xref: /sqlite-3.40.0/src/vdbe.c (revision 48864df9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances.  This file is solely interested in executing
16 ** the VDBE program.
17 **
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
19 ** to a VDBE.
20 **
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement.  VDBE programs are
23 ** similar in form to assembly language.  The program consists of
24 ** a linear sequence of operations.  Each operation has an opcode
25 ** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4
26 ** is a null-terminated string.  Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
28 **
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem.  Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value.  An implicit conversion from one
33 ** type to the other occurs as necessary.
34 **
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
39 **
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files.  The formatting
42 ** of the code in this file is, therefore, important.  See other comments
43 ** in this file for details.  If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
45 */
46 #include "sqliteInt.h"
47 #include "vdbeInt.h"
48 
49 /*
50 ** Invoke this macro on memory cells just prior to changing the
51 ** value of the cell.  This macro verifies that shallow copies are
52 ** not misused.
53 */
54 #ifdef SQLITE_DEBUG
55 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
56 #else
57 # define memAboutToChange(P,M)
58 #endif
59 
60 /*
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly.  This variable has no function other than to
65 ** help verify the correct operation of the library.
66 */
67 #ifdef SQLITE_TEST
68 int sqlite3_search_count = 0;
69 #endif
70 
71 /*
72 ** When this global variable is positive, it gets decremented once before
73 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
74 ** field of the sqlite3 structure is set in order to simulate an interrupt.
75 **
76 ** This facility is used for testing purposes only.  It does not function
77 ** in an ordinary build.
78 */
79 #ifdef SQLITE_TEST
80 int sqlite3_interrupt_count = 0;
81 #endif
82 
83 /*
84 ** The next global variable is incremented each type the OP_Sort opcode
85 ** is executed.  The test procedures use this information to make sure that
86 ** sorting is occurring or not occurring at appropriate times.   This variable
87 ** has no function other than to help verify the correct operation of the
88 ** library.
89 */
90 #ifdef SQLITE_TEST
91 int sqlite3_sort_count = 0;
92 #endif
93 
94 /*
95 ** The next global variable records the size of the largest MEM_Blob
96 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
97 ** use this information to make sure that the zero-blob functionality
98 ** is working correctly.   This variable has no function other than to
99 ** help verify the correct operation of the library.
100 */
101 #ifdef SQLITE_TEST
102 int sqlite3_max_blobsize = 0;
103 static void updateMaxBlobsize(Mem *p){
104   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105     sqlite3_max_blobsize = p->n;
106   }
107 }
108 #endif
109 
110 /*
111 ** The next global variable is incremented each type the OP_Found opcode
112 ** is executed. This is used to test whether or not the foreign key
113 ** operation implemented using OP_FkIsZero is working. This variable
114 ** has no function other than to help verify the correct operation of the
115 ** library.
116 */
117 #ifdef SQLITE_TEST
118 int sqlite3_found_count = 0;
119 #endif
120 
121 /*
122 ** Test a register to see if it exceeds the current maximum blob size.
123 ** If it does, record the new maximum blob size.
124 */
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
127 #else
128 # define UPDATE_MAX_BLOBSIZE(P)
129 #endif
130 
131 /*
132 ** Convert the given register into a string if it isn't one
133 ** already. Return non-zero if a malloc() fails.
134 */
135 #define Stringify(P, enc) \
136    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
137      { goto no_mem; }
138 
139 /*
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
141 ** a pointer to a dynamically allocated string where some other entity
142 ** is responsible for deallocating that string.  Because the register
143 ** does not control the string, it might be deleted without the register
144 ** knowing it.
145 **
146 ** This routine converts an ephemeral string into a dynamically allocated
147 ** string that the register itself controls.  In other words, it
148 ** converts an MEM_Ephem string into an MEM_Dyn string.
149 */
150 #define Deephemeralize(P) \
151    if( ((P)->flags&MEM_Ephem)!=0 \
152        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
153 
154 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155 #ifdef SQLITE_OMIT_MERGE_SORT
156 # define isSorter(x) 0
157 #else
158 # define isSorter(x) ((x)->pSorter!=0)
159 #endif
160 
161 /*
162 ** Argument pMem points at a register that will be passed to a
163 ** user-defined function or returned to the user as the result of a query.
164 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
165 ** routines.
166 */
167 void sqlite3VdbeMemStoreType(Mem *pMem){
168   int flags = pMem->flags;
169   if( flags & MEM_Null ){
170     pMem->type = SQLITE_NULL;
171   }
172   else if( flags & MEM_Int ){
173     pMem->type = SQLITE_INTEGER;
174   }
175   else if( flags & MEM_Real ){
176     pMem->type = SQLITE_FLOAT;
177   }
178   else if( flags & MEM_Str ){
179     pMem->type = SQLITE_TEXT;
180   }else{
181     pMem->type = SQLITE_BLOB;
182   }
183 }
184 
185 /*
186 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
187 ** if we run out of memory.
188 */
189 static VdbeCursor *allocateCursor(
190   Vdbe *p,              /* The virtual machine */
191   int iCur,             /* Index of the new VdbeCursor */
192   int nField,           /* Number of fields in the table or index */
193   int iDb,              /* Database the cursor belongs to, or -1 */
194   int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
195 ){
196   /* Find the memory cell that will be used to store the blob of memory
197   ** required for this VdbeCursor structure. It is convenient to use a
198   ** vdbe memory cell to manage the memory allocation required for a
199   ** VdbeCursor structure for the following reasons:
200   **
201   **   * Sometimes cursor numbers are used for a couple of different
202   **     purposes in a vdbe program. The different uses might require
203   **     different sized allocations. Memory cells provide growable
204   **     allocations.
205   **
206   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
207   **     be freed lazily via the sqlite3_release_memory() API. This
208   **     minimizes the number of malloc calls made by the system.
209   **
210   ** Memory cells for cursors are allocated at the top of the address
211   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
212   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
213   */
214   Mem *pMem = &p->aMem[p->nMem-iCur];
215 
216   int nByte;
217   VdbeCursor *pCx = 0;
218   nByte =
219       ROUND8(sizeof(VdbeCursor)) +
220       (isBtreeCursor?sqlite3BtreeCursorSize():0) +
221       2*nField*sizeof(u32);
222 
223   assert( iCur<p->nCursor );
224   if( p->apCsr[iCur] ){
225     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
226     p->apCsr[iCur] = 0;
227   }
228   if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
229     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
230     memset(pCx, 0, sizeof(VdbeCursor));
231     pCx->iDb = iDb;
232     pCx->nField = nField;
233     if( nField ){
234       pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
235     }
236     if( isBtreeCursor ){
237       pCx->pCursor = (BtCursor*)
238           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
239       sqlite3BtreeCursorZero(pCx->pCursor);
240     }
241   }
242   return pCx;
243 }
244 
245 /*
246 ** Try to convert a value into a numeric representation if we can
247 ** do so without loss of information.  In other words, if the string
248 ** looks like a number, convert it into a number.  If it does not
249 ** look like a number, leave it alone.
250 */
251 static void applyNumericAffinity(Mem *pRec){
252   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
253     double rValue;
254     i64 iValue;
255     u8 enc = pRec->enc;
256     if( (pRec->flags&MEM_Str)==0 ) return;
257     if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
258     if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
259       pRec->u.i = iValue;
260       pRec->flags |= MEM_Int;
261     }else{
262       pRec->r = rValue;
263       pRec->flags |= MEM_Real;
264     }
265   }
266 }
267 
268 /*
269 ** Processing is determine by the affinity parameter:
270 **
271 ** SQLITE_AFF_INTEGER:
272 ** SQLITE_AFF_REAL:
273 ** SQLITE_AFF_NUMERIC:
274 **    Try to convert pRec to an integer representation or a
275 **    floating-point representation if an integer representation
276 **    is not possible.  Note that the integer representation is
277 **    always preferred, even if the affinity is REAL, because
278 **    an integer representation is more space efficient on disk.
279 **
280 ** SQLITE_AFF_TEXT:
281 **    Convert pRec to a text representation.
282 **
283 ** SQLITE_AFF_NONE:
284 **    No-op.  pRec is unchanged.
285 */
286 static void applyAffinity(
287   Mem *pRec,          /* The value to apply affinity to */
288   char affinity,      /* The affinity to be applied */
289   u8 enc              /* Use this text encoding */
290 ){
291   if( affinity==SQLITE_AFF_TEXT ){
292     /* Only attempt the conversion to TEXT if there is an integer or real
293     ** representation (blob and NULL do not get converted) but no string
294     ** representation.
295     */
296     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297       sqlite3VdbeMemStringify(pRec, enc);
298     }
299     pRec->flags &= ~(MEM_Real|MEM_Int);
300   }else if( affinity!=SQLITE_AFF_NONE ){
301     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
302              || affinity==SQLITE_AFF_NUMERIC );
303     applyNumericAffinity(pRec);
304     if( pRec->flags & MEM_Real ){
305       sqlite3VdbeIntegerAffinity(pRec);
306     }
307   }
308 }
309 
310 /*
311 ** Try to convert the type of a function argument or a result column
312 ** into a numeric representation.  Use either INTEGER or REAL whichever
313 ** is appropriate.  But only do the conversion if it is possible without
314 ** loss of information and return the revised type of the argument.
315 */
316 int sqlite3_value_numeric_type(sqlite3_value *pVal){
317   Mem *pMem = (Mem*)pVal;
318   if( pMem->type==SQLITE_TEXT ){
319     applyNumericAffinity(pMem);
320     sqlite3VdbeMemStoreType(pMem);
321   }
322   return pMem->type;
323 }
324 
325 /*
326 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
327 ** not the internal Mem* type.
328 */
329 void sqlite3ValueApplyAffinity(
330   sqlite3_value *pVal,
331   u8 affinity,
332   u8 enc
333 ){
334   applyAffinity((Mem *)pVal, affinity, enc);
335 }
336 
337 #ifdef SQLITE_DEBUG
338 /*
339 ** Write a nice string representation of the contents of cell pMem
340 ** into buffer zBuf, length nBuf.
341 */
342 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
343   char *zCsr = zBuf;
344   int f = pMem->flags;
345 
346   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
347 
348   if( f&MEM_Blob ){
349     int i;
350     char c;
351     if( f & MEM_Dyn ){
352       c = 'z';
353       assert( (f & (MEM_Static|MEM_Ephem))==0 );
354     }else if( f & MEM_Static ){
355       c = 't';
356       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
357     }else if( f & MEM_Ephem ){
358       c = 'e';
359       assert( (f & (MEM_Static|MEM_Dyn))==0 );
360     }else{
361       c = 's';
362     }
363 
364     sqlite3_snprintf(100, zCsr, "%c", c);
365     zCsr += sqlite3Strlen30(zCsr);
366     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
367     zCsr += sqlite3Strlen30(zCsr);
368     for(i=0; i<16 && i<pMem->n; i++){
369       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
370       zCsr += sqlite3Strlen30(zCsr);
371     }
372     for(i=0; i<16 && i<pMem->n; i++){
373       char z = pMem->z[i];
374       if( z<32 || z>126 ) *zCsr++ = '.';
375       else *zCsr++ = z;
376     }
377 
378     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
379     zCsr += sqlite3Strlen30(zCsr);
380     if( f & MEM_Zero ){
381       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
382       zCsr += sqlite3Strlen30(zCsr);
383     }
384     *zCsr = '\0';
385   }else if( f & MEM_Str ){
386     int j, k;
387     zBuf[0] = ' ';
388     if( f & MEM_Dyn ){
389       zBuf[1] = 'z';
390       assert( (f & (MEM_Static|MEM_Ephem))==0 );
391     }else if( f & MEM_Static ){
392       zBuf[1] = 't';
393       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
394     }else if( f & MEM_Ephem ){
395       zBuf[1] = 'e';
396       assert( (f & (MEM_Static|MEM_Dyn))==0 );
397     }else{
398       zBuf[1] = 's';
399     }
400     k = 2;
401     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
402     k += sqlite3Strlen30(&zBuf[k]);
403     zBuf[k++] = '[';
404     for(j=0; j<15 && j<pMem->n; j++){
405       u8 c = pMem->z[j];
406       if( c>=0x20 && c<0x7f ){
407         zBuf[k++] = c;
408       }else{
409         zBuf[k++] = '.';
410       }
411     }
412     zBuf[k++] = ']';
413     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
414     k += sqlite3Strlen30(&zBuf[k]);
415     zBuf[k++] = 0;
416   }
417 }
418 #endif
419 
420 #ifdef SQLITE_DEBUG
421 /*
422 ** Print the value of a register for tracing purposes:
423 */
424 static void memTracePrint(FILE *out, Mem *p){
425   if( p->flags & MEM_Invalid ){
426     fprintf(out, " undefined");
427   }else if( p->flags & MEM_Null ){
428     fprintf(out, " NULL");
429   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
430     fprintf(out, " si:%lld", p->u.i);
431   }else if( p->flags & MEM_Int ){
432     fprintf(out, " i:%lld", p->u.i);
433 #ifndef SQLITE_OMIT_FLOATING_POINT
434   }else if( p->flags & MEM_Real ){
435     fprintf(out, " r:%g", p->r);
436 #endif
437   }else if( p->flags & MEM_RowSet ){
438     fprintf(out, " (rowset)");
439   }else{
440     char zBuf[200];
441     sqlite3VdbeMemPrettyPrint(p, zBuf);
442     fprintf(out, " ");
443     fprintf(out, "%s", zBuf);
444   }
445 }
446 static void registerTrace(FILE *out, int iReg, Mem *p){
447   fprintf(out, "REG[%d] = ", iReg);
448   memTracePrint(out, p);
449   fprintf(out, "\n");
450 }
451 #endif
452 
453 #ifdef SQLITE_DEBUG
454 #  define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
455 #else
456 #  define REGISTER_TRACE(R,M)
457 #endif
458 
459 
460 #ifdef VDBE_PROFILE
461 
462 /*
463 ** hwtime.h contains inline assembler code for implementing
464 ** high-performance timing routines.
465 */
466 #include "hwtime.h"
467 
468 #endif
469 
470 /*
471 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
472 ** sqlite3_interrupt() routine has been called.  If it has been, then
473 ** processing of the VDBE program is interrupted.
474 **
475 ** This macro added to every instruction that does a jump in order to
476 ** implement a loop.  This test used to be on every single instruction,
477 ** but that meant we more testing than we needed.  By only testing the
478 ** flag on jump instructions, we get a (small) speed improvement.
479 */
480 #define CHECK_FOR_INTERRUPT \
481    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
482 
483 
484 #ifndef NDEBUG
485 /*
486 ** This function is only called from within an assert() expression. It
487 ** checks that the sqlite3.nTransaction variable is correctly set to
488 ** the number of non-transaction savepoints currently in the
489 ** linked list starting at sqlite3.pSavepoint.
490 **
491 ** Usage:
492 **
493 **     assert( checkSavepointCount(db) );
494 */
495 static int checkSavepointCount(sqlite3 *db){
496   int n = 0;
497   Savepoint *p;
498   for(p=db->pSavepoint; p; p=p->pNext) n++;
499   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
500   return 1;
501 }
502 #endif
503 
504 /*
505 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
506 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
507 ** in memory obtained from sqlite3DbMalloc).
508 */
509 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
510   sqlite3 *db = p->db;
511   sqlite3DbFree(db, p->zErrMsg);
512   p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
513   sqlite3_free(pVtab->zErrMsg);
514   pVtab->zErrMsg = 0;
515 }
516 
517 
518 /*
519 ** Execute as much of a VDBE program as we can then return.
520 **
521 ** sqlite3VdbeMakeReady() must be called before this routine in order to
522 ** close the program with a final OP_Halt and to set up the callbacks
523 ** and the error message pointer.
524 **
525 ** Whenever a row or result data is available, this routine will either
526 ** invoke the result callback (if there is one) or return with
527 ** SQLITE_ROW.
528 **
529 ** If an attempt is made to open a locked database, then this routine
530 ** will either invoke the busy callback (if there is one) or it will
531 ** return SQLITE_BUSY.
532 **
533 ** If an error occurs, an error message is written to memory obtained
534 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
535 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
536 **
537 ** If the callback ever returns non-zero, then the program exits
538 ** immediately.  There will be no error message but the p->rc field is
539 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
540 **
541 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
542 ** routine to return SQLITE_ERROR.
543 **
544 ** Other fatal errors return SQLITE_ERROR.
545 **
546 ** After this routine has finished, sqlite3VdbeFinalize() should be
547 ** used to clean up the mess that was left behind.
548 */
549 int sqlite3VdbeExec(
550   Vdbe *p                    /* The VDBE */
551 ){
552   int pc=0;                  /* The program counter */
553   Op *aOp = p->aOp;          /* Copy of p->aOp */
554   Op *pOp;                   /* Current operation */
555   int rc = SQLITE_OK;        /* Value to return */
556   sqlite3 *db = p->db;       /* The database */
557   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
558   u8 encoding = ENC(db);     /* The database encoding */
559 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
560   int checkProgress;         /* True if progress callbacks are enabled */
561   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
562 #endif
563   Mem *aMem = p->aMem;       /* Copy of p->aMem */
564   Mem *pIn1 = 0;             /* 1st input operand */
565   Mem *pIn2 = 0;             /* 2nd input operand */
566   Mem *pIn3 = 0;             /* 3rd input operand */
567   Mem *pOut = 0;             /* Output operand */
568   int iCompare = 0;          /* Result of last OP_Compare operation */
569   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
570   i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
571 #ifdef VDBE_PROFILE
572   u64 start;                 /* CPU clock count at start of opcode */
573   int origPc;                /* Program counter at start of opcode */
574 #endif
575   /*** INSERT STACK UNION HERE ***/
576 
577   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
578   sqlite3VdbeEnter(p);
579   if( p->rc==SQLITE_NOMEM ){
580     /* This happens if a malloc() inside a call to sqlite3_column_text() or
581     ** sqlite3_column_text16() failed.  */
582     goto no_mem;
583   }
584   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
585   p->rc = SQLITE_OK;
586   assert( p->explain==0 );
587   p->pResultSet = 0;
588   db->busyHandler.nBusy = 0;
589   CHECK_FOR_INTERRUPT;
590   sqlite3VdbeIOTraceSql(p);
591 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
592   checkProgress = db->xProgress!=0;
593 #endif
594 #ifdef SQLITE_DEBUG
595   sqlite3BeginBenignMalloc();
596   if( p->pc==0  && (p->db->flags & SQLITE_VdbeListing)!=0 ){
597     int i;
598     printf("VDBE Program Listing:\n");
599     sqlite3VdbePrintSql(p);
600     for(i=0; i<p->nOp; i++){
601       sqlite3VdbePrintOp(stdout, i, &aOp[i]);
602     }
603   }
604   sqlite3EndBenignMalloc();
605 #endif
606   for(pc=p->pc; rc==SQLITE_OK; pc++){
607     assert( pc>=0 && pc<p->nOp );
608     if( db->mallocFailed ) goto no_mem;
609 #ifdef VDBE_PROFILE
610     origPc = pc;
611     start = sqlite3Hwtime();
612 #endif
613     pOp = &aOp[pc];
614 
615     /* Only allow tracing if SQLITE_DEBUG is defined.
616     */
617 #ifdef SQLITE_DEBUG
618     if( p->trace ){
619       if( pc==0 ){
620         printf("VDBE Execution Trace:\n");
621         sqlite3VdbePrintSql(p);
622       }
623       sqlite3VdbePrintOp(p->trace, pc, pOp);
624     }
625 #endif
626 
627 
628     /* Check to see if we need to simulate an interrupt.  This only happens
629     ** if we have a special test build.
630     */
631 #ifdef SQLITE_TEST
632     if( sqlite3_interrupt_count>0 ){
633       sqlite3_interrupt_count--;
634       if( sqlite3_interrupt_count==0 ){
635         sqlite3_interrupt(db);
636       }
637     }
638 #endif
639 
640 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
641     /* Call the progress callback if it is configured and the required number
642     ** of VDBE ops have been executed (either since this invocation of
643     ** sqlite3VdbeExec() or since last time the progress callback was called).
644     ** If the progress callback returns non-zero, exit the virtual machine with
645     ** a return code SQLITE_ABORT.
646     */
647     if( checkProgress ){
648       if( db->nProgressOps==nProgressOps ){
649         int prc;
650         prc = db->xProgress(db->pProgressArg);
651         if( prc!=0 ){
652           rc = SQLITE_INTERRUPT;
653           goto vdbe_error_halt;
654         }
655         nProgressOps = 0;
656       }
657       nProgressOps++;
658     }
659 #endif
660 
661     /* On any opcode with the "out2-prerelease" tag, free any
662     ** external allocations out of mem[p2] and set mem[p2] to be
663     ** an undefined integer.  Opcodes will either fill in the integer
664     ** value or convert mem[p2] to a different type.
665     */
666     assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
667     if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
668       assert( pOp->p2>0 );
669       assert( pOp->p2<=p->nMem );
670       pOut = &aMem[pOp->p2];
671       memAboutToChange(p, pOut);
672       VdbeMemRelease(pOut);
673       pOut->flags = MEM_Int;
674     }
675 
676     /* Sanity checking on other operands */
677 #ifdef SQLITE_DEBUG
678     if( (pOp->opflags & OPFLG_IN1)!=0 ){
679       assert( pOp->p1>0 );
680       assert( pOp->p1<=p->nMem );
681       assert( memIsValid(&aMem[pOp->p1]) );
682       REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
683     }
684     if( (pOp->opflags & OPFLG_IN2)!=0 ){
685       assert( pOp->p2>0 );
686       assert( pOp->p2<=p->nMem );
687       assert( memIsValid(&aMem[pOp->p2]) );
688       REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
689     }
690     if( (pOp->opflags & OPFLG_IN3)!=0 ){
691       assert( pOp->p3>0 );
692       assert( pOp->p3<=p->nMem );
693       assert( memIsValid(&aMem[pOp->p3]) );
694       REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
695     }
696     if( (pOp->opflags & OPFLG_OUT2)!=0 ){
697       assert( pOp->p2>0 );
698       assert( pOp->p2<=p->nMem );
699       memAboutToChange(p, &aMem[pOp->p2]);
700     }
701     if( (pOp->opflags & OPFLG_OUT3)!=0 ){
702       assert( pOp->p3>0 );
703       assert( pOp->p3<=p->nMem );
704       memAboutToChange(p, &aMem[pOp->p3]);
705     }
706 #endif
707 
708     switch( pOp->opcode ){
709 
710 /*****************************************************************************
711 ** What follows is a massive switch statement where each case implements a
712 ** separate instruction in the virtual machine.  If we follow the usual
713 ** indentation conventions, each case should be indented by 6 spaces.  But
714 ** that is a lot of wasted space on the left margin.  So the code within
715 ** the switch statement will break with convention and be flush-left. Another
716 ** big comment (similar to this one) will mark the point in the code where
717 ** we transition back to normal indentation.
718 **
719 ** The formatting of each case is important.  The makefile for SQLite
720 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
721 ** file looking for lines that begin with "case OP_".  The opcodes.h files
722 ** will be filled with #defines that give unique integer values to each
723 ** opcode and the opcodes.c file is filled with an array of strings where
724 ** each string is the symbolic name for the corresponding opcode.  If the
725 ** case statement is followed by a comment of the form "/# same as ... #/"
726 ** that comment is used to determine the particular value of the opcode.
727 **
728 ** Other keywords in the comment that follows each case are used to
729 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
730 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
731 ** the mkopcodeh.awk script for additional information.
732 **
733 ** Documentation about VDBE opcodes is generated by scanning this file
734 ** for lines of that contain "Opcode:".  That line and all subsequent
735 ** comment lines are used in the generation of the opcode.html documentation
736 ** file.
737 **
738 ** SUMMARY:
739 **
740 **     Formatting is important to scripts that scan this file.
741 **     Do not deviate from the formatting style currently in use.
742 **
743 *****************************************************************************/
744 
745 /* Opcode:  Goto * P2 * * *
746 **
747 ** An unconditional jump to address P2.
748 ** The next instruction executed will be
749 ** the one at index P2 from the beginning of
750 ** the program.
751 */
752 case OP_Goto: {             /* jump */
753   CHECK_FOR_INTERRUPT;
754   pc = pOp->p2 - 1;
755   break;
756 }
757 
758 /* Opcode:  Gosub P1 P2 * * *
759 **
760 ** Write the current address onto register P1
761 ** and then jump to address P2.
762 */
763 case OP_Gosub: {            /* jump */
764   assert( pOp->p1>0 && pOp->p1<=p->nMem );
765   pIn1 = &aMem[pOp->p1];
766   assert( (pIn1->flags & MEM_Dyn)==0 );
767   memAboutToChange(p, pIn1);
768   pIn1->flags = MEM_Int;
769   pIn1->u.i = pc;
770   REGISTER_TRACE(pOp->p1, pIn1);
771   pc = pOp->p2 - 1;
772   break;
773 }
774 
775 /* Opcode:  Return P1 * * * *
776 **
777 ** Jump to the next instruction after the address in register P1.
778 */
779 case OP_Return: {           /* in1 */
780   pIn1 = &aMem[pOp->p1];
781   assert( pIn1->flags & MEM_Int );
782   pc = (int)pIn1->u.i;
783   break;
784 }
785 
786 /* Opcode:  Yield P1 * * * *
787 **
788 ** Swap the program counter with the value in register P1.
789 */
790 case OP_Yield: {            /* in1 */
791   int pcDest;
792   pIn1 = &aMem[pOp->p1];
793   assert( (pIn1->flags & MEM_Dyn)==0 );
794   pIn1->flags = MEM_Int;
795   pcDest = (int)pIn1->u.i;
796   pIn1->u.i = pc;
797   REGISTER_TRACE(pOp->p1, pIn1);
798   pc = pcDest;
799   break;
800 }
801 
802 /* Opcode:  HaltIfNull  P1 P2 P3 P4 *
803 **
804 ** Check the value in register P3.  If it is NULL then Halt using
805 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
806 ** value in register P3 is not NULL, then this routine is a no-op.
807 */
808 case OP_HaltIfNull: {      /* in3 */
809   pIn3 = &aMem[pOp->p3];
810   if( (pIn3->flags & MEM_Null)==0 ) break;
811   /* Fall through into OP_Halt */
812 }
813 
814 /* Opcode:  Halt P1 P2 * P4 *
815 **
816 ** Exit immediately.  All open cursors, etc are closed
817 ** automatically.
818 **
819 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
820 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
821 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
822 ** whether or not to rollback the current transaction.  Do not rollback
823 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
824 ** then back out all changes that have occurred during this execution of the
825 ** VDBE, but do not rollback the transaction.
826 **
827 ** If P4 is not null then it is an error message string.
828 **
829 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
830 ** every program.  So a jump past the last instruction of the program
831 ** is the same as executing Halt.
832 */
833 case OP_Halt: {
834   if( pOp->p1==SQLITE_OK && p->pFrame ){
835     /* Halt the sub-program. Return control to the parent frame. */
836     VdbeFrame *pFrame = p->pFrame;
837     p->pFrame = pFrame->pParent;
838     p->nFrame--;
839     sqlite3VdbeSetChanges(db, p->nChange);
840     pc = sqlite3VdbeFrameRestore(pFrame);
841     lastRowid = db->lastRowid;
842     if( pOp->p2==OE_Ignore ){
843       /* Instruction pc is the OP_Program that invoked the sub-program
844       ** currently being halted. If the p2 instruction of this OP_Halt
845       ** instruction is set to OE_Ignore, then the sub-program is throwing
846       ** an IGNORE exception. In this case jump to the address specified
847       ** as the p2 of the calling OP_Program.  */
848       pc = p->aOp[pc].p2-1;
849     }
850     aOp = p->aOp;
851     aMem = p->aMem;
852     break;
853   }
854 
855   p->rc = pOp->p1;
856   p->errorAction = (u8)pOp->p2;
857   p->pc = pc;
858   if( pOp->p4.z ){
859     assert( p->rc!=SQLITE_OK );
860     sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
861     testcase( sqlite3GlobalConfig.xLog!=0 );
862     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
863   }else if( p->rc ){
864     testcase( sqlite3GlobalConfig.xLog!=0 );
865     sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
866   }
867   rc = sqlite3VdbeHalt(p);
868   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
869   if( rc==SQLITE_BUSY ){
870     p->rc = rc = SQLITE_BUSY;
871   }else{
872     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
873     assert( rc==SQLITE_OK || db->nDeferredCons>0 );
874     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
875   }
876   goto vdbe_return;
877 }
878 
879 /* Opcode: Integer P1 P2 * * *
880 **
881 ** The 32-bit integer value P1 is written into register P2.
882 */
883 case OP_Integer: {         /* out2-prerelease */
884   pOut->u.i = pOp->p1;
885   break;
886 }
887 
888 /* Opcode: Int64 * P2 * P4 *
889 **
890 ** P4 is a pointer to a 64-bit integer value.
891 ** Write that value into register P2.
892 */
893 case OP_Int64: {           /* out2-prerelease */
894   assert( pOp->p4.pI64!=0 );
895   pOut->u.i = *pOp->p4.pI64;
896   break;
897 }
898 
899 #ifndef SQLITE_OMIT_FLOATING_POINT
900 /* Opcode: Real * P2 * P4 *
901 **
902 ** P4 is a pointer to a 64-bit floating point value.
903 ** Write that value into register P2.
904 */
905 case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
906   pOut->flags = MEM_Real;
907   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
908   pOut->r = *pOp->p4.pReal;
909   break;
910 }
911 #endif
912 
913 /* Opcode: String8 * P2 * P4 *
914 **
915 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
916 ** into an OP_String before it is executed for the first time.
917 */
918 case OP_String8: {         /* same as TK_STRING, out2-prerelease */
919   assert( pOp->p4.z!=0 );
920   pOp->opcode = OP_String;
921   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
922 
923 #ifndef SQLITE_OMIT_UTF16
924   if( encoding!=SQLITE_UTF8 ){
925     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
926     if( rc==SQLITE_TOOBIG ) goto too_big;
927     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
928     assert( pOut->zMalloc==pOut->z );
929     assert( pOut->flags & MEM_Dyn );
930     pOut->zMalloc = 0;
931     pOut->flags |= MEM_Static;
932     pOut->flags &= ~MEM_Dyn;
933     if( pOp->p4type==P4_DYNAMIC ){
934       sqlite3DbFree(db, pOp->p4.z);
935     }
936     pOp->p4type = P4_DYNAMIC;
937     pOp->p4.z = pOut->z;
938     pOp->p1 = pOut->n;
939   }
940 #endif
941   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
942     goto too_big;
943   }
944   /* Fall through to the next case, OP_String */
945 }
946 
947 /* Opcode: String P1 P2 * P4 *
948 **
949 ** The string value P4 of length P1 (bytes) is stored in register P2.
950 */
951 case OP_String: {          /* out2-prerelease */
952   assert( pOp->p4.z!=0 );
953   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
954   pOut->z = pOp->p4.z;
955   pOut->n = pOp->p1;
956   pOut->enc = encoding;
957   UPDATE_MAX_BLOBSIZE(pOut);
958   break;
959 }
960 
961 /* Opcode: Null P1 P2 P3 * *
962 **
963 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
964 ** NULL into register P3 and every register in between P2 and P3.  If P3
965 ** is less than P2 (typically P3 is zero) then only register P2 is
966 ** set to NULL.
967 **
968 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
969 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
970 ** OP_Ne or OP_Eq.
971 */
972 case OP_Null: {           /* out2-prerelease */
973   int cnt;
974   u16 nullFlag;
975   cnt = pOp->p3-pOp->p2;
976   assert( pOp->p3<=p->nMem );
977   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
978   while( cnt>0 ){
979     pOut++;
980     memAboutToChange(p, pOut);
981     VdbeMemRelease(pOut);
982     pOut->flags = nullFlag;
983     cnt--;
984   }
985   break;
986 }
987 
988 
989 /* Opcode: Blob P1 P2 * P4
990 **
991 ** P4 points to a blob of data P1 bytes long.  Store this
992 ** blob in register P2.
993 */
994 case OP_Blob: {                /* out2-prerelease */
995   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
996   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
997   pOut->enc = encoding;
998   UPDATE_MAX_BLOBSIZE(pOut);
999   break;
1000 }
1001 
1002 /* Opcode: Variable P1 P2 * P4 *
1003 **
1004 ** Transfer the values of bound parameter P1 into register P2
1005 **
1006 ** If the parameter is named, then its name appears in P4 and P3==1.
1007 ** The P4 value is used by sqlite3_bind_parameter_name().
1008 */
1009 case OP_Variable: {            /* out2-prerelease */
1010   Mem *pVar;       /* Value being transferred */
1011 
1012   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1013   assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1014   pVar = &p->aVar[pOp->p1 - 1];
1015   if( sqlite3VdbeMemTooBig(pVar) ){
1016     goto too_big;
1017   }
1018   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1019   UPDATE_MAX_BLOBSIZE(pOut);
1020   break;
1021 }
1022 
1023 /* Opcode: Move P1 P2 P3 * *
1024 **
1025 ** Move the values in register P1..P1+P3 over into
1026 ** registers P2..P2+P3.  Registers P1..P1+P3 are
1027 ** left holding a NULL.  It is an error for register ranges
1028 ** P1..P1+P3 and P2..P2+P3 to overlap.
1029 */
1030 case OP_Move: {
1031   char *zMalloc;   /* Holding variable for allocated memory */
1032   int n;           /* Number of registers left to copy */
1033   int p1;          /* Register to copy from */
1034   int p2;          /* Register to copy to */
1035 
1036   n = pOp->p3 + 1;
1037   p1 = pOp->p1;
1038   p2 = pOp->p2;
1039   assert( n>0 && p1>0 && p2>0 );
1040   assert( p1+n<=p2 || p2+n<=p1 );
1041 
1042   pIn1 = &aMem[p1];
1043   pOut = &aMem[p2];
1044   while( n-- ){
1045     assert( pOut<=&aMem[p->nMem] );
1046     assert( pIn1<=&aMem[p->nMem] );
1047     assert( memIsValid(pIn1) );
1048     memAboutToChange(p, pOut);
1049     zMalloc = pOut->zMalloc;
1050     pOut->zMalloc = 0;
1051     sqlite3VdbeMemMove(pOut, pIn1);
1052 #ifdef SQLITE_DEBUG
1053     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1054       pOut->pScopyFrom += p1 - pOp->p2;
1055     }
1056 #endif
1057     pIn1->zMalloc = zMalloc;
1058     REGISTER_TRACE(p2++, pOut);
1059     pIn1++;
1060     pOut++;
1061   }
1062   break;
1063 }
1064 
1065 /* Opcode: Copy P1 P2 P3 * *
1066 **
1067 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1068 **
1069 ** This instruction makes a deep copy of the value.  A duplicate
1070 ** is made of any string or blob constant.  See also OP_SCopy.
1071 */
1072 case OP_Copy: {
1073   int n;
1074 
1075   n = pOp->p3;
1076   pIn1 = &aMem[pOp->p1];
1077   pOut = &aMem[pOp->p2];
1078   assert( pOut!=pIn1 );
1079   while( 1 ){
1080     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1081     Deephemeralize(pOut);
1082 #ifdef SQLITE_DEBUG
1083     pOut->pScopyFrom = 0;
1084 #endif
1085     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1086     if( (n--)==0 ) break;
1087     pOut++;
1088     pIn1++;
1089   }
1090   break;
1091 }
1092 
1093 /* Opcode: SCopy P1 P2 * * *
1094 **
1095 ** Make a shallow copy of register P1 into register P2.
1096 **
1097 ** This instruction makes a shallow copy of the value.  If the value
1098 ** is a string or blob, then the copy is only a pointer to the
1099 ** original and hence if the original changes so will the copy.
1100 ** Worse, if the original is deallocated, the copy becomes invalid.
1101 ** Thus the program must guarantee that the original will not change
1102 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1103 ** copy.
1104 */
1105 case OP_SCopy: {            /* in1, out2 */
1106   pIn1 = &aMem[pOp->p1];
1107   pOut = &aMem[pOp->p2];
1108   assert( pOut!=pIn1 );
1109   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1110 #ifdef SQLITE_DEBUG
1111   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1112 #endif
1113   REGISTER_TRACE(pOp->p2, pOut);
1114   break;
1115 }
1116 
1117 /* Opcode: ResultRow P1 P2 * * *
1118 **
1119 ** The registers P1 through P1+P2-1 contain a single row of
1120 ** results. This opcode causes the sqlite3_step() call to terminate
1121 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1122 ** structure to provide access to the top P1 values as the result
1123 ** row.
1124 */
1125 case OP_ResultRow: {
1126   Mem *pMem;
1127   int i;
1128   assert( p->nResColumn==pOp->p2 );
1129   assert( pOp->p1>0 );
1130   assert( pOp->p1+pOp->p2<=p->nMem+1 );
1131 
1132   /* If this statement has violated immediate foreign key constraints, do
1133   ** not return the number of rows modified. And do not RELEASE the statement
1134   ** transaction. It needs to be rolled back.  */
1135   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1136     assert( db->flags&SQLITE_CountRows );
1137     assert( p->usesStmtJournal );
1138     break;
1139   }
1140 
1141   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1142   ** DML statements invoke this opcode to return the number of rows
1143   ** modified to the user. This is the only way that a VM that
1144   ** opens a statement transaction may invoke this opcode.
1145   **
1146   ** In case this is such a statement, close any statement transaction
1147   ** opened by this VM before returning control to the user. This is to
1148   ** ensure that statement-transactions are always nested, not overlapping.
1149   ** If the open statement-transaction is not closed here, then the user
1150   ** may step another VM that opens its own statement transaction. This
1151   ** may lead to overlapping statement transactions.
1152   **
1153   ** The statement transaction is never a top-level transaction.  Hence
1154   ** the RELEASE call below can never fail.
1155   */
1156   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1157   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1158   if( NEVER(rc!=SQLITE_OK) ){
1159     break;
1160   }
1161 
1162   /* Invalidate all ephemeral cursor row caches */
1163   p->cacheCtr = (p->cacheCtr + 2)|1;
1164 
1165   /* Make sure the results of the current row are \000 terminated
1166   ** and have an assigned type.  The results are de-ephemeralized as
1167   ** a side effect.
1168   */
1169   pMem = p->pResultSet = &aMem[pOp->p1];
1170   for(i=0; i<pOp->p2; i++){
1171     assert( memIsValid(&pMem[i]) );
1172     Deephemeralize(&pMem[i]);
1173     assert( (pMem[i].flags & MEM_Ephem)==0
1174             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1175     sqlite3VdbeMemNulTerminate(&pMem[i]);
1176     sqlite3VdbeMemStoreType(&pMem[i]);
1177     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1178   }
1179   if( db->mallocFailed ) goto no_mem;
1180 
1181   /* Return SQLITE_ROW
1182   */
1183   p->pc = pc + 1;
1184   rc = SQLITE_ROW;
1185   goto vdbe_return;
1186 }
1187 
1188 /* Opcode: Concat P1 P2 P3 * *
1189 **
1190 ** Add the text in register P1 onto the end of the text in
1191 ** register P2 and store the result in register P3.
1192 ** If either the P1 or P2 text are NULL then store NULL in P3.
1193 **
1194 **   P3 = P2 || P1
1195 **
1196 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1197 ** if P3 is the same register as P2, the implementation is able
1198 ** to avoid a memcpy().
1199 */
1200 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1201   i64 nByte;
1202 
1203   pIn1 = &aMem[pOp->p1];
1204   pIn2 = &aMem[pOp->p2];
1205   pOut = &aMem[pOp->p3];
1206   assert( pIn1!=pOut );
1207   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1208     sqlite3VdbeMemSetNull(pOut);
1209     break;
1210   }
1211   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1212   Stringify(pIn1, encoding);
1213   Stringify(pIn2, encoding);
1214   nByte = pIn1->n + pIn2->n;
1215   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1216     goto too_big;
1217   }
1218   MemSetTypeFlag(pOut, MEM_Str);
1219   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1220     goto no_mem;
1221   }
1222   if( pOut!=pIn2 ){
1223     memcpy(pOut->z, pIn2->z, pIn2->n);
1224   }
1225   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1226   pOut->z[nByte] = 0;
1227   pOut->z[nByte+1] = 0;
1228   pOut->flags |= MEM_Term;
1229   pOut->n = (int)nByte;
1230   pOut->enc = encoding;
1231   UPDATE_MAX_BLOBSIZE(pOut);
1232   break;
1233 }
1234 
1235 /* Opcode: Add P1 P2 P3 * *
1236 **
1237 ** Add the value in register P1 to the value in register P2
1238 ** and store the result in register P3.
1239 ** If either input is NULL, the result is NULL.
1240 */
1241 /* Opcode: Multiply P1 P2 P3 * *
1242 **
1243 **
1244 ** Multiply the value in register P1 by the value in register P2
1245 ** and store the result in register P3.
1246 ** If either input is NULL, the result is NULL.
1247 */
1248 /* Opcode: Subtract P1 P2 P3 * *
1249 **
1250 ** Subtract the value in register P1 from the value in register P2
1251 ** and store the result in register P3.
1252 ** If either input is NULL, the result is NULL.
1253 */
1254 /* Opcode: Divide P1 P2 P3 * *
1255 **
1256 ** Divide the value in register P1 by the value in register P2
1257 ** and store the result in register P3 (P3=P2/P1). If the value in
1258 ** register P1 is zero, then the result is NULL. If either input is
1259 ** NULL, the result is NULL.
1260 */
1261 /* Opcode: Remainder P1 P2 P3 * *
1262 **
1263 ** Compute the remainder after integer division of the value in
1264 ** register P1 by the value in register P2 and store the result in P3.
1265 ** If the value in register P2 is zero the result is NULL.
1266 ** If either operand is NULL, the result is NULL.
1267 */
1268 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1269 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1270 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1271 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1272 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1273   char bIntint;   /* Started out as two integer operands */
1274   int flags;      /* Combined MEM_* flags from both inputs */
1275   i64 iA;         /* Integer value of left operand */
1276   i64 iB;         /* Integer value of right operand */
1277   double rA;      /* Real value of left operand */
1278   double rB;      /* Real value of right operand */
1279 
1280   pIn1 = &aMem[pOp->p1];
1281   applyNumericAffinity(pIn1);
1282   pIn2 = &aMem[pOp->p2];
1283   applyNumericAffinity(pIn2);
1284   pOut = &aMem[pOp->p3];
1285   flags = pIn1->flags | pIn2->flags;
1286   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1287   if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
1288     iA = pIn1->u.i;
1289     iB = pIn2->u.i;
1290     bIntint = 1;
1291     switch( pOp->opcode ){
1292       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1293       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1294       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1295       case OP_Divide: {
1296         if( iA==0 ) goto arithmetic_result_is_null;
1297         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1298         iB /= iA;
1299         break;
1300       }
1301       default: {
1302         if( iA==0 ) goto arithmetic_result_is_null;
1303         if( iA==-1 ) iA = 1;
1304         iB %= iA;
1305         break;
1306       }
1307     }
1308     pOut->u.i = iB;
1309     MemSetTypeFlag(pOut, MEM_Int);
1310   }else{
1311     bIntint = 0;
1312 fp_math:
1313     rA = sqlite3VdbeRealValue(pIn1);
1314     rB = sqlite3VdbeRealValue(pIn2);
1315     switch( pOp->opcode ){
1316       case OP_Add:         rB += rA;       break;
1317       case OP_Subtract:    rB -= rA;       break;
1318       case OP_Multiply:    rB *= rA;       break;
1319       case OP_Divide: {
1320         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1321         if( rA==(double)0 ) goto arithmetic_result_is_null;
1322         rB /= rA;
1323         break;
1324       }
1325       default: {
1326         iA = (i64)rA;
1327         iB = (i64)rB;
1328         if( iA==0 ) goto arithmetic_result_is_null;
1329         if( iA==-1 ) iA = 1;
1330         rB = (double)(iB % iA);
1331         break;
1332       }
1333     }
1334 #ifdef SQLITE_OMIT_FLOATING_POINT
1335     pOut->u.i = rB;
1336     MemSetTypeFlag(pOut, MEM_Int);
1337 #else
1338     if( sqlite3IsNaN(rB) ){
1339       goto arithmetic_result_is_null;
1340     }
1341     pOut->r = rB;
1342     MemSetTypeFlag(pOut, MEM_Real);
1343     if( (flags & MEM_Real)==0 && !bIntint ){
1344       sqlite3VdbeIntegerAffinity(pOut);
1345     }
1346 #endif
1347   }
1348   break;
1349 
1350 arithmetic_result_is_null:
1351   sqlite3VdbeMemSetNull(pOut);
1352   break;
1353 }
1354 
1355 /* Opcode: CollSeq P1 * * P4
1356 **
1357 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1358 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1359 ** be returned. This is used by the built-in min(), max() and nullif()
1360 ** functions.
1361 **
1362 ** If P1 is not zero, then it is a register that a subsequent min() or
1363 ** max() aggregate will set to 1 if the current row is not the minimum or
1364 ** maximum.  The P1 register is initialized to 0 by this instruction.
1365 **
1366 ** The interface used by the implementation of the aforementioned functions
1367 ** to retrieve the collation sequence set by this opcode is not available
1368 ** publicly, only to user functions defined in func.c.
1369 */
1370 case OP_CollSeq: {
1371   assert( pOp->p4type==P4_COLLSEQ );
1372   if( pOp->p1 ){
1373     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1374   }
1375   break;
1376 }
1377 
1378 /* Opcode: Function P1 P2 P3 P4 P5
1379 **
1380 ** Invoke a user function (P4 is a pointer to a Function structure that
1381 ** defines the function) with P5 arguments taken from register P2 and
1382 ** successors.  The result of the function is stored in register P3.
1383 ** Register P3 must not be one of the function inputs.
1384 **
1385 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1386 ** function was determined to be constant at compile time. If the first
1387 ** argument was constant then bit 0 of P1 is set. This is used to determine
1388 ** whether meta data associated with a user function argument using the
1389 ** sqlite3_set_auxdata() API may be safely retained until the next
1390 ** invocation of this opcode.
1391 **
1392 ** See also: AggStep and AggFinal
1393 */
1394 case OP_Function: {
1395   int i;
1396   Mem *pArg;
1397   sqlite3_context ctx;
1398   sqlite3_value **apVal;
1399   int n;
1400 
1401   n = pOp->p5;
1402   apVal = p->apArg;
1403   assert( apVal || n==0 );
1404   assert( pOp->p3>0 && pOp->p3<=p->nMem );
1405   pOut = &aMem[pOp->p3];
1406   memAboutToChange(p, pOut);
1407 
1408   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
1409   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1410   pArg = &aMem[pOp->p2];
1411   for(i=0; i<n; i++, pArg++){
1412     assert( memIsValid(pArg) );
1413     apVal[i] = pArg;
1414     Deephemeralize(pArg);
1415     sqlite3VdbeMemStoreType(pArg);
1416     REGISTER_TRACE(pOp->p2+i, pArg);
1417   }
1418 
1419   assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1420   if( pOp->p4type==P4_FUNCDEF ){
1421     ctx.pFunc = pOp->p4.pFunc;
1422     ctx.pVdbeFunc = 0;
1423   }else{
1424     ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
1425     ctx.pFunc = ctx.pVdbeFunc->pFunc;
1426   }
1427 
1428   ctx.s.flags = MEM_Null;
1429   ctx.s.db = db;
1430   ctx.s.xDel = 0;
1431   ctx.s.zMalloc = 0;
1432 
1433   /* The output cell may already have a buffer allocated. Move
1434   ** the pointer to ctx.s so in case the user-function can use
1435   ** the already allocated buffer instead of allocating a new one.
1436   */
1437   sqlite3VdbeMemMove(&ctx.s, pOut);
1438   MemSetTypeFlag(&ctx.s, MEM_Null);
1439 
1440   ctx.isError = 0;
1441   if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
1442     assert( pOp>aOp );
1443     assert( pOp[-1].p4type==P4_COLLSEQ );
1444     assert( pOp[-1].opcode==OP_CollSeq );
1445     ctx.pColl = pOp[-1].p4.pColl;
1446   }
1447   db->lastRowid = lastRowid;
1448   (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
1449   lastRowid = db->lastRowid;
1450 
1451   /* If any auxiliary data functions have been called by this user function,
1452   ** immediately call the destructor for any non-static values.
1453   */
1454   if( ctx.pVdbeFunc ){
1455     sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1456     pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
1457     pOp->p4type = P4_VDBEFUNC;
1458   }
1459 
1460   if( db->mallocFailed ){
1461     /* Even though a malloc() has failed, the implementation of the
1462     ** user function may have called an sqlite3_result_XXX() function
1463     ** to return a value. The following call releases any resources
1464     ** associated with such a value.
1465     */
1466     sqlite3VdbeMemRelease(&ctx.s);
1467     goto no_mem;
1468   }
1469 
1470   /* If the function returned an error, throw an exception */
1471   if( ctx.isError ){
1472     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1473     rc = ctx.isError;
1474   }
1475 
1476   /* Copy the result of the function into register P3 */
1477   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1478   sqlite3VdbeMemMove(pOut, &ctx.s);
1479   if( sqlite3VdbeMemTooBig(pOut) ){
1480     goto too_big;
1481   }
1482 
1483 #if 0
1484   /* The app-defined function has done something that as caused this
1485   ** statement to expire.  (Perhaps the function called sqlite3_exec()
1486   ** with a CREATE TABLE statement.)
1487   */
1488   if( p->expired ) rc = SQLITE_ABORT;
1489 #endif
1490 
1491   REGISTER_TRACE(pOp->p3, pOut);
1492   UPDATE_MAX_BLOBSIZE(pOut);
1493   break;
1494 }
1495 
1496 /* Opcode: BitAnd P1 P2 P3 * *
1497 **
1498 ** Take the bit-wise AND of the values in register P1 and P2 and
1499 ** store the result in register P3.
1500 ** If either input is NULL, the result is NULL.
1501 */
1502 /* Opcode: BitOr P1 P2 P3 * *
1503 **
1504 ** Take the bit-wise OR of the values in register P1 and P2 and
1505 ** store the result in register P3.
1506 ** If either input is NULL, the result is NULL.
1507 */
1508 /* Opcode: ShiftLeft P1 P2 P3 * *
1509 **
1510 ** Shift the integer value in register P2 to the left by the
1511 ** number of bits specified by the integer in register P1.
1512 ** Store the result in register P3.
1513 ** If either input is NULL, the result is NULL.
1514 */
1515 /* Opcode: ShiftRight P1 P2 P3 * *
1516 **
1517 ** Shift the integer value in register P2 to the right by the
1518 ** number of bits specified by the integer in register P1.
1519 ** Store the result in register P3.
1520 ** If either input is NULL, the result is NULL.
1521 */
1522 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1523 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1524 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1525 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1526   i64 iA;
1527   u64 uA;
1528   i64 iB;
1529   u8 op;
1530 
1531   pIn1 = &aMem[pOp->p1];
1532   pIn2 = &aMem[pOp->p2];
1533   pOut = &aMem[pOp->p3];
1534   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1535     sqlite3VdbeMemSetNull(pOut);
1536     break;
1537   }
1538   iA = sqlite3VdbeIntValue(pIn2);
1539   iB = sqlite3VdbeIntValue(pIn1);
1540   op = pOp->opcode;
1541   if( op==OP_BitAnd ){
1542     iA &= iB;
1543   }else if( op==OP_BitOr ){
1544     iA |= iB;
1545   }else if( iB!=0 ){
1546     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1547 
1548     /* If shifting by a negative amount, shift in the other direction */
1549     if( iB<0 ){
1550       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1551       op = 2*OP_ShiftLeft + 1 - op;
1552       iB = iB>(-64) ? -iB : 64;
1553     }
1554 
1555     if( iB>=64 ){
1556       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1557     }else{
1558       memcpy(&uA, &iA, sizeof(uA));
1559       if( op==OP_ShiftLeft ){
1560         uA <<= iB;
1561       }else{
1562         uA >>= iB;
1563         /* Sign-extend on a right shift of a negative number */
1564         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1565       }
1566       memcpy(&iA, &uA, sizeof(iA));
1567     }
1568   }
1569   pOut->u.i = iA;
1570   MemSetTypeFlag(pOut, MEM_Int);
1571   break;
1572 }
1573 
1574 /* Opcode: AddImm  P1 P2 * * *
1575 **
1576 ** Add the constant P2 to the value in register P1.
1577 ** The result is always an integer.
1578 **
1579 ** To force any register to be an integer, just add 0.
1580 */
1581 case OP_AddImm: {            /* in1 */
1582   pIn1 = &aMem[pOp->p1];
1583   memAboutToChange(p, pIn1);
1584   sqlite3VdbeMemIntegerify(pIn1);
1585   pIn1->u.i += pOp->p2;
1586   break;
1587 }
1588 
1589 /* Opcode: MustBeInt P1 P2 * * *
1590 **
1591 ** Force the value in register P1 to be an integer.  If the value
1592 ** in P1 is not an integer and cannot be converted into an integer
1593 ** without data loss, then jump immediately to P2, or if P2==0
1594 ** raise an SQLITE_MISMATCH exception.
1595 */
1596 case OP_MustBeInt: {            /* jump, in1 */
1597   pIn1 = &aMem[pOp->p1];
1598   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1599   if( (pIn1->flags & MEM_Int)==0 ){
1600     if( pOp->p2==0 ){
1601       rc = SQLITE_MISMATCH;
1602       goto abort_due_to_error;
1603     }else{
1604       pc = pOp->p2 - 1;
1605     }
1606   }else{
1607     MemSetTypeFlag(pIn1, MEM_Int);
1608   }
1609   break;
1610 }
1611 
1612 #ifndef SQLITE_OMIT_FLOATING_POINT
1613 /* Opcode: RealAffinity P1 * * * *
1614 **
1615 ** If register P1 holds an integer convert it to a real value.
1616 **
1617 ** This opcode is used when extracting information from a column that
1618 ** has REAL affinity.  Such column values may still be stored as
1619 ** integers, for space efficiency, but after extraction we want them
1620 ** to have only a real value.
1621 */
1622 case OP_RealAffinity: {                  /* in1 */
1623   pIn1 = &aMem[pOp->p1];
1624   if( pIn1->flags & MEM_Int ){
1625     sqlite3VdbeMemRealify(pIn1);
1626   }
1627   break;
1628 }
1629 #endif
1630 
1631 #ifndef SQLITE_OMIT_CAST
1632 /* Opcode: ToText P1 * * * *
1633 **
1634 ** Force the value in register P1 to be text.
1635 ** If the value is numeric, convert it to a string using the
1636 ** equivalent of printf().  Blob values are unchanged and
1637 ** are afterwards simply interpreted as text.
1638 **
1639 ** A NULL value is not changed by this routine.  It remains NULL.
1640 */
1641 case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
1642   pIn1 = &aMem[pOp->p1];
1643   memAboutToChange(p, pIn1);
1644   if( pIn1->flags & MEM_Null ) break;
1645   assert( MEM_Str==(MEM_Blob>>3) );
1646   pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1647   applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1648   rc = ExpandBlob(pIn1);
1649   assert( pIn1->flags & MEM_Str || db->mallocFailed );
1650   pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
1651   UPDATE_MAX_BLOBSIZE(pIn1);
1652   break;
1653 }
1654 
1655 /* Opcode: ToBlob P1 * * * *
1656 **
1657 ** Force the value in register P1 to be a BLOB.
1658 ** If the value is numeric, convert it to a string first.
1659 ** Strings are simply reinterpreted as blobs with no change
1660 ** to the underlying data.
1661 **
1662 ** A NULL value is not changed by this routine.  It remains NULL.
1663 */
1664 case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
1665   pIn1 = &aMem[pOp->p1];
1666   if( pIn1->flags & MEM_Null ) break;
1667   if( (pIn1->flags & MEM_Blob)==0 ){
1668     applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1669     assert( pIn1->flags & MEM_Str || db->mallocFailed );
1670     MemSetTypeFlag(pIn1, MEM_Blob);
1671   }else{
1672     pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
1673   }
1674   UPDATE_MAX_BLOBSIZE(pIn1);
1675   break;
1676 }
1677 
1678 /* Opcode: ToNumeric P1 * * * *
1679 **
1680 ** Force the value in register P1 to be numeric (either an
1681 ** integer or a floating-point number.)
1682 ** If the value is text or blob, try to convert it to an using the
1683 ** equivalent of atoi() or atof() and store 0 if no such conversion
1684 ** is possible.
1685 **
1686 ** A NULL value is not changed by this routine.  It remains NULL.
1687 */
1688 case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
1689   pIn1 = &aMem[pOp->p1];
1690   sqlite3VdbeMemNumerify(pIn1);
1691   break;
1692 }
1693 #endif /* SQLITE_OMIT_CAST */
1694 
1695 /* Opcode: ToInt P1 * * * *
1696 **
1697 ** Force the value in register P1 to be an integer.  If
1698 ** The value is currently a real number, drop its fractional part.
1699 ** If the value is text or blob, try to convert it to an integer using the
1700 ** equivalent of atoi() and store 0 if no such conversion is possible.
1701 **
1702 ** A NULL value is not changed by this routine.  It remains NULL.
1703 */
1704 case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
1705   pIn1 = &aMem[pOp->p1];
1706   if( (pIn1->flags & MEM_Null)==0 ){
1707     sqlite3VdbeMemIntegerify(pIn1);
1708   }
1709   break;
1710 }
1711 
1712 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1713 /* Opcode: ToReal P1 * * * *
1714 **
1715 ** Force the value in register P1 to be a floating point number.
1716 ** If The value is currently an integer, convert it.
1717 ** If the value is text or blob, try to convert it to an integer using the
1718 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1719 **
1720 ** A NULL value is not changed by this routine.  It remains NULL.
1721 */
1722 case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
1723   pIn1 = &aMem[pOp->p1];
1724   memAboutToChange(p, pIn1);
1725   if( (pIn1->flags & MEM_Null)==0 ){
1726     sqlite3VdbeMemRealify(pIn1);
1727   }
1728   break;
1729 }
1730 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1731 
1732 /* Opcode: Lt P1 P2 P3 P4 P5
1733 **
1734 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1735 ** jump to address P2.
1736 **
1737 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1738 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
1739 ** bit is clear then fall through if either operand is NULL.
1740 **
1741 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1742 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1743 ** to coerce both inputs according to this affinity before the
1744 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1745 ** affinity is used. Note that the affinity conversions are stored
1746 ** back into the input registers P1 and P3.  So this opcode can cause
1747 ** persistent changes to registers P1 and P3.
1748 **
1749 ** Once any conversions have taken place, and neither value is NULL,
1750 ** the values are compared. If both values are blobs then memcmp() is
1751 ** used to determine the results of the comparison.  If both values
1752 ** are text, then the appropriate collating function specified in
1753 ** P4 is  used to do the comparison.  If P4 is not specified then
1754 ** memcmp() is used to compare text string.  If both values are
1755 ** numeric, then a numeric comparison is used. If the two values
1756 ** are of different types, then numbers are considered less than
1757 ** strings and strings are considered less than blobs.
1758 **
1759 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
1760 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1761 **
1762 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1763 ** equal to one another, provided that they do not have their MEM_Cleared
1764 ** bit set.
1765 */
1766 /* Opcode: Ne P1 P2 P3 P4 P5
1767 **
1768 ** This works just like the Lt opcode except that the jump is taken if
1769 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
1770 ** additional information.
1771 **
1772 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1773 ** true or false and is never NULL.  If both operands are NULL then the result
1774 ** of comparison is false.  If either operand is NULL then the result is true.
1775 ** If neither operand is NULL the result is the same as it would be if
1776 ** the SQLITE_NULLEQ flag were omitted from P5.
1777 */
1778 /* Opcode: Eq P1 P2 P3 P4 P5
1779 **
1780 ** This works just like the Lt opcode except that the jump is taken if
1781 ** the operands in registers P1 and P3 are equal.
1782 ** See the Lt opcode for additional information.
1783 **
1784 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1785 ** true or false and is never NULL.  If both operands are NULL then the result
1786 ** of comparison is true.  If either operand is NULL then the result is false.
1787 ** If neither operand is NULL the result is the same as it would be if
1788 ** the SQLITE_NULLEQ flag were omitted from P5.
1789 */
1790 /* Opcode: Le P1 P2 P3 P4 P5
1791 **
1792 ** This works just like the Lt opcode except that the jump is taken if
1793 ** the content of register P3 is less than or equal to the content of
1794 ** register P1.  See the Lt opcode for additional information.
1795 */
1796 /* Opcode: Gt P1 P2 P3 P4 P5
1797 **
1798 ** This works just like the Lt opcode except that the jump is taken if
1799 ** the content of register P3 is greater than the content of
1800 ** register P1.  See the Lt opcode for additional information.
1801 */
1802 /* Opcode: Ge P1 P2 P3 P4 P5
1803 **
1804 ** This works just like the Lt opcode except that the jump is taken if
1805 ** the content of register P3 is greater than or equal to the content of
1806 ** register P1.  See the Lt opcode for additional information.
1807 */
1808 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1809 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1810 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1811 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1812 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1813 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1814   int res;            /* Result of the comparison of pIn1 against pIn3 */
1815   char affinity;      /* Affinity to use for comparison */
1816   u16 flags1;         /* Copy of initial value of pIn1->flags */
1817   u16 flags3;         /* Copy of initial value of pIn3->flags */
1818 
1819   pIn1 = &aMem[pOp->p1];
1820   pIn3 = &aMem[pOp->p3];
1821   flags1 = pIn1->flags;
1822   flags3 = pIn3->flags;
1823   if( (flags1 | flags3)&MEM_Null ){
1824     /* One or both operands are NULL */
1825     if( pOp->p5 & SQLITE_NULLEQ ){
1826       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1827       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1828       ** or not both operands are null.
1829       */
1830       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1831       assert( (flags1 & MEM_Cleared)==0 );
1832       if( (flags1&MEM_Null)!=0
1833        && (flags3&MEM_Null)!=0
1834        && (flags3&MEM_Cleared)==0
1835       ){
1836         res = 0;  /* Results are equal */
1837       }else{
1838         res = 1;  /* Results are not equal */
1839       }
1840     }else{
1841       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1842       ** then the result is always NULL.
1843       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1844       */
1845       if( pOp->p5 & SQLITE_STOREP2 ){
1846         pOut = &aMem[pOp->p2];
1847         MemSetTypeFlag(pOut, MEM_Null);
1848         REGISTER_TRACE(pOp->p2, pOut);
1849       }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1850         pc = pOp->p2-1;
1851       }
1852       break;
1853     }
1854   }else{
1855     /* Neither operand is NULL.  Do a comparison. */
1856     affinity = pOp->p5 & SQLITE_AFF_MASK;
1857     if( affinity ){
1858       applyAffinity(pIn1, affinity, encoding);
1859       applyAffinity(pIn3, affinity, encoding);
1860       if( db->mallocFailed ) goto no_mem;
1861     }
1862 
1863     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1864     ExpandBlob(pIn1);
1865     ExpandBlob(pIn3);
1866     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1867   }
1868   switch( pOp->opcode ){
1869     case OP_Eq:    res = res==0;     break;
1870     case OP_Ne:    res = res!=0;     break;
1871     case OP_Lt:    res = res<0;      break;
1872     case OP_Le:    res = res<=0;     break;
1873     case OP_Gt:    res = res>0;      break;
1874     default:       res = res>=0;     break;
1875   }
1876 
1877   if( pOp->p5 & SQLITE_STOREP2 ){
1878     pOut = &aMem[pOp->p2];
1879     memAboutToChange(p, pOut);
1880     MemSetTypeFlag(pOut, MEM_Int);
1881     pOut->u.i = res;
1882     REGISTER_TRACE(pOp->p2, pOut);
1883   }else if( res ){
1884     pc = pOp->p2-1;
1885   }
1886 
1887   /* Undo any changes made by applyAffinity() to the input registers. */
1888   pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1889   pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
1890   break;
1891 }
1892 
1893 /* Opcode: Permutation * * * P4 *
1894 **
1895 ** Set the permutation used by the OP_Compare operator to be the array
1896 ** of integers in P4.
1897 **
1898 ** The permutation is only valid until the next OP_Compare that has
1899 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1900 ** occur immediately prior to the OP_Compare.
1901 */
1902 case OP_Permutation: {
1903   assert( pOp->p4type==P4_INTARRAY );
1904   assert( pOp->p4.ai );
1905   aPermute = pOp->p4.ai;
1906   break;
1907 }
1908 
1909 /* Opcode: Compare P1 P2 P3 P4 P5
1910 **
1911 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1912 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
1913 ** the comparison for use by the next OP_Jump instruct.
1914 **
1915 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1916 ** determined by the most recent OP_Permutation operator.  If the
1917 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1918 ** order.
1919 **
1920 ** P4 is a KeyInfo structure that defines collating sequences and sort
1921 ** orders for the comparison.  The permutation applies to registers
1922 ** only.  The KeyInfo elements are used sequentially.
1923 **
1924 ** The comparison is a sort comparison, so NULLs compare equal,
1925 ** NULLs are less than numbers, numbers are less than strings,
1926 ** and strings are less than blobs.
1927 */
1928 case OP_Compare: {
1929   int n;
1930   int i;
1931   int p1;
1932   int p2;
1933   const KeyInfo *pKeyInfo;
1934   int idx;
1935   CollSeq *pColl;    /* Collating sequence to use on this term */
1936   int bRev;          /* True for DESCENDING sort order */
1937 
1938   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
1939   n = pOp->p3;
1940   pKeyInfo = pOp->p4.pKeyInfo;
1941   assert( n>0 );
1942   assert( pKeyInfo!=0 );
1943   p1 = pOp->p1;
1944   p2 = pOp->p2;
1945 #if SQLITE_DEBUG
1946   if( aPermute ){
1947     int k, mx = 0;
1948     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1949     assert( p1>0 && p1+mx<=p->nMem+1 );
1950     assert( p2>0 && p2+mx<=p->nMem+1 );
1951   }else{
1952     assert( p1>0 && p1+n<=p->nMem+1 );
1953     assert( p2>0 && p2+n<=p->nMem+1 );
1954   }
1955 #endif /* SQLITE_DEBUG */
1956   for(i=0; i<n; i++){
1957     idx = aPermute ? aPermute[i] : i;
1958     assert( memIsValid(&aMem[p1+idx]) );
1959     assert( memIsValid(&aMem[p2+idx]) );
1960     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1961     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
1962     assert( i<pKeyInfo->nField );
1963     pColl = pKeyInfo->aColl[i];
1964     bRev = pKeyInfo->aSortOrder[i];
1965     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
1966     if( iCompare ){
1967       if( bRev ) iCompare = -iCompare;
1968       break;
1969     }
1970   }
1971   aPermute = 0;
1972   break;
1973 }
1974 
1975 /* Opcode: Jump P1 P2 P3 * *
1976 **
1977 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1978 ** in the most recent OP_Compare instruction the P1 vector was less than
1979 ** equal to, or greater than the P2 vector, respectively.
1980 */
1981 case OP_Jump: {             /* jump */
1982   if( iCompare<0 ){
1983     pc = pOp->p1 - 1;
1984   }else if( iCompare==0 ){
1985     pc = pOp->p2 - 1;
1986   }else{
1987     pc = pOp->p3 - 1;
1988   }
1989   break;
1990 }
1991 
1992 /* Opcode: And P1 P2 P3 * *
1993 **
1994 ** Take the logical AND of the values in registers P1 and P2 and
1995 ** write the result into register P3.
1996 **
1997 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1998 ** the other input is NULL.  A NULL and true or two NULLs give
1999 ** a NULL output.
2000 */
2001 /* Opcode: Or P1 P2 P3 * *
2002 **
2003 ** Take the logical OR of the values in register P1 and P2 and
2004 ** store the answer in register P3.
2005 **
2006 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2007 ** even if the other input is NULL.  A NULL and false or two NULLs
2008 ** give a NULL output.
2009 */
2010 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2011 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2012   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2013   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2014 
2015   pIn1 = &aMem[pOp->p1];
2016   if( pIn1->flags & MEM_Null ){
2017     v1 = 2;
2018   }else{
2019     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2020   }
2021   pIn2 = &aMem[pOp->p2];
2022   if( pIn2->flags & MEM_Null ){
2023     v2 = 2;
2024   }else{
2025     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2026   }
2027   if( pOp->opcode==OP_And ){
2028     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2029     v1 = and_logic[v1*3+v2];
2030   }else{
2031     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2032     v1 = or_logic[v1*3+v2];
2033   }
2034   pOut = &aMem[pOp->p3];
2035   if( v1==2 ){
2036     MemSetTypeFlag(pOut, MEM_Null);
2037   }else{
2038     pOut->u.i = v1;
2039     MemSetTypeFlag(pOut, MEM_Int);
2040   }
2041   break;
2042 }
2043 
2044 /* Opcode: Not P1 P2 * * *
2045 **
2046 ** Interpret the value in register P1 as a boolean value.  Store the
2047 ** boolean complement in register P2.  If the value in register P1 is
2048 ** NULL, then a NULL is stored in P2.
2049 */
2050 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2051   pIn1 = &aMem[pOp->p1];
2052   pOut = &aMem[pOp->p2];
2053   if( pIn1->flags & MEM_Null ){
2054     sqlite3VdbeMemSetNull(pOut);
2055   }else{
2056     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2057   }
2058   break;
2059 }
2060 
2061 /* Opcode: BitNot P1 P2 * * *
2062 **
2063 ** Interpret the content of register P1 as an integer.  Store the
2064 ** ones-complement of the P1 value into register P2.  If P1 holds
2065 ** a NULL then store a NULL in P2.
2066 */
2067 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2068   pIn1 = &aMem[pOp->p1];
2069   pOut = &aMem[pOp->p2];
2070   if( pIn1->flags & MEM_Null ){
2071     sqlite3VdbeMemSetNull(pOut);
2072   }else{
2073     sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2074   }
2075   break;
2076 }
2077 
2078 /* Opcode: Once P1 P2 * * *
2079 **
2080 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2081 ** set the flag and fall through to the next instruction.
2082 */
2083 case OP_Once: {             /* jump */
2084   assert( pOp->p1<p->nOnceFlag );
2085   if( p->aOnceFlag[pOp->p1] ){
2086     pc = pOp->p2-1;
2087   }else{
2088     p->aOnceFlag[pOp->p1] = 1;
2089   }
2090   break;
2091 }
2092 
2093 /* Opcode: If P1 P2 P3 * *
2094 **
2095 ** Jump to P2 if the value in register P1 is true.  The value
2096 ** is considered true if it is numeric and non-zero.  If the value
2097 ** in P1 is NULL then take the jump if P3 is non-zero.
2098 */
2099 /* Opcode: IfNot P1 P2 P3 * *
2100 **
2101 ** Jump to P2 if the value in register P1 is False.  The value
2102 ** is considered false if it has a numeric value of zero.  If the value
2103 ** in P1 is NULL then take the jump if P3 is zero.
2104 */
2105 case OP_If:                 /* jump, in1 */
2106 case OP_IfNot: {            /* jump, in1 */
2107   int c;
2108   pIn1 = &aMem[pOp->p1];
2109   if( pIn1->flags & MEM_Null ){
2110     c = pOp->p3;
2111   }else{
2112 #ifdef SQLITE_OMIT_FLOATING_POINT
2113     c = sqlite3VdbeIntValue(pIn1)!=0;
2114 #else
2115     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2116 #endif
2117     if( pOp->opcode==OP_IfNot ) c = !c;
2118   }
2119   if( c ){
2120     pc = pOp->p2-1;
2121   }
2122   break;
2123 }
2124 
2125 /* Opcode: IsNull P1 P2 * * *
2126 **
2127 ** Jump to P2 if the value in register P1 is NULL.
2128 */
2129 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2130   pIn1 = &aMem[pOp->p1];
2131   if( (pIn1->flags & MEM_Null)!=0 ){
2132     pc = pOp->p2 - 1;
2133   }
2134   break;
2135 }
2136 
2137 /* Opcode: NotNull P1 P2 * * *
2138 **
2139 ** Jump to P2 if the value in register P1 is not NULL.
2140 */
2141 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2142   pIn1 = &aMem[pOp->p1];
2143   if( (pIn1->flags & MEM_Null)==0 ){
2144     pc = pOp->p2 - 1;
2145   }
2146   break;
2147 }
2148 
2149 /* Opcode: Column P1 P2 P3 P4 P5
2150 **
2151 ** Interpret the data that cursor P1 points to as a structure built using
2152 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2153 ** information about the format of the data.)  Extract the P2-th column
2154 ** from this record.  If there are less that (P2+1)
2155 ** values in the record, extract a NULL.
2156 **
2157 ** The value extracted is stored in register P3.
2158 **
2159 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2160 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2161 ** the result.
2162 **
2163 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2164 ** then the cache of the cursor is reset prior to extracting the column.
2165 ** The first OP_Column against a pseudo-table after the value of the content
2166 ** register has changed should have this bit set.
2167 **
2168 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2169 ** the result is guaranteed to only be used as the argument of a length()
2170 ** or typeof() function, respectively.  The loading of large blobs can be
2171 ** skipped for length() and all content loading can be skipped for typeof().
2172 */
2173 case OP_Column: {
2174   u32 payloadSize;   /* Number of bytes in the record */
2175   i64 payloadSize64; /* Number of bytes in the record */
2176   int p1;            /* P1 value of the opcode */
2177   int p2;            /* column number to retrieve */
2178   VdbeCursor *pC;    /* The VDBE cursor */
2179   char *zRec;        /* Pointer to complete record-data */
2180   BtCursor *pCrsr;   /* The BTree cursor */
2181   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
2182   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2183   int nField;        /* number of fields in the record */
2184   int len;           /* The length of the serialized data for the column */
2185   int i;             /* Loop counter */
2186   char *zData;       /* Part of the record being decoded */
2187   Mem *pDest;        /* Where to write the extracted value */
2188   Mem sMem;          /* For storing the record being decoded */
2189   u8 *zIdx;          /* Index into header */
2190   u8 *zEndHdr;       /* Pointer to first byte after the header */
2191   u32 offset;        /* Offset into the data */
2192   u32 szField;       /* Number of bytes in the content of a field */
2193   int szHdr;         /* Size of the header size field at start of record */
2194   int avail;         /* Number of bytes of available data */
2195   u32 t;             /* A type code from the record header */
2196   Mem *pReg;         /* PseudoTable input register */
2197 
2198 
2199   p1 = pOp->p1;
2200   p2 = pOp->p2;
2201   pC = 0;
2202   memset(&sMem, 0, sizeof(sMem));
2203   assert( p1<p->nCursor );
2204   assert( pOp->p3>0 && pOp->p3<=p->nMem );
2205   pDest = &aMem[pOp->p3];
2206   memAboutToChange(p, pDest);
2207   zRec = 0;
2208 
2209   /* This block sets the variable payloadSize to be the total number of
2210   ** bytes in the record.
2211   **
2212   ** zRec is set to be the complete text of the record if it is available.
2213   ** The complete record text is always available for pseudo-tables
2214   ** If the record is stored in a cursor, the complete record text
2215   ** might be available in the  pC->aRow cache.  Or it might not be.
2216   ** If the data is unavailable,  zRec is set to NULL.
2217   **
2218   ** We also compute the number of columns in the record.  For cursors,
2219   ** the number of columns is stored in the VdbeCursor.nField element.
2220   */
2221   pC = p->apCsr[p1];
2222   assert( pC!=0 );
2223 #ifndef SQLITE_OMIT_VIRTUALTABLE
2224   assert( pC->pVtabCursor==0 );
2225 #endif
2226   pCrsr = pC->pCursor;
2227   if( pCrsr!=0 ){
2228     /* The record is stored in a B-Tree */
2229     rc = sqlite3VdbeCursorMoveto(pC);
2230     if( rc ) goto abort_due_to_error;
2231     if( pC->nullRow ){
2232       payloadSize = 0;
2233     }else if( pC->cacheStatus==p->cacheCtr ){
2234       payloadSize = pC->payloadSize;
2235       zRec = (char*)pC->aRow;
2236     }else if( pC->isIndex ){
2237       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2238       VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2239       assert( rc==SQLITE_OK );   /* True because of CursorMoveto() call above */
2240       /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2241       ** payload size, so it is impossible for payloadSize64 to be
2242       ** larger than 32 bits. */
2243       assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2244       payloadSize = (u32)payloadSize64;
2245     }else{
2246       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2247       VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
2248       assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
2249     }
2250   }else if( ALWAYS(pC->pseudoTableReg>0) ){
2251     pReg = &aMem[pC->pseudoTableReg];
2252     if( pC->multiPseudo ){
2253       sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
2254       Deephemeralize(pDest);
2255       goto op_column_out;
2256     }
2257     assert( pReg->flags & MEM_Blob );
2258     assert( memIsValid(pReg) );
2259     payloadSize = pReg->n;
2260     zRec = pReg->z;
2261     pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
2262     assert( payloadSize==0 || zRec!=0 );
2263   }else{
2264     /* Consider the row to be NULL */
2265     payloadSize = 0;
2266   }
2267 
2268   /* If payloadSize is 0, then just store a NULL.  This can happen because of
2269   ** nullRow or because of a corrupt database. */
2270   if( payloadSize==0 ){
2271     MemSetTypeFlag(pDest, MEM_Null);
2272     goto op_column_out;
2273   }
2274   assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2275   if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2276     goto too_big;
2277   }
2278 
2279   nField = pC->nField;
2280   assert( p2<nField );
2281 
2282   /* Read and parse the table header.  Store the results of the parse
2283   ** into the record header cache fields of the cursor.
2284   */
2285   aType = pC->aType;
2286   if( pC->cacheStatus==p->cacheCtr ){
2287     aOffset = pC->aOffset;
2288   }else{
2289     assert(aType);
2290     avail = 0;
2291     pC->aOffset = aOffset = &aType[nField];
2292     pC->payloadSize = payloadSize;
2293     pC->cacheStatus = p->cacheCtr;
2294 
2295     /* Figure out how many bytes are in the header */
2296     if( zRec ){
2297       zData = zRec;
2298     }else{
2299       if( pC->isIndex ){
2300         zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2301       }else{
2302         zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2303       }
2304       /* If KeyFetch()/DataFetch() managed to get the entire payload,
2305       ** save the payload in the pC->aRow cache.  That will save us from
2306       ** having to make additional calls to fetch the content portion of
2307       ** the record.
2308       */
2309       assert( avail>=0 );
2310       if( payloadSize <= (u32)avail ){
2311         zRec = zData;
2312         pC->aRow = (u8*)zData;
2313       }else{
2314         pC->aRow = 0;
2315       }
2316     }
2317     /* The following assert is true in all cases except when
2318     ** the database file has been corrupted externally.
2319     **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2320     szHdr = getVarint32((u8*)zData, offset);
2321 
2322     /* Make sure a corrupt database has not given us an oversize header.
2323     ** Do this now to avoid an oversize memory allocation.
2324     **
2325     ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2326     ** types use so much data space that there can only be 4096 and 32 of
2327     ** them, respectively.  So the maximum header length results from a
2328     ** 3-byte type for each of the maximum of 32768 columns plus three
2329     ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2330     */
2331     if( offset > 98307 ){
2332       rc = SQLITE_CORRUPT_BKPT;
2333       goto op_column_out;
2334     }
2335 
2336     /* Compute in len the number of bytes of data we need to read in order
2337     ** to get nField type values.  offset is an upper bound on this.  But
2338     ** nField might be significantly less than the true number of columns
2339     ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2340     ** We want to minimize len in order to limit the size of the memory
2341     ** allocation, especially if a corrupt database file has caused offset
2342     ** to be oversized. Offset is limited to 98307 above.  But 98307 might
2343     ** still exceed Robson memory allocation limits on some configurations.
2344     ** On systems that cannot tolerate large memory allocations, nField*5+3
2345     ** will likely be much smaller since nField will likely be less than
2346     ** 20 or so.  This insures that Robson memory allocation limits are
2347     ** not exceeded even for corrupt database files.
2348     */
2349     len = nField*5 + 3;
2350     if( len > (int)offset ) len = (int)offset;
2351 
2352     /* The KeyFetch() or DataFetch() above are fast and will get the entire
2353     ** record header in most cases.  But they will fail to get the complete
2354     ** record header if the record header does not fit on a single page
2355     ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
2356     ** acquire the complete header text.
2357     */
2358     if( !zRec && avail<len ){
2359       sMem.flags = 0;
2360       sMem.db = 0;
2361       rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
2362       if( rc!=SQLITE_OK ){
2363         goto op_column_out;
2364       }
2365       zData = sMem.z;
2366     }
2367     zEndHdr = (u8 *)&zData[len];
2368     zIdx = (u8 *)&zData[szHdr];
2369 
2370     /* Scan the header and use it to fill in the aType[] and aOffset[]
2371     ** arrays.  aType[i] will contain the type integer for the i-th
2372     ** column and aOffset[i] will contain the offset from the beginning
2373     ** of the record to the start of the data for the i-th column
2374     */
2375     for(i=0; i<nField; i++){
2376       if( zIdx<zEndHdr ){
2377         aOffset[i] = offset;
2378         if( zIdx[0]<0x80 ){
2379           t = zIdx[0];
2380           zIdx++;
2381         }else{
2382           zIdx += sqlite3GetVarint32(zIdx, &t);
2383         }
2384         aType[i] = t;
2385         szField = sqlite3VdbeSerialTypeLen(t);
2386         offset += szField;
2387         if( offset<szField ){  /* True if offset overflows */
2388           zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
2389           break;
2390         }
2391       }else{
2392         /* If i is less that nField, then there are fewer fields in this
2393         ** record than SetNumColumns indicated there are columns in the
2394         ** table. Set the offset for any extra columns not present in
2395         ** the record to 0. This tells code below to store the default value
2396         ** for the column instead of deserializing a value from the record.
2397         */
2398         aOffset[i] = 0;
2399       }
2400     }
2401     sqlite3VdbeMemRelease(&sMem);
2402     sMem.flags = MEM_Null;
2403 
2404     /* If we have read more header data than was contained in the header,
2405     ** or if the end of the last field appears to be past the end of the
2406     ** record, or if the end of the last field appears to be before the end
2407     ** of the record (when all fields present), then we must be dealing
2408     ** with a corrupt database.
2409     */
2410     if( (zIdx > zEndHdr) || (offset > payloadSize)
2411          || (zIdx==zEndHdr && offset!=payloadSize) ){
2412       rc = SQLITE_CORRUPT_BKPT;
2413       goto op_column_out;
2414     }
2415   }
2416 
2417   /* Get the column information. If aOffset[p2] is non-zero, then
2418   ** deserialize the value from the record. If aOffset[p2] is zero,
2419   ** then there are not enough fields in the record to satisfy the
2420   ** request.  In this case, set the value NULL or to P4 if P4 is
2421   ** a pointer to a Mem object.
2422   */
2423   if( aOffset[p2] ){
2424     assert( rc==SQLITE_OK );
2425     if( zRec ){
2426       /* This is the common case where the whole row fits on a single page */
2427       VdbeMemRelease(pDest);
2428       sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
2429     }else{
2430       /* This branch happens only when the row overflows onto multiple pages */
2431       t = aType[p2];
2432       if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2433        && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
2434       ){
2435         /* Content is irrelevant for the typeof() function and for
2436         ** the length(X) function if X is a blob.  So we might as well use
2437         ** bogus content rather than reading content from disk.  NULL works
2438         ** for text and blob and whatever is in the payloadSize64 variable
2439         ** will work for everything else. */
2440         zData = t<12 ? (char*)&payloadSize64 : 0;
2441       }else{
2442         len = sqlite3VdbeSerialTypeLen(t);
2443         sqlite3VdbeMemMove(&sMem, pDest);
2444         rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len,  pC->isIndex,
2445                                      &sMem);
2446         if( rc!=SQLITE_OK ){
2447           goto op_column_out;
2448         }
2449         zData = sMem.z;
2450       }
2451       sqlite3VdbeSerialGet((u8*)zData, t, pDest);
2452     }
2453     pDest->enc = encoding;
2454   }else{
2455     if( pOp->p4type==P4_MEM ){
2456       sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2457     }else{
2458       MemSetTypeFlag(pDest, MEM_Null);
2459     }
2460   }
2461 
2462   /* If we dynamically allocated space to hold the data (in the
2463   ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2464   ** dynamically allocated space over to the pDest structure.
2465   ** This prevents a memory copy.
2466   */
2467   if( sMem.zMalloc ){
2468     assert( sMem.z==sMem.zMalloc );
2469     assert( !(pDest->flags & MEM_Dyn) );
2470     assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2471     pDest->flags &= ~(MEM_Ephem|MEM_Static);
2472     pDest->flags |= MEM_Term;
2473     pDest->z = sMem.z;
2474     pDest->zMalloc = sMem.zMalloc;
2475   }
2476 
2477   rc = sqlite3VdbeMemMakeWriteable(pDest);
2478 
2479 op_column_out:
2480   UPDATE_MAX_BLOBSIZE(pDest);
2481   REGISTER_TRACE(pOp->p3, pDest);
2482   break;
2483 }
2484 
2485 /* Opcode: Affinity P1 P2 * P4 *
2486 **
2487 ** Apply affinities to a range of P2 registers starting with P1.
2488 **
2489 ** P4 is a string that is P2 characters long. The nth character of the
2490 ** string indicates the column affinity that should be used for the nth
2491 ** memory cell in the range.
2492 */
2493 case OP_Affinity: {
2494   const char *zAffinity;   /* The affinity to be applied */
2495   char cAff;               /* A single character of affinity */
2496 
2497   zAffinity = pOp->p4.z;
2498   assert( zAffinity!=0 );
2499   assert( zAffinity[pOp->p2]==0 );
2500   pIn1 = &aMem[pOp->p1];
2501   while( (cAff = *(zAffinity++))!=0 ){
2502     assert( pIn1 <= &p->aMem[p->nMem] );
2503     assert( memIsValid(pIn1) );
2504     ExpandBlob(pIn1);
2505     applyAffinity(pIn1, cAff, encoding);
2506     pIn1++;
2507   }
2508   break;
2509 }
2510 
2511 /* Opcode: MakeRecord P1 P2 P3 P4 *
2512 **
2513 ** Convert P2 registers beginning with P1 into the [record format]
2514 ** use as a data record in a database table or as a key
2515 ** in an index.  The OP_Column opcode can decode the record later.
2516 **
2517 ** P4 may be a string that is P2 characters long.  The nth character of the
2518 ** string indicates the column affinity that should be used for the nth
2519 ** field of the index key.
2520 **
2521 ** The mapping from character to affinity is given by the SQLITE_AFF_
2522 ** macros defined in sqliteInt.h.
2523 **
2524 ** If P4 is NULL then all index fields have the affinity NONE.
2525 */
2526 case OP_MakeRecord: {
2527   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2528   Mem *pRec;             /* The new record */
2529   u64 nData;             /* Number of bytes of data space */
2530   int nHdr;              /* Number of bytes of header space */
2531   i64 nByte;             /* Data space required for this record */
2532   int nZero;             /* Number of zero bytes at the end of the record */
2533   int nVarint;           /* Number of bytes in a varint */
2534   u32 serial_type;       /* Type field */
2535   Mem *pData0;           /* First field to be combined into the record */
2536   Mem *pLast;            /* Last field of the record */
2537   int nField;            /* Number of fields in the record */
2538   char *zAffinity;       /* The affinity string for the record */
2539   int file_format;       /* File format to use for encoding */
2540   int i;                 /* Space used in zNewRecord[] */
2541   int len;               /* Length of a field */
2542 
2543   /* Assuming the record contains N fields, the record format looks
2544   ** like this:
2545   **
2546   ** ------------------------------------------------------------------------
2547   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2548   ** ------------------------------------------------------------------------
2549   **
2550   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2551   ** and so froth.
2552   **
2553   ** Each type field is a varint representing the serial type of the
2554   ** corresponding data element (see sqlite3VdbeSerialType()). The
2555   ** hdr-size field is also a varint which is the offset from the beginning
2556   ** of the record to data0.
2557   */
2558   nData = 0;         /* Number of bytes of data space */
2559   nHdr = 0;          /* Number of bytes of header space */
2560   nZero = 0;         /* Number of zero bytes at the end of the record */
2561   nField = pOp->p1;
2562   zAffinity = pOp->p4.z;
2563   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
2564   pData0 = &aMem[nField];
2565   nField = pOp->p2;
2566   pLast = &pData0[nField-1];
2567   file_format = p->minWriteFileFormat;
2568 
2569   /* Identify the output register */
2570   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2571   pOut = &aMem[pOp->p3];
2572   memAboutToChange(p, pOut);
2573 
2574   /* Loop through the elements that will make up the record to figure
2575   ** out how much space is required for the new record.
2576   */
2577   for(pRec=pData0; pRec<=pLast; pRec++){
2578     assert( memIsValid(pRec) );
2579     if( zAffinity ){
2580       applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2581     }
2582     if( pRec->flags&MEM_Zero && pRec->n>0 ){
2583       sqlite3VdbeMemExpandBlob(pRec);
2584     }
2585     serial_type = sqlite3VdbeSerialType(pRec, file_format);
2586     len = sqlite3VdbeSerialTypeLen(serial_type);
2587     nData += len;
2588     nHdr += sqlite3VarintLen(serial_type);
2589     if( pRec->flags & MEM_Zero ){
2590       /* Only pure zero-filled BLOBs can be input to this Opcode.
2591       ** We do not allow blobs with a prefix and a zero-filled tail. */
2592       nZero += pRec->u.nZero;
2593     }else if( len ){
2594       nZero = 0;
2595     }
2596   }
2597 
2598   /* Add the initial header varint and total the size */
2599   nHdr += nVarint = sqlite3VarintLen(nHdr);
2600   if( nVarint<sqlite3VarintLen(nHdr) ){
2601     nHdr++;
2602   }
2603   nByte = nHdr+nData-nZero;
2604   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2605     goto too_big;
2606   }
2607 
2608   /* Make sure the output register has a buffer large enough to store
2609   ** the new record. The output register (pOp->p3) is not allowed to
2610   ** be one of the input registers (because the following call to
2611   ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2612   */
2613   if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
2614     goto no_mem;
2615   }
2616   zNewRecord = (u8 *)pOut->z;
2617 
2618   /* Write the record */
2619   i = putVarint32(zNewRecord, nHdr);
2620   for(pRec=pData0; pRec<=pLast; pRec++){
2621     serial_type = sqlite3VdbeSerialType(pRec, file_format);
2622     i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
2623   }
2624   for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
2625     i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
2626   }
2627   assert( i==nByte );
2628 
2629   assert( pOp->p3>0 && pOp->p3<=p->nMem );
2630   pOut->n = (int)nByte;
2631   pOut->flags = MEM_Blob | MEM_Dyn;
2632   pOut->xDel = 0;
2633   if( nZero ){
2634     pOut->u.nZero = nZero;
2635     pOut->flags |= MEM_Zero;
2636   }
2637   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2638   REGISTER_TRACE(pOp->p3, pOut);
2639   UPDATE_MAX_BLOBSIZE(pOut);
2640   break;
2641 }
2642 
2643 /* Opcode: Count P1 P2 * * *
2644 **
2645 ** Store the number of entries (an integer value) in the table or index
2646 ** opened by cursor P1 in register P2
2647 */
2648 #ifndef SQLITE_OMIT_BTREECOUNT
2649 case OP_Count: {         /* out2-prerelease */
2650   i64 nEntry;
2651   BtCursor *pCrsr;
2652 
2653   pCrsr = p->apCsr[pOp->p1]->pCursor;
2654   if( ALWAYS(pCrsr) ){
2655     rc = sqlite3BtreeCount(pCrsr, &nEntry);
2656   }else{
2657     nEntry = 0;
2658   }
2659   pOut->u.i = nEntry;
2660   break;
2661 }
2662 #endif
2663 
2664 /* Opcode: Savepoint P1 * * P4 *
2665 **
2666 ** Open, release or rollback the savepoint named by parameter P4, depending
2667 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2668 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2669 */
2670 case OP_Savepoint: {
2671   int p1;                         /* Value of P1 operand */
2672   char *zName;                    /* Name of savepoint */
2673   int nName;
2674   Savepoint *pNew;
2675   Savepoint *pSavepoint;
2676   Savepoint *pTmp;
2677   int iSavepoint;
2678   int ii;
2679 
2680   p1 = pOp->p1;
2681   zName = pOp->p4.z;
2682 
2683   /* Assert that the p1 parameter is valid. Also that if there is no open
2684   ** transaction, then there cannot be any savepoints.
2685   */
2686   assert( db->pSavepoint==0 || db->autoCommit==0 );
2687   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2688   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2689   assert( checkSavepointCount(db) );
2690 
2691   if( p1==SAVEPOINT_BEGIN ){
2692     if( db->writeVdbeCnt>0 ){
2693       /* A new savepoint cannot be created if there are active write
2694       ** statements (i.e. open read/write incremental blob handles).
2695       */
2696       sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2697         "SQL statements in progress");
2698       rc = SQLITE_BUSY;
2699     }else{
2700       nName = sqlite3Strlen30(zName);
2701 
2702 #ifndef SQLITE_OMIT_VIRTUALTABLE
2703       /* This call is Ok even if this savepoint is actually a transaction
2704       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2705       ** If this is a transaction savepoint being opened, it is guaranteed
2706       ** that the db->aVTrans[] array is empty.  */
2707       assert( db->autoCommit==0 || db->nVTrans==0 );
2708       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2709                                 db->nStatement+db->nSavepoint);
2710       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2711 #endif
2712 
2713       /* Create a new savepoint structure. */
2714       pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2715       if( pNew ){
2716         pNew->zName = (char *)&pNew[1];
2717         memcpy(pNew->zName, zName, nName+1);
2718 
2719         /* If there is no open transaction, then mark this as a special
2720         ** "transaction savepoint". */
2721         if( db->autoCommit ){
2722           db->autoCommit = 0;
2723           db->isTransactionSavepoint = 1;
2724         }else{
2725           db->nSavepoint++;
2726         }
2727 
2728         /* Link the new savepoint into the database handle's list. */
2729         pNew->pNext = db->pSavepoint;
2730         db->pSavepoint = pNew;
2731         pNew->nDeferredCons = db->nDeferredCons;
2732       }
2733     }
2734   }else{
2735     iSavepoint = 0;
2736 
2737     /* Find the named savepoint. If there is no such savepoint, then an
2738     ** an error is returned to the user.  */
2739     for(
2740       pSavepoint = db->pSavepoint;
2741       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2742       pSavepoint = pSavepoint->pNext
2743     ){
2744       iSavepoint++;
2745     }
2746     if( !pSavepoint ){
2747       sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2748       rc = SQLITE_ERROR;
2749     }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
2750       /* It is not possible to release (commit) a savepoint if there are
2751       ** active write statements.
2752       */
2753       sqlite3SetString(&p->zErrMsg, db,
2754         "cannot release savepoint - SQL statements in progress"
2755       );
2756       rc = SQLITE_BUSY;
2757     }else{
2758 
2759       /* Determine whether or not this is a transaction savepoint. If so,
2760       ** and this is a RELEASE command, then the current transaction
2761       ** is committed.
2762       */
2763       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2764       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2765         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2766           goto vdbe_return;
2767         }
2768         db->autoCommit = 1;
2769         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2770           p->pc = pc;
2771           db->autoCommit = 0;
2772           p->rc = rc = SQLITE_BUSY;
2773           goto vdbe_return;
2774         }
2775         db->isTransactionSavepoint = 0;
2776         rc = p->rc;
2777       }else{
2778         iSavepoint = db->nSavepoint - iSavepoint - 1;
2779         if( p1==SAVEPOINT_ROLLBACK ){
2780           for(ii=0; ii<db->nDb; ii++){
2781             sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2782           }
2783         }
2784         for(ii=0; ii<db->nDb; ii++){
2785           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2786           if( rc!=SQLITE_OK ){
2787             goto abort_due_to_error;
2788           }
2789         }
2790         if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
2791           sqlite3ExpirePreparedStatements(db);
2792           sqlite3ResetAllSchemasOfConnection(db);
2793           db->flags = (db->flags | SQLITE_InternChanges);
2794         }
2795       }
2796 
2797       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2798       ** savepoints nested inside of the savepoint being operated on. */
2799       while( db->pSavepoint!=pSavepoint ){
2800         pTmp = db->pSavepoint;
2801         db->pSavepoint = pTmp->pNext;
2802         sqlite3DbFree(db, pTmp);
2803         db->nSavepoint--;
2804       }
2805 
2806       /* If it is a RELEASE, then destroy the savepoint being operated on
2807       ** too. If it is a ROLLBACK TO, then set the number of deferred
2808       ** constraint violations present in the database to the value stored
2809       ** when the savepoint was created.  */
2810       if( p1==SAVEPOINT_RELEASE ){
2811         assert( pSavepoint==db->pSavepoint );
2812         db->pSavepoint = pSavepoint->pNext;
2813         sqlite3DbFree(db, pSavepoint);
2814         if( !isTransaction ){
2815           db->nSavepoint--;
2816         }
2817       }else{
2818         db->nDeferredCons = pSavepoint->nDeferredCons;
2819       }
2820 
2821       if( !isTransaction ){
2822         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2823         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2824       }
2825     }
2826   }
2827 
2828   break;
2829 }
2830 
2831 /* Opcode: AutoCommit P1 P2 * * *
2832 **
2833 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2834 ** back any currently active btree transactions. If there are any active
2835 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
2836 ** there are active writing VMs or active VMs that use shared cache.
2837 **
2838 ** This instruction causes the VM to halt.
2839 */
2840 case OP_AutoCommit: {
2841   int desiredAutoCommit;
2842   int iRollback;
2843   int turnOnAC;
2844 
2845   desiredAutoCommit = pOp->p1;
2846   iRollback = pOp->p2;
2847   turnOnAC = desiredAutoCommit && !db->autoCommit;
2848   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2849   assert( desiredAutoCommit==1 || iRollback==0 );
2850   assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
2851 
2852 #if 0
2853   if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
2854     /* If this instruction implements a ROLLBACK and other VMs are
2855     ** still running, and a transaction is active, return an error indicating
2856     ** that the other VMs must complete first.
2857     */
2858     sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2859         "SQL statements in progress");
2860     rc = SQLITE_BUSY;
2861   }else
2862 #endif
2863   if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
2864     /* If this instruction implements a COMMIT and other VMs are writing
2865     ** return an error indicating that the other VMs must complete first.
2866     */
2867     sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2868         "SQL statements in progress");
2869     rc = SQLITE_BUSY;
2870   }else if( desiredAutoCommit!=db->autoCommit ){
2871     if( iRollback ){
2872       assert( desiredAutoCommit==1 );
2873       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2874       db->autoCommit = 1;
2875     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2876       goto vdbe_return;
2877     }else{
2878       db->autoCommit = (u8)desiredAutoCommit;
2879       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2880         p->pc = pc;
2881         db->autoCommit = (u8)(1-desiredAutoCommit);
2882         p->rc = rc = SQLITE_BUSY;
2883         goto vdbe_return;
2884       }
2885     }
2886     assert( db->nStatement==0 );
2887     sqlite3CloseSavepoints(db);
2888     if( p->rc==SQLITE_OK ){
2889       rc = SQLITE_DONE;
2890     }else{
2891       rc = SQLITE_ERROR;
2892     }
2893     goto vdbe_return;
2894   }else{
2895     sqlite3SetString(&p->zErrMsg, db,
2896         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2897         (iRollback)?"cannot rollback - no transaction is active":
2898                    "cannot commit - no transaction is active"));
2899 
2900     rc = SQLITE_ERROR;
2901   }
2902   break;
2903 }
2904 
2905 /* Opcode: Transaction P1 P2 * * *
2906 **
2907 ** Begin a transaction.  The transaction ends when a Commit or Rollback
2908 ** opcode is encountered.  Depending on the ON CONFLICT setting, the
2909 ** transaction might also be rolled back if an error is encountered.
2910 **
2911 ** P1 is the index of the database file on which the transaction is
2912 ** started.  Index 0 is the main database file and index 1 is the
2913 ** file used for temporary tables.  Indices of 2 or more are used for
2914 ** attached databases.
2915 **
2916 ** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
2917 ** obtained on the database file when a write-transaction is started.  No
2918 ** other process can start another write transaction while this transaction is
2919 ** underway.  Starting a write transaction also creates a rollback journal. A
2920 ** write transaction must be started before any changes can be made to the
2921 ** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2922 ** on the file.
2923 **
2924 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2925 ** true (this flag is set if the Vdbe may modify more than one row and may
2926 ** throw an ABORT exception), a statement transaction may also be opened.
2927 ** More specifically, a statement transaction is opened iff the database
2928 ** connection is currently not in autocommit mode, or if there are other
2929 ** active statements. A statement transaction allows the changes made by this
2930 ** VDBE to be rolled back after an error without having to roll back the
2931 ** entire transaction. If no error is encountered, the statement transaction
2932 ** will automatically commit when the VDBE halts.
2933 **
2934 ** If P2 is zero, then a read-lock is obtained on the database file.
2935 */
2936 case OP_Transaction: {
2937   Btree *pBt;
2938 
2939   assert( pOp->p1>=0 && pOp->p1<db->nDb );
2940   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2941   pBt = db->aDb[pOp->p1].pBt;
2942 
2943   if( pBt ){
2944     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2945     if( rc==SQLITE_BUSY ){
2946       p->pc = pc;
2947       p->rc = rc = SQLITE_BUSY;
2948       goto vdbe_return;
2949     }
2950     if( rc!=SQLITE_OK ){
2951       goto abort_due_to_error;
2952     }
2953 
2954     if( pOp->p2 && p->usesStmtJournal
2955      && (db->autoCommit==0 || db->activeVdbeCnt>1)
2956     ){
2957       assert( sqlite3BtreeIsInTrans(pBt) );
2958       if( p->iStatement==0 ){
2959         assert( db->nStatement>=0 && db->nSavepoint>=0 );
2960         db->nStatement++;
2961         p->iStatement = db->nSavepoint + db->nStatement;
2962       }
2963 
2964       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
2965       if( rc==SQLITE_OK ){
2966         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2967       }
2968 
2969       /* Store the current value of the database handles deferred constraint
2970       ** counter. If the statement transaction needs to be rolled back,
2971       ** the value of this counter needs to be restored too.  */
2972       p->nStmtDefCons = db->nDeferredCons;
2973     }
2974   }
2975   break;
2976 }
2977 
2978 /* Opcode: ReadCookie P1 P2 P3 * *
2979 **
2980 ** Read cookie number P3 from database P1 and write it into register P2.
2981 ** P3==1 is the schema version.  P3==2 is the database format.
2982 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
2983 ** the main database file and P1==1 is the database file used to store
2984 ** temporary tables.
2985 **
2986 ** There must be a read-lock on the database (either a transaction
2987 ** must be started or there must be an open cursor) before
2988 ** executing this instruction.
2989 */
2990 case OP_ReadCookie: {               /* out2-prerelease */
2991   int iMeta;
2992   int iDb;
2993   int iCookie;
2994 
2995   iDb = pOp->p1;
2996   iCookie = pOp->p3;
2997   assert( pOp->p3<SQLITE_N_BTREE_META );
2998   assert( iDb>=0 && iDb<db->nDb );
2999   assert( db->aDb[iDb].pBt!=0 );
3000   assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
3001 
3002   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3003   pOut->u.i = iMeta;
3004   break;
3005 }
3006 
3007 /* Opcode: SetCookie P1 P2 P3 * *
3008 **
3009 ** Write the content of register P3 (interpreted as an integer)
3010 ** into cookie number P2 of database P1.  P2==1 is the schema version.
3011 ** P2==2 is the database format. P2==3 is the recommended pager cache
3012 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3013 ** database file used to store temporary tables.
3014 **
3015 ** A transaction must be started before executing this opcode.
3016 */
3017 case OP_SetCookie: {       /* in3 */
3018   Db *pDb;
3019   assert( pOp->p2<SQLITE_N_BTREE_META );
3020   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3021   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
3022   pDb = &db->aDb[pOp->p1];
3023   assert( pDb->pBt!=0 );
3024   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3025   pIn3 = &aMem[pOp->p3];
3026   sqlite3VdbeMemIntegerify(pIn3);
3027   /* See note about index shifting on OP_ReadCookie */
3028   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3029   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3030     /* When the schema cookie changes, record the new cookie internally */
3031     pDb->pSchema->schema_cookie = (int)pIn3->u.i;
3032     db->flags |= SQLITE_InternChanges;
3033   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3034     /* Record changes in the file format */
3035     pDb->pSchema->file_format = (u8)pIn3->u.i;
3036   }
3037   if( pOp->p1==1 ){
3038     /* Invalidate all prepared statements whenever the TEMP database
3039     ** schema is changed.  Ticket #1644 */
3040     sqlite3ExpirePreparedStatements(db);
3041     p->expired = 0;
3042   }
3043   break;
3044 }
3045 
3046 /* Opcode: VerifyCookie P1 P2 P3 * *
3047 **
3048 ** Check the value of global database parameter number 0 (the
3049 ** schema version) and make sure it is equal to P2 and that the
3050 ** generation counter on the local schema parse equals P3.
3051 **
3052 ** P1 is the database number which is 0 for the main database file
3053 ** and 1 for the file holding temporary tables and some higher number
3054 ** for auxiliary databases.
3055 **
3056 ** The cookie changes its value whenever the database schema changes.
3057 ** This operation is used to detect when that the cookie has changed
3058 ** and that the current process needs to reread the schema.
3059 **
3060 ** Either a transaction needs to have been started or an OP_Open needs
3061 ** to be executed (to establish a read lock) before this opcode is
3062 ** invoked.
3063 */
3064 case OP_VerifyCookie: {
3065   int iMeta;
3066   int iGen;
3067   Btree *pBt;
3068 
3069   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3070   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
3071   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3072   pBt = db->aDb[pOp->p1].pBt;
3073   if( pBt ){
3074     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3075     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3076   }else{
3077     iGen = iMeta = 0;
3078   }
3079   if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
3080     sqlite3DbFree(db, p->zErrMsg);
3081     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3082     /* If the schema-cookie from the database file matches the cookie
3083     ** stored with the in-memory representation of the schema, do
3084     ** not reload the schema from the database file.
3085     **
3086     ** If virtual-tables are in use, this is not just an optimization.
3087     ** Often, v-tables store their data in other SQLite tables, which
3088     ** are queried from within xNext() and other v-table methods using
3089     ** prepared queries. If such a query is out-of-date, we do not want to
3090     ** discard the database schema, as the user code implementing the
3091     ** v-table would have to be ready for the sqlite3_vtab structure itself
3092     ** to be invalidated whenever sqlite3_step() is called from within
3093     ** a v-table method.
3094     */
3095     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3096       sqlite3ResetOneSchema(db, pOp->p1);
3097     }
3098 
3099     p->expired = 1;
3100     rc = SQLITE_SCHEMA;
3101   }
3102   break;
3103 }
3104 
3105 /* Opcode: OpenRead P1 P2 P3 P4 P5
3106 **
3107 ** Open a read-only cursor for the database table whose root page is
3108 ** P2 in a database file.  The database file is determined by P3.
3109 ** P3==0 means the main database, P3==1 means the database used for
3110 ** temporary tables, and P3>1 means used the corresponding attached
3111 ** database.  Give the new cursor an identifier of P1.  The P1
3112 ** values need not be contiguous but all P1 values should be small integers.
3113 ** It is an error for P1 to be negative.
3114 **
3115 ** If P5!=0 then use the content of register P2 as the root page, not
3116 ** the value of P2 itself.
3117 **
3118 ** There will be a read lock on the database whenever there is an
3119 ** open cursor.  If the database was unlocked prior to this instruction
3120 ** then a read lock is acquired as part of this instruction.  A read
3121 ** lock allows other processes to read the database but prohibits
3122 ** any other process from modifying the database.  The read lock is
3123 ** released when all cursors are closed.  If this instruction attempts
3124 ** to get a read lock but fails, the script terminates with an
3125 ** SQLITE_BUSY error code.
3126 **
3127 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3128 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3129 ** structure, then said structure defines the content and collating
3130 ** sequence of the index being opened. Otherwise, if P4 is an integer
3131 ** value, it is set to the number of columns in the table.
3132 **
3133 ** See also OpenWrite.
3134 */
3135 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3136 **
3137 ** Open a read/write cursor named P1 on the table or index whose root
3138 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3139 ** root page.
3140 **
3141 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3142 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3143 ** structure, then said structure defines the content and collating
3144 ** sequence of the index being opened. Otherwise, if P4 is an integer
3145 ** value, it is set to the number of columns in the table, or to the
3146 ** largest index of any column of the table that is actually used.
3147 **
3148 ** This instruction works just like OpenRead except that it opens the cursor
3149 ** in read/write mode.  For a given table, there can be one or more read-only
3150 ** cursors or a single read/write cursor but not both.
3151 **
3152 ** See also OpenRead.
3153 */
3154 case OP_OpenRead:
3155 case OP_OpenWrite: {
3156   int nField;
3157   KeyInfo *pKeyInfo;
3158   int p2;
3159   int iDb;
3160   int wrFlag;
3161   Btree *pX;
3162   VdbeCursor *pCur;
3163   Db *pDb;
3164 
3165   assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3166   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
3167 
3168   if( p->expired ){
3169     rc = SQLITE_ABORT;
3170     break;
3171   }
3172 
3173   nField = 0;
3174   pKeyInfo = 0;
3175   p2 = pOp->p2;
3176   iDb = pOp->p3;
3177   assert( iDb>=0 && iDb<db->nDb );
3178   assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
3179   pDb = &db->aDb[iDb];
3180   pX = pDb->pBt;
3181   assert( pX!=0 );
3182   if( pOp->opcode==OP_OpenWrite ){
3183     wrFlag = 1;
3184     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3185     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3186       p->minWriteFileFormat = pDb->pSchema->file_format;
3187     }
3188   }else{
3189     wrFlag = 0;
3190   }
3191   if( pOp->p5 & OPFLAG_P2ISREG ){
3192     assert( p2>0 );
3193     assert( p2<=p->nMem );
3194     pIn2 = &aMem[p2];
3195     assert( memIsValid(pIn2) );
3196     assert( (pIn2->flags & MEM_Int)!=0 );
3197     sqlite3VdbeMemIntegerify(pIn2);
3198     p2 = (int)pIn2->u.i;
3199     /* The p2 value always comes from a prior OP_CreateTable opcode and
3200     ** that opcode will always set the p2 value to 2 or more or else fail.
3201     ** If there were a failure, the prepared statement would have halted
3202     ** before reaching this instruction. */
3203     if( NEVER(p2<2) ) {
3204       rc = SQLITE_CORRUPT_BKPT;
3205       goto abort_due_to_error;
3206     }
3207   }
3208   if( pOp->p4type==P4_KEYINFO ){
3209     pKeyInfo = pOp->p4.pKeyInfo;
3210     pKeyInfo->enc = ENC(p->db);
3211     nField = pKeyInfo->nField+1;
3212   }else if( pOp->p4type==P4_INT32 ){
3213     nField = pOp->p4.i;
3214   }
3215   assert( pOp->p1>=0 );
3216   pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3217   if( pCur==0 ) goto no_mem;
3218   pCur->nullRow = 1;
3219   pCur->isOrdered = 1;
3220   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3221   pCur->pKeyInfo = pKeyInfo;
3222   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3223   sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
3224 
3225   /* Since it performs no memory allocation or IO, the only value that
3226   ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3227   assert( rc==SQLITE_OK );
3228 
3229   /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3230   ** SQLite used to check if the root-page flags were sane at this point
3231   ** and report database corruption if they were not, but this check has
3232   ** since moved into the btree layer.  */
3233   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3234   pCur->isIndex = !pCur->isTable;
3235   break;
3236 }
3237 
3238 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3239 **
3240 ** Open a new cursor P1 to a transient table.
3241 ** The cursor is always opened read/write even if
3242 ** the main database is read-only.  The ephemeral
3243 ** table is deleted automatically when the cursor is closed.
3244 **
3245 ** P2 is the number of columns in the ephemeral table.
3246 ** The cursor points to a BTree table if P4==0 and to a BTree index
3247 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3248 ** that defines the format of keys in the index.
3249 **
3250 ** This opcode was once called OpenTemp.  But that created
3251 ** confusion because the term "temp table", might refer either
3252 ** to a TEMP table at the SQL level, or to a table opened by
3253 ** this opcode.  Then this opcode was call OpenVirtual.  But
3254 ** that created confusion with the whole virtual-table idea.
3255 **
3256 ** The P5 parameter can be a mask of the BTREE_* flags defined
3257 ** in btree.h.  These flags control aspects of the operation of
3258 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3259 ** added automatically.
3260 */
3261 /* Opcode: OpenAutoindex P1 P2 * P4 *
3262 **
3263 ** This opcode works the same as OP_OpenEphemeral.  It has a
3264 ** different name to distinguish its use.  Tables created using
3265 ** by this opcode will be used for automatically created transient
3266 ** indices in joins.
3267 */
3268 case OP_OpenAutoindex:
3269 case OP_OpenEphemeral: {
3270   VdbeCursor *pCx;
3271   static const int vfsFlags =
3272       SQLITE_OPEN_READWRITE |
3273       SQLITE_OPEN_CREATE |
3274       SQLITE_OPEN_EXCLUSIVE |
3275       SQLITE_OPEN_DELETEONCLOSE |
3276       SQLITE_OPEN_TRANSIENT_DB;
3277 
3278   assert( pOp->p1>=0 );
3279   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3280   if( pCx==0 ) goto no_mem;
3281   pCx->nullRow = 1;
3282   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3283                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3284   if( rc==SQLITE_OK ){
3285     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3286   }
3287   if( rc==SQLITE_OK ){
3288     /* If a transient index is required, create it by calling
3289     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3290     ** opening it. If a transient table is required, just use the
3291     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3292     */
3293     if( pOp->p4.pKeyInfo ){
3294       int pgno;
3295       assert( pOp->p4type==P4_KEYINFO );
3296       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3297       if( rc==SQLITE_OK ){
3298         assert( pgno==MASTER_ROOT+1 );
3299         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
3300                                 (KeyInfo*)pOp->p4.z, pCx->pCursor);
3301         pCx->pKeyInfo = pOp->p4.pKeyInfo;
3302         pCx->pKeyInfo->enc = ENC(p->db);
3303       }
3304       pCx->isTable = 0;
3305     }else{
3306       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3307       pCx->isTable = 1;
3308     }
3309   }
3310   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3311   pCx->isIndex = !pCx->isTable;
3312   break;
3313 }
3314 
3315 /* Opcode: SorterOpen P1 P2 * P4 *
3316 **
3317 ** This opcode works like OP_OpenEphemeral except that it opens
3318 ** a transient index that is specifically designed to sort large
3319 ** tables using an external merge-sort algorithm.
3320 */
3321 case OP_SorterOpen: {
3322   VdbeCursor *pCx;
3323 
3324 #ifndef SQLITE_OMIT_MERGE_SORT
3325   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3326   if( pCx==0 ) goto no_mem;
3327   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3328   pCx->pKeyInfo->enc = ENC(p->db);
3329   pCx->isSorter = 1;
3330   rc = sqlite3VdbeSorterInit(db, pCx);
3331 #else
3332   pOp->opcode = OP_OpenEphemeral;
3333   pc--;
3334 #endif
3335   break;
3336 }
3337 
3338 /* Opcode: OpenPseudo P1 P2 P3 * P5
3339 **
3340 ** Open a new cursor that points to a fake table that contains a single
3341 ** row of data.  The content of that one row in the content of memory
3342 ** register P2 when P5==0.  In other words, cursor P1 becomes an alias for the
3343 ** MEM_Blob content contained in register P2.  When P5==1, then the
3344 ** row is represented by P3 consecutive registers beginning with P2.
3345 **
3346 ** A pseudo-table created by this opcode is used to hold a single
3347 ** row output from the sorter so that the row can be decomposed into
3348 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3349 ** is the only cursor opcode that works with a pseudo-table.
3350 **
3351 ** P3 is the number of fields in the records that will be stored by
3352 ** the pseudo-table.
3353 */
3354 case OP_OpenPseudo: {
3355   VdbeCursor *pCx;
3356 
3357   assert( pOp->p1>=0 );
3358   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3359   if( pCx==0 ) goto no_mem;
3360   pCx->nullRow = 1;
3361   pCx->pseudoTableReg = pOp->p2;
3362   pCx->isTable = 1;
3363   pCx->isIndex = 0;
3364   pCx->multiPseudo = pOp->p5;
3365   break;
3366 }
3367 
3368 /* Opcode: Close P1 * * * *
3369 **
3370 ** Close a cursor previously opened as P1.  If P1 is not
3371 ** currently open, this instruction is a no-op.
3372 */
3373 case OP_Close: {
3374   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3375   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3376   p->apCsr[pOp->p1] = 0;
3377   break;
3378 }
3379 
3380 /* Opcode: SeekGe P1 P2 P3 P4 *
3381 **
3382 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3383 ** use the value in register P3 as the key.  If cursor P1 refers
3384 ** to an SQL index, then P3 is the first in an array of P4 registers
3385 ** that are used as an unpacked index key.
3386 **
3387 ** Reposition cursor P1 so that  it points to the smallest entry that
3388 ** is greater than or equal to the key value. If there are no records
3389 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3390 **
3391 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3392 */
3393 /* Opcode: SeekGt P1 P2 P3 P4 *
3394 **
3395 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3396 ** use the value in register P3 as a key. If cursor P1 refers
3397 ** to an SQL index, then P3 is the first in an array of P4 registers
3398 ** that are used as an unpacked index key.
3399 **
3400 ** Reposition cursor P1 so that  it points to the smallest entry that
3401 ** is greater than the key value. If there are no records greater than
3402 ** the key and P2 is not zero, then jump to P2.
3403 **
3404 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3405 */
3406 /* Opcode: SeekLt P1 P2 P3 P4 *
3407 **
3408 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3409 ** use the value in register P3 as a key. If cursor P1 refers
3410 ** to an SQL index, then P3 is the first in an array of P4 registers
3411 ** that are used as an unpacked index key.
3412 **
3413 ** Reposition cursor P1 so that  it points to the largest entry that
3414 ** is less than the key value. If there are no records less than
3415 ** the key and P2 is not zero, then jump to P2.
3416 **
3417 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3418 */
3419 /* Opcode: SeekLe P1 P2 P3 P4 *
3420 **
3421 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3422 ** use the value in register P3 as a key. If cursor P1 refers
3423 ** to an SQL index, then P3 is the first in an array of P4 registers
3424 ** that are used as an unpacked index key.
3425 **
3426 ** Reposition cursor P1 so that it points to the largest entry that
3427 ** is less than or equal to the key value. If there are no records
3428 ** less than or equal to the key and P2 is not zero, then jump to P2.
3429 **
3430 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3431 */
3432 case OP_SeekLt:         /* jump, in3 */
3433 case OP_SeekLe:         /* jump, in3 */
3434 case OP_SeekGe:         /* jump, in3 */
3435 case OP_SeekGt: {       /* jump, in3 */
3436   int res;
3437   int oc;
3438   VdbeCursor *pC;
3439   UnpackedRecord r;
3440   int nField;
3441   i64 iKey;      /* The rowid we are to seek to */
3442 
3443   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3444   assert( pOp->p2!=0 );
3445   pC = p->apCsr[pOp->p1];
3446   assert( pC!=0 );
3447   assert( pC->pseudoTableReg==0 );
3448   assert( OP_SeekLe == OP_SeekLt+1 );
3449   assert( OP_SeekGe == OP_SeekLt+2 );
3450   assert( OP_SeekGt == OP_SeekLt+3 );
3451   assert( pC->isOrdered );
3452   if( ALWAYS(pC->pCursor!=0) ){
3453     oc = pOp->opcode;
3454     pC->nullRow = 0;
3455     if( pC->isTable ){
3456       /* The input value in P3 might be of any type: integer, real, string,
3457       ** blob, or NULL.  But it needs to be an integer before we can do
3458       ** the seek, so covert it. */
3459       pIn3 = &aMem[pOp->p3];
3460       applyNumericAffinity(pIn3);
3461       iKey = sqlite3VdbeIntValue(pIn3);
3462       pC->rowidIsValid = 0;
3463 
3464       /* If the P3 value could not be converted into an integer without
3465       ** loss of information, then special processing is required... */
3466       if( (pIn3->flags & MEM_Int)==0 ){
3467         if( (pIn3->flags & MEM_Real)==0 ){
3468           /* If the P3 value cannot be converted into any kind of a number,
3469           ** then the seek is not possible, so jump to P2 */
3470           pc = pOp->p2 - 1;
3471           break;
3472         }
3473         /* If we reach this point, then the P3 value must be a floating
3474         ** point number. */
3475         assert( (pIn3->flags & MEM_Real)!=0 );
3476 
3477         if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
3478           /* The P3 value is too large in magnitude to be expressed as an
3479           ** integer. */
3480           res = 1;
3481           if( pIn3->r<0 ){
3482             if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
3483               rc = sqlite3BtreeFirst(pC->pCursor, &res);
3484               if( rc!=SQLITE_OK ) goto abort_due_to_error;
3485             }
3486           }else{
3487             if( oc<=OP_SeekLe ){  assert( oc==OP_SeekLt || oc==OP_SeekLe );
3488               rc = sqlite3BtreeLast(pC->pCursor, &res);
3489               if( rc!=SQLITE_OK ) goto abort_due_to_error;
3490             }
3491           }
3492           if( res ){
3493             pc = pOp->p2 - 1;
3494           }
3495           break;
3496         }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3497           /* Use the ceiling() function to convert real->int */
3498           if( pIn3->r > (double)iKey ) iKey++;
3499         }else{
3500           /* Use the floor() function to convert real->int */
3501           assert( oc==OP_SeekLe || oc==OP_SeekGt );
3502           if( pIn3->r < (double)iKey ) iKey--;
3503         }
3504       }
3505       rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3506       if( rc!=SQLITE_OK ){
3507         goto abort_due_to_error;
3508       }
3509       if( res==0 ){
3510         pC->rowidIsValid = 1;
3511         pC->lastRowid = iKey;
3512       }
3513     }else{
3514       nField = pOp->p4.i;
3515       assert( pOp->p4type==P4_INT32 );
3516       assert( nField>0 );
3517       r.pKeyInfo = pC->pKeyInfo;
3518       r.nField = (u16)nField;
3519 
3520       /* The next line of code computes as follows, only faster:
3521       **   if( oc==OP_SeekGt || oc==OP_SeekLe ){
3522       **     r.flags = UNPACKED_INCRKEY;
3523       **   }else{
3524       **     r.flags = 0;
3525       **   }
3526       */
3527       r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
3528       assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3529       assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3530       assert( oc!=OP_SeekGe || r.flags==0 );
3531       assert( oc!=OP_SeekLt || r.flags==0 );
3532 
3533       r.aMem = &aMem[pOp->p3];
3534 #ifdef SQLITE_DEBUG
3535       { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3536 #endif
3537       ExpandBlob(r.aMem);
3538       rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3539       if( rc!=SQLITE_OK ){
3540         goto abort_due_to_error;
3541       }
3542       pC->rowidIsValid = 0;
3543     }
3544     pC->deferredMoveto = 0;
3545     pC->cacheStatus = CACHE_STALE;
3546 #ifdef SQLITE_TEST
3547     sqlite3_search_count++;
3548 #endif
3549     if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
3550       if( res<0 || (res==0 && oc==OP_SeekGt) ){
3551         rc = sqlite3BtreeNext(pC->pCursor, &res);
3552         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3553         pC->rowidIsValid = 0;
3554       }else{
3555         res = 0;
3556       }
3557     }else{
3558       assert( oc==OP_SeekLt || oc==OP_SeekLe );
3559       if( res>0 || (res==0 && oc==OP_SeekLt) ){
3560         rc = sqlite3BtreePrevious(pC->pCursor, &res);
3561         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3562         pC->rowidIsValid = 0;
3563       }else{
3564         /* res might be negative because the table is empty.  Check to
3565         ** see if this is the case.
3566         */
3567         res = sqlite3BtreeEof(pC->pCursor);
3568       }
3569     }
3570     assert( pOp->p2>0 );
3571     if( res ){
3572       pc = pOp->p2 - 1;
3573     }
3574   }else{
3575     /* This happens when attempting to open the sqlite3_master table
3576     ** for read access returns SQLITE_EMPTY. In this case always
3577     ** take the jump (since there are no records in the table).
3578     */
3579     pc = pOp->p2 - 1;
3580   }
3581   break;
3582 }
3583 
3584 /* Opcode: Seek P1 P2 * * *
3585 **
3586 ** P1 is an open table cursor and P2 is a rowid integer.  Arrange
3587 ** for P1 to move so that it points to the rowid given by P2.
3588 **
3589 ** This is actually a deferred seek.  Nothing actually happens until
3590 ** the cursor is used to read a record.  That way, if no reads
3591 ** occur, no unnecessary I/O happens.
3592 */
3593 case OP_Seek: {    /* in2 */
3594   VdbeCursor *pC;
3595 
3596   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3597   pC = p->apCsr[pOp->p1];
3598   assert( pC!=0 );
3599   if( ALWAYS(pC->pCursor!=0) ){
3600     assert( pC->isTable );
3601     pC->nullRow = 0;
3602     pIn2 = &aMem[pOp->p2];
3603     pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3604     pC->rowidIsValid = 0;
3605     pC->deferredMoveto = 1;
3606   }
3607   break;
3608 }
3609 
3610 
3611 /* Opcode: Found P1 P2 P3 P4 *
3612 **
3613 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3614 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3615 ** record.
3616 **
3617 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3618 ** is a prefix of any entry in P1 then a jump is made to P2 and
3619 ** P1 is left pointing at the matching entry.
3620 */
3621 /* Opcode: NotFound P1 P2 P3 P4 *
3622 **
3623 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3624 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3625 ** record.
3626 **
3627 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3628 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3629 ** does contain an entry whose prefix matches the P3/P4 record then control
3630 ** falls through to the next instruction and P1 is left pointing at the
3631 ** matching entry.
3632 **
3633 ** See also: Found, NotExists, IsUnique
3634 */
3635 case OP_NotFound:       /* jump, in3 */
3636 case OP_Found: {        /* jump, in3 */
3637   int alreadyExists;
3638   VdbeCursor *pC;
3639   int res;
3640   char *pFree;
3641   UnpackedRecord *pIdxKey;
3642   UnpackedRecord r;
3643   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3644 
3645 #ifdef SQLITE_TEST
3646   sqlite3_found_count++;
3647 #endif
3648 
3649   alreadyExists = 0;
3650   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3651   assert( pOp->p4type==P4_INT32 );
3652   pC = p->apCsr[pOp->p1];
3653   assert( pC!=0 );
3654   pIn3 = &aMem[pOp->p3];
3655   if( ALWAYS(pC->pCursor!=0) ){
3656 
3657     assert( pC->isTable==0 );
3658     if( pOp->p4.i>0 ){
3659       r.pKeyInfo = pC->pKeyInfo;
3660       r.nField = (u16)pOp->p4.i;
3661       r.aMem = pIn3;
3662 #ifdef SQLITE_DEBUG
3663       { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3664 #endif
3665       r.flags = UNPACKED_PREFIX_MATCH;
3666       pIdxKey = &r;
3667     }else{
3668       pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3669           pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3670       );
3671       if( pIdxKey==0 ) goto no_mem;
3672       assert( pIn3->flags & MEM_Blob );
3673       assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
3674       sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3675       pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
3676     }
3677     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3678     if( pOp->p4.i==0 ){
3679       sqlite3DbFree(db, pFree);
3680     }
3681     if( rc!=SQLITE_OK ){
3682       break;
3683     }
3684     alreadyExists = (res==0);
3685     pC->deferredMoveto = 0;
3686     pC->cacheStatus = CACHE_STALE;
3687   }
3688   if( pOp->opcode==OP_Found ){
3689     if( alreadyExists ) pc = pOp->p2 - 1;
3690   }else{
3691     if( !alreadyExists ) pc = pOp->p2 - 1;
3692   }
3693   break;
3694 }
3695 
3696 /* Opcode: IsUnique P1 P2 P3 P4 *
3697 **
3698 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3699 ** no data and where the key are records generated by OP_MakeRecord with
3700 ** the list field being the integer ROWID of the entry that the index
3701 ** entry refers to.
3702 **
3703 ** The P3 register contains an integer record number. Call this record
3704 ** number R. Register P4 is the first in a set of N contiguous registers
3705 ** that make up an unpacked index key that can be used with cursor P1.
3706 ** The value of N can be inferred from the cursor. N includes the rowid
3707 ** value appended to the end of the index record. This rowid value may
3708 ** or may not be the same as R.
3709 **
3710 ** If any of the N registers beginning with register P4 contains a NULL
3711 ** value, jump immediately to P2.
3712 **
3713 ** Otherwise, this instruction checks if cursor P1 contains an entry
3714 ** where the first (N-1) fields match but the rowid value at the end
3715 ** of the index entry is not R. If there is no such entry, control jumps
3716 ** to instruction P2. Otherwise, the rowid of the conflicting index
3717 ** entry is copied to register P3 and control falls through to the next
3718 ** instruction.
3719 **
3720 ** See also: NotFound, NotExists, Found
3721 */
3722 case OP_IsUnique: {        /* jump, in3 */
3723   u16 ii;
3724   VdbeCursor *pCx;
3725   BtCursor *pCrsr;
3726   u16 nField;
3727   Mem *aMx;
3728   UnpackedRecord r;                  /* B-Tree index search key */
3729   i64 R;                             /* Rowid stored in register P3 */
3730 
3731   pIn3 = &aMem[pOp->p3];
3732   aMx = &aMem[pOp->p4.i];
3733   /* Assert that the values of parameters P1 and P4 are in range. */
3734   assert( pOp->p4type==P4_INT32 );
3735   assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
3736   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3737 
3738   /* Find the index cursor. */
3739   pCx = p->apCsr[pOp->p1];
3740   assert( pCx->deferredMoveto==0 );
3741   pCx->seekResult = 0;
3742   pCx->cacheStatus = CACHE_STALE;
3743   pCrsr = pCx->pCursor;
3744 
3745   /* If any of the values are NULL, take the jump. */
3746   nField = pCx->pKeyInfo->nField;
3747   for(ii=0; ii<nField; ii++){
3748     if( aMx[ii].flags & MEM_Null ){
3749       pc = pOp->p2 - 1;
3750       pCrsr = 0;
3751       break;
3752     }
3753   }
3754   assert( (aMx[nField].flags & MEM_Null)==0 );
3755 
3756   if( pCrsr!=0 ){
3757     /* Populate the index search key. */
3758     r.pKeyInfo = pCx->pKeyInfo;
3759     r.nField = nField + 1;
3760     r.flags = UNPACKED_PREFIX_SEARCH;
3761     r.aMem = aMx;
3762 #ifdef SQLITE_DEBUG
3763     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3764 #endif
3765 
3766     /* Extract the value of R from register P3. */
3767     sqlite3VdbeMemIntegerify(pIn3);
3768     R = pIn3->u.i;
3769 
3770     /* Search the B-Tree index. If no conflicting record is found, jump
3771     ** to P2. Otherwise, copy the rowid of the conflicting record to
3772     ** register P3 and fall through to the next instruction.  */
3773     rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3774     if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
3775       pc = pOp->p2 - 1;
3776     }else{
3777       pIn3->u.i = r.rowid;
3778     }
3779   }
3780   break;
3781 }
3782 
3783 /* Opcode: NotExists P1 P2 P3 * *
3784 **
3785 ** Use the content of register P3 as an integer key.  If a record
3786 ** with that key does not exist in table of P1, then jump to P2.
3787 ** If the record does exist, then fall through.  The cursor is left
3788 ** pointing to the record if it exists.
3789 **
3790 ** The difference between this operation and NotFound is that this
3791 ** operation assumes the key is an integer and that P1 is a table whereas
3792 ** NotFound assumes key is a blob constructed from MakeRecord and
3793 ** P1 is an index.
3794 **
3795 ** See also: Found, NotFound, IsUnique
3796 */
3797 case OP_NotExists: {        /* jump, in3 */
3798   VdbeCursor *pC;
3799   BtCursor *pCrsr;
3800   int res;
3801   u64 iKey;
3802 
3803   pIn3 = &aMem[pOp->p3];
3804   assert( pIn3->flags & MEM_Int );
3805   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3806   pC = p->apCsr[pOp->p1];
3807   assert( pC!=0 );
3808   assert( pC->isTable );
3809   assert( pC->pseudoTableReg==0 );
3810   pCrsr = pC->pCursor;
3811   if( ALWAYS(pCrsr!=0) ){
3812     res = 0;
3813     iKey = pIn3->u.i;
3814     rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3815     pC->lastRowid = pIn3->u.i;
3816     pC->rowidIsValid = res==0 ?1:0;
3817     pC->nullRow = 0;
3818     pC->cacheStatus = CACHE_STALE;
3819     pC->deferredMoveto = 0;
3820     if( res!=0 ){
3821       pc = pOp->p2 - 1;
3822       assert( pC->rowidIsValid==0 );
3823     }
3824     pC->seekResult = res;
3825   }else{
3826     /* This happens when an attempt to open a read cursor on the
3827     ** sqlite_master table returns SQLITE_EMPTY.
3828     */
3829     pc = pOp->p2 - 1;
3830     assert( pC->rowidIsValid==0 );
3831     pC->seekResult = 0;
3832   }
3833   break;
3834 }
3835 
3836 /* Opcode: Sequence P1 P2 * * *
3837 **
3838 ** Find the next available sequence number for cursor P1.
3839 ** Write the sequence number into register P2.
3840 ** The sequence number on the cursor is incremented after this
3841 ** instruction.
3842 */
3843 case OP_Sequence: {           /* out2-prerelease */
3844   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3845   assert( p->apCsr[pOp->p1]!=0 );
3846   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3847   break;
3848 }
3849 
3850 
3851 /* Opcode: NewRowid P1 P2 P3 * *
3852 **
3853 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3854 ** The record number is not previously used as a key in the database
3855 ** table that cursor P1 points to.  The new record number is written
3856 ** written to register P2.
3857 **
3858 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3859 ** the largest previously generated record number. No new record numbers are
3860 ** allowed to be less than this value. When this value reaches its maximum,
3861 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3862 ** generated record number. This P3 mechanism is used to help implement the
3863 ** AUTOINCREMENT feature.
3864 */
3865 case OP_NewRowid: {           /* out2-prerelease */
3866   i64 v;                 /* The new rowid */
3867   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
3868   int res;               /* Result of an sqlite3BtreeLast() */
3869   int cnt;               /* Counter to limit the number of searches */
3870   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
3871   VdbeFrame *pFrame;     /* Root frame of VDBE */
3872 
3873   v = 0;
3874   res = 0;
3875   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3876   pC = p->apCsr[pOp->p1];
3877   assert( pC!=0 );
3878   if( NEVER(pC->pCursor==0) ){
3879     /* The zero initialization above is all that is needed */
3880   }else{
3881     /* The next rowid or record number (different terms for the same
3882     ** thing) is obtained in a two-step algorithm.
3883     **
3884     ** First we attempt to find the largest existing rowid and add one
3885     ** to that.  But if the largest existing rowid is already the maximum
3886     ** positive integer, we have to fall through to the second
3887     ** probabilistic algorithm
3888     **
3889     ** The second algorithm is to select a rowid at random and see if
3890     ** it already exists in the table.  If it does not exist, we have
3891     ** succeeded.  If the random rowid does exist, we select a new one
3892     ** and try again, up to 100 times.
3893     */
3894     assert( pC->isTable );
3895 
3896 #ifdef SQLITE_32BIT_ROWID
3897 #   define MAX_ROWID 0x7fffffff
3898 #else
3899     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3900     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
3901     ** to provide the constant while making all compilers happy.
3902     */
3903 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3904 #endif
3905 
3906     if( !pC->useRandomRowid ){
3907       v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3908       if( v==0 ){
3909         rc = sqlite3BtreeLast(pC->pCursor, &res);
3910         if( rc!=SQLITE_OK ){
3911           goto abort_due_to_error;
3912         }
3913         if( res ){
3914           v = 1;   /* IMP: R-61914-48074 */
3915         }else{
3916           assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3917           rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3918           assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
3919           if( v>=MAX_ROWID ){
3920             pC->useRandomRowid = 1;
3921           }else{
3922             v++;   /* IMP: R-29538-34987 */
3923           }
3924         }
3925       }
3926 
3927 #ifndef SQLITE_OMIT_AUTOINCREMENT
3928       if( pOp->p3 ){
3929         /* Assert that P3 is a valid memory cell. */
3930         assert( pOp->p3>0 );
3931         if( p->pFrame ){
3932           for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
3933           /* Assert that P3 is a valid memory cell. */
3934           assert( pOp->p3<=pFrame->nMem );
3935           pMem = &pFrame->aMem[pOp->p3];
3936         }else{
3937           /* Assert that P3 is a valid memory cell. */
3938           assert( pOp->p3<=p->nMem );
3939           pMem = &aMem[pOp->p3];
3940           memAboutToChange(p, pMem);
3941         }
3942         assert( memIsValid(pMem) );
3943 
3944         REGISTER_TRACE(pOp->p3, pMem);
3945         sqlite3VdbeMemIntegerify(pMem);
3946         assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
3947         if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3948           rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
3949           goto abort_due_to_error;
3950         }
3951         if( v<pMem->u.i+1 ){
3952           v = pMem->u.i + 1;
3953         }
3954         pMem->u.i = v;
3955       }
3956 #endif
3957 
3958       sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
3959     }
3960     if( pC->useRandomRowid ){
3961       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3962       ** largest possible integer (9223372036854775807) then the database
3963       ** engine starts picking positive candidate ROWIDs at random until
3964       ** it finds one that is not previously used. */
3965       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
3966                              ** an AUTOINCREMENT table. */
3967       /* on the first attempt, simply do one more than previous */
3968       v = lastRowid;
3969       v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3970       v++; /* ensure non-zero */
3971       cnt = 0;
3972       while(   ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3973                                                  0, &res))==SQLITE_OK)
3974             && (res==0)
3975             && (++cnt<100)){
3976         /* collision - try another random rowid */
3977         sqlite3_randomness(sizeof(v), &v);
3978         if( cnt<5 ){
3979           /* try "small" random rowids for the initial attempts */
3980           v &= 0xffffff;
3981         }else{
3982           v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3983         }
3984         v++; /* ensure non-zero */
3985       }
3986       if( rc==SQLITE_OK && res==0 ){
3987         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
3988         goto abort_due_to_error;
3989       }
3990       assert( v>0 );  /* EV: R-40812-03570 */
3991     }
3992     pC->rowidIsValid = 0;
3993     pC->deferredMoveto = 0;
3994     pC->cacheStatus = CACHE_STALE;
3995   }
3996   pOut->u.i = v;
3997   break;
3998 }
3999 
4000 /* Opcode: Insert P1 P2 P3 P4 P5
4001 **
4002 ** Write an entry into the table of cursor P1.  A new entry is
4003 ** created if it doesn't already exist or the data for an existing
4004 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4005 ** number P2. The key is stored in register P3. The key must
4006 ** be a MEM_Int.
4007 **
4008 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4009 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4010 ** then rowid is stored for subsequent return by the
4011 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4012 **
4013 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4014 ** the last seek operation (OP_NotExists) was a success, then this
4015 ** operation will not attempt to find the appropriate row before doing
4016 ** the insert but will instead overwrite the row that the cursor is
4017 ** currently pointing to.  Presumably, the prior OP_NotExists opcode
4018 ** has already positioned the cursor correctly.  This is an optimization
4019 ** that boosts performance by avoiding redundant seeks.
4020 **
4021 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4022 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4023 ** is part of an INSERT operation.  The difference is only important to
4024 ** the update hook.
4025 **
4026 ** Parameter P4 may point to a string containing the table-name, or
4027 ** may be NULL. If it is not NULL, then the update-hook
4028 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4029 **
4030 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4031 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4032 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4033 ** value of register P2 will then change.  Make sure this does not
4034 ** cause any problems.)
4035 **
4036 ** This instruction only works on tables.  The equivalent instruction
4037 ** for indices is OP_IdxInsert.
4038 */
4039 /* Opcode: InsertInt P1 P2 P3 P4 P5
4040 **
4041 ** This works exactly like OP_Insert except that the key is the
4042 ** integer value P3, not the value of the integer stored in register P3.
4043 */
4044 case OP_Insert:
4045 case OP_InsertInt: {
4046   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4047   Mem *pKey;        /* MEM cell holding key  for the record */
4048   i64 iKey;         /* The integer ROWID or key for the record to be inserted */
4049   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4050   int nZero;        /* Number of zero-bytes to append */
4051   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4052   const char *zDb;  /* database name - used by the update hook */
4053   const char *zTbl; /* Table name - used by the opdate hook */
4054   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4055 
4056   pData = &aMem[pOp->p2];
4057   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4058   assert( memIsValid(pData) );
4059   pC = p->apCsr[pOp->p1];
4060   assert( pC!=0 );
4061   assert( pC->pCursor!=0 );
4062   assert( pC->pseudoTableReg==0 );
4063   assert( pC->isTable );
4064   REGISTER_TRACE(pOp->p2, pData);
4065 
4066   if( pOp->opcode==OP_Insert ){
4067     pKey = &aMem[pOp->p3];
4068     assert( pKey->flags & MEM_Int );
4069     assert( memIsValid(pKey) );
4070     REGISTER_TRACE(pOp->p3, pKey);
4071     iKey = pKey->u.i;
4072   }else{
4073     assert( pOp->opcode==OP_InsertInt );
4074     iKey = pOp->p3;
4075   }
4076 
4077   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4078   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4079   if( pData->flags & MEM_Null ){
4080     pData->z = 0;
4081     pData->n = 0;
4082   }else{
4083     assert( pData->flags & (MEM_Blob|MEM_Str) );
4084   }
4085   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4086   if( pData->flags & MEM_Zero ){
4087     nZero = pData->u.nZero;
4088   }else{
4089     nZero = 0;
4090   }
4091   sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4092   rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4093                           pData->z, pData->n, nZero,
4094                           pOp->p5 & OPFLAG_APPEND, seekResult
4095   );
4096   pC->rowidIsValid = 0;
4097   pC->deferredMoveto = 0;
4098   pC->cacheStatus = CACHE_STALE;
4099 
4100   /* Invoke the update-hook if required. */
4101   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4102     zDb = db->aDb[pC->iDb].zName;
4103     zTbl = pOp->p4.z;
4104     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4105     assert( pC->isTable );
4106     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4107     assert( pC->iDb>=0 );
4108   }
4109   break;
4110 }
4111 
4112 /* Opcode: Delete P1 P2 * P4 *
4113 **
4114 ** Delete the record at which the P1 cursor is currently pointing.
4115 **
4116 ** The cursor will be left pointing at either the next or the previous
4117 ** record in the table. If it is left pointing at the next record, then
4118 ** the next Next instruction will be a no-op.  Hence it is OK to delete
4119 ** a record from within an Next loop.
4120 **
4121 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4122 ** incremented (otherwise not).
4123 **
4124 ** P1 must not be pseudo-table.  It has to be a real table with
4125 ** multiple rows.
4126 **
4127 ** If P4 is not NULL, then it is the name of the table that P1 is
4128 ** pointing to.  The update hook will be invoked, if it exists.
4129 ** If P4 is not NULL then the P1 cursor must have been positioned
4130 ** using OP_NotFound prior to invoking this opcode.
4131 */
4132 case OP_Delete: {
4133   i64 iKey;
4134   VdbeCursor *pC;
4135 
4136   iKey = 0;
4137   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4138   pC = p->apCsr[pOp->p1];
4139   assert( pC!=0 );
4140   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
4141 
4142   /* If the update-hook will be invoked, set iKey to the rowid of the
4143   ** row being deleted.
4144   */
4145   if( db->xUpdateCallback && pOp->p4.z ){
4146     assert( pC->isTable );
4147     assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
4148     iKey = pC->lastRowid;
4149   }
4150 
4151   /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4152   ** OP_Column on the same table without any intervening operations that
4153   ** might move or invalidate the cursor.  Hence cursor pC is always pointing
4154   ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4155   ** below is always a no-op and cannot fail.  We will run it anyhow, though,
4156   ** to guard against future changes to the code generator.
4157   **/
4158   assert( pC->deferredMoveto==0 );
4159   rc = sqlite3VdbeCursorMoveto(pC);
4160   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4161 
4162   sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4163   rc = sqlite3BtreeDelete(pC->pCursor);
4164   pC->cacheStatus = CACHE_STALE;
4165 
4166   /* Invoke the update-hook if required. */
4167   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4168     const char *zDb = db->aDb[pC->iDb].zName;
4169     const char *zTbl = pOp->p4.z;
4170     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4171     assert( pC->iDb>=0 );
4172   }
4173   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4174   break;
4175 }
4176 /* Opcode: ResetCount * * * * *
4177 **
4178 ** The value of the change counter is copied to the database handle
4179 ** change counter (returned by subsequent calls to sqlite3_changes()).
4180 ** Then the VMs internal change counter resets to 0.
4181 ** This is used by trigger programs.
4182 */
4183 case OP_ResetCount: {
4184   sqlite3VdbeSetChanges(db, p->nChange);
4185   p->nChange = 0;
4186   break;
4187 }
4188 
4189 /* Opcode: SorterCompare P1 P2 P3
4190 **
4191 ** P1 is a sorter cursor. This instruction compares the record blob in
4192 ** register P3 with the entry that the sorter cursor currently points to.
4193 ** If, excluding the rowid fields at the end, the two records are a match,
4194 ** fall through to the next instruction. Otherwise, jump to instruction P2.
4195 */
4196 case OP_SorterCompare: {
4197   VdbeCursor *pC;
4198   int res;
4199 
4200   pC = p->apCsr[pOp->p1];
4201   assert( isSorter(pC) );
4202   pIn3 = &aMem[pOp->p3];
4203   rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4204   if( res ){
4205     pc = pOp->p2-1;
4206   }
4207   break;
4208 };
4209 
4210 /* Opcode: SorterData P1 P2 * * *
4211 **
4212 ** Write into register P2 the current sorter data for sorter cursor P1.
4213 */
4214 case OP_SorterData: {
4215   VdbeCursor *pC;
4216 
4217 #ifndef SQLITE_OMIT_MERGE_SORT
4218   pOut = &aMem[pOp->p2];
4219   pC = p->apCsr[pOp->p1];
4220   assert( pC->isSorter );
4221   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4222 #else
4223   pOp->opcode = OP_RowKey;
4224   pc--;
4225 #endif
4226   break;
4227 }
4228 
4229 /* Opcode: RowData P1 P2 * * *
4230 **
4231 ** Write into register P2 the complete row data for cursor P1.
4232 ** There is no interpretation of the data.
4233 ** It is just copied onto the P2 register exactly as
4234 ** it is found in the database file.
4235 **
4236 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4237 ** of a real table, not a pseudo-table.
4238 */
4239 /* Opcode: RowKey P1 P2 * * *
4240 **
4241 ** Write into register P2 the complete row key for cursor P1.
4242 ** There is no interpretation of the data.
4243 ** The key is copied onto the P3 register exactly as
4244 ** it is found in the database file.
4245 **
4246 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4247 ** of a real table, not a pseudo-table.
4248 */
4249 case OP_RowKey:
4250 case OP_RowData: {
4251   VdbeCursor *pC;
4252   BtCursor *pCrsr;
4253   u32 n;
4254   i64 n64;
4255 
4256   pOut = &aMem[pOp->p2];
4257   memAboutToChange(p, pOut);
4258 
4259   /* Note that RowKey and RowData are really exactly the same instruction */
4260   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4261   pC = p->apCsr[pOp->p1];
4262   assert( pC->isSorter==0 );
4263   assert( pC->isTable || pOp->opcode!=OP_RowData );
4264   assert( pC->isIndex || pOp->opcode==OP_RowData );
4265   assert( pC!=0 );
4266   assert( pC->nullRow==0 );
4267   assert( pC->pseudoTableReg==0 );
4268   assert( pC->pCursor!=0 );
4269   pCrsr = pC->pCursor;
4270   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4271 
4272   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4273   ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4274   ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
4275   ** a no-op and can never fail.  But we leave it in place as a safety.
4276   */
4277   assert( pC->deferredMoveto==0 );
4278   rc = sqlite3VdbeCursorMoveto(pC);
4279   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4280 
4281   if( pC->isIndex ){
4282     assert( !pC->isTable );
4283     VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4284     assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
4285     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4286       goto too_big;
4287     }
4288     n = (u32)n64;
4289   }else{
4290     VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4291     assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
4292     if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4293       goto too_big;
4294     }
4295   }
4296   if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4297     goto no_mem;
4298   }
4299   pOut->n = n;
4300   MemSetTypeFlag(pOut, MEM_Blob);
4301   if( pC->isIndex ){
4302     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4303   }else{
4304     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4305   }
4306   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4307   UPDATE_MAX_BLOBSIZE(pOut);
4308   break;
4309 }
4310 
4311 /* Opcode: Rowid P1 P2 * * *
4312 **
4313 ** Store in register P2 an integer which is the key of the table entry that
4314 ** P1 is currently point to.
4315 **
4316 ** P1 can be either an ordinary table or a virtual table.  There used to
4317 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4318 ** one opcode now works for both table types.
4319 */
4320 case OP_Rowid: {                 /* out2-prerelease */
4321   VdbeCursor *pC;
4322   i64 v;
4323   sqlite3_vtab *pVtab;
4324   const sqlite3_module *pModule;
4325 
4326   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4327   pC = p->apCsr[pOp->p1];
4328   assert( pC!=0 );
4329   assert( pC->pseudoTableReg==0 || pC->nullRow );
4330   if( pC->nullRow ){
4331     pOut->flags = MEM_Null;
4332     break;
4333   }else if( pC->deferredMoveto ){
4334     v = pC->movetoTarget;
4335 #ifndef SQLITE_OMIT_VIRTUALTABLE
4336   }else if( pC->pVtabCursor ){
4337     pVtab = pC->pVtabCursor->pVtab;
4338     pModule = pVtab->pModule;
4339     assert( pModule->xRowid );
4340     rc = pModule->xRowid(pC->pVtabCursor, &v);
4341     importVtabErrMsg(p, pVtab);
4342 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4343   }else{
4344     assert( pC->pCursor!=0 );
4345     rc = sqlite3VdbeCursorMoveto(pC);
4346     if( rc ) goto abort_due_to_error;
4347     if( pC->rowidIsValid ){
4348       v = pC->lastRowid;
4349     }else{
4350       rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4351       assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
4352     }
4353   }
4354   pOut->u.i = v;
4355   break;
4356 }
4357 
4358 /* Opcode: NullRow P1 * * * *
4359 **
4360 ** Move the cursor P1 to a null row.  Any OP_Column operations
4361 ** that occur while the cursor is on the null row will always
4362 ** write a NULL.
4363 */
4364 case OP_NullRow: {
4365   VdbeCursor *pC;
4366 
4367   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4368   pC = p->apCsr[pOp->p1];
4369   assert( pC!=0 );
4370   pC->nullRow = 1;
4371   pC->rowidIsValid = 0;
4372   assert( pC->pCursor || pC->pVtabCursor );
4373   if( pC->pCursor ){
4374     sqlite3BtreeClearCursor(pC->pCursor);
4375   }
4376   break;
4377 }
4378 
4379 /* Opcode: Last P1 P2 * * *
4380 **
4381 ** The next use of the Rowid or Column or Next instruction for P1
4382 ** will refer to the last entry in the database table or index.
4383 ** If the table or index is empty and P2>0, then jump immediately to P2.
4384 ** If P2 is 0 or if the table or index is not empty, fall through
4385 ** to the following instruction.
4386 */
4387 case OP_Last: {        /* jump */
4388   VdbeCursor *pC;
4389   BtCursor *pCrsr;
4390   int res;
4391 
4392   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4393   pC = p->apCsr[pOp->p1];
4394   assert( pC!=0 );
4395   pCrsr = pC->pCursor;
4396   res = 0;
4397   if( ALWAYS(pCrsr!=0) ){
4398     rc = sqlite3BtreeLast(pCrsr, &res);
4399   }
4400   pC->nullRow = (u8)res;
4401   pC->deferredMoveto = 0;
4402   pC->rowidIsValid = 0;
4403   pC->cacheStatus = CACHE_STALE;
4404   if( pOp->p2>0 && res ){
4405     pc = pOp->p2 - 1;
4406   }
4407   break;
4408 }
4409 
4410 
4411 /* Opcode: Sort P1 P2 * * *
4412 **
4413 ** This opcode does exactly the same thing as OP_Rewind except that
4414 ** it increments an undocumented global variable used for testing.
4415 **
4416 ** Sorting is accomplished by writing records into a sorting index,
4417 ** then rewinding that index and playing it back from beginning to
4418 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4419 ** rewinding so that the global variable will be incremented and
4420 ** regression tests can determine whether or not the optimizer is
4421 ** correctly optimizing out sorts.
4422 */
4423 case OP_SorterSort:    /* jump */
4424 #ifdef SQLITE_OMIT_MERGE_SORT
4425   pOp->opcode = OP_Sort;
4426 #endif
4427 case OP_Sort: {        /* jump */
4428 #ifdef SQLITE_TEST
4429   sqlite3_sort_count++;
4430   sqlite3_search_count--;
4431 #endif
4432   p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
4433   /* Fall through into OP_Rewind */
4434 }
4435 /* Opcode: Rewind P1 P2 * * *
4436 **
4437 ** The next use of the Rowid or Column or Next instruction for P1
4438 ** will refer to the first entry in the database table or index.
4439 ** If the table or index is empty and P2>0, then jump immediately to P2.
4440 ** If P2 is 0 or if the table or index is not empty, fall through
4441 ** to the following instruction.
4442 */
4443 case OP_Rewind: {        /* jump */
4444   VdbeCursor *pC;
4445   BtCursor *pCrsr;
4446   int res;
4447 
4448   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4449   pC = p->apCsr[pOp->p1];
4450   assert( pC!=0 );
4451   assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
4452   res = 1;
4453   if( isSorter(pC) ){
4454     rc = sqlite3VdbeSorterRewind(db, pC, &res);
4455   }else{
4456     pCrsr = pC->pCursor;
4457     assert( pCrsr );
4458     rc = sqlite3BtreeFirst(pCrsr, &res);
4459     pC->atFirst = res==0 ?1:0;
4460     pC->deferredMoveto = 0;
4461     pC->cacheStatus = CACHE_STALE;
4462     pC->rowidIsValid = 0;
4463   }
4464   pC->nullRow = (u8)res;
4465   assert( pOp->p2>0 && pOp->p2<p->nOp );
4466   if( res ){
4467     pc = pOp->p2 - 1;
4468   }
4469   break;
4470 }
4471 
4472 /* Opcode: Next P1 P2 * P4 P5
4473 **
4474 ** Advance cursor P1 so that it points to the next key/data pair in its
4475 ** table or index.  If there are no more key/value pairs then fall through
4476 ** to the following instruction.  But if the cursor advance was successful,
4477 ** jump immediately to P2.
4478 **
4479 ** The P1 cursor must be for a real table, not a pseudo-table.
4480 **
4481 ** P4 is always of type P4_ADVANCE. The function pointer points to
4482 ** sqlite3BtreeNext().
4483 **
4484 ** If P5 is positive and the jump is taken, then event counter
4485 ** number P5-1 in the prepared statement is incremented.
4486 **
4487 ** See also: Prev
4488 */
4489 /* Opcode: Prev P1 P2 * * P5
4490 **
4491 ** Back up cursor P1 so that it points to the previous key/data pair in its
4492 ** table or index.  If there is no previous key/value pairs then fall through
4493 ** to the following instruction.  But if the cursor backup was successful,
4494 ** jump immediately to P2.
4495 **
4496 ** The P1 cursor must be for a real table, not a pseudo-table.
4497 **
4498 ** P4 is always of type P4_ADVANCE. The function pointer points to
4499 ** sqlite3BtreePrevious().
4500 **
4501 ** If P5 is positive and the jump is taken, then event counter
4502 ** number P5-1 in the prepared statement is incremented.
4503 */
4504 case OP_SorterNext:    /* jump */
4505 #ifdef SQLITE_OMIT_MERGE_SORT
4506   pOp->opcode = OP_Next;
4507 #endif
4508 case OP_Prev:          /* jump */
4509 case OP_Next: {        /* jump */
4510   VdbeCursor *pC;
4511   int res;
4512 
4513   CHECK_FOR_INTERRUPT;
4514   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4515   assert( pOp->p5<=ArraySize(p->aCounter) );
4516   pC = p->apCsr[pOp->p1];
4517   if( pC==0 ){
4518     break;  /* See ticket #2273 */
4519   }
4520   assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
4521   if( isSorter(pC) ){
4522     assert( pOp->opcode==OP_SorterNext );
4523     rc = sqlite3VdbeSorterNext(db, pC, &res);
4524   }else{
4525     res = 1;
4526     assert( pC->deferredMoveto==0 );
4527     assert( pC->pCursor );
4528     assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4529     assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4530     rc = pOp->p4.xAdvance(pC->pCursor, &res);
4531   }
4532   pC->nullRow = (u8)res;
4533   pC->cacheStatus = CACHE_STALE;
4534   if( res==0 ){
4535     pc = pOp->p2 - 1;
4536     if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
4537 #ifdef SQLITE_TEST
4538     sqlite3_search_count++;
4539 #endif
4540   }
4541   pC->rowidIsValid = 0;
4542   break;
4543 }
4544 
4545 /* Opcode: IdxInsert P1 P2 P3 * P5
4546 **
4547 ** Register P2 holds an SQL index key made using the
4548 ** MakeRecord instructions.  This opcode writes that key
4549 ** into the index P1.  Data for the entry is nil.
4550 **
4551 ** P3 is a flag that provides a hint to the b-tree layer that this
4552 ** insert is likely to be an append.
4553 **
4554 ** This instruction only works for indices.  The equivalent instruction
4555 ** for tables is OP_Insert.
4556 */
4557 case OP_SorterInsert:       /* in2 */
4558 #ifdef SQLITE_OMIT_MERGE_SORT
4559   pOp->opcode = OP_IdxInsert;
4560 #endif
4561 case OP_IdxInsert: {        /* in2 */
4562   VdbeCursor *pC;
4563   BtCursor *pCrsr;
4564   int nKey;
4565   const char *zKey;
4566 
4567   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4568   pC = p->apCsr[pOp->p1];
4569   assert( pC!=0 );
4570   assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
4571   pIn2 = &aMem[pOp->p2];
4572   assert( pIn2->flags & MEM_Blob );
4573   pCrsr = pC->pCursor;
4574   if( ALWAYS(pCrsr!=0) ){
4575     assert( pC->isTable==0 );
4576     rc = ExpandBlob(pIn2);
4577     if( rc==SQLITE_OK ){
4578       if( isSorter(pC) ){
4579         rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4580       }else{
4581         nKey = pIn2->n;
4582         zKey = pIn2->z;
4583         rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4584             ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4585             );
4586         assert( pC->deferredMoveto==0 );
4587         pC->cacheStatus = CACHE_STALE;
4588       }
4589     }
4590   }
4591   break;
4592 }
4593 
4594 /* Opcode: IdxDelete P1 P2 P3 * *
4595 **
4596 ** The content of P3 registers starting at register P2 form
4597 ** an unpacked index key. This opcode removes that entry from the
4598 ** index opened by cursor P1.
4599 */
4600 case OP_IdxDelete: {
4601   VdbeCursor *pC;
4602   BtCursor *pCrsr;
4603   int res;
4604   UnpackedRecord r;
4605 
4606   assert( pOp->p3>0 );
4607   assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
4608   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4609   pC = p->apCsr[pOp->p1];
4610   assert( pC!=0 );
4611   pCrsr = pC->pCursor;
4612   if( ALWAYS(pCrsr!=0) ){
4613     r.pKeyInfo = pC->pKeyInfo;
4614     r.nField = (u16)pOp->p3;
4615     r.flags = 0;
4616     r.aMem = &aMem[pOp->p2];
4617 #ifdef SQLITE_DEBUG
4618     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4619 #endif
4620     rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4621     if( rc==SQLITE_OK && res==0 ){
4622       rc = sqlite3BtreeDelete(pCrsr);
4623     }
4624     assert( pC->deferredMoveto==0 );
4625     pC->cacheStatus = CACHE_STALE;
4626   }
4627   break;
4628 }
4629 
4630 /* Opcode: IdxRowid P1 P2 * * *
4631 **
4632 ** Write into register P2 an integer which is the last entry in the record at
4633 ** the end of the index key pointed to by cursor P1.  This integer should be
4634 ** the rowid of the table entry to which this index entry points.
4635 **
4636 ** See also: Rowid, MakeRecord.
4637 */
4638 case OP_IdxRowid: {              /* out2-prerelease */
4639   BtCursor *pCrsr;
4640   VdbeCursor *pC;
4641   i64 rowid;
4642 
4643   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4644   pC = p->apCsr[pOp->p1];
4645   assert( pC!=0 );
4646   pCrsr = pC->pCursor;
4647   pOut->flags = MEM_Null;
4648   if( ALWAYS(pCrsr!=0) ){
4649     rc = sqlite3VdbeCursorMoveto(pC);
4650     if( NEVER(rc) ) goto abort_due_to_error;
4651     assert( pC->deferredMoveto==0 );
4652     assert( pC->isTable==0 );
4653     if( !pC->nullRow ){
4654       rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4655       if( rc!=SQLITE_OK ){
4656         goto abort_due_to_error;
4657       }
4658       pOut->u.i = rowid;
4659       pOut->flags = MEM_Int;
4660     }
4661   }
4662   break;
4663 }
4664 
4665 /* Opcode: IdxGE P1 P2 P3 P4 P5
4666 **
4667 ** The P4 register values beginning with P3 form an unpacked index
4668 ** key that omits the ROWID.  Compare this key value against the index
4669 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4670 **
4671 ** If the P1 index entry is greater than or equal to the key value
4672 ** then jump to P2.  Otherwise fall through to the next instruction.
4673 **
4674 ** If P5 is non-zero then the key value is increased by an epsilon
4675 ** prior to the comparison.  This make the opcode work like IdxGT except
4676 ** that if the key from register P3 is a prefix of the key in the cursor,
4677 ** the result is false whereas it would be true with IdxGT.
4678 */
4679 /* Opcode: IdxLT P1 P2 P3 P4 P5
4680 **
4681 ** The P4 register values beginning with P3 form an unpacked index
4682 ** key that omits the ROWID.  Compare this key value against the index
4683 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4684 **
4685 ** If the P1 index entry is less than the key value then jump to P2.
4686 ** Otherwise fall through to the next instruction.
4687 **
4688 ** If P5 is non-zero then the key value is increased by an epsilon prior
4689 ** to the comparison.  This makes the opcode work like IdxLE.
4690 */
4691 case OP_IdxLT:          /* jump */
4692 case OP_IdxGE: {        /* jump */
4693   VdbeCursor *pC;
4694   int res;
4695   UnpackedRecord r;
4696 
4697   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4698   pC = p->apCsr[pOp->p1];
4699   assert( pC!=0 );
4700   assert( pC->isOrdered );
4701   if( ALWAYS(pC->pCursor!=0) ){
4702     assert( pC->deferredMoveto==0 );
4703     assert( pOp->p5==0 || pOp->p5==1 );
4704     assert( pOp->p4type==P4_INT32 );
4705     r.pKeyInfo = pC->pKeyInfo;
4706     r.nField = (u16)pOp->p4.i;
4707     if( pOp->p5 ){
4708       r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
4709     }else{
4710       r.flags = UNPACKED_PREFIX_MATCH;
4711     }
4712     r.aMem = &aMem[pOp->p3];
4713 #ifdef SQLITE_DEBUG
4714     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4715 #endif
4716     rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
4717     if( pOp->opcode==OP_IdxLT ){
4718       res = -res;
4719     }else{
4720       assert( pOp->opcode==OP_IdxGE );
4721       res++;
4722     }
4723     if( res>0 ){
4724       pc = pOp->p2 - 1 ;
4725     }
4726   }
4727   break;
4728 }
4729 
4730 /* Opcode: Destroy P1 P2 P3 * *
4731 **
4732 ** Delete an entire database table or index whose root page in the database
4733 ** file is given by P1.
4734 **
4735 ** The table being destroyed is in the main database file if P3==0.  If
4736 ** P3==1 then the table to be clear is in the auxiliary database file
4737 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4738 **
4739 ** If AUTOVACUUM is enabled then it is possible that another root page
4740 ** might be moved into the newly deleted root page in order to keep all
4741 ** root pages contiguous at the beginning of the database.  The former
4742 ** value of the root page that moved - its value before the move occurred -
4743 ** is stored in register P2.  If no page
4744 ** movement was required (because the table being dropped was already
4745 ** the last one in the database) then a zero is stored in register P2.
4746 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4747 **
4748 ** See also: Clear
4749 */
4750 case OP_Destroy: {     /* out2-prerelease */
4751   int iMoved;
4752   int iCnt;
4753   Vdbe *pVdbe;
4754   int iDb;
4755 
4756 #ifndef SQLITE_OMIT_VIRTUALTABLE
4757   iCnt = 0;
4758   for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4759     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4760       iCnt++;
4761     }
4762   }
4763 #else
4764   iCnt = db->activeVdbeCnt;
4765 #endif
4766   pOut->flags = MEM_Null;
4767   if( iCnt>1 ){
4768     rc = SQLITE_LOCKED;
4769     p->errorAction = OE_Abort;
4770   }else{
4771     iDb = pOp->p3;
4772     assert( iCnt==1 );
4773     assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
4774     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4775     pOut->flags = MEM_Int;
4776     pOut->u.i = iMoved;
4777 #ifndef SQLITE_OMIT_AUTOVACUUM
4778     if( rc==SQLITE_OK && iMoved!=0 ){
4779       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4780       /* All OP_Destroy operations occur on the same btree */
4781       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4782       resetSchemaOnFault = iDb+1;
4783     }
4784 #endif
4785   }
4786   break;
4787 }
4788 
4789 /* Opcode: Clear P1 P2 P3
4790 **
4791 ** Delete all contents of the database table or index whose root page
4792 ** in the database file is given by P1.  But, unlike Destroy, do not
4793 ** remove the table or index from the database file.
4794 **
4795 ** The table being clear is in the main database file if P2==0.  If
4796 ** P2==1 then the table to be clear is in the auxiliary database file
4797 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4798 **
4799 ** If the P3 value is non-zero, then the table referred to must be an
4800 ** intkey table (an SQL table, not an index). In this case the row change
4801 ** count is incremented by the number of rows in the table being cleared.
4802 ** If P3 is greater than zero, then the value stored in register P3 is
4803 ** also incremented by the number of rows in the table being cleared.
4804 **
4805 ** See also: Destroy
4806 */
4807 case OP_Clear: {
4808   int nChange;
4809 
4810   nChange = 0;
4811   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
4812   rc = sqlite3BtreeClearTable(
4813       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4814   );
4815   if( pOp->p3 ){
4816     p->nChange += nChange;
4817     if( pOp->p3>0 ){
4818       assert( memIsValid(&aMem[pOp->p3]) );
4819       memAboutToChange(p, &aMem[pOp->p3]);
4820       aMem[pOp->p3].u.i += nChange;
4821     }
4822   }
4823   break;
4824 }
4825 
4826 /* Opcode: CreateTable P1 P2 * * *
4827 **
4828 ** Allocate a new table in the main database file if P1==0 or in the
4829 ** auxiliary database file if P1==1 or in an attached database if
4830 ** P1>1.  Write the root page number of the new table into
4831 ** register P2
4832 **
4833 ** The difference between a table and an index is this:  A table must
4834 ** have a 4-byte integer key and can have arbitrary data.  An index
4835 ** has an arbitrary key but no data.
4836 **
4837 ** See also: CreateIndex
4838 */
4839 /* Opcode: CreateIndex P1 P2 * * *
4840 **
4841 ** Allocate a new index in the main database file if P1==0 or in the
4842 ** auxiliary database file if P1==1 or in an attached database if
4843 ** P1>1.  Write the root page number of the new table into
4844 ** register P2.
4845 **
4846 ** See documentation on OP_CreateTable for additional information.
4847 */
4848 case OP_CreateIndex:            /* out2-prerelease */
4849 case OP_CreateTable: {          /* out2-prerelease */
4850   int pgno;
4851   int flags;
4852   Db *pDb;
4853 
4854   pgno = 0;
4855   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4856   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
4857   pDb = &db->aDb[pOp->p1];
4858   assert( pDb->pBt!=0 );
4859   if( pOp->opcode==OP_CreateTable ){
4860     /* flags = BTREE_INTKEY; */
4861     flags = BTREE_INTKEY;
4862   }else{
4863     flags = BTREE_BLOBKEY;
4864   }
4865   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4866   pOut->u.i = pgno;
4867   break;
4868 }
4869 
4870 /* Opcode: ParseSchema P1 * * P4 *
4871 **
4872 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4873 ** that match the WHERE clause P4.
4874 **
4875 ** This opcode invokes the parser to create a new virtual machine,
4876 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
4877 */
4878 case OP_ParseSchema: {
4879   int iDb;
4880   const char *zMaster;
4881   char *zSql;
4882   InitData initData;
4883 
4884   /* Any prepared statement that invokes this opcode will hold mutexes
4885   ** on every btree.  This is a prerequisite for invoking
4886   ** sqlite3InitCallback().
4887   */
4888 #ifdef SQLITE_DEBUG
4889   for(iDb=0; iDb<db->nDb; iDb++){
4890     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4891   }
4892 #endif
4893 
4894   iDb = pOp->p1;
4895   assert( iDb>=0 && iDb<db->nDb );
4896   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
4897   /* Used to be a conditional */ {
4898     zMaster = SCHEMA_TABLE(iDb);
4899     initData.db = db;
4900     initData.iDb = pOp->p1;
4901     initData.pzErrMsg = &p->zErrMsg;
4902     zSql = sqlite3MPrintf(db,
4903        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4904        db->aDb[iDb].zName, zMaster, pOp->p4.z);
4905     if( zSql==0 ){
4906       rc = SQLITE_NOMEM;
4907     }else{
4908       assert( db->init.busy==0 );
4909       db->init.busy = 1;
4910       initData.rc = SQLITE_OK;
4911       assert( !db->mallocFailed );
4912       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4913       if( rc==SQLITE_OK ) rc = initData.rc;
4914       sqlite3DbFree(db, zSql);
4915       db->init.busy = 0;
4916     }
4917   }
4918   if( rc ) sqlite3ResetAllSchemasOfConnection(db);
4919   if( rc==SQLITE_NOMEM ){
4920     goto no_mem;
4921   }
4922   break;
4923 }
4924 
4925 #if !defined(SQLITE_OMIT_ANALYZE)
4926 /* Opcode: LoadAnalysis P1 * * * *
4927 **
4928 ** Read the sqlite_stat1 table for database P1 and load the content
4929 ** of that table into the internal index hash table.  This will cause
4930 ** the analysis to be used when preparing all subsequent queries.
4931 */
4932 case OP_LoadAnalysis: {
4933   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4934   rc = sqlite3AnalysisLoad(db, pOp->p1);
4935   break;
4936 }
4937 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4938 
4939 /* Opcode: DropTable P1 * * P4 *
4940 **
4941 ** Remove the internal (in-memory) data structures that describe
4942 ** the table named P4 in database P1.  This is called after a table
4943 ** is dropped in order to keep the internal representation of the
4944 ** schema consistent with what is on disk.
4945 */
4946 case OP_DropTable: {
4947   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
4948   break;
4949 }
4950 
4951 /* Opcode: DropIndex P1 * * P4 *
4952 **
4953 ** Remove the internal (in-memory) data structures that describe
4954 ** the index named P4 in database P1.  This is called after an index
4955 ** is dropped in order to keep the internal representation of the
4956 ** schema consistent with what is on disk.
4957 */
4958 case OP_DropIndex: {
4959   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
4960   break;
4961 }
4962 
4963 /* Opcode: DropTrigger P1 * * P4 *
4964 **
4965 ** Remove the internal (in-memory) data structures that describe
4966 ** the trigger named P4 in database P1.  This is called after a trigger
4967 ** is dropped in order to keep the internal representation of the
4968 ** schema consistent with what is on disk.
4969 */
4970 case OP_DropTrigger: {
4971   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
4972   break;
4973 }
4974 
4975 
4976 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4977 /* Opcode: IntegrityCk P1 P2 P3 * P5
4978 **
4979 ** Do an analysis of the currently open database.  Store in
4980 ** register P1 the text of an error message describing any problems.
4981 ** If no problems are found, store a NULL in register P1.
4982 **
4983 ** The register P3 contains the maximum number of allowed errors.
4984 ** At most reg(P3) errors will be reported.
4985 ** In other words, the analysis stops as soon as reg(P1) errors are
4986 ** seen.  Reg(P1) is updated with the number of errors remaining.
4987 **
4988 ** The root page numbers of all tables in the database are integer
4989 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
4990 ** total.
4991 **
4992 ** If P5 is not zero, the check is done on the auxiliary database
4993 ** file, not the main database file.
4994 **
4995 ** This opcode is used to implement the integrity_check pragma.
4996 */
4997 case OP_IntegrityCk: {
4998   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
4999   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5000   int j;          /* Loop counter */
5001   int nErr;       /* Number of errors reported */
5002   char *z;        /* Text of the error report */
5003   Mem *pnErr;     /* Register keeping track of errors remaining */
5004 
5005   nRoot = pOp->p2;
5006   assert( nRoot>0 );
5007   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
5008   if( aRoot==0 ) goto no_mem;
5009   assert( pOp->p3>0 && pOp->p3<=p->nMem );
5010   pnErr = &aMem[pOp->p3];
5011   assert( (pnErr->flags & MEM_Int)!=0 );
5012   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5013   pIn1 = &aMem[pOp->p1];
5014   for(j=0; j<nRoot; j++){
5015     aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
5016   }
5017   aRoot[j] = 0;
5018   assert( pOp->p5<db->nDb );
5019   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
5020   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5021                                  (int)pnErr->u.i, &nErr);
5022   sqlite3DbFree(db, aRoot);
5023   pnErr->u.i -= nErr;
5024   sqlite3VdbeMemSetNull(pIn1);
5025   if( nErr==0 ){
5026     assert( z==0 );
5027   }else if( z==0 ){
5028     goto no_mem;
5029   }else{
5030     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5031   }
5032   UPDATE_MAX_BLOBSIZE(pIn1);
5033   sqlite3VdbeChangeEncoding(pIn1, encoding);
5034   break;
5035 }
5036 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5037 
5038 /* Opcode: RowSetAdd P1 P2 * * *
5039 **
5040 ** Insert the integer value held by register P2 into a boolean index
5041 ** held in register P1.
5042 **
5043 ** An assertion fails if P2 is not an integer.
5044 */
5045 case OP_RowSetAdd: {       /* in1, in2 */
5046   pIn1 = &aMem[pOp->p1];
5047   pIn2 = &aMem[pOp->p2];
5048   assert( (pIn2->flags & MEM_Int)!=0 );
5049   if( (pIn1->flags & MEM_RowSet)==0 ){
5050     sqlite3VdbeMemSetRowSet(pIn1);
5051     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5052   }
5053   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5054   break;
5055 }
5056 
5057 /* Opcode: RowSetRead P1 P2 P3 * *
5058 **
5059 ** Extract the smallest value from boolean index P1 and put that value into
5060 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
5061 ** unchanged and jump to instruction P2.
5062 */
5063 case OP_RowSetRead: {       /* jump, in1, out3 */
5064   i64 val;
5065   CHECK_FOR_INTERRUPT;
5066   pIn1 = &aMem[pOp->p1];
5067   if( (pIn1->flags & MEM_RowSet)==0
5068    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5069   ){
5070     /* The boolean index is empty */
5071     sqlite3VdbeMemSetNull(pIn1);
5072     pc = pOp->p2 - 1;
5073   }else{
5074     /* A value was pulled from the index */
5075     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5076   }
5077   break;
5078 }
5079 
5080 /* Opcode: RowSetTest P1 P2 P3 P4
5081 **
5082 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5083 ** contains a RowSet object and that RowSet object contains
5084 ** the value held in P3, jump to register P2. Otherwise, insert the
5085 ** integer in P3 into the RowSet and continue on to the
5086 ** next opcode.
5087 **
5088 ** The RowSet object is optimized for the case where successive sets
5089 ** of integers, where each set contains no duplicates. Each set
5090 ** of values is identified by a unique P4 value. The first set
5091 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
5092 ** non-negative.  For non-negative values of P4 only the lower 4
5093 ** bits are significant.
5094 **
5095 ** This allows optimizations: (a) when P4==0 there is no need to test
5096 ** the rowset object for P3, as it is guaranteed not to contain it,
5097 ** (b) when P4==-1 there is no need to insert the value, as it will
5098 ** never be tested for, and (c) when a value that is part of set X is
5099 ** inserted, there is no need to search to see if the same value was
5100 ** previously inserted as part of set X (only if it was previously
5101 ** inserted as part of some other set).
5102 */
5103 case OP_RowSetTest: {                     /* jump, in1, in3 */
5104   int iSet;
5105   int exists;
5106 
5107   pIn1 = &aMem[pOp->p1];
5108   pIn3 = &aMem[pOp->p3];
5109   iSet = pOp->p4.i;
5110   assert( pIn3->flags&MEM_Int );
5111 
5112   /* If there is anything other than a rowset object in memory cell P1,
5113   ** delete it now and initialize P1 with an empty rowset
5114   */
5115   if( (pIn1->flags & MEM_RowSet)==0 ){
5116     sqlite3VdbeMemSetRowSet(pIn1);
5117     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5118   }
5119 
5120   assert( pOp->p4type==P4_INT32 );
5121   assert( iSet==-1 || iSet>=0 );
5122   if( iSet ){
5123     exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5124                                (u8)(iSet>=0 ? iSet & 0xf : 0xff),
5125                                pIn3->u.i);
5126     if( exists ){
5127       pc = pOp->p2 - 1;
5128       break;
5129     }
5130   }
5131   if( iSet>=0 ){
5132     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5133   }
5134   break;
5135 }
5136 
5137 
5138 #ifndef SQLITE_OMIT_TRIGGER
5139 
5140 /* Opcode: Program P1 P2 P3 P4 *
5141 **
5142 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5143 **
5144 ** P1 contains the address of the memory cell that contains the first memory
5145 ** cell in an array of values used as arguments to the sub-program. P2
5146 ** contains the address to jump to if the sub-program throws an IGNORE
5147 ** exception using the RAISE() function. Register P3 contains the address
5148 ** of a memory cell in this (the parent) VM that is used to allocate the
5149 ** memory required by the sub-vdbe at runtime.
5150 **
5151 ** P4 is a pointer to the VM containing the trigger program.
5152 */
5153 case OP_Program: {        /* jump */
5154   int nMem;               /* Number of memory registers for sub-program */
5155   int nByte;              /* Bytes of runtime space required for sub-program */
5156   Mem *pRt;               /* Register to allocate runtime space */
5157   Mem *pMem;              /* Used to iterate through memory cells */
5158   Mem *pEnd;              /* Last memory cell in new array */
5159   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5160   SubProgram *pProgram;   /* Sub-program to execute */
5161   void *t;                /* Token identifying trigger */
5162 
5163   pProgram = pOp->p4.pProgram;
5164   pRt = &aMem[pOp->p3];
5165   assert( pProgram->nOp>0 );
5166 
5167   /* If the p5 flag is clear, then recursive invocation of triggers is
5168   ** disabled for backwards compatibility (p5 is set if this sub-program
5169   ** is really a trigger, not a foreign key action, and the flag set
5170   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5171   **
5172   ** It is recursive invocation of triggers, at the SQL level, that is
5173   ** disabled. In some cases a single trigger may generate more than one
5174   ** SubProgram (if the trigger may be executed with more than one different
5175   ** ON CONFLICT algorithm). SubProgram structures associated with a
5176   ** single trigger all have the same value for the SubProgram.token
5177   ** variable.  */
5178   if( pOp->p5 ){
5179     t = pProgram->token;
5180     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5181     if( pFrame ) break;
5182   }
5183 
5184   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5185     rc = SQLITE_ERROR;
5186     sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5187     break;
5188   }
5189 
5190   /* Register pRt is used to store the memory required to save the state
5191   ** of the current program, and the memory required at runtime to execute
5192   ** the trigger program. If this trigger has been fired before, then pRt
5193   ** is already allocated. Otherwise, it must be initialized.  */
5194   if( (pRt->flags&MEM_Frame)==0 ){
5195     /* SubProgram.nMem is set to the number of memory cells used by the
5196     ** program stored in SubProgram.aOp. As well as these, one memory
5197     ** cell is required for each cursor used by the program. Set local
5198     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5199     */
5200     nMem = pProgram->nMem + pProgram->nCsr;
5201     nByte = ROUND8(sizeof(VdbeFrame))
5202               + nMem * sizeof(Mem)
5203               + pProgram->nCsr * sizeof(VdbeCursor *)
5204               + pProgram->nOnce * sizeof(u8);
5205     pFrame = sqlite3DbMallocZero(db, nByte);
5206     if( !pFrame ){
5207       goto no_mem;
5208     }
5209     sqlite3VdbeMemRelease(pRt);
5210     pRt->flags = MEM_Frame;
5211     pRt->u.pFrame = pFrame;
5212 
5213     pFrame->v = p;
5214     pFrame->nChildMem = nMem;
5215     pFrame->nChildCsr = pProgram->nCsr;
5216     pFrame->pc = pc;
5217     pFrame->aMem = p->aMem;
5218     pFrame->nMem = p->nMem;
5219     pFrame->apCsr = p->apCsr;
5220     pFrame->nCursor = p->nCursor;
5221     pFrame->aOp = p->aOp;
5222     pFrame->nOp = p->nOp;
5223     pFrame->token = pProgram->token;
5224     pFrame->aOnceFlag = p->aOnceFlag;
5225     pFrame->nOnceFlag = p->nOnceFlag;
5226 
5227     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5228     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5229       pMem->flags = MEM_Invalid;
5230       pMem->db = db;
5231     }
5232   }else{
5233     pFrame = pRt->u.pFrame;
5234     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5235     assert( pProgram->nCsr==pFrame->nChildCsr );
5236     assert( pc==pFrame->pc );
5237   }
5238 
5239   p->nFrame++;
5240   pFrame->pParent = p->pFrame;
5241   pFrame->lastRowid = lastRowid;
5242   pFrame->nChange = p->nChange;
5243   p->nChange = 0;
5244   p->pFrame = pFrame;
5245   p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5246   p->nMem = pFrame->nChildMem;
5247   p->nCursor = (u16)pFrame->nChildCsr;
5248   p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5249   p->aOp = aOp = pProgram->aOp;
5250   p->nOp = pProgram->nOp;
5251   p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5252   p->nOnceFlag = pProgram->nOnce;
5253   pc = -1;
5254   memset(p->aOnceFlag, 0, p->nOnceFlag);
5255 
5256   break;
5257 }
5258 
5259 /* Opcode: Param P1 P2 * * *
5260 **
5261 ** This opcode is only ever present in sub-programs called via the
5262 ** OP_Program instruction. Copy a value currently stored in a memory
5263 ** cell of the calling (parent) frame to cell P2 in the current frames
5264 ** address space. This is used by trigger programs to access the new.*
5265 ** and old.* values.
5266 **
5267 ** The address of the cell in the parent frame is determined by adding
5268 ** the value of the P1 argument to the value of the P1 argument to the
5269 ** calling OP_Program instruction.
5270 */
5271 case OP_Param: {           /* out2-prerelease */
5272   VdbeFrame *pFrame;
5273   Mem *pIn;
5274   pFrame = p->pFrame;
5275   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5276   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5277   break;
5278 }
5279 
5280 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5281 
5282 #ifndef SQLITE_OMIT_FOREIGN_KEY
5283 /* Opcode: FkCounter P1 P2 * * *
5284 **
5285 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5286 ** If P1 is non-zero, the database constraint counter is incremented
5287 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5288 ** statement counter is incremented (immediate foreign key constraints).
5289 */
5290 case OP_FkCounter: {
5291   if( pOp->p1 ){
5292     db->nDeferredCons += pOp->p2;
5293   }else{
5294     p->nFkConstraint += pOp->p2;
5295   }
5296   break;
5297 }
5298 
5299 /* Opcode: FkIfZero P1 P2 * * *
5300 **
5301 ** This opcode tests if a foreign key constraint-counter is currently zero.
5302 ** If so, jump to instruction P2. Otherwise, fall through to the next
5303 ** instruction.
5304 **
5305 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5306 ** is zero (the one that counts deferred constraint violations). If P1 is
5307 ** zero, the jump is taken if the statement constraint-counter is zero
5308 ** (immediate foreign key constraint violations).
5309 */
5310 case OP_FkIfZero: {         /* jump */
5311   if( pOp->p1 ){
5312     if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5313   }else{
5314     if( p->nFkConstraint==0 ) pc = pOp->p2-1;
5315   }
5316   break;
5317 }
5318 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5319 
5320 #ifndef SQLITE_OMIT_AUTOINCREMENT
5321 /* Opcode: MemMax P1 P2 * * *
5322 **
5323 ** P1 is a register in the root frame of this VM (the root frame is
5324 ** different from the current frame if this instruction is being executed
5325 ** within a sub-program). Set the value of register P1 to the maximum of
5326 ** its current value and the value in register P2.
5327 **
5328 ** This instruction throws an error if the memory cell is not initially
5329 ** an integer.
5330 */
5331 case OP_MemMax: {        /* in2 */
5332   Mem *pIn1;
5333   VdbeFrame *pFrame;
5334   if( p->pFrame ){
5335     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5336     pIn1 = &pFrame->aMem[pOp->p1];
5337   }else{
5338     pIn1 = &aMem[pOp->p1];
5339   }
5340   assert( memIsValid(pIn1) );
5341   sqlite3VdbeMemIntegerify(pIn1);
5342   pIn2 = &aMem[pOp->p2];
5343   sqlite3VdbeMemIntegerify(pIn2);
5344   if( pIn1->u.i<pIn2->u.i){
5345     pIn1->u.i = pIn2->u.i;
5346   }
5347   break;
5348 }
5349 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5350 
5351 /* Opcode: IfPos P1 P2 * * *
5352 **
5353 ** If the value of register P1 is 1 or greater, jump to P2.
5354 **
5355 ** It is illegal to use this instruction on a register that does
5356 ** not contain an integer.  An assertion fault will result if you try.
5357 */
5358 case OP_IfPos: {        /* jump, in1 */
5359   pIn1 = &aMem[pOp->p1];
5360   assert( pIn1->flags&MEM_Int );
5361   if( pIn1->u.i>0 ){
5362      pc = pOp->p2 - 1;
5363   }
5364   break;
5365 }
5366 
5367 /* Opcode: IfNeg P1 P2 * * *
5368 **
5369 ** If the value of register P1 is less than zero, jump to P2.
5370 **
5371 ** It is illegal to use this instruction on a register that does
5372 ** not contain an integer.  An assertion fault will result if you try.
5373 */
5374 case OP_IfNeg: {        /* jump, in1 */
5375   pIn1 = &aMem[pOp->p1];
5376   assert( pIn1->flags&MEM_Int );
5377   if( pIn1->u.i<0 ){
5378      pc = pOp->p2 - 1;
5379   }
5380   break;
5381 }
5382 
5383 /* Opcode: IfZero P1 P2 P3 * *
5384 **
5385 ** The register P1 must contain an integer.  Add literal P3 to the
5386 ** value in register P1.  If the result is exactly 0, jump to P2.
5387 **
5388 ** It is illegal to use this instruction on a register that does
5389 ** not contain an integer.  An assertion fault will result if you try.
5390 */
5391 case OP_IfZero: {        /* jump, in1 */
5392   pIn1 = &aMem[pOp->p1];
5393   assert( pIn1->flags&MEM_Int );
5394   pIn1->u.i += pOp->p3;
5395   if( pIn1->u.i==0 ){
5396      pc = pOp->p2 - 1;
5397   }
5398   break;
5399 }
5400 
5401 /* Opcode: AggStep * P2 P3 P4 P5
5402 **
5403 ** Execute the step function for an aggregate.  The
5404 ** function has P5 arguments.   P4 is a pointer to the FuncDef
5405 ** structure that specifies the function.  Use register
5406 ** P3 as the accumulator.
5407 **
5408 ** The P5 arguments are taken from register P2 and its
5409 ** successors.
5410 */
5411 case OP_AggStep: {
5412   int n;
5413   int i;
5414   Mem *pMem;
5415   Mem *pRec;
5416   sqlite3_context ctx;
5417   sqlite3_value **apVal;
5418 
5419   n = pOp->p5;
5420   assert( n>=0 );
5421   pRec = &aMem[pOp->p2];
5422   apVal = p->apArg;
5423   assert( apVal || n==0 );
5424   for(i=0; i<n; i++, pRec++){
5425     assert( memIsValid(pRec) );
5426     apVal[i] = pRec;
5427     memAboutToChange(p, pRec);
5428     sqlite3VdbeMemStoreType(pRec);
5429   }
5430   ctx.pFunc = pOp->p4.pFunc;
5431   assert( pOp->p3>0 && pOp->p3<=p->nMem );
5432   ctx.pMem = pMem = &aMem[pOp->p3];
5433   pMem->n++;
5434   ctx.s.flags = MEM_Null;
5435   ctx.s.z = 0;
5436   ctx.s.zMalloc = 0;
5437   ctx.s.xDel = 0;
5438   ctx.s.db = db;
5439   ctx.isError = 0;
5440   ctx.pColl = 0;
5441   ctx.skipFlag = 0;
5442   if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
5443     assert( pOp>p->aOp );
5444     assert( pOp[-1].p4type==P4_COLLSEQ );
5445     assert( pOp[-1].opcode==OP_CollSeq );
5446     ctx.pColl = pOp[-1].p4.pColl;
5447   }
5448   (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
5449   if( ctx.isError ){
5450     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
5451     rc = ctx.isError;
5452   }
5453   if( ctx.skipFlag ){
5454     assert( pOp[-1].opcode==OP_CollSeq );
5455     i = pOp[-1].p1;
5456     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5457   }
5458 
5459   sqlite3VdbeMemRelease(&ctx.s);
5460 
5461   break;
5462 }
5463 
5464 /* Opcode: AggFinal P1 P2 * P4 *
5465 **
5466 ** Execute the finalizer function for an aggregate.  P1 is
5467 ** the memory location that is the accumulator for the aggregate.
5468 **
5469 ** P2 is the number of arguments that the step function takes and
5470 ** P4 is a pointer to the FuncDef for this function.  The P2
5471 ** argument is not used by this opcode.  It is only there to disambiguate
5472 ** functions that can take varying numbers of arguments.  The
5473 ** P4 argument is only needed for the degenerate case where
5474 ** the step function was not previously called.
5475 */
5476 case OP_AggFinal: {
5477   Mem *pMem;
5478   assert( pOp->p1>0 && pOp->p1<=p->nMem );
5479   pMem = &aMem[pOp->p1];
5480   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5481   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5482   if( rc ){
5483     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
5484   }
5485   sqlite3VdbeChangeEncoding(pMem, encoding);
5486   UPDATE_MAX_BLOBSIZE(pMem);
5487   if( sqlite3VdbeMemTooBig(pMem) ){
5488     goto too_big;
5489   }
5490   break;
5491 }
5492 
5493 #ifndef SQLITE_OMIT_WAL
5494 /* Opcode: Checkpoint P1 P2 P3 * *
5495 **
5496 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5497 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5498 ** or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns
5499 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
5500 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5501 ** in the WAL that have been checkpointed after the checkpoint
5502 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
5503 ** mem[P3+2] are initialized to -1.
5504 */
5505 case OP_Checkpoint: {
5506   int i;                          /* Loop counter */
5507   int aRes[3];                    /* Results */
5508   Mem *pMem;                      /* Write results here */
5509 
5510   aRes[0] = 0;
5511   aRes[1] = aRes[2] = -1;
5512   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5513        || pOp->p2==SQLITE_CHECKPOINT_FULL
5514        || pOp->p2==SQLITE_CHECKPOINT_RESTART
5515   );
5516   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5517   if( rc==SQLITE_BUSY ){
5518     rc = SQLITE_OK;
5519     aRes[0] = 1;
5520   }
5521   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5522     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5523   }
5524   break;
5525 };
5526 #endif
5527 
5528 #ifndef SQLITE_OMIT_PRAGMA
5529 /* Opcode: JournalMode P1 P2 P3 * P5
5530 **
5531 ** Change the journal mode of database P1 to P3. P3 must be one of the
5532 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5533 ** modes (delete, truncate, persist, off and memory), this is a simple
5534 ** operation. No IO is required.
5535 **
5536 ** If changing into or out of WAL mode the procedure is more complicated.
5537 **
5538 ** Write a string containing the final journal-mode to register P2.
5539 */
5540 case OP_JournalMode: {    /* out2-prerelease */
5541   Btree *pBt;                     /* Btree to change journal mode of */
5542   Pager *pPager;                  /* Pager associated with pBt */
5543   int eNew;                       /* New journal mode */
5544   int eOld;                       /* The old journal mode */
5545 #ifndef SQLITE_OMIT_WAL
5546   const char *zFilename;          /* Name of database file for pPager */
5547 #endif
5548 
5549   eNew = pOp->p3;
5550   assert( eNew==PAGER_JOURNALMODE_DELETE
5551        || eNew==PAGER_JOURNALMODE_TRUNCATE
5552        || eNew==PAGER_JOURNALMODE_PERSIST
5553        || eNew==PAGER_JOURNALMODE_OFF
5554        || eNew==PAGER_JOURNALMODE_MEMORY
5555        || eNew==PAGER_JOURNALMODE_WAL
5556        || eNew==PAGER_JOURNALMODE_QUERY
5557   );
5558   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5559 
5560   pBt = db->aDb[pOp->p1].pBt;
5561   pPager = sqlite3BtreePager(pBt);
5562   eOld = sqlite3PagerGetJournalMode(pPager);
5563   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5564   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5565 
5566 #ifndef SQLITE_OMIT_WAL
5567   zFilename = sqlite3PagerFilename(pPager, 1);
5568 
5569   /* Do not allow a transition to journal_mode=WAL for a database
5570   ** in temporary storage or if the VFS does not support shared memory
5571   */
5572   if( eNew==PAGER_JOURNALMODE_WAL
5573    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
5574        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
5575   ){
5576     eNew = eOld;
5577   }
5578 
5579   if( (eNew!=eOld)
5580    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5581   ){
5582     if( !db->autoCommit || db->activeVdbeCnt>1 ){
5583       rc = SQLITE_ERROR;
5584       sqlite3SetString(&p->zErrMsg, db,
5585           "cannot change %s wal mode from within a transaction",
5586           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5587       );
5588       break;
5589     }else{
5590 
5591       if( eOld==PAGER_JOURNALMODE_WAL ){
5592         /* If leaving WAL mode, close the log file. If successful, the call
5593         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5594         ** file. An EXCLUSIVE lock may still be held on the database file
5595         ** after a successful return.
5596         */
5597         rc = sqlite3PagerCloseWal(pPager);
5598         if( rc==SQLITE_OK ){
5599           sqlite3PagerSetJournalMode(pPager, eNew);
5600         }
5601       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5602         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
5603         ** as an intermediate */
5604         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5605       }
5606 
5607       /* Open a transaction on the database file. Regardless of the journal
5608       ** mode, this transaction always uses a rollback journal.
5609       */
5610       assert( sqlite3BtreeIsInTrans(pBt)==0 );
5611       if( rc==SQLITE_OK ){
5612         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5613       }
5614     }
5615   }
5616 #endif /* ifndef SQLITE_OMIT_WAL */
5617 
5618   if( rc ){
5619     eNew = eOld;
5620   }
5621   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5622 
5623   pOut = &aMem[pOp->p2];
5624   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5625   pOut->z = (char *)sqlite3JournalModename(eNew);
5626   pOut->n = sqlite3Strlen30(pOut->z);
5627   pOut->enc = SQLITE_UTF8;
5628   sqlite3VdbeChangeEncoding(pOut, encoding);
5629   break;
5630 };
5631 #endif /* SQLITE_OMIT_PRAGMA */
5632 
5633 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5634 /* Opcode: Vacuum * * * * *
5635 **
5636 ** Vacuum the entire database.  This opcode will cause other virtual
5637 ** machines to be created and run.  It may not be called from within
5638 ** a transaction.
5639 */
5640 case OP_Vacuum: {
5641   rc = sqlite3RunVacuum(&p->zErrMsg, db);
5642   break;
5643 }
5644 #endif
5645 
5646 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5647 /* Opcode: IncrVacuum P1 P2 * * *
5648 **
5649 ** Perform a single step of the incremental vacuum procedure on
5650 ** the P1 database. If the vacuum has finished, jump to instruction
5651 ** P2. Otherwise, fall through to the next instruction.
5652 */
5653 case OP_IncrVacuum: {        /* jump */
5654   Btree *pBt;
5655 
5656   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5657   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
5658   pBt = db->aDb[pOp->p1].pBt;
5659   rc = sqlite3BtreeIncrVacuum(pBt);
5660   if( rc==SQLITE_DONE ){
5661     pc = pOp->p2 - 1;
5662     rc = SQLITE_OK;
5663   }
5664   break;
5665 }
5666 #endif
5667 
5668 /* Opcode: Expire P1 * * * *
5669 **
5670 ** Cause precompiled statements to become expired. An expired statement
5671 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5672 ** (via sqlite3_step()).
5673 **
5674 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5675 ** then only the currently executing statement is affected.
5676 */
5677 case OP_Expire: {
5678   if( !pOp->p1 ){
5679     sqlite3ExpirePreparedStatements(db);
5680   }else{
5681     p->expired = 1;
5682   }
5683   break;
5684 }
5685 
5686 #ifndef SQLITE_OMIT_SHARED_CACHE
5687 /* Opcode: TableLock P1 P2 P3 P4 *
5688 **
5689 ** Obtain a lock on a particular table. This instruction is only used when
5690 ** the shared-cache feature is enabled.
5691 **
5692 ** P1 is the index of the database in sqlite3.aDb[] of the database
5693 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
5694 ** a write lock if P3==1.
5695 **
5696 ** P2 contains the root-page of the table to lock.
5697 **
5698 ** P4 contains a pointer to the name of the table being locked. This is only
5699 ** used to generate an error message if the lock cannot be obtained.
5700 */
5701 case OP_TableLock: {
5702   u8 isWriteLock = (u8)pOp->p3;
5703   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5704     int p1 = pOp->p1;
5705     assert( p1>=0 && p1<db->nDb );
5706     assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
5707     assert( isWriteLock==0 || isWriteLock==1 );
5708     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5709     if( (rc&0xFF)==SQLITE_LOCKED ){
5710       const char *z = pOp->p4.z;
5711       sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5712     }
5713   }
5714   break;
5715 }
5716 #endif /* SQLITE_OMIT_SHARED_CACHE */
5717 
5718 #ifndef SQLITE_OMIT_VIRTUALTABLE
5719 /* Opcode: VBegin * * * P4 *
5720 **
5721 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5722 ** xBegin method for that table.
5723 **
5724 ** Also, whether or not P4 is set, check that this is not being called from
5725 ** within a callback to a virtual table xSync() method. If it is, the error
5726 ** code will be set to SQLITE_LOCKED.
5727 */
5728 case OP_VBegin: {
5729   VTable *pVTab;
5730   pVTab = pOp->p4.pVtab;
5731   rc = sqlite3VtabBegin(db, pVTab);
5732   if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
5733   break;
5734 }
5735 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5736 
5737 #ifndef SQLITE_OMIT_VIRTUALTABLE
5738 /* Opcode: VCreate P1 * * P4 *
5739 **
5740 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5741 ** for that table.
5742 */
5743 case OP_VCreate: {
5744   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
5745   break;
5746 }
5747 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5748 
5749 #ifndef SQLITE_OMIT_VIRTUALTABLE
5750 /* Opcode: VDestroy P1 * * P4 *
5751 **
5752 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
5753 ** of that table.
5754 */
5755 case OP_VDestroy: {
5756   p->inVtabMethod = 2;
5757   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5758   p->inVtabMethod = 0;
5759   break;
5760 }
5761 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5762 
5763 #ifndef SQLITE_OMIT_VIRTUALTABLE
5764 /* Opcode: VOpen P1 * * P4 *
5765 **
5766 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5767 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
5768 ** table and stores that cursor in P1.
5769 */
5770 case OP_VOpen: {
5771   VdbeCursor *pCur;
5772   sqlite3_vtab_cursor *pVtabCursor;
5773   sqlite3_vtab *pVtab;
5774   sqlite3_module *pModule;
5775 
5776   pCur = 0;
5777   pVtabCursor = 0;
5778   pVtab = pOp->p4.pVtab->pVtab;
5779   pModule = (sqlite3_module *)pVtab->pModule;
5780   assert(pVtab && pModule);
5781   rc = pModule->xOpen(pVtab, &pVtabCursor);
5782   importVtabErrMsg(p, pVtab);
5783   if( SQLITE_OK==rc ){
5784     /* Initialize sqlite3_vtab_cursor base class */
5785     pVtabCursor->pVtab = pVtab;
5786 
5787     /* Initialize vdbe cursor object */
5788     pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
5789     if( pCur ){
5790       pCur->pVtabCursor = pVtabCursor;
5791       pCur->pModule = pVtabCursor->pVtab->pModule;
5792     }else{
5793       db->mallocFailed = 1;
5794       pModule->xClose(pVtabCursor);
5795     }
5796   }
5797   break;
5798 }
5799 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5800 
5801 #ifndef SQLITE_OMIT_VIRTUALTABLE
5802 /* Opcode: VFilter P1 P2 P3 P4 *
5803 **
5804 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
5805 ** the filtered result set is empty.
5806 **
5807 ** P4 is either NULL or a string that was generated by the xBestIndex
5808 ** method of the module.  The interpretation of the P4 string is left
5809 ** to the module implementation.
5810 **
5811 ** This opcode invokes the xFilter method on the virtual table specified
5812 ** by P1.  The integer query plan parameter to xFilter is stored in register
5813 ** P3. Register P3+1 stores the argc parameter to be passed to the
5814 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5815 ** additional parameters which are passed to
5816 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5817 **
5818 ** A jump is made to P2 if the result set after filtering would be empty.
5819 */
5820 case OP_VFilter: {   /* jump */
5821   int nArg;
5822   int iQuery;
5823   const sqlite3_module *pModule;
5824   Mem *pQuery;
5825   Mem *pArgc;
5826   sqlite3_vtab_cursor *pVtabCursor;
5827   sqlite3_vtab *pVtab;
5828   VdbeCursor *pCur;
5829   int res;
5830   int i;
5831   Mem **apArg;
5832 
5833   pQuery = &aMem[pOp->p3];
5834   pArgc = &pQuery[1];
5835   pCur = p->apCsr[pOp->p1];
5836   assert( memIsValid(pQuery) );
5837   REGISTER_TRACE(pOp->p3, pQuery);
5838   assert( pCur->pVtabCursor );
5839   pVtabCursor = pCur->pVtabCursor;
5840   pVtab = pVtabCursor->pVtab;
5841   pModule = pVtab->pModule;
5842 
5843   /* Grab the index number and argc parameters */
5844   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
5845   nArg = (int)pArgc->u.i;
5846   iQuery = (int)pQuery->u.i;
5847 
5848   /* Invoke the xFilter method */
5849   {
5850     res = 0;
5851     apArg = p->apArg;
5852     for(i = 0; i<nArg; i++){
5853       apArg[i] = &pArgc[i+1];
5854       sqlite3VdbeMemStoreType(apArg[i]);
5855     }
5856 
5857     p->inVtabMethod = 1;
5858     rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
5859     p->inVtabMethod = 0;
5860     importVtabErrMsg(p, pVtab);
5861     if( rc==SQLITE_OK ){
5862       res = pModule->xEof(pVtabCursor);
5863     }
5864 
5865     if( res ){
5866       pc = pOp->p2 - 1;
5867     }
5868   }
5869   pCur->nullRow = 0;
5870 
5871   break;
5872 }
5873 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5874 
5875 #ifndef SQLITE_OMIT_VIRTUALTABLE
5876 /* Opcode: VColumn P1 P2 P3 * *
5877 **
5878 ** Store the value of the P2-th column of
5879 ** the row of the virtual-table that the
5880 ** P1 cursor is pointing to into register P3.
5881 */
5882 case OP_VColumn: {
5883   sqlite3_vtab *pVtab;
5884   const sqlite3_module *pModule;
5885   Mem *pDest;
5886   sqlite3_context sContext;
5887 
5888   VdbeCursor *pCur = p->apCsr[pOp->p1];
5889   assert( pCur->pVtabCursor );
5890   assert( pOp->p3>0 && pOp->p3<=p->nMem );
5891   pDest = &aMem[pOp->p3];
5892   memAboutToChange(p, pDest);
5893   if( pCur->nullRow ){
5894     sqlite3VdbeMemSetNull(pDest);
5895     break;
5896   }
5897   pVtab = pCur->pVtabCursor->pVtab;
5898   pModule = pVtab->pModule;
5899   assert( pModule->xColumn );
5900   memset(&sContext, 0, sizeof(sContext));
5901 
5902   /* The output cell may already have a buffer allocated. Move
5903   ** the current contents to sContext.s so in case the user-function
5904   ** can use the already allocated buffer instead of allocating a
5905   ** new one.
5906   */
5907   sqlite3VdbeMemMove(&sContext.s, pDest);
5908   MemSetTypeFlag(&sContext.s, MEM_Null);
5909 
5910   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
5911   importVtabErrMsg(p, pVtab);
5912   if( sContext.isError ){
5913     rc = sContext.isError;
5914   }
5915 
5916   /* Copy the result of the function to the P3 register. We
5917   ** do this regardless of whether or not an error occurred to ensure any
5918   ** dynamic allocation in sContext.s (a Mem struct) is  released.
5919   */
5920   sqlite3VdbeChangeEncoding(&sContext.s, encoding);
5921   sqlite3VdbeMemMove(pDest, &sContext.s);
5922   REGISTER_TRACE(pOp->p3, pDest);
5923   UPDATE_MAX_BLOBSIZE(pDest);
5924 
5925   if( sqlite3VdbeMemTooBig(pDest) ){
5926     goto too_big;
5927   }
5928   break;
5929 }
5930 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5931 
5932 #ifndef SQLITE_OMIT_VIRTUALTABLE
5933 /* Opcode: VNext P1 P2 * * *
5934 **
5935 ** Advance virtual table P1 to the next row in its result set and
5936 ** jump to instruction P2.  Or, if the virtual table has reached
5937 ** the end of its result set, then fall through to the next instruction.
5938 */
5939 case OP_VNext: {   /* jump */
5940   sqlite3_vtab *pVtab;
5941   const sqlite3_module *pModule;
5942   int res;
5943   VdbeCursor *pCur;
5944 
5945   res = 0;
5946   pCur = p->apCsr[pOp->p1];
5947   assert( pCur->pVtabCursor );
5948   if( pCur->nullRow ){
5949     break;
5950   }
5951   pVtab = pCur->pVtabCursor->pVtab;
5952   pModule = pVtab->pModule;
5953   assert( pModule->xNext );
5954 
5955   /* Invoke the xNext() method of the module. There is no way for the
5956   ** underlying implementation to return an error if one occurs during
5957   ** xNext(). Instead, if an error occurs, true is returned (indicating that
5958   ** data is available) and the error code returned when xColumn or
5959   ** some other method is next invoked on the save virtual table cursor.
5960   */
5961   p->inVtabMethod = 1;
5962   rc = pModule->xNext(pCur->pVtabCursor);
5963   p->inVtabMethod = 0;
5964   importVtabErrMsg(p, pVtab);
5965   if( rc==SQLITE_OK ){
5966     res = pModule->xEof(pCur->pVtabCursor);
5967   }
5968 
5969   if( !res ){
5970     /* If there is data, jump to P2 */
5971     pc = pOp->p2 - 1;
5972   }
5973   break;
5974 }
5975 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5976 
5977 #ifndef SQLITE_OMIT_VIRTUALTABLE
5978 /* Opcode: VRename P1 * * P4 *
5979 **
5980 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5981 ** This opcode invokes the corresponding xRename method. The value
5982 ** in register P1 is passed as the zName argument to the xRename method.
5983 */
5984 case OP_VRename: {
5985   sqlite3_vtab *pVtab;
5986   Mem *pName;
5987 
5988   pVtab = pOp->p4.pVtab->pVtab;
5989   pName = &aMem[pOp->p1];
5990   assert( pVtab->pModule->xRename );
5991   assert( memIsValid(pName) );
5992   REGISTER_TRACE(pOp->p1, pName);
5993   assert( pName->flags & MEM_Str );
5994   testcase( pName->enc==SQLITE_UTF8 );
5995   testcase( pName->enc==SQLITE_UTF16BE );
5996   testcase( pName->enc==SQLITE_UTF16LE );
5997   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
5998   if( rc==SQLITE_OK ){
5999     rc = pVtab->pModule->xRename(pVtab, pName->z);
6000     importVtabErrMsg(p, pVtab);
6001     p->expired = 0;
6002   }
6003   break;
6004 }
6005 #endif
6006 
6007 #ifndef SQLITE_OMIT_VIRTUALTABLE
6008 /* Opcode: VUpdate P1 P2 P3 P4 *
6009 **
6010 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6011 ** This opcode invokes the corresponding xUpdate method. P2 values
6012 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6013 ** invocation. The value in register (P3+P2-1) corresponds to the
6014 ** p2th element of the argv array passed to xUpdate.
6015 **
6016 ** The xUpdate method will do a DELETE or an INSERT or both.
6017 ** The argv[0] element (which corresponds to memory cell P3)
6018 ** is the rowid of a row to delete.  If argv[0] is NULL then no
6019 ** deletion occurs.  The argv[1] element is the rowid of the new
6020 ** row.  This can be NULL to have the virtual table select the new
6021 ** rowid for itself.  The subsequent elements in the array are
6022 ** the values of columns in the new row.
6023 **
6024 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6025 ** a row to delete.
6026 **
6027 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6028 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6029 ** is set to the value of the rowid for the row just inserted.
6030 */
6031 case OP_VUpdate: {
6032   sqlite3_vtab *pVtab;
6033   sqlite3_module *pModule;
6034   int nArg;
6035   int i;
6036   sqlite_int64 rowid;
6037   Mem **apArg;
6038   Mem *pX;
6039 
6040   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6041        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6042   );
6043   pVtab = pOp->p4.pVtab->pVtab;
6044   pModule = (sqlite3_module *)pVtab->pModule;
6045   nArg = pOp->p2;
6046   assert( pOp->p4type==P4_VTAB );
6047   if( ALWAYS(pModule->xUpdate) ){
6048     u8 vtabOnConflict = db->vtabOnConflict;
6049     apArg = p->apArg;
6050     pX = &aMem[pOp->p3];
6051     for(i=0; i<nArg; i++){
6052       assert( memIsValid(pX) );
6053       memAboutToChange(p, pX);
6054       sqlite3VdbeMemStoreType(pX);
6055       apArg[i] = pX;
6056       pX++;
6057     }
6058     db->vtabOnConflict = pOp->p5;
6059     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6060     db->vtabOnConflict = vtabOnConflict;
6061     importVtabErrMsg(p, pVtab);
6062     if( rc==SQLITE_OK && pOp->p1 ){
6063       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6064       db->lastRowid = lastRowid = rowid;
6065     }
6066     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6067       if( pOp->p5==OE_Ignore ){
6068         rc = SQLITE_OK;
6069       }else{
6070         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6071       }
6072     }else{
6073       p->nChange++;
6074     }
6075   }
6076   break;
6077 }
6078 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6079 
6080 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6081 /* Opcode: Pagecount P1 P2 * * *
6082 **
6083 ** Write the current number of pages in database P1 to memory cell P2.
6084 */
6085 case OP_Pagecount: {            /* out2-prerelease */
6086   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6087   break;
6088 }
6089 #endif
6090 
6091 
6092 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6093 /* Opcode: MaxPgcnt P1 P2 P3 * *
6094 **
6095 ** Try to set the maximum page count for database P1 to the value in P3.
6096 ** Do not let the maximum page count fall below the current page count and
6097 ** do not change the maximum page count value if P3==0.
6098 **
6099 ** Store the maximum page count after the change in register P2.
6100 */
6101 case OP_MaxPgcnt: {            /* out2-prerelease */
6102   unsigned int newMax;
6103   Btree *pBt;
6104 
6105   pBt = db->aDb[pOp->p1].pBt;
6106   newMax = 0;
6107   if( pOp->p3 ){
6108     newMax = sqlite3BtreeLastPage(pBt);
6109     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6110   }
6111   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6112   break;
6113 }
6114 #endif
6115 
6116 
6117 #ifndef SQLITE_OMIT_TRACE
6118 /* Opcode: Trace * * * P4 *
6119 **
6120 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6121 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6122 */
6123 case OP_Trace: {
6124   char *zTrace;
6125   char *z;
6126 
6127   if( db->xTrace
6128    && !p->doingRerun
6129    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6130   ){
6131     z = sqlite3VdbeExpandSql(p, zTrace);
6132     db->xTrace(db->pTraceArg, z);
6133     sqlite3DbFree(db, z);
6134   }
6135 #ifdef SQLITE_DEBUG
6136   if( (db->flags & SQLITE_SqlTrace)!=0
6137    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6138   ){
6139     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6140   }
6141 #endif /* SQLITE_DEBUG */
6142   break;
6143 }
6144 #endif
6145 
6146 
6147 /* Opcode: Noop * * * * *
6148 **
6149 ** Do nothing.  This instruction is often useful as a jump
6150 ** destination.
6151 */
6152 /*
6153 ** The magic Explain opcode are only inserted when explain==2 (which
6154 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6155 ** This opcode records information from the optimizer.  It is the
6156 ** the same as a no-op.  This opcodesnever appears in a real VM program.
6157 */
6158 default: {          /* This is really OP_Noop and OP_Explain */
6159   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6160   break;
6161 }
6162 
6163 /*****************************************************************************
6164 ** The cases of the switch statement above this line should all be indented
6165 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
6166 ** readability.  From this point on down, the normal indentation rules are
6167 ** restored.
6168 *****************************************************************************/
6169     }
6170 
6171 #ifdef VDBE_PROFILE
6172     {
6173       u64 elapsed = sqlite3Hwtime() - start;
6174       pOp->cycles += elapsed;
6175       pOp->cnt++;
6176 #if 0
6177         fprintf(stdout, "%10llu ", elapsed);
6178         sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
6179 #endif
6180     }
6181 #endif
6182 
6183     /* The following code adds nothing to the actual functionality
6184     ** of the program.  It is only here for testing and debugging.
6185     ** On the other hand, it does burn CPU cycles every time through
6186     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
6187     */
6188 #ifndef NDEBUG
6189     assert( pc>=-1 && pc<p->nOp );
6190 
6191 #ifdef SQLITE_DEBUG
6192     if( p->trace ){
6193       if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
6194       if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6195         registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
6196       }
6197       if( pOp->opflags & OPFLG_OUT3 ){
6198         registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
6199       }
6200     }
6201 #endif  /* SQLITE_DEBUG */
6202 #endif  /* NDEBUG */
6203   }  /* The end of the for(;;) loop the loops through opcodes */
6204 
6205   /* If we reach this point, it means that execution is finished with
6206   ** an error of some kind.
6207   */
6208 vdbe_error_halt:
6209   assert( rc );
6210   p->rc = rc;
6211   testcase( sqlite3GlobalConfig.xLog!=0 );
6212   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6213                    pc, p->zSql, p->zErrMsg);
6214   sqlite3VdbeHalt(p);
6215   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6216   rc = SQLITE_ERROR;
6217   if( resetSchemaOnFault>0 ){
6218     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6219   }
6220 
6221   /* This is the only way out of this procedure.  We have to
6222   ** release the mutexes on btrees that were acquired at the
6223   ** top. */
6224 vdbe_return:
6225   db->lastRowid = lastRowid;
6226   sqlite3VdbeLeave(p);
6227   return rc;
6228 
6229   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6230   ** is encountered.
6231   */
6232 too_big:
6233   sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
6234   rc = SQLITE_TOOBIG;
6235   goto vdbe_error_halt;
6236 
6237   /* Jump to here if a malloc() fails.
6238   */
6239 no_mem:
6240   db->mallocFailed = 1;
6241   sqlite3SetString(&p->zErrMsg, db, "out of memory");
6242   rc = SQLITE_NOMEM;
6243   goto vdbe_error_halt;
6244 
6245   /* Jump to here for any other kind of fatal error.  The "rc" variable
6246   ** should hold the error number.
6247   */
6248 abort_due_to_error:
6249   assert( p->zErrMsg==0 );
6250   if( db->mallocFailed ) rc = SQLITE_NOMEM;
6251   if( rc!=SQLITE_IOERR_NOMEM ){
6252     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6253   }
6254   goto vdbe_error_halt;
6255 
6256   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6257   ** flag.
6258   */
6259 abort_due_to_interrupt:
6260   assert( db->u1.isInterrupted );
6261   rc = SQLITE_INTERRUPT;
6262   p->rc = rc;
6263   sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6264   goto vdbe_error_halt;
6265 }
6266