase( pIn1->flags & MEM_Int );
2200         testcase( pIn1->flags & MEM_Real );
2201         testcase( pIn1->flags & MEM_IntReal );
2202         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2203         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2204         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2205         if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2206       }
2207       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2208         testcase( pIn3->flags & MEM_Int );
2209         testcase( pIn3->flags & MEM_Real );
2210         testcase( pIn3->flags & MEM_IntReal );
2211         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2212         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2213         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2214       }
2215     }
2216     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2217     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2218   }
2219 
2220   /* At this point, res is negative, zero, or positive if reg[P1] is
2221   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2222   ** the answer to this operator in res2, depending on what the comparison
2223   ** operator actually is.  The next block of code depends on the fact
2224   ** that the 6 comparison operators are consecutive integers in this
2225   ** order:  NE, EQ, GT, LE, LT, GE */
2226   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2227   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2228   if( res<0 ){
2229     res2 = sqlite3aLTb[pOp->opcode];
2230   }else if( res==0 ){
2231     res2 = sqlite3aEQb[pOp->opcode];
2232   }else{
2233     res2 = sqlite3aGTb[pOp->opcode];
2234   }
2235   iCompare = res;
2236 
2237   /* Undo any changes made by applyAffinity() to the input registers. */
2238   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2239   pIn3->flags = flags3;
2240   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2241   pIn1->flags = flags1;
2242 
2243   VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2244   if( res2 ){
2245     goto jump_to_p2;
2246   }
2247   break;
2248 }
2249 
2250 /* Opcode: ElseEq * P2 * * *
2251 **
2252 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2253 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2254 ** opcodes are allowed to occur between this instruction and the previous
2255 ** OP_Lt or OP_Gt.
2256 **
2257 ** If result of an OP_Eq comparison on the same two operands as the
2258 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2259 ** If the result of an OP_Eq comparison on the two previous
2260 ** operands would have been false or NULL, then fall through.
2261 */
2262 case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
2263 
2264 #ifdef SQLITE_DEBUG
2265   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2266   ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2267   int iAddr;
2268   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2269     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2270     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2271     break;
2272   }
2273 #endif /* SQLITE_DEBUG */
2274   VdbeBranchTaken(iCompare==0, 2);
2275   if( iCompare==0 ) goto jump_to_p2;
2276   break;
2277 }
2278 
2279 
2280 /* Opcode: Permutation * * * P4 *
2281 **
2282 ** Set the permutation used by the OP_Compare operator in the next
2283 ** instruction.  The permutation is stored in the P4 operand.
2284 **
2285 ** The permutation is only valid for the next opcode which must be
2286 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2287 **
2288 ** The first integer in the P4 integer array is the length of the array
2289 ** and does not become part of the permutation.
2290 */
2291 case OP_Permutation: {
2292   assert( pOp->p4type==P4_INTARRAY );
2293   assert( pOp->p4.ai );
2294   assert( pOp[1].opcode==OP_Compare );
2295   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2296   break;
2297 }
2298 
2299 /* Opcode: Compare P1 P2 P3 P4 P5
2300 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2301 **
2302 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2303 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2304 ** the comparison for use by the next OP_Jump instruct.
2305 **
2306 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2307 ** determined by the most recent OP_Permutation operator.  If the
2308 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2309 ** order.
2310 **
2311 ** P4 is a KeyInfo structure that defines collating sequences and sort
2312 ** orders for the comparison.  The permutation applies to registers
2313 ** only.  The KeyInfo elements are used sequentially.
2314 **
2315 ** The comparison is a sort comparison, so NULLs compare equal,
2316 ** NULLs are less than numbers, numbers are less than strings,
2317 ** and strings are less than blobs.
2318 **
2319 ** This opcode must be immediately followed by an OP_Jump opcode.
2320 */
2321 case OP_Compare: {
2322   int n;
2323   int i;
2324   int p1;
2325   int p2;
2326   const KeyInfo *pKeyInfo;
2327   u32 idx;
2328   CollSeq *pColl;    /* Collating sequence to use on this term */
2329   int bRev;          /* True for DESCENDING sort order */
2330   u32 *aPermute;     /* The permutation */
2331 
2332   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2333     aPermute = 0;
2334   }else{
2335     assert( pOp>aOp );
2336     assert( pOp[-1].opcode==OP_Permutation );
2337     assert( pOp[-1].p4type==P4_INTARRAY );
2338     aPermute = pOp[-1].p4.ai + 1;
2339     assert( aPermute!=0 );
2340   }
2341   n = pOp->p3;
2342   pKeyInfo = pOp->p4.pKeyInfo;
2343   assert( n>0 );
2344   assert( pKeyInfo!=0 );
2345   p1 = pOp->p1;
2346   p2 = pOp->p2;
2347 #ifdef SQLITE_DEBUG
2348   if( aPermute ){
2349     int k, mx = 0;
2350     for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2351     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2352     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2353   }else{
2354     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2355     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2356   }
2357 #endif /* SQLITE_DEBUG */
2358   for(i=0; i<n; i++){
2359     idx = aPermute ? aPermute[i] : (u32)i;
2360     assert( memIsValid(&aMem[p1+idx]) );
2361     assert( memIsValid(&aMem[p2+idx]) );
2362     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2363     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2364     assert( i<pKeyInfo->nKeyField );
2365     pColl = pKeyInfo->aColl[i];
2366     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2367     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2368     if( iCompare ){
2369       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2370        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2371       ){
2372         iCompare = -iCompare;
2373       }
2374       if( bRev ) iCompare = -iCompare;
2375       break;
2376     }
2377   }
2378   assert( pOp[1].opcode==OP_Jump );
2379   break;
2380 }
2381 
2382 /* Opcode: Jump P1 P2 P3 * *
2383 **
2384 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2385 ** in the most recent OP_Compare instruction the P1 vector was less than
2386 ** equal to, or greater than the P2 vector, respectively.
2387 **
2388 ** This opcode must immediately follow an OP_Compare opcode.
2389 */
2390 case OP_Jump: {             /* jump */
2391   assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2392   if( iCompare<0 ){
2393     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2394   }else if( iCompare==0 ){
2395     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2396   }else{
2397     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2398   }
2399   break;
2400 }
2401 
2402 /* Opcode: And P1 P2 P3 * *
2403 ** Synopsis: r[P3]=(r[P1] && r[P2])
2404 **
2405 ** Take the logical AND of the values in registers P1 and P2 and
2406 ** write the result into register P3.
2407 **
2408 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2409 ** the other input is NULL.  A NULL and true or two NULLs give
2410 ** a NULL output.
2411 */
2412 /* Opcode: Or P1 P2 P3 * *
2413 ** Synopsis: r[P3]=(r[P1] || r[P2])
2414 **
2415 ** Take the logical OR of the values in register P1 and P2 and
2416 ** store the answer in register P3.
2417 **
2418 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2419 ** even if the other input is NULL.  A NULL and false or two NULLs
2420 ** give a NULL output.
2421 */
2422 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2423 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2424   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2425   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2426 
2427   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2428   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2429   if( pOp->opcode==OP_And ){
2430     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2431     v1 = and_logic[v1*3+v2];
2432   }else{
2433     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2434     v1 = or_logic[v1*3+v2];
2435   }
2436   pOut = &aMem[pOp->p3];
2437   if( v1==2 ){
2438     MemSetTypeFlag(pOut, MEM_Null);
2439   }else{
2440     pOut->u.i = v1;
2441     MemSetTypeFlag(pOut, MEM_Int);
2442   }
2443   break;
2444 }
2445 
2446 /* Opcode: IsTrue P1 P2 P3 P4 *
2447 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2448 **
2449 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2450 ** IS NOT FALSE operators.
2451 **
2452 ** Interpret the value in register P1 as a boolean value.  Store that
2453 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2454 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2455 ** is 1.
2456 **
2457 ** The logic is summarized like this:
2458 **
2459 ** <ul>
2460 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2461 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2462 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2463 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2464 ** </ul>
2465 */
2466 case OP_IsTrue: {               /* in1, out2 */
2467   assert( pOp->p4type==P4_INT32 );
2468   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2469   assert( pOp->p3==0 || pOp->p3==1 );
2470   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2471       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2472   break;
2473 }
2474 
2475 /* Opcode: Not P1 P2 * * *
2476 ** Synopsis: r[P2]= !r[P1]
2477 **
2478 ** Interpret the value in register P1 as a boolean value.  Store the
2479 ** boolean complement in register P2.  If the value in register P1 is
2480 ** NULL, then a NULL is stored in P2.
2481 */
2482 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2483   pIn1 = &aMem[pOp->p1];
2484   pOut = &aMem[pOp->p2];
2485   if( (pIn1->flags & MEM_Null)==0 ){
2486     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2487   }else{
2488     sqlite3VdbeMemSetNull(pOut);
2489   }
2490   break;
2491 }
2492 
2493 /* Opcode: BitNot P1 P2 * * *
2494 ** Synopsis: r[P2]= ~r[P1]
2495 **
2496 ** Interpret the content of register P1 as an integer.  Store the
2497 ** ones-complement of the P1 value into register P2.  If P1 holds
2498 ** a NULL then store a NULL in P2.
2499 */
2500 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2501   pIn1 = &aMem[pOp->p1];
2502   pOut = &aMem[pOp->p2];
2503   sqlite3VdbeMemSetNull(pOut);
2504   if( (pIn1->flags & MEM_Null)==0 ){
2505     pOut->flags = MEM_Int;
2506     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2507   }
2508   break;
2509 }
2510 
2511 /* Opcode: Once P1 P2 * * *
2512 **
2513 ** Fall through to the next instruction the first time this opcode is
2514 ** encountered on each invocation of the byte-code program.  Jump to P2
2515 ** on the second and all subsequent encounters during the same invocation.
2516 **
2517 ** Top-level programs determine first invocation by comparing the P1
2518 ** operand against the P1 operand on the OP_Init opcode at the beginning
2519 ** of the program.  If the P1 values differ, then fall through and make
2520 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2521 ** the same then take the jump.
2522 **
2523 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2524 ** whether or not the jump should be taken.  The bitmask is necessary
2525 ** because the self-altering code trick does not work for recursive
2526 ** triggers.
2527 */
2528 case OP_Once: {             /* jump */
2529   u32 iAddr;                /* Address of this instruction */
2530   assert( p->aOp[0].opcode==OP_Init );
2531   if( p->pFrame ){
2532     iAddr = (int)(pOp - p->aOp);
2533     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2534       VdbeBranchTaken(1, 2);
2535       goto jump_to_p2;
2536     }
2537     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2538   }else{
2539     if( p->aOp[0].p1==pOp->p1 ){
2540       VdbeBranchTaken(1, 2);
2541       goto jump_to_p2;
2542     }
2543   }
2544   VdbeBranchTaken(0, 2);
2545   pOp->p1 = p->aOp[0].p1;
2546   break;
2547 }
2548 
2549 /* Opcode: If P1 P2 P3 * *
2550 **
2551 ** Jump to P2 if the value in register P1 is true.  The value
2552 ** is considered true if it is numeric and non-zero.  If the value
2553 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2554 */
2555 case OP_If:  {               /* jump, in1 */
2556   int c;
2557   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2558   VdbeBranchTaken(c!=0, 2);
2559   if( c ) goto jump_to_p2;
2560   break;
2561 }
2562 
2563 /* Opcode: IfNot P1 P2 P3 * *
2564 **
2565 ** Jump to P2 if the value in register P1 is False.  The value
2566 ** is considered false if it has a numeric value of zero.  If the value
2567 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2568 */
2569 case OP_IfNot: {            /* jump, in1 */
2570   int c;
2571   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2572   VdbeBranchTaken(c!=0, 2);
2573   if( c ) goto jump_to_p2;
2574   break;
2575 }
2576 
2577 /* Opcode: IsNull P1 P2 * * *
2578 ** Synopsis: if r[P1]==NULL goto P2
2579 **
2580 ** Jump to P2 if the value in register P1 is NULL.
2581 */
2582 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2583   pIn1 = &aMem[pOp->p1];
2584   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2585   if( (pIn1->flags & MEM_Null)!=0 ){
2586     goto jump_to_p2;
2587   }
2588   break;
2589 }
2590 
2591 /* Opcode: IsType P1 P2 P3 P4 P5
2592 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2593 **
2594 ** Jump to P2 if the type of a column in a btree is one of the types specified
2595 ** by the P5 bitmask.
2596 **
2597 ** P1 is normally a cursor on a btree for which the row decode cache is
2598 ** valid through at least column P3.  In other words, there should have been
2599 ** a prior OP_Column for column P3 or greater.  If the cursor is not valid,
2600 ** then this opcode might give spurious results.
2601 ** The the btree row has fewer than P3 columns, then use P4 as the
2602 ** datatype.
2603 **
2604 ** If P1 is -1, then P3 is a register number and the datatype is taken
2605 ** from the value in that register.
2606 **
2607 ** P5 is a bitmask of data types.  SQLITE_INTEGER is the least significant
2608 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2609 ** SQLITE_BLOB is 0x08.  SQLITE_NULL is 0x10.
2610 **
2611 ** Take the jump to address P2 if and only if the datatype of the
2612 ** value determined by P1 and P3 corresponds to one of the bits in the
2613 ** P5 bitmask.
2614 **
2615 */
2616 case OP_IsType: {
2617   VdbeCursor *pC;
2618   u16 typeMask;
2619   u32 serialType;
2620 
2621   assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
2622   assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
2623   if( pOp->p1>=0 ){
2624     pC = p->apCsr[pOp->p1];
2625     assert( pC!=0 );
2626     assert( pOp->p3>=0 );
2627     if( pOp->p3<(u32)pC->nHdrParsed ){
2628       serialType = pC->aType[pOp->p3];
2629       if( serialType==0 ){
2630         typeMask = 0x10;   /* SQLITE_NULL */
2631       }else if( serialType==7 ){
2632         typeMask = 0x02;   /* SQLITE_FLOAT */
2633       }else if( serialType<12 ){
2634         typeMask = 0x01;   /* SQLITE_INTEGER */
2635       }else if( serialType&1 ){
2636         typeMask = 0x04;   /* SQLITE_TEXT */
2637       }else{
2638         typeMask = 0x08;   /* SQLITE_BLOB */
2639       }
2640     }else{
2641       typeMask = 1 << (pOp->p4.i - 1);
2642     }
2643   }else{
2644     assert( memIsValid(&aMem[pOp->p3]) );
2645     typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
2646   }
2647   VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
2648   if( typeMask & pOp->p5 ){
2649     goto jump_to_p2;
2650   }
2651   break;
2652 }
2653 
2654 /* Opcode: ZeroOrNull P1 P2 P3 * *
2655 ** Synopsis: r[P2] = 0 OR NULL
2656 **
2657 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2658 ** register P2.  If either registers P1 or P3 are NULL then put
2659 ** a NULL in register P2.
2660 */
2661 case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
2662   if( (aMem[pOp->p1].flags & MEM_Null)!=0
2663    || (aMem[pOp->p3].flags & MEM_Null)!=0
2664   ){
2665     sqlite3VdbeMemSetNull(aMem + pOp->p2);
2666   }else{
2667     sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2668   }
2669   break;
2670 }
2671 
2672 /* Opcode: NotNull P1 P2 * * *
2673 ** Synopsis: if r[P1]!=NULL goto P2
2674 **
2675 ** Jump to P2 if the value in register P1 is not NULL.
2676 */
2677 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2678   pIn1 = &aMem[pOp->p1];
2679   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2680   if( (pIn1->flags & MEM_Null)==0 ){
2681     goto jump_to_p2;
2682   }
2683   break;
2684 }
2685 
2686 /* Opcode: IfNullRow P1 P2 P3 * *
2687 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2688 **
2689 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2690 ** If it is, then set register P3 to NULL and jump immediately to P2.
2691 ** If P1 is not on a NULL row, then fall through without making any
2692 ** changes.
2693 **
2694 ** If P1 is not an open cursor, then this opcode is a no-op.
2695 */
2696 case OP_IfNullRow: {         /* jump */
2697   VdbeCursor *pC;
2698   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2699   pC = p->apCsr[pOp->p1];
2700   if( ALWAYS(pC) && pC->nullRow ){
2701     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2702     goto jump_to_p2;
2703   }
2704   break;
2705 }
2706 
2707 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2708 /* Opcode: Offset P1 P2 P3 * *
2709 ** Synopsis: r[P3] = sqlite_offset(P1)
2710 **
2711 ** Store in register r[P3] the byte offset into the database file that is the
2712 ** start of the payload for the record at which that cursor P1 is currently
2713 ** pointing.
2714 **
2715 ** P2 is the column number for the argument to the sqlite_offset() function.
2716 ** This opcode does not use P2 itself, but the P2 value is used by the
2717 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2718 ** same as for OP_Column.
2719 **
2720 ** This opcode is only available if SQLite is compiled with the
2721 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2722 */
2723 case OP_Offset: {          /* out3 */
2724   VdbeCursor *pC;    /* The VDBE cursor */
2725   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2726   pC = p->apCsr[pOp->p1];
2727   pOut = &p->aMem[pOp->p3];
2728   if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2729     sqlite3VdbeMemSetNull(pOut);
2730   }else{
2731     if( pC->deferredMoveto ){
2732       rc = sqlite3VdbeFinishMoveto(pC);
2733       if( rc ) goto abort_due_to_error;
2734     }
2735     if( sqlite3BtreeEof(pC->uc.pCursor) ){
2736       sqlite3VdbeMemSetNull(pOut);
2737     }else{
2738       sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2739     }
2740   }
2741   break;
2742 }
2743 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2744 
2745 /* Opcode: Column P1 P2 P3 P4 P5
2746 ** Synopsis: r[P3]=PX cursor P1 column P2
2747 **
2748 ** Interpret the data that cursor P1 points to as a structure built using
2749 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2750 ** information about the format of the data.)  Extract the P2-th column
2751 ** from this record.  If there are less that (P2+1)
2752 ** values in the record, extract a NULL.
2753 **
2754 ** The value extracted is stored in register P3.
2755 **
2756 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2757 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2758 ** the result.
2759 **
2760 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2761 ** the result is guaranteed to only be used as the argument of a length()
2762 ** or typeof() function, respectively.  The loading of large blobs can be
2763 ** skipped for length() and all content loading can be skipped for typeof().
2764 */
2765 case OP_Column: {
2766   u32 p2;            /* column number to retrieve */
2767   VdbeCursor *pC;    /* The VDBE cursor */
2768   BtCursor *pCrsr;   /* The B-Tree cursor corresponding to pC */
2769   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2770   int len;           /* The length of the serialized data for the column */
2771   int i;             /* Loop counter */
2772   Mem *pDest;        /* Where to write the extracted value */
2773   Mem sMem;          /* For storing the record being decoded */
2774   const u8 *zData;   /* Part of the record being decoded */
2775   const u8 *zHdr;    /* Next unparsed byte of the header */
2776   const u8 *zEndHdr; /* Pointer to first byte after the header */
2777   u64 offset64;      /* 64-bit offset */
2778   u32 t;             /* A type code from the record header */
2779   Mem *pReg;         /* PseudoTable input register */
2780 
2781   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2782   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2783   pC = p->apCsr[pOp->p1];
2784   p2 = (u32)pOp->p2;
2785 
2786 op_column_restart:
2787   assert( pC!=0 );
2788   assert( p2<(u32)pC->nField
2789        || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2790   aOffset = pC->aOffset;
2791   assert( aOffset==pC->aType+pC->nField );
2792   assert( pC->eCurType!=CURTYPE_VTAB );
2793   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2794   assert( pC->eCurType!=CURTYPE_SORTER );
2795 
2796   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2797     if( pC->nullRow ){
2798       if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2799         /* For the special case of as pseudo-cursor, the seekResult field
2800         ** identifies the register that holds the record */
2801         pReg = &aMem[pC->seekResult];
2802         assert( pReg->flags & MEM_Blob );
2803         assert( memIsValid(pReg) );
2804         pC->payloadSize = pC->szRow = pReg->n;
2805         pC->aRow = (u8*)pReg->z;
2806       }else{
2807         pDest = &aMem[pOp->p3];
2808         memAboutToChange(p, pDest);
2809         sqlite3VdbeMemSetNull(pDest);
2810         goto op_column_out;
2811       }
2812     }else{
2813       pCrsr = pC->uc.pCursor;
2814       if( pC->deferredMoveto ){
2815         u32 iMap;
2816         assert( !pC->isEphemeral );
2817         if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0  ){
2818           pC = pC->pAltCursor;
2819           p2 = iMap - 1;
2820           goto op_column_restart;
2821         }
2822         rc = sqlite3VdbeFinishMoveto(pC);
2823         if( rc ) goto abort_due_to_error;
2824       }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2825         rc = sqlite3VdbeHandleMovedCursor(pC);
2826         if( rc ) goto abort_due_to_error;
2827         goto op_column_restart;
2828       }
2829       assert( pC->eCurType==CURTYPE_BTREE );
2830       assert( pCrsr );
2831       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2832       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2833       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2834       assert( pC->szRow<=pC->payloadSize );
2835       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2836     }
2837     pC->cacheStatus = p->cacheCtr;
2838     if( (aOffset[0] = pC->aRow[0])<0x80 ){
2839       pC->iHdrOffset = 1;
2840     }else{
2841       pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2842     }
2843     pC->nHdrParsed = 0;
2844 
2845     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2846       /* pC->aRow does not have to hold the entire row, but it does at least
2847       ** need to cover the header of the record.  If pC->aRow does not contain
2848       ** the complete header, then set it to zero, forcing the header to be
2849       ** dynamically allocated. */
2850       pC->aRow = 0;
2851       pC->szRow = 0;
2852 
2853       /* Make sure a corrupt database has not given us an oversize header.
2854       ** Do this now to avoid an oversize memory allocation.
2855       **
2856       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2857       ** types use so much data space that there can only be 4096 and 32 of
2858       ** them, respectively.  So the maximum header length results from a
2859       ** 3-byte type for each of the maximum of 32768 columns plus three
2860       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2861       */
2862       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2863         goto op_column_corrupt;
2864       }
2865     }else{
2866       /* This is an optimization.  By skipping over the first few tests
2867       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2868       ** measurable performance gain.
2869       **
2870       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2871       ** generated by SQLite, and could be considered corruption, but we
2872       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2873       ** branch jumps to reads past the end of the record, but never more
2874       ** than a few bytes.  Even if the record occurs at the end of the page
2875       ** content area, the "page header" comes after the page content and so
2876       ** this overread is harmless.  Similar overreads can occur for a corrupt
2877       ** database file.
2878       */
2879       zData = pC->aRow;
2880       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2881       testcase( aOffset[0]==0 );
2882       goto op_column_read_header;
2883     }
2884   }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
2885     rc = sqlite3VdbeHandleMovedCursor(pC);
2886     if( rc ) goto abort_due_to_error;
2887     goto op_column_restart;
2888   }
2889 
2890   /* Make sure at least the first p2+1 entries of the header have been
2891   ** parsed and valid information is in aOffset[] and pC->aType[].
2892   */
2893   if( pC->nHdrParsed<=p2 ){
2894     /* If there is more header available for parsing in the record, try
2895     ** to extract additional fields up through the p2+1-th field
2896     */
2897     if( pC->iHdrOffset<aOffset[0] ){
2898       /* Make sure zData points to enough of the record to cover the header. */
2899       if( pC->aRow==0 ){
2900         memset(&sMem, 0, sizeof(sMem));
2901         rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2902         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2903         zData = (u8*)sMem.z;
2904       }else{
2905         zData = pC->aRow;
2906       }
2907 
2908       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2909     op_column_read_header:
2910       i = pC->nHdrParsed;
2911       offset64 = aOffset[i];
2912       zHdr = zData + pC->iHdrOffset;
2913       zEndHdr = zData + aOffset[0];
2914       testcase( zHdr>=zEndHdr );
2915       do{
2916         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2917           zHdr++;
2918           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2919         }else{
2920           zHdr += sqlite3GetVarint32(zHdr, &t);
2921           pC->aType[i] = t;
2922           offset64 += sqlite3VdbeSerialTypeLen(t);
2923         }
2924         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2925       }while( (u32)i<=p2 && zHdr<zEndHdr );
2926 
2927       /* The record is corrupt if any of the following are true:
2928       ** (1) the bytes of the header extend past the declared header size
2929       ** (2) the entire header was used but not all data was used
2930       ** (3) the end of the data extends beyond the end of the record.
2931       */
2932       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2933        || (offset64 > pC->payloadSize)
2934       ){
2935         if( aOffset[0]==0 ){
2936           i = 0;
2937           zHdr = zEndHdr;
2938         }else{
2939           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2940           goto op_column_corrupt;
2941         }
2942       }
2943 
2944       pC->nHdrParsed = i;
2945       pC->iHdrOffset = (u32)(zHdr - zData);
2946       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2947     }else{
2948       t = 0;
2949     }
2950 
2951     /* If after trying to extract new entries from the header, nHdrParsed is
2952     ** still not up to p2, that means that the record has fewer than p2
2953     ** columns.  So the result will be either the default value or a NULL.
2954     */
2955     if( pC->nHdrParsed<=p2 ){
2956       pDest = &aMem[pOp->p3];
2957       memAboutToChange(p, pDest);
2958       if( pOp->p4type==P4_MEM ){
2959         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2960       }else{
2961         sqlite3VdbeMemSetNull(pDest);
2962       }
2963       goto op_column_out;
2964     }
2965   }else{
2966     t = pC->aType[p2];
2967   }
2968 
2969   /* Extract the content for the p2+1-th column.  Control can only
2970   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2971   ** all valid.
2972   */
2973   assert( p2<pC->nHdrParsed );
2974   assert( rc==SQLITE_OK );
2975   pDest = &aMem[pOp->p3];
2976   memAboutToChange(p, pDest);
2977   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2978   if( VdbeMemDynamic(pDest) ){
2979     sqlite3VdbeMemSetNull(pDest);
2980   }
2981   assert( t==pC->aType[p2] );
2982   if( pC->szRow>=aOffset[p2+1] ){
2983     /* This is the common case where the desired content fits on the original
2984     ** page - where the content is not on an overflow page */
2985     zData = pC->aRow + aOffset[p2];
2986     if( t<12 ){
2987       sqlite3VdbeSerialGet(zData, t, pDest);
2988     }else{
2989       /* If the column value is a string, we need a persistent value, not
2990       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2991       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2992       */
2993       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2994       pDest->n = len = (t-12)/2;
2995       pDest->enc = encoding;
2996       if( pDest->szMalloc < len+2 ){
2997         if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2998         pDest->flags = MEM_Null;
2999         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
3000       }else{
3001         pDest->z = pDest->zMalloc;
3002       }
3003       memcpy(pDest->z, zData, len);
3004       pDest->z[len] = 0;
3005       pDest->z[len+1] = 0;
3006       pDest->flags = aFlag[t&1];
3007     }
3008   }else{
3009     pDest->enc = encoding;
3010     /* This branch happens only when content is on overflow pages */
3011     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
3012           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
3013      || (len = sqlite3VdbeSerialTypeLen(t))==0
3014     ){
3015       /* Content is irrelevant for
3016       **    1. the typeof() function,
3017       **    2. the length(X) function if X is a blob, and
3018       **    3. if the content length is zero.
3019       ** So we might as well use bogus content rather than reading
3020       ** content from disk.
3021       **
3022       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3023       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3024       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
3025       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3026       ** and it begins with a bunch of zeros.
3027       */
3028       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
3029     }else{
3030       if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
3031       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
3032       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3033       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
3034       pDest->flags &= ~MEM_Ephem;
3035     }
3036   }
3037 
3038 op_column_out:
3039   UPDATE_MAX_BLOBSIZE(pDest);
3040   REGISTER_TRACE(pOp->p3, pDest);
3041   break;
3042 
3043 op_column_corrupt:
3044   if( aOp[0].p3>0 ){
3045     pOp = &aOp[aOp[0].p3-1];
3046     break;
3047   }else{
3048     rc = SQLITE_CORRUPT_BKPT;
3049     goto abort_due_to_error;
3050   }
3051 }
3052 
3053 /* Opcode: TypeCheck P1 P2 P3 P4 *
3054 ** Synopsis: typecheck(r[P1@P2])
3055 **
3056 ** Apply affinities to the range of P2 registers beginning with P1.
3057 ** Take the affinities from the Table object in P4.  If any value
3058 ** cannot be coerced into the correct type, then raise an error.
3059 **
3060 ** This opcode is similar to OP_Affinity except that this opcode
3061 ** forces the register type to the Table column type.  This is used
3062 ** to implement "strict affinity".
3063 **
3064 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3065 ** is zero.  When P3 is non-zero, no type checking occurs for
3066 ** static generated columns.  Virtual columns are computed at query time
3067 ** and so they are never checked.
3068 **
3069 ** Preconditions:
3070 **
3071 ** <ul>
3072 ** <li> P2 should be the number of non-virtual columns in the
3073 **      table of P4.
3074 ** <li> Table P4 should be a STRICT table.
3075 ** </ul>
3076 **
3077 ** If any precondition is false, an assertion fault occurs.
3078 */
3079 case OP_TypeCheck: {
3080   Table *pTab;
3081   Column *aCol;
3082   int i;
3083 
3084   assert( pOp->p4type==P4_TABLE );
3085   pTab = pOp->p4.pTab;
3086   assert( pTab->tabFlags & TF_Strict );
3087   assert( pTab->nNVCol==pOp->p2 );
3088   aCol = pTab->aCol;
3089   pIn1 = &aMem[pOp->p1];
3090   for(i=0; i<pTab->nCol; i++){
3091     if( aCol[i].colFlags & COLFLAG_GENERATED ){
3092       if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3093       if( pOp->p3 ){ pIn1++; continue; }
3094     }
3095     assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3096     applyAffinity(pIn1, aCol[i].affinity, encoding);
3097     if( (pIn1->flags & MEM_Null)==0 ){
3098       switch( aCol[i].eCType ){
3099         case COLTYPE_BLOB: {
3100           if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3101           break;
3102         }
3103         case COLTYPE_INTEGER:
3104         case COLTYPE_INT: {
3105           if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3106           break;
3107         }
3108         case COLTYPE_TEXT: {
3109           if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3110           break;
3111         }
3112         case COLTYPE_REAL: {
3113           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3114           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal );
3115           if( pIn1->flags & MEM_Int ){
3116             /* When applying REAL affinity, if the result is still an MEM_Int
3117             ** that will fit in 6 bytes, then change the type to MEM_IntReal
3118             ** so that we keep the high-resolution integer value but know that
3119             ** the type really wants to be REAL. */
3120             testcase( pIn1->u.i==140737488355328LL );
3121             testcase( pIn1->u.i==140737488355327LL );
3122             testcase( pIn1->u.i==-140737488355328LL );
3123             testcase( pIn1->u.i==-140737488355329LL );
3124             if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3125               pIn1->flags |= MEM_IntReal;
3126               pIn1->flags &= ~MEM_Int;
3127             }else{
3128               pIn1->u.r = (double)pIn1->u.i;
3129               pIn1->flags |= MEM_Real;
3130               pIn1->flags &= ~MEM_Int;
3131             }
3132           }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3133             goto vdbe_type_error;
3134           }
3135           break;
3136         }
3137         default: {
3138           /* COLTYPE_ANY.  Accept anything. */
3139           break;
3140         }
3141       }
3142     }
3143     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3144     pIn1++;
3145   }
3146   assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3147   break;
3148 
3149 vdbe_type_error:
3150   sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3151      vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3152      pTab->zName, aCol[i].zCnName);
3153   rc = SQLITE_CONSTRAINT_DATATYPE;
3154   goto abort_due_to_error;
3155 }
3156 
3157 /* Opcode: Affinity P1 P2 * P4 *
3158 ** Synopsis: affinity(r[P1@P2])
3159 **
3160 ** Apply affinities to a range of P2 registers starting with P1.
3161 **
3162 ** P4 is a string that is P2 characters long. The N-th character of the
3163 ** string indicates the column affinity that should be used for the N-th
3164 ** memory cell in the range.
3165 */
3166 case OP_Affinity: {
3167   const char *zAffinity;   /* The affinity to be applied */
3168 
3169   zAffinity = pOp->p4.z;
3170   assert( zAffinity!=0 );
3171   assert( pOp->p2>0 );
3172   assert( zAffinity[pOp->p2]==0 );
3173   pIn1 = &aMem[pOp->p1];
3174   while( 1 /*exit-by-break*/ ){
3175     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3176     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3177     applyAffinity(pIn1, zAffinity[0], encoding);
3178     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3179       /* When applying REAL affinity, if the result is still an MEM_Int
3180       ** that will fit in 6 bytes, then change the type to MEM_IntReal
3181       ** so that we keep the high-resolution integer value but know that
3182       ** the type really wants to be REAL. */
3183       testcase( pIn1->u.i==140737488355328LL );
3184       testcase( pIn1->u.i==140737488355327LL );
3185       testcase( pIn1->u.i==-140737488355328LL );
3186       testcase( pIn1->u.i==-140737488355329LL );
3187       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3188         pIn1->flags |= MEM_IntReal;
3189         pIn1->flags &= ~MEM_Int;
3190       }else{
3191         pIn1->u.r = (double)pIn1->u.i;
3192         pIn1->flags |= MEM_Real;
3193         pIn1->flags &= ~MEM_Int;
3194       }
3195     }
3196     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3197     zAffinity++;
3198     if( zAffinity[0]==0 ) break;
3199     pIn1++;
3200   }
3201   break;
3202 }
3203 
3204 /* Opcode: MakeRecord P1 P2 P3 P4 *
3205 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3206 **
3207 ** Convert P2 registers beginning with P1 into the [record format]
3208 ** use as a data record in a database table or as a key
3209 ** in an index.  The OP_Column opcode can decode the record later.
3210 **
3211 ** P4 may be a string that is P2 characters long.  The N-th character of the
3212 ** string indicates the column affinity that should be used for the N-th
3213 ** field of the index key.
3214 **
3215 ** The mapping from character to affinity is given by the SQLITE_AFF_
3216 ** macros defined in sqliteInt.h.
3217 **
3218 ** If P4 is NULL then all index fields have the affinity BLOB.
3219 **
3220 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3221 ** compile-time option is enabled:
3222 **
3223 **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3224 **     of the right-most table that can be null-trimmed.
3225 **
3226 **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3227 **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3228 **     accept no-change records with serial_type 10.  This value is
3229 **     only used inside an assert() and does not affect the end result.
3230 */
3231 case OP_MakeRecord: {
3232   Mem *pRec;             /* The new record */
3233   u64 nData;             /* Number of bytes of data space */
3234   int nHdr;              /* Number of bytes of header space */
3235   i64 nByte;             /* Data space required for this record */
3236   i64 nZero;             /* Number of zero bytes at the end of the record */
3237   int nVarint;           /* Number of bytes in a varint */
3238   u32 serial_type;       /* Type field */
3239   Mem *pData0;           /* First field to be combined into the record */
3240   Mem *pLast;            /* Last field of the record */
3241   int nField;            /* Number of fields in the record */
3242   char *zAffinity;       /* The affinity string for the record */
3243   u32 len;               /* Length of a field */
3244   u8 *zHdr;              /* Where to write next byte of the header */
3245   u8 *zPayload;          /* Where to write next byte of the payload */
3246 
3247   /* Assuming the record contains N fields, the record format looks
3248   ** like this:
3249   **
3250   ** ------------------------------------------------------------------------
3251   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3252   ** ------------------------------------------------------------------------
3253   **
3254   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
3255   ** and so forth.
3256   **
3257   ** Each type field is a varint representing the serial type of the
3258   ** corresponding data element (see sqlite3VdbeSerialType()). The
3259   ** hdr-size field is also a varint which is the offset from the beginning
3260   ** of the record to data0.
3261   */
3262   nData = 0;         /* Number of bytes of data space */
3263   nHdr = 0;          /* Number of bytes of header space */
3264   nZero = 0;         /* Number of zero bytes at the end of the record */
3265   nField = pOp->p1;
3266   zAffinity = pOp->p4.z;
3267   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3268   pData0 = &aMem[nField];
3269   nField = pOp->p2;
3270   pLast = &pData0[nField-1];
3271 
3272   /* Identify the output register */
3273   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3274   pOut = &aMem[pOp->p3];
3275   memAboutToChange(p, pOut);
3276 
3277   /* Apply the requested affinity to all inputs
3278   */
3279   assert( pData0<=pLast );
3280   if( zAffinity ){
3281     pRec = pData0;
3282     do{
3283       applyAffinity(pRec, zAffinity[0], encoding);
3284       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3285         pRec->flags |= MEM_IntReal;
3286         pRec->flags &= ~(MEM_Int);
3287       }
3288       REGISTER_TRACE((int)(pRec-aMem), pRec);
3289       zAffinity++;
3290       pRec++;
3291       assert( zAffinity[0]==0 || pRec<=pLast );
3292     }while( zAffinity[0] );
3293   }
3294 
3295 #ifdef SQLITE_ENABLE_NULL_TRIM
3296   /* NULLs can be safely trimmed from the end of the record, as long as
3297   ** as the schema format is 2 or more and none of the omitted columns
3298   ** have a non-NULL default value.  Also, the record must be left with
3299   ** at least one field.  If P5>0 then it will be one more than the
3300   ** index of the right-most column with a non-NULL default value */
3301   if( pOp->p5 ){
3302     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3303       pLast--;
3304       nField--;
3305     }
3306   }
3307 #endif
3308 
3309   /* Loop through the elements that will make up the record to figure
3310   ** out how much space is required for the new record.  After this loop,
3311   ** the Mem.uTemp field of each term should hold the serial-type that will
3312   ** be used for that term in the generated record:
3313   **
3314   **   Mem.uTemp value    type
3315   **   ---------------    ---------------
3316   **      0               NULL
3317   **      1               1-byte signed integer
3318   **      2               2-byte signed integer
3319   **      3               3-byte signed integer
3320   **      4               4-byte signed integer
3321   **      5               6-byte signed integer
3322   **      6               8-byte signed integer
3323   **      7               IEEE float
3324   **      8               Integer constant 0
3325   **      9               Integer constant 1
3326   **     10,11            reserved for expansion
3327   **    N>=12 and even    BLOB
3328   **    N>=13 and odd     text
3329   **
3330   ** The following additional values are computed:
3331   **     nHdr        Number of bytes needed for the record header
3332   **     nData       Number of bytes of data space needed for the record
3333   **     nZero       Zero bytes at the end of the record
3334   */
3335   pRec = pLast;
3336   do{
3337     assert( memIsValid(pRec) );
3338     if( pRec->flags & MEM_Null ){
3339       if( pRec->flags & MEM_Zero ){
3340         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3341         ** table methods that never invoke sqlite3_result_xxxxx() while
3342         ** computing an unchanging column value in an UPDATE statement.
3343         ** Give such values a special internal-use-only serial-type of 10
3344         ** so that they can be passed through to xUpdate and have
3345         ** a true sqlite3_value_nochange(). */
3346 #ifndef SQLITE_ENABLE_NULL_TRIM
3347         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3348 #endif
3349         pRec->uTemp = 10;
3350       }else{
3351         pRec->uTemp = 0;
3352       }
3353       nHdr++;
3354     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3355       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3356       i64 i = pRec->u.i;
3357       u64 uu;
3358       testcase( pRec->flags & MEM_Int );
3359       testcase( pRec->flags & MEM_IntReal );
3360       if( i<0 ){
3361         uu = ~i;
3362       }else{
3363         uu = i;
3364       }
3365       nHdr++;
3366       testcase( uu==127 );               testcase( uu==128 );
3367       testcase( uu==32767 );             testcase( uu==32768 );
3368       testcase( uu==8388607 );           testcase( uu==8388608 );
3369       testcase( uu==2147483647 );        testcase( uu==2147483648LL );
3370       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3371       if( uu<=127 ){
3372         if( (i&1)==i && p->minWriteFileFormat>=4 ){
3373           pRec->uTemp = 8+(u32)uu;
3374         }else{
3375           nData++;
3376           pRec->uTemp = 1;
3377         }
3378       }else if( uu<=32767 ){
3379         nData += 2;
3380         pRec->uTemp = 2;
3381       }else if( uu<=8388607 ){
3382         nData += 3;
3383         pRec->uTemp = 3;
3384       }else if( uu<=2147483647 ){
3385         nData += 4;
3386         pRec->uTemp = 4;
3387       }else if( uu<=140737488355327LL ){
3388         nData += 6;
3389         pRec->uTemp = 5;
3390       }else{
3391         nData += 8;
3392         if( pRec->flags & MEM_IntReal ){
3393           /* If the value is IntReal and is going to take up 8 bytes to store
3394           ** as an integer, then we might as well make it an 8-byte floating
3395           ** point value */
3396           pRec->u.r = (double)pRec->u.i;
3397           pRec->flags &= ~MEM_IntReal;
3398           pRec->flags |= MEM_Real;
3399           pRec->uTemp = 7;
3400         }else{
3401           pRec->uTemp = 6;
3402         }
3403       }
3404     }else if( pRec->flags & MEM_Real ){
3405       nHdr++;
3406       nData += 8;
3407       pRec->uTemp = 7;
3408     }else{
3409       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3410       assert( pRec->n>=0 );
3411       len = (u32)pRec->n;
3412       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3413       if( pRec->flags & MEM_Zero ){
3414         serial_type += pRec->u.nZero*2;
3415         if( nData ){
3416           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3417           len += pRec->u.nZero;
3418         }else{
3419           nZero += pRec->u.nZero;
3420         }
3421       }
3422       nData += len;
3423       nHdr += sqlite3VarintLen(serial_type);
3424       pRec->uTemp = serial_type;
3425     }
3426     if( pRec==pData0 ) break;
3427     pRec--;
3428   }while(1);
3429 
3430   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3431   ** which determines the total number of bytes in the header. The varint
3432   ** value is the size of the header in bytes including the size varint
3433   ** itself. */
3434   testcase( nHdr==126 );
3435   testcase( nHdr==127 );
3436   if( nHdr<=126 ){
3437     /* The common case */
3438     nHdr += 1;
3439   }else{
3440     /* Rare case of a really large header */
3441     nVarint = sqlite3VarintLen(nHdr);
3442     nHdr += nVarint;
3443     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3444   }
3445   nByte = nHdr+nData;
3446 
3447   /* Make sure the output register has a buffer large enough to store
3448   ** the new record. The output register (pOp->p3) is not allowed to
3449   ** be one of the input registers (because the following call to
3450   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3451   */
3452   if( nByte+nZero<=pOut->szMalloc ){
3453     /* The output register is already large enough to hold the record.
3454     ** No error checks or buffer enlargement is required */
3455     pOut->z = pOut->zMalloc;
3456   }else{
3457     /* Need to make sure that the output is not too big and then enlarge
3458     ** the output register to hold the full result */
3459     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3460       goto too_big;
3461     }
3462     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3463       goto no_mem;
3464     }
3465   }
3466   pOut->n = (int)nByte;
3467   pOut->flags = MEM_Blob;
3468   if( nZero ){
3469     pOut->u.nZero = nZero;
3470     pOut->flags |= MEM_Zero;
3471   }
3472   UPDATE_MAX_BLOBSIZE(pOut);
3473   zHdr = (u8 *)pOut->z;
3474   zPayload = zHdr + nHdr;
3475 
3476   /* Write the record */
3477   if( nHdr<0x80 ){
3478     *(zHdr++) = nHdr;
3479   }else{
3480     zHdr += sqlite3PutVarint(zHdr,nHdr);
3481   }
3482   assert( pData0<=pLast );
3483   pRec = pData0;
3484   while( 1 /*exit-by-break*/ ){
3485     serial_type = pRec->uTemp;
3486     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3487     ** additional varints, one per column.
3488     ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3489     ** immediately follow the header. */
3490     if( serial_type<=7 ){
3491       *(zHdr++) = serial_type;
3492       if( serial_type==0 ){
3493         /* NULL value.  No change in zPayload */
3494       }else{
3495         u64 v;
3496         u32 i;
3497         if( serial_type==7 ){
3498           assert( sizeof(v)==sizeof(pRec->u.r) );
3499           memcpy(&v, &pRec->u.r, sizeof(v));
3500           swapMixedEndianFloat(v);
3501         }else{
3502           v = pRec->u.i;
3503         }
3504         len = i = sqlite3SmallTypeSizes[serial_type];
3505         assert( i>0 );
3506         while( 1 /*exit-by-break*/ ){
3507           zPayload[--i] = (u8)(v&0xFF);
3508           if( i==0 ) break;
3509           v >>= 8;
3510         }
3511         zPayload += len;
3512       }
3513     }else if( serial_type<0x80 ){
3514       *(zHdr++) = serial_type;
3515       if( serial_type>=14 && pRec->n>0 ){
3516         assert( pRec->z!=0 );
3517         memcpy(zPayload, pRec->z, pRec->n);
3518         zPayload += pRec->n;
3519       }
3520     }else{
3521       zHdr += sqlite3PutVarint(zHdr, serial_type);
3522       if( pRec->n ){
3523         assert( pRec->z!=0 );
3524         memcpy(zPayload, pRec->z, pRec->n);
3525         zPayload += pRec->n;
3526       }
3527     }
3528     if( pRec==pLast ) break;
3529     pRec++;
3530   }
3531   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3532   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3533 
3534   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3535   REGISTER_TRACE(pOp->p3, pOut);
3536   break;
3537 }
3538 
3539 /* Opcode: Count P1 P2 P3 * *
3540 ** Synopsis: r[P2]=count()
3541 **
3542 ** Store the number of entries (an integer value) in the table or index
3543 ** opened by cursor P1 in register P2.
3544 **
3545 ** If P3==0, then an exact count is obtained, which involves visiting
3546 ** every btree page of the table.  But if P3 is non-zero, an estimate
3547 ** is returned based on the current cursor position.
3548 */
3549 case OP_Count: {         /* out2 */
3550   i64 nEntry;
3551   BtCursor *pCrsr;
3552 
3553   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3554   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3555   assert( pCrsr );
3556   if( pOp->p3 ){
3557     nEntry = sqlite3BtreeRowCountEst(pCrsr);
3558   }else{
3559     nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3560     rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3561     if( rc ) goto abort_due_to_error;
3562   }
3563   pOut = out2Prerelease(p, pOp);
3564   pOut->u.i = nEntry;
3565   goto check_for_interrupt;
3566 }
3567 
3568 /* Opcode: Savepoint P1 * * P4 *
3569 **
3570 ** Open, release or rollback the savepoint named by parameter P4, depending
3571 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3572 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3573 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3574 */
3575 case OP_Savepoint: {
3576   int p1;                         /* Value of P1 operand */
3577   char *zName;                    /* Name of savepoint */
3578   int nName;
3579   Savepoint *pNew;
3580   Savepoint *pSavepoint;
3581   Savepoint *pTmp;
3582   int iSavepoint;
3583   int ii;
3584 
3585   p1 = pOp->p1;
3586   zName = pOp->p4.z;
3587 
3588   /* Assert that the p1 parameter is valid. Also that if there is no open
3589   ** transaction, then there cannot be any savepoints.
3590   */
3591   assert( db->pSavepoint==0 || db->autoCommit==0 );
3592   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3593   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3594   assert( checkSavepointCount(db) );
3595   assert( p->bIsReader );
3596 
3597   if( p1==SAVEPOINT_BEGIN ){
3598     if( db->nVdbeWrite>0 ){
3599       /* A new savepoint cannot be created if there are active write
3600       ** statements (i.e. open read/write incremental blob handles).
3601       */
3602       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3603       rc = SQLITE_BUSY;
3604     }else{
3605       nName = sqlite3Strlen30(zName);
3606 
3607 #ifndef SQLITE_OMIT_VIRTUALTABLE
3608       /* This call is Ok even if this savepoint is actually a transaction
3609       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3610       ** If this is a transaction savepoint being opened, it is guaranteed
3611       ** that the db->aVTrans[] array is empty.  */
3612       assert( db->autoCommit==0 || db->nVTrans==0 );
3613       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3614                                 db->nStatement+db->nSavepoint);
3615       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3616 #endif
3617 
3618       /* Create a new savepoint structure. */
3619       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3620       if( pNew ){
3621         pNew->zName = (char *)&pNew[1];
3622         memcpy(pNew->zName, zName, nName+1);
3623 
3624         /* If there is no open transaction, then mark this as a special
3625         ** "transaction savepoint". */
3626         if( db->autoCommit ){
3627           db->autoCommit = 0;
3628           db->isTransactionSavepoint = 1;
3629         }else{
3630           db->nSavepoint++;
3631         }
3632 
3633         /* Link the new savepoint into the database handle's list. */
3634         pNew->pNext = db->pSavepoint;
3635         db->pSavepoint = pNew;
3636         pNew->nDeferredCons = db->nDeferredCons;
3637         pNew->nDeferredImmCons = db->nDeferredImmCons;
3638       }
3639     }
3640   }else{
3641     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3642     iSavepoint = 0;
3643 
3644     /* Find the named savepoint. If there is no such savepoint, then an
3645     ** an error is returned to the user.  */
3646     for(
3647       pSavepoint = db->pSavepoint;
3648       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3649       pSavepoint = pSavepoint->pNext
3650     ){
3651       iSavepoint++;
3652     }
3653     if( !pSavepoint ){
3654       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3655       rc = SQLITE_ERROR;
3656     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3657       /* It is not possible to release (commit) a savepoint if there are
3658       ** active write statements.
3659       */
3660       sqlite3VdbeError(p, "cannot release savepoint - "
3661                           "SQL statements in progress");
3662       rc = SQLITE_BUSY;
3663     }else{
3664 
3665       /* Determine whether or not this is a transaction savepoint. If so,
3666       ** and this is a RELEASE command, then the current transaction
3667       ** is committed.
3668       */
3669       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3670       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3671         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3672           goto vdbe_return;
3673         }
3674         db->autoCommit = 1;
3675         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3676           p->pc = (int)(pOp - aOp);
3677           db->autoCommit = 0;
3678           p->rc = rc = SQLITE_BUSY;
3679           goto vdbe_return;
3680         }
3681         rc = p->rc;
3682         if( rc ){
3683           db->autoCommit = 0;
3684         }else{
3685           db->isTransactionSavepoint = 0;
3686         }
3687       }else{
3688         int isSchemaChange;
3689         iSavepoint = db->nSavepoint - iSavepoint - 1;
3690         if( p1==SAVEPOINT_ROLLBACK ){
3691           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3692           for(ii=0; ii<db->nDb; ii++){
3693             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3694                                        SQLITE_ABORT_ROLLBACK,
3695                                        isSchemaChange==0);
3696             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3697           }
3698         }else{
3699           assert( p1==SAVEPOINT_RELEASE );
3700           isSchemaChange = 0;
3701         }
3702         for(ii=0; ii<db->nDb; ii++){
3703           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3704           if( rc!=SQLITE_OK ){
3705             goto abort_due_to_error;
3706           }
3707         }
3708         if( isSchemaChange ){
3709           sqlite3ExpirePreparedStatements(db, 0);
3710           sqlite3ResetAllSchemasOfConnection(db);
3711           db->mDbFlags |= DBFLAG_SchemaChange;
3712         }
3713       }
3714       if( rc ) goto abort_due_to_error;
3715 
3716       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3717       ** savepoints nested inside of the savepoint being operated on. */
3718       while( db->pSavepoint!=pSavepoint ){
3719         pTmp = db->pSavepoint;
3720         db->pSavepoint = pTmp->pNext;
3721         sqlite3DbFree(db, pTmp);
3722         db->nSavepoint--;
3723       }
3724 
3725       /* If it is a RELEASE, then destroy the savepoint being operated on
3726       ** too. If it is a ROLLBACK TO, then set the number of deferred
3727       ** constraint violations present in the database to the value stored
3728       ** when the savepoint was created.  */
3729       if( p1==SAVEPOINT_RELEASE ){
3730         assert( pSavepoint==db->pSavepoint );
3731         db->pSavepoint = pSavepoint->pNext;
3732         sqlite3DbFree(db, pSavepoint);
3733         if( !isTransaction ){
3734           db->nSavepoint--;
3735         }
3736       }else{
3737         assert( p1==SAVEPOINT_ROLLBACK );
3738         db->nDeferredCons = pSavepoint->nDeferredCons;
3739         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3740       }
3741 
3742       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3743         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3744         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3745       }
3746     }
3747   }
3748   if( rc ) goto abort_due_to_error;
3749   if( p->eVdbeState==VDBE_HALT_STATE ){
3750     rc = SQLITE_DONE;
3751     goto vdbe_return;
3752   }
3753   break;
3754 }
3755 
3756 /* Opcode: AutoCommit P1 P2 * * *
3757 **
3758 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3759 ** back any currently active btree transactions. If there are any active
3760 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3761 ** there are active writing VMs or active VMs that use shared cache.
3762 **
3763 ** This instruction causes the VM to halt.
3764 */
3765 case OP_AutoCommit: {
3766   int desiredAutoCommit;
3767   int iRollback;
3768 
3769   desiredAutoCommit = pOp->p1;
3770   iRollback = pOp->p2;
3771   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3772   assert( desiredAutoCommit==1 || iRollback==0 );
3773   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3774   assert( p->bIsReader );
3775 
3776   if( desiredAutoCommit!=db->autoCommit ){
3777     if( iRollback ){
3778       assert( desiredAutoCommit==1 );
3779       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3780       db->autoCommit = 1;
3781     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3782       /* If this instruction implements a COMMIT and other VMs are writing
3783       ** return an error indicating that the other VMs must complete first.
3784       */
3785       sqlite3VdbeError(p, "cannot commit transaction - "
3786                           "SQL statements in progress");
3787       rc = SQLITE_BUSY;
3788       goto abort_due_to_error;
3789     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3790       goto vdbe_return;
3791     }else{
3792       db->autoCommit = (u8)desiredAutoCommit;
3793     }
3794     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3795       p->pc = (int)(pOp - aOp);
3796       db->autoCommit = (u8)(1-desiredAutoCommit);
3797       p->rc = rc = SQLITE_BUSY;
3798       goto vdbe_return;
3799     }
3800     sqlite3CloseSavepoints(db);
3801     if( p->rc==SQLITE_OK ){
3802       rc = SQLITE_DONE;
3803     }else{
3804       rc = SQLITE_ERROR;
3805     }
3806     goto vdbe_return;
3807   }else{
3808     sqlite3VdbeError(p,
3809         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3810         (iRollback)?"cannot rollback - no transaction is active":
3811                    "cannot commit - no transaction is active"));
3812 
3813     rc = SQLITE_ERROR;
3814     goto abort_due_to_error;
3815   }
3816   /*NOTREACHED*/ assert(0);
3817 }
3818 
3819 /* Opcode: Transaction P1 P2 P3 P4 P5
3820 **
3821 ** Begin a transaction on database P1 if a transaction is not already
3822 ** active.
3823 ** If P2 is non-zero, then a write-transaction is started, or if a
3824 ** read-transaction is already active, it is upgraded to a write-transaction.
3825 ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
3826 ** then an exclusive transaction is started.
3827 **
3828 ** P1 is the index of the database file on which the transaction is
3829 ** started.  Index 0 is the main database file and index 1 is the
3830 ** file used for temporary tables.  Indices of 2 or more are used for
3831 ** attached databases.
3832 **
3833 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3834 ** true (this flag is set if the Vdbe may modify more than one row and may
3835 ** throw an ABORT exception), a statement transaction may also be opened.
3836 ** More specifically, a statement transaction is opened iff the database
3837 ** connection is currently not in autocommit mode, or if there are other
3838 ** active statements. A statement transaction allows the changes made by this
3839 ** VDBE to be rolled back after an error without having to roll back the
3840 ** entire transaction. If no error is encountered, the statement transaction
3841 ** will automatically commit when the VDBE halts.
3842 **
3843 ** If P5!=0 then this opcode also checks the schema cookie against P3
3844 ** and the schema generation counter against P4.
3845 ** The cookie changes its value whenever the database schema changes.
3846 ** This operation is used to detect when that the cookie has changed
3847 ** and that the current process needs to reread the schema.  If the schema
3848 ** cookie in P3 differs from the schema cookie in the database header or
3849 ** if the schema generation counter in P4 differs from the current
3850 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3851 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3852 ** statement and rerun it from the beginning.
3853 */
3854 case OP_Transaction: {
3855   Btree *pBt;
3856   Db *pDb;
3857   int iMeta = 0;
3858 
3859   assert( p->bIsReader );
3860   assert( p->readOnly==0 || pOp->p2==0 );
3861   assert( pOp->p2>=0 && pOp->p2<=2 );
3862   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3863   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3864   assert( rc==SQLITE_OK );
3865   if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3866     if( db->flags & SQLITE_QueryOnly ){
3867       /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3868       rc = SQLITE_READONLY;
3869     }else{
3870       /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3871       ** transaction */
3872       rc = SQLITE_CORRUPT;
3873     }
3874     goto abort_due_to_error;
3875   }
3876   pDb = &db->aDb[pOp->p1];
3877   pBt = pDb->pBt;
3878 
3879   if( pBt ){
3880     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3881     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3882     testcase( rc==SQLITE_BUSY_RECOVERY );
3883     if( rc!=SQLITE_OK ){
3884       if( (rc&0xff)==SQLITE_BUSY ){
3885         p->pc = (int)(pOp - aOp);
3886         p->rc = rc;
3887         goto vdbe_return;
3888       }
3889       goto abort_due_to_error;
3890     }
3891 
3892     if( p->usesStmtJournal
3893      && pOp->p2
3894      && (db->autoCommit==0 || db->nVdbeRead>1)
3895     ){
3896       assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3897       if( p->iStatement==0 ){
3898         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3899         db->nStatement++;
3900         p->iStatement = db->nSavepoint + db->nStatement;
3901       }
3902 
3903       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3904       if( rc==SQLITE_OK ){
3905         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3906       }
3907 
3908       /* Store the current value of the database handles deferred constraint
3909       ** counter. If the statement transaction needs to be rolled back,
3910       ** the value of this counter needs to be restored too.  */
3911       p->nStmtDefCons = db->nDeferredCons;
3912       p->nStmtDefImmCons = db->nDeferredImmCons;
3913     }
3914   }
3915   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3916   if( rc==SQLITE_OK
3917    && pOp->p5
3918    && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
3919   ){
3920     /*
3921     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3922     ** version is checked to ensure that the schema has not changed since the
3923     ** SQL statement was prepared.
3924     */
3925     sqlite3DbFree(db, p->zErrMsg);
3926     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3927     /* If the schema-cookie from the database file matches the cookie
3928     ** stored with the in-memory representation of the schema, do
3929     ** not reload the schema from the database file.
3930     **
3931     ** If virtual-tables are in use, this is not just an optimization.
3932     ** Often, v-tables store their data in other SQLite tables, which
3933     ** are queried from within xNext() and other v-table methods using
3934     ** prepared queries. If such a query is out-of-date, we do not want to
3935     ** discard the database schema, as the user code implementing the
3936     ** v-table would have to be ready for the sqlite3_vtab structure itself
3937     ** to be invalidated whenever sqlite3_step() is called from within
3938     ** a v-table method.
3939     */
3940     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3941       sqlite3ResetOneSchema(db, pOp->p1);
3942     }
3943     p->expired = 1;
3944     rc = SQLITE_SCHEMA;
3945 
3946     /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3947     ** from being modified in sqlite3VdbeHalt(). If this statement is
3948     ** reprepared, changeCntOn will be set again. */
3949     p->changeCntOn = 0;
3950   }
3951   if( rc ) goto abort_due_to_error;
3952   break;
3953 }
3954 
3955 /* Opcode: ReadCookie P1 P2 P3 * *
3956 **
3957 ** Read cookie number P3 from database P1 and write it into register P2.
3958 ** P3==1 is the schema version.  P3==2 is the database format.
3959 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3960 ** the main database file and P1==1 is the database file used to store
3961 ** temporary tables.
3962 **
3963 ** There must be a read-lock on the database (either a transaction
3964 ** must be started or there must be an open cursor) before
3965 ** executing this instruction.
3966 */
3967 case OP_ReadCookie: {               /* out2 */
3968   int iMeta;
3969   int iDb;
3970   int iCookie;
3971 
3972   assert( p->bIsReader );
3973   iDb = pOp->p1;
3974   iCookie = pOp->p3;
3975   assert( pOp->p3<SQLITE_N_BTREE_META );
3976   assert( iDb>=0 && iDb<db->nDb );
3977   assert( db->aDb[iDb].pBt!=0 );
3978   assert( DbMaskTest(p->btreeMask, iDb) );
3979 
3980   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3981   pOut = out2Prerelease(p, pOp);
3982   pOut->u.i = iMeta;
3983   break;
3984 }
3985 
3986 /* Opcode: SetCookie P1 P2 P3 * P5
3987 **
3988 ** Write the integer value P3 into cookie number P2 of database P1.
3989 ** P2==1 is the schema version.  P2==2 is the database format.
3990 ** P2==3 is the recommended pager cache
3991 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3992 ** database file used to store temporary tables.
3993 **
3994 ** A transaction must be started before executing this opcode.
3995 **
3996 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
3997 ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
3998 ** has P5 set to 1, so that the internal schema version will be different
3999 ** from the database schema version, resulting in a schema reset.
4000 */
4001 case OP_SetCookie: {
4002   Db *pDb;
4003 
4004   sqlite3VdbeIncrWriteCounter(p, 0);
4005   assert( pOp->p2<SQLITE_N_BTREE_META );
4006   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4007   assert( DbMaskTest(p->btreeMask, pOp->p1) );
4008   assert( p->readOnly==0 );
4009   pDb = &db->aDb[pOp->p1];
4010   assert( pDb->pBt!=0 );
4011   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
4012   /* See note about index shifting on OP_ReadCookie */
4013   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
4014   if( pOp->p2==BTREE_SCHEMA_VERSION ){
4015     /* When the schema cookie changes, record the new cookie internally */
4016     *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
4017     db->mDbFlags |= DBFLAG_SchemaChange;
4018     sqlite3FkClearTriggerCache(db, pOp->p1);
4019   }else if( pOp->p2==BTREE_FILE_FORMAT ){
4020     /* Record changes in the file format */
4021     pDb->pSchema->file_format = pOp->p3;
4022   }
4023   if( pOp->p1==1 ){
4024     /* Invalidate all prepared statements whenever the TEMP database
4025     ** schema is changed.  Ticket #1644 */
4026     sqlite3ExpirePreparedStatements(db, 0);
4027     p->expired = 0;
4028   }
4029   if( rc ) goto abort_due_to_error;
4030   break;
4031 }
4032 
4033 /* Opcode: OpenRead P1 P2 P3 P4 P5
4034 ** Synopsis: root=P2 iDb=P3
4035 **
4036 ** Open a read-only cursor for the database table whose root page is
4037 ** P2 in a database file.  The database file is determined by P3.
4038 ** P3==0 means the main database, P3==1 means the database used for
4039 ** temporary tables, and P3>1 means used the corresponding attached
4040 ** database.  Give the new cursor an identifier of P1.  The P1
4041 ** values need not be contiguous but all P1 values should be small integers.
4042 ** It is an error for P1 to be negative.
4043 **
4044 ** Allowed P5 bits:
4045 ** <ul>
4046 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4047 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4048 **       of OP_SeekLE/OP_IdxLT)
4049 ** </ul>
4050 **
4051 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4052 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4053 ** object, then table being opened must be an [index b-tree] where the
4054 ** KeyInfo object defines the content and collating
4055 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4056 ** value, then the table being opened must be a [table b-tree] with a
4057 ** number of columns no less than the value of P4.
4058 **
4059 ** See also: OpenWrite, ReopenIdx
4060 */
4061 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4062 ** Synopsis: root=P2 iDb=P3
4063 **
4064 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4065 ** checks to see if the cursor on P1 is already open on the same
4066 ** b-tree and if it is this opcode becomes a no-op.  In other words,
4067 ** if the cursor is already open, do not reopen it.
4068 **
4069 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4070 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
4071 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4072 ** number.
4073 **
4074 ** Allowed P5 bits:
4075 ** <ul>
4076 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4077 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4078 **       of OP_SeekLE/OP_IdxLT)
4079 ** </ul>
4080 **
4081 ** See also: OP_OpenRead, OP_OpenWrite
4082 */
4083 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4084 ** Synopsis: root=P2 iDb=P3
4085 **
4086 ** Open a read/write cursor named P1 on the table or index whose root
4087 ** page is P2 (or whose root page is held in register P2 if the
4088 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4089 **
4090 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4091 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4092 ** object, then table being opened must be an [index b-tree] where the
4093 ** KeyInfo object defines the content and collating
4094 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4095 ** value, then the table being opened must be a [table b-tree] with a
4096 ** number of columns no less than the value of P4.
4097 **
4098 ** Allowed P5 bits:
4099 ** <ul>
4100 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4101 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4102 **       of OP_SeekLE/OP_IdxLT)
4103 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4104 **       and subsequently delete entries in an index btree.  This is a
4105 **       hint to the storage engine that the storage engine is allowed to
4106 **       ignore.  The hint is not used by the official SQLite b*tree storage
4107 **       engine, but is used by COMDB2.
4108 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4109 **       as the root page, not the value of P2 itself.
4110 ** </ul>
4111 **
4112 ** This instruction works like OpenRead except that it opens the cursor
4113 ** in read/write mode.
4114 **
4115 ** See also: OP_OpenRead, OP_ReopenIdx
4116 */
4117 case OP_ReopenIdx: {
4118   int nField;
4119   KeyInfo *pKeyInfo;
4120   u32 p2;
4121   int iDb;
4122   int wrFlag;
4123   Btree *pX;
4124   VdbeCursor *pCur;
4125   Db *pDb;
4126 
4127   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4128   assert( pOp->p4type==P4_KEYINFO );
4129   pCur = p->apCsr[pOp->p1];
4130   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4131     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
4132     assert( pCur->eCurType==CURTYPE_BTREE );
4133     sqlite3BtreeClearCursor(pCur->uc.pCursor);
4134     goto open_cursor_set_hints;
4135   }
4136   /* If the cursor is not currently open or is open on a different
4137   ** index, then fall through into OP_OpenRead to force a reopen */
4138 case OP_OpenRead:
4139 case OP_OpenWrite:
4140 
4141   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4142   assert( p->bIsReader );
4143   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4144           || p->readOnly==0 );
4145 
4146   if( p->expired==1 ){
4147     rc = SQLITE_ABORT_ROLLBACK;
4148     goto abort_due_to_error;
4149   }
4150 
4151   nField = 0;
4152   pKeyInfo = 0;
4153   p2 = (u32)pOp->p2;
4154   iDb = pOp->p3;
4155   assert( iDb>=0 && iDb<db->nDb );
4156   assert( DbMaskTest(p->btreeMask, iDb) );
4157   pDb = &db->aDb[iDb];
4158   pX = pDb->pBt;
4159   assert( pX!=0 );
4160   if( pOp->opcode==OP_OpenWrite ){
4161     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4162     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4163     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4164     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4165       p->minWriteFileFormat = pDb->pSchema->file_format;
4166     }
4167   }else{
4168     wrFlag = 0;
4169   }
4170   if( pOp->p5 & OPFLAG_P2ISREG ){
4171     assert( p2>0 );
4172     assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4173     assert( pOp->opcode==OP_OpenWrite );
4174     pIn2 = &aMem[p2];
4175     assert( memIsValid(pIn2) );
4176     assert( (pIn2->flags & MEM_Int)!=0 );
4177     sqlite3VdbeMemIntegerify(pIn2);
4178     p2 = (int)pIn2->u.i;
4179     /* The p2 value always comes from a prior OP_CreateBtree opcode and
4180     ** that opcode will always set the p2 value to 2 or more or else fail.
4181     ** If there were a failure, the prepared statement would have halted
4182     ** before reaching this instruction. */
4183     assert( p2>=2 );
4184   }
4185   if( pOp->p4type==P4_KEYINFO ){
4186     pKeyInfo = pOp->p4.pKeyInfo;
4187     assert( pKeyInfo->enc==ENC(db) );
4188     assert( pKeyInfo->db==db );
4189     nField = pKeyInfo->nAllField;
4190   }else if( pOp->p4type==P4_INT32 ){
4191     nField = pOp->p4.i;
4192   }
4193   assert( pOp->p1>=0 );
4194   assert( nField>=0 );
4195   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
4196   pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4197   if( pCur==0 ) goto no_mem;
4198   pCur->iDb = iDb;
4199   pCur->nullRow = 1;
4200   pCur->isOrdered = 1;
4201   pCur->pgnoRoot = p2;
4202 #ifdef SQLITE_DEBUG
4203   pCur->wrFlag = wrFlag;
4204 #endif
4205   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4206   pCur->pKeyInfo = pKeyInfo;
4207   /* Set the VdbeCursor.isTable variable. Previous versions of
4208   ** SQLite used to check if the root-page flags were sane at this point
4209   ** and report database corruption if they were not, but this check has
4210   ** since moved into the btree layer.  */
4211   pCur->isTable = pOp->p4type!=P4_KEYINFO;
4212 
4213 open_cursor_set_hints:
4214   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4215   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4216   testcase( pOp->p5 & OPFLAG_BULKCSR );
4217   testcase( pOp->p2 & OPFLAG_SEEKEQ );
4218   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4219                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4220   if( rc ) goto abort_due_to_error;
4221   break;
4222 }
4223 
4224 /* Opcode: OpenDup P1 P2 * * *
4225 **
4226 ** Open a new cursor P1 that points to the same ephemeral table as
4227 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
4228 ** opcode.  Only ephemeral cursors may be duplicated.
4229 **
4230 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4231 */
4232 case OP_OpenDup: {
4233   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
4234   VdbeCursor *pCx;      /* The new cursor */
4235 
4236   pOrig = p->apCsr[pOp->p2];
4237   assert( pOrig );
4238   assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
4239 
4240   pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4241   if( pCx==0 ) goto no_mem;
4242   pCx->nullRow = 1;
4243   pCx->isEphemeral = 1;
4244   pCx->pKeyInfo = pOrig->pKeyInfo;
4245   pCx->isTable = pOrig->isTable;
4246   pCx->pgnoRoot = pOrig->pgnoRoot;
4247   pCx->isOrdered = pOrig->isOrdered;
4248   pCx->ub.pBtx = pOrig->ub.pBtx;
4249   pCx->noReuse = 1;
4250   pOrig->noReuse = 1;
4251   rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4252                           pCx->pKeyInfo, pCx->uc.pCursor);
4253   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4254   ** opened for a database.  Since there is already an open cursor when this
4255   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4256   assert( rc==SQLITE_OK );
4257   break;
4258 }
4259 
4260 
4261 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4262 ** Synopsis: nColumn=P2
4263 **
4264 ** Open a new cursor P1 to a transient table.
4265 ** The cursor is always opened read/write even if
4266 ** the main database is read-only.  The ephemeral
4267 ** table is deleted automatically when the cursor is closed.
4268 **
4269 ** If the cursor P1 is already opened on an ephemeral table, the table
4270 ** is cleared (all content is erased).
4271 **
4272 ** P2 is the number of columns in the ephemeral table.
4273 ** The cursor points to a BTree table if P4==0 and to a BTree index
4274 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
4275 ** that defines the format of keys in the index.
4276 **
4277 ** The P5 parameter can be a mask of the BTREE_* flags defined
4278 ** in btree.h.  These flags control aspects of the operation of
4279 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4280 ** added automatically.
4281 **
4282 ** If P3 is positive, then reg[P3] is modified slightly so that it
4283 ** can be used as zero-length data for OP_Insert.  This is an optimization
4284 ** that avoids an extra OP_Blob opcode to initialize that register.
4285 */
4286 /* Opcode: OpenAutoindex P1 P2 * P4 *
4287 ** Synopsis: nColumn=P2
4288 **
4289 ** This opcode works the same as OP_OpenEphemeral.  It has a
4290 ** different name to distinguish its use.  Tables created using
4291 ** by this opcode will be used for automatically created transient
4292 ** indices in joins.
4293 */
4294 case OP_OpenAutoindex:
4295 case OP_OpenEphemeral: {
4296   VdbeCursor *pCx;
4297   KeyInfo *pKeyInfo;
4298 
4299   static const int vfsFlags =
4300       SQLITE_OPEN_READWRITE |
4301       SQLITE_OPEN_CREATE |
4302       SQLITE_OPEN_EXCLUSIVE |
4303       SQLITE_OPEN_DELETEONCLOSE |
4304       SQLITE_OPEN_TRANSIENT_DB;
4305   assert( pOp->p1>=0 );
4306   assert( pOp->p2>=0 );
4307   if( pOp->p3>0 ){
4308     /* Make register reg[P3] into a value that can be used as the data
4309     ** form sqlite3BtreeInsert() where the length of the data is zero. */
4310     assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4311     assert( pOp->opcode==OP_OpenEphemeral );
4312     assert( aMem[pOp->p3].flags & MEM_Null );
4313     aMem[pOp->p3].n = 0;
4314     aMem[pOp->p3].z = "";
4315   }
4316   pCx = p->apCsr[pOp->p1];
4317   if( pCx && !pCx->noReuse &&  ALWAYS(pOp->p2<=pCx->nField) ){
4318     /* If the ephermeral table is already open and has no duplicates from
4319     ** OP_OpenDup, then erase all existing content so that the table is
4320     ** empty again, rather than creating a new table. */
4321     assert( pCx->isEphemeral );
4322     pCx->seqCount = 0;
4323     pCx->cacheStatus = CACHE_STALE;
4324     rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4325   }else{
4326     pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4327     if( pCx==0 ) goto no_mem;
4328     pCx->isEphemeral = 1;
4329     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4330                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4331                           vfsFlags);
4332     if( rc==SQLITE_OK ){
4333       rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4334       if( rc==SQLITE_OK ){
4335         /* If a transient index is required, create it by calling
4336         ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4337         ** opening it. If a transient table is required, just use the
4338         ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4339         */
4340         if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4341           assert( pOp->p4type==P4_KEYINFO );
4342           rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4343               BTREE_BLOBKEY | pOp->p5);
4344           if( rc==SQLITE_OK ){
4345             assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4346             assert( pKeyInfo->db==db );
4347             assert( pKeyInfo->enc==ENC(db) );
4348             rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4349                 pKeyInfo, pCx->uc.pCursor);
4350           }
4351           pCx->isTable = 0;
4352         }else{
4353           pCx->pgnoRoot = SCHEMA_ROOT;
4354           rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4355               0, pCx->uc.pCursor);
4356           pCx->isTable = 1;
4357         }
4358       }
4359       pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4360       if( rc ){
4361         sqlite3BtreeClose(pCx->ub.pBtx);
4362       }
4363     }
4364   }
4365   if( rc ) goto abort_due_to_error;
4366   pCx->nullRow = 1;
4367   break;
4368 }
4369 
4370 /* Opcode: SorterOpen P1 P2 P3 P4 *
4371 **
4372 ** This opcode works like OP_OpenEphemeral except that it opens
4373 ** a transient index that is specifically designed to sort large
4374 ** tables using an external merge-sort algorithm.
4375 **
4376 ** If argument P3 is non-zero, then it indicates that the sorter may
4377 ** assume that a stable sort considering the first P3 fields of each
4378 ** key is sufficient to produce the required results.
4379 */
4380 case OP_SorterOpen: {
4381   VdbeCursor *pCx;
4382 
4383   assert( pOp->p1>=0 );
4384   assert( pOp->p2>=0 );
4385   pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4386   if( pCx==0 ) goto no_mem;
4387   pCx->pKeyInfo = pOp->p4.pKeyInfo;
4388   assert( pCx->pKeyInfo->db==db );
4389   assert( pCx->pKeyInfo->enc==ENC(db) );
4390   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4391   if( rc ) goto abort_due_to_error;
4392   break;
4393 }
4394 
4395 /* Opcode: SequenceTest P1 P2 * * *
4396 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4397 **
4398 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4399 ** to P2. Regardless of whether or not the jump is taken, increment the
4400 ** the sequence value.
4401 */
4402 case OP_SequenceTest: {
4403   VdbeCursor *pC;
4404   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4405   pC = p->apCsr[pOp->p1];
4406   assert( isSorter(pC) );
4407   if( (pC->seqCount++)==0 ){
4408     goto jump_to_p2;
4409   }
4410   break;
4411 }
4412 
4413 /* Opcode: OpenPseudo P1 P2 P3 * *
4414 ** Synopsis: P3 columns in r[P2]
4415 **
4416 ** Open a new cursor that points to a fake table that contains a single
4417 ** row of data.  The content of that one row is the content of memory
4418 ** register P2.  In other words, cursor P1 becomes an alias for the
4419 ** MEM_Blob content contained in register P2.
4420 **
4421 ** A pseudo-table created by this opcode is used to hold a single
4422 ** row output from the sorter so that the row can be decomposed into
4423 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4424 ** is the only cursor opcode that works with a pseudo-table.
4425 **
4426 ** P3 is the number of fields in the records that will be stored by
4427 ** the pseudo-table.
4428 */
4429 case OP_OpenPseudo: {
4430   VdbeCursor *pCx;
4431 
4432   assert( pOp->p1>=0 );
4433   assert( pOp->p3>=0 );
4434   pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4435   if( pCx==0 ) goto no_mem;
4436   pCx->nullRow = 1;
4437   pCx->seekResult = pOp->p2;
4438   pCx->isTable = 1;
4439   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4440   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4441   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4442   ** which is a performance optimization */
4443   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4444   assert( pOp->p5==0 );
4445   break;
4446 }
4447 
4448 /* Opcode: Close P1 * * * *
4449 **
4450 ** Close a cursor previously opened as P1.  If P1 is not
4451 ** currently open, this instruction is a no-op.
4452 */
4453 case OP_Close: {
4454   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4455   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4456   p->apCsr[pOp->p1] = 0;
4457   break;
4458 }
4459 
4460 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4461 /* Opcode: ColumnsUsed P1 * * P4 *
4462 **
4463 ** This opcode (which only exists if SQLite was compiled with
4464 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4465 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4466 ** (P4_INT64) in which the first 63 bits are one for each of the
4467 ** first 63 columns of the table or index that are actually used
4468 ** by the cursor.  The high-order bit is set if any column after
4469 ** the 64th is used.
4470 */
4471 case OP_ColumnsUsed: {
4472   VdbeCursor *pC;
4473   pC = p->apCsr[pOp->p1];
4474   assert( pC->eCurType==CURTYPE_BTREE );
4475   pC->maskUsed = *(u64*)pOp->p4.pI64;
4476   break;
4477 }
4478 #endif
4479 
4480 /* Opcode: SeekGE P1 P2 P3 P4 *
4481 ** Synopsis: key=r[P3@P4]
4482 **
4483 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4484 ** use the value in register P3 as the key.  If cursor P1 refers
4485 ** to an SQL index, then P3 is the first in an array of P4 registers
4486 ** that are used as an unpacked index key.
4487 **
4488 ** Reposition cursor P1 so that  it points to the smallest entry that
4489 ** is greater than or equal to the key value. If there are no records
4490 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4491 **
4492 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4493 ** opcode will either land on a record that exactly matches the key, or
4494 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4495 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4496 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4497 ** IdxGT opcode will be used on subsequent loop iterations.  The
4498 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4499 ** is an equality search.
4500 **
4501 ** This opcode leaves the cursor configured to move in forward order,
4502 ** from the beginning toward the end.  In other words, the cursor is
4503 ** configured to use Next, not Prev.
4504 **
4505 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4506 */
4507 /* Opcode: SeekGT P1 P2 P3 P4 *
4508 ** Synopsis: key=r[P3@P4]
4509 **
4510 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4511 ** use the value in register P3 as a key. If cursor P1 refers
4512 ** to an SQL index, then P3 is the first in an array of P4 registers
4513 ** that are used as an unpacked index key.
4514 **
4515 ** Reposition cursor P1 so that it points to the smallest entry that
4516 ** is greater than the key value. If there are no records greater than
4517 ** the key and P2 is not zero, then jump to P2.
4518 **
4519 ** This opcode leaves the cursor configured to move in forward order,
4520 ** from the beginning toward the end.  In other words, the cursor is
4521 ** configured to use Next, not Prev.
4522 **
4523 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4524 */
4525 /* Opcode: SeekLT P1 P2 P3 P4 *
4526 ** Synopsis: key=r[P3@P4]
4527 **
4528 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4529 ** use the value in register P3 as a key. If cursor P1 refers
4530 ** to an SQL index, then P3 is the first in an array of P4 registers
4531 ** that are used as an unpacked index key.
4532 **
4533 ** Reposition cursor P1 so that  it points to the largest entry that
4534 ** is less than the key value. If there are no records less than
4535 ** the key and P2 is not zero, then jump to P2.
4536 **
4537 ** This opcode leaves the cursor configured to move in reverse order,
4538 ** from the end toward the beginning.  In other words, the cursor is
4539 ** configured to use Prev, not Next.
4540 **
4541 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4542 */
4543 /* Opcode: SeekLE P1 P2 P3 P4 *
4544 ** Synopsis: key=r[P3@P4]
4545 **
4546 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4547 ** use the value in register P3 as a key. If cursor P1 refers
4548 ** to an SQL index, then P3 is the first in an array of P4 registers
4549 ** that are used as an unpacked index key.
4550 **
4551 ** Reposition cursor P1 so that it points to the largest entry that
4552 ** is less than or equal to the key value. If there are no records
4553 ** less than or equal to the key and P2 is not zero, then jump to P2.
4554 **
4555 ** This opcode leaves the cursor configured to move in reverse order,
4556 ** from the end toward the beginning.  In other words, the cursor is
4557 ** configured to use Prev, not Next.
4558 **
4559 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4560 ** opcode will either land on a record that exactly matches the key, or
4561 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4562 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4563 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4564 ** IdxGE opcode will be used on subsequent loop iterations.  The
4565 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4566 ** is an equality search.
4567 **
4568 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4569 */
4570 case OP_SeekLT:         /* jump, in3, group */
4571 case OP_SeekLE:         /* jump, in3, group */
4572 case OP_SeekGE:         /* jump, in3, group */
4573 case OP_SeekGT: {       /* jump, in3, group */
4574   int res;           /* Comparison result */
4575   int oc;            /* Opcode */
4576   VdbeCursor *pC;    /* The cursor to seek */
4577   UnpackedRecord r;  /* The key to seek for */
4578   int nField;        /* Number of columns or fields in the key */
4579   i64 iKey;          /* The rowid we are to seek to */
4580   int eqOnly;        /* Only interested in == results */
4581 
4582   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4583   assert( pOp->p2!=0 );
4584   pC = p->apCsr[pOp->p1];
4585   assert( pC!=0 );
4586   assert( pC->eCurType==CURTYPE_BTREE );
4587   assert( OP_SeekLE == OP_SeekLT+1 );
4588   assert( OP_SeekGE == OP_SeekLT+2 );
4589   assert( OP_SeekGT == OP_SeekLT+3 );
4590   assert( pC->isOrdered );
4591   assert( pC->uc.pCursor!=0 );
4592   oc = pOp->opcode;
4593   eqOnly = 0;
4594   pC->nullRow = 0;
4595 #ifdef SQLITE_DEBUG
4596   pC->seekOp = pOp->opcode;
4597 #endif
4598 
4599   pC->deferredMoveto = 0;
4600   pC->cacheStatus = CACHE_STALE;
4601   if( pC->isTable ){
4602     u16 flags3, newType;
4603     /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4604     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4605               || CORRUPT_DB );
4606 
4607     /* The input value in P3 might be of any type: integer, real, string,
4608     ** blob, or NULL.  But it needs to be an integer before we can do
4609     ** the seek, so convert it. */
4610     pIn3 = &aMem[pOp->p3];
4611     flags3 = pIn3->flags;
4612     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4613       applyNumericAffinity(pIn3, 0);
4614     }
4615     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4616     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4617     pIn3->flags = flags3;  /* But convert the type back to its original */
4618 
4619     /* If the P3 value could not be converted into an integer without
4620     ** loss of information, then special processing is required... */
4621     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4622       int c;
4623       if( (newType & MEM_Real)==0 ){
4624         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4625           VdbeBranchTaken(1,2);
4626           goto jump_to_p2;
4627         }else{
4628           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4629           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4630           goto seek_not_found;
4631         }
4632       }
4633       c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4634 
4635       /* If the approximation iKey is larger than the actual real search
4636       ** term, substitute >= for > and < for <=. e.g. if the search term
4637       ** is 4.9 and the integer approximation 5:
4638       **
4639       **        (x >  4.9)    ->     (x >= 5)
4640       **        (x <= 4.9)    ->     (x <  5)
4641       */
4642       if( c>0 ){
4643         assert( OP_SeekGE==(OP_SeekGT-1) );
4644         assert( OP_SeekLT==(OP_SeekLE-1) );
4645         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4646         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4647       }
4648 
4649       /* If the approximation iKey is smaller than the actual real search
4650       ** term, substitute <= for < and > for >=.  */
4651       else if( c<0 ){
4652         assert( OP_SeekLE==(OP_SeekLT+1) );
4653         assert( OP_SeekGT==(OP_SeekGE+1) );
4654         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4655         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4656       }
4657     }
4658     rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4659     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4660     if( rc!=SQLITE_OK ){
4661       goto abort_due_to_error;
4662     }
4663   }else{
4664     /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4665     ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4666     ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4667     ** with the same key.
4668     */
4669     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4670       eqOnly = 1;
4671       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4672       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4673       assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4674       assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4675       assert( pOp[1].p1==pOp[0].p1 );
4676       assert( pOp[1].p2==pOp[0].p2 );
4677       assert( pOp[1].p3==pOp[0].p3 );
4678       assert( pOp[1].p4.i==pOp[0].p4.i );
4679     }
4680 
4681     nField = pOp->p4.i;
4682     assert( pOp->p4type==P4_INT32 );
4683     assert( nField>0 );
4684     r.pKeyInfo = pC->pKeyInfo;
4685     r.nField = (u16)nField;
4686 
4687     /* The next line of code computes as follows, only faster:
4688     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4689     **     r.default_rc = -1;
4690     **   }else{
4691     **     r.default_rc = +1;
4692     **   }
4693     */
4694     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4695     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4696     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4697     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4698     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4699 
4700     r.aMem = &aMem[pOp->p3];
4701 #ifdef SQLITE_DEBUG
4702     {
4703       int i;
4704       for(i=0; i<r.nField; i++){
4705         assert( memIsValid(&r.aMem[i]) );
4706         if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
4707       }
4708     }
4709 #endif
4710     r.eqSeen = 0;
4711     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4712     if( rc!=SQLITE_OK ){
4713       goto abort_due_to_error;
4714     }
4715     if( eqOnly && r.eqSeen==0 ){
4716       assert( res!=0 );
4717       goto seek_not_found;
4718     }
4719   }
4720 #ifdef SQLITE_TEST
4721   sqlite3_search_count++;
4722 #endif
4723   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4724     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4725       res = 0;
4726       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4727       if( rc!=SQLITE_OK ){
4728         if( rc==SQLITE_DONE ){
4729           rc = SQLITE_OK;
4730           res = 1;
4731         }else{
4732           goto abort_due_to_error;
4733         }
4734       }
4735     }else{
4736       res = 0;
4737     }
4738   }else{
4739     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4740     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4741       res = 0;
4742       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4743       if( rc!=SQLITE_OK ){
4744         if( rc==SQLITE_DONE ){
4745           rc = SQLITE_OK;
4746           res = 1;
4747         }else{
4748           goto abort_due_to_error;
4749         }
4750       }
4751     }else{
4752       /* res might be negative because the table is empty.  Check to
4753       ** see if this is the case.
4754       */
4755       res = sqlite3BtreeEof(pC->uc.pCursor);
4756     }
4757   }
4758 seek_not_found:
4759   assert( pOp->p2>0 );
4760   VdbeBranchTaken(res!=0,2);
4761   if( res ){
4762     goto jump_to_p2;
4763   }else if( eqOnly ){
4764     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4765     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4766   }
4767   break;
4768 }
4769 
4770 
4771 /* Opcode: SeekScan  P1 P2 * * P5
4772 ** Synopsis: Scan-ahead up to P1 rows
4773 **
4774 ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
4775 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4776 ** checked by assert() statements.
4777 **
4778 ** This opcode uses the P1 through P4 operands of the subsequent
4779 ** OP_SeekGE.  In the text that follows, the operands of the subsequent
4780 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
4781 ** the P1, P2 and P5 operands of this opcode are also used, and  are called
4782 ** This.P1, This.P2 and This.P5.
4783 **
4784 ** This opcode helps to optimize IN operators on a multi-column index
4785 ** where the IN operator is on the later terms of the index by avoiding
4786 ** unnecessary seeks on the btree, substituting steps to the next row
4787 ** of the b-tree instead.  A correct answer is obtained if this opcode
4788 ** is omitted or is a no-op.
4789 **
4790 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4791 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4792 ** to.  Call this SeekGE.P3/P4 row the "target".
4793 **
4794 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4795 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4796 **
4797 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4798 ** might be the target row, or it might be near and slightly before the
4799 ** target row, or it might be after the target row.  If the cursor is
4800 ** currently before the target row, then this opcode attempts to position
4801 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4802 ** on the cursor between 1 and This.P1 times.
4803 **
4804 ** The This.P5 parameter is a flag that indicates what to do if the
4805 ** cursor ends up pointing at a valid row that is past the target
4806 ** row.  If This.P5 is false (0) then a jump is made to SeekGE.P2.  If
4807 ** This.P5 is true (non-zero) then a jump is made to This.P2.  The P5==0
4808 ** case occurs when there are no inequality constraints to the right of
4809 ** the IN constraing.  The jump to SeekGE.P2 ends the loop.  The P5!=0 case
4810 ** occurs when there are inequality constraints to the right of the IN
4811 ** operator.  In that case, the This.P2 will point either directly to or
4812 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4813 ** loop terminate.
4814 **
4815 ** Possible outcomes from this opcode:<ol>
4816 **
4817 ** <li> If the cursor is initally not pointed to any valid row, then
4818 **      fall through into the subsequent OP_SeekGE opcode.
4819 **
4820 ** <li> If the cursor is left pointing to a row that is before the target
4821 **      row, even after making as many as This.P1 calls to
4822 **      sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4823 **
4824 ** <li> If the cursor is left pointing at the target row, either because it
4825 **      was at the target row to begin with or because one or more
4826 **      sqlite3BtreeNext() calls moved the cursor to the target row,
4827 **      then jump to This.P2..,
4828 **
4829 ** <li> If the cursor started out before the target row and a call to
4830 **      to sqlite3BtreeNext() moved the cursor off the end of the index
4831 **      (indicating that the target row definitely does not exist in the
4832 **      btree) then jump to SeekGE.P2, ending the loop.
4833 **
4834 ** <li> If the cursor ends up on a valid row that is past the target row
4835 **      (indicating that the target row does not exist in the btree) then
4836 **      jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4837 ** </ol>
4838 */
4839 case OP_SeekScan: {
4840   VdbeCursor *pC;
4841   int res;
4842   int nStep;
4843   UnpackedRecord r;
4844 
4845   assert( pOp[1].opcode==OP_SeekGE );
4846 
4847   /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
4848   ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
4849   ** opcode past the OP_SeekGE itself.  */
4850   assert( pOp->p2>=(int)(pOp-aOp)+2 );
4851 #ifdef SQLITE_DEBUG
4852   if( pOp->p5==0 ){
4853     /* There are no inequality constraints following the IN constraint. */
4854     assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4855     assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4856     assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4857     assert( aOp[pOp->p2-1].opcode==OP_IdxGT
4858          || aOp[pOp->p2-1].opcode==OP_IdxGE );
4859     testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4860   }else{
4861     /* There are inequality constraints.  */
4862     assert( pOp->p2==(int)(pOp-aOp)+2 );
4863     assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
4864   }
4865 #endif
4866 
4867   assert( pOp->p1>0 );
4868   pC = p->apCsr[pOp[1].p1];
4869   assert( pC!=0 );
4870   assert( pC->eCurType==CURTYPE_BTREE );
4871   assert( !pC->isTable );
4872   if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4873 #ifdef SQLITE_DEBUG
4874      if( db->flags&SQLITE_VdbeTrace ){
4875        printf("... cursor not valid - fall through\n");
4876      }
4877 #endif
4878     break;
4879   }
4880   nStep = pOp->p1;
4881   assert( nStep>=1 );
4882   r.pKeyInfo = pC->pKeyInfo;
4883   r.nField = (u16)pOp[1].p4.i;
4884   r.default_rc = 0;
4885   r.aMem = &aMem[pOp[1].p3];
4886 #ifdef SQLITE_DEBUG
4887   {
4888     int i;
4889     for(i=0; i<r.nField; i++){
4890       assert( memIsValid(&r.aMem[i]) );
4891       REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4892     }
4893   }
4894 #endif
4895   res = 0;  /* Not needed.  Only used to silence a warning. */
4896   while(1){
4897     rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4898     if( rc ) goto abort_due_to_error;
4899     if( res>0 && pOp->p5==0 ){
4900       seekscan_search_fail:
4901       /* Jump to SeekGE.P2, ending the loop */
4902 #ifdef SQLITE_DEBUG
4903       if( db->flags&SQLITE_VdbeTrace ){
4904         printf("... %d steps and then skip\n", pOp->p1 - nStep);
4905       }
4906 #endif
4907       VdbeBranchTaken(1,3);
4908       pOp++;
4909       goto jump_to_p2;
4910     }
4911     if( res>=0 ){
4912       /* Jump to This.P2, bypassing the OP_SeekGE opcode */
4913 #ifdef SQLITE_DEBUG
4914       if( db->flags&SQLITE_VdbeTrace ){
4915         printf("... %d steps and then success\n", pOp->p1 - nStep);
4916       }
4917 #endif
4918       VdbeBranchTaken(2,3);
4919       goto jump_to_p2;
4920       break;
4921     }
4922     if( nStep<=0 ){
4923 #ifdef SQLITE_DEBUG
4924       if( db->flags&SQLITE_VdbeTrace ){
4925         printf("... fall through after %d steps\n", pOp->p1);
4926       }
4927 #endif
4928       VdbeBranchTaken(0,3);
4929       break;
4930     }
4931     nStep--;
4932     rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4933     if( rc ){
4934       if( rc==SQLITE_DONE ){
4935         rc = SQLITE_OK;
4936         goto seekscan_search_fail;
4937       }else{
4938         goto abort_due_to_error;
4939       }
4940     }
4941   }
4942 
4943   break;
4944 }
4945 
4946 
4947 /* Opcode: SeekHit P1 P2 P3 * *
4948 ** Synopsis: set P2<=seekHit<=P3
4949 **
4950 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4951 ** so that it is no less than P2 and no greater than P3.
4952 **
4953 ** The seekHit integer represents the maximum of terms in an index for which
4954 ** there is known to be at least one match.  If the seekHit value is smaller
4955 ** than the total number of equality terms in an index lookup, then the
4956 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4957 ** early, thus saving work.  This is part of the IN-early-out optimization.
4958 **
4959 ** P1 must be a valid b-tree cursor.
4960 */
4961 case OP_SeekHit: {
4962   VdbeCursor *pC;
4963   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4964   pC = p->apCsr[pOp->p1];
4965   assert( pC!=0 );
4966   assert( pOp->p3>=pOp->p2 );
4967   if( pC->seekHit<pOp->p2 ){
4968 #ifdef SQLITE_DEBUG
4969     if( db->flags&SQLITE_VdbeTrace ){
4970       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
4971     }
4972 #endif
4973     pC->seekHit = pOp->p2;
4974   }else if( pC->seekHit>pOp->p3 ){
4975 #ifdef SQLITE_DEBUG
4976     if( db->flags&SQLITE_VdbeTrace ){
4977       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
4978     }
4979 #endif
4980     pC->seekHit = pOp->p3;
4981   }
4982   break;
4983 }
4984 
4985 /* Opcode: IfNotOpen P1 P2 * * *
4986 ** Synopsis: if( !csr[P1] ) goto P2
4987 **
4988 ** If cursor P1 is not open or if P1 is set to a NULL row using the
4989 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
4990 */
4991 case OP_IfNotOpen: {        /* jump */
4992   VdbeCursor *pCur;
4993 
4994   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4995   pCur = p->apCsr[pOp->p1];
4996   VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
4997   if( pCur==0 || pCur->nullRow ){
4998     goto jump_to_p2_and_check_for_interrupt;
4999   }
5000   break;
5001 }
5002 
5003 /* Opcode: Found P1 P2 P3 P4 *
5004 ** Synopsis: key=r[P3@P4]
5005 **
5006 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
5007 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5008 ** record.
5009 **
5010 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
5011 ** is a prefix of any entry in P1 then a jump is made to P2 and
5012 ** P1 is left pointing at the matching entry.
5013 **
5014 ** This operation leaves the cursor in a state where it can be
5015 ** advanced in the forward direction.  The Next instruction will work,
5016 ** but not the Prev instruction.
5017 **
5018 ** See also: NotFound, NoConflict, NotExists. SeekGe
5019 */
5020 /* Opcode: NotFound P1 P2 P3 P4 *
5021 ** Synopsis: key=r[P3@P4]
5022 **
5023 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
5024 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5025 ** record.
5026 **
5027 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
5028 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
5029 ** does contain an entry whose prefix matches the P3/P4 record then control
5030 ** falls through to the next instruction and P1 is left pointing at the
5031 ** matching entry.
5032 **
5033 ** This operation leaves the cursor in a state where it cannot be
5034 ** advanced in either direction.  In other words, the Next and Prev
5035 ** opcodes do not work after this operation.
5036 **
5037 ** See also: Found, NotExists, NoConflict, IfNoHope
5038 */
5039 /* Opcode: IfNoHope P1 P2 P3 P4 *
5040 ** Synopsis: key=r[P3@P4]
5041 **
5042 ** Register P3 is the first of P4 registers that form an unpacked
5043 ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
5044 ** In other words, the operands to this opcode are the same as the
5045 ** operands to OP_NotFound and OP_IdxGT.
5046 **
5047 ** This opcode is an optimization attempt only.  If this opcode always
5048 ** falls through, the correct answer is still obtained, but extra works
5049 ** is performed.
5050 **
5051 ** A value of N in the seekHit flag of cursor P1 means that there exists
5052 ** a key P3:N that will match some record in the index.  We want to know
5053 ** if it is possible for a record P3:P4 to match some record in the
5054 ** index.  If it is not possible, we can skips some work.  So if seekHit
5055 ** is less than P4, attempt to find out if a match is possible by running
5056 ** OP_NotFound.
5057 **
5058 ** This opcode is used in IN clause processing for a multi-column key.
5059 ** If an IN clause is attached to an element of the key other than the
5060 ** left-most element, and if there are no matches on the most recent
5061 ** seek over the whole key, then it might be that one of the key element
5062 ** to the left is prohibiting a match, and hence there is "no hope" of
5063 ** any match regardless of how many IN clause elements are checked.
5064 ** In such a case, we abandon the IN clause search early, using this
5065 ** opcode.  The opcode name comes from the fact that the
5066 ** jump is taken if there is "no hope" of achieving a match.
5067 **
5068 ** See also: NotFound, SeekHit
5069 */
5070 /* Opcode: NoConflict P1 P2 P3 P4 *
5071 ** Synopsis: key=r[P3@P4]
5072 **
5073 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
5074 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5075 ** record.
5076 **
5077 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
5078 ** contains any NULL value, jump immediately to P2.  If all terms of the
5079 ** record are not-NULL then a check is done to determine if any row in the
5080 ** P1 index btree has a matching key prefix.  If there are no matches, jump
5081 ** immediately to P2.  If there is a match, fall through and leave the P1
5082 ** cursor pointing to the matching row.
5083 **
5084 ** This opcode is similar to OP_NotFound with the exceptions that the
5085 ** branch is always taken if any part of the search key input is NULL.
5086 **
5087 ** This operation leaves the cursor in a state where it cannot be
5088 ** advanced in either direction.  In other words, the Next and Prev
5089 ** opcodes do not work after this operation.
5090 **
5091 ** See also: NotFound, Found, NotExists
5092 */
5093 case OP_IfNoHope: {     /* jump, in3 */
5094   VdbeCursor *pC;
5095   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5096   pC = p->apCsr[pOp->p1];
5097   assert( pC!=0 );
5098 #ifdef SQLITE_DEBUG
5099   if( db->flags&SQLITE_VdbeTrace ){
5100     printf("seekHit is %d\n", pC->seekHit);
5101   }
5102 #endif
5103   if( pC->seekHit>=pOp->p4.i ) break;
5104   /* Fall through into OP_NotFound */
5105   /* no break */ deliberate_fall_through
5106 }
5107 case OP_NoConflict:     /* jump, in3 */
5108 case OP_NotFound:       /* jump, in3 */
5109 case OP_Found: {        /* jump, in3 */
5110   int alreadyExists;
5111   int ii;
5112   VdbeCursor *pC;
5113   UnpackedRecord *pIdxKey;
5114   UnpackedRecord r;
5115 
5116 #ifdef SQLITE_TEST
5117   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5118 #endif
5119 
5120   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5121   assert( pOp->p4type==P4_INT32 );
5122   pC = p->apCsr[pOp->p1];
5123   assert( pC!=0 );
5124 #ifdef SQLITE_DEBUG
5125   pC->seekOp = pOp->opcode;
5126 #endif
5127   r.aMem = &aMem[pOp->p3];
5128   assert( pC->eCurType==CURTYPE_BTREE );
5129   assert( pC->uc.pCursor!=0 );
5130   assert( pC->isTable==0 );
5131   r.nField = (u16)pOp->p4.i;
5132   if( r.nField>0 ){
5133     /* Key values in an array of registers */
5134     r.pKeyInfo = pC->pKeyInfo;
5135     r.default_rc = 0;
5136 #ifdef SQLITE_DEBUG
5137     for(ii=0; ii<r.nField; ii++){
5138       assert( memIsValid(&r.aMem[ii]) );
5139       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5140       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5141     }
5142 #endif
5143     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5144   }else{
5145     /* Composite key generated by OP_MakeRecord */
5146     assert( r.aMem->flags & MEM_Blob );
5147     assert( pOp->opcode!=OP_NoConflict );
5148     rc = ExpandBlob(r.aMem);
5149     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5150     if( rc ) goto no_mem;
5151     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5152     if( pIdxKey==0 ) goto no_mem;
5153     sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5154     pIdxKey->default_rc = 0;
5155     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5156     sqlite3DbFreeNN(db, pIdxKey);
5157   }
5158   if( rc!=SQLITE_OK ){
5159     goto abort_due_to_error;
5160   }
5161   alreadyExists = (pC->seekResult==0);
5162   pC->nullRow = 1-alreadyExists;
5163   pC->deferredMoveto = 0;
5164   pC->cacheStatus = CACHE_STALE;
5165   if( pOp->opcode==OP_Found ){
5166     VdbeBranchTaken(alreadyExists!=0,2);
5167     if( alreadyExists ) goto jump_to_p2;
5168   }else{
5169     if( !alreadyExists ){
5170       VdbeBranchTaken(1,2);
5171       goto jump_to_p2;
5172     }
5173     if( pOp->opcode==OP_NoConflict ){
5174       /* For the OP_NoConflict opcode, take the jump if any of the
5175       ** input fields are NULL, since any key with a NULL will not
5176       ** conflict */
5177       for(ii=0; ii<r.nField; ii++){
5178         if( r.aMem[ii].flags & MEM_Null ){
5179           VdbeBranchTaken(1,2);
5180           goto jump_to_p2;
5181         }
5182       }
5183     }
5184     VdbeBranchTaken(0,2);
5185     if( pOp->opcode==OP_IfNoHope ){
5186       pC->seekHit = pOp->p4.i;
5187     }
5188   }
5189   break;
5190 }
5191 
5192 /* Opcode: SeekRowid P1 P2 P3 * *
5193 ** Synopsis: intkey=r[P3]
5194 **
5195 ** P1 is the index of a cursor open on an SQL table btree (with integer
5196 ** keys).  If register P3 does not contain an integer or if P1 does not
5197 ** contain a record with rowid P3 then jump immediately to P2.
5198 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5199 ** a record with rowid P3 then
5200 ** leave the cursor pointing at that record and fall through to the next
5201 ** instruction.
5202 **
5203 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5204 ** the P3 register must be guaranteed to contain an integer value.  With this
5205 ** opcode, register P3 might not contain an integer.
5206 **
5207 ** The OP_NotFound opcode performs the same operation on index btrees
5208 ** (with arbitrary multi-value keys).
5209 **
5210 ** This opcode leaves the cursor in a state where it cannot be advanced
5211 ** in either direction.  In other words, the Next and Prev opcodes will
5212 ** not work following this opcode.
5213 **
5214 ** See also: Found, NotFound, NoConflict, SeekRowid
5215 */
5216 /* Opcode: NotExists P1 P2 P3 * *
5217 ** Synopsis: intkey=r[P3]
5218 **
5219 ** P1 is the index of a cursor open on an SQL table btree (with integer
5220 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
5221 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
5222 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5223 ** leave the cursor pointing at that record and fall through to the next
5224 ** instruction.
5225 **
5226 ** The OP_SeekRowid opcode performs the same operation but also allows the
5227 ** P3 register to contain a non-integer value, in which case the jump is
5228 ** always taken.  This opcode requires that P3 always contain an integer.
5229 **
5230 ** The OP_NotFound opcode performs the same operation on index btrees
5231 ** (with arbitrary multi-value keys).
5232 **
5233 ** This opcode leaves the cursor in a state where it cannot be advanced
5234 ** in either direction.  In other words, the Next and Prev opcodes will
5235 ** not work following this opcode.
5236 **
5237 ** See also: Found, NotFound, NoConflict, SeekRowid
5238 */
5239 case OP_SeekRowid: {        /* jump, in3 */
5240   VdbeCursor *pC;
5241   BtCursor *pCrsr;
5242   int res;
5243   u64 iKey;
5244 
5245   pIn3 = &aMem[pOp->p3];
5246   testcase( pIn3->flags & MEM_Int );
5247   testcase( pIn3->flags & MEM_IntReal );
5248   testcase( pIn3->flags & MEM_Real );
5249   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5250   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5251     /* If pIn3->u.i does not contain an integer, compute iKey as the
5252     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
5253     ** into an integer without loss of information.  Take care to avoid
5254     ** changing the datatype of pIn3, however, as it is used by other
5255     ** parts of the prepared statement. */
5256     Mem x = pIn3[0];
5257     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5258     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5259     iKey = x.u.i;
5260     goto notExistsWithKey;
5261   }
5262   /* Fall through into OP_NotExists */
5263   /* no break */ deliberate_fall_through
5264 case OP_NotExists:          /* jump, in3 */
5265   pIn3 = &aMem[pOp->p3];
5266   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5267   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5268   iKey = pIn3->u.i;
5269 notExistsWithKey:
5270   pC = p->apCsr[pOp->p1];
5271   assert( pC!=0 );
5272 #ifdef SQLITE_DEBUG
5273   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5274 #endif
5275   assert( pC->isTable );
5276   assert( pC->eCurType==CURTYPE_BTREE );
5277   pCrsr = pC->uc.pCursor;
5278   assert( pCrsr!=0 );
5279   res = 0;
5280   rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5281   assert( rc==SQLITE_OK || res==0 );
5282   pC->movetoTarget = iKey;  /* Used by OP_Delete */
5283   pC->nullRow = 0;
5284   pC->cacheStatus = CACHE_STALE;
5285   pC->deferredMoveto = 0;
5286   VdbeBranchTaken(res!=0,2);
5287   pC->seekResult = res;
5288   if( res!=0 ){
5289     assert( rc==SQLITE_OK );
5290     if( pOp->p2==0 ){
5291       rc = SQLITE_CORRUPT_BKPT;
5292     }else{
5293       goto jump_to_p2;
5294     }
5295   }
5296   if( rc ) goto abort_due_to_error;
5297   break;
5298 }
5299 
5300 /* Opcode: Sequence P1 P2 * * *
5301 ** Synopsis: r[P2]=cursor[P1].ctr++
5302 **
5303 ** Find the next available sequence number for cursor P1.
5304 ** Write the sequence number into register P2.
5305 ** The sequence number on the cursor is incremented after this
5306 ** instruction.
5307 */
5308 case OP_Sequence: {           /* out2 */
5309   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5310   assert( p->apCsr[pOp->p1]!=0 );
5311   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5312   pOut = out2Prerelease(p, pOp);
5313   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5314   break;
5315 }
5316 
5317 
5318 /* Opcode: NewRowid P1 P2 P3 * *
5319 ** Synopsis: r[P2]=rowid
5320 **
5321 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5322 ** The record number is not previously used as a key in the database
5323 ** table that cursor P1 points to.  The new record number is written
5324 ** written to register P2.
5325 **
5326 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5327 ** the largest previously generated record number. No new record numbers are
5328 ** allowed to be less than this value. When this value reaches its maximum,
5329 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5330 ** generated record number. This P3 mechanism is used to help implement the
5331 ** AUTOINCREMENT feature.
5332 */
5333 case OP_NewRowid: {           /* out2 */
5334   i64 v;                 /* The new rowid */
5335   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
5336   int res;               /* Result of an sqlite3BtreeLast() */
5337   int cnt;               /* Counter to limit the number of searches */
5338 #ifndef SQLITE_OMIT_AUTOINCREMENT
5339   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
5340   VdbeFrame *pFrame;     /* Root frame of VDBE */
5341 #endif
5342 
5343   v = 0;
5344   res = 0;
5345   pOut = out2Prerelease(p, pOp);
5346   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5347   pC = p->apCsr[pOp->p1];
5348   assert( pC!=0 );
5349   assert( pC->isTable );
5350   assert( pC->eCurType==CURTYPE_BTREE );
5351   assert( pC->uc.pCursor!=0 );
5352   {
5353     /* The next rowid or record number (different terms for the same
5354     ** thing) is obtained in a two-step algorithm.
5355     **
5356     ** First we attempt to find the largest existing rowid and add one
5357     ** to that.  But if the largest existing rowid is already the maximum
5358     ** positive integer, we have to fall through to the second
5359     ** probabilistic algorithm
5360     **
5361     ** The second algorithm is to select a rowid at random and see if
5362     ** it already exists in the table.  If it does not exist, we have
5363     ** succeeded.  If the random rowid does exist, we select a new one
5364     ** and try again, up to 100 times.
5365     */
5366     assert( pC->isTable );
5367 
5368 #ifdef SQLITE_32BIT_ROWID
5369 #   define MAX_ROWID 0x7fffffff
5370 #else
5371     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5372     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
5373     ** to provide the constant while making all compilers happy.
5374     */
5375 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5376 #endif
5377 
5378     if( !pC->useRandomRowid ){
5379       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5380       if( rc!=SQLITE_OK ){
5381         goto abort_due_to_error;
5382       }
5383       if( res ){
5384         v = 1;   /* IMP: R-61914-48074 */
5385       }else{
5386         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5387         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5388         if( v>=MAX_ROWID ){
5389           pC->useRandomRowid = 1;
5390         }else{
5391           v++;   /* IMP: R-29538-34987 */
5392         }
5393       }
5394     }
5395 
5396 #ifndef SQLITE_OMIT_AUTOINCREMENT
5397     if( pOp->p3 ){
5398       /* Assert that P3 is a valid memory cell. */
5399       assert( pOp->p3>0 );
5400       if( p->pFrame ){
5401         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5402         /* Assert that P3 is a valid memory cell. */
5403         assert( pOp->p3<=pFrame->nMem );
5404         pMem = &pFrame->aMem[pOp->p3];
5405       }else{
5406         /* Assert that P3 is a valid memory cell. */
5407         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5408         pMem = &aMem[pOp->p3];
5409         memAboutToChange(p, pMem);
5410       }
5411       assert( memIsValid(pMem) );
5412 
5413       REGISTER_TRACE(pOp->p3, pMem);
5414       sqlite3VdbeMemIntegerify(pMem);
5415       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
5416       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5417         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
5418         goto abort_due_to_error;
5419       }
5420       if( v<pMem->u.i+1 ){
5421         v = pMem->u.i + 1;
5422       }
5423       pMem->u.i = v;
5424     }
5425 #endif
5426     if( pC->useRandomRowid ){
5427       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5428       ** largest possible integer (9223372036854775807) then the database
5429       ** engine starts picking positive candidate ROWIDs at random until
5430       ** it finds one that is not previously used. */
5431       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
5432                              ** an AUTOINCREMENT table. */
5433       cnt = 0;
5434       do{
5435         sqlite3_randomness(sizeof(v), &v);
5436         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
5437       }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5438                                                  0, &res))==SQLITE_OK)
5439             && (res==0)
5440             && (++cnt<100));
5441       if( rc ) goto abort_due_to_error;
5442       if( res==0 ){
5443         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
5444         goto abort_due_to_error;
5445       }
5446       assert( v>0 );  /* EV: R-40812-03570 */
5447     }
5448     pC->deferredMoveto = 0;
5449     pC->cacheStatus = CACHE_STALE;
5450   }
5451   pOut->u.i = v;
5452   break;
5453 }
5454 
5455 /* Opcode: Insert P1 P2 P3 P4 P5
5456 ** Synopsis: intkey=r[P3] data=r[P2]
5457 **
5458 ** Write an entry into the table of cursor P1.  A new entry is
5459 ** created if it doesn't already exist or the data for an existing
5460 ** entry is overwritten.  The data is the value MEM_Blob stored in register
5461 ** number P2. The key is stored in register P3. The key must
5462 ** be a MEM_Int.
5463 **
5464 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5465 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
5466 ** then rowid is stored for subsequent return by the
5467 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5468 **
5469 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5470 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5471 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5472 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5473 **
5474 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5475 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
5476 ** is part of an INSERT operation.  The difference is only important to
5477 ** the update hook.
5478 **
5479 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5480 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5481 ** following a successful insert.
5482 **
5483 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5484 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5485 ** and register P2 becomes ephemeral.  If the cursor is changed, the
5486 ** value of register P2 will then change.  Make sure this does not
5487 ** cause any problems.)
5488 **
5489 ** This instruction only works on tables.  The equivalent instruction
5490 ** for indices is OP_IdxInsert.
5491 */
5492 case OP_Insert: {
5493   Mem *pData;       /* MEM cell holding data for the record to be inserted */
5494   Mem *pKey;        /* MEM cell holding key  for the record */
5495   VdbeCursor *pC;   /* Cursor to table into which insert is written */
5496   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
5497   const char *zDb;  /* database name - used by the update hook */
5498   Table *pTab;      /* Table structure - used by update and pre-update hooks */
5499   BtreePayload x;   /* Payload to be inserted */
5500 
5501   pData = &aMem[pOp->p2];
5502   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5503   assert( memIsValid(pData) );
5504   pC = p->apCsr[pOp->p1];
5505   assert( pC!=0 );
5506   assert( pC->eCurType==CURTYPE_BTREE );
5507   assert( pC->deferredMoveto==0 );
5508   assert( pC->uc.pCursor!=0 );
5509   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5510   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5511   REGISTER_TRACE(pOp->p2, pData);
5512   sqlite3VdbeIncrWriteCounter(p, pC);
5513 
5514   pKey = &aMem[pOp->p3];
5515   assert( pKey->flags & MEM_Int );
5516   assert( memIsValid(pKey) );
5517   REGISTER_TRACE(pOp->p3, pKey);
5518   x.nKey = pKey->u.i;
5519 
5520   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5521     assert( pC->iDb>=0 );
5522     zDb = db->aDb[pC->iDb].zDbSName;
5523     pTab = pOp->p4.pTab;
5524     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5525   }else{
5526     pTab = 0;
5527     zDb = 0;
5528   }
5529 
5530 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5531   /* Invoke the pre-update hook, if any */
5532   if( pTab ){
5533     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5534       sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5535     }
5536     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5537       /* Prevent post-update hook from running in cases when it should not */
5538       pTab = 0;
5539     }
5540   }
5541   if( pOp->p5 & OPFLAG_ISNOOP ) break;
5542 #endif
5543 
5544   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5545   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5546   assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5547   x.pData = pData->z;
5548   x.nData = pData->n;
5549   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5550   if( pData->flags & MEM_Zero ){
5551     x.nZero = pData->u.nZero;
5552   }else{
5553     x.nZero = 0;
5554   }
5555   x.pKey = 0;
5556   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5557       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5558       seekResult
5559   );
5560   pC->deferredMoveto = 0;
5561   pC->cacheStatus = CACHE_STALE;
5562 
5563   /* Invoke the update-hook if required. */
5564   if( rc ) goto abort_due_to_error;
5565   if( pTab ){
5566     assert( db->xUpdateCallback!=0 );
5567     assert( pTab->aCol!=0 );
5568     db->xUpdateCallback(db->pUpdateArg,
5569            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5570            zDb, pTab->zName, x.nKey);
5571   }
5572   break;
5573 }
5574 
5575 /* Opcode: RowCell P1 P2 P3 * *
5576 **
5577 ** P1 and P2 are both open cursors. Both must be opened on the same type
5578 ** of table - intkey or index. This opcode is used as part of copying
5579 ** the current row from P2 into P1. If the cursors are opened on intkey
5580 ** tables, register P3 contains the rowid to use with the new record in
5581 ** P1. If they are opened on index tables, P3 is not used.
5582 **
5583 ** This opcode must be followed by either an Insert or InsertIdx opcode
5584 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5585 */
5586 case OP_RowCell: {
5587   VdbeCursor *pDest;              /* Cursor to write to */
5588   VdbeCursor *pSrc;               /* Cursor to read from */
5589   i64 iKey;                       /* Rowid value to insert with */
5590   assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5591   assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
5592   assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5593   assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5594   pDest = p->apCsr[pOp->p1];
5595   pSrc = p->apCsr[pOp->p2];
5596   iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5597   rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5598   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5599   break;
5600 };
5601 
5602 /* Opcode: Delete P1 P2 P3 P4 P5
5603 **
5604 ** Delete the record at which the P1 cursor is currently pointing.
5605 **
5606 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5607 ** the cursor will be left pointing at  either the next or the previous
5608 ** record in the table. If it is left pointing at the next record, then
5609 ** the next Next instruction will be a no-op. As a result, in this case
5610 ** it is ok to delete a record from within a Next loop. If
5611 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5612 ** left in an undefined state.
5613 **
5614 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5615 ** delete one of several associated with deleting a table row and all its
5616 ** associated index entries.  Exactly one of those deletes is the "primary"
5617 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
5618 ** marked with the AUXDELETE flag.
5619 **
5620 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5621 ** change count is incremented (otherwise not).
5622 **
5623 ** P1 must not be pseudo-table.  It has to be a real table with
5624 ** multiple rows.
5625 **
5626 ** If P4 is not NULL then it points to a Table object. In this case either
5627 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5628 ** have been positioned using OP_NotFound prior to invoking this opcode in
5629 ** this case. Specifically, if one is configured, the pre-update hook is
5630 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5631 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5632 **
5633 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5634 ** of the memory cell that contains the value that the rowid of the row will
5635 ** be set to by the update.
5636 */
5637 case OP_Delete: {
5638   VdbeCursor *pC;
5639   const char *zDb;
5640   Table *pTab;
5641   int opflags;
5642 
5643   opflags = pOp->p2;
5644   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5645   pC = p->apCsr[pOp->p1];
5646   assert( pC!=0 );
5647   assert( pC->eCurType==CURTYPE_BTREE );
5648   assert( pC->uc.pCursor!=0 );
5649   assert( pC->deferredMoveto==0 );
5650   sqlite3VdbeIncrWriteCounter(p, pC);
5651 
5652 #ifdef SQLITE_DEBUG
5653   if( pOp->p4type==P4_TABLE
5654    && HasRowid(pOp->p4.pTab)
5655    && pOp->p5==0
5656    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5657   ){
5658     /* If p5 is zero, the seek operation that positioned the cursor prior to
5659     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5660     ** the row that is being deleted */
5661     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5662     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5663   }
5664 #endif
5665 
5666   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5667   ** the name of the db to pass as to it. Also set local pTab to a copy
5668   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5669   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5670   ** VdbeCursor.movetoTarget to the current rowid.  */
5671   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5672     assert( pC->iDb>=0 );
5673     assert( pOp->p4.pTab!=0 );
5674     zDb = db->aDb[pC->iDb].zDbSName;
5675     pTab = pOp->p4.pTab;
5676     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5677       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5678     }
5679   }else{
5680     zDb = 0;
5681     pTab = 0;
5682   }
5683 
5684 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5685   /* Invoke the pre-update-hook if required. */
5686   assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5687   if( db->xPreUpdateCallback && pTab ){
5688     assert( !(opflags & OPFLAG_ISUPDATE)
5689          || HasRowid(pTab)==0
5690          || (aMem[pOp->p3].flags & MEM_Int)
5691     );
5692     sqlite3VdbePreUpdateHook(p, pC,
5693         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5694         zDb, pTab, pC->movetoTarget,
5695         pOp->p3, -1
5696     );
5697   }
5698   if( opflags & OPFLAG_ISNOOP ) break;
5699 #endif
5700 
5701   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5702   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5703   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5704   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5705 
5706 #ifdef SQLITE_DEBUG
5707   if( p->pFrame==0 ){
5708     if( pC->isEphemeral==0
5709         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5710         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5711       ){
5712       nExtraDelete++;
5713     }
5714     if( pOp->p2 & OPFLAG_NCHANGE ){
5715       nExtraDelete--;
5716     }
5717   }
5718 #endif
5719 
5720   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5721   pC->cacheStatus = CACHE_STALE;
5722   pC->seekResult = 0;
5723   if( rc ) goto abort_due_to_error;
5724 
5725   /* Invoke the update-hook if required. */
5726   if( opflags & OPFLAG_NCHANGE ){
5727     p->nChange++;
5728     if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5729       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5730           pC->movetoTarget);
5731       assert( pC->iDb>=0 );
5732     }
5733   }
5734 
5735   break;
5736 }
5737 /* Opcode: ResetCount * * * * *
5738 **
5739 ** The value of the change counter is copied to the database handle
5740 ** change counter (returned by subsequent calls to sqlite3_changes()).
5741 ** Then the VMs internal change counter resets to 0.
5742 ** This is used by trigger programs.
5743 */
5744 case OP_ResetCount: {
5745   sqlite3VdbeSetChanges(db, p->nChange);
5746   p->nChange = 0;
5747   break;
5748 }
5749 
5750 /* Opcode: SorterCompare P1 P2 P3 P4
5751 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5752 **
5753 ** P1 is a sorter cursor. This instruction compares a prefix of the
5754 ** record blob in register P3 against a prefix of the entry that
5755 ** the sorter cursor currently points to.  Only the first P4 fields
5756 ** of r[P3] and the sorter record are compared.
5757 **
5758 ** If either P3 or the sorter contains a NULL in one of their significant
5759 ** fields (not counting the P4 fields at the end which are ignored) then
5760 ** the comparison is assumed to be equal.
5761 **
5762 ** Fall through to next instruction if the two records compare equal to
5763 ** each other.  Jump to P2 if they are different.
5764 */
5765 case OP_SorterCompare: {
5766   VdbeCursor *pC;
5767   int res;
5768   int nKeyCol;
5769 
5770   pC = p->apCsr[pOp->p1];
5771   assert( isSorter(pC) );
5772   assert( pOp->p4type==P4_INT32 );
5773   pIn3 = &aMem[pOp->p3];
5774   nKeyCol = pOp->p4.i;
5775   res = 0;
5776   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5777   VdbeBranchTaken(res!=0,2);
5778   if( rc ) goto abort_due_to_error;
5779   if( res ) goto jump_to_p2;
5780   break;
5781 };
5782 
5783 /* Opcode: SorterData P1 P2 P3 * *
5784 ** Synopsis: r[P2]=data
5785 **
5786 ** Write into register P2 the current sorter data for sorter cursor P1.
5787 ** Then clear the column header cache on cursor P3.
5788 **
5789 ** This opcode is normally use to move a record out of the sorter and into
5790 ** a register that is the source for a pseudo-table cursor created using
5791 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5792 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5793 ** us from having to issue a separate NullRow instruction to clear that cache.
5794 */
5795 case OP_SorterData: {
5796   VdbeCursor *pC;
5797 
5798   pOut = &aMem[pOp->p2];
5799   pC = p->apCsr[pOp->p1];
5800   assert( isSorter(pC) );
5801   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5802   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5803   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5804   if( rc ) goto abort_due_to_error;
5805   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5806   break;
5807 }
5808 
5809 /* Opcode: RowData P1 P2 P3 * *
5810 ** Synopsis: r[P2]=data
5811 **
5812 ** Write into register P2 the complete row content for the row at
5813 ** which cursor P1 is currently pointing.
5814 ** There is no interpretation of the data.
5815 ** It is just copied onto the P2 register exactly as
5816 ** it is found in the database file.
5817 **
5818 ** If cursor P1 is an index, then the content is the key of the row.
5819 ** If cursor P2 is a table, then the content extracted is the data.
5820 **
5821 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5822 ** of a real table, not a pseudo-table.
5823 **
5824 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5825 ** into the database page.  That means that the content of the output
5826 ** register will be invalidated as soon as the cursor moves - including
5827 ** moves caused by other cursors that "save" the current cursors
5828 ** position in order that they can write to the same table.  If P3==0
5829 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5830 ** P3==0 is safer.
5831 **
5832 ** If P3!=0 then the content of the P2 register is unsuitable for use
5833 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5834 ** The P2 register content is invalidated by opcodes like OP_Function or
5835 ** by any use of another cursor pointing to the same table.
5836 */
5837 case OP_RowData: {
5838   VdbeCursor *pC;
5839   BtCursor *pCrsr;
5840   u32 n;
5841 
5842   pOut = out2Prerelease(p, pOp);
5843 
5844   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5845   pC = p->apCsr[pOp->p1];
5846   assert( pC!=0 );
5847   assert( pC->eCurType==CURTYPE_BTREE );
5848   assert( isSorter(pC)==0 );
5849   assert( pC->nullRow==0 );
5850   assert( pC->uc.pCursor!=0 );
5851   pCrsr = pC->uc.pCursor;
5852 
5853   /* The OP_RowData opcodes always follow OP_NotExists or
5854   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5855   ** that might invalidate the cursor.
5856   ** If this where not the case, on of the following assert()s
5857   ** would fail.  Should this ever change (because of changes in the code
5858   ** generator) then the fix would be to insert a call to
5859   ** sqlite3VdbeCursorMoveto().
5860   */
5861   assert( pC->deferredMoveto==0 );
5862   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5863 
5864   n = sqlite3BtreePayloadSize(pCrsr);
5865   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5866     goto too_big;
5867   }
5868   testcase( n==0 );
5869   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5870   if( rc ) goto abort_due_to_error;
5871   if( !pOp->p3 ) Deephemeralize(pOut);
5872   UPDATE_MAX_BLOBSIZE(pOut);
5873   REGISTER_TRACE(pOp->p2, pOut);
5874   break;
5875 }
5876 
5877 /* Opcode: Rowid P1 P2 * * *
5878 ** Synopsis: r[P2]=PX rowid of P1
5879 **
5880 ** Store in register P2 an integer which is the key of the table entry that
5881 ** P1 is currently point to.
5882 **
5883 ** P1 can be either an ordinary table or a virtual table.  There used to
5884 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5885 ** one opcode now works for both table types.
5886 */
5887 case OP_Rowid: {                 /* out2 */
5888   VdbeCursor *pC;
5889   i64 v;
5890   sqlite3_vtab *pVtab;
5891   const sqlite3_module *pModule;
5892 
5893   pOut = out2Prerelease(p, pOp);
5894   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5895   pC = p->apCsr[pOp->p1];
5896   assert( pC!=0 );
5897   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5898   if( pC->nullRow ){
5899     pOut->flags = MEM_Null;
5900     break;
5901   }else if( pC->deferredMoveto ){
5902     v = pC->movetoTarget;
5903 #ifndef SQLITE_OMIT_VIRTUALTABLE
5904   }else if( pC->eCurType==CURTYPE_VTAB ){
5905     assert( pC->uc.pVCur!=0 );
5906     pVtab = pC->uc.pVCur->pVtab;
5907     pModule = pVtab->pModule;
5908     assert( pModule->xRowid );
5909     rc = pModule->xRowid(pC->uc.pVCur, &v);
5910     sqlite3VtabImportErrmsg(p, pVtab);
5911     if( rc ) goto abort_due_to_error;
5912 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5913   }else{
5914     assert( pC->eCurType==CURTYPE_BTREE );
5915     assert( pC->uc.pCursor!=0 );
5916     rc = sqlite3VdbeCursorRestore(pC);
5917     if( rc ) goto abort_due_to_error;
5918     if( pC->nullRow ){
5919       pOut->flags = MEM_Null;
5920       break;
5921     }
5922     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5923   }
5924   pOut->u.i = v;
5925   break;
5926 }
5927 
5928 /* Opcode: NullRow P1 * * * *
5929 **
5930 ** Move the cursor P1 to a null row.  Any OP_Column operations
5931 ** that occur while the cursor is on the null row will always
5932 ** write a NULL.
5933 **
5934 ** If cursor P1 is not previously opened, open it now to a special
5935 ** pseudo-cursor that always returns NULL for every column.
5936 */
5937 case OP_NullRow: {
5938   VdbeCursor *pC;
5939 
5940   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5941   pC = p->apCsr[pOp->p1];
5942   if( pC==0 ){
5943     /* If the cursor is not already open, create a special kind of
5944     ** pseudo-cursor that always gives null rows. */
5945     pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
5946     if( pC==0 ) goto no_mem;
5947     pC->seekResult = 0;
5948     pC->isTable = 1;
5949     pC->noReuse = 1;
5950     pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
5951   }
5952   pC->nullRow = 1;
5953   pC->cacheStatus = CACHE_STALE;
5954   if( pC->eCurType==CURTYPE_BTREE ){
5955     assert( pC->uc.pCursor!=0 );
5956     sqlite3BtreeClearCursor(pC->uc.pCursor);
5957   }
5958 #ifdef SQLITE_DEBUG
5959   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5960 #endif
5961   break;
5962 }
5963 
5964 /* Opcode: SeekEnd P1 * * * *
5965 **
5966 ** Position cursor P1 at the end of the btree for the purpose of
5967 ** appending a new entry onto the btree.
5968 **
5969 ** It is assumed that the cursor is used only for appending and so
5970 ** if the cursor is valid, then the cursor must already be pointing
5971 ** at the end of the btree and so no changes are made to
5972 ** the cursor.
5973 */
5974 /* Opcode: Last P1 P2 * * *
5975 **
5976 ** The next use of the Rowid or Column or Prev instruction for P1
5977 ** will refer to the last entry in the database table or index.
5978 ** If the table or index is empty and P2>0, then jump immediately to P2.
5979 ** If P2 is 0 or if the table or index is not empty, fall through
5980 ** to the following instruction.
5981 **
5982 ** This opcode leaves the cursor configured to move in reverse order,
5983 ** from the end toward the beginning.  In other words, the cursor is
5984 ** configured to use Prev, not Next.
5985 */
5986 case OP_SeekEnd:
5987 case OP_Last: {        /* jump */
5988   VdbeCursor *pC;
5989   BtCursor *pCrsr;
5990   int res;
5991 
5992   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5993   pC = p->apCsr[pOp->p1];
5994   assert( pC!=0 );
5995   assert( pC->eCurType==CURTYPE_BTREE );
5996   pCrsr = pC->uc.pCursor;
5997   res = 0;
5998   assert( pCrsr!=0 );
5999 #ifdef SQLITE_DEBUG
6000   pC->seekOp = pOp->opcode;
6001 #endif
6002   if( pOp->opcode==OP_SeekEnd ){
6003     assert( pOp->p2==0 );
6004     pC->seekResult = -1;
6005     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
6006       break;
6007     }
6008   }
6009   rc = sqlite3BtreeLast(pCrsr, &res);
6010   pC->nullRow = (u8)res;
6011   pC->deferredMoveto = 0;
6012   pC->cacheStatus = CACHE_STALE;
6013   if( rc ) goto abort_due_to_error;
6014   if( pOp->p2>0 ){
6015     VdbeBranchTaken(res!=0,2);
6016     if( res ) goto jump_to_p2;
6017   }
6018   break;
6019 }
6020 
6021 /* Opcode: IfSmaller P1 P2 P3 * *
6022 **
6023 ** Estimate the number of rows in the table P1.  Jump to P2 if that
6024 ** estimate is less than approximately 2**(0.1*P3).
6025 */
6026 case OP_IfSmaller: {        /* jump */
6027   VdbeCursor *pC;
6028   BtCursor *pCrsr;
6029   int res;
6030   i64 sz;
6031 
6032   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6033   pC = p->apCsr[pOp->p1];
6034   assert( pC!=0 );
6035   pCrsr = pC->uc.pCursor;
6036   assert( pCrsr );
6037   rc = sqlite3BtreeFirst(pCrsr, &res);
6038   if( rc ) goto abort_due_to_error;
6039   if( res==0 ){
6040     sz = sqlite3BtreeRowCountEst(pCrsr);
6041     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
6042   }
6043   VdbeBranchTaken(res!=0,2);
6044   if( res ) goto jump_to_p2;
6045   break;
6046 }
6047 
6048 
6049 /* Opcode: SorterSort P1 P2 * * *
6050 **
6051 ** After all records have been inserted into the Sorter object
6052 ** identified by P1, invoke this opcode to actually do the sorting.
6053 ** Jump to P2 if there are no records to be sorted.
6054 **
6055 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6056 ** for Sorter objects.
6057 */
6058 /* Opcode: Sort P1 P2 * * *
6059 **
6060 ** This opcode does exactly the same thing as OP_Rewind except that
6061 ** it increments an undocumented global variable used for testing.
6062 **
6063 ** Sorting is accomplished by writing records into a sorting index,
6064 ** then rewinding that index and playing it back from beginning to
6065 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
6066 ** rewinding so that the global variable will be incremented and
6067 ** regression tests can determine whether or not the optimizer is
6068 ** correctly optimizing out sorts.
6069 */
6070 case OP_SorterSort:    /* jump */
6071 case OP_Sort: {        /* jump */
6072 #ifdef SQLITE_TEST
6073   sqlite3_sort_count++;
6074   sqlite3_search_count--;
6075 #endif
6076   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
6077   /* Fall through into OP_Rewind */
6078   /* no break */ deliberate_fall_through
6079 }
6080 /* Opcode: Rewind P1 P2 * * *
6081 **
6082 ** The next use of the Rowid or Column or Next instruction for P1
6083 ** will refer to the first entry in the database table or index.
6084 ** If the table or index is empty, jump immediately to P2.
6085 ** If the table or index is not empty, fall through to the following
6086 ** instruction.
6087 **
6088 ** This opcode leaves the cursor configured to move in forward order,
6089 ** from the beginning toward the end.  In other words, the cursor is
6090 ** configured to use Next, not Prev.
6091 */
6092 case OP_Rewind: {        /* jump */
6093   VdbeCursor *pC;
6094   BtCursor *pCrsr;
6095   int res;
6096 
6097   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6098   assert( pOp->p5==0 );
6099   pC = p->apCsr[pOp->p1];
6100   assert( pC!=0 );
6101   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
6102   res = 1;
6103 #ifdef SQLITE_DEBUG
6104   pC->seekOp = OP_Rewind;
6105 #endif
6106   if( isSorter(pC) ){
6107     rc = sqlite3VdbeSorterRewind(pC, &res);
6108   }else{
6109     assert( pC->eCurType==CURTYPE_BTREE );
6110     pCrsr = pC->uc.pCursor;
6111     assert( pCrsr );
6112     rc = sqlite3BtreeFirst(pCrsr, &res);
6113     pC->deferredMoveto = 0;
6114     pC->cacheStatus = CACHE_STALE;
6115   }
6116   if( rc ) goto abort_due_to_error;
6117   pC->nullRow = (u8)res;
6118   assert( pOp->p2>0 && pOp->p2<p->nOp );
6119   VdbeBranchTaken(res!=0,2);
6120   if( res ) goto jump_to_p2;
6121   break;
6122 }
6123 
6124 /* Opcode: Next P1 P2 P3 * P5
6125 **
6126 ** Advance cursor P1 so that it points to the next key/data pair in its
6127 ** table or index.  If there are no more key/value pairs then fall through
6128 ** to the following instruction.  But if the cursor advance was successful,
6129 ** jump immediately to P2.
6130 **
6131 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6132 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
6133 ** to follow SeekLT, SeekLE, or OP_Last.
6134 **
6135 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
6136 ** been opened prior to this opcode or the program will segfault.
6137 **
6138 ** The P3 value is a hint to the btree implementation. If P3==1, that
6139 ** means P1 is an SQL index and that this instruction could have been
6140 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6141 ** always either 0 or 1.
6142 **
6143 ** If P5 is positive and the jump is taken, then event counter
6144 ** number P5-1 in the prepared statement is incremented.
6145 **
6146 ** See also: Prev
6147 */
6148 /* Opcode: Prev P1 P2 P3 * P5
6149 **
6150 ** Back up cursor P1 so that it points to the previous key/data pair in its
6151 ** table or index.  If there is no previous key/value pairs then fall through
6152 ** to the following instruction.  But if the cursor backup was successful,
6153 ** jump immediately to P2.
6154 **
6155 **
6156 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6157 ** OP_Last opcode used to position the cursor.  Prev is not allowed
6158 ** to follow SeekGT, SeekGE, or OP_Rewind.
6159 **
6160 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
6161 ** not open then the behavior is undefined.
6162 **
6163 ** The P3 value is a hint to the btree implementation. If P3==1, that
6164 ** means P1 is an SQL index and that this instruction could have been
6165 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6166 ** always either 0 or 1.
6167 **
6168 ** If P5 is positive and the jump is taken, then event counter
6169 ** number P5-1 in the prepared statement is incremented.
6170 */
6171 /* Opcode: SorterNext P1 P2 * * P5
6172 **
6173 ** This opcode works just like OP_Next except that P1 must be a
6174 ** sorter object for which the OP_SorterSort opcode has been
6175 ** invoked.  This opcode advances the cursor to the next sorted
6176 ** record, or jumps to P2 if there are no more sorted records.
6177 */
6178 case OP_SorterNext: {  /* jump */
6179   VdbeCursor *pC;
6180 
6181   pC = p->apCsr[pOp->p1];
6182   assert( isSorter(pC) );
6183   rc = sqlite3VdbeSorterNext(db, pC);
6184   goto next_tail;
6185 
6186 case OP_Prev:          /* jump */
6187   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6188   assert( pOp->p5==0
6189        || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6190        || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6191   pC = p->apCsr[pOp->p1];
6192   assert( pC!=0 );
6193   assert( pC->deferredMoveto==0 );
6194   assert( pC->eCurType==CURTYPE_BTREE );
6195   assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6196        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
6197        || pC->seekOp==OP_NullRow);
6198   rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6199   goto next_tail;
6200 
6201 case OP_Next:          /* jump */
6202   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6203   assert( pOp->p5==0
6204        || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6205        || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6206   pC = p->apCsr[pOp->p1];
6207   assert( pC!=0 );
6208   assert( pC->deferredMoveto==0 );
6209   assert( pC->eCurType==CURTYPE_BTREE );
6210   assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6211        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6212        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6213        || pC->seekOp==OP_IfNoHope);
6214   rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6215 
6216 next_tail:
6217   pC->cacheStatus = CACHE_STALE;
6218   VdbeBranchTaken(rc==SQLITE_OK,2);
6219   if( rc==SQLITE_OK ){
6220     pC->nullRow = 0;
6221     p->aCounter[pOp->p5]++;
6222 #ifdef SQLITE_TEST
6223     sqlite3_search_count++;
6224 #endif
6225     goto jump_to_p2_and_check_for_interrupt;
6226   }
6227   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6228   rc = SQLITE_OK;
6229   pC->nullRow = 1;
6230   goto check_for_interrupt;
6231 }
6232 
6233 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6234 ** Synopsis: key=r[P2]
6235 **
6236 ** Register P2 holds an SQL index key made using the
6237 ** MakeRecord instructions.  This opcode writes that key
6238 ** into the index P1.  Data for the entry is nil.
6239 **
6240 ** If P4 is not zero, then it is the number of values in the unpacked
6241 ** key of reg(P2).  In that case, P3 is the index of the first register
6242 ** for the unpacked key.  The availability of the unpacked key can sometimes
6243 ** be an optimization.
6244 **
6245 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6246 ** that this insert is likely to be an append.
6247 **
6248 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6249 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
6250 ** then the change counter is unchanged.
6251 **
6252 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6253 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
6254 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6255 ** seeks on the cursor or if the most recent seek used a key equivalent
6256 ** to P2.
6257 **
6258 ** This instruction only works for indices.  The equivalent instruction
6259 ** for tables is OP_Insert.
6260 */
6261 case OP_IdxInsert: {        /* in2 */
6262   VdbeCursor *pC;
6263   BtreePayload x;
6264 
6265   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6266   pC = p->apCsr[pOp->p1];
6267   sqlite3VdbeIncrWriteCounter(p, pC);
6268   assert( pC!=0 );
6269   assert( !isSorter(pC) );
6270   pIn2 = &aMem[pOp->p2];
6271   assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6272   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6273   assert( pC->eCurType==CURTYPE_BTREE );
6274   assert( pC->isTable==0 );
6275   rc = ExpandBlob(pIn2);
6276   if( rc ) goto abort_due_to_error;
6277   x.nKey = pIn2->n;
6278   x.pKey = pIn2->z;
6279   x.aMem = aMem + pOp->p3;
6280   x.nMem = (u16)pOp->p4.i;
6281   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6282        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6283       ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6284       );
6285   assert( pC->deferredMoveto==0 );
6286   pC->cacheStatus = CACHE_STALE;
6287   if( rc) goto abort_due_to_error;
6288   break;
6289 }
6290 
6291 /* Opcode: SorterInsert P1 P2 * * *
6292 ** Synopsis: key=r[P2]
6293 **
6294 ** Register P2 holds an SQL index key made using the
6295 ** MakeRecord instructions.  This opcode writes that key
6296 ** into the sorter P1.  Data for the entry is nil.
6297 */
6298 case OP_SorterInsert: {     /* in2 */
6299   VdbeCursor *pC;
6300 
6301   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6302   pC = p->apCsr[pOp->p1];
6303   sqlite3VdbeIncrWriteCounter(p, pC);
6304   assert( pC!=0 );
6305   assert( isSorter(pC) );
6306   pIn2 = &aMem[pOp->p2];
6307   assert( pIn2->flags & MEM_Blob );
6308   assert( pC->isTable==0 );
6309   rc = ExpandBlob(pIn2);
6310   if( rc ) goto abort_due_to_error;
6311   rc = sqlite3VdbeSorterWrite(pC, pIn2);
6312   if( rc) goto abort_due_to_error;
6313   break;
6314 }
6315 
6316 /* Opcode: IdxDelete P1 P2 P3 * P5
6317 ** Synopsis: key=r[P2@P3]
6318 **
6319 ** The content of P3 registers starting at register P2 form
6320 ** an unpacked index key. This opcode removes that entry from the
6321 ** index opened by cursor P1.
6322 **
6323 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6324 ** if no matching index entry is found.  This happens when running
6325 ** an UPDATE or DELETE statement and the index entry to be updated
6326 ** or deleted is not found.  For some uses of IdxDelete
6327 ** (example:  the EXCEPT operator) it does not matter that no matching
6328 ** entry is found.  For those cases, P5 is zero.  Also, do not raise
6329 ** this (self-correcting and non-critical) error if in writable_schema mode.
6330 */
6331 case OP_IdxDelete: {
6332   VdbeCursor *pC;
6333   BtCursor *pCrsr;
6334   int res;
6335   UnpackedRecord r;
6336 
6337   assert( pOp->p3>0 );
6338   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6339   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6340   pC = p->apCsr[pOp->p1];
6341   assert( pC!=0 );
6342   assert( pC->eCurType==CURTYPE_BTREE );
6343   sqlite3VdbeIncrWriteCounter(p, pC);
6344   pCrsr = pC->uc.pCursor;
6345   assert( pCrsr!=0 );
6346   r.pKeyInfo = pC->pKeyInfo;
6347   r.nField = (u16)pOp->p3;
6348   r.default_rc = 0;
6349   r.aMem = &aMem[pOp->p2];
6350   rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6351   if( rc ) goto abort_due_to_error;
6352   if( res==0 ){
6353     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6354     if( rc ) goto abort_due_to_error;
6355   }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6356     rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6357     goto abort_due_to_error;
6358   }
6359   assert( pC->deferredMoveto==0 );
6360   pC->cacheStatus = CACHE_STALE;
6361   pC->seekResult = 0;
6362   break;
6363 }
6364 
6365 /* Opcode: DeferredSeek P1 * P3 P4 *
6366 ** Synopsis: Move P3 to P1.rowid if needed
6367 **
6368 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6369 ** table.  This opcode does a deferred seek of the P3 table cursor
6370 ** to the row that corresponds to the current row of P1.
6371 **
6372 ** This is a deferred seek.  Nothing actually happens until
6373 ** the cursor is used to read a record.  That way, if no reads
6374 ** occur, no unnecessary I/O happens.
6375 **
6376 ** P4 may be an array of integers (type P4_INTARRAY) containing
6377 ** one entry for each column in the P3 table.  If array entry a(i)
6378 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6379 ** equivalent to performing the deferred seek and then reading column i
6380 ** from P1.  This information is stored in P3 and used to redirect
6381 ** reads against P3 over to P1, thus possibly avoiding the need to
6382 ** seek and read cursor P3.
6383 */
6384 /* Opcode: IdxRowid P1 P2 * * *
6385 ** Synopsis: r[P2]=rowid
6386 **
6387 ** Write into register P2 an integer which is the last entry in the record at
6388 ** the end of the index key pointed to by cursor P1.  This integer should be
6389 ** the rowid of the table entry to which this index entry points.
6390 **
6391 ** See also: Rowid, MakeRecord.
6392 */
6393 case OP_DeferredSeek:
6394 case OP_IdxRowid: {           /* out2 */
6395   VdbeCursor *pC;             /* The P1 index cursor */
6396   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
6397   i64 rowid;                  /* Rowid that P1 current points to */
6398 
6399   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6400   pC = p->apCsr[pOp->p1];
6401   assert( pC!=0 );
6402   assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6403   assert( pC->uc.pCursor!=0 );
6404   assert( pC->isTable==0 || IsNullCursor(pC) );
6405   assert( pC->deferredMoveto==0 );
6406   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6407 
6408   /* The IdxRowid and Seek opcodes are combined because of the commonality
6409   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6410   rc = sqlite3VdbeCursorRestore(pC);
6411 
6412   /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6413   ** since it was last positioned and an error (e.g. OOM or an IO error)
6414   ** occurs while trying to reposition it. */
6415   if( rc!=SQLITE_OK ) goto abort_due_to_error;
6416 
6417   if( !pC->nullRow ){
6418     rowid = 0;  /* Not needed.  Only used to silence a warning. */
6419     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6420     if( rc!=SQLITE_OK ){
6421       goto abort_due_to_error;
6422     }
6423     if( pOp->opcode==OP_DeferredSeek ){
6424       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6425       pTabCur = p->apCsr[pOp->p3];
6426       assert( pTabCur!=0 );
6427       assert( pTabCur->eCurType==CURTYPE_BTREE );
6428       assert( pTabCur->uc.pCursor!=0 );
6429       assert( pTabCur->isTable );
6430       pTabCur->nullRow = 0;
6431       pTabCur->movetoTarget = rowid;
6432       pTabCur->deferredMoveto = 1;
6433       pTabCur->cacheStatus = CACHE_STALE;
6434       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6435       assert( !pTabCur->isEphemeral );
6436       pTabCur->ub.aAltMap = pOp->p4.ai;
6437       assert( !pC->isEphemeral );
6438       pTabCur->pAltCursor = pC;
6439     }else{
6440       pOut = out2Prerelease(p, pOp);
6441       pOut->u.i = rowid;
6442     }
6443   }else{
6444     assert( pOp->opcode==OP_IdxRowid );
6445     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6446   }
6447   break;
6448 }
6449 
6450 /* Opcode: FinishSeek P1 * * * *
6451 **
6452 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6453 ** seek operation now, without further delay.  If the cursor seek has
6454 ** already occurred, this instruction is a no-op.
6455 */
6456 case OP_FinishSeek: {
6457   VdbeCursor *pC;             /* The P1 index cursor */
6458 
6459   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6460   pC = p->apCsr[pOp->p1];
6461   if( pC->deferredMoveto ){
6462     rc = sqlite3VdbeFinishMoveto(pC);
6463     if( rc ) goto abort_due_to_error;
6464   }
6465   break;
6466 }
6467 
6468 /* Opcode: IdxGE P1 P2 P3 P4 *
6469 ** Synopsis: key=r[P3@P4]
6470 **
6471 ** The P4 register values beginning with P3 form an unpacked index
6472 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6473 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6474 ** fields at the end.
6475 **
6476 ** If the P1 index entry is greater than or equal to the key value
6477 ** then jump to P2.  Otherwise fall through to the next instruction.
6478 */
6479 /* Opcode: IdxGT P1 P2 P3 P4 *
6480 ** Synopsis: key=r[P3@P4]
6481 **
6482 ** The P4 register values beginning with P3 form an unpacked index
6483 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6484 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6485 ** fields at the end.
6486 **
6487 ** If the P1 index entry is greater than the key value
6488 ** then jump to P2.  Otherwise fall through to the next instruction.
6489 */
6490 /* Opcode: IdxLT P1 P2 P3 P4 *
6491 ** Synopsis: key=r[P3@P4]
6492 **
6493 ** The P4 register values beginning with P3 form an unpacked index
6494 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6495 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6496 ** ROWID on the P1 index.
6497 **
6498 ** If the P1 index entry is less than the key value then jump to P2.
6499 ** Otherwise fall through to the next instruction.
6500 */
6501 /* Opcode: IdxLE P1 P2 P3 P4 *
6502 ** Synopsis: key=r[P3@P4]
6503 **
6504 ** The P4 register values beginning with P3 form an unpacked index
6505 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6506 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6507 ** ROWID on the P1 index.
6508 **
6509 ** If the P1 index entry is less than or equal to the key value then jump
6510 ** to P2. Otherwise fall through to the next instruction.
6511 */
6512 case OP_IdxLE:          /* jump */
6513 case OP_IdxGT:          /* jump */
6514 case OP_IdxLT:          /* jump */
6515 case OP_IdxGE:  {       /* jump */
6516   VdbeCursor *pC;
6517   int res;
6518   UnpackedRecord r;
6519 
6520   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6521   pC = p->apCsr[pOp->p1];
6522   assert( pC!=0 );
6523   assert( pC->isOrdered );
6524   assert( pC->eCurType==CURTYPE_BTREE );
6525   assert( pC->uc.pCursor!=0);
6526   assert( pC->deferredMoveto==0 );
6527   assert( pOp->p4type==P4_INT32 );
6528   r.pKeyInfo = pC->pKeyInfo;
6529   r.nField = (u16)pOp->p4.i;
6530   if( pOp->opcode<OP_IdxLT ){
6531     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6532     r.default_rc = -1;
6533   }else{
6534     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6535     r.default_rc = 0;
6536   }
6537   r.aMem = &aMem[pOp->p3];
6538 #ifdef SQLITE_DEBUG
6539   {
6540     int i;
6541     for(i=0; i<r.nField; i++){
6542       assert( memIsValid(&r.aMem[i]) );
6543       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6544     }
6545   }
6546 #endif
6547 
6548   /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6549   {
6550     i64 nCellKey = 0;
6551     BtCursor *pCur;
6552     Mem m;
6553 
6554     assert( pC->eCurType==CURTYPE_BTREE );
6555     pCur = pC->uc.pCursor;
6556     assert( sqlite3BtreeCursorIsValid(pCur) );
6557     nCellKey = sqlite3BtreePayloadSize(pCur);
6558     /* nCellKey will always be between 0 and 0xffffffff because of the way
6559     ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6560     if( nCellKey<=0 || nCellKey>0x7fffffff ){
6561       rc = SQLITE_CORRUPT_BKPT;
6562       goto abort_due_to_error;
6563     }
6564     sqlite3VdbeMemInit(&m, db, 0);
6565     rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6566     if( rc ) goto abort_due_to_error;
6567     res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6568     sqlite3VdbeMemReleaseMalloc(&m);
6569   }
6570   /* End of inlined sqlite3VdbeIdxKeyCompare() */
6571 
6572   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6573   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6574     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6575     res = -res;
6576   }else{
6577     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6578     res++;
6579   }
6580   VdbeBranchTaken(res>0,2);
6581   assert( rc==SQLITE_OK );
6582   if( res>0 ) goto jump_to_p2;
6583   break;
6584 }
6585 
6586 /* Opcode: Destroy P1 P2 P3 * *
6587 **
6588 ** Delete an entire database table or index whose root page in the database
6589 ** file is given by P1.
6590 **
6591 ** The table being destroyed is in the main database file if P3==0.  If
6592 ** P3==1 then the table to be clear is in the auxiliary database file
6593 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6594 **
6595 ** If AUTOVACUUM is enabled then it is possible that another root page
6596 ** might be moved into the newly deleted root page in order to keep all
6597 ** root pages contiguous at the beginning of the database.  The former
6598 ** value of the root page that moved - its value before the move occurred -
6599 ** is stored in register P2. If no page movement was required (because the
6600 ** table being dropped was already the last one in the database) then a
6601 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
6602 ** is stored in register P2.
6603 **
6604 ** This opcode throws an error if there are any active reader VMs when
6605 ** it is invoked. This is done to avoid the difficulty associated with
6606 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6607 ** database. This error is thrown even if the database is not an AUTOVACUUM
6608 ** db in order to avoid introducing an incompatibility between autovacuum
6609 ** and non-autovacuum modes.
6610 **
6611 ** See also: Clear
6612 */
6613 case OP_Destroy: {     /* out2 */
6614   int iMoved;
6615   int iDb;
6616 
6617   sqlite3VdbeIncrWriteCounter(p, 0);
6618   assert( p->readOnly==0 );
6619   assert( pOp->p1>1 );
6620   pOut = out2Prerelease(p, pOp);
6621   pOut->flags = MEM_Null;
6622   if( db->nVdbeRead > db->nVDestroy+1 ){
6623     rc = SQLITE_LOCKED;
6624     p->errorAction = OE_Abort;
6625     goto abort_due_to_error;
6626   }else{
6627     iDb = pOp->p3;
6628     assert( DbMaskTest(p->btreeMask, iDb) );
6629     iMoved = 0;  /* Not needed.  Only to silence a warning. */
6630     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6631     pOut->flags = MEM_Int;
6632     pOut->u.i = iMoved;
6633     if( rc ) goto abort_due_to_error;
6634 #ifndef SQLITE_OMIT_AUTOVACUUM
6635     if( iMoved!=0 ){
6636       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6637       /* All OP_Destroy operations occur on the same btree */
6638       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6639       resetSchemaOnFault = iDb+1;
6640     }
6641 #endif
6642   }
6643   break;
6644 }
6645 
6646 /* Opcode: Clear P1 P2 P3
6647 **
6648 ** Delete all contents of the database table or index whose root page
6649 ** in the database file is given by P1.  But, unlike Destroy, do not
6650 ** remove the table or index from the database file.
6651 **
6652 ** The table being clear is in the main database file if P2==0.  If
6653 ** P2==1 then the table to be clear is in the auxiliary database file
6654 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6655 **
6656 ** If the P3 value is non-zero, then the row change count is incremented
6657 ** by the number of rows in the table being cleared. If P3 is greater
6658 ** than zero, then the value stored in register P3 is also incremented
6659 ** by the number of rows in the table being cleared.
6660 **
6661 ** See also: Destroy
6662 */
6663 case OP_Clear: {
6664   i64 nChange;
6665 
6666   sqlite3VdbeIncrWriteCounter(p, 0);
6667   nChange = 0;
6668   assert( p->readOnly==0 );
6669   assert( DbMaskTest(p->btreeMask, pOp->p2) );
6670   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6671   if( pOp->p3 ){
6672     p->nChange += nChange;
6673     if( pOp->p3>0 ){
6674       assert( memIsValid(&aMem[pOp->p3]) );
6675       memAboutToChange(p, &aMem[pOp->p3]);
6676       aMem[pOp->p3].u.i += nChange;
6677     }
6678   }
6679   if( rc ) goto abort_due_to_error;
6680   break;
6681 }
6682 
6683 /* Opcode: ResetSorter P1 * * * *
6684 **
6685 ** Delete all contents from the ephemeral table or sorter
6686 ** that is open on cursor P1.
6687 **
6688 ** This opcode only works for cursors used for sorting and
6689 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6690 */
6691 case OP_ResetSorter: {
6692   VdbeCursor *pC;
6693 
6694   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6695   pC = p->apCsr[pOp->p1];
6696   assert( pC!=0 );
6697   if( isSorter(pC) ){
6698     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6699   }else{
6700     assert( pC->eCurType==CURTYPE_BTREE );
6701     assert( pC->isEphemeral );
6702     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6703     if( rc ) goto abort_due_to_error;
6704   }
6705   break;
6706 }
6707 
6708 /* Opcode: CreateBtree P1 P2 P3 * *
6709 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6710 **
6711 ** Allocate a new b-tree in the main database file if P1==0 or in the
6712 ** TEMP database file if P1==1 or in an attached database if
6713 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6714 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6715 ** The root page number of the new b-tree is stored in register P2.
6716 */
6717 case OP_CreateBtree: {          /* out2 */
6718   Pgno pgno;
6719   Db *pDb;
6720 
6721   sqlite3VdbeIncrWriteCounter(p, 0);
6722   pOut = out2Prerelease(p, pOp);
6723   pgno = 0;
6724   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6725   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6726   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6727   assert( p->readOnly==0 );
6728   pDb = &db->aDb[pOp->p1];
6729   assert( pDb->pBt!=0 );
6730   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6731   if( rc ) goto abort_due_to_error;
6732   pOut->u.i = pgno;
6733   break;
6734 }
6735 
6736 /* Opcode: SqlExec * * * P4 *
6737 **
6738 ** Run the SQL statement or statements specified in the P4 string.
6739 */
6740 case OP_SqlExec: {
6741   sqlite3VdbeIncrWriteCounter(p, 0);
6742   db->nSqlExec++;
6743   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6744   db->nSqlExec--;
6745   if( rc ) goto abort_due_to_error;
6746   break;
6747 }
6748 
6749 /* Opcode: ParseSchema P1 * * P4 *
6750 **
6751 ** Read and parse all entries from the schema table of database P1
6752 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6753 ** entire schema for P1 is reparsed.
6754 **
6755 ** This opcode invokes the parser to create a new virtual machine,
6756 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6757 */
6758 case OP_ParseSchema: {
6759   int iDb;
6760   const char *zSchema;
6761   char *zSql;
6762   InitData initData;
6763 
6764   /* Any prepared statement that invokes this opcode will hold mutexes
6765   ** on every btree.  This is a prerequisite for invoking
6766   ** sqlite3InitCallback().
6767   */
6768 #ifdef SQLITE_DEBUG
6769   for(iDb=0; iDb<db->nDb; iDb++){
6770     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6771   }
6772 #endif
6773 
6774   iDb = pOp->p1;
6775   assert( iDb>=0 && iDb<db->nDb );
6776   assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6777            || db->mallocFailed
6778            || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6779 
6780 #ifndef SQLITE_OMIT_ALTERTABLE
6781   if( pOp->p4.z==0 ){
6782     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6783     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6784     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6785     db->mDbFlags |= DBFLAG_SchemaChange;
6786     p->expired = 0;
6787   }else
6788 #endif
6789   {
6790     zSchema = LEGACY_SCHEMA_TABLE;
6791     initData.db = db;
6792     initData.iDb = iDb;
6793     initData.pzErrMsg = &p->zErrMsg;
6794     initData.mInitFlags = 0;
6795     initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6796     zSql = sqlite3MPrintf(db,
6797        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6798        db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6799     if( zSql==0 ){
6800       rc = SQLITE_NOMEM_BKPT;
6801     }else{
6802       assert( db->init.busy==0 );
6803       db->init.busy = 1;
6804       initData.rc = SQLITE_OK;
6805       initData.nInitRow = 0;
6806       assert( !db->mallocFailed );
6807       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6808       if( rc==SQLITE_OK ) rc = initData.rc;
6809       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6810         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6811         ** at least one SQL statement. Any less than that indicates that
6812         ** the sqlite_schema table is corrupt. */
6813         rc = SQLITE_CORRUPT_BKPT;
6814       }
6815       sqlite3DbFreeNN(db, zSql);
6816       db->init.busy = 0;
6817     }
6818   }
6819   if( rc ){
6820     sqlite3ResetAllSchemasOfConnection(db);
6821     if( rc==SQLITE_NOMEM ){
6822       goto no_mem;
6823     }
6824     goto abort_due_to_error;
6825   }
6826   break;
6827 }
6828 
6829 #if !defined(SQLITE_OMIT_ANALYZE)
6830 /* Opcode: LoadAnalysis P1 * * * *
6831 **
6832 ** Read the sqlite_stat1 table for database P1 and load the content
6833 ** of that table into the internal index hash table.  This will cause
6834 ** the analysis to be used when preparing all subsequent queries.
6835 */
6836 case OP_LoadAnalysis: {
6837   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6838   rc = sqlite3AnalysisLoad(db, pOp->p1);
6839   if( rc ) goto abort_due_to_error;
6840   break;
6841 }
6842 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6843 
6844 /* Opcode: DropTable P1 * * P4 *
6845 **
6846 ** Remove the internal (in-memory) data structures that describe
6847 ** the table named P4 in database P1.  This is called after a table
6848 ** is dropped from disk (using the Destroy opcode) in order to keep
6849 ** the internal representation of the
6850 ** schema consistent with what is on disk.
6851 */
6852 case OP_DropTable: {
6853   sqlite3VdbeIncrWriteCounter(p, 0);
6854   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6855   break;
6856 }
6857 
6858 /* Opcode: DropIndex P1 * * P4 *
6859 **
6860 ** Remove the internal (in-memory) data structures that describe
6861 ** the index named P4 in database P1.  This is called after an index
6862 ** is dropped from disk (using the Destroy opcode)
6863 ** in order to keep the internal representation of the
6864 ** schema consistent with what is on disk.
6865 */
6866 case OP_DropIndex: {
6867   sqlite3VdbeIncrWriteCounter(p, 0);
6868   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6869   break;
6870 }
6871 
6872 /* Opcode: DropTrigger P1 * * P4 *
6873 **
6874 ** Remove the internal (in-memory) data structures that describe
6875 ** the trigger named P4 in database P1.  This is called after a trigger
6876 ** is dropped from disk (using the Destroy opcode) in order to keep
6877 ** the internal representation of the
6878 ** schema consistent with what is on disk.
6879 */
6880 case OP_DropTrigger: {
6881   sqlite3VdbeIncrWriteCounter(p, 0);
6882   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6883   break;
6884 }
6885 
6886 
6887 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6888 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6889 **
6890 ** Do an analysis of the currently open database.  Store in
6891 ** register P1 the text of an error message describing any problems.
6892 ** If no problems are found, store a NULL in register P1.
6893 **
6894 ** The register P3 contains one less than the maximum number of allowed errors.
6895 ** At most reg(P3) errors will be reported.
6896 ** In other words, the analysis stops as soon as reg(P1) errors are
6897 ** seen.  Reg(P1) is updated with the number of errors remaining.
6898 **
6899 ** The root page numbers of all tables in the database are integers
6900 ** stored in P4_INTARRAY argument.
6901 **
6902 ** If P5 is not zero, the check is done on the auxiliary database
6903 ** file, not the main database file.
6904 **
6905 ** This opcode is used to implement the integrity_check pragma.
6906 */
6907 case OP_IntegrityCk: {
6908   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6909   Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
6910   int nErr;       /* Number of errors reported */
6911   char *z;        /* Text of the error report */
6912   Mem *pnErr;     /* Register keeping track of errors remaining */
6913 
6914   assert( p->bIsReader );
6915   nRoot = pOp->p2;
6916   aRoot = pOp->p4.ai;
6917   assert( nRoot>0 );
6918   assert( aRoot[0]==(Pgno)nRoot );
6919   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6920   pnErr = &aMem[pOp->p3];
6921   assert( (pnErr->flags & MEM_Int)!=0 );
6922   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6923   pIn1 = &aMem[pOp->p1];
6924   assert( pOp->p5<db->nDb );
6925   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6926   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6927                                  (int)pnErr->u.i+1, &nErr);
6928   sqlite3VdbeMemSetNull(pIn1);
6929   if( nErr==0 ){
6930     assert( z==0 );
6931   }else if( z==0 ){
6932     goto no_mem;
6933   }else{
6934     pnErr->u.i -= nErr-1;
6935     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6936   }
6937   UPDATE_MAX_BLOBSIZE(pIn1);
6938   sqlite3VdbeChangeEncoding(pIn1, encoding);
6939   goto check_for_interrupt;
6940 }
6941 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6942 
6943 /* Opcode: RowSetAdd P1 P2 * * *
6944 ** Synopsis: rowset(P1)=r[P2]
6945 **
6946 ** Insert the integer value held by register P2 into a RowSet object
6947 ** held in register P1.
6948 **
6949 ** An assertion fails if P2 is not an integer.
6950 */
6951 case OP_RowSetAdd: {       /* in1, in2 */
6952   pIn1 = &aMem[pOp->p1];
6953   pIn2 = &aMem[pOp->p2];
6954   assert( (pIn2->flags & MEM_Int)!=0 );
6955   if( (pIn1->flags & MEM_Blob)==0 ){
6956     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6957   }
6958   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6959   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6960   break;
6961 }
6962 
6963 /* Opcode: RowSetRead P1 P2 P3 * *
6964 ** Synopsis: r[P3]=rowset(P1)
6965 **
6966 ** Extract the smallest value from the RowSet object in P1
6967 ** and put that value into register P3.
6968 ** Or, if RowSet object P1 is initially empty, leave P3
6969 ** unchanged and jump to instruction P2.
6970 */
6971 case OP_RowSetRead: {       /* jump, in1, out3 */
6972   i64 val;
6973 
6974   pIn1 = &aMem[pOp->p1];
6975   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6976   if( (pIn1->flags & MEM_Blob)==0
6977    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6978   ){
6979     /* The boolean index is empty */
6980     sqlite3VdbeMemSetNull(pIn1);
6981     VdbeBranchTaken(1,2);
6982     goto jump_to_p2_and_check_for_interrupt;
6983   }else{
6984     /* A value was pulled from the index */
6985     VdbeBranchTaken(0,2);
6986     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6987   }
6988   goto check_for_interrupt;
6989 }
6990 
6991 /* Opcode: RowSetTest P1 P2 P3 P4
6992 ** Synopsis: if r[P3] in rowset(P1) goto P2
6993 **
6994 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6995 ** contains a RowSet object and that RowSet object contains
6996 ** the value held in P3, jump to register P2. Otherwise, insert the
6997 ** integer in P3 into the RowSet and continue on to the
6998 ** next opcode.
6999 **
7000 ** The RowSet object is optimized for the case where sets of integers
7001 ** are inserted in distinct phases, which each set contains no duplicates.
7002 ** Each set is identified by a unique P4 value. The first set
7003 ** must have P4==0, the final set must have P4==-1, and for all other sets
7004 ** must have P4>0.
7005 **
7006 ** This allows optimizations: (a) when P4==0 there is no need to test
7007 ** the RowSet object for P3, as it is guaranteed not to contain it,
7008 ** (b) when P4==-1 there is no need to insert the value, as it will
7009 ** never be tested for, and (c) when a value that is part of set X is
7010 ** inserted, there is no need to search to see if the same value was
7011 ** previously inserted as part of set X (only if it was previously
7012 ** inserted as part of some other set).
7013 */
7014 case OP_RowSetTest: {                     /* jump, in1, in3 */
7015   int iSet;
7016   int exists;
7017 
7018   pIn1 = &aMem[pOp->p1];
7019   pIn3 = &aMem[pOp->p3];
7020   iSet = pOp->p4.i;
7021   assert( pIn3->flags&MEM_Int );
7022 
7023   /* If there is anything other than a rowset object in memory cell P1,
7024   ** delete it now and initialize P1 with an empty rowset
7025   */
7026   if( (pIn1->flags & MEM_Blob)==0 ){
7027     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
7028   }
7029   assert( sqlite3VdbeMemIsRowSet(pIn1) );
7030   assert( pOp->p4type==P4_INT32 );
7031   assert( iSet==-1 || iSet>=0 );
7032   if( iSet ){
7033     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
7034     VdbeBranchTaken(exists!=0,2);
7035     if( exists ) goto jump_to_p2;
7036   }
7037   if( iSet>=0 ){
7038     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
7039   }
7040   break;
7041 }
7042 
7043 
7044 #ifndef SQLITE_OMIT_TRIGGER
7045 
7046 /* Opcode: Program P1 P2 P3 P4 P5
7047 **
7048 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7049 **
7050 ** P1 contains the address of the memory cell that contains the first memory
7051 ** cell in an array of values used as arguments to the sub-program. P2
7052 ** contains the address to jump to if the sub-program throws an IGNORE
7053 ** exception using the RAISE() function. Register P3 contains the address
7054 ** of a memory cell in this (the parent) VM that is used to allocate the
7055 ** memory required by the sub-vdbe at runtime.
7056 **
7057 ** P4 is a pointer to the VM containing the trigger program.
7058 **
7059 ** If P5 is non-zero, then recursive program invocation is enabled.
7060 */
7061 case OP_Program: {        /* jump */
7062   int nMem;               /* Number of memory registers for sub-program */
7063   int nByte;              /* Bytes of runtime space required for sub-program */
7064   Mem *pRt;               /* Register to allocate runtime space */
7065   Mem *pMem;              /* Used to iterate through memory cells */
7066   Mem *pEnd;              /* Last memory cell in new array */
7067   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
7068   SubProgram *pProgram;   /* Sub-program to execute */
7069   void *t;                /* Token identifying trigger */
7070 
7071   pProgram = pOp->p4.pProgram;
7072   pRt = &aMem[pOp->p3];
7073   assert( pProgram->nOp>0 );
7074 
7075   /* If the p5 flag is clear, then recursive invocation of triggers is
7076   ** disabled for backwards compatibility (p5 is set if this sub-program
7077   ** is really a trigger, not a foreign key action, and the flag set
7078   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7079   **
7080   ** It is recursive invocation of triggers, at the SQL level, that is
7081   ** disabled. In some cases a single trigger may generate more than one
7082   ** SubProgram (if the trigger may be executed with more than one different
7083   ** ON CONFLICT algorithm). SubProgram structures associated with a
7084   ** single trigger all have the same value for the SubProgram.token
7085   ** variable.  */
7086   if( pOp->p5 ){
7087     t = pProgram->token;
7088     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
7089     if( pFrame ) break;
7090   }
7091 
7092   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
7093     rc = SQLITE_ERROR;
7094     sqlite3VdbeError(p, "too many levels of trigger recursion");
7095     goto abort_due_to_error;
7096   }
7097 
7098   /* Register pRt is used to store the memory required to save the state
7099   ** of the current program, and the memory required at runtime to execute
7100   ** the trigger program. If this trigger has been fired before, then pRt
7101   ** is already allocated. Otherwise, it must be initialized.  */
7102   if( (pRt->flags&MEM_Blob)==0 ){
7103     /* SubProgram.nMem is set to the number of memory cells used by the
7104     ** program stored in SubProgram.aOp. As well as these, one memory
7105     ** cell is required for each cursor used by the program. Set local
7106     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7107     */
7108     nMem = pProgram->nMem + pProgram->nCsr;
7109     assert( nMem>0 );
7110     if( pProgram->nCsr==0 ) nMem++;
7111     nByte = ROUND8(sizeof(VdbeFrame))
7112               + nMem * sizeof(Mem)
7113               + pProgram->nCsr * sizeof(VdbeCursor*)
7114               + (pProgram->nOp + 7)/8;
7115     pFrame = sqlite3DbMallocZero(db, nByte);
7116     if( !pFrame ){
7117       goto no_mem;
7118     }
7119     sqlite3VdbeMemRelease(pRt);
7120     pRt->flags = MEM_Blob|MEM_Dyn;
7121     pRt->z = (char*)pFrame;
7122     pRt->n = nByte;
7123     pRt->xDel = sqlite3VdbeFrameMemDel;
7124 
7125     pFrame->v = p;
7126     pFrame->nChildMem = nMem;
7127     pFrame->nChildCsr = pProgram->nCsr;
7128     pFrame->pc = (int)(pOp - aOp);
7129     pFrame->aMem = p->aMem;
7130     pFrame->nMem = p->nMem;
7131     pFrame->apCsr = p->apCsr;
7132     pFrame->nCursor = p->nCursor;
7133     pFrame->aOp = p->aOp;
7134     pFrame->nOp = p->nOp;
7135     pFrame->token = pProgram->token;
7136 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7137     pFrame->anExec = p->anExec;
7138 #endif
7139 #ifdef SQLITE_DEBUG
7140     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7141 #endif
7142 
7143     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7144     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7145       pMem->flags = MEM_Undefined;
7146       pMem->db = db;
7147     }
7148   }else{
7149     pFrame = (VdbeFrame*)pRt->z;
7150     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7151     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7152         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7153     assert( pProgram->nCsr==pFrame->nChildCsr );
7154     assert( (int)(pOp - aOp)==pFrame->pc );
7155   }
7156 
7157   p->nFrame++;
7158   pFrame->pParent = p->pFrame;
7159   pFrame->lastRowid = db->lastRowid;
7160   pFrame->nChange = p->nChange;
7161   pFrame->nDbChange = p->db->nChange;
7162   assert( pFrame->pAuxData==0 );
7163   pFrame->pAuxData = p->pAuxData;
7164   p->pAuxData = 0;
7165   p->nChange = 0;
7166   p->pFrame = pFrame;
7167   p->aMem = aMem = VdbeFrameMem(pFrame);
7168   p->nMem = pFrame->nChildMem;
7169   p->nCursor = (u16)pFrame->nChildCsr;
7170   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7171   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7172   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7173   p->aOp = aOp = pProgram->aOp;
7174   p->nOp = pProgram->nOp;
7175 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7176   p->anExec = 0;
7177 #endif
7178 #ifdef SQLITE_DEBUG
7179   /* Verify that second and subsequent executions of the same trigger do not
7180   ** try to reuse register values from the first use. */
7181   {
7182     int i;
7183     for(i=0; i<p->nMem; i++){
7184       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
7185       MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7186     }
7187   }
7188 #endif
7189   pOp = &aOp[-1];
7190   goto check_for_interrupt;
7191 }
7192 
7193 /* Opcode: Param P1 P2 * * *
7194 **
7195 ** This opcode is only ever present in sub-programs called via the
7196 ** OP_Program instruction. Copy a value currently stored in a memory
7197 ** cell of the calling (parent) frame to cell P2 in the current frames
7198 ** address space. This is used by trigger programs to access the new.*
7199 ** and old.* values.
7200 **
7201 ** The address of the cell in the parent frame is determined by adding
7202 ** the value of the P1 argument to the value of the P1 argument to the
7203 ** calling OP_Program instruction.
7204 */
7205 case OP_Param: {           /* out2 */
7206   VdbeFrame *pFrame;
7207   Mem *pIn;
7208   pOut = out2Prerelease(p, pOp);
7209   pFrame = p->pFrame;
7210   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7211   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7212   break;
7213 }
7214 
7215 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7216 
7217 #ifndef SQLITE_OMIT_FOREIGN_KEY
7218 /* Opcode: FkCounter P1 P2 * * *
7219 ** Synopsis: fkctr[P1]+=P2
7220 **
7221 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7222 ** If P1 is non-zero, the database constraint counter is incremented
7223 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7224 ** statement counter is incremented (immediate foreign key constraints).
7225 */
7226 case OP_FkCounter: {
7227   if( db->flags & SQLITE_DeferFKs ){
7228     db->nDeferredImmCons += pOp->p2;
7229   }else if( pOp->p1 ){
7230     db->nDeferredCons += pOp->p2;
7231   }else{
7232     p->nFkConstraint += pOp->p2;
7233   }
7234   break;
7235 }
7236 
7237 /* Opcode: FkIfZero P1 P2 * * *
7238 ** Synopsis: if fkctr[P1]==0 goto P2
7239 **
7240 ** This opcode tests if a foreign key constraint-counter is currently zero.
7241 ** If so, jump to instruction P2. Otherwise, fall through to the next
7242 ** instruction.
7243 **
7244 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7245 ** is zero (the one that counts deferred constraint violations). If P1 is
7246 ** zero, the jump is taken if the statement constraint-counter is zero
7247 ** (immediate foreign key constraint violations).
7248 */
7249 case OP_FkIfZero: {         /* jump */
7250   if( pOp->p1 ){
7251     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7252     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7253   }else{
7254     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7255     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7256   }
7257   break;
7258 }
7259 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7260 
7261 #ifndef SQLITE_OMIT_AUTOINCREMENT
7262 /* Opcode: MemMax P1 P2 * * *
7263 ** Synopsis: r[P1]=max(r[P1],r[P2])
7264 **
7265 ** P1 is a register in the root frame of this VM (the root frame is
7266 ** different from the current frame if this instruction is being executed
7267 ** within a sub-program). Set the value of register P1 to the maximum of
7268 ** its current value and the value in register P2.
7269 **
7270 ** This instruction throws an error if the memory cell is not initially
7271 ** an integer.
7272 */
7273 case OP_MemMax: {        /* in2 */
7274   VdbeFrame *pFrame;
7275   if( p->pFrame ){
7276     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7277     pIn1 = &pFrame->aMem[pOp->p1];
7278   }else{
7279     pIn1 = &aMem[pOp->p1];
7280   }
7281   assert( memIsValid(pIn1) );
7282   sqlite3VdbeMemIntegerify(pIn1);
7283   pIn2 = &aMem[pOp->p2];
7284   sqlite3VdbeMemIntegerify(pIn2);
7285   if( pIn1->u.i<pIn2->u.i){
7286     pIn1->u.i = pIn2->u.i;
7287   }
7288   break;
7289 }
7290 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7291 
7292 /* Opcode: IfPos P1 P2 P3 * *
7293 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7294 **
7295 ** Register P1 must contain an integer.
7296 ** If the value of register P1 is 1 or greater, subtract P3 from the
7297 ** value in P1 and jump to P2.
7298 **
7299 ** If the initial value of register P1 is less than 1, then the
7300 ** value is unchanged and control passes through to the next instruction.
7301 */
7302 case OP_IfPos: {        /* jump, in1 */
7303   pIn1 = &aMem[pOp->p1];
7304   assert( pIn1->flags&MEM_Int );
7305   VdbeBranchTaken( pIn1->u.i>0, 2);
7306   if( pIn1->u.i>0 ){
7307     pIn1->u.i -= pOp->p3;
7308     goto jump_to_p2;
7309   }
7310   break;
7311 }
7312 
7313 /* Opcode: OffsetLimit P1 P2 P3 * *
7314 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7315 **
7316 ** This opcode performs a commonly used computation associated with
7317 ** LIMIT and OFFSET processing.  r[P1] holds the limit counter.  r[P3]
7318 ** holds the offset counter.  The opcode computes the combined value
7319 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
7320 ** value computed is the total number of rows that will need to be
7321 ** visited in order to complete the query.
7322 **
7323 ** If r[P3] is zero or negative, that means there is no OFFSET
7324 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7325 **
7326 ** if r[P1] is zero or negative, that means there is no LIMIT
7327 ** and r[P2] is set to -1.
7328 **
7329 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7330 */
7331 case OP_OffsetLimit: {    /* in1, out2, in3 */
7332   i64 x;
7333   pIn1 = &aMem[pOp->p1];
7334   pIn3 = &aMem[pOp->p3];
7335   pOut = out2Prerelease(p, pOp);
7336   assert( pIn1->flags & MEM_Int );
7337   assert( pIn3->flags & MEM_Int );
7338   x = pIn1->u.i;
7339   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7340     /* If the LIMIT is less than or equal to zero, loop forever.  This
7341     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
7342     ** also loop forever.  This is undocumented.  In fact, one could argue
7343     ** that the loop should terminate.  But assuming 1 billion iterations
7344     ** per second (far exceeding the capabilities of any current hardware)
7345     ** it would take nearly 300 years to actually reach the limit.  So
7346     ** looping forever is a reasonable approximation. */
7347     pOut->u.i = -1;
7348   }else{
7349     pOut->u.i = x;
7350   }
7351   break;
7352 }
7353 
7354 /* Opcode: IfNotZero P1 P2 * * *
7355 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7356 **
7357 ** Register P1 must contain an integer.  If the content of register P1 is
7358 ** initially greater than zero, then decrement the value in register P1.
7359 ** If it is non-zero (negative or positive) and then also jump to P2.
7360 ** If register P1 is initially zero, leave it unchanged and fall through.
7361 */
7362 case OP_IfNotZero: {        /* jump, in1 */
7363   pIn1 = &aMem[pOp->p1];
7364   assert( pIn1->flags&MEM_Int );
7365   VdbeBranchTaken(pIn1->u.i<0, 2);
7366   if( pIn1->u.i ){
7367      if( pIn1->u.i>0 ) pIn1->u.i--;
7368      goto jump_to_p2;
7369   }
7370   break;
7371 }
7372 
7373 /* Opcode: DecrJumpZero P1 P2 * * *
7374 ** Synopsis: if (--r[P1])==0 goto P2
7375 **
7376 ** Register P1 must hold an integer.  Decrement the value in P1
7377 ** and jump to P2 if the new value is exactly zero.
7378 */
7379 case OP_DecrJumpZero: {      /* jump, in1 */
7380   pIn1 = &aMem[pOp->p1];
7381   assert( pIn1->flags&MEM_Int );
7382   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7383   VdbeBranchTaken(pIn1->u.i==0, 2);
7384   if( pIn1->u.i==0 ) goto jump_to_p2;
7385   break;
7386 }
7387 
7388 
7389 /* Opcode: AggStep * P2 P3 P4 P5
7390 ** Synopsis: accum=r[P3] step(r[P2@P5])
7391 **
7392 ** Execute the xStep function for an aggregate.
7393 ** The function has P5 arguments.  P4 is a pointer to the
7394 ** FuncDef structure that specifies the function.  Register P3 is the
7395 ** accumulator.
7396 **
7397 ** The P5 arguments are taken from register P2 and its
7398 ** successors.
7399 */
7400 /* Opcode: AggInverse * P2 P3 P4 P5
7401 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7402 **
7403 ** Execute the xInverse function for an aggregate.
7404 ** The function has P5 arguments.  P4 is a pointer to the
7405 ** FuncDef structure that specifies the function.  Register P3 is the
7406 ** accumulator.
7407 **
7408 ** The P5 arguments are taken from register P2 and its
7409 ** successors.
7410 */
7411 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7412 ** Synopsis: accum=r[P3] step(r[P2@P5])
7413 **
7414 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7415 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
7416 ** FuncDef structure that specifies the function.  Register P3 is the
7417 ** accumulator.
7418 **
7419 ** The P5 arguments are taken from register P2 and its
7420 ** successors.
7421 **
7422 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
7423 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7424 ** the opcode is changed.  In this way, the initialization of the
7425 ** sqlite3_context only happens once, instead of on each call to the
7426 ** step function.
7427 */
7428 case OP_AggInverse:
7429 case OP_AggStep: {
7430   int n;
7431   sqlite3_context *pCtx;
7432 
7433   assert( pOp->p4type==P4_FUNCDEF );
7434   n = pOp->p5;
7435   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7436   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7437   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7438   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7439                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7440   if( pCtx==0 ) goto no_mem;
7441   pCtx->pMem = 0;
7442   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7443   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7444   pCtx->pFunc = pOp->p4.pFunc;
7445   pCtx->iOp = (int)(pOp - aOp);
7446   pCtx->pVdbe = p;
7447   pCtx->skipFlag = 0;
7448   pCtx->isError = 0;
7449   pCtx->enc = encoding;
7450   pCtx->argc = n;
7451   pOp->p4type = P4_FUNCCTX;
7452   pOp->p4.pCtx = pCtx;
7453 
7454   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7455   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7456 
7457   pOp->opcode = OP_AggStep1;
7458   /* Fall through into OP_AggStep */
7459   /* no break */ deliberate_fall_through
7460 }
7461 case OP_AggStep1: {
7462   int i;
7463   sqlite3_context *pCtx;
7464   Mem *pMem;
7465 
7466   assert( pOp->p4type==P4_FUNCCTX );
7467   pCtx = pOp->p4.pCtx;
7468   pMem = &aMem[pOp->p3];
7469 
7470 #ifdef SQLITE_DEBUG
7471   if( pOp->p1 ){
7472     /* This is an OP_AggInverse call.  Verify that xStep has always
7473     ** been called at least once prior to any xInverse call. */
7474     assert( pMem->uTemp==0x1122e0e3 );
7475   }else{
7476     /* This is an OP_AggStep call.  Mark it as such. */
7477     pMem->uTemp = 0x1122e0e3;
7478   }
7479 #endif
7480 
7481   /* If this function is inside of a trigger, the register array in aMem[]
7482   ** might change from one evaluation to the next.  The next block of code
7483   ** checks to see if the register array has changed, and if so it
7484   ** reinitializes the relavant parts of the sqlite3_context object */
7485   if( pCtx->pMem != pMem ){
7486     pCtx->pMem = pMem;
7487     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7488   }
7489 
7490 #ifdef SQLITE_DEBUG
7491   for(i=0; i<pCtx->argc; i++){
7492     assert( memIsValid(pCtx->argv[i]) );
7493     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7494   }
7495 #endif
7496 
7497   pMem->n++;
7498   assert( pCtx->pOut->flags==MEM_Null );
7499   assert( pCtx->isError==0 );
7500   assert( pCtx->skipFlag==0 );
7501 #ifndef SQLITE_OMIT_WINDOWFUNC
7502   if( pOp->p1 ){
7503     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7504   }else
7505 #endif
7506   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7507 
7508   if( pCtx->isError ){
7509     if( pCtx->isError>0 ){
7510       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7511       rc = pCtx->isError;
7512     }
7513     if( pCtx->skipFlag ){
7514       assert( pOp[-1].opcode==OP_CollSeq );
7515       i = pOp[-1].p1;
7516       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7517       pCtx->skipFlag = 0;
7518     }
7519     sqlite3VdbeMemRelease(pCtx->pOut);
7520     pCtx->pOut->flags = MEM_Null;
7521     pCtx->isError = 0;
7522     if( rc ) goto abort_due_to_error;
7523   }
7524   assert( pCtx->pOut->flags==MEM_Null );
7525   assert( pCtx->skipFlag==0 );
7526   break;
7527 }
7528 
7529 /* Opcode: AggFinal P1 P2 * P4 *
7530 ** Synopsis: accum=r[P1] N=P2
7531 **
7532 ** P1 is the memory location that is the accumulator for an aggregate
7533 ** or window function.  Execute the finalizer function
7534 ** for an aggregate and store the result in P1.
7535 **
7536 ** P2 is the number of arguments that the step function takes and
7537 ** P4 is a pointer to the FuncDef for this function.  The P2
7538 ** argument is not used by this opcode.  It is only there to disambiguate
7539 ** functions that can take varying numbers of arguments.  The
7540 ** P4 argument is only needed for the case where
7541 ** the step function was not previously called.
7542 */
7543 /* Opcode: AggValue * P2 P3 P4 *
7544 ** Synopsis: r[P3]=value N=P2
7545 **
7546 ** Invoke the xValue() function and store the result in register P3.
7547 **
7548 ** P2 is the number of arguments that the step function takes and
7549 ** P4 is a pointer to the FuncDef for this function.  The P2
7550 ** argument is not used by this opcode.  It is only there to disambiguate
7551 ** functions that can take varying numbers of arguments.  The
7552 ** P4 argument is only needed for the case where
7553 ** the step function was not previously called.
7554 */
7555 case OP_AggValue:
7556 case OP_AggFinal: {
7557   Mem *pMem;
7558   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7559   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7560   pMem = &aMem[pOp->p1];
7561   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7562 #ifndef SQLITE_OMIT_WINDOWFUNC
7563   if( pOp->p3 ){
7564     memAboutToChange(p, &aMem[pOp->p3]);
7565     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7566     pMem = &aMem[pOp->p3];
7567   }else
7568 #endif
7569   {
7570     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7571   }
7572 
7573   if( rc ){
7574     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7575     goto abort_due_to_error;
7576   }
7577   sqlite3VdbeChangeEncoding(pMem, encoding);
7578   UPDATE_MAX_BLOBSIZE(pMem);
7579   break;
7580 }
7581 
7582 #ifndef SQLITE_OMIT_WAL
7583 /* Opcode: Checkpoint P1 P2 P3 * *
7584 **
7585 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7586 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7587 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
7588 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
7589 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7590 ** in the WAL that have been checkpointed after the checkpoint
7591 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
7592 ** mem[P3+2] are initialized to -1.
7593 */
7594 case OP_Checkpoint: {
7595   int i;                          /* Loop counter */
7596   int aRes[3];                    /* Results */
7597   Mem *pMem;                      /* Write results here */
7598 
7599   assert( p->readOnly==0 );
7600   aRes[0] = 0;
7601   aRes[1] = aRes[2] = -1;
7602   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7603        || pOp->p2==SQLITE_CHECKPOINT_FULL
7604        || pOp->p2==SQLITE_CHECKPOINT_RESTART
7605        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7606   );
7607   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7608   if( rc ){
7609     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7610     rc = SQLITE_OK;
7611     aRes[0] = 1;
7612   }
7613   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7614     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7615   }
7616   break;
7617 };
7618 #endif
7619 
7620 #ifndef SQLITE_OMIT_PRAGMA
7621 /* Opcode: JournalMode P1 P2 P3 * *
7622 **
7623 ** Change the journal mode of database P1 to P3. P3 must be one of the
7624 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7625 ** modes (delete, truncate, persist, off and memory), this is a simple
7626 ** operation. No IO is required.
7627 **
7628 ** If changing into or out of WAL mode the procedure is more complicated.
7629 **
7630 ** Write a string containing the final journal-mode to register P2.
7631 */
7632 case OP_JournalMode: {    /* out2 */
7633   Btree *pBt;                     /* Btree to change journal mode of */
7634   Pager *pPager;                  /* Pager associated with pBt */
7635   int eNew;                       /* New journal mode */
7636   int eOld;                       /* The old journal mode */
7637 #ifndef SQLITE_OMIT_WAL
7638   const char *zFilename;          /* Name of database file for pPager */
7639 #endif
7640 
7641   pOut = out2Prerelease(p, pOp);
7642   eNew = pOp->p3;
7643   assert( eNew==PAGER_JOURNALMODE_DELETE
7644        || eNew==PAGER_JOURNALMODE_TRUNCATE
7645        || eNew==PAGER_JOURNALMODE_PERSIST
7646        || eNew==PAGER_JOURNALMODE_OFF
7647        || eNew==PAGER_JOURNALMODE_MEMORY
7648        || eNew==PAGER_JOURNALMODE_WAL
7649        || eNew==PAGER_JOURNALMODE_QUERY
7650   );
7651   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7652   assert( p->readOnly==0 );
7653 
7654   pBt = db->aDb[pOp->p1].pBt;
7655   pPager = sqlite3BtreePager(pBt);
7656   eOld = sqlite3PagerGetJournalMode(pPager);
7657   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7658   assert( sqlite3BtreeHoldsMutex(pBt) );
7659   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7660 
7661 #ifndef SQLITE_OMIT_WAL
7662   zFilename = sqlite3PagerFilename(pPager, 1);
7663 
7664   /* Do not allow a transition to journal_mode=WAL for a database
7665   ** in temporary storage or if the VFS does not support shared memory
7666   */
7667   if( eNew==PAGER_JOURNALMODE_WAL
7668    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
7669        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
7670   ){
7671     eNew = eOld;
7672   }
7673 
7674   if( (eNew!=eOld)
7675    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7676   ){
7677     if( !db->autoCommit || db->nVdbeRead>1 ){
7678       rc = SQLITE_ERROR;
7679       sqlite3VdbeError(p,
7680           "cannot change %s wal mode from within a transaction",
7681           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7682       );
7683       goto abort_due_to_error;
7684     }else{
7685 
7686       if( eOld==PAGER_JOURNALMODE_WAL ){
7687         /* If leaving WAL mode, close the log file. If successful, the call
7688         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7689         ** file. An EXCLUSIVE lock may still be held on the database file
7690         ** after a successful return.
7691         */
7692         rc = sqlite3PagerCloseWal(pPager, db);
7693         if( rc==SQLITE_OK ){
7694           sqlite3PagerSetJournalMode(pPager, eNew);
7695         }
7696       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7697         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
7698         ** as an intermediate */
7699         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7700       }
7701 
7702       /* Open a transaction on the database file. Regardless of the journal
7703       ** mode, this transaction always uses a rollback journal.
7704       */
7705       assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7706       if( rc==SQLITE_OK ){
7707         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7708       }
7709     }
7710   }
7711 #endif /* ifndef SQLITE_OMIT_WAL */
7712 
7713   if( rc ) eNew = eOld;
7714   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7715 
7716   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7717   pOut->z = (char *)sqlite3JournalModename(eNew);
7718   pOut->n = sqlite3Strlen30(pOut->z);
7719   pOut->enc = SQLITE_UTF8;
7720   sqlite3VdbeChangeEncoding(pOut, encoding);
7721   if( rc ) goto abort_due_to_error;
7722   break;
7723 };
7724 #endif /* SQLITE_OMIT_PRAGMA */
7725 
7726 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7727 /* Opcode: Vacuum P1 P2 * * *
7728 **
7729 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7730 ** for an attached database.  The "temp" database may not be vacuumed.
7731 **
7732 ** If P2 is not zero, then it is a register holding a string which is
7733 ** the file into which the result of vacuum should be written.  When
7734 ** P2 is zero, the vacuum overwrites the original database.
7735 */
7736 case OP_Vacuum: {
7737   assert( p->readOnly==0 );
7738   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7739                         pOp->p2 ? &aMem[pOp->p2] : 0);
7740   if( rc ) goto abort_due_to_error;
7741   break;
7742 }
7743 #endif
7744 
7745 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7746 /* Opcode: IncrVacuum P1 P2 * * *
7747 **
7748 ** Perform a single step of the incremental vacuum procedure on
7749 ** the P1 database. If the vacuum has finished, jump to instruction
7750 ** P2. Otherwise, fall through to the next instruction.
7751 */
7752 case OP_IncrVacuum: {        /* jump */
7753   Btree *pBt;
7754 
7755   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7756   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7757   assert( p->readOnly==0 );
7758   pBt = db->aDb[pOp->p1].pBt;
7759   rc = sqlite3BtreeIncrVacuum(pBt);
7760   VdbeBranchTaken(rc==SQLITE_DONE,2);
7761   if( rc ){
7762     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7763     rc = SQLITE_OK;
7764     goto jump_to_p2;
7765   }
7766   break;
7767 }
7768 #endif
7769 
7770 /* Opcode: Expire P1 P2 * * *
7771 **
7772 ** Cause precompiled statements to expire.  When an expired statement
7773 ** is executed using sqlite3_step() it will either automatically
7774 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7775 ** or it will fail with SQLITE_SCHEMA.
7776 **
7777 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7778 ** then only the currently executing statement is expired.
7779 **
7780 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7781 ** then running SQL statements are allowed to continue to run to completion.
7782 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7783 ** that might help the statement run faster but which does not affect the
7784 ** correctness of operation.
7785 */
7786 case OP_Expire: {
7787   assert( pOp->p2==0 || pOp->p2==1 );
7788   if( !pOp->p1 ){
7789     sqlite3ExpirePreparedStatements(db, pOp->p2);
7790   }else{
7791     p->expired = pOp->p2+1;
7792   }
7793   break;
7794 }
7795 
7796 /* Opcode: CursorLock P1 * * * *
7797 **
7798 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7799 ** written by an other cursor.
7800 */
7801 case OP_CursorLock: {
7802   VdbeCursor *pC;
7803   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7804   pC = p->apCsr[pOp->p1];
7805   assert( pC!=0 );
7806   assert( pC->eCurType==CURTYPE_BTREE );
7807   sqlite3BtreeCursorPin(pC->uc.pCursor);
7808   break;
7809 }
7810 
7811 /* Opcode: CursorUnlock P1 * * * *
7812 **
7813 ** Unlock the btree to which cursor P1 is pointing so that it can be
7814 ** written by other cursors.
7815 */
7816 case OP_CursorUnlock: {
7817   VdbeCursor *pC;
7818   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7819   pC = p->apCsr[pOp->p1];
7820   assert( pC!=0 );
7821   assert( pC->eCurType==CURTYPE_BTREE );
7822   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7823   break;
7824 }
7825 
7826 #ifndef SQLITE_OMIT_SHARED_CACHE
7827 /* Opcode: TableLock P1 P2 P3 P4 *
7828 ** Synopsis: iDb=P1 root=P2 write=P3
7829 **
7830 ** Obtain a lock on a particular table. This instruction is only used when
7831 ** the shared-cache feature is enabled.
7832 **
7833 ** P1 is the index of the database in sqlite3.aDb[] of the database
7834 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7835 ** a write lock if P3==1.
7836 **
7837 ** P2 contains the root-page of the table to lock.
7838 **
7839 ** P4 contains a pointer to the name of the table being locked. This is only
7840 ** used to generate an error message if the lock cannot be obtained.
7841 */
7842 case OP_TableLock: {
7843   u8 isWriteLock = (u8)pOp->p3;
7844   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7845     int p1 = pOp->p1;
7846     assert( p1>=0 && p1<db->nDb );
7847     assert( DbMaskTest(p->btreeMask, p1) );
7848     assert( isWriteLock==0 || isWriteLock==1 );
7849     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7850     if( rc ){
7851       if( (rc&0xFF)==SQLITE_LOCKED ){
7852         const char *z = pOp->p4.z;
7853         sqlite3VdbeError(p, "database table is locked: %s", z);
7854       }
7855       goto abort_due_to_error;
7856     }
7857   }
7858   break;
7859 }
7860 #endif /* SQLITE_OMIT_SHARED_CACHE */
7861 
7862 #ifndef SQLITE_OMIT_VIRTUALTABLE
7863 /* Opcode: VBegin * * * P4 *
7864 **
7865 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7866 ** xBegin method for that table.
7867 **
7868 ** Also, whether or not P4 is set, check that this is not being called from
7869 ** within a callback to a virtual table xSync() method. If it is, the error
7870 ** code will be set to SQLITE_LOCKED.
7871 */
7872 case OP_VBegin: {
7873   VTable *pVTab;
7874   pVTab = pOp->p4.pVtab;
7875   rc = sqlite3VtabBegin(db, pVTab);
7876   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7877   if( rc ) goto abort_due_to_error;
7878   break;
7879 }
7880 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7881 
7882 #ifndef SQLITE_OMIT_VIRTUALTABLE
7883 /* Opcode: VCreate P1 P2 * * *
7884 **
7885 ** P2 is a register that holds the name of a virtual table in database
7886 ** P1. Call the xCreate method for that table.
7887 */
7888 case OP_VCreate: {
7889   Mem sMem;          /* For storing the record being decoded */
7890   const char *zTab;  /* Name of the virtual table */
7891 
7892   memset(&sMem, 0, sizeof(sMem));
7893   sMem.db = db;
7894   /* Because P2 is always a static string, it is impossible for the
7895   ** sqlite3VdbeMemCopy() to fail */
7896   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7897   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7898   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7899   assert( rc==SQLITE_OK );
7900   zTab = (const char*)sqlite3_value_text(&sMem);
7901   assert( zTab || db->mallocFailed );
7902   if( zTab ){
7903     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7904   }
7905   sqlite3VdbeMemRelease(&sMem);
7906   if( rc ) goto abort_due_to_error;
7907   break;
7908 }
7909 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7910 
7911 #ifndef SQLITE_OMIT_VIRTUALTABLE
7912 /* Opcode: VDestroy P1 * * P4 *
7913 **
7914 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7915 ** of that table.
7916 */
7917 case OP_VDestroy: {
7918   db->nVDestroy++;
7919   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7920   db->nVDestroy--;
7921   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7922   if( rc ) goto abort_due_to_error;
7923   break;
7924 }
7925 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7926 
7927 #ifndef SQLITE_OMIT_VIRTUALTABLE
7928 /* Opcode: VOpen P1 * * P4 *
7929 **
7930 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7931 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7932 ** table and stores that cursor in P1.
7933 */
7934 case OP_VOpen: {
7935   VdbeCursor *pCur;
7936   sqlite3_vtab_cursor *pVCur;
7937   sqlite3_vtab *pVtab;
7938   const sqlite3_module *pModule;
7939 
7940   assert( p->bIsReader );
7941   pCur = 0;
7942   pVCur = 0;
7943   pVtab = pOp->p4.pVtab->pVtab;
7944   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7945     rc = SQLITE_LOCKED;
7946     goto abort_due_to_error;
7947   }
7948   pModule = pVtab->pModule;
7949   rc = pModule->xOpen(pVtab, &pVCur);
7950   sqlite3VtabImportErrmsg(p, pVtab);
7951   if( rc ) goto abort_due_to_error;
7952 
7953   /* Initialize sqlite3_vtab_cursor base class */
7954   pVCur->pVtab = pVtab;
7955 
7956   /* Initialize vdbe cursor object */
7957   pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
7958   if( pCur ){
7959     pCur->uc.pVCur = pVCur;
7960     pVtab->nRef++;
7961   }else{
7962     assert( db->mallocFailed );
7963     pModule->xClose(pVCur);
7964     goto no_mem;
7965   }
7966   break;
7967 }
7968 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7969 
7970 #ifndef SQLITE_OMIT_VIRTUALTABLE
7971 /* Opcode: VInitIn P1 P2 P3 * *
7972 ** Synopsis: r[P2]=ValueList(P1,P3)
7973 **
7974 ** Set register P2 to be a pointer to a ValueList object for cursor P1
7975 ** with cache register P3 and output register P3+1.  This ValueList object
7976 ** can be used as the first argument to sqlite3_vtab_in_first() and
7977 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
7978 ** cursor.  Register P3 is used to hold the values returned by
7979 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
7980 */
7981 case OP_VInitIn: {        /* out2 */
7982   VdbeCursor *pC;         /* The cursor containing the RHS values */
7983   ValueList *pRhs;        /* New ValueList object to put in reg[P2] */
7984 
7985   pC = p->apCsr[pOp->p1];
7986   pRhs = sqlite3_malloc64( sizeof(*pRhs) );
7987   if( pRhs==0 ) goto no_mem;
7988   pRhs->pCsr = pC->uc.pCursor;
7989   pRhs->pOut = &aMem[pOp->p3];
7990   pOut = out2Prerelease(p, pOp);
7991   pOut->flags = MEM_Null;
7992   sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free);
7993   break;
7994 }
7995 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7996 
7997 
7998 #ifndef SQLITE_OMIT_VIRTUALTABLE
7999 /* Opcode: VFilter P1 P2 P3 P4 *
8000 ** Synopsis: iplan=r[P3] zplan='P4'
8001 **
8002 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
8003 ** the filtered result set is empty.
8004 **
8005 ** P4 is either NULL or a string that was generated by the xBestIndex
8006 ** method of the module.  The interpretation of the P4 string is left
8007 ** to the module implementation.
8008 **
8009 ** This opcode invokes the xFilter method on the virtual table specified
8010 ** by P1.  The integer query plan parameter to xFilter is stored in register
8011 ** P3. Register P3+1 stores the argc parameter to be passed to the
8012 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8013 ** additional parameters which are passed to
8014 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8015 **
8016 ** A jump is made to P2 if the result set after filtering would be empty.
8017 */
8018 case OP_VFilter: {   /* jump */
8019   int nArg;
8020   int iQuery;
8021   const sqlite3_module *pModule;
8022   Mem *pQuery;
8023   Mem *pArgc;
8024   sqlite3_vtab_cursor *pVCur;
8025   sqlite3_vtab *pVtab;
8026   VdbeCursor *pCur;
8027   int res;
8028   int i;
8029   Mem **apArg;
8030 
8031   pQuery = &aMem[pOp->p3];
8032   pArgc = &pQuery[1];
8033   pCur = p->apCsr[pOp->p1];
8034   assert( memIsValid(pQuery) );
8035   REGISTER_TRACE(pOp->p3, pQuery);
8036   assert( pCur!=0 );
8037   assert( pCur->eCurType==CURTYPE_VTAB );
8038   pVCur = pCur->uc.pVCur;
8039   pVtab = pVCur->pVtab;
8040   pModule = pVtab->pModule;
8041 
8042   /* Grab the index number and argc parameters */
8043   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
8044   nArg = (int)pArgc->u.i;
8045   iQuery = (int)pQuery->u.i;
8046 
8047   /* Invoke the xFilter method */
8048   apArg = p->apArg;
8049   for(i = 0; i<nArg; i++){
8050     apArg[i] = &pArgc[i+1];
8051   }
8052   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
8053   sqlite3VtabImportErrmsg(p, pVtab);
8054   if( rc ) goto abort_due_to_error;
8055   res = pModule->xEof(pVCur);
8056   pCur->nullRow = 0;
8057   VdbeBranchTaken(res!=0,2);
8058   if( res ) goto jump_to_p2;
8059   break;
8060 }
8061 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8062 
8063 #ifndef SQLITE_OMIT_VIRTUALTABLE
8064 /* Opcode: VColumn P1 P2 P3 * P5
8065 ** Synopsis: r[P3]=vcolumn(P2)
8066 **
8067 ** Store in register P3 the value of the P2-th column of
8068 ** the current row of the virtual-table of cursor P1.
8069 **
8070 ** If the VColumn opcode is being used to fetch the value of
8071 ** an unchanging column during an UPDATE operation, then the P5
8072 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
8073 ** function to return true inside the xColumn method of the virtual
8074 ** table implementation.  The P5 column might also contain other
8075 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8076 ** unused by OP_VColumn.
8077 */
8078 case OP_VColumn: {
8079   sqlite3_vtab *pVtab;
8080   const sqlite3_module *pModule;
8081   Mem *pDest;
8082   sqlite3_context sContext;
8083 
8084   VdbeCursor *pCur = p->apCsr[pOp->p1];
8085   assert( pCur!=0 );
8086   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
8087   pDest = &aMem[pOp->p3];
8088   memAboutToChange(p, pDest);
8089   if( pCur->nullRow ){
8090     sqlite3VdbeMemSetNull(pDest);
8091     break;
8092   }
8093   assert( pCur->eCurType==CURTYPE_VTAB );
8094   pVtab = pCur->uc.pVCur->pVtab;
8095   pModule = pVtab->pModule;
8096   assert( pModule->xColumn );
8097   memset(&sContext, 0, sizeof(sContext));
8098   sContext.pOut = pDest;
8099   sContext.enc = encoding;
8100   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
8101   if( pOp->p5 & OPFLAG_NOCHNG ){
8102     sqlite3VdbeMemSetNull(pDest);
8103     pDest->flags = MEM_Null|MEM_Zero;
8104     pDest->u.nZero = 0;
8105   }else{
8106     MemSetTypeFlag(pDest, MEM_Null);
8107   }
8108   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
8109   sqlite3VtabImportErrmsg(p, pVtab);
8110   if( sContext.isError>0 ){
8111     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
8112     rc = sContext.isError;
8113   }
8114   sqlite3VdbeChangeEncoding(pDest, encoding);
8115   REGISTER_TRACE(pOp->p3, pDest);
8116   UPDATE_MAX_BLOBSIZE(pDest);
8117 
8118   if( rc ) goto abort_due_to_error;
8119   break;
8120 }
8121 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8122 
8123 #ifndef SQLITE_OMIT_VIRTUALTABLE
8124 /* Opcode: VNext P1 P2 * * *
8125 **
8126 ** Advance virtual table P1 to the next row in its result set and
8127 ** jump to instruction P2.  Or, if the virtual table has reached
8128 ** the end of its result set, then fall through to the next instruction.
8129 */
8130 case OP_VNext: {   /* jump */
8131   sqlite3_vtab *pVtab;
8132   const sqlite3_module *pModule;
8133   int res;
8134   VdbeCursor *pCur;
8135 
8136   pCur = p->apCsr[pOp->p1];
8137   assert( pCur!=0 );
8138   assert( pCur->eCurType==CURTYPE_VTAB );
8139   if( pCur->nullRow ){
8140     break;
8141   }
8142   pVtab = pCur->uc.pVCur->pVtab;
8143   pModule = pVtab->pModule;
8144   assert( pModule->xNext );
8145 
8146   /* Invoke the xNext() method of the module. There is no way for the
8147   ** underlying implementation to return an error if one occurs during
8148   ** xNext(). Instead, if an error occurs, true is returned (indicating that
8149   ** data is available) and the error code returned when xColumn or
8150   ** some other method is next invoked on the save virtual table cursor.
8151   */
8152   rc = pModule->xNext(pCur->uc.pVCur);
8153   sqlite3VtabImportErrmsg(p, pVtab);
8154   if( rc ) goto abort_due_to_error;
8155   res = pModule->xEof(pCur->uc.pVCur);
8156   VdbeBranchTaken(!res,2);
8157   if( !res ){
8158     /* If there is data, jump to P2 */
8159     goto jump_to_p2_and_check_for_interrupt;
8160   }
8161   goto check_for_interrupt;
8162 }
8163 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8164 
8165 #ifndef SQLITE_OMIT_VIRTUALTABLE
8166 /* Opcode: VRename P1 * * P4 *
8167 **
8168 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8169 ** This opcode invokes the corresponding xRename method. The value
8170 ** in register P1 is passed as the zName argument to the xRename method.
8171 */
8172 case OP_VRename: {
8173   sqlite3_vtab *pVtab;
8174   Mem *pName;
8175   int isLegacy;
8176 
8177   isLegacy = (db->flags & SQLITE_LegacyAlter);
8178   db->flags |= SQLITE_LegacyAlter;
8179   pVtab = pOp->p4.pVtab->pVtab;
8180   pName = &aMem[pOp->p1];
8181   assert( pVtab->pModule->xRename );
8182   assert( memIsValid(pName) );
8183   assert( p->readOnly==0 );
8184   REGISTER_TRACE(pOp->p1, pName);
8185   assert( pName->flags & MEM_Str );
8186   testcase( pName->enc==SQLITE_UTF8 );
8187   testcase( pName->enc==SQLITE_UTF16BE );
8188   testcase( pName->enc==SQLITE_UTF16LE );
8189   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8190   if( rc ) goto abort_due_to_error;
8191   rc = pVtab->pModule->xRename(pVtab, pName->z);
8192   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8193   sqlite3VtabImportErrmsg(p, pVtab);
8194   p->expired = 0;
8195   if( rc ) goto abort_due_to_error;
8196   break;
8197 }
8198 #endif
8199 
8200 #ifndef SQLITE_OMIT_VIRTUALTABLE
8201 /* Opcode: VUpdate P1 P2 P3 P4 P5
8202 ** Synopsis: data=r[P3@P2]
8203 **
8204 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8205 ** This opcode invokes the corresponding xUpdate method. P2 values
8206 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8207 ** invocation. The value in register (P3+P2-1) corresponds to the
8208 ** p2th element of the argv array passed to xUpdate.
8209 **
8210 ** The xUpdate method will do a DELETE or an INSERT or both.
8211 ** The argv[0] element (which corresponds to memory cell P3)
8212 ** is the rowid of a row to delete.  If argv[0] is NULL then no
8213 ** deletion occurs.  The argv[1] element is the rowid of the new
8214 ** row.  This can be NULL to have the virtual table select the new
8215 ** rowid for itself.  The subsequent elements in the array are
8216 ** the values of columns in the new row.
8217 **
8218 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
8219 ** a row to delete.
8220 **
8221 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8222 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8223 ** is set to the value of the rowid for the row just inserted.
8224 **
8225 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8226 ** apply in the case of a constraint failure on an insert or update.
8227 */
8228 case OP_VUpdate: {
8229   sqlite3_vtab *pVtab;
8230   const sqlite3_module *pModule;
8231   int nArg;
8232   int i;
8233   sqlite_int64 rowid = 0;
8234   Mem **apArg;
8235   Mem *pX;
8236 
8237   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
8238        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8239   );
8240   assert( p->readOnly==0 );
8241   if( db->mallocFailed ) goto no_mem;
8242   sqlite3VdbeIncrWriteCounter(p, 0);
8243   pVtab = pOp->p4.pVtab->pVtab;
8244   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8245     rc = SQLITE_LOCKED;
8246     goto abort_due_to_error;
8247   }
8248   pModule = pVtab->pModule;
8249   nArg = pOp->p2;
8250   assert( pOp->p4type==P4_VTAB );
8251   if( ALWAYS(pModule->xUpdate) ){
8252     u8 vtabOnConflict = db->vtabOnConflict;
8253     apArg = p->apArg;
8254     pX = &aMem[pOp->p3];
8255     for(i=0; i<nArg; i++){
8256       assert( memIsValid(pX) );
8257       memAboutToChange(p, pX);
8258       apArg[i] = pX;
8259       pX++;
8260     }
8261     db->vtabOnConflict = pOp->p5;
8262     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8263     db->vtabOnConflict = vtabOnConflict;
8264     sqlite3VtabImportErrmsg(p, pVtab);
8265     if( rc==SQLITE_OK && pOp->p1 ){
8266       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8267       db->lastRowid = rowid;
8268     }
8269     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8270       if( pOp->p5==OE_Ignore ){
8271         rc = SQLITE_OK;
8272       }else{
8273         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8274       }
8275     }else{
8276       p->nChange++;
8277     }
8278     if( rc ) goto abort_due_to_error;
8279   }
8280   break;
8281 }
8282 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8283 
8284 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8285 /* Opcode: Pagecount P1 P2 * * *
8286 **
8287 ** Write the current number of pages in database P1 to memory cell P2.
8288 */
8289 case OP_Pagecount: {            /* out2 */
8290   pOut = out2Prerelease(p, pOp);
8291   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8292   break;
8293 }
8294 #endif
8295 
8296 
8297 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8298 /* Opcode: MaxPgcnt P1 P2 P3 * *
8299 **
8300 ** Try to set the maximum page count for database P1 to the value in P3.
8301 ** Do not let the maximum page count fall below the current page count and
8302 ** do not change the maximum page count value if P3==0.
8303 **
8304 ** Store the maximum page count after the change in register P2.
8305 */
8306 case OP_MaxPgcnt: {            /* out2 */
8307   unsigned int newMax;
8308   Btree *pBt;
8309 
8310   pOut = out2Prerelease(p, pOp);
8311   pBt = db->aDb[pOp->p1].pBt;
8312   newMax = 0;
8313   if( pOp->p3 ){
8314     newMax = sqlite3BtreeLastPage(pBt);
8315     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8316   }
8317   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8318   break;
8319 }
8320 #endif
8321 
8322 /* Opcode: Function P1 P2 P3 P4 *
8323 ** Synopsis: r[P3]=func(r[P2@NP])
8324 **
8325 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8326 ** contains a pointer to the function to be run) with arguments taken
8327 ** from register P2 and successors.  The number of arguments is in
8328 ** the sqlite3_context object that P4 points to.
8329 ** The result of the function is stored
8330 ** in register P3.  Register P3 must not be one of the function inputs.
8331 **
8332 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8333 ** function was determined to be constant at compile time. If the first
8334 ** argument was constant then bit 0 of P1 is set. This is used to determine
8335 ** whether meta data associated with a user function argument using the
8336 ** sqlite3_set_auxdata() API may be safely retained until the next
8337 ** invocation of this opcode.
8338 **
8339 ** See also: AggStep, AggFinal, PureFunc
8340 */
8341 /* Opcode: PureFunc P1 P2 P3 P4 *
8342 ** Synopsis: r[P3]=func(r[P2@NP])
8343 **
8344 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8345 ** contains a pointer to the function to be run) with arguments taken
8346 ** from register P2 and successors.  The number of arguments is in
8347 ** the sqlite3_context object that P4 points to.
8348 ** The result of the function is stored
8349 ** in register P3.  Register P3 must not be one of the function inputs.
8350 **
8351 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8352 ** function was determined to be constant at compile time. If the first
8353 ** argument was constant then bit 0 of P1 is set. This is used to determine
8354 ** whether meta data associated with a user function argument using the
8355 ** sqlite3_set_auxdata() API may be safely retained until the next
8356 ** invocation of this opcode.
8357 **
8358 ** This opcode works exactly like OP_Function.  The only difference is in
8359 ** its name.  This opcode is used in places where the function must be
8360 ** purely non-deterministic.  Some built-in date/time functions can be
8361 ** either determinitic of non-deterministic, depending on their arguments.
8362 ** When those function are used in a non-deterministic way, they will check
8363 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8364 ** if they were, they throw an error.
8365 **
8366 ** See also: AggStep, AggFinal, Function
8367 */
8368 case OP_PureFunc:              /* group */
8369 case OP_Function: {            /* group */
8370   int i;
8371   sqlite3_context *pCtx;
8372 
8373   assert( pOp->p4type==P4_FUNCCTX );
8374   pCtx = pOp->p4.pCtx;
8375 
8376   /* If this function is inside of a trigger, the register array in aMem[]
8377   ** might change from one evaluation to the next.  The next block of code
8378   ** checks to see if the register array has changed, and if so it
8379   ** reinitializes the relavant parts of the sqlite3_context object */
8380   pOut = &aMem[pOp->p3];
8381   if( pCtx->pOut != pOut ){
8382     pCtx->pVdbe = p;
8383     pCtx->pOut = pOut;
8384     pCtx->enc = encoding;
8385     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8386   }
8387   assert( pCtx->pVdbe==p );
8388 
8389   memAboutToChange(p, pOut);
8390 #ifdef SQLITE_DEBUG
8391   for(i=0; i<pCtx->argc; i++){
8392     assert( memIsValid(pCtx->argv[i]) );
8393     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8394   }
8395 #endif
8396   MemSetTypeFlag(pOut, MEM_Null);
8397   assert( pCtx->isError==0 );
8398   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8399 
8400   /* If the function returned an error, throw an exception */
8401   if( pCtx->isError ){
8402     if( pCtx->isError>0 ){
8403       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8404       rc = pCtx->isError;
8405     }
8406     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8407     pCtx->isError = 0;
8408     if( rc ) goto abort_due_to_error;
8409   }
8410 
8411   assert( (pOut->flags&MEM_Str)==0
8412        || pOut->enc==encoding
8413        || db->mallocFailed );
8414   assert( !sqlite3VdbeMemTooBig(pOut) );
8415 
8416   REGISTER_TRACE(pOp->p3, pOut);
8417   UPDATE_MAX_BLOBSIZE(pOut);
8418   break;
8419 }
8420 
8421 /* Opcode: ClrSubtype P1 * * * *
8422 ** Synopsis:  r[P1].subtype = 0
8423 **
8424 ** Clear the subtype from register P1.
8425 */
8426 case OP_ClrSubtype: {   /* in1 */
8427   pIn1 = &aMem[pOp->p1];
8428   pIn1->flags &= ~MEM_Subtype;
8429   break;
8430 }
8431 
8432 /* Opcode: FilterAdd P1 * P3 P4 *
8433 ** Synopsis: filter(P1) += key(P3@P4)
8434 **
8435 ** Compute a hash on the P4 registers starting with r[P3] and
8436 ** add that hash to the bloom filter contained in r[P1].
8437 */
8438 case OP_FilterAdd: {
8439   u64 h;
8440 
8441   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8442   pIn1 = &aMem[pOp->p1];
8443   assert( pIn1->flags & MEM_Blob );
8444   assert( pIn1->n>0 );
8445   h = filterHash(aMem, pOp);
8446 #ifdef SQLITE_DEBUG
8447   if( db->flags&SQLITE_VdbeTrace ){
8448     int ii;
8449     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8450       registerTrace(ii, &aMem[ii]);
8451     }
8452     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8453   }
8454 #endif
8455   h %= pIn1->n;
8456   pIn1->z[h/8] |= 1<<(h&7);
8457   break;
8458 }
8459 
8460 /* Opcode: Filter P1 P2 P3 P4 *
8461 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8462 **
8463 ** Compute a hash on the key contained in the P4 registers starting
8464 ** with r[P3].  Check to see if that hash is found in the
8465 ** bloom filter hosted by register P1.  If it is not present then
8466 ** maybe jump to P2.  Otherwise fall through.
8467 **
8468 ** False negatives are harmless.  It is always safe to fall through,
8469 ** even if the value is in the bloom filter.  A false negative causes
8470 ** more CPU cycles to be used, but it should still yield the correct
8471 ** answer.  However, an incorrect answer may well arise from a
8472 ** false positive - if the jump is taken when it should fall through.
8473 */
8474 case OP_Filter: {          /* jump */
8475   u64 h;
8476 
8477   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8478   pIn1 = &aMem[pOp->p1];
8479   assert( (pIn1->flags & MEM_Blob)!=0 );
8480   assert( pIn1->n >= 1 );
8481   h = filterHash(aMem, pOp);
8482 #ifdef SQLITE_DEBUG
8483   if( db->flags&SQLITE_VdbeTrace ){
8484     int ii;
8485     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8486       registerTrace(ii, &aMem[ii]);
8487     }
8488     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8489   }
8490 #endif
8491   h %= pIn1->n;
8492   if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8493     VdbeBranchTaken(1, 2);
8494     p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8495     goto jump_to_p2;
8496   }else{
8497     p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8498     VdbeBranchTaken(0, 2);
8499   }
8500   break;
8501 }
8502 
8503 /* Opcode: Trace P1 P2 * P4 *
8504 **
8505 ** Write P4 on the statement trace output if statement tracing is
8506 ** enabled.
8507 **
8508 ** Operand P1 must be 0x7fffffff and P2 must positive.
8509 */
8510 /* Opcode: Init P1 P2 P3 P4 *
8511 ** Synopsis: Start at P2
8512 **
8513 ** Programs contain a single instance of this opcode as the very first
8514 ** opcode.
8515 **
8516 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8517 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8518 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8519 **
8520 ** If P2 is not zero, jump to instruction P2.
8521 **
8522 ** Increment the value of P1 so that OP_Once opcodes will jump the
8523 ** first time they are evaluated for this run.
8524 **
8525 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8526 ** error is encountered.
8527 */
8528 case OP_Trace:
8529 case OP_Init: {          /* jump */
8530   int i;
8531 #ifndef SQLITE_OMIT_TRACE
8532   char *zTrace;
8533 #endif
8534 
8535   /* If the P4 argument is not NULL, then it must be an SQL comment string.
8536   ** The "--" string is broken up to prevent false-positives with srcck1.c.
8537   **
8538   ** This assert() provides evidence for:
8539   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8540   ** would have been returned by the legacy sqlite3_trace() interface by
8541   ** using the X argument when X begins with "--" and invoking
8542   ** sqlite3_expanded_sql(P) otherwise.
8543   */
8544   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8545 
8546   /* OP_Init is always instruction 0 */
8547   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8548 
8549 #ifndef SQLITE_OMIT_TRACE
8550   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8551    && p->minWriteFileFormat!=254  /* tag-20220401a */
8552    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8553   ){
8554 #ifndef SQLITE_OMIT_DEPRECATED
8555     if( db->mTrace & SQLITE_TRACE_LEGACY ){
8556       char *z = sqlite3VdbeExpandSql(p, zTrace);
8557       db->trace.xLegacy(db->pTraceArg, z);
8558       sqlite3_free(z);
8559     }else
8560 #endif
8561     if( db->nVdbeExec>1 ){
8562       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8563       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8564       sqlite3DbFree(db, z);
8565     }else{
8566       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8567     }
8568   }
8569 #ifdef SQLITE_USE_FCNTL_TRACE
8570   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8571   if( zTrace ){
8572     int j;
8573     for(j=0; j<db->nDb; j++){
8574       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8575       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8576     }
8577   }
8578 #endif /* SQLITE_USE_FCNTL_TRACE */
8579 #ifdef SQLITE_DEBUG
8580   if( (db->flags & SQLITE_SqlTrace)!=0
8581    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8582   ){
8583     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8584   }
8585 #endif /* SQLITE_DEBUG */
8586 #endif /* SQLITE_OMIT_TRACE */
8587   assert( pOp->p2>0 );
8588   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8589     if( pOp->opcode==OP_Trace ) break;
8590     for(i=1; i<p->nOp; i++){
8591       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8592     }
8593     pOp->p1 = 0;
8594   }
8595   pOp->p1++;
8596   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8597   goto jump_to_p2;
8598 }
8599 
8600 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8601 /* Opcode: CursorHint P1 * * P4 *
8602 **
8603 ** Provide a hint to cursor P1 that it only needs to return rows that
8604 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
8605 ** to values currently held in registers.  TK_COLUMN terms in the P4
8606 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8607 */
8608 case OP_CursorHint: {
8609   VdbeCursor *pC;
8610 
8611   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8612   assert( pOp->p4type==P4_EXPR );
8613   pC = p->apCsr[pOp->p1];
8614   if( pC ){
8615     assert( pC->eCurType==CURTYPE_BTREE );
8616     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8617                            pOp->p4.pExpr, aMem);
8618   }
8619   break;
8620 }
8621 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8622 
8623 #ifdef SQLITE_DEBUG
8624 /* Opcode:  Abortable   * * * * *
8625 **
8626 ** Verify that an Abort can happen.  Assert if an Abort at this point
8627 ** might cause database corruption.  This opcode only appears in debugging
8628 ** builds.
8629 **
8630 ** An Abort is safe if either there have been no writes, or if there is
8631 ** an active statement journal.
8632 */
8633 case OP_Abortable: {
8634   sqlite3VdbeAssertAbortable(p);
8635   break;
8636 }
8637 #endif
8638 
8639 #ifdef SQLITE_DEBUG
8640 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
8641 ** Synopsis: release r[P1@P2] mask P3
8642 **
8643 ** Release registers from service.  Any content that was in the
8644 ** the registers is unreliable after this opcode completes.
8645 **
8646 ** The registers released will be the P2 registers starting at P1,
8647 ** except if bit ii of P3 set, then do not release register P1+ii.
8648 ** In other words, P3 is a mask of registers to preserve.
8649 **
8650 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
8651 ** that if the content of the released register was set using OP_SCopy,
8652 ** a change to the value of the source register for the OP_SCopy will no longer
8653 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8654 **
8655 ** If P5 is set, then all released registers have their type set
8656 ** to MEM_Undefined so that any subsequent attempt to read the released
8657 ** register (before it is reinitialized) will generate an assertion fault.
8658 **
8659 ** P5 ought to be set on every call to this opcode.
8660 ** However, there are places in the code generator will release registers
8661 ** before their are used, under the (valid) assumption that the registers
8662 ** will not be reallocated for some other purpose before they are used and
8663 ** hence are safe to release.
8664 **
8665 ** This opcode is only available in testing and debugging builds.  It is
8666 ** not generated for release builds.  The purpose of this opcode is to help
8667 ** validate the generated bytecode.  This opcode does not actually contribute
8668 ** to computing an answer.
8669 */
8670 case OP_ReleaseReg: {
8671   Mem *pMem;
8672   int i;
8673   u32 constMask;
8674   assert( pOp->p1>0 );
8675   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8676   pMem = &aMem[pOp->p1];
8677   constMask = pOp->p3;
8678   for(i=0; i<pOp->p2; i++, pMem++){
8679     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8680       pMem->pScopyFrom = 0;
8681       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8682     }
8683   }
8684   break;
8685 }
8686 #endif
8687 
8688 /* Opcode: Noop * * * * *
8689 **
8690 ** Do nothing.  This instruction is often useful as a jump
8691 ** destination.
8692 */
8693 /*
8694 ** The magic Explain opcode are only inserted when explain==2 (which
8695 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8696 ** This opcode records information from the optimizer.  It is the
8697 ** the same as a no-op.  This opcodesnever appears in a real VM program.
8698 */
8699 default: {          /* This is really OP_Noop, OP_Explain */
8700   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8701 
8702   break;
8703 }
8704 
8705 /*****************************************************************************
8706 ** The cases of the switch statement above this line should all be indented
8707 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
8708 ** readability.  From this point on down, the normal indentation rules are
8709 ** restored.
8710 *****************************************************************************/
8711     }
8712 
8713 #ifdef VDBE_PROFILE
8714     {
8715       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8716       if( endTime>start ) pOrigOp->cycles += endTime - start;
8717       pOrigOp->cnt++;
8718     }
8719 #endif
8720 
8721     /* The following code adds nothing to the actual functionality
8722     ** of the program.  It is only here for testing and debugging.
8723     ** On the other hand, it does burn CPU cycles every time through
8724     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
8725     */
8726 #ifndef NDEBUG
8727     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8728 
8729 #ifdef SQLITE_DEBUG
8730     if( db->flags & SQLITE_VdbeTrace ){
8731       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8732       if( rc!=0 ) printf("rc=%d\n",rc);
8733       if( opProperty & (OPFLG_OUT2) ){
8734         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8735       }
8736       if( opProperty & OPFLG_OUT3 ){
8737         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8738       }
8739       if( opProperty==0xff ){
8740         /* Never happens.  This code exists to avoid a harmless linkage
8741         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8742         ** used. */
8743         sqlite3VdbeRegisterDump(p);
8744       }
8745     }
8746 #endif  /* SQLITE_DEBUG */
8747 #endif  /* NDEBUG */
8748   }  /* The end of the for(;;) loop the loops through opcodes */
8749 
8750   /* If we reach this point, it means that execution is finished with
8751   ** an error of some kind.
8752   */
8753 abort_due_to_error:
8754   if( db->mallocFailed ){
8755     rc = SQLITE_NOMEM_BKPT;
8756   }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8757     rc = SQLITE_CORRUPT_BKPT;
8758   }
8759   assert( rc );
8760 #ifdef SQLITE_DEBUG
8761   if( db->flags & SQLITE_VdbeTrace ){
8762     const char *zTrace = p->zSql;
8763     if( zTrace==0 ){
8764       if( aOp[0].opcode==OP_Trace ){
8765         zTrace = aOp[0].p4.z;
8766       }
8767       if( zTrace==0 ) zTrace = "???";
8768     }
8769     printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8770   }
8771 #endif
8772   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8773     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8774   }
8775   p->rc = rc;
8776   sqlite3SystemError(db, rc);
8777   testcase( sqlite3GlobalConfig.xLog!=0 );
8778   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8779                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
8780   if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
8781   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8782   if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8783     db->flags |= SQLITE_CorruptRdOnly;
8784   }
8785   rc = SQLITE_ERROR;
8786   if( resetSchemaOnFault>0 ){
8787     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8788   }
8789 
8790   /* This is the only way out of this procedure.  We have to
8791   ** release the mutexes on btrees that were acquired at the
8792   ** top. */
8793 vdbe_return:
8794 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8795   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8796     nProgressLimit += db->nProgressOps;
8797     if( db->xProgress(db->pProgressArg) ){
8798       nProgressLimit = LARGEST_UINT64;
8799       rc = SQLITE_INTERRUPT;
8800       goto abort_due_to_error;
8801     }
8802   }
8803 #endif
8804   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8805   sqlite3VdbeLeave(p);
8806   assert( rc!=SQLITE_OK || nExtraDelete==0
8807        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8808   );
8809   return rc;
8810 
8811   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8812   ** is encountered.
8813   */
8814 too_big:
8815   sqlite3VdbeError(p, "string or blob too big");
8816   rc = SQLITE_TOOBIG;
8817   goto abort_due_to_error;
8818 
8819   /* Jump to here if a malloc() fails.
8820   */
8821 no_mem:
8822   sqlite3OomFault(db);
8823   sqlite3VdbeError(p, "out of memory");
8824   rc = SQLITE_NOMEM_BKPT;
8825   goto abort_due_to_error;
8826 
8827   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8828   ** flag.
8829   */
8830 abort_due_to_interrupt:
8831   assert( AtomicLoad(&db->u1.isInterrupted) );
8832   rc = SQLITE_INTERRUPT;
8833   goto abort_due_to_error;
8834 }
8835