1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** The next global variable is incremented each time the OP_Found opcode 91 ** is executed. This is used to test whether or not the foreign key 92 ** operation implemented using OP_FkIsZero is working. This variable 93 ** has no function other than to help verify the correct operation of the 94 ** library. 95 */ 96 #ifdef SQLITE_TEST 97 int sqlite3_found_count = 0; 98 #endif 99 100 /* 101 ** Test a register to see if it exceeds the current maximum blob size. 102 ** If it does, record the new maximum blob size. 103 */ 104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 106 #else 107 # define UPDATE_MAX_BLOBSIZE(P) 108 #endif 109 110 /* 111 ** Invoke the VDBE coverage callback, if that callback is defined. This 112 ** feature is used for test suite validation only and does not appear an 113 ** production builds. 114 ** 115 ** M is an integer, 2 or 3, that indices how many different ways the 116 ** branch can go. It is usually 2. "I" is the direction the branch 117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 118 ** second alternative branch is taken. 119 */ 120 #if !defined(SQLITE_VDBE_COVERAGE) 121 # define VdbeBranchTaken(I,M) 122 #else 123 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 124 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 125 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 126 M = iSrcLine; 127 /* Assert the truth of VdbeCoverageAlwaysTaken() and 128 ** VdbeCoverageNeverTaken() */ 129 assert( (M & I)==I ); 130 }else{ 131 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 132 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 133 iSrcLine,I,M); 134 } 135 } 136 #endif 137 138 /* 139 ** Convert the given register into a string if it isn't one 140 ** already. Return non-zero if a malloc() fails. 141 */ 142 #define Stringify(P, enc) \ 143 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ 144 { goto no_mem; } 145 146 /* 147 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 148 ** a pointer to a dynamically allocated string where some other entity 149 ** is responsible for deallocating that string. Because the register 150 ** does not control the string, it might be deleted without the register 151 ** knowing it. 152 ** 153 ** This routine converts an ephemeral string into a dynamically allocated 154 ** string that the register itself controls. In other words, it 155 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 156 */ 157 #define Deephemeralize(P) \ 158 if( ((P)->flags&MEM_Ephem)!=0 \ 159 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 160 161 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 162 #define isSorter(x) ((x)->pSorter!=0) 163 164 /* 165 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 166 ** if we run out of memory. 167 */ 168 static VdbeCursor *allocateCursor( 169 Vdbe *p, /* The virtual machine */ 170 int iCur, /* Index of the new VdbeCursor */ 171 int nField, /* Number of fields in the table or index */ 172 int iDb, /* Database the cursor belongs to, or -1 */ 173 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 174 ){ 175 /* Find the memory cell that will be used to store the blob of memory 176 ** required for this VdbeCursor structure. It is convenient to use a 177 ** vdbe memory cell to manage the memory allocation required for a 178 ** VdbeCursor structure for the following reasons: 179 ** 180 ** * Sometimes cursor numbers are used for a couple of different 181 ** purposes in a vdbe program. The different uses might require 182 ** different sized allocations. Memory cells provide growable 183 ** allocations. 184 ** 185 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 186 ** be freed lazily via the sqlite3_release_memory() API. This 187 ** minimizes the number of malloc calls made by the system. 188 ** 189 ** Memory cells for cursors are allocated at the top of the address 190 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 191 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 192 */ 193 Mem *pMem = &p->aMem[p->nMem-iCur]; 194 195 int nByte; 196 VdbeCursor *pCx = 0; 197 nByte = 198 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 199 (isBtreeCursor?sqlite3BtreeCursorSize():0); 200 201 assert( iCur<p->nCursor ); 202 if( p->apCsr[iCur] ){ 203 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 204 p->apCsr[iCur] = 0; 205 } 206 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 207 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 208 memset(pCx, 0, sizeof(VdbeCursor)); 209 pCx->iDb = iDb; 210 pCx->nField = nField; 211 if( isBtreeCursor ){ 212 pCx->pCursor = (BtCursor*) 213 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 214 sqlite3BtreeCursorZero(pCx->pCursor); 215 } 216 } 217 return pCx; 218 } 219 220 /* 221 ** Try to convert a value into a numeric representation if we can 222 ** do so without loss of information. In other words, if the string 223 ** looks like a number, convert it into a number. If it does not 224 ** look like a number, leave it alone. 225 */ 226 static void applyNumericAffinity(Mem *pRec){ 227 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ 228 double rValue; 229 i64 iValue; 230 u8 enc = pRec->enc; 231 if( (pRec->flags&MEM_Str)==0 ) return; 232 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 233 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 234 pRec->u.i = iValue; 235 pRec->flags |= MEM_Int; 236 }else{ 237 pRec->r = rValue; 238 pRec->flags |= MEM_Real; 239 } 240 } 241 } 242 243 /* 244 ** Processing is determine by the affinity parameter: 245 ** 246 ** SQLITE_AFF_INTEGER: 247 ** SQLITE_AFF_REAL: 248 ** SQLITE_AFF_NUMERIC: 249 ** Try to convert pRec to an integer representation or a 250 ** floating-point representation if an integer representation 251 ** is not possible. Note that the integer representation is 252 ** always preferred, even if the affinity is REAL, because 253 ** an integer representation is more space efficient on disk. 254 ** 255 ** SQLITE_AFF_TEXT: 256 ** Convert pRec to a text representation. 257 ** 258 ** SQLITE_AFF_NONE: 259 ** No-op. pRec is unchanged. 260 */ 261 static void applyAffinity( 262 Mem *pRec, /* The value to apply affinity to */ 263 char affinity, /* The affinity to be applied */ 264 u8 enc /* Use this text encoding */ 265 ){ 266 if( affinity==SQLITE_AFF_TEXT ){ 267 /* Only attempt the conversion to TEXT if there is an integer or real 268 ** representation (blob and NULL do not get converted) but no string 269 ** representation. 270 */ 271 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 272 sqlite3VdbeMemStringify(pRec, enc); 273 } 274 pRec->flags &= ~(MEM_Real|MEM_Int); 275 }else if( affinity!=SQLITE_AFF_NONE ){ 276 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 277 || affinity==SQLITE_AFF_NUMERIC ); 278 applyNumericAffinity(pRec); 279 if( pRec->flags & MEM_Real ){ 280 sqlite3VdbeIntegerAffinity(pRec); 281 } 282 } 283 } 284 285 /* 286 ** Try to convert the type of a function argument or a result column 287 ** into a numeric representation. Use either INTEGER or REAL whichever 288 ** is appropriate. But only do the conversion if it is possible without 289 ** loss of information and return the revised type of the argument. 290 */ 291 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 292 int eType = sqlite3_value_type(pVal); 293 if( eType==SQLITE_TEXT ){ 294 Mem *pMem = (Mem*)pVal; 295 applyNumericAffinity(pMem); 296 eType = sqlite3_value_type(pVal); 297 } 298 return eType; 299 } 300 301 /* 302 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 303 ** not the internal Mem* type. 304 */ 305 void sqlite3ValueApplyAffinity( 306 sqlite3_value *pVal, 307 u8 affinity, 308 u8 enc 309 ){ 310 applyAffinity((Mem *)pVal, affinity, enc); 311 } 312 313 /* 314 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 315 ** none. 316 ** 317 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 318 ** But it does set pMem->r and pMem->u.i appropriately. 319 */ 320 static u16 numericType(Mem *pMem){ 321 if( pMem->flags & (MEM_Int|MEM_Real) ){ 322 return pMem->flags & (MEM_Int|MEM_Real); 323 } 324 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 325 if( sqlite3AtoF(pMem->z, &pMem->r, pMem->n, pMem->enc)==0 ){ 326 return 0; 327 } 328 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ 329 return MEM_Int; 330 } 331 return MEM_Real; 332 } 333 return 0; 334 } 335 336 #ifdef SQLITE_DEBUG 337 /* 338 ** Write a nice string representation of the contents of cell pMem 339 ** into buffer zBuf, length nBuf. 340 */ 341 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 342 char *zCsr = zBuf; 343 int f = pMem->flags; 344 345 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 346 347 if( f&MEM_Blob ){ 348 int i; 349 char c; 350 if( f & MEM_Dyn ){ 351 c = 'z'; 352 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 353 }else if( f & MEM_Static ){ 354 c = 't'; 355 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 356 }else if( f & MEM_Ephem ){ 357 c = 'e'; 358 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 359 }else{ 360 c = 's'; 361 } 362 363 sqlite3_snprintf(100, zCsr, "%c", c); 364 zCsr += sqlite3Strlen30(zCsr); 365 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 366 zCsr += sqlite3Strlen30(zCsr); 367 for(i=0; i<16 && i<pMem->n; i++){ 368 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 369 zCsr += sqlite3Strlen30(zCsr); 370 } 371 for(i=0; i<16 && i<pMem->n; i++){ 372 char z = pMem->z[i]; 373 if( z<32 || z>126 ) *zCsr++ = '.'; 374 else *zCsr++ = z; 375 } 376 377 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 378 zCsr += sqlite3Strlen30(zCsr); 379 if( f & MEM_Zero ){ 380 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 381 zCsr += sqlite3Strlen30(zCsr); 382 } 383 *zCsr = '\0'; 384 }else if( f & MEM_Str ){ 385 int j, k; 386 zBuf[0] = ' '; 387 if( f & MEM_Dyn ){ 388 zBuf[1] = 'z'; 389 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 390 }else if( f & MEM_Static ){ 391 zBuf[1] = 't'; 392 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 393 }else if( f & MEM_Ephem ){ 394 zBuf[1] = 'e'; 395 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 396 }else{ 397 zBuf[1] = 's'; 398 } 399 k = 2; 400 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 401 k += sqlite3Strlen30(&zBuf[k]); 402 zBuf[k++] = '['; 403 for(j=0; j<15 && j<pMem->n; j++){ 404 u8 c = pMem->z[j]; 405 if( c>=0x20 && c<0x7f ){ 406 zBuf[k++] = c; 407 }else{ 408 zBuf[k++] = '.'; 409 } 410 } 411 zBuf[k++] = ']'; 412 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 413 k += sqlite3Strlen30(&zBuf[k]); 414 zBuf[k++] = 0; 415 } 416 } 417 #endif 418 419 #ifdef SQLITE_DEBUG 420 /* 421 ** Print the value of a register for tracing purposes: 422 */ 423 static void memTracePrint(Mem *p){ 424 if( p->flags & MEM_Undefined ){ 425 printf(" undefined"); 426 }else if( p->flags & MEM_Null ){ 427 printf(" NULL"); 428 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 429 printf(" si:%lld", p->u.i); 430 }else if( p->flags & MEM_Int ){ 431 printf(" i:%lld", p->u.i); 432 #ifndef SQLITE_OMIT_FLOATING_POINT 433 }else if( p->flags & MEM_Real ){ 434 printf(" r:%g", p->r); 435 #endif 436 }else if( p->flags & MEM_RowSet ){ 437 printf(" (rowset)"); 438 }else{ 439 char zBuf[200]; 440 sqlite3VdbeMemPrettyPrint(p, zBuf); 441 printf(" %s", zBuf); 442 } 443 } 444 static void registerTrace(int iReg, Mem *p){ 445 printf("REG[%d] = ", iReg); 446 memTracePrint(p); 447 printf("\n"); 448 } 449 #endif 450 451 #ifdef SQLITE_DEBUG 452 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 453 #else 454 # define REGISTER_TRACE(R,M) 455 #endif 456 457 458 #ifdef VDBE_PROFILE 459 460 /* 461 ** hwtime.h contains inline assembler code for implementing 462 ** high-performance timing routines. 463 */ 464 #include "hwtime.h" 465 466 #endif 467 468 #ifndef NDEBUG 469 /* 470 ** This function is only called from within an assert() expression. It 471 ** checks that the sqlite3.nTransaction variable is correctly set to 472 ** the number of non-transaction savepoints currently in the 473 ** linked list starting at sqlite3.pSavepoint. 474 ** 475 ** Usage: 476 ** 477 ** assert( checkSavepointCount(db) ); 478 */ 479 static int checkSavepointCount(sqlite3 *db){ 480 int n = 0; 481 Savepoint *p; 482 for(p=db->pSavepoint; p; p=p->pNext) n++; 483 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 484 return 1; 485 } 486 #endif 487 488 489 /* 490 ** Execute as much of a VDBE program as we can. 491 ** This is the core of sqlite3_step(). 492 */ 493 int sqlite3VdbeExec( 494 Vdbe *p /* The VDBE */ 495 ){ 496 int pc=0; /* The program counter */ 497 Op *aOp = p->aOp; /* Copy of p->aOp */ 498 Op *pOp; /* Current operation */ 499 int rc = SQLITE_OK; /* Value to return */ 500 sqlite3 *db = p->db; /* The database */ 501 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 502 u8 encoding = ENC(db); /* The database encoding */ 503 int iCompare = 0; /* Result of last OP_Compare operation */ 504 unsigned nVmStep = 0; /* Number of virtual machine steps */ 505 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 506 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 507 #endif 508 Mem *aMem = p->aMem; /* Copy of p->aMem */ 509 Mem *pIn1 = 0; /* 1st input operand */ 510 Mem *pIn2 = 0; /* 2nd input operand */ 511 Mem *pIn3 = 0; /* 3rd input operand */ 512 Mem *pOut = 0; /* Output operand */ 513 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 514 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 515 #ifdef VDBE_PROFILE 516 u64 start; /* CPU clock count at start of opcode */ 517 #endif 518 /*** INSERT STACK UNION HERE ***/ 519 520 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 521 sqlite3VdbeEnter(p); 522 if( p->rc==SQLITE_NOMEM ){ 523 /* This happens if a malloc() inside a call to sqlite3_column_text() or 524 ** sqlite3_column_text16() failed. */ 525 goto no_mem; 526 } 527 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 528 assert( p->bIsReader || p->readOnly!=0 ); 529 p->rc = SQLITE_OK; 530 p->iCurrentTime = 0; 531 assert( p->explain==0 ); 532 p->pResultSet = 0; 533 db->busyHandler.nBusy = 0; 534 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 535 sqlite3VdbeIOTraceSql(p); 536 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 537 if( db->xProgress ){ 538 assert( 0 < db->nProgressOps ); 539 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 540 if( nProgressLimit==0 ){ 541 nProgressLimit = db->nProgressOps; 542 }else{ 543 nProgressLimit %= (unsigned)db->nProgressOps; 544 } 545 } 546 #endif 547 #ifdef SQLITE_DEBUG 548 sqlite3BeginBenignMalloc(); 549 if( p->pc==0 550 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 551 ){ 552 int i; 553 int once = 1; 554 sqlite3VdbePrintSql(p); 555 if( p->db->flags & SQLITE_VdbeListing ){ 556 printf("VDBE Program Listing:\n"); 557 for(i=0; i<p->nOp; i++){ 558 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 559 } 560 } 561 if( p->db->flags & SQLITE_VdbeEQP ){ 562 for(i=0; i<p->nOp; i++){ 563 if( aOp[i].opcode==OP_Explain ){ 564 if( once ) printf("VDBE Query Plan:\n"); 565 printf("%s\n", aOp[i].p4.z); 566 once = 0; 567 } 568 } 569 } 570 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 571 } 572 sqlite3EndBenignMalloc(); 573 #endif 574 for(pc=p->pc; rc==SQLITE_OK; pc++){ 575 assert( pc>=0 && pc<p->nOp ); 576 if( db->mallocFailed ) goto no_mem; 577 #ifdef VDBE_PROFILE 578 start = sqlite3Hwtime(); 579 #endif 580 nVmStep++; 581 pOp = &aOp[pc]; 582 583 /* Only allow tracing if SQLITE_DEBUG is defined. 584 */ 585 #ifdef SQLITE_DEBUG 586 if( db->flags & SQLITE_VdbeTrace ){ 587 sqlite3VdbePrintOp(stdout, pc, pOp); 588 } 589 #endif 590 591 592 /* Check to see if we need to simulate an interrupt. This only happens 593 ** if we have a special test build. 594 */ 595 #ifdef SQLITE_TEST 596 if( sqlite3_interrupt_count>0 ){ 597 sqlite3_interrupt_count--; 598 if( sqlite3_interrupt_count==0 ){ 599 sqlite3_interrupt(db); 600 } 601 } 602 #endif 603 604 /* On any opcode with the "out2-prerelease" tag, free any 605 ** external allocations out of mem[p2] and set mem[p2] to be 606 ** an undefined integer. Opcodes will either fill in the integer 607 ** value or convert mem[p2] to a different type. 608 */ 609 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 610 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ 611 assert( pOp->p2>0 ); 612 assert( pOp->p2<=(p->nMem-p->nCursor) ); 613 pOut = &aMem[pOp->p2]; 614 memAboutToChange(p, pOut); 615 VdbeMemRelease(pOut); 616 pOut->flags = MEM_Int; 617 } 618 619 /* Sanity checking on other operands */ 620 #ifdef SQLITE_DEBUG 621 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 622 assert( pOp->p1>0 ); 623 assert( pOp->p1<=(p->nMem-p->nCursor) ); 624 assert( memIsValid(&aMem[pOp->p1]) ); 625 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 626 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 627 } 628 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 629 assert( pOp->p2>0 ); 630 assert( pOp->p2<=(p->nMem-p->nCursor) ); 631 assert( memIsValid(&aMem[pOp->p2]) ); 632 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 633 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 634 } 635 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 636 assert( pOp->p3>0 ); 637 assert( pOp->p3<=(p->nMem-p->nCursor) ); 638 assert( memIsValid(&aMem[pOp->p3]) ); 639 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 640 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 641 } 642 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 643 assert( pOp->p2>0 ); 644 assert( pOp->p2<=(p->nMem-p->nCursor) ); 645 memAboutToChange(p, &aMem[pOp->p2]); 646 } 647 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 648 assert( pOp->p3>0 ); 649 assert( pOp->p3<=(p->nMem-p->nCursor) ); 650 memAboutToChange(p, &aMem[pOp->p3]); 651 } 652 #endif 653 654 switch( pOp->opcode ){ 655 656 /***************************************************************************** 657 ** What follows is a massive switch statement where each case implements a 658 ** separate instruction in the virtual machine. If we follow the usual 659 ** indentation conventions, each case should be indented by 6 spaces. But 660 ** that is a lot of wasted space on the left margin. So the code within 661 ** the switch statement will break with convention and be flush-left. Another 662 ** big comment (similar to this one) will mark the point in the code where 663 ** we transition back to normal indentation. 664 ** 665 ** The formatting of each case is important. The makefile for SQLite 666 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 667 ** file looking for lines that begin with "case OP_". The opcodes.h files 668 ** will be filled with #defines that give unique integer values to each 669 ** opcode and the opcodes.c file is filled with an array of strings where 670 ** each string is the symbolic name for the corresponding opcode. If the 671 ** case statement is followed by a comment of the form "/# same as ... #/" 672 ** that comment is used to determine the particular value of the opcode. 673 ** 674 ** Other keywords in the comment that follows each case are used to 675 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 676 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 677 ** the mkopcodeh.awk script for additional information. 678 ** 679 ** Documentation about VDBE opcodes is generated by scanning this file 680 ** for lines of that contain "Opcode:". That line and all subsequent 681 ** comment lines are used in the generation of the opcode.html documentation 682 ** file. 683 ** 684 ** SUMMARY: 685 ** 686 ** Formatting is important to scripts that scan this file. 687 ** Do not deviate from the formatting style currently in use. 688 ** 689 *****************************************************************************/ 690 691 /* Opcode: Goto * P2 * * * 692 ** 693 ** An unconditional jump to address P2. 694 ** The next instruction executed will be 695 ** the one at index P2 from the beginning of 696 ** the program. 697 ** 698 ** The P1 parameter is not actually used by this opcode. However, it 699 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 700 ** that this Goto is the bottom of a loop and that the lines from P2 down 701 ** to the current line should be indented for EXPLAIN output. 702 */ 703 case OP_Goto: { /* jump */ 704 pc = pOp->p2 - 1; 705 706 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 707 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 708 ** completion. Check to see if sqlite3_interrupt() has been called 709 ** or if the progress callback needs to be invoked. 710 ** 711 ** This code uses unstructured "goto" statements and does not look clean. 712 ** But that is not due to sloppy coding habits. The code is written this 713 ** way for performance, to avoid having to run the interrupt and progress 714 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 715 ** faster according to "valgrind --tool=cachegrind" */ 716 check_for_interrupt: 717 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 718 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 719 /* Call the progress callback if it is configured and the required number 720 ** of VDBE ops have been executed (either since this invocation of 721 ** sqlite3VdbeExec() or since last time the progress callback was called). 722 ** If the progress callback returns non-zero, exit the virtual machine with 723 ** a return code SQLITE_ABORT. 724 */ 725 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ 726 assert( db->nProgressOps!=0 ); 727 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 728 if( db->xProgress(db->pProgressArg) ){ 729 rc = SQLITE_INTERRUPT; 730 goto vdbe_error_halt; 731 } 732 } 733 #endif 734 735 break; 736 } 737 738 /* Opcode: Gosub P1 P2 * * * 739 ** 740 ** Write the current address onto register P1 741 ** and then jump to address P2. 742 */ 743 case OP_Gosub: { /* jump */ 744 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 745 pIn1 = &aMem[pOp->p1]; 746 assert( VdbeMemDynamic(pIn1)==0 ); 747 memAboutToChange(p, pIn1); 748 pIn1->flags = MEM_Int; 749 pIn1->u.i = pc; 750 REGISTER_TRACE(pOp->p1, pIn1); 751 pc = pOp->p2 - 1; 752 break; 753 } 754 755 /* Opcode: Return P1 * * * * 756 ** 757 ** Jump to the next instruction after the address in register P1. After 758 ** the jump, register P1 becomes undefined. 759 */ 760 case OP_Return: { /* in1 */ 761 pIn1 = &aMem[pOp->p1]; 762 assert( pIn1->flags==MEM_Int ); 763 pc = (int)pIn1->u.i; 764 pIn1->flags = MEM_Undefined; 765 break; 766 } 767 768 /* Opcode: InitCoroutine P1 P2 P3 * * 769 ** 770 ** Set up register P1 so that it will OP_Yield to the co-routine 771 ** located at address P3. 772 ** 773 ** If P2!=0 then the co-routine implementation immediately follows 774 ** this opcode. So jump over the co-routine implementation to 775 ** address P2. 776 */ 777 case OP_InitCoroutine: { /* jump */ 778 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 779 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 780 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 781 pOut = &aMem[pOp->p1]; 782 assert( !VdbeMemDynamic(pOut) ); 783 pOut->u.i = pOp->p3 - 1; 784 pOut->flags = MEM_Int; 785 if( pOp->p2 ) pc = pOp->p2 - 1; 786 break; 787 } 788 789 /* Opcode: EndCoroutine P1 * * * * 790 ** 791 ** The instruction at the address in register P1 is an OP_Yield. 792 ** Jump to the P2 parameter of that OP_Yield. 793 ** After the jump, register P1 becomes undefined. 794 */ 795 case OP_EndCoroutine: { /* in1 */ 796 VdbeOp *pCaller; 797 pIn1 = &aMem[pOp->p1]; 798 assert( pIn1->flags==MEM_Int ); 799 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 800 pCaller = &aOp[pIn1->u.i]; 801 assert( pCaller->opcode==OP_Yield ); 802 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 803 pc = pCaller->p2 - 1; 804 pIn1->flags = MEM_Undefined; 805 break; 806 } 807 808 /* Opcode: Yield P1 P2 * * * 809 ** 810 ** Swap the program counter with the value in register P1. 811 ** 812 ** If the co-routine ends with OP_Yield or OP_Return then continue 813 ** to the next instruction. But if the co-routine ends with 814 ** OP_EndCoroutine, jump immediately to P2. 815 */ 816 case OP_Yield: { /* in1, jump */ 817 int pcDest; 818 pIn1 = &aMem[pOp->p1]; 819 assert( VdbeMemDynamic(pIn1)==0 ); 820 pIn1->flags = MEM_Int; 821 pcDest = (int)pIn1->u.i; 822 pIn1->u.i = pc; 823 REGISTER_TRACE(pOp->p1, pIn1); 824 pc = pcDest; 825 break; 826 } 827 828 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 829 ** Synopsis: if r[P3]=null halt 830 ** 831 ** Check the value in register P3. If it is NULL then Halt using 832 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 833 ** value in register P3 is not NULL, then this routine is a no-op. 834 ** The P5 parameter should be 1. 835 */ 836 case OP_HaltIfNull: { /* in3 */ 837 pIn3 = &aMem[pOp->p3]; 838 if( (pIn3->flags & MEM_Null)==0 ) break; 839 /* Fall through into OP_Halt */ 840 } 841 842 /* Opcode: Halt P1 P2 * P4 P5 843 ** 844 ** Exit immediately. All open cursors, etc are closed 845 ** automatically. 846 ** 847 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 848 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 849 ** For errors, it can be some other value. If P1!=0 then P2 will determine 850 ** whether or not to rollback the current transaction. Do not rollback 851 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 852 ** then back out all changes that have occurred during this execution of the 853 ** VDBE, but do not rollback the transaction. 854 ** 855 ** If P4 is not null then it is an error message string. 856 ** 857 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 858 ** 859 ** 0: (no change) 860 ** 1: NOT NULL contraint failed: P4 861 ** 2: UNIQUE constraint failed: P4 862 ** 3: CHECK constraint failed: P4 863 ** 4: FOREIGN KEY constraint failed: P4 864 ** 865 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 866 ** omitted. 867 ** 868 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 869 ** every program. So a jump past the last instruction of the program 870 ** is the same as executing Halt. 871 */ 872 case OP_Halt: { 873 const char *zType; 874 const char *zLogFmt; 875 876 if( pOp->p1==SQLITE_OK && p->pFrame ){ 877 /* Halt the sub-program. Return control to the parent frame. */ 878 VdbeFrame *pFrame = p->pFrame; 879 p->pFrame = pFrame->pParent; 880 p->nFrame--; 881 sqlite3VdbeSetChanges(db, p->nChange); 882 pc = sqlite3VdbeFrameRestore(pFrame); 883 lastRowid = db->lastRowid; 884 if( pOp->p2==OE_Ignore ){ 885 /* Instruction pc is the OP_Program that invoked the sub-program 886 ** currently being halted. If the p2 instruction of this OP_Halt 887 ** instruction is set to OE_Ignore, then the sub-program is throwing 888 ** an IGNORE exception. In this case jump to the address specified 889 ** as the p2 of the calling OP_Program. */ 890 pc = p->aOp[pc].p2-1; 891 } 892 aOp = p->aOp; 893 aMem = p->aMem; 894 break; 895 } 896 p->rc = pOp->p1; 897 p->errorAction = (u8)pOp->p2; 898 p->pc = pc; 899 if( p->rc ){ 900 if( pOp->p5 ){ 901 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 902 "FOREIGN KEY" }; 903 assert( pOp->p5>=1 && pOp->p5<=4 ); 904 testcase( pOp->p5==1 ); 905 testcase( pOp->p5==2 ); 906 testcase( pOp->p5==3 ); 907 testcase( pOp->p5==4 ); 908 zType = azType[pOp->p5-1]; 909 }else{ 910 zType = 0; 911 } 912 assert( zType!=0 || pOp->p4.z!=0 ); 913 zLogFmt = "abort at %d in [%s]: %s"; 914 if( zType && pOp->p4.z ){ 915 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", 916 zType, pOp->p4.z); 917 }else if( pOp->p4.z ){ 918 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 919 }else{ 920 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); 921 } 922 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); 923 } 924 rc = sqlite3VdbeHalt(p); 925 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 926 if( rc==SQLITE_BUSY ){ 927 p->rc = rc = SQLITE_BUSY; 928 }else{ 929 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 930 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 931 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 932 } 933 goto vdbe_return; 934 } 935 936 /* Opcode: Integer P1 P2 * * * 937 ** Synopsis: r[P2]=P1 938 ** 939 ** The 32-bit integer value P1 is written into register P2. 940 */ 941 case OP_Integer: { /* out2-prerelease */ 942 pOut->u.i = pOp->p1; 943 break; 944 } 945 946 /* Opcode: Int64 * P2 * P4 * 947 ** Synopsis: r[P2]=P4 948 ** 949 ** P4 is a pointer to a 64-bit integer value. 950 ** Write that value into register P2. 951 */ 952 case OP_Int64: { /* out2-prerelease */ 953 assert( pOp->p4.pI64!=0 ); 954 pOut->u.i = *pOp->p4.pI64; 955 break; 956 } 957 958 #ifndef SQLITE_OMIT_FLOATING_POINT 959 /* Opcode: Real * P2 * P4 * 960 ** Synopsis: r[P2]=P4 961 ** 962 ** P4 is a pointer to a 64-bit floating point value. 963 ** Write that value into register P2. 964 */ 965 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 966 pOut->flags = MEM_Real; 967 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 968 pOut->r = *pOp->p4.pReal; 969 break; 970 } 971 #endif 972 973 /* Opcode: String8 * P2 * P4 * 974 ** Synopsis: r[P2]='P4' 975 ** 976 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 977 ** into an OP_String before it is executed for the first time. During 978 ** this transformation, the length of string P4 is computed and stored 979 ** as the P1 parameter. 980 */ 981 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 982 assert( pOp->p4.z!=0 ); 983 pOp->opcode = OP_String; 984 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 985 986 #ifndef SQLITE_OMIT_UTF16 987 if( encoding!=SQLITE_UTF8 ){ 988 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 989 if( rc==SQLITE_TOOBIG ) goto too_big; 990 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 991 assert( pOut->zMalloc==pOut->z ); 992 assert( VdbeMemDynamic(pOut)==0 ); 993 pOut->zMalloc = 0; 994 pOut->flags |= MEM_Static; 995 if( pOp->p4type==P4_DYNAMIC ){ 996 sqlite3DbFree(db, pOp->p4.z); 997 } 998 pOp->p4type = P4_DYNAMIC; 999 pOp->p4.z = pOut->z; 1000 pOp->p1 = pOut->n; 1001 } 1002 #endif 1003 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1004 goto too_big; 1005 } 1006 /* Fall through to the next case, OP_String */ 1007 } 1008 1009 /* Opcode: String P1 P2 * P4 * 1010 ** Synopsis: r[P2]='P4' (len=P1) 1011 ** 1012 ** The string value P4 of length P1 (bytes) is stored in register P2. 1013 */ 1014 case OP_String: { /* out2-prerelease */ 1015 assert( pOp->p4.z!=0 ); 1016 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1017 pOut->z = pOp->p4.z; 1018 pOut->n = pOp->p1; 1019 pOut->enc = encoding; 1020 UPDATE_MAX_BLOBSIZE(pOut); 1021 break; 1022 } 1023 1024 /* Opcode: Null P1 P2 P3 * * 1025 ** Synopsis: r[P2..P3]=NULL 1026 ** 1027 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1028 ** NULL into register P3 and every register in between P2 and P3. If P3 1029 ** is less than P2 (typically P3 is zero) then only register P2 is 1030 ** set to NULL. 1031 ** 1032 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1033 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1034 ** OP_Ne or OP_Eq. 1035 */ 1036 case OP_Null: { /* out2-prerelease */ 1037 int cnt; 1038 u16 nullFlag; 1039 cnt = pOp->p3-pOp->p2; 1040 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1041 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1042 while( cnt>0 ){ 1043 pOut++; 1044 memAboutToChange(p, pOut); 1045 VdbeMemRelease(pOut); 1046 pOut->flags = nullFlag; 1047 cnt--; 1048 } 1049 break; 1050 } 1051 1052 /* Opcode: SoftNull P1 * * * * 1053 ** Synopsis: r[P1]=NULL 1054 ** 1055 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1056 ** instruction, but do not free any string or blob memory associated with 1057 ** the register, so that if the value was a string or blob that was 1058 ** previously copied using OP_SCopy, the copies will continue to be valid. 1059 */ 1060 case OP_SoftNull: { 1061 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 1062 pOut = &aMem[pOp->p1]; 1063 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; 1064 break; 1065 } 1066 1067 /* Opcode: Blob P1 P2 * P4 * 1068 ** Synopsis: r[P2]=P4 (len=P1) 1069 ** 1070 ** P4 points to a blob of data P1 bytes long. Store this 1071 ** blob in register P2. 1072 */ 1073 case OP_Blob: { /* out2-prerelease */ 1074 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1075 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1076 pOut->enc = encoding; 1077 UPDATE_MAX_BLOBSIZE(pOut); 1078 break; 1079 } 1080 1081 /* Opcode: Variable P1 P2 * P4 * 1082 ** Synopsis: r[P2]=parameter(P1,P4) 1083 ** 1084 ** Transfer the values of bound parameter P1 into register P2 1085 ** 1086 ** If the parameter is named, then its name appears in P4. 1087 ** The P4 value is used by sqlite3_bind_parameter_name(). 1088 */ 1089 case OP_Variable: { /* out2-prerelease */ 1090 Mem *pVar; /* Value being transferred */ 1091 1092 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1093 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1094 pVar = &p->aVar[pOp->p1 - 1]; 1095 if( sqlite3VdbeMemTooBig(pVar) ){ 1096 goto too_big; 1097 } 1098 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1099 UPDATE_MAX_BLOBSIZE(pOut); 1100 break; 1101 } 1102 1103 /* Opcode: Move P1 P2 P3 * * 1104 ** Synopsis: r[P2@P3]=r[P1@P3] 1105 ** 1106 ** Move the P3 values in register P1..P1+P3-1 over into 1107 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1108 ** left holding a NULL. It is an error for register ranges 1109 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1110 ** for P3 to be less than 1. 1111 */ 1112 case OP_Move: { 1113 char *zMalloc; /* Holding variable for allocated memory */ 1114 int n; /* Number of registers left to copy */ 1115 int p1; /* Register to copy from */ 1116 int p2; /* Register to copy to */ 1117 1118 n = pOp->p3; 1119 p1 = pOp->p1; 1120 p2 = pOp->p2; 1121 assert( n>0 && p1>0 && p2>0 ); 1122 assert( p1+n<=p2 || p2+n<=p1 ); 1123 1124 pIn1 = &aMem[p1]; 1125 pOut = &aMem[p2]; 1126 do{ 1127 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); 1128 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); 1129 assert( memIsValid(pIn1) ); 1130 memAboutToChange(p, pOut); 1131 VdbeMemRelease(pOut); 1132 zMalloc = pOut->zMalloc; 1133 memcpy(pOut, pIn1, sizeof(Mem)); 1134 #ifdef SQLITE_DEBUG 1135 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ 1136 pOut->pScopyFrom += p1 - pOp->p2; 1137 } 1138 #endif 1139 pIn1->flags = MEM_Undefined; 1140 pIn1->xDel = 0; 1141 pIn1->zMalloc = zMalloc; 1142 REGISTER_TRACE(p2++, pOut); 1143 pIn1++; 1144 pOut++; 1145 }while( --n ); 1146 break; 1147 } 1148 1149 /* Opcode: Copy P1 P2 P3 * * 1150 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1151 ** 1152 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1153 ** 1154 ** This instruction makes a deep copy of the value. A duplicate 1155 ** is made of any string or blob constant. See also OP_SCopy. 1156 */ 1157 case OP_Copy: { 1158 int n; 1159 1160 n = pOp->p3; 1161 pIn1 = &aMem[pOp->p1]; 1162 pOut = &aMem[pOp->p2]; 1163 assert( pOut!=pIn1 ); 1164 while( 1 ){ 1165 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1166 Deephemeralize(pOut); 1167 #ifdef SQLITE_DEBUG 1168 pOut->pScopyFrom = 0; 1169 #endif 1170 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1171 if( (n--)==0 ) break; 1172 pOut++; 1173 pIn1++; 1174 } 1175 break; 1176 } 1177 1178 /* Opcode: SCopy P1 P2 * * * 1179 ** Synopsis: r[P2]=r[P1] 1180 ** 1181 ** Make a shallow copy of register P1 into register P2. 1182 ** 1183 ** This instruction makes a shallow copy of the value. If the value 1184 ** is a string or blob, then the copy is only a pointer to the 1185 ** original and hence if the original changes so will the copy. 1186 ** Worse, if the original is deallocated, the copy becomes invalid. 1187 ** Thus the program must guarantee that the original will not change 1188 ** during the lifetime of the copy. Use OP_Copy to make a complete 1189 ** copy. 1190 */ 1191 case OP_SCopy: { /* out2 */ 1192 pIn1 = &aMem[pOp->p1]; 1193 pOut = &aMem[pOp->p2]; 1194 assert( pOut!=pIn1 ); 1195 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1196 #ifdef SQLITE_DEBUG 1197 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1198 #endif 1199 break; 1200 } 1201 1202 /* Opcode: ResultRow P1 P2 * * * 1203 ** Synopsis: output=r[P1@P2] 1204 ** 1205 ** The registers P1 through P1+P2-1 contain a single row of 1206 ** results. This opcode causes the sqlite3_step() call to terminate 1207 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1208 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1209 ** the result row. 1210 */ 1211 case OP_ResultRow: { 1212 Mem *pMem; 1213 int i; 1214 assert( p->nResColumn==pOp->p2 ); 1215 assert( pOp->p1>0 ); 1216 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); 1217 1218 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1219 /* Run the progress counter just before returning. 1220 */ 1221 if( db->xProgress!=0 1222 && nVmStep>=nProgressLimit 1223 && db->xProgress(db->pProgressArg)!=0 1224 ){ 1225 rc = SQLITE_INTERRUPT; 1226 goto vdbe_error_halt; 1227 } 1228 #endif 1229 1230 /* If this statement has violated immediate foreign key constraints, do 1231 ** not return the number of rows modified. And do not RELEASE the statement 1232 ** transaction. It needs to be rolled back. */ 1233 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1234 assert( db->flags&SQLITE_CountRows ); 1235 assert( p->usesStmtJournal ); 1236 break; 1237 } 1238 1239 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1240 ** DML statements invoke this opcode to return the number of rows 1241 ** modified to the user. This is the only way that a VM that 1242 ** opens a statement transaction may invoke this opcode. 1243 ** 1244 ** In case this is such a statement, close any statement transaction 1245 ** opened by this VM before returning control to the user. This is to 1246 ** ensure that statement-transactions are always nested, not overlapping. 1247 ** If the open statement-transaction is not closed here, then the user 1248 ** may step another VM that opens its own statement transaction. This 1249 ** may lead to overlapping statement transactions. 1250 ** 1251 ** The statement transaction is never a top-level transaction. Hence 1252 ** the RELEASE call below can never fail. 1253 */ 1254 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1255 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1256 if( NEVER(rc!=SQLITE_OK) ){ 1257 break; 1258 } 1259 1260 /* Invalidate all ephemeral cursor row caches */ 1261 p->cacheCtr = (p->cacheCtr + 2)|1; 1262 1263 /* Make sure the results of the current row are \000 terminated 1264 ** and have an assigned type. The results are de-ephemeralized as 1265 ** a side effect. 1266 */ 1267 pMem = p->pResultSet = &aMem[pOp->p1]; 1268 for(i=0; i<pOp->p2; i++){ 1269 assert( memIsValid(&pMem[i]) ); 1270 Deephemeralize(&pMem[i]); 1271 assert( (pMem[i].flags & MEM_Ephem)==0 1272 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1273 sqlite3VdbeMemNulTerminate(&pMem[i]); 1274 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1275 } 1276 if( db->mallocFailed ) goto no_mem; 1277 1278 /* Return SQLITE_ROW 1279 */ 1280 p->pc = pc + 1; 1281 rc = SQLITE_ROW; 1282 goto vdbe_return; 1283 } 1284 1285 /* Opcode: Concat P1 P2 P3 * * 1286 ** Synopsis: r[P3]=r[P2]+r[P1] 1287 ** 1288 ** Add the text in register P1 onto the end of the text in 1289 ** register P2 and store the result in register P3. 1290 ** If either the P1 or P2 text are NULL then store NULL in P3. 1291 ** 1292 ** P3 = P2 || P1 1293 ** 1294 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1295 ** if P3 is the same register as P2, the implementation is able 1296 ** to avoid a memcpy(). 1297 */ 1298 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1299 i64 nByte; 1300 1301 pIn1 = &aMem[pOp->p1]; 1302 pIn2 = &aMem[pOp->p2]; 1303 pOut = &aMem[pOp->p3]; 1304 assert( pIn1!=pOut ); 1305 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1306 sqlite3VdbeMemSetNull(pOut); 1307 break; 1308 } 1309 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1310 Stringify(pIn1, encoding); 1311 Stringify(pIn2, encoding); 1312 nByte = pIn1->n + pIn2->n; 1313 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1314 goto too_big; 1315 } 1316 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1317 goto no_mem; 1318 } 1319 MemSetTypeFlag(pOut, MEM_Str); 1320 if( pOut!=pIn2 ){ 1321 memcpy(pOut->z, pIn2->z, pIn2->n); 1322 } 1323 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1324 pOut->z[nByte]=0; 1325 pOut->z[nByte+1] = 0; 1326 pOut->flags |= MEM_Term; 1327 pOut->n = (int)nByte; 1328 pOut->enc = encoding; 1329 UPDATE_MAX_BLOBSIZE(pOut); 1330 break; 1331 } 1332 1333 /* Opcode: Add P1 P2 P3 * * 1334 ** Synopsis: r[P3]=r[P1]+r[P2] 1335 ** 1336 ** Add the value in register P1 to the value in register P2 1337 ** and store the result in register P3. 1338 ** If either input is NULL, the result is NULL. 1339 */ 1340 /* Opcode: Multiply P1 P2 P3 * * 1341 ** Synopsis: r[P3]=r[P1]*r[P2] 1342 ** 1343 ** 1344 ** Multiply the value in register P1 by the value in register P2 1345 ** and store the result in register P3. 1346 ** If either input is NULL, the result is NULL. 1347 */ 1348 /* Opcode: Subtract P1 P2 P3 * * 1349 ** Synopsis: r[P3]=r[P2]-r[P1] 1350 ** 1351 ** Subtract the value in register P1 from the value in register P2 1352 ** and store the result in register P3. 1353 ** If either input is NULL, the result is NULL. 1354 */ 1355 /* Opcode: Divide P1 P2 P3 * * 1356 ** Synopsis: r[P3]=r[P2]/r[P1] 1357 ** 1358 ** Divide the value in register P1 by the value in register P2 1359 ** and store the result in register P3 (P3=P2/P1). If the value in 1360 ** register P1 is zero, then the result is NULL. If either input is 1361 ** NULL, the result is NULL. 1362 */ 1363 /* Opcode: Remainder P1 P2 P3 * * 1364 ** Synopsis: r[P3]=r[P2]%r[P1] 1365 ** 1366 ** Compute the remainder after integer register P2 is divided by 1367 ** register P1 and store the result in register P3. 1368 ** If the value in register P1 is zero the result is NULL. 1369 ** If either operand is NULL, the result is NULL. 1370 */ 1371 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1372 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1373 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1374 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1375 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1376 char bIntint; /* Started out as two integer operands */ 1377 u16 flags; /* Combined MEM_* flags from both inputs */ 1378 u16 type1; /* Numeric type of left operand */ 1379 u16 type2; /* Numeric type of right operand */ 1380 i64 iA; /* Integer value of left operand */ 1381 i64 iB; /* Integer value of right operand */ 1382 double rA; /* Real value of left operand */ 1383 double rB; /* Real value of right operand */ 1384 1385 pIn1 = &aMem[pOp->p1]; 1386 type1 = numericType(pIn1); 1387 pIn2 = &aMem[pOp->p2]; 1388 type2 = numericType(pIn2); 1389 pOut = &aMem[pOp->p3]; 1390 flags = pIn1->flags | pIn2->flags; 1391 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1392 if( (type1 & type2 & MEM_Int)!=0 ){ 1393 iA = pIn1->u.i; 1394 iB = pIn2->u.i; 1395 bIntint = 1; 1396 switch( pOp->opcode ){ 1397 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1398 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1399 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1400 case OP_Divide: { 1401 if( iA==0 ) goto arithmetic_result_is_null; 1402 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1403 iB /= iA; 1404 break; 1405 } 1406 default: { 1407 if( iA==0 ) goto arithmetic_result_is_null; 1408 if( iA==-1 ) iA = 1; 1409 iB %= iA; 1410 break; 1411 } 1412 } 1413 pOut->u.i = iB; 1414 MemSetTypeFlag(pOut, MEM_Int); 1415 }else{ 1416 bIntint = 0; 1417 fp_math: 1418 rA = sqlite3VdbeRealValue(pIn1); 1419 rB = sqlite3VdbeRealValue(pIn2); 1420 switch( pOp->opcode ){ 1421 case OP_Add: rB += rA; break; 1422 case OP_Subtract: rB -= rA; break; 1423 case OP_Multiply: rB *= rA; break; 1424 case OP_Divide: { 1425 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1426 if( rA==(double)0 ) goto arithmetic_result_is_null; 1427 rB /= rA; 1428 break; 1429 } 1430 default: { 1431 iA = (i64)rA; 1432 iB = (i64)rB; 1433 if( iA==0 ) goto arithmetic_result_is_null; 1434 if( iA==-1 ) iA = 1; 1435 rB = (double)(iB % iA); 1436 break; 1437 } 1438 } 1439 #ifdef SQLITE_OMIT_FLOATING_POINT 1440 pOut->u.i = rB; 1441 MemSetTypeFlag(pOut, MEM_Int); 1442 #else 1443 if( sqlite3IsNaN(rB) ){ 1444 goto arithmetic_result_is_null; 1445 } 1446 pOut->r = rB; 1447 MemSetTypeFlag(pOut, MEM_Real); 1448 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1449 sqlite3VdbeIntegerAffinity(pOut); 1450 } 1451 #endif 1452 } 1453 break; 1454 1455 arithmetic_result_is_null: 1456 sqlite3VdbeMemSetNull(pOut); 1457 break; 1458 } 1459 1460 /* Opcode: CollSeq P1 * * P4 1461 ** 1462 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1463 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1464 ** be returned. This is used by the built-in min(), max() and nullif() 1465 ** functions. 1466 ** 1467 ** If P1 is not zero, then it is a register that a subsequent min() or 1468 ** max() aggregate will set to 1 if the current row is not the minimum or 1469 ** maximum. The P1 register is initialized to 0 by this instruction. 1470 ** 1471 ** The interface used by the implementation of the aforementioned functions 1472 ** to retrieve the collation sequence set by this opcode is not available 1473 ** publicly, only to user functions defined in func.c. 1474 */ 1475 case OP_CollSeq: { 1476 assert( pOp->p4type==P4_COLLSEQ ); 1477 if( pOp->p1 ){ 1478 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1479 } 1480 break; 1481 } 1482 1483 /* Opcode: Function P1 P2 P3 P4 P5 1484 ** Synopsis: r[P3]=func(r[P2@P5]) 1485 ** 1486 ** Invoke a user function (P4 is a pointer to a Function structure that 1487 ** defines the function) with P5 arguments taken from register P2 and 1488 ** successors. The result of the function is stored in register P3. 1489 ** Register P3 must not be one of the function inputs. 1490 ** 1491 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1492 ** function was determined to be constant at compile time. If the first 1493 ** argument was constant then bit 0 of P1 is set. This is used to determine 1494 ** whether meta data associated with a user function argument using the 1495 ** sqlite3_set_auxdata() API may be safely retained until the next 1496 ** invocation of this opcode. 1497 ** 1498 ** See also: AggStep and AggFinal 1499 */ 1500 case OP_Function: { 1501 int i; 1502 Mem *pArg; 1503 sqlite3_context ctx; 1504 sqlite3_value **apVal; 1505 int n; 1506 1507 n = pOp->p5; 1508 apVal = p->apArg; 1509 assert( apVal || n==0 ); 1510 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 1511 pOut = &aMem[pOp->p3]; 1512 memAboutToChange(p, pOut); 1513 1514 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 1515 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1516 pArg = &aMem[pOp->p2]; 1517 for(i=0; i<n; i++, pArg++){ 1518 assert( memIsValid(pArg) ); 1519 apVal[i] = pArg; 1520 Deephemeralize(pArg); 1521 REGISTER_TRACE(pOp->p2+i, pArg); 1522 } 1523 1524 assert( pOp->p4type==P4_FUNCDEF ); 1525 ctx.pFunc = pOp->p4.pFunc; 1526 ctx.iOp = pc; 1527 ctx.pVdbe = p; 1528 1529 /* The output cell may already have a buffer allocated. Move 1530 ** the pointer to ctx.s so in case the user-function can use 1531 ** the already allocated buffer instead of allocating a new one. 1532 */ 1533 memcpy(&ctx.s, pOut, sizeof(Mem)); 1534 pOut->flags = MEM_Null; 1535 pOut->xDel = 0; 1536 pOut->zMalloc = 0; 1537 MemSetTypeFlag(&ctx.s, MEM_Null); 1538 1539 ctx.fErrorOrAux = 0; 1540 if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1541 assert( pOp>aOp ); 1542 assert( pOp[-1].p4type==P4_COLLSEQ ); 1543 assert( pOp[-1].opcode==OP_CollSeq ); 1544 ctx.pColl = pOp[-1].p4.pColl; 1545 } 1546 db->lastRowid = lastRowid; 1547 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1548 lastRowid = db->lastRowid; 1549 1550 if( db->mallocFailed ){ 1551 /* Even though a malloc() has failed, the implementation of the 1552 ** user function may have called an sqlite3_result_XXX() function 1553 ** to return a value. The following call releases any resources 1554 ** associated with such a value. 1555 */ 1556 sqlite3VdbeMemRelease(&ctx.s); 1557 goto no_mem; 1558 } 1559 1560 /* If the function returned an error, throw an exception */ 1561 if( ctx.fErrorOrAux ){ 1562 if( ctx.isError ){ 1563 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 1564 rc = ctx.isError; 1565 } 1566 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); 1567 } 1568 1569 /* Copy the result of the function into register P3 */ 1570 sqlite3VdbeChangeEncoding(&ctx.s, encoding); 1571 assert( pOut->flags==MEM_Null ); 1572 memcpy(pOut, &ctx.s, sizeof(Mem)); 1573 if( sqlite3VdbeMemTooBig(pOut) ){ 1574 goto too_big; 1575 } 1576 1577 #if 0 1578 /* The app-defined function has done something that as caused this 1579 ** statement to expire. (Perhaps the function called sqlite3_exec() 1580 ** with a CREATE TABLE statement.) 1581 */ 1582 if( p->expired ) rc = SQLITE_ABORT; 1583 #endif 1584 1585 REGISTER_TRACE(pOp->p3, pOut); 1586 UPDATE_MAX_BLOBSIZE(pOut); 1587 break; 1588 } 1589 1590 /* Opcode: BitAnd P1 P2 P3 * * 1591 ** Synopsis: r[P3]=r[P1]&r[P2] 1592 ** 1593 ** Take the bit-wise AND of the values in register P1 and P2 and 1594 ** store the result in register P3. 1595 ** If either input is NULL, the result is NULL. 1596 */ 1597 /* Opcode: BitOr P1 P2 P3 * * 1598 ** Synopsis: r[P3]=r[P1]|r[P2] 1599 ** 1600 ** Take the bit-wise OR of the values in register P1 and P2 and 1601 ** store the result in register P3. 1602 ** If either input is NULL, the result is NULL. 1603 */ 1604 /* Opcode: ShiftLeft P1 P2 P3 * * 1605 ** Synopsis: r[P3]=r[P2]<<r[P1] 1606 ** 1607 ** Shift the integer value in register P2 to the left by the 1608 ** number of bits specified by the integer in register P1. 1609 ** Store the result in register P3. 1610 ** If either input is NULL, the result is NULL. 1611 */ 1612 /* Opcode: ShiftRight P1 P2 P3 * * 1613 ** Synopsis: r[P3]=r[P2]>>r[P1] 1614 ** 1615 ** Shift the integer value in register P2 to the right by the 1616 ** number of bits specified by the integer in register P1. 1617 ** Store the result in register P3. 1618 ** If either input is NULL, the result is NULL. 1619 */ 1620 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1621 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1622 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1623 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1624 i64 iA; 1625 u64 uA; 1626 i64 iB; 1627 u8 op; 1628 1629 pIn1 = &aMem[pOp->p1]; 1630 pIn2 = &aMem[pOp->p2]; 1631 pOut = &aMem[pOp->p3]; 1632 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1633 sqlite3VdbeMemSetNull(pOut); 1634 break; 1635 } 1636 iA = sqlite3VdbeIntValue(pIn2); 1637 iB = sqlite3VdbeIntValue(pIn1); 1638 op = pOp->opcode; 1639 if( op==OP_BitAnd ){ 1640 iA &= iB; 1641 }else if( op==OP_BitOr ){ 1642 iA |= iB; 1643 }else if( iB!=0 ){ 1644 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1645 1646 /* If shifting by a negative amount, shift in the other direction */ 1647 if( iB<0 ){ 1648 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1649 op = 2*OP_ShiftLeft + 1 - op; 1650 iB = iB>(-64) ? -iB : 64; 1651 } 1652 1653 if( iB>=64 ){ 1654 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1655 }else{ 1656 memcpy(&uA, &iA, sizeof(uA)); 1657 if( op==OP_ShiftLeft ){ 1658 uA <<= iB; 1659 }else{ 1660 uA >>= iB; 1661 /* Sign-extend on a right shift of a negative number */ 1662 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1663 } 1664 memcpy(&iA, &uA, sizeof(iA)); 1665 } 1666 } 1667 pOut->u.i = iA; 1668 MemSetTypeFlag(pOut, MEM_Int); 1669 break; 1670 } 1671 1672 /* Opcode: AddImm P1 P2 * * * 1673 ** Synopsis: r[P1]=r[P1]+P2 1674 ** 1675 ** Add the constant P2 to the value in register P1. 1676 ** The result is always an integer. 1677 ** 1678 ** To force any register to be an integer, just add 0. 1679 */ 1680 case OP_AddImm: { /* in1 */ 1681 pIn1 = &aMem[pOp->p1]; 1682 memAboutToChange(p, pIn1); 1683 sqlite3VdbeMemIntegerify(pIn1); 1684 pIn1->u.i += pOp->p2; 1685 break; 1686 } 1687 1688 /* Opcode: MustBeInt P1 P2 * * * 1689 ** 1690 ** Force the value in register P1 to be an integer. If the value 1691 ** in P1 is not an integer and cannot be converted into an integer 1692 ** without data loss, then jump immediately to P2, or if P2==0 1693 ** raise an SQLITE_MISMATCH exception. 1694 */ 1695 case OP_MustBeInt: { /* jump, in1 */ 1696 pIn1 = &aMem[pOp->p1]; 1697 if( (pIn1->flags & MEM_Int)==0 ){ 1698 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1699 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1700 if( (pIn1->flags & MEM_Int)==0 ){ 1701 if( pOp->p2==0 ){ 1702 rc = SQLITE_MISMATCH; 1703 goto abort_due_to_error; 1704 }else{ 1705 pc = pOp->p2 - 1; 1706 break; 1707 } 1708 } 1709 } 1710 MemSetTypeFlag(pIn1, MEM_Int); 1711 break; 1712 } 1713 1714 #ifndef SQLITE_OMIT_FLOATING_POINT 1715 /* Opcode: RealAffinity P1 * * * * 1716 ** 1717 ** If register P1 holds an integer convert it to a real value. 1718 ** 1719 ** This opcode is used when extracting information from a column that 1720 ** has REAL affinity. Such column values may still be stored as 1721 ** integers, for space efficiency, but after extraction we want them 1722 ** to have only a real value. 1723 */ 1724 case OP_RealAffinity: { /* in1 */ 1725 pIn1 = &aMem[pOp->p1]; 1726 if( pIn1->flags & MEM_Int ){ 1727 sqlite3VdbeMemRealify(pIn1); 1728 } 1729 break; 1730 } 1731 #endif 1732 1733 #ifndef SQLITE_OMIT_CAST 1734 /* Opcode: ToText P1 * * * * 1735 ** 1736 ** Force the value in register P1 to be text. 1737 ** If the value is numeric, convert it to a string using the 1738 ** equivalent of sprintf(). Blob values are unchanged and 1739 ** are afterwards simply interpreted as text. 1740 ** 1741 ** A NULL value is not changed by this routine. It remains NULL. 1742 */ 1743 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ 1744 pIn1 = &aMem[pOp->p1]; 1745 memAboutToChange(p, pIn1); 1746 if( pIn1->flags & MEM_Null ) break; 1747 assert( MEM_Str==(MEM_Blob>>3) ); 1748 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; 1749 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1750 rc = ExpandBlob(pIn1); 1751 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1752 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 1753 UPDATE_MAX_BLOBSIZE(pIn1); 1754 break; 1755 } 1756 1757 /* Opcode: ToBlob P1 * * * * 1758 ** 1759 ** Force the value in register P1 to be a BLOB. 1760 ** If the value is numeric, convert it to a string first. 1761 ** Strings are simply reinterpreted as blobs with no change 1762 ** to the underlying data. 1763 ** 1764 ** A NULL value is not changed by this routine. It remains NULL. 1765 */ 1766 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ 1767 pIn1 = &aMem[pOp->p1]; 1768 if( pIn1->flags & MEM_Null ) break; 1769 if( (pIn1->flags & MEM_Blob)==0 ){ 1770 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1771 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1772 MemSetTypeFlag(pIn1, MEM_Blob); 1773 }else{ 1774 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); 1775 } 1776 UPDATE_MAX_BLOBSIZE(pIn1); 1777 break; 1778 } 1779 1780 /* Opcode: ToNumeric P1 * * * * 1781 ** 1782 ** Force the value in register P1 to be numeric (either an 1783 ** integer or a floating-point number.) 1784 ** If the value is text or blob, try to convert it to an using the 1785 ** equivalent of atoi() or atof() and store 0 if no such conversion 1786 ** is possible. 1787 ** 1788 ** A NULL value is not changed by this routine. It remains NULL. 1789 */ 1790 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ 1791 pIn1 = &aMem[pOp->p1]; 1792 sqlite3VdbeMemNumerify(pIn1); 1793 break; 1794 } 1795 #endif /* SQLITE_OMIT_CAST */ 1796 1797 /* Opcode: ToInt P1 * * * * 1798 ** 1799 ** Force the value in register P1 to be an integer. If 1800 ** The value is currently a real number, drop its fractional part. 1801 ** If the value is text or blob, try to convert it to an integer using the 1802 ** equivalent of atoi() and store 0 if no such conversion is possible. 1803 ** 1804 ** A NULL value is not changed by this routine. It remains NULL. 1805 */ 1806 case OP_ToInt: { /* same as TK_TO_INT, in1 */ 1807 pIn1 = &aMem[pOp->p1]; 1808 if( (pIn1->flags & MEM_Null)==0 ){ 1809 sqlite3VdbeMemIntegerify(pIn1); 1810 } 1811 break; 1812 } 1813 1814 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) 1815 /* Opcode: ToReal P1 * * * * 1816 ** 1817 ** Force the value in register P1 to be a floating point number. 1818 ** If The value is currently an integer, convert it. 1819 ** If the value is text or blob, try to convert it to an integer using the 1820 ** equivalent of atoi() and store 0.0 if no such conversion is possible. 1821 ** 1822 ** A NULL value is not changed by this routine. It remains NULL. 1823 */ 1824 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ 1825 pIn1 = &aMem[pOp->p1]; 1826 memAboutToChange(p, pIn1); 1827 if( (pIn1->flags & MEM_Null)==0 ){ 1828 sqlite3VdbeMemRealify(pIn1); 1829 } 1830 break; 1831 } 1832 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ 1833 1834 /* Opcode: Lt P1 P2 P3 P4 P5 1835 ** Synopsis: if r[P1]<r[P3] goto P2 1836 ** 1837 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1838 ** jump to address P2. 1839 ** 1840 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1841 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1842 ** bit is clear then fall through if either operand is NULL. 1843 ** 1844 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1845 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1846 ** to coerce both inputs according to this affinity before the 1847 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1848 ** affinity is used. Note that the affinity conversions are stored 1849 ** back into the input registers P1 and P3. So this opcode can cause 1850 ** persistent changes to registers P1 and P3. 1851 ** 1852 ** Once any conversions have taken place, and neither value is NULL, 1853 ** the values are compared. If both values are blobs then memcmp() is 1854 ** used to determine the results of the comparison. If both values 1855 ** are text, then the appropriate collating function specified in 1856 ** P4 is used to do the comparison. If P4 is not specified then 1857 ** memcmp() is used to compare text string. If both values are 1858 ** numeric, then a numeric comparison is used. If the two values 1859 ** are of different types, then numbers are considered less than 1860 ** strings and strings are considered less than blobs. 1861 ** 1862 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1863 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1864 ** 1865 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered 1866 ** equal to one another, provided that they do not have their MEM_Cleared 1867 ** bit set. 1868 */ 1869 /* Opcode: Ne P1 P2 P3 P4 P5 1870 ** Synopsis: if r[P1]!=r[P3] goto P2 1871 ** 1872 ** This works just like the Lt opcode except that the jump is taken if 1873 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1874 ** additional information. 1875 ** 1876 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1877 ** true or false and is never NULL. If both operands are NULL then the result 1878 ** of comparison is false. If either operand is NULL then the result is true. 1879 ** If neither operand is NULL the result is the same as it would be if 1880 ** the SQLITE_NULLEQ flag were omitted from P5. 1881 */ 1882 /* Opcode: Eq P1 P2 P3 P4 P5 1883 ** Synopsis: if r[P1]==r[P3] goto P2 1884 ** 1885 ** This works just like the Lt opcode except that the jump is taken if 1886 ** the operands in registers P1 and P3 are equal. 1887 ** See the Lt opcode for additional information. 1888 ** 1889 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1890 ** true or false and is never NULL. If both operands are NULL then the result 1891 ** of comparison is true. If either operand is NULL then the result is false. 1892 ** If neither operand is NULL the result is the same as it would be if 1893 ** the SQLITE_NULLEQ flag were omitted from P5. 1894 */ 1895 /* Opcode: Le P1 P2 P3 P4 P5 1896 ** Synopsis: if r[P1]<=r[P3] goto P2 1897 ** 1898 ** This works just like the Lt opcode except that the jump is taken if 1899 ** the content of register P3 is less than or equal to the content of 1900 ** register P1. See the Lt opcode for additional information. 1901 */ 1902 /* Opcode: Gt P1 P2 P3 P4 P5 1903 ** Synopsis: if r[P1]>r[P3] goto P2 1904 ** 1905 ** This works just like the Lt opcode except that the jump is taken if 1906 ** the content of register P3 is greater than the content of 1907 ** register P1. See the Lt opcode for additional information. 1908 */ 1909 /* Opcode: Ge P1 P2 P3 P4 P5 1910 ** Synopsis: if r[P1]>=r[P3] goto P2 1911 ** 1912 ** This works just like the Lt opcode except that the jump is taken if 1913 ** the content of register P3 is greater than or equal to the content of 1914 ** register P1. See the Lt opcode for additional information. 1915 */ 1916 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1917 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1918 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1919 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1920 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1921 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1922 int res; /* Result of the comparison of pIn1 against pIn3 */ 1923 char affinity; /* Affinity to use for comparison */ 1924 u16 flags1; /* Copy of initial value of pIn1->flags */ 1925 u16 flags3; /* Copy of initial value of pIn3->flags */ 1926 1927 pIn1 = &aMem[pOp->p1]; 1928 pIn3 = &aMem[pOp->p3]; 1929 flags1 = pIn1->flags; 1930 flags3 = pIn3->flags; 1931 if( (flags1 | flags3)&MEM_Null ){ 1932 /* One or both operands are NULL */ 1933 if( pOp->p5 & SQLITE_NULLEQ ){ 1934 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1935 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1936 ** or not both operands are null. 1937 */ 1938 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1939 assert( (flags1 & MEM_Cleared)==0 ); 1940 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1941 if( (flags1&MEM_Null)!=0 1942 && (flags3&MEM_Null)!=0 1943 && (flags3&MEM_Cleared)==0 1944 ){ 1945 res = 0; /* Results are equal */ 1946 }else{ 1947 res = 1; /* Results are not equal */ 1948 } 1949 }else{ 1950 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1951 ** then the result is always NULL. 1952 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1953 */ 1954 if( pOp->p5 & SQLITE_STOREP2 ){ 1955 pOut = &aMem[pOp->p2]; 1956 MemSetTypeFlag(pOut, MEM_Null); 1957 REGISTER_TRACE(pOp->p2, pOut); 1958 }else{ 1959 VdbeBranchTaken(2,3); 1960 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1961 pc = pOp->p2-1; 1962 } 1963 } 1964 break; 1965 } 1966 }else{ 1967 /* Neither operand is NULL. Do a comparison. */ 1968 affinity = pOp->p5 & SQLITE_AFF_MASK; 1969 if( affinity ){ 1970 applyAffinity(pIn1, affinity, encoding); 1971 applyAffinity(pIn3, affinity, encoding); 1972 if( db->mallocFailed ) goto no_mem; 1973 } 1974 1975 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1976 ExpandBlob(pIn1); 1977 ExpandBlob(pIn3); 1978 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1979 } 1980 switch( pOp->opcode ){ 1981 case OP_Eq: res = res==0; break; 1982 case OP_Ne: res = res!=0; break; 1983 case OP_Lt: res = res<0; break; 1984 case OP_Le: res = res<=0; break; 1985 case OP_Gt: res = res>0; break; 1986 default: res = res>=0; break; 1987 } 1988 1989 if( pOp->p5 & SQLITE_STOREP2 ){ 1990 pOut = &aMem[pOp->p2]; 1991 memAboutToChange(p, pOut); 1992 MemSetTypeFlag(pOut, MEM_Int); 1993 pOut->u.i = res; 1994 REGISTER_TRACE(pOp->p2, pOut); 1995 }else{ 1996 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 1997 if( res ){ 1998 pc = pOp->p2-1; 1999 } 2000 } 2001 /* Undo any changes made by applyAffinity() to the input registers. */ 2002 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); 2003 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); 2004 break; 2005 } 2006 2007 /* Opcode: Permutation * * * P4 * 2008 ** 2009 ** Set the permutation used by the OP_Compare operator to be the array 2010 ** of integers in P4. 2011 ** 2012 ** The permutation is only valid until the next OP_Compare that has 2013 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2014 ** occur immediately prior to the OP_Compare. 2015 */ 2016 case OP_Permutation: { 2017 assert( pOp->p4type==P4_INTARRAY ); 2018 assert( pOp->p4.ai ); 2019 aPermute = pOp->p4.ai; 2020 break; 2021 } 2022 2023 /* Opcode: Compare P1 P2 P3 P4 P5 2024 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2025 ** 2026 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2027 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2028 ** the comparison for use by the next OP_Jump instruct. 2029 ** 2030 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2031 ** determined by the most recent OP_Permutation operator. If the 2032 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2033 ** order. 2034 ** 2035 ** P4 is a KeyInfo structure that defines collating sequences and sort 2036 ** orders for the comparison. The permutation applies to registers 2037 ** only. The KeyInfo elements are used sequentially. 2038 ** 2039 ** The comparison is a sort comparison, so NULLs compare equal, 2040 ** NULLs are less than numbers, numbers are less than strings, 2041 ** and strings are less than blobs. 2042 */ 2043 case OP_Compare: { 2044 int n; 2045 int i; 2046 int p1; 2047 int p2; 2048 const KeyInfo *pKeyInfo; 2049 int idx; 2050 CollSeq *pColl; /* Collating sequence to use on this term */ 2051 int bRev; /* True for DESCENDING sort order */ 2052 2053 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 2054 n = pOp->p3; 2055 pKeyInfo = pOp->p4.pKeyInfo; 2056 assert( n>0 ); 2057 assert( pKeyInfo!=0 ); 2058 p1 = pOp->p1; 2059 p2 = pOp->p2; 2060 #if SQLITE_DEBUG 2061 if( aPermute ){ 2062 int k, mx = 0; 2063 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2064 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); 2065 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); 2066 }else{ 2067 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); 2068 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); 2069 } 2070 #endif /* SQLITE_DEBUG */ 2071 for(i=0; i<n; i++){ 2072 idx = aPermute ? aPermute[i] : i; 2073 assert( memIsValid(&aMem[p1+idx]) ); 2074 assert( memIsValid(&aMem[p2+idx]) ); 2075 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2076 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2077 assert( i<pKeyInfo->nField ); 2078 pColl = pKeyInfo->aColl[i]; 2079 bRev = pKeyInfo->aSortOrder[i]; 2080 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2081 if( iCompare ){ 2082 if( bRev ) iCompare = -iCompare; 2083 break; 2084 } 2085 } 2086 aPermute = 0; 2087 break; 2088 } 2089 2090 /* Opcode: Jump P1 P2 P3 * * 2091 ** 2092 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2093 ** in the most recent OP_Compare instruction the P1 vector was less than 2094 ** equal to, or greater than the P2 vector, respectively. 2095 */ 2096 case OP_Jump: { /* jump */ 2097 if( iCompare<0 ){ 2098 pc = pOp->p1 - 1; VdbeBranchTaken(0,3); 2099 }else if( iCompare==0 ){ 2100 pc = pOp->p2 - 1; VdbeBranchTaken(1,3); 2101 }else{ 2102 pc = pOp->p3 - 1; VdbeBranchTaken(2,3); 2103 } 2104 break; 2105 } 2106 2107 /* Opcode: And P1 P2 P3 * * 2108 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2109 ** 2110 ** Take the logical AND of the values in registers P1 and P2 and 2111 ** write the result into register P3. 2112 ** 2113 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2114 ** the other input is NULL. A NULL and true or two NULLs give 2115 ** a NULL output. 2116 */ 2117 /* Opcode: Or P1 P2 P3 * * 2118 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2119 ** 2120 ** Take the logical OR of the values in register P1 and P2 and 2121 ** store the answer in register P3. 2122 ** 2123 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2124 ** even if the other input is NULL. A NULL and false or two NULLs 2125 ** give a NULL output. 2126 */ 2127 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2128 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2129 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2130 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2131 2132 pIn1 = &aMem[pOp->p1]; 2133 if( pIn1->flags & MEM_Null ){ 2134 v1 = 2; 2135 }else{ 2136 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2137 } 2138 pIn2 = &aMem[pOp->p2]; 2139 if( pIn2->flags & MEM_Null ){ 2140 v2 = 2; 2141 }else{ 2142 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2143 } 2144 if( pOp->opcode==OP_And ){ 2145 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2146 v1 = and_logic[v1*3+v2]; 2147 }else{ 2148 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2149 v1 = or_logic[v1*3+v2]; 2150 } 2151 pOut = &aMem[pOp->p3]; 2152 if( v1==2 ){ 2153 MemSetTypeFlag(pOut, MEM_Null); 2154 }else{ 2155 pOut->u.i = v1; 2156 MemSetTypeFlag(pOut, MEM_Int); 2157 } 2158 break; 2159 } 2160 2161 /* Opcode: Not P1 P2 * * * 2162 ** Synopsis: r[P2]= !r[P1] 2163 ** 2164 ** Interpret the value in register P1 as a boolean value. Store the 2165 ** boolean complement in register P2. If the value in register P1 is 2166 ** NULL, then a NULL is stored in P2. 2167 */ 2168 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2169 pIn1 = &aMem[pOp->p1]; 2170 pOut = &aMem[pOp->p2]; 2171 if( pIn1->flags & MEM_Null ){ 2172 sqlite3VdbeMemSetNull(pOut); 2173 }else{ 2174 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); 2175 } 2176 break; 2177 } 2178 2179 /* Opcode: BitNot P1 P2 * * * 2180 ** Synopsis: r[P1]= ~r[P1] 2181 ** 2182 ** Interpret the content of register P1 as an integer. Store the 2183 ** ones-complement of the P1 value into register P2. If P1 holds 2184 ** a NULL then store a NULL in P2. 2185 */ 2186 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2187 pIn1 = &aMem[pOp->p1]; 2188 pOut = &aMem[pOp->p2]; 2189 if( pIn1->flags & MEM_Null ){ 2190 sqlite3VdbeMemSetNull(pOut); 2191 }else{ 2192 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); 2193 } 2194 break; 2195 } 2196 2197 /* Opcode: Once P1 P2 * * * 2198 ** 2199 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, 2200 ** set the flag and fall through to the next instruction. In other words, 2201 ** this opcode causes all following opcodes up through P2 (but not including 2202 ** P2) to run just once and to be skipped on subsequent times through the loop. 2203 */ 2204 case OP_Once: { /* jump */ 2205 assert( pOp->p1<p->nOnceFlag ); 2206 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); 2207 if( p->aOnceFlag[pOp->p1] ){ 2208 pc = pOp->p2-1; 2209 }else{ 2210 p->aOnceFlag[pOp->p1] = 1; 2211 } 2212 break; 2213 } 2214 2215 /* Opcode: If P1 P2 P3 * * 2216 ** 2217 ** Jump to P2 if the value in register P1 is true. The value 2218 ** is considered true if it is numeric and non-zero. If the value 2219 ** in P1 is NULL then take the jump if P3 is non-zero. 2220 */ 2221 /* Opcode: IfNot P1 P2 P3 * * 2222 ** 2223 ** Jump to P2 if the value in register P1 is False. The value 2224 ** is considered false if it has a numeric value of zero. If the value 2225 ** in P1 is NULL then take the jump if P3 is zero. 2226 */ 2227 case OP_If: /* jump, in1 */ 2228 case OP_IfNot: { /* jump, in1 */ 2229 int c; 2230 pIn1 = &aMem[pOp->p1]; 2231 if( pIn1->flags & MEM_Null ){ 2232 c = pOp->p3; 2233 }else{ 2234 #ifdef SQLITE_OMIT_FLOATING_POINT 2235 c = sqlite3VdbeIntValue(pIn1)!=0; 2236 #else 2237 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2238 #endif 2239 if( pOp->opcode==OP_IfNot ) c = !c; 2240 } 2241 VdbeBranchTaken(c!=0, 2); 2242 if( c ){ 2243 pc = pOp->p2-1; 2244 } 2245 break; 2246 } 2247 2248 /* Opcode: IsNull P1 P2 * * * 2249 ** Synopsis: if r[P1]==NULL goto P2 2250 ** 2251 ** Jump to P2 if the value in register P1 is NULL. 2252 */ 2253 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2254 pIn1 = &aMem[pOp->p1]; 2255 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2256 if( (pIn1->flags & MEM_Null)!=0 ){ 2257 pc = pOp->p2 - 1; 2258 } 2259 break; 2260 } 2261 2262 /* Opcode: NotNull P1 P2 * * * 2263 ** Synopsis: if r[P1]!=NULL goto P2 2264 ** 2265 ** Jump to P2 if the value in register P1 is not NULL. 2266 */ 2267 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2268 pIn1 = &aMem[pOp->p1]; 2269 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2270 if( (pIn1->flags & MEM_Null)==0 ){ 2271 pc = pOp->p2 - 1; 2272 } 2273 break; 2274 } 2275 2276 /* Opcode: Column P1 P2 P3 P4 P5 2277 ** Synopsis: r[P3]=PX 2278 ** 2279 ** Interpret the data that cursor P1 points to as a structure built using 2280 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2281 ** information about the format of the data.) Extract the P2-th column 2282 ** from this record. If there are less that (P2+1) 2283 ** values in the record, extract a NULL. 2284 ** 2285 ** The value extracted is stored in register P3. 2286 ** 2287 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2288 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2289 ** the result. 2290 ** 2291 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2292 ** then the cache of the cursor is reset prior to extracting the column. 2293 ** The first OP_Column against a pseudo-table after the value of the content 2294 ** register has changed should have this bit set. 2295 ** 2296 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2297 ** the result is guaranteed to only be used as the argument of a length() 2298 ** or typeof() function, respectively. The loading of large blobs can be 2299 ** skipped for length() and all content loading can be skipped for typeof(). 2300 */ 2301 case OP_Column: { 2302 i64 payloadSize64; /* Number of bytes in the record */ 2303 int p2; /* column number to retrieve */ 2304 VdbeCursor *pC; /* The VDBE cursor */ 2305 BtCursor *pCrsr; /* The BTree cursor */ 2306 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ 2307 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2308 int len; /* The length of the serialized data for the column */ 2309 int i; /* Loop counter */ 2310 Mem *pDest; /* Where to write the extracted value */ 2311 Mem sMem; /* For storing the record being decoded */ 2312 const u8 *zData; /* Part of the record being decoded */ 2313 const u8 *zHdr; /* Next unparsed byte of the header */ 2314 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2315 u32 offset; /* Offset into the data */ 2316 u32 szField; /* Number of bytes in the content of a field */ 2317 u32 avail; /* Number of bytes of available data */ 2318 u32 t; /* A type code from the record header */ 2319 Mem *pReg; /* PseudoTable input register */ 2320 2321 p2 = pOp->p2; 2322 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2323 pDest = &aMem[pOp->p3]; 2324 memAboutToChange(p, pDest); 2325 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2326 pC = p->apCsr[pOp->p1]; 2327 assert( pC!=0 ); 2328 assert( p2<pC->nField ); 2329 aType = pC->aType; 2330 aOffset = aType + pC->nField; 2331 #ifndef SQLITE_OMIT_VIRTUALTABLE 2332 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ 2333 #endif 2334 pCrsr = pC->pCursor; 2335 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ 2336 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ 2337 2338 /* If the cursor cache is stale, bring it up-to-date */ 2339 rc = sqlite3VdbeCursorMoveto(pC); 2340 if( rc ) goto abort_due_to_error; 2341 if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){ 2342 if( pC->nullRow ){ 2343 if( pCrsr==0 ){ 2344 assert( pC->pseudoTableReg>0 ); 2345 pReg = &aMem[pC->pseudoTableReg]; 2346 assert( pReg->flags & MEM_Blob ); 2347 assert( memIsValid(pReg) ); 2348 pC->payloadSize = pC->szRow = avail = pReg->n; 2349 pC->aRow = (u8*)pReg->z; 2350 }else{ 2351 MemSetTypeFlag(pDest, MEM_Null); 2352 goto op_column_out; 2353 } 2354 }else{ 2355 assert( pCrsr ); 2356 if( pC->isTable==0 ){ 2357 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2358 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2359 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2360 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2361 ** payload size, so it is impossible for payloadSize64 to be 2362 ** larger than 32 bits. */ 2363 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2364 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); 2365 pC->payloadSize = (u32)payloadSize64; 2366 }else{ 2367 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2368 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); 2369 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2370 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); 2371 } 2372 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2373 if( pC->payloadSize <= (u32)avail ){ 2374 pC->szRow = pC->payloadSize; 2375 }else{ 2376 pC->szRow = avail; 2377 } 2378 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2379 goto too_big; 2380 } 2381 } 2382 pC->cacheStatus = p->cacheCtr; 2383 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2384 pC->nHdrParsed = 0; 2385 aOffset[0] = offset; 2386 if( avail<offset ){ 2387 /* pC->aRow does not have to hold the entire row, but it does at least 2388 ** need to cover the header of the record. If pC->aRow does not contain 2389 ** the complete header, then set it to zero, forcing the header to be 2390 ** dynamically allocated. */ 2391 pC->aRow = 0; 2392 pC->szRow = 0; 2393 } 2394 2395 /* Make sure a corrupt database has not given us an oversize header. 2396 ** Do this now to avoid an oversize memory allocation. 2397 ** 2398 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2399 ** types use so much data space that there can only be 4096 and 32 of 2400 ** them, respectively. So the maximum header length results from a 2401 ** 3-byte type for each of the maximum of 32768 columns plus three 2402 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2403 */ 2404 if( offset > 98307 || offset > pC->payloadSize ){ 2405 rc = SQLITE_CORRUPT_BKPT; 2406 goto op_column_error; 2407 } 2408 } 2409 2410 /* Make sure at least the first p2+1 entries of the header have been 2411 ** parsed and valid information is in aOffset[] and aType[]. 2412 */ 2413 if( pC->nHdrParsed<=p2 ){ 2414 /* If there is more header available for parsing in the record, try 2415 ** to extract additional fields up through the p2+1-th field 2416 */ 2417 if( pC->iHdrOffset<aOffset[0] ){ 2418 /* Make sure zData points to enough of the record to cover the header. */ 2419 if( pC->aRow==0 ){ 2420 memset(&sMem, 0, sizeof(sMem)); 2421 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 2422 !pC->isTable, &sMem); 2423 if( rc!=SQLITE_OK ){ 2424 goto op_column_error; 2425 } 2426 zData = (u8*)sMem.z; 2427 }else{ 2428 zData = pC->aRow; 2429 } 2430 2431 /* Fill in aType[i] and aOffset[i] values through the p2-th field. */ 2432 i = pC->nHdrParsed; 2433 offset = aOffset[i]; 2434 zHdr = zData + pC->iHdrOffset; 2435 zEndHdr = zData + aOffset[0]; 2436 assert( i<=p2 && zHdr<zEndHdr ); 2437 do{ 2438 if( zHdr[0]<0x80 ){ 2439 t = zHdr[0]; 2440 zHdr++; 2441 }else{ 2442 zHdr += sqlite3GetVarint32(zHdr, &t); 2443 } 2444 aType[i] = t; 2445 szField = sqlite3VdbeSerialTypeLen(t); 2446 offset += szField; 2447 if( offset<szField ){ /* True if offset overflows */ 2448 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ 2449 break; 2450 } 2451 i++; 2452 aOffset[i] = offset; 2453 }while( i<=p2 && zHdr<zEndHdr ); 2454 pC->nHdrParsed = i; 2455 pC->iHdrOffset = (u32)(zHdr - zData); 2456 if( pC->aRow==0 ){ 2457 sqlite3VdbeMemRelease(&sMem); 2458 sMem.flags = MEM_Null; 2459 } 2460 2461 /* If we have read more header data than was contained in the header, 2462 ** or if the end of the last field appears to be past the end of the 2463 ** record, or if the end of the last field appears to be before the end 2464 ** of the record (when all fields present), then we must be dealing 2465 ** with a corrupt database. 2466 */ 2467 if( (zHdr > zEndHdr) 2468 || (offset > pC->payloadSize) 2469 || (zHdr==zEndHdr && offset!=pC->payloadSize) 2470 ){ 2471 rc = SQLITE_CORRUPT_BKPT; 2472 goto op_column_error; 2473 } 2474 } 2475 2476 /* If after trying to extra new entries from the header, nHdrParsed is 2477 ** still not up to p2, that means that the record has fewer than p2 2478 ** columns. So the result will be either the default value or a NULL. 2479 */ 2480 if( pC->nHdrParsed<=p2 ){ 2481 if( pOp->p4type==P4_MEM ){ 2482 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2483 }else{ 2484 MemSetTypeFlag(pDest, MEM_Null); 2485 } 2486 goto op_column_out; 2487 } 2488 } 2489 2490 /* Extract the content for the p2+1-th column. Control can only 2491 ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are 2492 ** all valid. 2493 */ 2494 assert( p2<pC->nHdrParsed ); 2495 assert( rc==SQLITE_OK ); 2496 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2497 if( pC->szRow>=aOffset[p2+1] ){ 2498 /* This is the common case where the desired content fits on the original 2499 ** page - where the content is not on an overflow page */ 2500 VdbeMemRelease(pDest); 2501 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest); 2502 }else{ 2503 /* This branch happens only when content is on overflow pages */ 2504 t = aType[p2]; 2505 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2506 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2507 || (len = sqlite3VdbeSerialTypeLen(t))==0 2508 ){ 2509 /* Content is irrelevant for the typeof() function and for 2510 ** the length(X) function if X is a blob. So we might as well use 2511 ** bogus content rather than reading content from disk. NULL works 2512 ** for text and blob and whatever is in the payloadSize64 variable 2513 ** will work for everything else. Content is also irrelevant if 2514 ** the content length is 0. */ 2515 zData = t<=13 ? (u8*)&payloadSize64 : 0; 2516 sMem.zMalloc = 0; 2517 }else{ 2518 memset(&sMem, 0, sizeof(sMem)); 2519 sqlite3VdbeMemMove(&sMem, pDest); 2520 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, 2521 &sMem); 2522 if( rc!=SQLITE_OK ){ 2523 goto op_column_error; 2524 } 2525 zData = (u8*)sMem.z; 2526 } 2527 sqlite3VdbeSerialGet(zData, t, pDest); 2528 /* If we dynamically allocated space to hold the data (in the 2529 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that 2530 ** dynamically allocated space over to the pDest structure. 2531 ** This prevents a memory copy. */ 2532 if( sMem.zMalloc ){ 2533 assert( sMem.z==sMem.zMalloc ); 2534 assert( VdbeMemDynamic(pDest)==0 ); 2535 assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z ); 2536 pDest->flags &= ~(MEM_Ephem|MEM_Static); 2537 pDest->flags |= MEM_Term; 2538 pDest->z = sMem.z; 2539 pDest->zMalloc = sMem.zMalloc; 2540 } 2541 } 2542 pDest->enc = encoding; 2543 2544 op_column_out: 2545 Deephemeralize(pDest); 2546 op_column_error: 2547 UPDATE_MAX_BLOBSIZE(pDest); 2548 REGISTER_TRACE(pOp->p3, pDest); 2549 break; 2550 } 2551 2552 /* Opcode: Affinity P1 P2 * P4 * 2553 ** Synopsis: affinity(r[P1@P2]) 2554 ** 2555 ** Apply affinities to a range of P2 registers starting with P1. 2556 ** 2557 ** P4 is a string that is P2 characters long. The nth character of the 2558 ** string indicates the column affinity that should be used for the nth 2559 ** memory cell in the range. 2560 */ 2561 case OP_Affinity: { 2562 const char *zAffinity; /* The affinity to be applied */ 2563 char cAff; /* A single character of affinity */ 2564 2565 zAffinity = pOp->p4.z; 2566 assert( zAffinity!=0 ); 2567 assert( zAffinity[pOp->p2]==0 ); 2568 pIn1 = &aMem[pOp->p1]; 2569 while( (cAff = *(zAffinity++))!=0 ){ 2570 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); 2571 assert( memIsValid(pIn1) ); 2572 applyAffinity(pIn1, cAff, encoding); 2573 pIn1++; 2574 } 2575 break; 2576 } 2577 2578 /* Opcode: MakeRecord P1 P2 P3 P4 * 2579 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2580 ** 2581 ** Convert P2 registers beginning with P1 into the [record format] 2582 ** use as a data record in a database table or as a key 2583 ** in an index. The OP_Column opcode can decode the record later. 2584 ** 2585 ** P4 may be a string that is P2 characters long. The nth character of the 2586 ** string indicates the column affinity that should be used for the nth 2587 ** field of the index key. 2588 ** 2589 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2590 ** macros defined in sqliteInt.h. 2591 ** 2592 ** If P4 is NULL then all index fields have the affinity NONE. 2593 */ 2594 case OP_MakeRecord: { 2595 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2596 Mem *pRec; /* The new record */ 2597 u64 nData; /* Number of bytes of data space */ 2598 int nHdr; /* Number of bytes of header space */ 2599 i64 nByte; /* Data space required for this record */ 2600 int nZero; /* Number of zero bytes at the end of the record */ 2601 int nVarint; /* Number of bytes in a varint */ 2602 u32 serial_type; /* Type field */ 2603 Mem *pData0; /* First field to be combined into the record */ 2604 Mem *pLast; /* Last field of the record */ 2605 int nField; /* Number of fields in the record */ 2606 char *zAffinity; /* The affinity string for the record */ 2607 int file_format; /* File format to use for encoding */ 2608 int i; /* Space used in zNewRecord[] header */ 2609 int j; /* Space used in zNewRecord[] content */ 2610 int len; /* Length of a field */ 2611 2612 /* Assuming the record contains N fields, the record format looks 2613 ** like this: 2614 ** 2615 ** ------------------------------------------------------------------------ 2616 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2617 ** ------------------------------------------------------------------------ 2618 ** 2619 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2620 ** and so froth. 2621 ** 2622 ** Each type field is a varint representing the serial type of the 2623 ** corresponding data element (see sqlite3VdbeSerialType()). The 2624 ** hdr-size field is also a varint which is the offset from the beginning 2625 ** of the record to data0. 2626 */ 2627 nData = 0; /* Number of bytes of data space */ 2628 nHdr = 0; /* Number of bytes of header space */ 2629 nZero = 0; /* Number of zero bytes at the end of the record */ 2630 nField = pOp->p1; 2631 zAffinity = pOp->p4.z; 2632 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); 2633 pData0 = &aMem[nField]; 2634 nField = pOp->p2; 2635 pLast = &pData0[nField-1]; 2636 file_format = p->minWriteFileFormat; 2637 2638 /* Identify the output register */ 2639 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2640 pOut = &aMem[pOp->p3]; 2641 memAboutToChange(p, pOut); 2642 2643 /* Apply the requested affinity to all inputs 2644 */ 2645 assert( pData0<=pLast ); 2646 if( zAffinity ){ 2647 pRec = pData0; 2648 do{ 2649 applyAffinity(pRec++, *(zAffinity++), encoding); 2650 assert( zAffinity[0]==0 || pRec<=pLast ); 2651 }while( zAffinity[0] ); 2652 } 2653 2654 /* Loop through the elements that will make up the record to figure 2655 ** out how much space is required for the new record. 2656 */ 2657 pRec = pLast; 2658 do{ 2659 assert( memIsValid(pRec) ); 2660 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2661 len = sqlite3VdbeSerialTypeLen(serial_type); 2662 if( pRec->flags & MEM_Zero ){ 2663 if( nData ){ 2664 sqlite3VdbeMemExpandBlob(pRec); 2665 }else{ 2666 nZero += pRec->u.nZero; 2667 len -= pRec->u.nZero; 2668 } 2669 } 2670 nData += len; 2671 testcase( serial_type==127 ); 2672 testcase( serial_type==128 ); 2673 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2674 }while( (--pRec)>=pData0 ); 2675 2676 /* Add the initial header varint and total the size */ 2677 testcase( nHdr==126 ); 2678 testcase( nHdr==127 ); 2679 if( nHdr<=126 ){ 2680 /* The common case */ 2681 nHdr += 1; 2682 }else{ 2683 /* Rare case of a really large header */ 2684 nVarint = sqlite3VarintLen(nHdr); 2685 nHdr += nVarint; 2686 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2687 } 2688 nByte = nHdr+nData; 2689 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2690 goto too_big; 2691 } 2692 2693 /* Make sure the output register has a buffer large enough to store 2694 ** the new record. The output register (pOp->p3) is not allowed to 2695 ** be one of the input registers (because the following call to 2696 ** sqlite3VdbeMemGrow() could clobber the value before it is used). 2697 */ 2698 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ 2699 goto no_mem; 2700 } 2701 zNewRecord = (u8 *)pOut->z; 2702 2703 /* Write the record */ 2704 i = putVarint32(zNewRecord, nHdr); 2705 j = nHdr; 2706 assert( pData0<=pLast ); 2707 pRec = pData0; 2708 do{ 2709 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2710 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2711 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2712 }while( (++pRec)<=pLast ); 2713 assert( i==nHdr ); 2714 assert( j==nByte ); 2715 2716 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2717 pOut->n = (int)nByte; 2718 pOut->flags = MEM_Blob; 2719 pOut->xDel = 0; 2720 if( nZero ){ 2721 pOut->u.nZero = nZero; 2722 pOut->flags |= MEM_Zero; 2723 } 2724 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2725 REGISTER_TRACE(pOp->p3, pOut); 2726 UPDATE_MAX_BLOBSIZE(pOut); 2727 break; 2728 } 2729 2730 /* Opcode: Count P1 P2 * * * 2731 ** Synopsis: r[P2]=count() 2732 ** 2733 ** Store the number of entries (an integer value) in the table or index 2734 ** opened by cursor P1 in register P2 2735 */ 2736 #ifndef SQLITE_OMIT_BTREECOUNT 2737 case OP_Count: { /* out2-prerelease */ 2738 i64 nEntry; 2739 BtCursor *pCrsr; 2740 2741 pCrsr = p->apCsr[pOp->p1]->pCursor; 2742 assert( pCrsr ); 2743 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2744 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2745 pOut->u.i = nEntry; 2746 break; 2747 } 2748 #endif 2749 2750 /* Opcode: Savepoint P1 * * P4 * 2751 ** 2752 ** Open, release or rollback the savepoint named by parameter P4, depending 2753 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2754 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2755 */ 2756 case OP_Savepoint: { 2757 int p1; /* Value of P1 operand */ 2758 char *zName; /* Name of savepoint */ 2759 int nName; 2760 Savepoint *pNew; 2761 Savepoint *pSavepoint; 2762 Savepoint *pTmp; 2763 int iSavepoint; 2764 int ii; 2765 2766 p1 = pOp->p1; 2767 zName = pOp->p4.z; 2768 2769 /* Assert that the p1 parameter is valid. Also that if there is no open 2770 ** transaction, then there cannot be any savepoints. 2771 */ 2772 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2773 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2774 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2775 assert( checkSavepointCount(db) ); 2776 assert( p->bIsReader ); 2777 2778 if( p1==SAVEPOINT_BEGIN ){ 2779 if( db->nVdbeWrite>0 ){ 2780 /* A new savepoint cannot be created if there are active write 2781 ** statements (i.e. open read/write incremental blob handles). 2782 */ 2783 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2784 "SQL statements in progress"); 2785 rc = SQLITE_BUSY; 2786 }else{ 2787 nName = sqlite3Strlen30(zName); 2788 2789 #ifndef SQLITE_OMIT_VIRTUALTABLE 2790 /* This call is Ok even if this savepoint is actually a transaction 2791 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2792 ** If this is a transaction savepoint being opened, it is guaranteed 2793 ** that the db->aVTrans[] array is empty. */ 2794 assert( db->autoCommit==0 || db->nVTrans==0 ); 2795 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2796 db->nStatement+db->nSavepoint); 2797 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2798 #endif 2799 2800 /* Create a new savepoint structure. */ 2801 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2802 if( pNew ){ 2803 pNew->zName = (char *)&pNew[1]; 2804 memcpy(pNew->zName, zName, nName+1); 2805 2806 /* If there is no open transaction, then mark this as a special 2807 ** "transaction savepoint". */ 2808 if( db->autoCommit ){ 2809 db->autoCommit = 0; 2810 db->isTransactionSavepoint = 1; 2811 }else{ 2812 db->nSavepoint++; 2813 } 2814 2815 /* Link the new savepoint into the database handle's list. */ 2816 pNew->pNext = db->pSavepoint; 2817 db->pSavepoint = pNew; 2818 pNew->nDeferredCons = db->nDeferredCons; 2819 pNew->nDeferredImmCons = db->nDeferredImmCons; 2820 } 2821 } 2822 }else{ 2823 iSavepoint = 0; 2824 2825 /* Find the named savepoint. If there is no such savepoint, then an 2826 ** an error is returned to the user. */ 2827 for( 2828 pSavepoint = db->pSavepoint; 2829 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2830 pSavepoint = pSavepoint->pNext 2831 ){ 2832 iSavepoint++; 2833 } 2834 if( !pSavepoint ){ 2835 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2836 rc = SQLITE_ERROR; 2837 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2838 /* It is not possible to release (commit) a savepoint if there are 2839 ** active write statements. 2840 */ 2841 sqlite3SetString(&p->zErrMsg, db, 2842 "cannot release savepoint - SQL statements in progress" 2843 ); 2844 rc = SQLITE_BUSY; 2845 }else{ 2846 2847 /* Determine whether or not this is a transaction savepoint. If so, 2848 ** and this is a RELEASE command, then the current transaction 2849 ** is committed. 2850 */ 2851 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2852 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2853 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2854 goto vdbe_return; 2855 } 2856 db->autoCommit = 1; 2857 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2858 p->pc = pc; 2859 db->autoCommit = 0; 2860 p->rc = rc = SQLITE_BUSY; 2861 goto vdbe_return; 2862 } 2863 db->isTransactionSavepoint = 0; 2864 rc = p->rc; 2865 }else{ 2866 iSavepoint = db->nSavepoint - iSavepoint - 1; 2867 if( p1==SAVEPOINT_ROLLBACK ){ 2868 for(ii=0; ii<db->nDb; ii++){ 2869 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT); 2870 } 2871 } 2872 for(ii=0; ii<db->nDb; ii++){ 2873 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2874 if( rc!=SQLITE_OK ){ 2875 goto abort_due_to_error; 2876 } 2877 } 2878 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ 2879 sqlite3ExpirePreparedStatements(db); 2880 sqlite3ResetAllSchemasOfConnection(db); 2881 db->flags = (db->flags | SQLITE_InternChanges); 2882 } 2883 } 2884 2885 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2886 ** savepoints nested inside of the savepoint being operated on. */ 2887 while( db->pSavepoint!=pSavepoint ){ 2888 pTmp = db->pSavepoint; 2889 db->pSavepoint = pTmp->pNext; 2890 sqlite3DbFree(db, pTmp); 2891 db->nSavepoint--; 2892 } 2893 2894 /* If it is a RELEASE, then destroy the savepoint being operated on 2895 ** too. If it is a ROLLBACK TO, then set the number of deferred 2896 ** constraint violations present in the database to the value stored 2897 ** when the savepoint was created. */ 2898 if( p1==SAVEPOINT_RELEASE ){ 2899 assert( pSavepoint==db->pSavepoint ); 2900 db->pSavepoint = pSavepoint->pNext; 2901 sqlite3DbFree(db, pSavepoint); 2902 if( !isTransaction ){ 2903 db->nSavepoint--; 2904 } 2905 }else{ 2906 db->nDeferredCons = pSavepoint->nDeferredCons; 2907 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 2908 } 2909 2910 if( !isTransaction ){ 2911 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2912 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2913 } 2914 } 2915 } 2916 2917 break; 2918 } 2919 2920 /* Opcode: AutoCommit P1 P2 * * * 2921 ** 2922 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2923 ** back any currently active btree transactions. If there are any active 2924 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2925 ** there are active writing VMs or active VMs that use shared cache. 2926 ** 2927 ** This instruction causes the VM to halt. 2928 */ 2929 case OP_AutoCommit: { 2930 int desiredAutoCommit; 2931 int iRollback; 2932 int turnOnAC; 2933 2934 desiredAutoCommit = pOp->p1; 2935 iRollback = pOp->p2; 2936 turnOnAC = desiredAutoCommit && !db->autoCommit; 2937 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2938 assert( desiredAutoCommit==1 || iRollback==0 ); 2939 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 2940 assert( p->bIsReader ); 2941 2942 #if 0 2943 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ 2944 /* If this instruction implements a ROLLBACK and other VMs are 2945 ** still running, and a transaction is active, return an error indicating 2946 ** that the other VMs must complete first. 2947 */ 2948 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2949 "SQL statements in progress"); 2950 rc = SQLITE_BUSY; 2951 }else 2952 #endif 2953 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ 2954 /* If this instruction implements a COMMIT and other VMs are writing 2955 ** return an error indicating that the other VMs must complete first. 2956 */ 2957 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2958 "SQL statements in progress"); 2959 rc = SQLITE_BUSY; 2960 }else if( desiredAutoCommit!=db->autoCommit ){ 2961 if( iRollback ){ 2962 assert( desiredAutoCommit==1 ); 2963 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2964 db->autoCommit = 1; 2965 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2966 goto vdbe_return; 2967 }else{ 2968 db->autoCommit = (u8)desiredAutoCommit; 2969 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2970 p->pc = pc; 2971 db->autoCommit = (u8)(1-desiredAutoCommit); 2972 p->rc = rc = SQLITE_BUSY; 2973 goto vdbe_return; 2974 } 2975 } 2976 assert( db->nStatement==0 ); 2977 sqlite3CloseSavepoints(db); 2978 if( p->rc==SQLITE_OK ){ 2979 rc = SQLITE_DONE; 2980 }else{ 2981 rc = SQLITE_ERROR; 2982 } 2983 goto vdbe_return; 2984 }else{ 2985 sqlite3SetString(&p->zErrMsg, db, 2986 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 2987 (iRollback)?"cannot rollback - no transaction is active": 2988 "cannot commit - no transaction is active")); 2989 2990 rc = SQLITE_ERROR; 2991 } 2992 break; 2993 } 2994 2995 /* Opcode: Transaction P1 P2 P3 P4 P5 2996 ** 2997 ** Begin a transaction on database P1 if a transaction is not already 2998 ** active. 2999 ** If P2 is non-zero, then a write-transaction is started, or if a 3000 ** read-transaction is already active, it is upgraded to a write-transaction. 3001 ** If P2 is zero, then a read-transaction is started. 3002 ** 3003 ** P1 is the index of the database file on which the transaction is 3004 ** started. Index 0 is the main database file and index 1 is the 3005 ** file used for temporary tables. Indices of 2 or more are used for 3006 ** attached databases. 3007 ** 3008 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3009 ** true (this flag is set if the Vdbe may modify more than one row and may 3010 ** throw an ABORT exception), a statement transaction may also be opened. 3011 ** More specifically, a statement transaction is opened iff the database 3012 ** connection is currently not in autocommit mode, or if there are other 3013 ** active statements. A statement transaction allows the changes made by this 3014 ** VDBE to be rolled back after an error without having to roll back the 3015 ** entire transaction. If no error is encountered, the statement transaction 3016 ** will automatically commit when the VDBE halts. 3017 ** 3018 ** If P5!=0 then this opcode also checks the schema cookie against P3 3019 ** and the schema generation counter against P4. 3020 ** The cookie changes its value whenever the database schema changes. 3021 ** This operation is used to detect when that the cookie has changed 3022 ** and that the current process needs to reread the schema. If the schema 3023 ** cookie in P3 differs from the schema cookie in the database header or 3024 ** if the schema generation counter in P4 differs from the current 3025 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3026 ** halts. The sqlite3_step() wrapper function might then reprepare the 3027 ** statement and rerun it from the beginning. 3028 */ 3029 case OP_Transaction: { 3030 Btree *pBt; 3031 int iMeta; 3032 int iGen; 3033 3034 assert( p->bIsReader ); 3035 assert( p->readOnly==0 || pOp->p2==0 ); 3036 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3037 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 3038 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3039 rc = SQLITE_READONLY; 3040 goto abort_due_to_error; 3041 } 3042 pBt = db->aDb[pOp->p1].pBt; 3043 3044 if( pBt ){ 3045 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3046 if( rc==SQLITE_BUSY ){ 3047 p->pc = pc; 3048 p->rc = rc = SQLITE_BUSY; 3049 goto vdbe_return; 3050 } 3051 if( rc!=SQLITE_OK ){ 3052 goto abort_due_to_error; 3053 } 3054 3055 if( pOp->p2 && p->usesStmtJournal 3056 && (db->autoCommit==0 || db->nVdbeRead>1) 3057 ){ 3058 assert( sqlite3BtreeIsInTrans(pBt) ); 3059 if( p->iStatement==0 ){ 3060 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3061 db->nStatement++; 3062 p->iStatement = db->nSavepoint + db->nStatement; 3063 } 3064 3065 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3066 if( rc==SQLITE_OK ){ 3067 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3068 } 3069 3070 /* Store the current value of the database handles deferred constraint 3071 ** counter. If the statement transaction needs to be rolled back, 3072 ** the value of this counter needs to be restored too. */ 3073 p->nStmtDefCons = db->nDeferredCons; 3074 p->nStmtDefImmCons = db->nDeferredImmCons; 3075 } 3076 3077 /* Gather the schema version number for checking */ 3078 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3079 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3080 }else{ 3081 iGen = iMeta = 0; 3082 } 3083 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3084 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3085 sqlite3DbFree(db, p->zErrMsg); 3086 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3087 /* If the schema-cookie from the database file matches the cookie 3088 ** stored with the in-memory representation of the schema, do 3089 ** not reload the schema from the database file. 3090 ** 3091 ** If virtual-tables are in use, this is not just an optimization. 3092 ** Often, v-tables store their data in other SQLite tables, which 3093 ** are queried from within xNext() and other v-table methods using 3094 ** prepared queries. If such a query is out-of-date, we do not want to 3095 ** discard the database schema, as the user code implementing the 3096 ** v-table would have to be ready for the sqlite3_vtab structure itself 3097 ** to be invalidated whenever sqlite3_step() is called from within 3098 ** a v-table method. 3099 */ 3100 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3101 sqlite3ResetOneSchema(db, pOp->p1); 3102 } 3103 p->expired = 1; 3104 rc = SQLITE_SCHEMA; 3105 } 3106 break; 3107 } 3108 3109 /* Opcode: ReadCookie P1 P2 P3 * * 3110 ** 3111 ** Read cookie number P3 from database P1 and write it into register P2. 3112 ** P3==1 is the schema version. P3==2 is the database format. 3113 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3114 ** the main database file and P1==1 is the database file used to store 3115 ** temporary tables. 3116 ** 3117 ** There must be a read-lock on the database (either a transaction 3118 ** must be started or there must be an open cursor) before 3119 ** executing this instruction. 3120 */ 3121 case OP_ReadCookie: { /* out2-prerelease */ 3122 int iMeta; 3123 int iDb; 3124 int iCookie; 3125 3126 assert( p->bIsReader ); 3127 iDb = pOp->p1; 3128 iCookie = pOp->p3; 3129 assert( pOp->p3<SQLITE_N_BTREE_META ); 3130 assert( iDb>=0 && iDb<db->nDb ); 3131 assert( db->aDb[iDb].pBt!=0 ); 3132 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 3133 3134 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3135 pOut->u.i = iMeta; 3136 break; 3137 } 3138 3139 /* Opcode: SetCookie P1 P2 P3 * * 3140 ** 3141 ** Write the content of register P3 (interpreted as an integer) 3142 ** into cookie number P2 of database P1. P2==1 is the schema version. 3143 ** P2==2 is the database format. P2==3 is the recommended pager cache 3144 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3145 ** database file used to store temporary tables. 3146 ** 3147 ** A transaction must be started before executing this opcode. 3148 */ 3149 case OP_SetCookie: { /* in3 */ 3150 Db *pDb; 3151 assert( pOp->p2<SQLITE_N_BTREE_META ); 3152 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3153 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 3154 assert( p->readOnly==0 ); 3155 pDb = &db->aDb[pOp->p1]; 3156 assert( pDb->pBt!=0 ); 3157 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3158 pIn3 = &aMem[pOp->p3]; 3159 sqlite3VdbeMemIntegerify(pIn3); 3160 /* See note about index shifting on OP_ReadCookie */ 3161 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 3162 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3163 /* When the schema cookie changes, record the new cookie internally */ 3164 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 3165 db->flags |= SQLITE_InternChanges; 3166 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3167 /* Record changes in the file format */ 3168 pDb->pSchema->file_format = (u8)pIn3->u.i; 3169 } 3170 if( pOp->p1==1 ){ 3171 /* Invalidate all prepared statements whenever the TEMP database 3172 ** schema is changed. Ticket #1644 */ 3173 sqlite3ExpirePreparedStatements(db); 3174 p->expired = 0; 3175 } 3176 break; 3177 } 3178 3179 /* Opcode: OpenRead P1 P2 P3 P4 P5 3180 ** Synopsis: root=P2 iDb=P3 3181 ** 3182 ** Open a read-only cursor for the database table whose root page is 3183 ** P2 in a database file. The database file is determined by P3. 3184 ** P3==0 means the main database, P3==1 means the database used for 3185 ** temporary tables, and P3>1 means used the corresponding attached 3186 ** database. Give the new cursor an identifier of P1. The P1 3187 ** values need not be contiguous but all P1 values should be small integers. 3188 ** It is an error for P1 to be negative. 3189 ** 3190 ** If P5!=0 then use the content of register P2 as the root page, not 3191 ** the value of P2 itself. 3192 ** 3193 ** There will be a read lock on the database whenever there is an 3194 ** open cursor. If the database was unlocked prior to this instruction 3195 ** then a read lock is acquired as part of this instruction. A read 3196 ** lock allows other processes to read the database but prohibits 3197 ** any other process from modifying the database. The read lock is 3198 ** released when all cursors are closed. If this instruction attempts 3199 ** to get a read lock but fails, the script terminates with an 3200 ** SQLITE_BUSY error code. 3201 ** 3202 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3203 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3204 ** structure, then said structure defines the content and collating 3205 ** sequence of the index being opened. Otherwise, if P4 is an integer 3206 ** value, it is set to the number of columns in the table. 3207 ** 3208 ** See also OpenWrite. 3209 */ 3210 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3211 ** Synopsis: root=P2 iDb=P3 3212 ** 3213 ** Open a read/write cursor named P1 on the table or index whose root 3214 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3215 ** root page. 3216 ** 3217 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3218 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3219 ** structure, then said structure defines the content and collating 3220 ** sequence of the index being opened. Otherwise, if P4 is an integer 3221 ** value, it is set to the number of columns in the table, or to the 3222 ** largest index of any column of the table that is actually used. 3223 ** 3224 ** This instruction works just like OpenRead except that it opens the cursor 3225 ** in read/write mode. For a given table, there can be one or more read-only 3226 ** cursors or a single read/write cursor but not both. 3227 ** 3228 ** See also OpenRead. 3229 */ 3230 case OP_OpenRead: 3231 case OP_OpenWrite: { 3232 int nField; 3233 KeyInfo *pKeyInfo; 3234 int p2; 3235 int iDb; 3236 int wrFlag; 3237 Btree *pX; 3238 VdbeCursor *pCur; 3239 Db *pDb; 3240 3241 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); 3242 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); 3243 assert( p->bIsReader ); 3244 assert( pOp->opcode==OP_OpenRead || p->readOnly==0 ); 3245 3246 if( p->expired ){ 3247 rc = SQLITE_ABORT; 3248 break; 3249 } 3250 3251 nField = 0; 3252 pKeyInfo = 0; 3253 p2 = pOp->p2; 3254 iDb = pOp->p3; 3255 assert( iDb>=0 && iDb<db->nDb ); 3256 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 3257 pDb = &db->aDb[iDb]; 3258 pX = pDb->pBt; 3259 assert( pX!=0 ); 3260 if( pOp->opcode==OP_OpenWrite ){ 3261 wrFlag = 1; 3262 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3263 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3264 p->minWriteFileFormat = pDb->pSchema->file_format; 3265 } 3266 }else{ 3267 wrFlag = 0; 3268 } 3269 if( pOp->p5 & OPFLAG_P2ISREG ){ 3270 assert( p2>0 ); 3271 assert( p2<=(p->nMem-p->nCursor) ); 3272 pIn2 = &aMem[p2]; 3273 assert( memIsValid(pIn2) ); 3274 assert( (pIn2->flags & MEM_Int)!=0 ); 3275 sqlite3VdbeMemIntegerify(pIn2); 3276 p2 = (int)pIn2->u.i; 3277 /* The p2 value always comes from a prior OP_CreateTable opcode and 3278 ** that opcode will always set the p2 value to 2 or more or else fail. 3279 ** If there were a failure, the prepared statement would have halted 3280 ** before reaching this instruction. */ 3281 if( NEVER(p2<2) ) { 3282 rc = SQLITE_CORRUPT_BKPT; 3283 goto abort_due_to_error; 3284 } 3285 } 3286 if( pOp->p4type==P4_KEYINFO ){ 3287 pKeyInfo = pOp->p4.pKeyInfo; 3288 assert( pKeyInfo->enc==ENC(db) ); 3289 assert( pKeyInfo->db==db ); 3290 nField = pKeyInfo->nField+pKeyInfo->nXField; 3291 }else if( pOp->p4type==P4_INT32 ){ 3292 nField = pOp->p4.i; 3293 } 3294 assert( pOp->p1>=0 ); 3295 assert( nField>=0 ); 3296 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3297 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3298 if( pCur==0 ) goto no_mem; 3299 pCur->nullRow = 1; 3300 pCur->isOrdered = 1; 3301 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3302 pCur->pKeyInfo = pKeyInfo; 3303 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3304 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); 3305 3306 /* Since it performs no memory allocation or IO, the only value that 3307 ** sqlite3BtreeCursor() may return is SQLITE_OK. */ 3308 assert( rc==SQLITE_OK ); 3309 3310 /* Set the VdbeCursor.isTable variable. Previous versions of 3311 ** SQLite used to check if the root-page flags were sane at this point 3312 ** and report database corruption if they were not, but this check has 3313 ** since moved into the btree layer. */ 3314 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3315 break; 3316 } 3317 3318 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3319 ** Synopsis: nColumn=P2 3320 ** 3321 ** Open a new cursor P1 to a transient table. 3322 ** The cursor is always opened read/write even if 3323 ** the main database is read-only. The ephemeral 3324 ** table is deleted automatically when the cursor is closed. 3325 ** 3326 ** P2 is the number of columns in the ephemeral table. 3327 ** The cursor points to a BTree table if P4==0 and to a BTree index 3328 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3329 ** that defines the format of keys in the index. 3330 ** 3331 ** The P5 parameter can be a mask of the BTREE_* flags defined 3332 ** in btree.h. These flags control aspects of the operation of 3333 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3334 ** added automatically. 3335 */ 3336 /* Opcode: OpenAutoindex P1 P2 * P4 * 3337 ** Synopsis: nColumn=P2 3338 ** 3339 ** This opcode works the same as OP_OpenEphemeral. It has a 3340 ** different name to distinguish its use. Tables created using 3341 ** by this opcode will be used for automatically created transient 3342 ** indices in joins. 3343 */ 3344 case OP_OpenAutoindex: 3345 case OP_OpenEphemeral: { 3346 VdbeCursor *pCx; 3347 KeyInfo *pKeyInfo; 3348 3349 static const int vfsFlags = 3350 SQLITE_OPEN_READWRITE | 3351 SQLITE_OPEN_CREATE | 3352 SQLITE_OPEN_EXCLUSIVE | 3353 SQLITE_OPEN_DELETEONCLOSE | 3354 SQLITE_OPEN_TRANSIENT_DB; 3355 assert( pOp->p1>=0 ); 3356 assert( pOp->p2>=0 ); 3357 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3358 if( pCx==0 ) goto no_mem; 3359 pCx->nullRow = 1; 3360 pCx->isEphemeral = 1; 3361 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3362 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3363 if( rc==SQLITE_OK ){ 3364 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3365 } 3366 if( rc==SQLITE_OK ){ 3367 /* If a transient index is required, create it by calling 3368 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3369 ** opening it. If a transient table is required, just use the 3370 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3371 */ 3372 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3373 int pgno; 3374 assert( pOp->p4type==P4_KEYINFO ); 3375 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3376 if( rc==SQLITE_OK ){ 3377 assert( pgno==MASTER_ROOT+1 ); 3378 assert( pKeyInfo->db==db ); 3379 assert( pKeyInfo->enc==ENC(db) ); 3380 pCx->pKeyInfo = pKeyInfo; 3381 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); 3382 } 3383 pCx->isTable = 0; 3384 }else{ 3385 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3386 pCx->isTable = 1; 3387 } 3388 } 3389 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3390 break; 3391 } 3392 3393 /* Opcode: SorterOpen P1 P2 * P4 * 3394 ** 3395 ** This opcode works like OP_OpenEphemeral except that it opens 3396 ** a transient index that is specifically designed to sort large 3397 ** tables using an external merge-sort algorithm. 3398 */ 3399 case OP_SorterOpen: { 3400 VdbeCursor *pCx; 3401 3402 assert( pOp->p1>=0 ); 3403 assert( pOp->p2>=0 ); 3404 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3405 if( pCx==0 ) goto no_mem; 3406 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3407 assert( pCx->pKeyInfo->db==db ); 3408 assert( pCx->pKeyInfo->enc==ENC(db) ); 3409 rc = sqlite3VdbeSorterInit(db, pCx); 3410 break; 3411 } 3412 3413 /* Opcode: OpenPseudo P1 P2 P3 * * 3414 ** Synopsis: P3 columns in r[P2] 3415 ** 3416 ** Open a new cursor that points to a fake table that contains a single 3417 ** row of data. The content of that one row is the content of memory 3418 ** register P2. In other words, cursor P1 becomes an alias for the 3419 ** MEM_Blob content contained in register P2. 3420 ** 3421 ** A pseudo-table created by this opcode is used to hold a single 3422 ** row output from the sorter so that the row can be decomposed into 3423 ** individual columns using the OP_Column opcode. The OP_Column opcode 3424 ** is the only cursor opcode that works with a pseudo-table. 3425 ** 3426 ** P3 is the number of fields in the records that will be stored by 3427 ** the pseudo-table. 3428 */ 3429 case OP_OpenPseudo: { 3430 VdbeCursor *pCx; 3431 3432 assert( pOp->p1>=0 ); 3433 assert( pOp->p3>=0 ); 3434 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3435 if( pCx==0 ) goto no_mem; 3436 pCx->nullRow = 1; 3437 pCx->pseudoTableReg = pOp->p2; 3438 pCx->isTable = 1; 3439 assert( pOp->p5==0 ); 3440 break; 3441 } 3442 3443 /* Opcode: Close P1 * * * * 3444 ** 3445 ** Close a cursor previously opened as P1. If P1 is not 3446 ** currently open, this instruction is a no-op. 3447 */ 3448 case OP_Close: { 3449 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3450 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3451 p->apCsr[pOp->p1] = 0; 3452 break; 3453 } 3454 3455 /* Opcode: SeekGe P1 P2 P3 P4 * 3456 ** Synopsis: key=r[P3@P4] 3457 ** 3458 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3459 ** use the value in register P3 as the key. If cursor P1 refers 3460 ** to an SQL index, then P3 is the first in an array of P4 registers 3461 ** that are used as an unpacked index key. 3462 ** 3463 ** Reposition cursor P1 so that it points to the smallest entry that 3464 ** is greater than or equal to the key value. If there are no records 3465 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3466 ** 3467 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3468 */ 3469 /* Opcode: SeekGt P1 P2 P3 P4 * 3470 ** Synopsis: key=r[P3@P4] 3471 ** 3472 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3473 ** use the value in register P3 as a key. If cursor P1 refers 3474 ** to an SQL index, then P3 is the first in an array of P4 registers 3475 ** that are used as an unpacked index key. 3476 ** 3477 ** Reposition cursor P1 so that it points to the smallest entry that 3478 ** is greater than the key value. If there are no records greater than 3479 ** the key and P2 is not zero, then jump to P2. 3480 ** 3481 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3482 */ 3483 /* Opcode: SeekLt P1 P2 P3 P4 * 3484 ** Synopsis: key=r[P3@P4] 3485 ** 3486 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3487 ** use the value in register P3 as a key. If cursor P1 refers 3488 ** to an SQL index, then P3 is the first in an array of P4 registers 3489 ** that are used as an unpacked index key. 3490 ** 3491 ** Reposition cursor P1 so that it points to the largest entry that 3492 ** is less than the key value. If there are no records less than 3493 ** the key and P2 is not zero, then jump to P2. 3494 ** 3495 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3496 */ 3497 /* Opcode: SeekLe P1 P2 P3 P4 * 3498 ** Synopsis: key=r[P3@P4] 3499 ** 3500 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3501 ** use the value in register P3 as a key. If cursor P1 refers 3502 ** to an SQL index, then P3 is the first in an array of P4 registers 3503 ** that are used as an unpacked index key. 3504 ** 3505 ** Reposition cursor P1 so that it points to the largest entry that 3506 ** is less than or equal to the key value. If there are no records 3507 ** less than or equal to the key and P2 is not zero, then jump to P2. 3508 ** 3509 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3510 */ 3511 case OP_SeekLT: /* jump, in3 */ 3512 case OP_SeekLE: /* jump, in3 */ 3513 case OP_SeekGE: /* jump, in3 */ 3514 case OP_SeekGT: { /* jump, in3 */ 3515 int res; 3516 int oc; 3517 VdbeCursor *pC; 3518 UnpackedRecord r; 3519 int nField; 3520 i64 iKey; /* The rowid we are to seek to */ 3521 3522 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3523 assert( pOp->p2!=0 ); 3524 pC = p->apCsr[pOp->p1]; 3525 assert( pC!=0 ); 3526 assert( pC->pseudoTableReg==0 ); 3527 assert( OP_SeekLE == OP_SeekLT+1 ); 3528 assert( OP_SeekGE == OP_SeekLT+2 ); 3529 assert( OP_SeekGT == OP_SeekLT+3 ); 3530 assert( pC->isOrdered ); 3531 assert( pC->pCursor!=0 ); 3532 oc = pOp->opcode; 3533 pC->nullRow = 0; 3534 if( pC->isTable ){ 3535 /* The input value in P3 might be of any type: integer, real, string, 3536 ** blob, or NULL. But it needs to be an integer before we can do 3537 ** the seek, so covert it. */ 3538 pIn3 = &aMem[pOp->p3]; 3539 applyNumericAffinity(pIn3); 3540 iKey = sqlite3VdbeIntValue(pIn3); 3541 pC->rowidIsValid = 0; 3542 3543 /* If the P3 value could not be converted into an integer without 3544 ** loss of information, then special processing is required... */ 3545 if( (pIn3->flags & MEM_Int)==0 ){ 3546 if( (pIn3->flags & MEM_Real)==0 ){ 3547 /* If the P3 value cannot be converted into any kind of a number, 3548 ** then the seek is not possible, so jump to P2 */ 3549 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3550 break; 3551 } 3552 3553 /* If the approximation iKey is larger than the actual real search 3554 ** term, substitute >= for > and < for <=. e.g. if the search term 3555 ** is 4.9 and the integer approximation 5: 3556 ** 3557 ** (x > 4.9) -> (x >= 5) 3558 ** (x <= 4.9) -> (x < 5) 3559 */ 3560 if( pIn3->r<(double)iKey ){ 3561 assert( OP_SeekGE==(OP_SeekGT-1) ); 3562 assert( OP_SeekLT==(OP_SeekLE-1) ); 3563 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3564 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3565 } 3566 3567 /* If the approximation iKey is smaller than the actual real search 3568 ** term, substitute <= for < and > for >=. */ 3569 else if( pIn3->r>(double)iKey ){ 3570 assert( OP_SeekLE==(OP_SeekLT+1) ); 3571 assert( OP_SeekGT==(OP_SeekGE+1) ); 3572 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3573 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3574 } 3575 } 3576 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3577 if( rc!=SQLITE_OK ){ 3578 goto abort_due_to_error; 3579 } 3580 if( res==0 ){ 3581 pC->rowidIsValid = 1; 3582 pC->lastRowid = iKey; 3583 } 3584 }else{ 3585 nField = pOp->p4.i; 3586 assert( pOp->p4type==P4_INT32 ); 3587 assert( nField>0 ); 3588 r.pKeyInfo = pC->pKeyInfo; 3589 r.nField = (u16)nField; 3590 3591 /* The next line of code computes as follows, only faster: 3592 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3593 ** r.default_rc = -1; 3594 ** }else{ 3595 ** r.default_rc = +1; 3596 ** } 3597 */ 3598 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3599 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3600 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3601 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3602 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3603 3604 r.aMem = &aMem[pOp->p3]; 3605 #ifdef SQLITE_DEBUG 3606 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3607 #endif 3608 ExpandBlob(r.aMem); 3609 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3610 if( rc!=SQLITE_OK ){ 3611 goto abort_due_to_error; 3612 } 3613 pC->rowidIsValid = 0; 3614 } 3615 pC->deferredMoveto = 0; 3616 pC->cacheStatus = CACHE_STALE; 3617 #ifdef SQLITE_TEST 3618 sqlite3_search_count++; 3619 #endif 3620 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3621 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3622 res = 0; 3623 rc = sqlite3BtreeNext(pC->pCursor, &res); 3624 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3625 pC->rowidIsValid = 0; 3626 }else{ 3627 res = 0; 3628 } 3629 }else{ 3630 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3631 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3632 res = 0; 3633 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3634 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3635 pC->rowidIsValid = 0; 3636 }else{ 3637 /* res might be negative because the table is empty. Check to 3638 ** see if this is the case. 3639 */ 3640 res = sqlite3BtreeEof(pC->pCursor); 3641 } 3642 } 3643 assert( pOp->p2>0 ); 3644 VdbeBranchTaken(res!=0,2); 3645 if( res ){ 3646 pc = pOp->p2 - 1; 3647 } 3648 break; 3649 } 3650 3651 /* Opcode: Seek P1 P2 * * * 3652 ** Synopsis: intkey=r[P2] 3653 ** 3654 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3655 ** for P1 to move so that it points to the rowid given by P2. 3656 ** 3657 ** This is actually a deferred seek. Nothing actually happens until 3658 ** the cursor is used to read a record. That way, if no reads 3659 ** occur, no unnecessary I/O happens. 3660 */ 3661 case OP_Seek: { /* in2 */ 3662 VdbeCursor *pC; 3663 3664 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3665 pC = p->apCsr[pOp->p1]; 3666 assert( pC!=0 ); 3667 assert( pC->pCursor!=0 ); 3668 assert( pC->isTable ); 3669 pC->nullRow = 0; 3670 pIn2 = &aMem[pOp->p2]; 3671 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3672 pC->rowidIsValid = 0; 3673 pC->deferredMoveto = 1; 3674 break; 3675 } 3676 3677 3678 /* Opcode: Found P1 P2 P3 P4 * 3679 ** Synopsis: key=r[P3@P4] 3680 ** 3681 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3682 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3683 ** record. 3684 ** 3685 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3686 ** is a prefix of any entry in P1 then a jump is made to P2 and 3687 ** P1 is left pointing at the matching entry. 3688 ** 3689 ** See also: NotFound, NoConflict, NotExists. SeekGe 3690 */ 3691 /* Opcode: NotFound P1 P2 P3 P4 * 3692 ** Synopsis: key=r[P3@P4] 3693 ** 3694 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3695 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3696 ** record. 3697 ** 3698 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3699 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3700 ** does contain an entry whose prefix matches the P3/P4 record then control 3701 ** falls through to the next instruction and P1 is left pointing at the 3702 ** matching entry. 3703 ** 3704 ** See also: Found, NotExists, NoConflict 3705 */ 3706 /* Opcode: NoConflict P1 P2 P3 P4 * 3707 ** Synopsis: key=r[P3@P4] 3708 ** 3709 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3710 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3711 ** record. 3712 ** 3713 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3714 ** contains any NULL value, jump immediately to P2. If all terms of the 3715 ** record are not-NULL then a check is done to determine if any row in the 3716 ** P1 index btree has a matching key prefix. If there are no matches, jump 3717 ** immediately to P2. If there is a match, fall through and leave the P1 3718 ** cursor pointing to the matching row. 3719 ** 3720 ** This opcode is similar to OP_NotFound with the exceptions that the 3721 ** branch is always taken if any part of the search key input is NULL. 3722 ** 3723 ** See also: NotFound, Found, NotExists 3724 */ 3725 case OP_NoConflict: /* jump, in3 */ 3726 case OP_NotFound: /* jump, in3 */ 3727 case OP_Found: { /* jump, in3 */ 3728 int alreadyExists; 3729 int ii; 3730 VdbeCursor *pC; 3731 int res; 3732 char *pFree; 3733 UnpackedRecord *pIdxKey; 3734 UnpackedRecord r; 3735 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; 3736 3737 #ifdef SQLITE_TEST 3738 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3739 #endif 3740 3741 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3742 assert( pOp->p4type==P4_INT32 ); 3743 pC = p->apCsr[pOp->p1]; 3744 assert( pC!=0 ); 3745 pIn3 = &aMem[pOp->p3]; 3746 assert( pC->pCursor!=0 ); 3747 assert( pC->isTable==0 ); 3748 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ 3749 if( pOp->p4.i>0 ){ 3750 r.pKeyInfo = pC->pKeyInfo; 3751 r.nField = (u16)pOp->p4.i; 3752 r.aMem = pIn3; 3753 for(ii=0; ii<r.nField; ii++){ 3754 assert( memIsValid(&r.aMem[ii]) ); 3755 ExpandBlob(&r.aMem[ii]); 3756 #ifdef SQLITE_DEBUG 3757 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 3758 #endif 3759 } 3760 pIdxKey = &r; 3761 }else{ 3762 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3763 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3764 ); 3765 if( pIdxKey==0 ) goto no_mem; 3766 assert( pIn3->flags & MEM_Blob ); 3767 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ 3768 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3769 } 3770 pIdxKey->default_rc = 0; 3771 if( pOp->opcode==OP_NoConflict ){ 3772 /* For the OP_NoConflict opcode, take the jump if any of the 3773 ** input fields are NULL, since any key with a NULL will not 3774 ** conflict */ 3775 for(ii=0; ii<r.nField; ii++){ 3776 if( r.aMem[ii].flags & MEM_Null ){ 3777 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3778 break; 3779 } 3780 } 3781 } 3782 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3783 if( pOp->p4.i==0 ){ 3784 sqlite3DbFree(db, pFree); 3785 } 3786 if( rc!=SQLITE_OK ){ 3787 break; 3788 } 3789 pC->seekResult = res; 3790 alreadyExists = (res==0); 3791 pC->nullRow = 1-alreadyExists; 3792 pC->deferredMoveto = 0; 3793 pC->cacheStatus = CACHE_STALE; 3794 if( pOp->opcode==OP_Found ){ 3795 VdbeBranchTaken(alreadyExists!=0,2); 3796 if( alreadyExists ) pc = pOp->p2 - 1; 3797 }else{ 3798 VdbeBranchTaken(alreadyExists==0,2); 3799 if( !alreadyExists ) pc = pOp->p2 - 1; 3800 } 3801 break; 3802 } 3803 3804 /* Opcode: NotExists P1 P2 P3 * * 3805 ** Synopsis: intkey=r[P3] 3806 ** 3807 ** P1 is the index of a cursor open on an SQL table btree (with integer 3808 ** keys). P3 is an integer rowid. If P1 does not contain a record with 3809 ** rowid P3 then jump immediately to P2. If P1 does contain a record 3810 ** with rowid P3 then leave the cursor pointing at that record and fall 3811 ** through to the next instruction. 3812 ** 3813 ** The OP_NotFound opcode performs the same operation on index btrees 3814 ** (with arbitrary multi-value keys). 3815 ** 3816 ** See also: Found, NotFound, NoConflict 3817 */ 3818 case OP_NotExists: { /* jump, in3 */ 3819 VdbeCursor *pC; 3820 BtCursor *pCrsr; 3821 int res; 3822 u64 iKey; 3823 3824 pIn3 = &aMem[pOp->p3]; 3825 assert( pIn3->flags & MEM_Int ); 3826 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3827 pC = p->apCsr[pOp->p1]; 3828 assert( pC!=0 ); 3829 assert( pC->isTable ); 3830 assert( pC->pseudoTableReg==0 ); 3831 pCrsr = pC->pCursor; 3832 assert( pCrsr!=0 ); 3833 res = 0; 3834 iKey = pIn3->u.i; 3835 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3836 pC->lastRowid = pIn3->u.i; 3837 pC->rowidIsValid = res==0 ?1:0; 3838 pC->nullRow = 0; 3839 pC->cacheStatus = CACHE_STALE; 3840 pC->deferredMoveto = 0; 3841 VdbeBranchTaken(res!=0,2); 3842 if( res!=0 ){ 3843 pc = pOp->p2 - 1; 3844 assert( pC->rowidIsValid==0 ); 3845 } 3846 pC->seekResult = res; 3847 break; 3848 } 3849 3850 /* Opcode: Sequence P1 P2 * * * 3851 ** Synopsis: r[P2]=cursor[P1].ctr++ 3852 ** 3853 ** Find the next available sequence number for cursor P1. 3854 ** Write the sequence number into register P2. 3855 ** The sequence number on the cursor is incremented after this 3856 ** instruction. 3857 */ 3858 case OP_Sequence: { /* out2-prerelease */ 3859 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3860 assert( p->apCsr[pOp->p1]!=0 ); 3861 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3862 break; 3863 } 3864 3865 3866 /* Opcode: NewRowid P1 P2 P3 * * 3867 ** Synopsis: r[P2]=rowid 3868 ** 3869 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3870 ** The record number is not previously used as a key in the database 3871 ** table that cursor P1 points to. The new record number is written 3872 ** written to register P2. 3873 ** 3874 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 3875 ** the largest previously generated record number. No new record numbers are 3876 ** allowed to be less than this value. When this value reaches its maximum, 3877 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 3878 ** generated record number. This P3 mechanism is used to help implement the 3879 ** AUTOINCREMENT feature. 3880 */ 3881 case OP_NewRowid: { /* out2-prerelease */ 3882 i64 v; /* The new rowid */ 3883 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3884 int res; /* Result of an sqlite3BtreeLast() */ 3885 int cnt; /* Counter to limit the number of searches */ 3886 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3887 VdbeFrame *pFrame; /* Root frame of VDBE */ 3888 3889 v = 0; 3890 res = 0; 3891 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3892 pC = p->apCsr[pOp->p1]; 3893 assert( pC!=0 ); 3894 if( NEVER(pC->pCursor==0) ){ 3895 /* The zero initialization above is all that is needed */ 3896 }else{ 3897 /* The next rowid or record number (different terms for the same 3898 ** thing) is obtained in a two-step algorithm. 3899 ** 3900 ** First we attempt to find the largest existing rowid and add one 3901 ** to that. But if the largest existing rowid is already the maximum 3902 ** positive integer, we have to fall through to the second 3903 ** probabilistic algorithm 3904 ** 3905 ** The second algorithm is to select a rowid at random and see if 3906 ** it already exists in the table. If it does not exist, we have 3907 ** succeeded. If the random rowid does exist, we select a new one 3908 ** and try again, up to 100 times. 3909 */ 3910 assert( pC->isTable ); 3911 3912 #ifdef SQLITE_32BIT_ROWID 3913 # define MAX_ROWID 0x7fffffff 3914 #else 3915 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 3916 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 3917 ** to provide the constant while making all compilers happy. 3918 */ 3919 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 3920 #endif 3921 3922 if( !pC->useRandomRowid ){ 3923 rc = sqlite3BtreeLast(pC->pCursor, &res); 3924 if( rc!=SQLITE_OK ){ 3925 goto abort_due_to_error; 3926 } 3927 if( res ){ 3928 v = 1; /* IMP: R-61914-48074 */ 3929 }else{ 3930 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 3931 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 3932 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 3933 if( v>=MAX_ROWID ){ 3934 pC->useRandomRowid = 1; 3935 }else{ 3936 v++; /* IMP: R-29538-34987 */ 3937 } 3938 } 3939 } 3940 3941 #ifndef SQLITE_OMIT_AUTOINCREMENT 3942 if( pOp->p3 ){ 3943 /* Assert that P3 is a valid memory cell. */ 3944 assert( pOp->p3>0 ); 3945 if( p->pFrame ){ 3946 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 3947 /* Assert that P3 is a valid memory cell. */ 3948 assert( pOp->p3<=pFrame->nMem ); 3949 pMem = &pFrame->aMem[pOp->p3]; 3950 }else{ 3951 /* Assert that P3 is a valid memory cell. */ 3952 assert( pOp->p3<=(p->nMem-p->nCursor) ); 3953 pMem = &aMem[pOp->p3]; 3954 memAboutToChange(p, pMem); 3955 } 3956 assert( memIsValid(pMem) ); 3957 3958 REGISTER_TRACE(pOp->p3, pMem); 3959 sqlite3VdbeMemIntegerify(pMem); 3960 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 3961 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 3962 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 3963 goto abort_due_to_error; 3964 } 3965 if( v<pMem->u.i+1 ){ 3966 v = pMem->u.i + 1; 3967 } 3968 pMem->u.i = v; 3969 } 3970 #endif 3971 if( pC->useRandomRowid ){ 3972 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 3973 ** largest possible integer (9223372036854775807) then the database 3974 ** engine starts picking positive candidate ROWIDs at random until 3975 ** it finds one that is not previously used. */ 3976 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 3977 ** an AUTOINCREMENT table. */ 3978 /* on the first attempt, simply do one more than previous */ 3979 v = lastRowid; 3980 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3981 v++; /* ensure non-zero */ 3982 cnt = 0; 3983 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 3984 0, &res))==SQLITE_OK) 3985 && (res==0) 3986 && (++cnt<100)){ 3987 /* collision - try another random rowid */ 3988 sqlite3_randomness(sizeof(v), &v); 3989 if( cnt<5 ){ 3990 /* try "small" random rowids for the initial attempts */ 3991 v &= 0xffffff; 3992 }else{ 3993 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3994 } 3995 v++; /* ensure non-zero */ 3996 } 3997 if( rc==SQLITE_OK && res==0 ){ 3998 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 3999 goto abort_due_to_error; 4000 } 4001 assert( v>0 ); /* EV: R-40812-03570 */ 4002 } 4003 pC->rowidIsValid = 0; 4004 pC->deferredMoveto = 0; 4005 pC->cacheStatus = CACHE_STALE; 4006 } 4007 pOut->u.i = v; 4008 break; 4009 } 4010 4011 /* Opcode: Insert P1 P2 P3 P4 P5 4012 ** Synopsis: intkey=r[P3] data=r[P2] 4013 ** 4014 ** Write an entry into the table of cursor P1. A new entry is 4015 ** created if it doesn't already exist or the data for an existing 4016 ** entry is overwritten. The data is the value MEM_Blob stored in register 4017 ** number P2. The key is stored in register P3. The key must 4018 ** be a MEM_Int. 4019 ** 4020 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4021 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4022 ** then rowid is stored for subsequent return by the 4023 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4024 ** 4025 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 4026 ** the last seek operation (OP_NotExists) was a success, then this 4027 ** operation will not attempt to find the appropriate row before doing 4028 ** the insert but will instead overwrite the row that the cursor is 4029 ** currently pointing to. Presumably, the prior OP_NotExists opcode 4030 ** has already positioned the cursor correctly. This is an optimization 4031 ** that boosts performance by avoiding redundant seeks. 4032 ** 4033 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4034 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4035 ** is part of an INSERT operation. The difference is only important to 4036 ** the update hook. 4037 ** 4038 ** Parameter P4 may point to a string containing the table-name, or 4039 ** may be NULL. If it is not NULL, then the update-hook 4040 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 4041 ** 4042 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4043 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4044 ** and register P2 becomes ephemeral. If the cursor is changed, the 4045 ** value of register P2 will then change. Make sure this does not 4046 ** cause any problems.) 4047 ** 4048 ** This instruction only works on tables. The equivalent instruction 4049 ** for indices is OP_IdxInsert. 4050 */ 4051 /* Opcode: InsertInt P1 P2 P3 P4 P5 4052 ** Synopsis: intkey=P3 data=r[P2] 4053 ** 4054 ** This works exactly like OP_Insert except that the key is the 4055 ** integer value P3, not the value of the integer stored in register P3. 4056 */ 4057 case OP_Insert: 4058 case OP_InsertInt: { 4059 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4060 Mem *pKey; /* MEM cell holding key for the record */ 4061 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 4062 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4063 int nZero; /* Number of zero-bytes to append */ 4064 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4065 const char *zDb; /* database name - used by the update hook */ 4066 const char *zTbl; /* Table name - used by the opdate hook */ 4067 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4068 4069 pData = &aMem[pOp->p2]; 4070 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4071 assert( memIsValid(pData) ); 4072 pC = p->apCsr[pOp->p1]; 4073 assert( pC!=0 ); 4074 assert( pC->pCursor!=0 ); 4075 assert( pC->pseudoTableReg==0 ); 4076 assert( pC->isTable ); 4077 REGISTER_TRACE(pOp->p2, pData); 4078 4079 if( pOp->opcode==OP_Insert ){ 4080 pKey = &aMem[pOp->p3]; 4081 assert( pKey->flags & MEM_Int ); 4082 assert( memIsValid(pKey) ); 4083 REGISTER_TRACE(pOp->p3, pKey); 4084 iKey = pKey->u.i; 4085 }else{ 4086 assert( pOp->opcode==OP_InsertInt ); 4087 iKey = pOp->p3; 4088 } 4089 4090 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4091 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4092 if( pData->flags & MEM_Null ){ 4093 pData->z = 0; 4094 pData->n = 0; 4095 }else{ 4096 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4097 } 4098 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4099 if( pData->flags & MEM_Zero ){ 4100 nZero = pData->u.nZero; 4101 }else{ 4102 nZero = 0; 4103 } 4104 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 4105 pData->z, pData->n, nZero, 4106 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult 4107 ); 4108 pC->rowidIsValid = 0; 4109 pC->deferredMoveto = 0; 4110 pC->cacheStatus = CACHE_STALE; 4111 4112 /* Invoke the update-hook if required. */ 4113 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4114 zDb = db->aDb[pC->iDb].zName; 4115 zTbl = pOp->p4.z; 4116 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4117 assert( pC->isTable ); 4118 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4119 assert( pC->iDb>=0 ); 4120 } 4121 break; 4122 } 4123 4124 /* Opcode: Delete P1 P2 * P4 * 4125 ** 4126 ** Delete the record at which the P1 cursor is currently pointing. 4127 ** 4128 ** The cursor will be left pointing at either the next or the previous 4129 ** record in the table. If it is left pointing at the next record, then 4130 ** the next Next instruction will be a no-op. Hence it is OK to delete 4131 ** a record from within an Next loop. 4132 ** 4133 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 4134 ** incremented (otherwise not). 4135 ** 4136 ** P1 must not be pseudo-table. It has to be a real table with 4137 ** multiple rows. 4138 ** 4139 ** If P4 is not NULL, then it is the name of the table that P1 is 4140 ** pointing to. The update hook will be invoked, if it exists. 4141 ** If P4 is not NULL then the P1 cursor must have been positioned 4142 ** using OP_NotFound prior to invoking this opcode. 4143 */ 4144 case OP_Delete: { 4145 i64 iKey; 4146 VdbeCursor *pC; 4147 4148 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4149 pC = p->apCsr[pOp->p1]; 4150 assert( pC!=0 ); 4151 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 4152 iKey = pC->lastRowid; /* Only used for the update hook */ 4153 4154 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or 4155 ** OP_Column on the same table without any intervening operations that 4156 ** might move or invalidate the cursor. Hence cursor pC is always pointing 4157 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation 4158 ** below is always a no-op and cannot fail. We will run it anyhow, though, 4159 ** to guard against future changes to the code generator. 4160 **/ 4161 assert( pC->deferredMoveto==0 ); 4162 rc = sqlite3VdbeCursorMoveto(pC); 4163 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4164 4165 rc = sqlite3BtreeDelete(pC->pCursor); 4166 pC->cacheStatus = CACHE_STALE; 4167 4168 /* Invoke the update-hook if required. */ 4169 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ 4170 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, 4171 db->aDb[pC->iDb].zName, pOp->p4.z, iKey); 4172 assert( pC->iDb>=0 ); 4173 } 4174 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4175 break; 4176 } 4177 /* Opcode: ResetCount * * * * * 4178 ** 4179 ** The value of the change counter is copied to the database handle 4180 ** change counter (returned by subsequent calls to sqlite3_changes()). 4181 ** Then the VMs internal change counter resets to 0. 4182 ** This is used by trigger programs. 4183 */ 4184 case OP_ResetCount: { 4185 sqlite3VdbeSetChanges(db, p->nChange); 4186 p->nChange = 0; 4187 break; 4188 } 4189 4190 /* Opcode: SorterCompare P1 P2 P3 P4 4191 ** Synopsis: if key(P1)!=rtrim(r[P3],P4) goto P2 4192 ** 4193 ** P1 is a sorter cursor. This instruction compares a prefix of the 4194 ** the record blob in register P3 against a prefix of the entry that 4195 ** the sorter cursor currently points to. The final P4 fields of both 4196 ** the P3 and sorter record are ignored. 4197 ** 4198 ** If either P3 or the sorter contains a NULL in one of their significant 4199 ** fields (not counting the P4 fields at the end which are ignored) then 4200 ** the comparison is assumed to be equal. 4201 ** 4202 ** Fall through to next instruction if the two records compare equal to 4203 ** each other. Jump to P2 if they are different. 4204 */ 4205 case OP_SorterCompare: { 4206 VdbeCursor *pC; 4207 int res; 4208 int nIgnore; 4209 4210 pC = p->apCsr[pOp->p1]; 4211 assert( isSorter(pC) ); 4212 assert( pOp->p4type==P4_INT32 ); 4213 pIn3 = &aMem[pOp->p3]; 4214 nIgnore = pOp->p4.i; 4215 rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res); 4216 VdbeBranchTaken(res!=0,2); 4217 if( res ){ 4218 pc = pOp->p2-1; 4219 } 4220 break; 4221 }; 4222 4223 /* Opcode: SorterData P1 P2 * * * 4224 ** Synopsis: r[P2]=data 4225 ** 4226 ** Write into register P2 the current sorter data for sorter cursor P1. 4227 */ 4228 case OP_SorterData: { 4229 VdbeCursor *pC; 4230 4231 pOut = &aMem[pOp->p2]; 4232 pC = p->apCsr[pOp->p1]; 4233 assert( isSorter(pC) ); 4234 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4235 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4236 break; 4237 } 4238 4239 /* Opcode: RowData P1 P2 * * * 4240 ** Synopsis: r[P2]=data 4241 ** 4242 ** Write into register P2 the complete row data for cursor P1. 4243 ** There is no interpretation of the data. 4244 ** It is just copied onto the P2 register exactly as 4245 ** it is found in the database file. 4246 ** 4247 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4248 ** of a real table, not a pseudo-table. 4249 */ 4250 /* Opcode: RowKey P1 P2 * * * 4251 ** Synopsis: r[P2]=key 4252 ** 4253 ** Write into register P2 the complete row key for cursor P1. 4254 ** There is no interpretation of the data. 4255 ** The key is copied onto the P2 register exactly as 4256 ** it is found in the database file. 4257 ** 4258 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4259 ** of a real table, not a pseudo-table. 4260 */ 4261 case OP_RowKey: 4262 case OP_RowData: { 4263 VdbeCursor *pC; 4264 BtCursor *pCrsr; 4265 u32 n; 4266 i64 n64; 4267 4268 pOut = &aMem[pOp->p2]; 4269 memAboutToChange(p, pOut); 4270 4271 /* Note that RowKey and RowData are really exactly the same instruction */ 4272 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4273 pC = p->apCsr[pOp->p1]; 4274 assert( isSorter(pC)==0 ); 4275 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4276 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); 4277 assert( pC!=0 ); 4278 assert( pC->nullRow==0 ); 4279 assert( pC->pseudoTableReg==0 ); 4280 assert( pC->pCursor!=0 ); 4281 pCrsr = pC->pCursor; 4282 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4283 4284 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4285 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4286 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always 4287 ** a no-op and can never fail. But we leave it in place as a safety. 4288 */ 4289 assert( pC->deferredMoveto==0 ); 4290 rc = sqlite3VdbeCursorMoveto(pC); 4291 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4292 4293 if( pC->isTable==0 ){ 4294 assert( !pC->isTable ); 4295 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); 4296 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4297 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4298 goto too_big; 4299 } 4300 n = (u32)n64; 4301 }else{ 4302 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); 4303 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4304 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4305 goto too_big; 4306 } 4307 } 4308 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ 4309 goto no_mem; 4310 } 4311 pOut->n = n; 4312 MemSetTypeFlag(pOut, MEM_Blob); 4313 if( pC->isTable==0 ){ 4314 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4315 }else{ 4316 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4317 } 4318 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4319 UPDATE_MAX_BLOBSIZE(pOut); 4320 REGISTER_TRACE(pOp->p2, pOut); 4321 break; 4322 } 4323 4324 /* Opcode: Rowid P1 P2 * * * 4325 ** Synopsis: r[P2]=rowid 4326 ** 4327 ** Store in register P2 an integer which is the key of the table entry that 4328 ** P1 is currently point to. 4329 ** 4330 ** P1 can be either an ordinary table or a virtual table. There used to 4331 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4332 ** one opcode now works for both table types. 4333 */ 4334 case OP_Rowid: { /* out2-prerelease */ 4335 VdbeCursor *pC; 4336 i64 v; 4337 sqlite3_vtab *pVtab; 4338 const sqlite3_module *pModule; 4339 4340 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4341 pC = p->apCsr[pOp->p1]; 4342 assert( pC!=0 ); 4343 assert( pC->pseudoTableReg==0 || pC->nullRow ); 4344 if( pC->nullRow ){ 4345 pOut->flags = MEM_Null; 4346 break; 4347 }else if( pC->deferredMoveto ){ 4348 v = pC->movetoTarget; 4349 #ifndef SQLITE_OMIT_VIRTUALTABLE 4350 }else if( pC->pVtabCursor ){ 4351 pVtab = pC->pVtabCursor->pVtab; 4352 pModule = pVtab->pModule; 4353 assert( pModule->xRowid ); 4354 rc = pModule->xRowid(pC->pVtabCursor, &v); 4355 sqlite3VtabImportErrmsg(p, pVtab); 4356 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4357 }else{ 4358 assert( pC->pCursor!=0 ); 4359 rc = sqlite3VdbeCursorMoveto(pC); 4360 if( rc ) goto abort_due_to_error; 4361 if( pC->rowidIsValid ){ 4362 v = pC->lastRowid; 4363 }else{ 4364 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4365 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ 4366 } 4367 } 4368 pOut->u.i = v; 4369 break; 4370 } 4371 4372 /* Opcode: NullRow P1 * * * * 4373 ** 4374 ** Move the cursor P1 to a null row. Any OP_Column operations 4375 ** that occur while the cursor is on the null row will always 4376 ** write a NULL. 4377 */ 4378 case OP_NullRow: { 4379 VdbeCursor *pC; 4380 4381 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4382 pC = p->apCsr[pOp->p1]; 4383 assert( pC!=0 ); 4384 pC->nullRow = 1; 4385 pC->rowidIsValid = 0; 4386 pC->cacheStatus = CACHE_STALE; 4387 if( pC->pCursor ){ 4388 sqlite3BtreeClearCursor(pC->pCursor); 4389 } 4390 break; 4391 } 4392 4393 /* Opcode: Last P1 P2 * * * 4394 ** 4395 ** The next use of the Rowid or Column or Next instruction for P1 4396 ** will refer to the last entry in the database table or index. 4397 ** If the table or index is empty and P2>0, then jump immediately to P2. 4398 ** If P2 is 0 or if the table or index is not empty, fall through 4399 ** to the following instruction. 4400 */ 4401 case OP_Last: { /* jump */ 4402 VdbeCursor *pC; 4403 BtCursor *pCrsr; 4404 int res; 4405 4406 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4407 pC = p->apCsr[pOp->p1]; 4408 assert( pC!=0 ); 4409 pCrsr = pC->pCursor; 4410 res = 0; 4411 assert( pCrsr!=0 ); 4412 rc = sqlite3BtreeLast(pCrsr, &res); 4413 pC->nullRow = (u8)res; 4414 pC->deferredMoveto = 0; 4415 pC->rowidIsValid = 0; 4416 pC->cacheStatus = CACHE_STALE; 4417 if( pOp->p2>0 ){ 4418 VdbeBranchTaken(res!=0,2); 4419 if( res ) pc = pOp->p2 - 1; 4420 } 4421 break; 4422 } 4423 4424 4425 /* Opcode: Sort P1 P2 * * * 4426 ** 4427 ** This opcode does exactly the same thing as OP_Rewind except that 4428 ** it increments an undocumented global variable used for testing. 4429 ** 4430 ** Sorting is accomplished by writing records into a sorting index, 4431 ** then rewinding that index and playing it back from beginning to 4432 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4433 ** rewinding so that the global variable will be incremented and 4434 ** regression tests can determine whether or not the optimizer is 4435 ** correctly optimizing out sorts. 4436 */ 4437 case OP_SorterSort: /* jump */ 4438 case OP_Sort: { /* jump */ 4439 #ifdef SQLITE_TEST 4440 sqlite3_sort_count++; 4441 sqlite3_search_count--; 4442 #endif 4443 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4444 /* Fall through into OP_Rewind */ 4445 } 4446 /* Opcode: Rewind P1 P2 * * * 4447 ** 4448 ** The next use of the Rowid or Column or Next instruction for P1 4449 ** will refer to the first entry in the database table or index. 4450 ** If the table or index is empty and P2>0, then jump immediately to P2. 4451 ** If P2 is 0 or if the table or index is not empty, fall through 4452 ** to the following instruction. 4453 */ 4454 case OP_Rewind: { /* jump */ 4455 VdbeCursor *pC; 4456 BtCursor *pCrsr; 4457 int res; 4458 4459 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4460 pC = p->apCsr[pOp->p1]; 4461 assert( pC!=0 ); 4462 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4463 res = 1; 4464 if( isSorter(pC) ){ 4465 rc = sqlite3VdbeSorterRewind(db, pC, &res); 4466 }else{ 4467 pCrsr = pC->pCursor; 4468 assert( pCrsr ); 4469 rc = sqlite3BtreeFirst(pCrsr, &res); 4470 pC->deferredMoveto = 0; 4471 pC->cacheStatus = CACHE_STALE; 4472 pC->rowidIsValid = 0; 4473 } 4474 pC->nullRow = (u8)res; 4475 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4476 VdbeBranchTaken(res!=0,2); 4477 if( res ){ 4478 pc = pOp->p2 - 1; 4479 } 4480 break; 4481 } 4482 4483 /* Opcode: Next P1 P2 P3 P4 P5 4484 ** 4485 ** Advance cursor P1 so that it points to the next key/data pair in its 4486 ** table or index. If there are no more key/value pairs then fall through 4487 ** to the following instruction. But if the cursor advance was successful, 4488 ** jump immediately to P2. 4489 ** 4490 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4491 ** been opened prior to this opcode or the program will segfault. 4492 ** 4493 ** The P3 value is a hint to the btree implementation. If P3==1, that 4494 ** means P1 is an SQL index and that this instruction could have been 4495 ** omitted if that index had been unique. P3 is usually 0. P3 is 4496 ** always either 0 or 1. 4497 ** 4498 ** P4 is always of type P4_ADVANCE. The function pointer points to 4499 ** sqlite3BtreeNext(). 4500 ** 4501 ** If P5 is positive and the jump is taken, then event counter 4502 ** number P5-1 in the prepared statement is incremented. 4503 ** 4504 ** See also: Prev, NextIfOpen 4505 */ 4506 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 4507 ** 4508 ** This opcode works just like OP_Next except that if cursor P1 is not 4509 ** open it behaves a no-op. 4510 */ 4511 /* Opcode: Prev P1 P2 P3 P4 P5 4512 ** 4513 ** Back up cursor P1 so that it points to the previous key/data pair in its 4514 ** table or index. If there is no previous key/value pairs then fall through 4515 ** to the following instruction. But if the cursor backup was successful, 4516 ** jump immediately to P2. 4517 ** 4518 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4519 ** not open then the behavior is undefined. 4520 ** 4521 ** The P3 value is a hint to the btree implementation. If P3==1, that 4522 ** means P1 is an SQL index and that this instruction could have been 4523 ** omitted if that index had been unique. P3 is usually 0. P3 is 4524 ** always either 0 or 1. 4525 ** 4526 ** P4 is always of type P4_ADVANCE. The function pointer points to 4527 ** sqlite3BtreePrevious(). 4528 ** 4529 ** If P5 is positive and the jump is taken, then event counter 4530 ** number P5-1 in the prepared statement is incremented. 4531 */ 4532 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 4533 ** 4534 ** This opcode works just like OP_Prev except that if cursor P1 is not 4535 ** open it behaves a no-op. 4536 */ 4537 case OP_SorterNext: { /* jump */ 4538 VdbeCursor *pC; 4539 int res; 4540 4541 pC = p->apCsr[pOp->p1]; 4542 assert( isSorter(pC) ); 4543 res = 0; 4544 rc = sqlite3VdbeSorterNext(db, pC, &res); 4545 goto next_tail; 4546 case OP_PrevIfOpen: /* jump */ 4547 case OP_NextIfOpen: /* jump */ 4548 if( p->apCsr[pOp->p1]==0 ) break; 4549 /* Fall through */ 4550 case OP_Prev: /* jump */ 4551 case OP_Next: /* jump */ 4552 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4553 assert( pOp->p5<ArraySize(p->aCounter) ); 4554 pC = p->apCsr[pOp->p1]; 4555 res = pOp->p3; 4556 assert( pC!=0 ); 4557 assert( pC->deferredMoveto==0 ); 4558 assert( pC->pCursor ); 4559 assert( res==0 || (res==1 && pC->isTable==0) ); 4560 testcase( res==1 ); 4561 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4562 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4563 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 4564 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 4565 rc = pOp->p4.xAdvance(pC->pCursor, &res); 4566 next_tail: 4567 pC->cacheStatus = CACHE_STALE; 4568 VdbeBranchTaken(res==0,2); 4569 if( res==0 ){ 4570 pC->nullRow = 0; 4571 pc = pOp->p2 - 1; 4572 p->aCounter[pOp->p5]++; 4573 #ifdef SQLITE_TEST 4574 sqlite3_search_count++; 4575 #endif 4576 }else{ 4577 pC->nullRow = 1; 4578 } 4579 pC->rowidIsValid = 0; 4580 goto check_for_interrupt; 4581 } 4582 4583 /* Opcode: IdxInsert P1 P2 P3 * P5 4584 ** Synopsis: key=r[P2] 4585 ** 4586 ** Register P2 holds an SQL index key made using the 4587 ** MakeRecord instructions. This opcode writes that key 4588 ** into the index P1. Data for the entry is nil. 4589 ** 4590 ** P3 is a flag that provides a hint to the b-tree layer that this 4591 ** insert is likely to be an append. 4592 ** 4593 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 4594 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 4595 ** then the change counter is unchanged. 4596 ** 4597 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have 4598 ** just done a seek to the spot where the new entry is to be inserted. 4599 ** This flag avoids doing an extra seek. 4600 ** 4601 ** This instruction only works for indices. The equivalent instruction 4602 ** for tables is OP_Insert. 4603 */ 4604 case OP_SorterInsert: /* in2 */ 4605 case OP_IdxInsert: { /* in2 */ 4606 VdbeCursor *pC; 4607 BtCursor *pCrsr; 4608 int nKey; 4609 const char *zKey; 4610 4611 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4612 pC = p->apCsr[pOp->p1]; 4613 assert( pC!=0 ); 4614 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 4615 pIn2 = &aMem[pOp->p2]; 4616 assert( pIn2->flags & MEM_Blob ); 4617 pCrsr = pC->pCursor; 4618 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4619 assert( pCrsr!=0 ); 4620 assert( pC->isTable==0 ); 4621 rc = ExpandBlob(pIn2); 4622 if( rc==SQLITE_OK ){ 4623 if( isSorter(pC) ){ 4624 rc = sqlite3VdbeSorterWrite(db, pC, pIn2); 4625 }else{ 4626 nKey = pIn2->n; 4627 zKey = pIn2->z; 4628 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4629 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4630 ); 4631 assert( pC->deferredMoveto==0 ); 4632 pC->cacheStatus = CACHE_STALE; 4633 } 4634 } 4635 break; 4636 } 4637 4638 /* Opcode: IdxDelete P1 P2 P3 * * 4639 ** Synopsis: key=r[P2@P3] 4640 ** 4641 ** The content of P3 registers starting at register P2 form 4642 ** an unpacked index key. This opcode removes that entry from the 4643 ** index opened by cursor P1. 4644 */ 4645 case OP_IdxDelete: { 4646 VdbeCursor *pC; 4647 BtCursor *pCrsr; 4648 int res; 4649 UnpackedRecord r; 4650 4651 assert( pOp->p3>0 ); 4652 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); 4653 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4654 pC = p->apCsr[pOp->p1]; 4655 assert( pC!=0 ); 4656 pCrsr = pC->pCursor; 4657 assert( pCrsr!=0 ); 4658 assert( pOp->p5==0 ); 4659 r.pKeyInfo = pC->pKeyInfo; 4660 r.nField = (u16)pOp->p3; 4661 r.default_rc = 0; 4662 r.aMem = &aMem[pOp->p2]; 4663 #ifdef SQLITE_DEBUG 4664 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4665 #endif 4666 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4667 if( rc==SQLITE_OK && res==0 ){ 4668 rc = sqlite3BtreeDelete(pCrsr); 4669 } 4670 assert( pC->deferredMoveto==0 ); 4671 pC->cacheStatus = CACHE_STALE; 4672 break; 4673 } 4674 4675 /* Opcode: IdxRowid P1 P2 * * * 4676 ** Synopsis: r[P2]=rowid 4677 ** 4678 ** Write into register P2 an integer which is the last entry in the record at 4679 ** the end of the index key pointed to by cursor P1. This integer should be 4680 ** the rowid of the table entry to which this index entry points. 4681 ** 4682 ** See also: Rowid, MakeRecord. 4683 */ 4684 case OP_IdxRowid: { /* out2-prerelease */ 4685 BtCursor *pCrsr; 4686 VdbeCursor *pC; 4687 i64 rowid; 4688 4689 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4690 pC = p->apCsr[pOp->p1]; 4691 assert( pC!=0 ); 4692 pCrsr = pC->pCursor; 4693 assert( pCrsr!=0 ); 4694 pOut->flags = MEM_Null; 4695 rc = sqlite3VdbeCursorMoveto(pC); 4696 if( NEVER(rc) ) goto abort_due_to_error; 4697 assert( pC->deferredMoveto==0 ); 4698 assert( pC->isTable==0 ); 4699 if( !pC->nullRow ){ 4700 rowid = 0; /* Not needed. Only used to silence a warning. */ 4701 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4702 if( rc!=SQLITE_OK ){ 4703 goto abort_due_to_error; 4704 } 4705 pOut->u.i = rowid; 4706 pOut->flags = MEM_Int; 4707 } 4708 break; 4709 } 4710 4711 /* Opcode: IdxGE P1 P2 P3 P4 P5 4712 ** Synopsis: key=r[P3@P4] 4713 ** 4714 ** The P4 register values beginning with P3 form an unpacked index 4715 ** key that omits the PRIMARY KEY. Compare this key value against the index 4716 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4717 ** fields at the end. 4718 ** 4719 ** If the P1 index entry is greater than or equal to the key value 4720 ** then jump to P2. Otherwise fall through to the next instruction. 4721 */ 4722 /* Opcode: IdxGT P1 P2 P3 P4 P5 4723 ** Synopsis: key=r[P3@P4] 4724 ** 4725 ** The P4 register values beginning with P3 form an unpacked index 4726 ** key that omits the PRIMARY KEY. Compare this key value against the index 4727 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4728 ** fields at the end. 4729 ** 4730 ** If the P1 index entry is greater than the key value 4731 ** then jump to P2. Otherwise fall through to the next instruction. 4732 */ 4733 /* Opcode: IdxLT P1 P2 P3 P4 P5 4734 ** Synopsis: key=r[P3@P4] 4735 ** 4736 ** The P4 register values beginning with P3 form an unpacked index 4737 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 4738 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 4739 ** ROWID on the P1 index. 4740 ** 4741 ** If the P1 index entry is less than the key value then jump to P2. 4742 ** Otherwise fall through to the next instruction. 4743 */ 4744 /* Opcode: IdxLE P1 P2 P3 P4 P5 4745 ** Synopsis: key=r[P3@P4] 4746 ** 4747 ** The P4 register values beginning with P3 form an unpacked index 4748 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 4749 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 4750 ** ROWID on the P1 index. 4751 ** 4752 ** If the P1 index entry is less than or equal to the key value then jump 4753 ** to P2. Otherwise fall through to the next instruction. 4754 */ 4755 case OP_IdxLE: /* jump */ 4756 case OP_IdxGT: /* jump */ 4757 case OP_IdxLT: /* jump */ 4758 case OP_IdxGE: { /* jump */ 4759 VdbeCursor *pC; 4760 int res; 4761 UnpackedRecord r; 4762 4763 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4764 pC = p->apCsr[pOp->p1]; 4765 assert( pC!=0 ); 4766 assert( pC->isOrdered ); 4767 assert( pC->pCursor!=0); 4768 assert( pC->deferredMoveto==0 ); 4769 assert( pOp->p5==0 || pOp->p5==1 ); 4770 assert( pOp->p4type==P4_INT32 ); 4771 r.pKeyInfo = pC->pKeyInfo; 4772 r.nField = (u16)pOp->p4.i; 4773 if( pOp->opcode<OP_IdxLT ){ 4774 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 4775 r.default_rc = -1; 4776 }else{ 4777 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 4778 r.default_rc = 0; 4779 } 4780 r.aMem = &aMem[pOp->p3]; 4781 #ifdef SQLITE_DEBUG 4782 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4783 #endif 4784 res = 0; /* Not needed. Only used to silence a warning. */ 4785 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); 4786 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 4787 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 4788 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 4789 res = -res; 4790 }else{ 4791 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 4792 res++; 4793 } 4794 VdbeBranchTaken(res>0,2); 4795 if( res>0 ){ 4796 pc = pOp->p2 - 1 ; 4797 } 4798 break; 4799 } 4800 4801 /* Opcode: Destroy P1 P2 P3 * * 4802 ** 4803 ** Delete an entire database table or index whose root page in the database 4804 ** file is given by P1. 4805 ** 4806 ** The table being destroyed is in the main database file if P3==0. If 4807 ** P3==1 then the table to be clear is in the auxiliary database file 4808 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4809 ** 4810 ** If AUTOVACUUM is enabled then it is possible that another root page 4811 ** might be moved into the newly deleted root page in order to keep all 4812 ** root pages contiguous at the beginning of the database. The former 4813 ** value of the root page that moved - its value before the move occurred - 4814 ** is stored in register P2. If no page 4815 ** movement was required (because the table being dropped was already 4816 ** the last one in the database) then a zero is stored in register P2. 4817 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4818 ** 4819 ** See also: Clear 4820 */ 4821 case OP_Destroy: { /* out2-prerelease */ 4822 int iMoved; 4823 int iCnt; 4824 Vdbe *pVdbe; 4825 int iDb; 4826 4827 assert( p->readOnly==0 ); 4828 #ifndef SQLITE_OMIT_VIRTUALTABLE 4829 iCnt = 0; 4830 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4831 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 4832 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 4833 ){ 4834 iCnt++; 4835 } 4836 } 4837 #else 4838 iCnt = db->nVdbeRead; 4839 #endif 4840 pOut->flags = MEM_Null; 4841 if( iCnt>1 ){ 4842 rc = SQLITE_LOCKED; 4843 p->errorAction = OE_Abort; 4844 }else{ 4845 iDb = pOp->p3; 4846 assert( iCnt==1 ); 4847 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 4848 iMoved = 0; /* Not needed. Only to silence a warning. */ 4849 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4850 pOut->flags = MEM_Int; 4851 pOut->u.i = iMoved; 4852 #ifndef SQLITE_OMIT_AUTOVACUUM 4853 if( rc==SQLITE_OK && iMoved!=0 ){ 4854 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 4855 /* All OP_Destroy operations occur on the same btree */ 4856 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 4857 resetSchemaOnFault = iDb+1; 4858 } 4859 #endif 4860 } 4861 break; 4862 } 4863 4864 /* Opcode: Clear P1 P2 P3 4865 ** 4866 ** Delete all contents of the database table or index whose root page 4867 ** in the database file is given by P1. But, unlike Destroy, do not 4868 ** remove the table or index from the database file. 4869 ** 4870 ** The table being clear is in the main database file if P2==0. If 4871 ** P2==1 then the table to be clear is in the auxiliary database file 4872 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4873 ** 4874 ** If the P3 value is non-zero, then the table referred to must be an 4875 ** intkey table (an SQL table, not an index). In this case the row change 4876 ** count is incremented by the number of rows in the table being cleared. 4877 ** If P3 is greater than zero, then the value stored in register P3 is 4878 ** also incremented by the number of rows in the table being cleared. 4879 ** 4880 ** See also: Destroy 4881 */ 4882 case OP_Clear: { 4883 int nChange; 4884 4885 nChange = 0; 4886 assert( p->readOnly==0 ); 4887 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); 4888 rc = sqlite3BtreeClearTable( 4889 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 4890 ); 4891 if( pOp->p3 ){ 4892 p->nChange += nChange; 4893 if( pOp->p3>0 ){ 4894 assert( memIsValid(&aMem[pOp->p3]) ); 4895 memAboutToChange(p, &aMem[pOp->p3]); 4896 aMem[pOp->p3].u.i += nChange; 4897 } 4898 } 4899 break; 4900 } 4901 4902 /* Opcode: ResetSorter P1 * * * * 4903 ** 4904 ** Delete all contents from the ephemeral table or sorter 4905 ** that is open on cursor P1. 4906 ** 4907 ** This opcode only works for cursors used for sorting and 4908 ** opened with OP_OpenEphemeral or OP_SorterOpen. 4909 */ 4910 case OP_ResetSorter: { 4911 VdbeCursor *pC; 4912 4913 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4914 pC = p->apCsr[pOp->p1]; 4915 assert( pC!=0 ); 4916 if( pC->pSorter ){ 4917 sqlite3VdbeSorterReset(db, pC->pSorter); 4918 }else{ 4919 assert( pC->isEphemeral ); 4920 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor); 4921 } 4922 break; 4923 } 4924 4925 /* Opcode: CreateTable P1 P2 * * * 4926 ** Synopsis: r[P2]=root iDb=P1 4927 ** 4928 ** Allocate a new table in the main database file if P1==0 or in the 4929 ** auxiliary database file if P1==1 or in an attached database if 4930 ** P1>1. Write the root page number of the new table into 4931 ** register P2 4932 ** 4933 ** The difference between a table and an index is this: A table must 4934 ** have a 4-byte integer key and can have arbitrary data. An index 4935 ** has an arbitrary key but no data. 4936 ** 4937 ** See also: CreateIndex 4938 */ 4939 /* Opcode: CreateIndex P1 P2 * * * 4940 ** Synopsis: r[P2]=root iDb=P1 4941 ** 4942 ** Allocate a new index in the main database file if P1==0 or in the 4943 ** auxiliary database file if P1==1 or in an attached database if 4944 ** P1>1. Write the root page number of the new table into 4945 ** register P2. 4946 ** 4947 ** See documentation on OP_CreateTable for additional information. 4948 */ 4949 case OP_CreateIndex: /* out2-prerelease */ 4950 case OP_CreateTable: { /* out2-prerelease */ 4951 int pgno; 4952 int flags; 4953 Db *pDb; 4954 4955 pgno = 0; 4956 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4957 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 4958 assert( p->readOnly==0 ); 4959 pDb = &db->aDb[pOp->p1]; 4960 assert( pDb->pBt!=0 ); 4961 if( pOp->opcode==OP_CreateTable ){ 4962 /* flags = BTREE_INTKEY; */ 4963 flags = BTREE_INTKEY; 4964 }else{ 4965 flags = BTREE_BLOBKEY; 4966 } 4967 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 4968 pOut->u.i = pgno; 4969 break; 4970 } 4971 4972 /* Opcode: ParseSchema P1 * * P4 * 4973 ** 4974 ** Read and parse all entries from the SQLITE_MASTER table of database P1 4975 ** that match the WHERE clause P4. 4976 ** 4977 ** This opcode invokes the parser to create a new virtual machine, 4978 ** then runs the new virtual machine. It is thus a re-entrant opcode. 4979 */ 4980 case OP_ParseSchema: { 4981 int iDb; 4982 const char *zMaster; 4983 char *zSql; 4984 InitData initData; 4985 4986 /* Any prepared statement that invokes this opcode will hold mutexes 4987 ** on every btree. This is a prerequisite for invoking 4988 ** sqlite3InitCallback(). 4989 */ 4990 #ifdef SQLITE_DEBUG 4991 for(iDb=0; iDb<db->nDb; iDb++){ 4992 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 4993 } 4994 #endif 4995 4996 iDb = pOp->p1; 4997 assert( iDb>=0 && iDb<db->nDb ); 4998 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 4999 /* Used to be a conditional */ { 5000 zMaster = SCHEMA_TABLE(iDb); 5001 initData.db = db; 5002 initData.iDb = pOp->p1; 5003 initData.pzErrMsg = &p->zErrMsg; 5004 zSql = sqlite3MPrintf(db, 5005 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5006 db->aDb[iDb].zName, zMaster, pOp->p4.z); 5007 if( zSql==0 ){ 5008 rc = SQLITE_NOMEM; 5009 }else{ 5010 assert( db->init.busy==0 ); 5011 db->init.busy = 1; 5012 initData.rc = SQLITE_OK; 5013 assert( !db->mallocFailed ); 5014 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5015 if( rc==SQLITE_OK ) rc = initData.rc; 5016 sqlite3DbFree(db, zSql); 5017 db->init.busy = 0; 5018 } 5019 } 5020 if( rc ) sqlite3ResetAllSchemasOfConnection(db); 5021 if( rc==SQLITE_NOMEM ){ 5022 goto no_mem; 5023 } 5024 break; 5025 } 5026 5027 #if !defined(SQLITE_OMIT_ANALYZE) 5028 /* Opcode: LoadAnalysis P1 * * * * 5029 ** 5030 ** Read the sqlite_stat1 table for database P1 and load the content 5031 ** of that table into the internal index hash table. This will cause 5032 ** the analysis to be used when preparing all subsequent queries. 5033 */ 5034 case OP_LoadAnalysis: { 5035 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5036 rc = sqlite3AnalysisLoad(db, pOp->p1); 5037 break; 5038 } 5039 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5040 5041 /* Opcode: DropTable P1 * * P4 * 5042 ** 5043 ** Remove the internal (in-memory) data structures that describe 5044 ** the table named P4 in database P1. This is called after a table 5045 ** is dropped in order to keep the internal representation of the 5046 ** schema consistent with what is on disk. 5047 */ 5048 case OP_DropTable: { 5049 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5050 break; 5051 } 5052 5053 /* Opcode: DropIndex P1 * * P4 * 5054 ** 5055 ** Remove the internal (in-memory) data structures that describe 5056 ** the index named P4 in database P1. This is called after an index 5057 ** is dropped in order to keep the internal representation of the 5058 ** schema consistent with what is on disk. 5059 */ 5060 case OP_DropIndex: { 5061 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5062 break; 5063 } 5064 5065 /* Opcode: DropTrigger P1 * * P4 * 5066 ** 5067 ** Remove the internal (in-memory) data structures that describe 5068 ** the trigger named P4 in database P1. This is called after a trigger 5069 ** is dropped in order to keep the internal representation of the 5070 ** schema consistent with what is on disk. 5071 */ 5072 case OP_DropTrigger: { 5073 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5074 break; 5075 } 5076 5077 5078 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5079 /* Opcode: IntegrityCk P1 P2 P3 * P5 5080 ** 5081 ** Do an analysis of the currently open database. Store in 5082 ** register P1 the text of an error message describing any problems. 5083 ** If no problems are found, store a NULL in register P1. 5084 ** 5085 ** The register P3 contains the maximum number of allowed errors. 5086 ** At most reg(P3) errors will be reported. 5087 ** In other words, the analysis stops as soon as reg(P1) errors are 5088 ** seen. Reg(P1) is updated with the number of errors remaining. 5089 ** 5090 ** The root page numbers of all tables in the database are integer 5091 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 5092 ** total. 5093 ** 5094 ** If P5 is not zero, the check is done on the auxiliary database 5095 ** file, not the main database file. 5096 ** 5097 ** This opcode is used to implement the integrity_check pragma. 5098 */ 5099 case OP_IntegrityCk: { 5100 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5101 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5102 int j; /* Loop counter */ 5103 int nErr; /* Number of errors reported */ 5104 char *z; /* Text of the error report */ 5105 Mem *pnErr; /* Register keeping track of errors remaining */ 5106 5107 assert( p->bIsReader ); 5108 nRoot = pOp->p2; 5109 assert( nRoot>0 ); 5110 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 5111 if( aRoot==0 ) goto no_mem; 5112 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5113 pnErr = &aMem[pOp->p3]; 5114 assert( (pnErr->flags & MEM_Int)!=0 ); 5115 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5116 pIn1 = &aMem[pOp->p1]; 5117 for(j=0; j<nRoot; j++){ 5118 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 5119 } 5120 aRoot[j] = 0; 5121 assert( pOp->p5<db->nDb ); 5122 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 ); 5123 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5124 (int)pnErr->u.i, &nErr); 5125 sqlite3DbFree(db, aRoot); 5126 pnErr->u.i -= nErr; 5127 sqlite3VdbeMemSetNull(pIn1); 5128 if( nErr==0 ){ 5129 assert( z==0 ); 5130 }else if( z==0 ){ 5131 goto no_mem; 5132 }else{ 5133 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5134 } 5135 UPDATE_MAX_BLOBSIZE(pIn1); 5136 sqlite3VdbeChangeEncoding(pIn1, encoding); 5137 break; 5138 } 5139 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5140 5141 /* Opcode: RowSetAdd P1 P2 * * * 5142 ** Synopsis: rowset(P1)=r[P2] 5143 ** 5144 ** Insert the integer value held by register P2 into a boolean index 5145 ** held in register P1. 5146 ** 5147 ** An assertion fails if P2 is not an integer. 5148 */ 5149 case OP_RowSetAdd: { /* in1, in2 */ 5150 pIn1 = &aMem[pOp->p1]; 5151 pIn2 = &aMem[pOp->p2]; 5152 assert( (pIn2->flags & MEM_Int)!=0 ); 5153 if( (pIn1->flags & MEM_RowSet)==0 ){ 5154 sqlite3VdbeMemSetRowSet(pIn1); 5155 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5156 } 5157 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5158 break; 5159 } 5160 5161 /* Opcode: RowSetRead P1 P2 P3 * * 5162 ** Synopsis: r[P3]=rowset(P1) 5163 ** 5164 ** Extract the smallest value from boolean index P1 and put that value into 5165 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5166 ** unchanged and jump to instruction P2. 5167 */ 5168 case OP_RowSetRead: { /* jump, in1, out3 */ 5169 i64 val; 5170 5171 pIn1 = &aMem[pOp->p1]; 5172 if( (pIn1->flags & MEM_RowSet)==0 5173 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5174 ){ 5175 /* The boolean index is empty */ 5176 sqlite3VdbeMemSetNull(pIn1); 5177 pc = pOp->p2 - 1; 5178 VdbeBranchTaken(1,2); 5179 }else{ 5180 /* A value was pulled from the index */ 5181 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5182 VdbeBranchTaken(0,2); 5183 } 5184 goto check_for_interrupt; 5185 } 5186 5187 /* Opcode: RowSetTest P1 P2 P3 P4 5188 ** Synopsis: if r[P3] in rowset(P1) goto P2 5189 ** 5190 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5191 ** contains a RowSet object and that RowSet object contains 5192 ** the value held in P3, jump to register P2. Otherwise, insert the 5193 ** integer in P3 into the RowSet and continue on to the 5194 ** next opcode. 5195 ** 5196 ** The RowSet object is optimized for the case where successive sets 5197 ** of integers, where each set contains no duplicates. Each set 5198 ** of values is identified by a unique P4 value. The first set 5199 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5200 ** non-negative. For non-negative values of P4 only the lower 4 5201 ** bits are significant. 5202 ** 5203 ** This allows optimizations: (a) when P4==0 there is no need to test 5204 ** the rowset object for P3, as it is guaranteed not to contain it, 5205 ** (b) when P4==-1 there is no need to insert the value, as it will 5206 ** never be tested for, and (c) when a value that is part of set X is 5207 ** inserted, there is no need to search to see if the same value was 5208 ** previously inserted as part of set X (only if it was previously 5209 ** inserted as part of some other set). 5210 */ 5211 case OP_RowSetTest: { /* jump, in1, in3 */ 5212 int iSet; 5213 int exists; 5214 5215 pIn1 = &aMem[pOp->p1]; 5216 pIn3 = &aMem[pOp->p3]; 5217 iSet = pOp->p4.i; 5218 assert( pIn3->flags&MEM_Int ); 5219 5220 /* If there is anything other than a rowset object in memory cell P1, 5221 ** delete it now and initialize P1 with an empty rowset 5222 */ 5223 if( (pIn1->flags & MEM_RowSet)==0 ){ 5224 sqlite3VdbeMemSetRowSet(pIn1); 5225 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5226 } 5227 5228 assert( pOp->p4type==P4_INT32 ); 5229 assert( iSet==-1 || iSet>=0 ); 5230 if( iSet ){ 5231 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5232 VdbeBranchTaken(exists!=0,2); 5233 if( exists ){ 5234 pc = pOp->p2 - 1; 5235 break; 5236 } 5237 } 5238 if( iSet>=0 ){ 5239 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5240 } 5241 break; 5242 } 5243 5244 5245 #ifndef SQLITE_OMIT_TRIGGER 5246 5247 /* Opcode: Program P1 P2 P3 P4 P5 5248 ** 5249 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5250 ** 5251 ** P1 contains the address of the memory cell that contains the first memory 5252 ** cell in an array of values used as arguments to the sub-program. P2 5253 ** contains the address to jump to if the sub-program throws an IGNORE 5254 ** exception using the RAISE() function. Register P3 contains the address 5255 ** of a memory cell in this (the parent) VM that is used to allocate the 5256 ** memory required by the sub-vdbe at runtime. 5257 ** 5258 ** P4 is a pointer to the VM containing the trigger program. 5259 ** 5260 ** If P5 is non-zero, then recursive program invocation is enabled. 5261 */ 5262 case OP_Program: { /* jump */ 5263 int nMem; /* Number of memory registers for sub-program */ 5264 int nByte; /* Bytes of runtime space required for sub-program */ 5265 Mem *pRt; /* Register to allocate runtime space */ 5266 Mem *pMem; /* Used to iterate through memory cells */ 5267 Mem *pEnd; /* Last memory cell in new array */ 5268 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5269 SubProgram *pProgram; /* Sub-program to execute */ 5270 void *t; /* Token identifying trigger */ 5271 5272 pProgram = pOp->p4.pProgram; 5273 pRt = &aMem[pOp->p3]; 5274 assert( pProgram->nOp>0 ); 5275 5276 /* If the p5 flag is clear, then recursive invocation of triggers is 5277 ** disabled for backwards compatibility (p5 is set if this sub-program 5278 ** is really a trigger, not a foreign key action, and the flag set 5279 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5280 ** 5281 ** It is recursive invocation of triggers, at the SQL level, that is 5282 ** disabled. In some cases a single trigger may generate more than one 5283 ** SubProgram (if the trigger may be executed with more than one different 5284 ** ON CONFLICT algorithm). SubProgram structures associated with a 5285 ** single trigger all have the same value for the SubProgram.token 5286 ** variable. */ 5287 if( pOp->p5 ){ 5288 t = pProgram->token; 5289 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5290 if( pFrame ) break; 5291 } 5292 5293 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5294 rc = SQLITE_ERROR; 5295 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 5296 break; 5297 } 5298 5299 /* Register pRt is used to store the memory required to save the state 5300 ** of the current program, and the memory required at runtime to execute 5301 ** the trigger program. If this trigger has been fired before, then pRt 5302 ** is already allocated. Otherwise, it must be initialized. */ 5303 if( (pRt->flags&MEM_Frame)==0 ){ 5304 /* SubProgram.nMem is set to the number of memory cells used by the 5305 ** program stored in SubProgram.aOp. As well as these, one memory 5306 ** cell is required for each cursor used by the program. Set local 5307 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5308 */ 5309 nMem = pProgram->nMem + pProgram->nCsr; 5310 nByte = ROUND8(sizeof(VdbeFrame)) 5311 + nMem * sizeof(Mem) 5312 + pProgram->nCsr * sizeof(VdbeCursor *) 5313 + pProgram->nOnce * sizeof(u8); 5314 pFrame = sqlite3DbMallocZero(db, nByte); 5315 if( !pFrame ){ 5316 goto no_mem; 5317 } 5318 sqlite3VdbeMemRelease(pRt); 5319 pRt->flags = MEM_Frame; 5320 pRt->u.pFrame = pFrame; 5321 5322 pFrame->v = p; 5323 pFrame->nChildMem = nMem; 5324 pFrame->nChildCsr = pProgram->nCsr; 5325 pFrame->pc = pc; 5326 pFrame->aMem = p->aMem; 5327 pFrame->nMem = p->nMem; 5328 pFrame->apCsr = p->apCsr; 5329 pFrame->nCursor = p->nCursor; 5330 pFrame->aOp = p->aOp; 5331 pFrame->nOp = p->nOp; 5332 pFrame->token = pProgram->token; 5333 pFrame->aOnceFlag = p->aOnceFlag; 5334 pFrame->nOnceFlag = p->nOnceFlag; 5335 5336 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5337 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5338 pMem->flags = MEM_Undefined; 5339 pMem->db = db; 5340 } 5341 }else{ 5342 pFrame = pRt->u.pFrame; 5343 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5344 assert( pProgram->nCsr==pFrame->nChildCsr ); 5345 assert( pc==pFrame->pc ); 5346 } 5347 5348 p->nFrame++; 5349 pFrame->pParent = p->pFrame; 5350 pFrame->lastRowid = lastRowid; 5351 pFrame->nChange = p->nChange; 5352 p->nChange = 0; 5353 p->pFrame = pFrame; 5354 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5355 p->nMem = pFrame->nChildMem; 5356 p->nCursor = (u16)pFrame->nChildCsr; 5357 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5358 p->aOp = aOp = pProgram->aOp; 5359 p->nOp = pProgram->nOp; 5360 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5361 p->nOnceFlag = pProgram->nOnce; 5362 pc = -1; 5363 memset(p->aOnceFlag, 0, p->nOnceFlag); 5364 5365 break; 5366 } 5367 5368 /* Opcode: Param P1 P2 * * * 5369 ** 5370 ** This opcode is only ever present in sub-programs called via the 5371 ** OP_Program instruction. Copy a value currently stored in a memory 5372 ** cell of the calling (parent) frame to cell P2 in the current frames 5373 ** address space. This is used by trigger programs to access the new.* 5374 ** and old.* values. 5375 ** 5376 ** The address of the cell in the parent frame is determined by adding 5377 ** the value of the P1 argument to the value of the P1 argument to the 5378 ** calling OP_Program instruction. 5379 */ 5380 case OP_Param: { /* out2-prerelease */ 5381 VdbeFrame *pFrame; 5382 Mem *pIn; 5383 pFrame = p->pFrame; 5384 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5385 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5386 break; 5387 } 5388 5389 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5390 5391 #ifndef SQLITE_OMIT_FOREIGN_KEY 5392 /* Opcode: FkCounter P1 P2 * * * 5393 ** Synopsis: fkctr[P1]+=P2 5394 ** 5395 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5396 ** If P1 is non-zero, the database constraint counter is incremented 5397 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5398 ** statement counter is incremented (immediate foreign key constraints). 5399 */ 5400 case OP_FkCounter: { 5401 if( db->flags & SQLITE_DeferFKs ){ 5402 db->nDeferredImmCons += pOp->p2; 5403 }else if( pOp->p1 ){ 5404 db->nDeferredCons += pOp->p2; 5405 }else{ 5406 p->nFkConstraint += pOp->p2; 5407 } 5408 break; 5409 } 5410 5411 /* Opcode: FkIfZero P1 P2 * * * 5412 ** Synopsis: if fkctr[P1]==0 goto P2 5413 ** 5414 ** This opcode tests if a foreign key constraint-counter is currently zero. 5415 ** If so, jump to instruction P2. Otherwise, fall through to the next 5416 ** instruction. 5417 ** 5418 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5419 ** is zero (the one that counts deferred constraint violations). If P1 is 5420 ** zero, the jump is taken if the statement constraint-counter is zero 5421 ** (immediate foreign key constraint violations). 5422 */ 5423 case OP_FkIfZero: { /* jump */ 5424 if( pOp->p1 ){ 5425 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5426 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5427 }else{ 5428 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5429 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5430 } 5431 break; 5432 } 5433 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5434 5435 #ifndef SQLITE_OMIT_AUTOINCREMENT 5436 /* Opcode: MemMax P1 P2 * * * 5437 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5438 ** 5439 ** P1 is a register in the root frame of this VM (the root frame is 5440 ** different from the current frame if this instruction is being executed 5441 ** within a sub-program). Set the value of register P1 to the maximum of 5442 ** its current value and the value in register P2. 5443 ** 5444 ** This instruction throws an error if the memory cell is not initially 5445 ** an integer. 5446 */ 5447 case OP_MemMax: { /* in2 */ 5448 VdbeFrame *pFrame; 5449 if( p->pFrame ){ 5450 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5451 pIn1 = &pFrame->aMem[pOp->p1]; 5452 }else{ 5453 pIn1 = &aMem[pOp->p1]; 5454 } 5455 assert( memIsValid(pIn1) ); 5456 sqlite3VdbeMemIntegerify(pIn1); 5457 pIn2 = &aMem[pOp->p2]; 5458 sqlite3VdbeMemIntegerify(pIn2); 5459 if( pIn1->u.i<pIn2->u.i){ 5460 pIn1->u.i = pIn2->u.i; 5461 } 5462 break; 5463 } 5464 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5465 5466 /* Opcode: IfPos P1 P2 * * * 5467 ** Synopsis: if r[P1]>0 goto P2 5468 ** 5469 ** If the value of register P1 is 1 or greater, jump to P2. 5470 ** 5471 ** It is illegal to use this instruction on a register that does 5472 ** not contain an integer. An assertion fault will result if you try. 5473 */ 5474 case OP_IfPos: { /* jump, in1 */ 5475 pIn1 = &aMem[pOp->p1]; 5476 assert( pIn1->flags&MEM_Int ); 5477 VdbeBranchTaken( pIn1->u.i>0, 2); 5478 if( pIn1->u.i>0 ){ 5479 pc = pOp->p2 - 1; 5480 } 5481 break; 5482 } 5483 5484 /* Opcode: IfNeg P1 P2 * * * 5485 ** Synopsis: if r[P1]<0 goto P2 5486 ** 5487 ** If the value of register P1 is less than zero, jump to P2. 5488 ** 5489 ** It is illegal to use this instruction on a register that does 5490 ** not contain an integer. An assertion fault will result if you try. 5491 */ 5492 case OP_IfNeg: { /* jump, in1 */ 5493 pIn1 = &aMem[pOp->p1]; 5494 assert( pIn1->flags&MEM_Int ); 5495 VdbeBranchTaken(pIn1->u.i<0, 2); 5496 if( pIn1->u.i<0 ){ 5497 pc = pOp->p2 - 1; 5498 } 5499 break; 5500 } 5501 5502 /* Opcode: IfZero P1 P2 P3 * * 5503 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 5504 ** 5505 ** The register P1 must contain an integer. Add literal P3 to the 5506 ** value in register P1. If the result is exactly 0, jump to P2. 5507 ** 5508 ** It is illegal to use this instruction on a register that does 5509 ** not contain an integer. An assertion fault will result if you try. 5510 */ 5511 case OP_IfZero: { /* jump, in1 */ 5512 pIn1 = &aMem[pOp->p1]; 5513 assert( pIn1->flags&MEM_Int ); 5514 pIn1->u.i += pOp->p3; 5515 VdbeBranchTaken(pIn1->u.i==0, 2); 5516 if( pIn1->u.i==0 ){ 5517 pc = pOp->p2 - 1; 5518 } 5519 break; 5520 } 5521 5522 /* Opcode: AggStep * P2 P3 P4 P5 5523 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5524 ** 5525 ** Execute the step function for an aggregate. The 5526 ** function has P5 arguments. P4 is a pointer to the FuncDef 5527 ** structure that specifies the function. Use register 5528 ** P3 as the accumulator. 5529 ** 5530 ** The P5 arguments are taken from register P2 and its 5531 ** successors. 5532 */ 5533 case OP_AggStep: { 5534 int n; 5535 int i; 5536 Mem *pMem; 5537 Mem *pRec; 5538 sqlite3_context ctx; 5539 sqlite3_value **apVal; 5540 5541 n = pOp->p5; 5542 assert( n>=0 ); 5543 pRec = &aMem[pOp->p2]; 5544 apVal = p->apArg; 5545 assert( apVal || n==0 ); 5546 for(i=0; i<n; i++, pRec++){ 5547 assert( memIsValid(pRec) ); 5548 apVal[i] = pRec; 5549 memAboutToChange(p, pRec); 5550 } 5551 ctx.pFunc = pOp->p4.pFunc; 5552 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5553 ctx.pMem = pMem = &aMem[pOp->p3]; 5554 pMem->n++; 5555 ctx.s.flags = MEM_Null; 5556 ctx.s.z = 0; 5557 ctx.s.zMalloc = 0; 5558 ctx.s.xDel = 0; 5559 ctx.s.db = db; 5560 ctx.isError = 0; 5561 ctx.pColl = 0; 5562 ctx.skipFlag = 0; 5563 if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5564 assert( pOp>p->aOp ); 5565 assert( pOp[-1].p4type==P4_COLLSEQ ); 5566 assert( pOp[-1].opcode==OP_CollSeq ); 5567 ctx.pColl = pOp[-1].p4.pColl; 5568 } 5569 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5570 if( ctx.isError ){ 5571 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 5572 rc = ctx.isError; 5573 } 5574 if( ctx.skipFlag ){ 5575 assert( pOp[-1].opcode==OP_CollSeq ); 5576 i = pOp[-1].p1; 5577 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 5578 } 5579 5580 sqlite3VdbeMemRelease(&ctx.s); 5581 5582 break; 5583 } 5584 5585 /* Opcode: AggFinal P1 P2 * P4 * 5586 ** Synopsis: accum=r[P1] N=P2 5587 ** 5588 ** Execute the finalizer function for an aggregate. P1 is 5589 ** the memory location that is the accumulator for the aggregate. 5590 ** 5591 ** P2 is the number of arguments that the step function takes and 5592 ** P4 is a pointer to the FuncDef for this function. The P2 5593 ** argument is not used by this opcode. It is only there to disambiguate 5594 ** functions that can take varying numbers of arguments. The 5595 ** P4 argument is only needed for the degenerate case where 5596 ** the step function was not previously called. 5597 */ 5598 case OP_AggFinal: { 5599 Mem *pMem; 5600 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 5601 pMem = &aMem[pOp->p1]; 5602 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5603 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5604 if( rc ){ 5605 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5606 } 5607 sqlite3VdbeChangeEncoding(pMem, encoding); 5608 UPDATE_MAX_BLOBSIZE(pMem); 5609 if( sqlite3VdbeMemTooBig(pMem) ){ 5610 goto too_big; 5611 } 5612 break; 5613 } 5614 5615 #ifndef SQLITE_OMIT_WAL 5616 /* Opcode: Checkpoint P1 P2 P3 * * 5617 ** 5618 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5619 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL 5620 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns 5621 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5622 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5623 ** in the WAL that have been checkpointed after the checkpoint 5624 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5625 ** mem[P3+2] are initialized to -1. 5626 */ 5627 case OP_Checkpoint: { 5628 int i; /* Loop counter */ 5629 int aRes[3]; /* Results */ 5630 Mem *pMem; /* Write results here */ 5631 5632 assert( p->readOnly==0 ); 5633 aRes[0] = 0; 5634 aRes[1] = aRes[2] = -1; 5635 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5636 || pOp->p2==SQLITE_CHECKPOINT_FULL 5637 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5638 ); 5639 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5640 if( rc==SQLITE_BUSY ){ 5641 rc = SQLITE_OK; 5642 aRes[0] = 1; 5643 } 5644 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5645 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5646 } 5647 break; 5648 }; 5649 #endif 5650 5651 #ifndef SQLITE_OMIT_PRAGMA 5652 /* Opcode: JournalMode P1 P2 P3 * * 5653 ** 5654 ** Change the journal mode of database P1 to P3. P3 must be one of the 5655 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5656 ** modes (delete, truncate, persist, off and memory), this is a simple 5657 ** operation. No IO is required. 5658 ** 5659 ** If changing into or out of WAL mode the procedure is more complicated. 5660 ** 5661 ** Write a string containing the final journal-mode to register P2. 5662 */ 5663 case OP_JournalMode: { /* out2-prerelease */ 5664 Btree *pBt; /* Btree to change journal mode of */ 5665 Pager *pPager; /* Pager associated with pBt */ 5666 int eNew; /* New journal mode */ 5667 int eOld; /* The old journal mode */ 5668 #ifndef SQLITE_OMIT_WAL 5669 const char *zFilename; /* Name of database file for pPager */ 5670 #endif 5671 5672 eNew = pOp->p3; 5673 assert( eNew==PAGER_JOURNALMODE_DELETE 5674 || eNew==PAGER_JOURNALMODE_TRUNCATE 5675 || eNew==PAGER_JOURNALMODE_PERSIST 5676 || eNew==PAGER_JOURNALMODE_OFF 5677 || eNew==PAGER_JOURNALMODE_MEMORY 5678 || eNew==PAGER_JOURNALMODE_WAL 5679 || eNew==PAGER_JOURNALMODE_QUERY 5680 ); 5681 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5682 assert( p->readOnly==0 ); 5683 5684 pBt = db->aDb[pOp->p1].pBt; 5685 pPager = sqlite3BtreePager(pBt); 5686 eOld = sqlite3PagerGetJournalMode(pPager); 5687 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 5688 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 5689 5690 #ifndef SQLITE_OMIT_WAL 5691 zFilename = sqlite3PagerFilename(pPager, 1); 5692 5693 /* Do not allow a transition to journal_mode=WAL for a database 5694 ** in temporary storage or if the VFS does not support shared memory 5695 */ 5696 if( eNew==PAGER_JOURNALMODE_WAL 5697 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 5698 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 5699 ){ 5700 eNew = eOld; 5701 } 5702 5703 if( (eNew!=eOld) 5704 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 5705 ){ 5706 if( !db->autoCommit || db->nVdbeRead>1 ){ 5707 rc = SQLITE_ERROR; 5708 sqlite3SetString(&p->zErrMsg, db, 5709 "cannot change %s wal mode from within a transaction", 5710 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 5711 ); 5712 break; 5713 }else{ 5714 5715 if( eOld==PAGER_JOURNALMODE_WAL ){ 5716 /* If leaving WAL mode, close the log file. If successful, the call 5717 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 5718 ** file. An EXCLUSIVE lock may still be held on the database file 5719 ** after a successful return. 5720 */ 5721 rc = sqlite3PagerCloseWal(pPager); 5722 if( rc==SQLITE_OK ){ 5723 sqlite3PagerSetJournalMode(pPager, eNew); 5724 } 5725 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 5726 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 5727 ** as an intermediate */ 5728 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 5729 } 5730 5731 /* Open a transaction on the database file. Regardless of the journal 5732 ** mode, this transaction always uses a rollback journal. 5733 */ 5734 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 5735 if( rc==SQLITE_OK ){ 5736 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 5737 } 5738 } 5739 } 5740 #endif /* ifndef SQLITE_OMIT_WAL */ 5741 5742 if( rc ){ 5743 eNew = eOld; 5744 } 5745 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 5746 5747 pOut = &aMem[pOp->p2]; 5748 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 5749 pOut->z = (char *)sqlite3JournalModename(eNew); 5750 pOut->n = sqlite3Strlen30(pOut->z); 5751 pOut->enc = SQLITE_UTF8; 5752 sqlite3VdbeChangeEncoding(pOut, encoding); 5753 break; 5754 }; 5755 #endif /* SQLITE_OMIT_PRAGMA */ 5756 5757 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 5758 /* Opcode: Vacuum * * * * * 5759 ** 5760 ** Vacuum the entire database. This opcode will cause other virtual 5761 ** machines to be created and run. It may not be called from within 5762 ** a transaction. 5763 */ 5764 case OP_Vacuum: { 5765 assert( p->readOnly==0 ); 5766 rc = sqlite3RunVacuum(&p->zErrMsg, db); 5767 break; 5768 } 5769 #endif 5770 5771 #if !defined(SQLITE_OMIT_AUTOVACUUM) 5772 /* Opcode: IncrVacuum P1 P2 * * * 5773 ** 5774 ** Perform a single step of the incremental vacuum procedure on 5775 ** the P1 database. If the vacuum has finished, jump to instruction 5776 ** P2. Otherwise, fall through to the next instruction. 5777 */ 5778 case OP_IncrVacuum: { /* jump */ 5779 Btree *pBt; 5780 5781 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5782 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 5783 assert( p->readOnly==0 ); 5784 pBt = db->aDb[pOp->p1].pBt; 5785 rc = sqlite3BtreeIncrVacuum(pBt); 5786 VdbeBranchTaken(rc==SQLITE_DONE,2); 5787 if( rc==SQLITE_DONE ){ 5788 pc = pOp->p2 - 1; 5789 rc = SQLITE_OK; 5790 } 5791 break; 5792 } 5793 #endif 5794 5795 /* Opcode: Expire P1 * * * * 5796 ** 5797 ** Cause precompiled statements to become expired. An expired statement 5798 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 5799 ** (via sqlite3_step()). 5800 ** 5801 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 5802 ** then only the currently executing statement is affected. 5803 */ 5804 case OP_Expire: { 5805 if( !pOp->p1 ){ 5806 sqlite3ExpirePreparedStatements(db); 5807 }else{ 5808 p->expired = 1; 5809 } 5810 break; 5811 } 5812 5813 #ifndef SQLITE_OMIT_SHARED_CACHE 5814 /* Opcode: TableLock P1 P2 P3 P4 * 5815 ** Synopsis: iDb=P1 root=P2 write=P3 5816 ** 5817 ** Obtain a lock on a particular table. This instruction is only used when 5818 ** the shared-cache feature is enabled. 5819 ** 5820 ** P1 is the index of the database in sqlite3.aDb[] of the database 5821 ** on which the lock is acquired. A readlock is obtained if P3==0 or 5822 ** a write lock if P3==1. 5823 ** 5824 ** P2 contains the root-page of the table to lock. 5825 ** 5826 ** P4 contains a pointer to the name of the table being locked. This is only 5827 ** used to generate an error message if the lock cannot be obtained. 5828 */ 5829 case OP_TableLock: { 5830 u8 isWriteLock = (u8)pOp->p3; 5831 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 5832 int p1 = pOp->p1; 5833 assert( p1>=0 && p1<db->nDb ); 5834 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 ); 5835 assert( isWriteLock==0 || isWriteLock==1 ); 5836 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 5837 if( (rc&0xFF)==SQLITE_LOCKED ){ 5838 const char *z = pOp->p4.z; 5839 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 5840 } 5841 } 5842 break; 5843 } 5844 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5845 5846 #ifndef SQLITE_OMIT_VIRTUALTABLE 5847 /* Opcode: VBegin * * * P4 * 5848 ** 5849 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5850 ** xBegin method for that table. 5851 ** 5852 ** Also, whether or not P4 is set, check that this is not being called from 5853 ** within a callback to a virtual table xSync() method. If it is, the error 5854 ** code will be set to SQLITE_LOCKED. 5855 */ 5856 case OP_VBegin: { 5857 VTable *pVTab; 5858 pVTab = pOp->p4.pVtab; 5859 rc = sqlite3VtabBegin(db, pVTab); 5860 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 5861 break; 5862 } 5863 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5864 5865 #ifndef SQLITE_OMIT_VIRTUALTABLE 5866 /* Opcode: VCreate P1 * * P4 * 5867 ** 5868 ** P4 is the name of a virtual table in database P1. Call the xCreate method 5869 ** for that table. 5870 */ 5871 case OP_VCreate: { 5872 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 5873 break; 5874 } 5875 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5876 5877 #ifndef SQLITE_OMIT_VIRTUALTABLE 5878 /* Opcode: VDestroy P1 * * P4 * 5879 ** 5880 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 5881 ** of that table. 5882 */ 5883 case OP_VDestroy: { 5884 p->inVtabMethod = 2; 5885 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 5886 p->inVtabMethod = 0; 5887 break; 5888 } 5889 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5890 5891 #ifndef SQLITE_OMIT_VIRTUALTABLE 5892 /* Opcode: VOpen P1 * * P4 * 5893 ** 5894 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5895 ** P1 is a cursor number. This opcode opens a cursor to the virtual 5896 ** table and stores that cursor in P1. 5897 */ 5898 case OP_VOpen: { 5899 VdbeCursor *pCur; 5900 sqlite3_vtab_cursor *pVtabCursor; 5901 sqlite3_vtab *pVtab; 5902 sqlite3_module *pModule; 5903 5904 assert( p->bIsReader ); 5905 pCur = 0; 5906 pVtabCursor = 0; 5907 pVtab = pOp->p4.pVtab->pVtab; 5908 pModule = (sqlite3_module *)pVtab->pModule; 5909 assert(pVtab && pModule); 5910 rc = pModule->xOpen(pVtab, &pVtabCursor); 5911 sqlite3VtabImportErrmsg(p, pVtab); 5912 if( SQLITE_OK==rc ){ 5913 /* Initialize sqlite3_vtab_cursor base class */ 5914 pVtabCursor->pVtab = pVtab; 5915 5916 /* Initialize vdbe cursor object */ 5917 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 5918 if( pCur ){ 5919 pCur->pVtabCursor = pVtabCursor; 5920 }else{ 5921 db->mallocFailed = 1; 5922 pModule->xClose(pVtabCursor); 5923 } 5924 } 5925 break; 5926 } 5927 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5928 5929 #ifndef SQLITE_OMIT_VIRTUALTABLE 5930 /* Opcode: VFilter P1 P2 P3 P4 * 5931 ** Synopsis: iplan=r[P3] zplan='P4' 5932 ** 5933 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 5934 ** the filtered result set is empty. 5935 ** 5936 ** P4 is either NULL or a string that was generated by the xBestIndex 5937 ** method of the module. The interpretation of the P4 string is left 5938 ** to the module implementation. 5939 ** 5940 ** This opcode invokes the xFilter method on the virtual table specified 5941 ** by P1. The integer query plan parameter to xFilter is stored in register 5942 ** P3. Register P3+1 stores the argc parameter to be passed to the 5943 ** xFilter method. Registers P3+2..P3+1+argc are the argc 5944 ** additional parameters which are passed to 5945 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 5946 ** 5947 ** A jump is made to P2 if the result set after filtering would be empty. 5948 */ 5949 case OP_VFilter: { /* jump */ 5950 int nArg; 5951 int iQuery; 5952 const sqlite3_module *pModule; 5953 Mem *pQuery; 5954 Mem *pArgc; 5955 sqlite3_vtab_cursor *pVtabCursor; 5956 sqlite3_vtab *pVtab; 5957 VdbeCursor *pCur; 5958 int res; 5959 int i; 5960 Mem **apArg; 5961 5962 pQuery = &aMem[pOp->p3]; 5963 pArgc = &pQuery[1]; 5964 pCur = p->apCsr[pOp->p1]; 5965 assert( memIsValid(pQuery) ); 5966 REGISTER_TRACE(pOp->p3, pQuery); 5967 assert( pCur->pVtabCursor ); 5968 pVtabCursor = pCur->pVtabCursor; 5969 pVtab = pVtabCursor->pVtab; 5970 pModule = pVtab->pModule; 5971 5972 /* Grab the index number and argc parameters */ 5973 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 5974 nArg = (int)pArgc->u.i; 5975 iQuery = (int)pQuery->u.i; 5976 5977 /* Invoke the xFilter method */ 5978 { 5979 res = 0; 5980 apArg = p->apArg; 5981 for(i = 0; i<nArg; i++){ 5982 apArg[i] = &pArgc[i+1]; 5983 } 5984 5985 p->inVtabMethod = 1; 5986 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 5987 p->inVtabMethod = 0; 5988 sqlite3VtabImportErrmsg(p, pVtab); 5989 if( rc==SQLITE_OK ){ 5990 res = pModule->xEof(pVtabCursor); 5991 } 5992 VdbeBranchTaken(res!=0,2); 5993 if( res ){ 5994 pc = pOp->p2 - 1; 5995 } 5996 } 5997 pCur->nullRow = 0; 5998 5999 break; 6000 } 6001 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6002 6003 #ifndef SQLITE_OMIT_VIRTUALTABLE 6004 /* Opcode: VColumn P1 P2 P3 * * 6005 ** Synopsis: r[P3]=vcolumn(P2) 6006 ** 6007 ** Store the value of the P2-th column of 6008 ** the row of the virtual-table that the 6009 ** P1 cursor is pointing to into register P3. 6010 */ 6011 case OP_VColumn: { 6012 sqlite3_vtab *pVtab; 6013 const sqlite3_module *pModule; 6014 Mem *pDest; 6015 sqlite3_context sContext; 6016 6017 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6018 assert( pCur->pVtabCursor ); 6019 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 6020 pDest = &aMem[pOp->p3]; 6021 memAboutToChange(p, pDest); 6022 if( pCur->nullRow ){ 6023 sqlite3VdbeMemSetNull(pDest); 6024 break; 6025 } 6026 pVtab = pCur->pVtabCursor->pVtab; 6027 pModule = pVtab->pModule; 6028 assert( pModule->xColumn ); 6029 memset(&sContext, 0, sizeof(sContext)); 6030 6031 /* The output cell may already have a buffer allocated. Move 6032 ** the current contents to sContext.s so in case the user-function 6033 ** can use the already allocated buffer instead of allocating a 6034 ** new one. 6035 */ 6036 sqlite3VdbeMemMove(&sContext.s, pDest); 6037 MemSetTypeFlag(&sContext.s, MEM_Null); 6038 6039 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 6040 sqlite3VtabImportErrmsg(p, pVtab); 6041 if( sContext.isError ){ 6042 rc = sContext.isError; 6043 } 6044 6045 /* Copy the result of the function to the P3 register. We 6046 ** do this regardless of whether or not an error occurred to ensure any 6047 ** dynamic allocation in sContext.s (a Mem struct) is released. 6048 */ 6049 sqlite3VdbeChangeEncoding(&sContext.s, encoding); 6050 sqlite3VdbeMemMove(pDest, &sContext.s); 6051 REGISTER_TRACE(pOp->p3, pDest); 6052 UPDATE_MAX_BLOBSIZE(pDest); 6053 6054 if( sqlite3VdbeMemTooBig(pDest) ){ 6055 goto too_big; 6056 } 6057 break; 6058 } 6059 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6060 6061 #ifndef SQLITE_OMIT_VIRTUALTABLE 6062 /* Opcode: VNext P1 P2 * * * 6063 ** 6064 ** Advance virtual table P1 to the next row in its result set and 6065 ** jump to instruction P2. Or, if the virtual table has reached 6066 ** the end of its result set, then fall through to the next instruction. 6067 */ 6068 case OP_VNext: { /* jump */ 6069 sqlite3_vtab *pVtab; 6070 const sqlite3_module *pModule; 6071 int res; 6072 VdbeCursor *pCur; 6073 6074 res = 0; 6075 pCur = p->apCsr[pOp->p1]; 6076 assert( pCur->pVtabCursor ); 6077 if( pCur->nullRow ){ 6078 break; 6079 } 6080 pVtab = pCur->pVtabCursor->pVtab; 6081 pModule = pVtab->pModule; 6082 assert( pModule->xNext ); 6083 6084 /* Invoke the xNext() method of the module. There is no way for the 6085 ** underlying implementation to return an error if one occurs during 6086 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6087 ** data is available) and the error code returned when xColumn or 6088 ** some other method is next invoked on the save virtual table cursor. 6089 */ 6090 p->inVtabMethod = 1; 6091 rc = pModule->xNext(pCur->pVtabCursor); 6092 p->inVtabMethod = 0; 6093 sqlite3VtabImportErrmsg(p, pVtab); 6094 if( rc==SQLITE_OK ){ 6095 res = pModule->xEof(pCur->pVtabCursor); 6096 } 6097 VdbeBranchTaken(!res,2); 6098 if( !res ){ 6099 /* If there is data, jump to P2 */ 6100 pc = pOp->p2 - 1; 6101 } 6102 goto check_for_interrupt; 6103 } 6104 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6105 6106 #ifndef SQLITE_OMIT_VIRTUALTABLE 6107 /* Opcode: VRename P1 * * P4 * 6108 ** 6109 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6110 ** This opcode invokes the corresponding xRename method. The value 6111 ** in register P1 is passed as the zName argument to the xRename method. 6112 */ 6113 case OP_VRename: { 6114 sqlite3_vtab *pVtab; 6115 Mem *pName; 6116 6117 pVtab = pOp->p4.pVtab->pVtab; 6118 pName = &aMem[pOp->p1]; 6119 assert( pVtab->pModule->xRename ); 6120 assert( memIsValid(pName) ); 6121 assert( p->readOnly==0 ); 6122 REGISTER_TRACE(pOp->p1, pName); 6123 assert( pName->flags & MEM_Str ); 6124 testcase( pName->enc==SQLITE_UTF8 ); 6125 testcase( pName->enc==SQLITE_UTF16BE ); 6126 testcase( pName->enc==SQLITE_UTF16LE ); 6127 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6128 if( rc==SQLITE_OK ){ 6129 rc = pVtab->pModule->xRename(pVtab, pName->z); 6130 sqlite3VtabImportErrmsg(p, pVtab); 6131 p->expired = 0; 6132 } 6133 break; 6134 } 6135 #endif 6136 6137 #ifndef SQLITE_OMIT_VIRTUALTABLE 6138 /* Opcode: VUpdate P1 P2 P3 P4 P5 6139 ** Synopsis: data=r[P3@P2] 6140 ** 6141 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6142 ** This opcode invokes the corresponding xUpdate method. P2 values 6143 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6144 ** invocation. The value in register (P3+P2-1) corresponds to the 6145 ** p2th element of the argv array passed to xUpdate. 6146 ** 6147 ** The xUpdate method will do a DELETE or an INSERT or both. 6148 ** The argv[0] element (which corresponds to memory cell P3) 6149 ** is the rowid of a row to delete. If argv[0] is NULL then no 6150 ** deletion occurs. The argv[1] element is the rowid of the new 6151 ** row. This can be NULL to have the virtual table select the new 6152 ** rowid for itself. The subsequent elements in the array are 6153 ** the values of columns in the new row. 6154 ** 6155 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6156 ** a row to delete. 6157 ** 6158 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6159 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6160 ** is set to the value of the rowid for the row just inserted. 6161 ** 6162 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6163 ** apply in the case of a constraint failure on an insert or update. 6164 */ 6165 case OP_VUpdate: { 6166 sqlite3_vtab *pVtab; 6167 sqlite3_module *pModule; 6168 int nArg; 6169 int i; 6170 sqlite_int64 rowid; 6171 Mem **apArg; 6172 Mem *pX; 6173 6174 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6175 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6176 ); 6177 assert( p->readOnly==0 ); 6178 pVtab = pOp->p4.pVtab->pVtab; 6179 pModule = (sqlite3_module *)pVtab->pModule; 6180 nArg = pOp->p2; 6181 assert( pOp->p4type==P4_VTAB ); 6182 if( ALWAYS(pModule->xUpdate) ){ 6183 u8 vtabOnConflict = db->vtabOnConflict; 6184 apArg = p->apArg; 6185 pX = &aMem[pOp->p3]; 6186 for(i=0; i<nArg; i++){ 6187 assert( memIsValid(pX) ); 6188 memAboutToChange(p, pX); 6189 apArg[i] = pX; 6190 pX++; 6191 } 6192 db->vtabOnConflict = pOp->p5; 6193 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6194 db->vtabOnConflict = vtabOnConflict; 6195 sqlite3VtabImportErrmsg(p, pVtab); 6196 if( rc==SQLITE_OK && pOp->p1 ){ 6197 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6198 db->lastRowid = lastRowid = rowid; 6199 } 6200 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6201 if( pOp->p5==OE_Ignore ){ 6202 rc = SQLITE_OK; 6203 }else{ 6204 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6205 } 6206 }else{ 6207 p->nChange++; 6208 } 6209 } 6210 break; 6211 } 6212 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6213 6214 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6215 /* Opcode: Pagecount P1 P2 * * * 6216 ** 6217 ** Write the current number of pages in database P1 to memory cell P2. 6218 */ 6219 case OP_Pagecount: { /* out2-prerelease */ 6220 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6221 break; 6222 } 6223 #endif 6224 6225 6226 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6227 /* Opcode: MaxPgcnt P1 P2 P3 * * 6228 ** 6229 ** Try to set the maximum page count for database P1 to the value in P3. 6230 ** Do not let the maximum page count fall below the current page count and 6231 ** do not change the maximum page count value if P3==0. 6232 ** 6233 ** Store the maximum page count after the change in register P2. 6234 */ 6235 case OP_MaxPgcnt: { /* out2-prerelease */ 6236 unsigned int newMax; 6237 Btree *pBt; 6238 6239 pBt = db->aDb[pOp->p1].pBt; 6240 newMax = 0; 6241 if( pOp->p3 ){ 6242 newMax = sqlite3BtreeLastPage(pBt); 6243 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6244 } 6245 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6246 break; 6247 } 6248 #endif 6249 6250 6251 /* Opcode: Init * P2 * P4 * 6252 ** Synopsis: Start at P2 6253 ** 6254 ** Programs contain a single instance of this opcode as the very first 6255 ** opcode. 6256 ** 6257 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6258 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6259 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 6260 ** 6261 ** If P2 is not zero, jump to instruction P2. 6262 */ 6263 case OP_Init: { /* jump */ 6264 char *zTrace; 6265 char *z; 6266 6267 if( pOp->p2 ){ 6268 pc = pOp->p2 - 1; 6269 } 6270 #ifndef SQLITE_OMIT_TRACE 6271 if( db->xTrace 6272 && !p->doingRerun 6273 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6274 ){ 6275 z = sqlite3VdbeExpandSql(p, zTrace); 6276 db->xTrace(db->pTraceArg, z); 6277 sqlite3DbFree(db, z); 6278 } 6279 #ifdef SQLITE_USE_FCNTL_TRACE 6280 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6281 if( zTrace ){ 6282 int i; 6283 for(i=0; i<db->nDb; i++){ 6284 if( (MASKBIT(i) & p->btreeMask)==0 ) continue; 6285 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); 6286 } 6287 } 6288 #endif /* SQLITE_USE_FCNTL_TRACE */ 6289 #ifdef SQLITE_DEBUG 6290 if( (db->flags & SQLITE_SqlTrace)!=0 6291 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6292 ){ 6293 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6294 } 6295 #endif /* SQLITE_DEBUG */ 6296 #endif /* SQLITE_OMIT_TRACE */ 6297 break; 6298 } 6299 6300 6301 /* Opcode: Noop * * * * * 6302 ** 6303 ** Do nothing. This instruction is often useful as a jump 6304 ** destination. 6305 */ 6306 /* 6307 ** The magic Explain opcode are only inserted when explain==2 (which 6308 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6309 ** This opcode records information from the optimizer. It is the 6310 ** the same as a no-op. This opcodesnever appears in a real VM program. 6311 */ 6312 default: { /* This is really OP_Noop and OP_Explain */ 6313 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6314 break; 6315 } 6316 6317 /***************************************************************************** 6318 ** The cases of the switch statement above this line should all be indented 6319 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6320 ** readability. From this point on down, the normal indentation rules are 6321 ** restored. 6322 *****************************************************************************/ 6323 } 6324 6325 #ifdef VDBE_PROFILE 6326 { 6327 u64 endTime = sqlite3Hwtime(); 6328 if( endTime>start ) pOp->cycles += endTime - start; 6329 pOp->cnt++; 6330 } 6331 #endif 6332 6333 /* The following code adds nothing to the actual functionality 6334 ** of the program. It is only here for testing and debugging. 6335 ** On the other hand, it does burn CPU cycles every time through 6336 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6337 */ 6338 #ifndef NDEBUG 6339 assert( pc>=-1 && pc<p->nOp ); 6340 6341 #ifdef SQLITE_DEBUG 6342 if( db->flags & SQLITE_VdbeTrace ){ 6343 if( rc!=0 ) printf("rc=%d\n",rc); 6344 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 6345 registerTrace(pOp->p2, &aMem[pOp->p2]); 6346 } 6347 if( pOp->opflags & OPFLG_OUT3 ){ 6348 registerTrace(pOp->p3, &aMem[pOp->p3]); 6349 } 6350 } 6351 #endif /* SQLITE_DEBUG */ 6352 #endif /* NDEBUG */ 6353 } /* The end of the for(;;) loop the loops through opcodes */ 6354 6355 /* If we reach this point, it means that execution is finished with 6356 ** an error of some kind. 6357 */ 6358 vdbe_error_halt: 6359 assert( rc ); 6360 p->rc = rc; 6361 testcase( sqlite3GlobalConfig.xLog!=0 ); 6362 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6363 pc, p->zSql, p->zErrMsg); 6364 sqlite3VdbeHalt(p); 6365 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 6366 rc = SQLITE_ERROR; 6367 if( resetSchemaOnFault>0 ){ 6368 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6369 } 6370 6371 /* This is the only way out of this procedure. We have to 6372 ** release the mutexes on btrees that were acquired at the 6373 ** top. */ 6374 vdbe_return: 6375 db->lastRowid = lastRowid; 6376 testcase( nVmStep>0 ); 6377 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 6378 sqlite3VdbeLeave(p); 6379 return rc; 6380 6381 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6382 ** is encountered. 6383 */ 6384 too_big: 6385 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 6386 rc = SQLITE_TOOBIG; 6387 goto vdbe_error_halt; 6388 6389 /* Jump to here if a malloc() fails. 6390 */ 6391 no_mem: 6392 db->mallocFailed = 1; 6393 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 6394 rc = SQLITE_NOMEM; 6395 goto vdbe_error_halt; 6396 6397 /* Jump to here for any other kind of fatal error. The "rc" variable 6398 ** should hold the error number. 6399 */ 6400 abort_due_to_error: 6401 assert( p->zErrMsg==0 ); 6402 if( db->mallocFailed ) rc = SQLITE_NOMEM; 6403 if( rc!=SQLITE_IOERR_NOMEM ){ 6404 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6405 } 6406 goto vdbe_error_halt; 6407 6408 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6409 ** flag. 6410 */ 6411 abort_due_to_interrupt: 6412 assert( db->u1.isInterrupted ); 6413 rc = SQLITE_INTERRUPT; 6414 p->rc = rc; 6415 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6416 goto vdbe_error_halt; 6417 } 6418