xref: /sqlite-3.40.0/src/vdbe.c (revision 3f09beda)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** The next global variable is incremented each time the OP_Found opcode
91 ** is executed. This is used to test whether or not the foreign key
92 ** operation implemented using OP_FkIsZero is working. This variable
93 ** has no function other than to help verify the correct operation of the
94 ** library.
95 */
96 #ifdef SQLITE_TEST
97 int sqlite3_found_count = 0;
98 #endif
99 
100 /*
101 ** Test a register to see if it exceeds the current maximum blob size.
102 ** If it does, record the new maximum blob size.
103 */
104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
105 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
106 #else
107 # define UPDATE_MAX_BLOBSIZE(P)
108 #endif
109 
110 /*
111 ** Invoke the VDBE coverage callback, if that callback is defined.  This
112 ** feature is used for test suite validation only and does not appear an
113 ** production builds.
114 **
115 ** M is an integer, 2 or 3, that indices how many different ways the
116 ** branch can go.  It is usually 2.  "I" is the direction the branch
117 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
118 ** second alternative branch is taken.
119 **
120 ** iSrcLine is the source code line (from the __LINE__ macro) that
121 ** generated the VDBE instruction.  This instrumentation assumes that all
122 ** source code is in a single file (the amalgamation).  Special values 1
123 ** and 2 for the iSrcLine parameter mean that this particular branch is
124 ** always taken or never taken, respectively.
125 */
126 #if !defined(SQLITE_VDBE_COVERAGE)
127 # define VdbeBranchTaken(I,M)
128 #else
129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132       M = iSrcLine;
133       /* Assert the truth of VdbeCoverageAlwaysTaken() and
134       ** VdbeCoverageNeverTaken() */
135       assert( (M & I)==I );
136     }else{
137       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
138       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139                                       iSrcLine,I,M);
140     }
141   }
142 #endif
143 
144 /*
145 ** Convert the given register into a string if it isn't one
146 ** already. Return non-zero if a malloc() fails.
147 */
148 #define Stringify(P, enc) \
149    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
150      { goto no_mem; }
151 
152 /*
153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
154 ** a pointer to a dynamically allocated string where some other entity
155 ** is responsible for deallocating that string.  Because the register
156 ** does not control the string, it might be deleted without the register
157 ** knowing it.
158 **
159 ** This routine converts an ephemeral string into a dynamically allocated
160 ** string that the register itself controls.  In other words, it
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
162 */
163 #define Deephemeralize(P) \
164    if( ((P)->flags&MEM_Ephem)!=0 \
165        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
166 
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
168 #define isSorter(x) ((x)->pSorter!=0)
169 
170 /*
171 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
172 ** if we run out of memory.
173 */
174 static VdbeCursor *allocateCursor(
175   Vdbe *p,              /* The virtual machine */
176   int iCur,             /* Index of the new VdbeCursor */
177   int nField,           /* Number of fields in the table or index */
178   int iDb,              /* Database the cursor belongs to, or -1 */
179   int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
180 ){
181   /* Find the memory cell that will be used to store the blob of memory
182   ** required for this VdbeCursor structure. It is convenient to use a
183   ** vdbe memory cell to manage the memory allocation required for a
184   ** VdbeCursor structure for the following reasons:
185   **
186   **   * Sometimes cursor numbers are used for a couple of different
187   **     purposes in a vdbe program. The different uses might require
188   **     different sized allocations. Memory cells provide growable
189   **     allocations.
190   **
191   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192   **     be freed lazily via the sqlite3_release_memory() API. This
193   **     minimizes the number of malloc calls made by the system.
194   **
195   ** Memory cells for cursors are allocated at the top of the address
196   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198   */
199   Mem *pMem = &p->aMem[p->nMem-iCur];
200 
201   int nByte;
202   VdbeCursor *pCx = 0;
203   nByte =
204       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205       (isBtreeCursor?sqlite3BtreeCursorSize():0);
206 
207   assert( iCur<p->nCursor );
208   if( p->apCsr[iCur] ){
209     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
210     p->apCsr[iCur] = 0;
211   }
212   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
213     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
214     memset(pCx, 0, sizeof(VdbeCursor));
215     pCx->iDb = iDb;
216     pCx->nField = nField;
217     pCx->aOffset = &pCx->aType[nField];
218     if( isBtreeCursor ){
219       pCx->pCursor = (BtCursor*)
220           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
221       sqlite3BtreeCursorZero(pCx->pCursor);
222     }
223   }
224   return pCx;
225 }
226 
227 /*
228 ** Try to convert a value into a numeric representation if we can
229 ** do so without loss of information.  In other words, if the string
230 ** looks like a number, convert it into a number.  If it does not
231 ** look like a number, leave it alone.
232 **
233 ** If the bTryForInt flag is true, then extra effort is made to give
234 ** an integer representation.  Strings that look like floating point
235 ** values but which have no fractional component (example: '48.00')
236 ** will have a MEM_Int representation when bTryForInt is true.
237 **
238 ** If bTryForInt is false, then if the input string contains a decimal
239 ** point or exponential notation, the result is only MEM_Real, even
240 ** if there is an exact integer representation of the quantity.
241 */
242 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
243   double rValue;
244   i64 iValue;
245   u8 enc = pRec->enc;
246   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
247   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249     pRec->u.i = iValue;
250     pRec->flags |= MEM_Int;
251   }else{
252     pRec->u.r = rValue;
253     pRec->flags |= MEM_Real;
254     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
255   }
256 }
257 
258 /*
259 ** Processing is determine by the affinity parameter:
260 **
261 ** SQLITE_AFF_INTEGER:
262 ** SQLITE_AFF_REAL:
263 ** SQLITE_AFF_NUMERIC:
264 **    Try to convert pRec to an integer representation or a
265 **    floating-point representation if an integer representation
266 **    is not possible.  Note that the integer representation is
267 **    always preferred, even if the affinity is REAL, because
268 **    an integer representation is more space efficient on disk.
269 **
270 ** SQLITE_AFF_TEXT:
271 **    Convert pRec to a text representation.
272 **
273 ** SQLITE_AFF_BLOB:
274 **    No-op.  pRec is unchanged.
275 */
276 static void applyAffinity(
277   Mem *pRec,          /* The value to apply affinity to */
278   char affinity,      /* The affinity to be applied */
279   u8 enc              /* Use this text encoding */
280 ){
281   if( affinity>=SQLITE_AFF_NUMERIC ){
282     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283              || affinity==SQLITE_AFF_NUMERIC );
284     if( (pRec->flags & MEM_Int)==0 ){
285       if( (pRec->flags & MEM_Real)==0 ){
286         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
287       }else{
288         sqlite3VdbeIntegerAffinity(pRec);
289       }
290     }
291   }else if( affinity==SQLITE_AFF_TEXT ){
292     /* Only attempt the conversion to TEXT if there is an integer or real
293     ** representation (blob and NULL do not get converted) but no string
294     ** representation.
295     */
296     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297       sqlite3VdbeMemStringify(pRec, enc, 1);
298     }
299     pRec->flags &= ~(MEM_Real|MEM_Int);
300   }
301 }
302 
303 /*
304 ** Try to convert the type of a function argument or a result column
305 ** into a numeric representation.  Use either INTEGER or REAL whichever
306 ** is appropriate.  But only do the conversion if it is possible without
307 ** loss of information and return the revised type of the argument.
308 */
309 int sqlite3_value_numeric_type(sqlite3_value *pVal){
310   int eType = sqlite3_value_type(pVal);
311   if( eType==SQLITE_TEXT ){
312     Mem *pMem = (Mem*)pVal;
313     applyNumericAffinity(pMem, 0);
314     eType = sqlite3_value_type(pVal);
315   }
316   return eType;
317 }
318 
319 /*
320 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
321 ** not the internal Mem* type.
322 */
323 void sqlite3ValueApplyAffinity(
324   sqlite3_value *pVal,
325   u8 affinity,
326   u8 enc
327 ){
328   applyAffinity((Mem *)pVal, affinity, enc);
329 }
330 
331 /*
332 ** pMem currently only holds a string type (or maybe a BLOB that we can
333 ** interpret as a string if we want to).  Compute its corresponding
334 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
335 ** accordingly.
336 */
337 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
338   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
339   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
340   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
341     return 0;
342   }
343   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
344     return MEM_Int;
345   }
346   return MEM_Real;
347 }
348 
349 /*
350 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
351 ** none.
352 **
353 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
354 ** But it does set pMem->u.r and pMem->u.i appropriately.
355 */
356 static u16 numericType(Mem *pMem){
357   if( pMem->flags & (MEM_Int|MEM_Real) ){
358     return pMem->flags & (MEM_Int|MEM_Real);
359   }
360   if( pMem->flags & (MEM_Str|MEM_Blob) ){
361     return computeNumericType(pMem);
362   }
363   return 0;
364 }
365 
366 #ifdef SQLITE_DEBUG
367 /*
368 ** Write a nice string representation of the contents of cell pMem
369 ** into buffer zBuf, length nBuf.
370 */
371 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
372   char *zCsr = zBuf;
373   int f = pMem->flags;
374 
375   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
376 
377   if( f&MEM_Blob ){
378     int i;
379     char c;
380     if( f & MEM_Dyn ){
381       c = 'z';
382       assert( (f & (MEM_Static|MEM_Ephem))==0 );
383     }else if( f & MEM_Static ){
384       c = 't';
385       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
386     }else if( f & MEM_Ephem ){
387       c = 'e';
388       assert( (f & (MEM_Static|MEM_Dyn))==0 );
389     }else{
390       c = 's';
391     }
392 
393     sqlite3_snprintf(100, zCsr, "%c", c);
394     zCsr += sqlite3Strlen30(zCsr);
395     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
396     zCsr += sqlite3Strlen30(zCsr);
397     for(i=0; i<16 && i<pMem->n; i++){
398       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
399       zCsr += sqlite3Strlen30(zCsr);
400     }
401     for(i=0; i<16 && i<pMem->n; i++){
402       char z = pMem->z[i];
403       if( z<32 || z>126 ) *zCsr++ = '.';
404       else *zCsr++ = z;
405     }
406 
407     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
408     zCsr += sqlite3Strlen30(zCsr);
409     if( f & MEM_Zero ){
410       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
411       zCsr += sqlite3Strlen30(zCsr);
412     }
413     *zCsr = '\0';
414   }else if( f & MEM_Str ){
415     int j, k;
416     zBuf[0] = ' ';
417     if( f & MEM_Dyn ){
418       zBuf[1] = 'z';
419       assert( (f & (MEM_Static|MEM_Ephem))==0 );
420     }else if( f & MEM_Static ){
421       zBuf[1] = 't';
422       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
423     }else if( f & MEM_Ephem ){
424       zBuf[1] = 'e';
425       assert( (f & (MEM_Static|MEM_Dyn))==0 );
426     }else{
427       zBuf[1] = 's';
428     }
429     k = 2;
430     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
431     k += sqlite3Strlen30(&zBuf[k]);
432     zBuf[k++] = '[';
433     for(j=0; j<15 && j<pMem->n; j++){
434       u8 c = pMem->z[j];
435       if( c>=0x20 && c<0x7f ){
436         zBuf[k++] = c;
437       }else{
438         zBuf[k++] = '.';
439       }
440     }
441     zBuf[k++] = ']';
442     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
443     k += sqlite3Strlen30(&zBuf[k]);
444     zBuf[k++] = 0;
445   }
446 }
447 #endif
448 
449 #ifdef SQLITE_DEBUG
450 /*
451 ** Print the value of a register for tracing purposes:
452 */
453 static void memTracePrint(Mem *p){
454   if( p->flags & MEM_Undefined ){
455     printf(" undefined");
456   }else if( p->flags & MEM_Null ){
457     printf(" NULL");
458   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
459     printf(" si:%lld", p->u.i);
460   }else if( p->flags & MEM_Int ){
461     printf(" i:%lld", p->u.i);
462 #ifndef SQLITE_OMIT_FLOATING_POINT
463   }else if( p->flags & MEM_Real ){
464     printf(" r:%g", p->u.r);
465 #endif
466   }else if( p->flags & MEM_RowSet ){
467     printf(" (rowset)");
468   }else{
469     char zBuf[200];
470     sqlite3VdbeMemPrettyPrint(p, zBuf);
471     printf(" %s", zBuf);
472   }
473 }
474 static void registerTrace(int iReg, Mem *p){
475   printf("REG[%d] = ", iReg);
476   memTracePrint(p);
477   printf("\n");
478 }
479 #endif
480 
481 #ifdef SQLITE_DEBUG
482 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
483 #else
484 #  define REGISTER_TRACE(R,M)
485 #endif
486 
487 
488 #ifdef VDBE_PROFILE
489 
490 /*
491 ** hwtime.h contains inline assembler code for implementing
492 ** high-performance timing routines.
493 */
494 #include "hwtime.h"
495 
496 #endif
497 
498 #ifndef NDEBUG
499 /*
500 ** This function is only called from within an assert() expression. It
501 ** checks that the sqlite3.nTransaction variable is correctly set to
502 ** the number of non-transaction savepoints currently in the
503 ** linked list starting at sqlite3.pSavepoint.
504 **
505 ** Usage:
506 **
507 **     assert( checkSavepointCount(db) );
508 */
509 static int checkSavepointCount(sqlite3 *db){
510   int n = 0;
511   Savepoint *p;
512   for(p=db->pSavepoint; p; p=p->pNext) n++;
513   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
514   return 1;
515 }
516 #endif
517 
518 /*
519 ** Return the register of pOp->p2 after first preparing it to be
520 ** overwritten with an integer value.
521 */
522 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
523   Mem *pOut;
524   assert( pOp->p2>0 );
525   assert( pOp->p2<=(p->nMem-p->nCursor) );
526   pOut = &p->aMem[pOp->p2];
527   memAboutToChange(p, pOut);
528   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
529   pOut->flags = MEM_Int;
530   return pOut;
531 }
532 
533 
534 /*
535 ** Execute as much of a VDBE program as we can.
536 ** This is the core of sqlite3_step().
537 */
538 int sqlite3VdbeExec(
539   Vdbe *p                    /* The VDBE */
540 ){
541   Op *aOp = p->aOp;          /* Copy of p->aOp */
542   Op *pOp = aOp;             /* Current operation */
543 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
544   Op *pOrigOp;               /* Value of pOp at the top of the loop */
545 #endif
546   int rc = SQLITE_OK;        /* Value to return */
547   sqlite3 *db = p->db;       /* The database */
548   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
549   u8 encoding = ENC(db);     /* The database encoding */
550   int iCompare = 0;          /* Result of last OP_Compare operation */
551   unsigned nVmStep = 0;      /* Number of virtual machine steps */
552 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
553   unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
554 #endif
555   Mem *aMem = p->aMem;       /* Copy of p->aMem */
556   Mem *pIn1 = 0;             /* 1st input operand */
557   Mem *pIn2 = 0;             /* 2nd input operand */
558   Mem *pIn3 = 0;             /* 3rd input operand */
559   Mem *pOut = 0;             /* Output operand */
560   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
561   i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
562 #ifdef VDBE_PROFILE
563   u64 start;                 /* CPU clock count at start of opcode */
564 #endif
565   /*** INSERT STACK UNION HERE ***/
566 
567   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
568   sqlite3VdbeEnter(p);
569   if( p->rc==SQLITE_NOMEM ){
570     /* This happens if a malloc() inside a call to sqlite3_column_text() or
571     ** sqlite3_column_text16() failed.  */
572     goto no_mem;
573   }
574   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
575   assert( p->bIsReader || p->readOnly!=0 );
576   p->rc = SQLITE_OK;
577   p->iCurrentTime = 0;
578   assert( p->explain==0 );
579   p->pResultSet = 0;
580   db->busyHandler.nBusy = 0;
581   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
582   sqlite3VdbeIOTraceSql(p);
583 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
584   if( db->xProgress ){
585     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
586     assert( 0 < db->nProgressOps );
587     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
588   }
589 #endif
590 #ifdef SQLITE_DEBUG
591   sqlite3BeginBenignMalloc();
592   if( p->pc==0
593    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
594   ){
595     int i;
596     int once = 1;
597     sqlite3VdbePrintSql(p);
598     if( p->db->flags & SQLITE_VdbeListing ){
599       printf("VDBE Program Listing:\n");
600       for(i=0; i<p->nOp; i++){
601         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
602       }
603     }
604     if( p->db->flags & SQLITE_VdbeEQP ){
605       for(i=0; i<p->nOp; i++){
606         if( aOp[i].opcode==OP_Explain ){
607           if( once ) printf("VDBE Query Plan:\n");
608           printf("%s\n", aOp[i].p4.z);
609           once = 0;
610         }
611       }
612     }
613     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
614   }
615   sqlite3EndBenignMalloc();
616 #endif
617   for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
618     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
619     if( db->mallocFailed ) goto no_mem;
620 #ifdef VDBE_PROFILE
621     start = sqlite3Hwtime();
622 #endif
623     nVmStep++;
624 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
625     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
626 #endif
627 
628     /* Only allow tracing if SQLITE_DEBUG is defined.
629     */
630 #ifdef SQLITE_DEBUG
631     if( db->flags & SQLITE_VdbeTrace ){
632       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
633     }
634 #endif
635 
636 
637     /* Check to see if we need to simulate an interrupt.  This only happens
638     ** if we have a special test build.
639     */
640 #ifdef SQLITE_TEST
641     if( sqlite3_interrupt_count>0 ){
642       sqlite3_interrupt_count--;
643       if( sqlite3_interrupt_count==0 ){
644         sqlite3_interrupt(db);
645       }
646     }
647 #endif
648 
649     /* Sanity checking on other operands */
650 #ifdef SQLITE_DEBUG
651     assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
652     if( (pOp->opflags & OPFLG_IN1)!=0 ){
653       assert( pOp->p1>0 );
654       assert( pOp->p1<=(p->nMem-p->nCursor) );
655       assert( memIsValid(&aMem[pOp->p1]) );
656       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
657       REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
658     }
659     if( (pOp->opflags & OPFLG_IN2)!=0 ){
660       assert( pOp->p2>0 );
661       assert( pOp->p2<=(p->nMem-p->nCursor) );
662       assert( memIsValid(&aMem[pOp->p2]) );
663       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
664       REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
665     }
666     if( (pOp->opflags & OPFLG_IN3)!=0 ){
667       assert( pOp->p3>0 );
668       assert( pOp->p3<=(p->nMem-p->nCursor) );
669       assert( memIsValid(&aMem[pOp->p3]) );
670       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
671       REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
672     }
673     if( (pOp->opflags & OPFLG_OUT2)!=0 ){
674       assert( pOp->p2>0 );
675       assert( pOp->p2<=(p->nMem-p->nCursor) );
676       memAboutToChange(p, &aMem[pOp->p2]);
677     }
678     if( (pOp->opflags & OPFLG_OUT3)!=0 ){
679       assert( pOp->p3>0 );
680       assert( pOp->p3<=(p->nMem-p->nCursor) );
681       memAboutToChange(p, &aMem[pOp->p3]);
682     }
683 #endif
684 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
685     pOrigOp = pOp;
686 #endif
687 
688     switch( pOp->opcode ){
689 
690 /*****************************************************************************
691 ** What follows is a massive switch statement where each case implements a
692 ** separate instruction in the virtual machine.  If we follow the usual
693 ** indentation conventions, each case should be indented by 6 spaces.  But
694 ** that is a lot of wasted space on the left margin.  So the code within
695 ** the switch statement will break with convention and be flush-left. Another
696 ** big comment (similar to this one) will mark the point in the code where
697 ** we transition back to normal indentation.
698 **
699 ** The formatting of each case is important.  The makefile for SQLite
700 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
701 ** file looking for lines that begin with "case OP_".  The opcodes.h files
702 ** will be filled with #defines that give unique integer values to each
703 ** opcode and the opcodes.c file is filled with an array of strings where
704 ** each string is the symbolic name for the corresponding opcode.  If the
705 ** case statement is followed by a comment of the form "/# same as ... #/"
706 ** that comment is used to determine the particular value of the opcode.
707 **
708 ** Other keywords in the comment that follows each case are used to
709 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
710 ** Keywords include: in1, in2, in3, out2, out3.  See
711 ** the mkopcodeh.awk script for additional information.
712 **
713 ** Documentation about VDBE opcodes is generated by scanning this file
714 ** for lines of that contain "Opcode:".  That line and all subsequent
715 ** comment lines are used in the generation of the opcode.html documentation
716 ** file.
717 **
718 ** SUMMARY:
719 **
720 **     Formatting is important to scripts that scan this file.
721 **     Do not deviate from the formatting style currently in use.
722 **
723 *****************************************************************************/
724 
725 /* Opcode:  Goto * P2 * * *
726 **
727 ** An unconditional jump to address P2.
728 ** The next instruction executed will be
729 ** the one at index P2 from the beginning of
730 ** the program.
731 **
732 ** The P1 parameter is not actually used by this opcode.  However, it
733 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
734 ** that this Goto is the bottom of a loop and that the lines from P2 down
735 ** to the current line should be indented for EXPLAIN output.
736 */
737 case OP_Goto: {             /* jump */
738 jump_to_p2_and_check_for_interrupt:
739   pOp = &aOp[pOp->p2 - 1];
740 
741   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
742   ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
743   ** completion.  Check to see if sqlite3_interrupt() has been called
744   ** or if the progress callback needs to be invoked.
745   **
746   ** This code uses unstructured "goto" statements and does not look clean.
747   ** But that is not due to sloppy coding habits. The code is written this
748   ** way for performance, to avoid having to run the interrupt and progress
749   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
750   ** faster according to "valgrind --tool=cachegrind" */
751 check_for_interrupt:
752   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
753 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
754   /* Call the progress callback if it is configured and the required number
755   ** of VDBE ops have been executed (either since this invocation of
756   ** sqlite3VdbeExec() or since last time the progress callback was called).
757   ** If the progress callback returns non-zero, exit the virtual machine with
758   ** a return code SQLITE_ABORT.
759   */
760   if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
761     assert( db->nProgressOps!=0 );
762     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
763     if( db->xProgress(db->pProgressArg) ){
764       rc = SQLITE_INTERRUPT;
765       goto vdbe_error_halt;
766     }
767   }
768 #endif
769 
770   break;
771 }
772 
773 /* Opcode:  Gosub P1 P2 * * *
774 **
775 ** Write the current address onto register P1
776 ** and then jump to address P2.
777 */
778 case OP_Gosub: {            /* jump */
779   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
780   pIn1 = &aMem[pOp->p1];
781   assert( VdbeMemDynamic(pIn1)==0 );
782   memAboutToChange(p, pIn1);
783   pIn1->flags = MEM_Int;
784   pIn1->u.i = (int)(pOp-aOp);
785   REGISTER_TRACE(pOp->p1, pIn1);
786 
787   /* Most jump operations do a goto to this spot in order to update
788   ** the pOp pointer. */
789 jump_to_p2:
790   pOp = &aOp[pOp->p2 - 1];
791   break;
792 }
793 
794 /* Opcode:  Return P1 * * * *
795 **
796 ** Jump to the next instruction after the address in register P1.  After
797 ** the jump, register P1 becomes undefined.
798 */
799 case OP_Return: {           /* in1 */
800   pIn1 = &aMem[pOp->p1];
801   assert( pIn1->flags==MEM_Int );
802   pOp = &aOp[pIn1->u.i];
803   pIn1->flags = MEM_Undefined;
804   break;
805 }
806 
807 /* Opcode: InitCoroutine P1 P2 P3 * *
808 **
809 ** Set up register P1 so that it will Yield to the coroutine
810 ** located at address P3.
811 **
812 ** If P2!=0 then the coroutine implementation immediately follows
813 ** this opcode.  So jump over the coroutine implementation to
814 ** address P2.
815 **
816 ** See also: EndCoroutine
817 */
818 case OP_InitCoroutine: {     /* jump */
819   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem-p->nCursor) );
820   assert( pOp->p2>=0 && pOp->p2<p->nOp );
821   assert( pOp->p3>=0 && pOp->p3<p->nOp );
822   pOut = &aMem[pOp->p1];
823   assert( !VdbeMemDynamic(pOut) );
824   pOut->u.i = pOp->p3 - 1;
825   pOut->flags = MEM_Int;
826   if( pOp->p2 ) goto jump_to_p2;
827   break;
828 }
829 
830 /* Opcode:  EndCoroutine P1 * * * *
831 **
832 ** The instruction at the address in register P1 is a Yield.
833 ** Jump to the P2 parameter of that Yield.
834 ** After the jump, register P1 becomes undefined.
835 **
836 ** See also: InitCoroutine
837 */
838 case OP_EndCoroutine: {           /* in1 */
839   VdbeOp *pCaller;
840   pIn1 = &aMem[pOp->p1];
841   assert( pIn1->flags==MEM_Int );
842   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
843   pCaller = &aOp[pIn1->u.i];
844   assert( pCaller->opcode==OP_Yield );
845   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
846   pOp = &aOp[pCaller->p2 - 1];
847   pIn1->flags = MEM_Undefined;
848   break;
849 }
850 
851 /* Opcode:  Yield P1 P2 * * *
852 **
853 ** Swap the program counter with the value in register P1.  This
854 ** has the effect of yielding to a coroutine.
855 **
856 ** If the coroutine that is launched by this instruction ends with
857 ** Yield or Return then continue to the next instruction.  But if
858 ** the coroutine launched by this instruction ends with
859 ** EndCoroutine, then jump to P2 rather than continuing with the
860 ** next instruction.
861 **
862 ** See also: InitCoroutine
863 */
864 case OP_Yield: {            /* in1, jump */
865   int pcDest;
866   pIn1 = &aMem[pOp->p1];
867   assert( VdbeMemDynamic(pIn1)==0 );
868   pIn1->flags = MEM_Int;
869   pcDest = (int)pIn1->u.i;
870   pIn1->u.i = (int)(pOp - aOp);
871   REGISTER_TRACE(pOp->p1, pIn1);
872   pOp = &aOp[pcDest];
873   break;
874 }
875 
876 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
877 ** Synopsis:  if r[P3]=null halt
878 **
879 ** Check the value in register P3.  If it is NULL then Halt using
880 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
881 ** value in register P3 is not NULL, then this routine is a no-op.
882 ** The P5 parameter should be 1.
883 */
884 case OP_HaltIfNull: {      /* in3 */
885   pIn3 = &aMem[pOp->p3];
886   if( (pIn3->flags & MEM_Null)==0 ) break;
887   /* Fall through into OP_Halt */
888 }
889 
890 /* Opcode:  Halt P1 P2 * P4 P5
891 **
892 ** Exit immediately.  All open cursors, etc are closed
893 ** automatically.
894 **
895 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
896 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
897 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
898 ** whether or not to rollback the current transaction.  Do not rollback
899 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
900 ** then back out all changes that have occurred during this execution of the
901 ** VDBE, but do not rollback the transaction.
902 **
903 ** If P4 is not null then it is an error message string.
904 **
905 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
906 **
907 **    0:  (no change)
908 **    1:  NOT NULL contraint failed: P4
909 **    2:  UNIQUE constraint failed: P4
910 **    3:  CHECK constraint failed: P4
911 **    4:  FOREIGN KEY constraint failed: P4
912 **
913 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
914 ** omitted.
915 **
916 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
917 ** every program.  So a jump past the last instruction of the program
918 ** is the same as executing Halt.
919 */
920 case OP_Halt: {
921   const char *zType;
922   const char *zLogFmt;
923   VdbeFrame *pFrame;
924   int pcx;
925 
926   pcx = (int)(pOp - aOp);
927   if( pOp->p1==SQLITE_OK && p->pFrame ){
928     /* Halt the sub-program. Return control to the parent frame. */
929     pFrame = p->pFrame;
930     p->pFrame = pFrame->pParent;
931     p->nFrame--;
932     sqlite3VdbeSetChanges(db, p->nChange);
933     pcx = sqlite3VdbeFrameRestore(pFrame);
934     lastRowid = db->lastRowid;
935     if( pOp->p2==OE_Ignore ){
936       /* Instruction pcx is the OP_Program that invoked the sub-program
937       ** currently being halted. If the p2 instruction of this OP_Halt
938       ** instruction is set to OE_Ignore, then the sub-program is throwing
939       ** an IGNORE exception. In this case jump to the address specified
940       ** as the p2 of the calling OP_Program.  */
941       pcx = p->aOp[pcx].p2-1;
942     }
943     aOp = p->aOp;
944     aMem = p->aMem;
945     pOp = &aOp[pcx];
946     break;
947   }
948   p->rc = pOp->p1;
949   p->errorAction = (u8)pOp->p2;
950   p->pc = pcx;
951   if( p->rc ){
952     if( pOp->p5 ){
953       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
954                                              "FOREIGN KEY" };
955       assert( pOp->p5>=1 && pOp->p5<=4 );
956       testcase( pOp->p5==1 );
957       testcase( pOp->p5==2 );
958       testcase( pOp->p5==3 );
959       testcase( pOp->p5==4 );
960       zType = azType[pOp->p5-1];
961     }else{
962       zType = 0;
963     }
964     assert( zType!=0 || pOp->p4.z!=0 );
965     zLogFmt = "abort at %d in [%s]: %s";
966     if( zType && pOp->p4.z ){
967       sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
968     }else if( pOp->p4.z ){
969       sqlite3VdbeError(p, "%s", pOp->p4.z);
970     }else{
971       sqlite3VdbeError(p, "%s constraint failed", zType);
972     }
973     sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
974   }
975   rc = sqlite3VdbeHalt(p);
976   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
977   if( rc==SQLITE_BUSY ){
978     p->rc = rc = SQLITE_BUSY;
979   }else{
980     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
981     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
982     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
983   }
984   goto vdbe_return;
985 }
986 
987 /* Opcode: Integer P1 P2 * * *
988 ** Synopsis: r[P2]=P1
989 **
990 ** The 32-bit integer value P1 is written into register P2.
991 */
992 case OP_Integer: {         /* out2 */
993   pOut = out2Prerelease(p, pOp);
994   pOut->u.i = pOp->p1;
995   break;
996 }
997 
998 /* Opcode: Int64 * P2 * P4 *
999 ** Synopsis: r[P2]=P4
1000 **
1001 ** P4 is a pointer to a 64-bit integer value.
1002 ** Write that value into register P2.
1003 */
1004 case OP_Int64: {           /* out2 */
1005   pOut = out2Prerelease(p, pOp);
1006   assert( pOp->p4.pI64!=0 );
1007   pOut->u.i = *pOp->p4.pI64;
1008   break;
1009 }
1010 
1011 #ifndef SQLITE_OMIT_FLOATING_POINT
1012 /* Opcode: Real * P2 * P4 *
1013 ** Synopsis: r[P2]=P4
1014 **
1015 ** P4 is a pointer to a 64-bit floating point value.
1016 ** Write that value into register P2.
1017 */
1018 case OP_Real: {            /* same as TK_FLOAT, out2 */
1019   pOut = out2Prerelease(p, pOp);
1020   pOut->flags = MEM_Real;
1021   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1022   pOut->u.r = *pOp->p4.pReal;
1023   break;
1024 }
1025 #endif
1026 
1027 /* Opcode: String8 * P2 * P4 *
1028 ** Synopsis: r[P2]='P4'
1029 **
1030 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1031 ** into a String opcode before it is executed for the first time.  During
1032 ** this transformation, the length of string P4 is computed and stored
1033 ** as the P1 parameter.
1034 */
1035 case OP_String8: {         /* same as TK_STRING, out2 */
1036   assert( pOp->p4.z!=0 );
1037   pOut = out2Prerelease(p, pOp);
1038   pOp->opcode = OP_String;
1039   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1040 
1041 #ifndef SQLITE_OMIT_UTF16
1042   if( encoding!=SQLITE_UTF8 ){
1043     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1044     if( rc==SQLITE_TOOBIG ) goto too_big;
1045     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1046     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1047     assert( VdbeMemDynamic(pOut)==0 );
1048     pOut->szMalloc = 0;
1049     pOut->flags |= MEM_Static;
1050     if( pOp->p4type==P4_DYNAMIC ){
1051       sqlite3DbFree(db, pOp->p4.z);
1052     }
1053     pOp->p4type = P4_DYNAMIC;
1054     pOp->p4.z = pOut->z;
1055     pOp->p1 = pOut->n;
1056   }
1057 #endif
1058   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1059     goto too_big;
1060   }
1061   /* Fall through to the next case, OP_String */
1062 }
1063 
1064 /* Opcode: String P1 P2 P3 P4 P5
1065 ** Synopsis: r[P2]='P4' (len=P1)
1066 **
1067 ** The string value P4 of length P1 (bytes) is stored in register P2.
1068 **
1069 ** If P5!=0 and the content of register P3 is greater than zero, then
1070 ** the datatype of the register P2 is converted to BLOB.  The content is
1071 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1072 ** of a string, as if it had been CAST.
1073 */
1074 case OP_String: {          /* out2 */
1075   assert( pOp->p4.z!=0 );
1076   pOut = out2Prerelease(p, pOp);
1077   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1078   pOut->z = pOp->p4.z;
1079   pOut->n = pOp->p1;
1080   pOut->enc = encoding;
1081   UPDATE_MAX_BLOBSIZE(pOut);
1082   if( pOp->p5 ){
1083     assert( pOp->p3>0 );
1084     assert( pOp->p3<=(p->nMem-p->nCursor) );
1085     pIn3 = &aMem[pOp->p3];
1086     assert( pIn3->flags & MEM_Int );
1087     if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1088   }
1089   break;
1090 }
1091 
1092 /* Opcode: Null P1 P2 P3 * *
1093 ** Synopsis:  r[P2..P3]=NULL
1094 **
1095 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1096 ** NULL into register P3 and every register in between P2 and P3.  If P3
1097 ** is less than P2 (typically P3 is zero) then only register P2 is
1098 ** set to NULL.
1099 **
1100 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1101 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1102 ** OP_Ne or OP_Eq.
1103 */
1104 case OP_Null: {           /* out2 */
1105   int cnt;
1106   u16 nullFlag;
1107   pOut = out2Prerelease(p, pOp);
1108   cnt = pOp->p3-pOp->p2;
1109   assert( pOp->p3<=(p->nMem-p->nCursor) );
1110   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1111   while( cnt>0 ){
1112     pOut++;
1113     memAboutToChange(p, pOut);
1114     sqlite3VdbeMemSetNull(pOut);
1115     pOut->flags = nullFlag;
1116     cnt--;
1117   }
1118   break;
1119 }
1120 
1121 /* Opcode: SoftNull P1 * * * *
1122 ** Synopsis:  r[P1]=NULL
1123 **
1124 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1125 ** instruction, but do not free any string or blob memory associated with
1126 ** the register, so that if the value was a string or blob that was
1127 ** previously copied using OP_SCopy, the copies will continue to be valid.
1128 */
1129 case OP_SoftNull: {
1130   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1131   pOut = &aMem[pOp->p1];
1132   pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1133   break;
1134 }
1135 
1136 /* Opcode: Blob P1 P2 * P4 *
1137 ** Synopsis: r[P2]=P4 (len=P1)
1138 **
1139 ** P4 points to a blob of data P1 bytes long.  Store this
1140 ** blob in register P2.
1141 */
1142 case OP_Blob: {                /* out2 */
1143   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1144   pOut = out2Prerelease(p, pOp);
1145   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1146   pOut->enc = encoding;
1147   UPDATE_MAX_BLOBSIZE(pOut);
1148   break;
1149 }
1150 
1151 /* Opcode: Variable P1 P2 * P4 *
1152 ** Synopsis: r[P2]=parameter(P1,P4)
1153 **
1154 ** Transfer the values of bound parameter P1 into register P2
1155 **
1156 ** If the parameter is named, then its name appears in P4.
1157 ** The P4 value is used by sqlite3_bind_parameter_name().
1158 */
1159 case OP_Variable: {            /* out2 */
1160   Mem *pVar;       /* Value being transferred */
1161 
1162   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1163   assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1164   pVar = &p->aVar[pOp->p1 - 1];
1165   if( sqlite3VdbeMemTooBig(pVar) ){
1166     goto too_big;
1167   }
1168   pOut = out2Prerelease(p, pOp);
1169   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1170   UPDATE_MAX_BLOBSIZE(pOut);
1171   break;
1172 }
1173 
1174 /* Opcode: Move P1 P2 P3 * *
1175 ** Synopsis:  r[P2@P3]=r[P1@P3]
1176 **
1177 ** Move the P3 values in register P1..P1+P3-1 over into
1178 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1179 ** left holding a NULL.  It is an error for register ranges
1180 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1181 ** for P3 to be less than 1.
1182 */
1183 case OP_Move: {
1184   int n;           /* Number of registers left to copy */
1185   int p1;          /* Register to copy from */
1186   int p2;          /* Register to copy to */
1187 
1188   n = pOp->p3;
1189   p1 = pOp->p1;
1190   p2 = pOp->p2;
1191   assert( n>0 && p1>0 && p2>0 );
1192   assert( p1+n<=p2 || p2+n<=p1 );
1193 
1194   pIn1 = &aMem[p1];
1195   pOut = &aMem[p2];
1196   do{
1197     assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1198     assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
1199     assert( memIsValid(pIn1) );
1200     memAboutToChange(p, pOut);
1201     sqlite3VdbeMemMove(pOut, pIn1);
1202 #ifdef SQLITE_DEBUG
1203     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1204       pOut->pScopyFrom += pOp->p2 - p1;
1205     }
1206 #endif
1207     Deephemeralize(pOut);
1208     REGISTER_TRACE(p2++, pOut);
1209     pIn1++;
1210     pOut++;
1211   }while( --n );
1212   break;
1213 }
1214 
1215 /* Opcode: Copy P1 P2 P3 * *
1216 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1217 **
1218 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1219 **
1220 ** This instruction makes a deep copy of the value.  A duplicate
1221 ** is made of any string or blob constant.  See also OP_SCopy.
1222 */
1223 case OP_Copy: {
1224   int n;
1225 
1226   n = pOp->p3;
1227   pIn1 = &aMem[pOp->p1];
1228   pOut = &aMem[pOp->p2];
1229   assert( pOut!=pIn1 );
1230   while( 1 ){
1231     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1232     Deephemeralize(pOut);
1233 #ifdef SQLITE_DEBUG
1234     pOut->pScopyFrom = 0;
1235 #endif
1236     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1237     if( (n--)==0 ) break;
1238     pOut++;
1239     pIn1++;
1240   }
1241   break;
1242 }
1243 
1244 /* Opcode: SCopy P1 P2 * * *
1245 ** Synopsis: r[P2]=r[P1]
1246 **
1247 ** Make a shallow copy of register P1 into register P2.
1248 **
1249 ** This instruction makes a shallow copy of the value.  If the value
1250 ** is a string or blob, then the copy is only a pointer to the
1251 ** original and hence if the original changes so will the copy.
1252 ** Worse, if the original is deallocated, the copy becomes invalid.
1253 ** Thus the program must guarantee that the original will not change
1254 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1255 ** copy.
1256 */
1257 case OP_SCopy: {            /* out2 */
1258   pIn1 = &aMem[pOp->p1];
1259   pOut = &aMem[pOp->p2];
1260   assert( pOut!=pIn1 );
1261   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1262 #ifdef SQLITE_DEBUG
1263   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1264 #endif
1265   break;
1266 }
1267 
1268 /* Opcode: ResultRow P1 P2 * * *
1269 ** Synopsis:  output=r[P1@P2]
1270 **
1271 ** The registers P1 through P1+P2-1 contain a single row of
1272 ** results. This opcode causes the sqlite3_step() call to terminate
1273 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1274 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1275 ** the result row.
1276 */
1277 case OP_ResultRow: {
1278   Mem *pMem;
1279   int i;
1280   assert( p->nResColumn==pOp->p2 );
1281   assert( pOp->p1>0 );
1282   assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
1283 
1284 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1285   /* Run the progress counter just before returning.
1286   */
1287   if( db->xProgress!=0
1288    && nVmStep>=nProgressLimit
1289    && db->xProgress(db->pProgressArg)!=0
1290   ){
1291     rc = SQLITE_INTERRUPT;
1292     goto vdbe_error_halt;
1293   }
1294 #endif
1295 
1296   /* If this statement has violated immediate foreign key constraints, do
1297   ** not return the number of rows modified. And do not RELEASE the statement
1298   ** transaction. It needs to be rolled back.  */
1299   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1300     assert( db->flags&SQLITE_CountRows );
1301     assert( p->usesStmtJournal );
1302     break;
1303   }
1304 
1305   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1306   ** DML statements invoke this opcode to return the number of rows
1307   ** modified to the user. This is the only way that a VM that
1308   ** opens a statement transaction may invoke this opcode.
1309   **
1310   ** In case this is such a statement, close any statement transaction
1311   ** opened by this VM before returning control to the user. This is to
1312   ** ensure that statement-transactions are always nested, not overlapping.
1313   ** If the open statement-transaction is not closed here, then the user
1314   ** may step another VM that opens its own statement transaction. This
1315   ** may lead to overlapping statement transactions.
1316   **
1317   ** The statement transaction is never a top-level transaction.  Hence
1318   ** the RELEASE call below can never fail.
1319   */
1320   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1321   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1322   if( NEVER(rc!=SQLITE_OK) ){
1323     break;
1324   }
1325 
1326   /* Invalidate all ephemeral cursor row caches */
1327   p->cacheCtr = (p->cacheCtr + 2)|1;
1328 
1329   /* Make sure the results of the current row are \000 terminated
1330   ** and have an assigned type.  The results are de-ephemeralized as
1331   ** a side effect.
1332   */
1333   pMem = p->pResultSet = &aMem[pOp->p1];
1334   for(i=0; i<pOp->p2; i++){
1335     assert( memIsValid(&pMem[i]) );
1336     Deephemeralize(&pMem[i]);
1337     assert( (pMem[i].flags & MEM_Ephem)==0
1338             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1339     sqlite3VdbeMemNulTerminate(&pMem[i]);
1340     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1341   }
1342   if( db->mallocFailed ) goto no_mem;
1343 
1344   /* Return SQLITE_ROW
1345   */
1346   p->pc = (int)(pOp - aOp) + 1;
1347   rc = SQLITE_ROW;
1348   goto vdbe_return;
1349 }
1350 
1351 /* Opcode: Concat P1 P2 P3 * *
1352 ** Synopsis: r[P3]=r[P2]+r[P1]
1353 **
1354 ** Add the text in register P1 onto the end of the text in
1355 ** register P2 and store the result in register P3.
1356 ** If either the P1 or P2 text are NULL then store NULL in P3.
1357 **
1358 **   P3 = P2 || P1
1359 **
1360 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1361 ** if P3 is the same register as P2, the implementation is able
1362 ** to avoid a memcpy().
1363 */
1364 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1365   i64 nByte;
1366 
1367   pIn1 = &aMem[pOp->p1];
1368   pIn2 = &aMem[pOp->p2];
1369   pOut = &aMem[pOp->p3];
1370   assert( pIn1!=pOut );
1371   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1372     sqlite3VdbeMemSetNull(pOut);
1373     break;
1374   }
1375   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1376   Stringify(pIn1, encoding);
1377   Stringify(pIn2, encoding);
1378   nByte = pIn1->n + pIn2->n;
1379   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1380     goto too_big;
1381   }
1382   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1383     goto no_mem;
1384   }
1385   MemSetTypeFlag(pOut, MEM_Str);
1386   if( pOut!=pIn2 ){
1387     memcpy(pOut->z, pIn2->z, pIn2->n);
1388   }
1389   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1390   pOut->z[nByte]=0;
1391   pOut->z[nByte+1] = 0;
1392   pOut->flags |= MEM_Term;
1393   pOut->n = (int)nByte;
1394   pOut->enc = encoding;
1395   UPDATE_MAX_BLOBSIZE(pOut);
1396   break;
1397 }
1398 
1399 /* Opcode: Add P1 P2 P3 * *
1400 ** Synopsis:  r[P3]=r[P1]+r[P2]
1401 **
1402 ** Add the value in register P1 to the value in register P2
1403 ** and store the result in register P3.
1404 ** If either input is NULL, the result is NULL.
1405 */
1406 /* Opcode: Multiply P1 P2 P3 * *
1407 ** Synopsis:  r[P3]=r[P1]*r[P2]
1408 **
1409 **
1410 ** Multiply the value in register P1 by the value in register P2
1411 ** and store the result in register P3.
1412 ** If either input is NULL, the result is NULL.
1413 */
1414 /* Opcode: Subtract P1 P2 P3 * *
1415 ** Synopsis:  r[P3]=r[P2]-r[P1]
1416 **
1417 ** Subtract the value in register P1 from the value in register P2
1418 ** and store the result in register P3.
1419 ** If either input is NULL, the result is NULL.
1420 */
1421 /* Opcode: Divide P1 P2 P3 * *
1422 ** Synopsis:  r[P3]=r[P2]/r[P1]
1423 **
1424 ** Divide the value in register P1 by the value in register P2
1425 ** and store the result in register P3 (P3=P2/P1). If the value in
1426 ** register P1 is zero, then the result is NULL. If either input is
1427 ** NULL, the result is NULL.
1428 */
1429 /* Opcode: Remainder P1 P2 P3 * *
1430 ** Synopsis:  r[P3]=r[P2]%r[P1]
1431 **
1432 ** Compute the remainder after integer register P2 is divided by
1433 ** register P1 and store the result in register P3.
1434 ** If the value in register P1 is zero the result is NULL.
1435 ** If either operand is NULL, the result is NULL.
1436 */
1437 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1438 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1439 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1440 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1441 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1442   char bIntint;   /* Started out as two integer operands */
1443   u16 flags;      /* Combined MEM_* flags from both inputs */
1444   u16 type1;      /* Numeric type of left operand */
1445   u16 type2;      /* Numeric type of right operand */
1446   i64 iA;         /* Integer value of left operand */
1447   i64 iB;         /* Integer value of right operand */
1448   double rA;      /* Real value of left operand */
1449   double rB;      /* Real value of right operand */
1450 
1451   pIn1 = &aMem[pOp->p1];
1452   type1 = numericType(pIn1);
1453   pIn2 = &aMem[pOp->p2];
1454   type2 = numericType(pIn2);
1455   pOut = &aMem[pOp->p3];
1456   flags = pIn1->flags | pIn2->flags;
1457   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1458   if( (type1 & type2 & MEM_Int)!=0 ){
1459     iA = pIn1->u.i;
1460     iB = pIn2->u.i;
1461     bIntint = 1;
1462     switch( pOp->opcode ){
1463       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1464       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1465       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1466       case OP_Divide: {
1467         if( iA==0 ) goto arithmetic_result_is_null;
1468         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1469         iB /= iA;
1470         break;
1471       }
1472       default: {
1473         if( iA==0 ) goto arithmetic_result_is_null;
1474         if( iA==-1 ) iA = 1;
1475         iB %= iA;
1476         break;
1477       }
1478     }
1479     pOut->u.i = iB;
1480     MemSetTypeFlag(pOut, MEM_Int);
1481   }else{
1482     bIntint = 0;
1483 fp_math:
1484     rA = sqlite3VdbeRealValue(pIn1);
1485     rB = sqlite3VdbeRealValue(pIn2);
1486     switch( pOp->opcode ){
1487       case OP_Add:         rB += rA;       break;
1488       case OP_Subtract:    rB -= rA;       break;
1489       case OP_Multiply:    rB *= rA;       break;
1490       case OP_Divide: {
1491         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1492         if( rA==(double)0 ) goto arithmetic_result_is_null;
1493         rB /= rA;
1494         break;
1495       }
1496       default: {
1497         iA = (i64)rA;
1498         iB = (i64)rB;
1499         if( iA==0 ) goto arithmetic_result_is_null;
1500         if( iA==-1 ) iA = 1;
1501         rB = (double)(iB % iA);
1502         break;
1503       }
1504     }
1505 #ifdef SQLITE_OMIT_FLOATING_POINT
1506     pOut->u.i = rB;
1507     MemSetTypeFlag(pOut, MEM_Int);
1508 #else
1509     if( sqlite3IsNaN(rB) ){
1510       goto arithmetic_result_is_null;
1511     }
1512     pOut->u.r = rB;
1513     MemSetTypeFlag(pOut, MEM_Real);
1514     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1515       sqlite3VdbeIntegerAffinity(pOut);
1516     }
1517 #endif
1518   }
1519   break;
1520 
1521 arithmetic_result_is_null:
1522   sqlite3VdbeMemSetNull(pOut);
1523   break;
1524 }
1525 
1526 /* Opcode: CollSeq P1 * * P4
1527 **
1528 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1529 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1530 ** be returned. This is used by the built-in min(), max() and nullif()
1531 ** functions.
1532 **
1533 ** If P1 is not zero, then it is a register that a subsequent min() or
1534 ** max() aggregate will set to 1 if the current row is not the minimum or
1535 ** maximum.  The P1 register is initialized to 0 by this instruction.
1536 **
1537 ** The interface used by the implementation of the aforementioned functions
1538 ** to retrieve the collation sequence set by this opcode is not available
1539 ** publicly.  Only built-in functions have access to this feature.
1540 */
1541 case OP_CollSeq: {
1542   assert( pOp->p4type==P4_COLLSEQ );
1543   if( pOp->p1 ){
1544     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1545   }
1546   break;
1547 }
1548 
1549 /* Opcode: Function0 P1 P2 P3 P4 P5
1550 ** Synopsis: r[P3]=func(r[P2@P5])
1551 **
1552 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1553 ** defines the function) with P5 arguments taken from register P2 and
1554 ** successors.  The result of the function is stored in register P3.
1555 ** Register P3 must not be one of the function inputs.
1556 **
1557 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1558 ** function was determined to be constant at compile time. If the first
1559 ** argument was constant then bit 0 of P1 is set. This is used to determine
1560 ** whether meta data associated with a user function argument using the
1561 ** sqlite3_set_auxdata() API may be safely retained until the next
1562 ** invocation of this opcode.
1563 **
1564 ** See also: Function, AggStep, AggFinal
1565 */
1566 /* Opcode: Function P1 P2 P3 P4 P5
1567 ** Synopsis: r[P3]=func(r[P2@P5])
1568 **
1569 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1570 ** contains a pointer to the function to be run) with P5 arguments taken
1571 ** from register P2 and successors.  The result of the function is stored
1572 ** in register P3.  Register P3 must not be one of the function inputs.
1573 **
1574 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1575 ** function was determined to be constant at compile time. If the first
1576 ** argument was constant then bit 0 of P1 is set. This is used to determine
1577 ** whether meta data associated with a user function argument using the
1578 ** sqlite3_set_auxdata() API may be safely retained until the next
1579 ** invocation of this opcode.
1580 **
1581 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1582 ** to a FuncDef object.  But on first evaluation, the P4 operand is
1583 ** automatically converted into an sqlite3_context object and the operation
1584 ** changed to this OP_Function opcode.  In this way, the initialization of
1585 ** the sqlite3_context object occurs only once, rather than once for each
1586 ** evaluation of the function.
1587 **
1588 ** See also: Function0, AggStep, AggFinal
1589 */
1590 case OP_Function0: {
1591   int n;
1592   sqlite3_context *pCtx;
1593 
1594   assert( pOp->p4type==P4_FUNCDEF );
1595   n = pOp->p5;
1596   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1597   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
1598   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1599   pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1600   if( pCtx==0 ) goto no_mem;
1601   pCtx->pOut = 0;
1602   pCtx->pFunc = pOp->p4.pFunc;
1603   pCtx->iOp = (int)(pOp - aOp);
1604   pCtx->pVdbe = p;
1605   pCtx->argc = n;
1606   pOp->p4type = P4_FUNCCTX;
1607   pOp->p4.pCtx = pCtx;
1608   pOp->opcode = OP_Function;
1609   /* Fall through into OP_Function */
1610 }
1611 case OP_Function: {
1612   int i;
1613   sqlite3_context *pCtx;
1614 
1615   assert( pOp->p4type==P4_FUNCCTX );
1616   pCtx = pOp->p4.pCtx;
1617 
1618   /* If this function is inside of a trigger, the register array in aMem[]
1619   ** might change from one evaluation to the next.  The next block of code
1620   ** checks to see if the register array has changed, and if so it
1621   ** reinitializes the relavant parts of the sqlite3_context object */
1622   pOut = &aMem[pOp->p3];
1623   if( pCtx->pOut != pOut ){
1624     pCtx->pOut = pOut;
1625     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1626   }
1627 
1628   memAboutToChange(p, pCtx->pOut);
1629 #ifdef SQLITE_DEBUG
1630   for(i=0; i<pCtx->argc; i++){
1631     assert( memIsValid(pCtx->argv[i]) );
1632     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1633   }
1634 #endif
1635   MemSetTypeFlag(pCtx->pOut, MEM_Null);
1636   pCtx->fErrorOrAux = 0;
1637   db->lastRowid = lastRowid;
1638   (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */
1639   lastRowid = db->lastRowid;  /* Remember rowid changes made by xFunc */
1640 
1641   /* If the function returned an error, throw an exception */
1642   if( pCtx->fErrorOrAux ){
1643     if( pCtx->isError ){
1644       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1645       rc = pCtx->isError;
1646     }
1647     sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1);
1648   }
1649 
1650   /* Copy the result of the function into register P3 */
1651   if( pOut->flags & (MEM_Str|MEM_Blob) ){
1652     sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1653     if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1654   }
1655 
1656   REGISTER_TRACE(pOp->p3, pCtx->pOut);
1657   UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1658   break;
1659 }
1660 
1661 /* Opcode: BitAnd P1 P2 P3 * *
1662 ** Synopsis:  r[P3]=r[P1]&r[P2]
1663 **
1664 ** Take the bit-wise AND of the values in register P1 and P2 and
1665 ** store the result in register P3.
1666 ** If either input is NULL, the result is NULL.
1667 */
1668 /* Opcode: BitOr P1 P2 P3 * *
1669 ** Synopsis:  r[P3]=r[P1]|r[P2]
1670 **
1671 ** Take the bit-wise OR of the values in register P1 and P2 and
1672 ** store the result in register P3.
1673 ** If either input is NULL, the result is NULL.
1674 */
1675 /* Opcode: ShiftLeft P1 P2 P3 * *
1676 ** Synopsis:  r[P3]=r[P2]<<r[P1]
1677 **
1678 ** Shift the integer value in register P2 to the left by the
1679 ** number of bits specified by the integer in register P1.
1680 ** Store the result in register P3.
1681 ** If either input is NULL, the result is NULL.
1682 */
1683 /* Opcode: ShiftRight P1 P2 P3 * *
1684 ** Synopsis:  r[P3]=r[P2]>>r[P1]
1685 **
1686 ** Shift the integer value in register P2 to the right by the
1687 ** number of bits specified by the integer in register P1.
1688 ** Store the result in register P3.
1689 ** If either input is NULL, the result is NULL.
1690 */
1691 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1692 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1693 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1694 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1695   i64 iA;
1696   u64 uA;
1697   i64 iB;
1698   u8 op;
1699 
1700   pIn1 = &aMem[pOp->p1];
1701   pIn2 = &aMem[pOp->p2];
1702   pOut = &aMem[pOp->p3];
1703   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1704     sqlite3VdbeMemSetNull(pOut);
1705     break;
1706   }
1707   iA = sqlite3VdbeIntValue(pIn2);
1708   iB = sqlite3VdbeIntValue(pIn1);
1709   op = pOp->opcode;
1710   if( op==OP_BitAnd ){
1711     iA &= iB;
1712   }else if( op==OP_BitOr ){
1713     iA |= iB;
1714   }else if( iB!=0 ){
1715     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1716 
1717     /* If shifting by a negative amount, shift in the other direction */
1718     if( iB<0 ){
1719       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1720       op = 2*OP_ShiftLeft + 1 - op;
1721       iB = iB>(-64) ? -iB : 64;
1722     }
1723 
1724     if( iB>=64 ){
1725       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1726     }else{
1727       memcpy(&uA, &iA, sizeof(uA));
1728       if( op==OP_ShiftLeft ){
1729         uA <<= iB;
1730       }else{
1731         uA >>= iB;
1732         /* Sign-extend on a right shift of a negative number */
1733         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1734       }
1735       memcpy(&iA, &uA, sizeof(iA));
1736     }
1737   }
1738   pOut->u.i = iA;
1739   MemSetTypeFlag(pOut, MEM_Int);
1740   break;
1741 }
1742 
1743 /* Opcode: AddImm  P1 P2 * * *
1744 ** Synopsis:  r[P1]=r[P1]+P2
1745 **
1746 ** Add the constant P2 to the value in register P1.
1747 ** The result is always an integer.
1748 **
1749 ** To force any register to be an integer, just add 0.
1750 */
1751 case OP_AddImm: {            /* in1 */
1752   pIn1 = &aMem[pOp->p1];
1753   memAboutToChange(p, pIn1);
1754   sqlite3VdbeMemIntegerify(pIn1);
1755   pIn1->u.i += pOp->p2;
1756   break;
1757 }
1758 
1759 /* Opcode: MustBeInt P1 P2 * * *
1760 **
1761 ** Force the value in register P1 to be an integer.  If the value
1762 ** in P1 is not an integer and cannot be converted into an integer
1763 ** without data loss, then jump immediately to P2, or if P2==0
1764 ** raise an SQLITE_MISMATCH exception.
1765 */
1766 case OP_MustBeInt: {            /* jump, in1 */
1767   pIn1 = &aMem[pOp->p1];
1768   if( (pIn1->flags & MEM_Int)==0 ){
1769     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1770     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1771     if( (pIn1->flags & MEM_Int)==0 ){
1772       if( pOp->p2==0 ){
1773         rc = SQLITE_MISMATCH;
1774         goto abort_due_to_error;
1775       }else{
1776         goto jump_to_p2;
1777       }
1778     }
1779   }
1780   MemSetTypeFlag(pIn1, MEM_Int);
1781   break;
1782 }
1783 
1784 #ifndef SQLITE_OMIT_FLOATING_POINT
1785 /* Opcode: RealAffinity P1 * * * *
1786 **
1787 ** If register P1 holds an integer convert it to a real value.
1788 **
1789 ** This opcode is used when extracting information from a column that
1790 ** has REAL affinity.  Such column values may still be stored as
1791 ** integers, for space efficiency, but after extraction we want them
1792 ** to have only a real value.
1793 */
1794 case OP_RealAffinity: {                  /* in1 */
1795   pIn1 = &aMem[pOp->p1];
1796   if( pIn1->flags & MEM_Int ){
1797     sqlite3VdbeMemRealify(pIn1);
1798   }
1799   break;
1800 }
1801 #endif
1802 
1803 #ifndef SQLITE_OMIT_CAST
1804 /* Opcode: Cast P1 P2 * * *
1805 ** Synopsis: affinity(r[P1])
1806 **
1807 ** Force the value in register P1 to be the type defined by P2.
1808 **
1809 ** <ul>
1810 ** <li value="97"> TEXT
1811 ** <li value="98"> BLOB
1812 ** <li value="99"> NUMERIC
1813 ** <li value="100"> INTEGER
1814 ** <li value="101"> REAL
1815 ** </ul>
1816 **
1817 ** A NULL value is not changed by this routine.  It remains NULL.
1818 */
1819 case OP_Cast: {                  /* in1 */
1820   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1821   testcase( pOp->p2==SQLITE_AFF_TEXT );
1822   testcase( pOp->p2==SQLITE_AFF_BLOB );
1823   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1824   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1825   testcase( pOp->p2==SQLITE_AFF_REAL );
1826   pIn1 = &aMem[pOp->p1];
1827   memAboutToChange(p, pIn1);
1828   rc = ExpandBlob(pIn1);
1829   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1830   UPDATE_MAX_BLOBSIZE(pIn1);
1831   break;
1832 }
1833 #endif /* SQLITE_OMIT_CAST */
1834 
1835 /* Opcode: Lt P1 P2 P3 P4 P5
1836 ** Synopsis: if r[P1]<r[P3] goto P2
1837 **
1838 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1839 ** jump to address P2.
1840 **
1841 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1842 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
1843 ** bit is clear then fall through if either operand is NULL.
1844 **
1845 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1846 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1847 ** to coerce both inputs according to this affinity before the
1848 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1849 ** affinity is used. Note that the affinity conversions are stored
1850 ** back into the input registers P1 and P3.  So this opcode can cause
1851 ** persistent changes to registers P1 and P3.
1852 **
1853 ** Once any conversions have taken place, and neither value is NULL,
1854 ** the values are compared. If both values are blobs then memcmp() is
1855 ** used to determine the results of the comparison.  If both values
1856 ** are text, then the appropriate collating function specified in
1857 ** P4 is  used to do the comparison.  If P4 is not specified then
1858 ** memcmp() is used to compare text string.  If both values are
1859 ** numeric, then a numeric comparison is used. If the two values
1860 ** are of different types, then numbers are considered less than
1861 ** strings and strings are considered less than blobs.
1862 **
1863 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
1864 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1865 **
1866 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1867 ** equal to one another, provided that they do not have their MEM_Cleared
1868 ** bit set.
1869 */
1870 /* Opcode: Ne P1 P2 P3 P4 P5
1871 ** Synopsis: if r[P1]!=r[P3] goto P2
1872 **
1873 ** This works just like the Lt opcode except that the jump is taken if
1874 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
1875 ** additional information.
1876 **
1877 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1878 ** true or false and is never NULL.  If both operands are NULL then the result
1879 ** of comparison is false.  If either operand is NULL then the result is true.
1880 ** If neither operand is NULL the result is the same as it would be if
1881 ** the SQLITE_NULLEQ flag were omitted from P5.
1882 */
1883 /* Opcode: Eq P1 P2 P3 P4 P5
1884 ** Synopsis: if r[P1]==r[P3] goto P2
1885 **
1886 ** This works just like the Lt opcode except that the jump is taken if
1887 ** the operands in registers P1 and P3 are equal.
1888 ** See the Lt opcode for additional information.
1889 **
1890 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1891 ** true or false and is never NULL.  If both operands are NULL then the result
1892 ** of comparison is true.  If either operand is NULL then the result is false.
1893 ** If neither operand is NULL the result is the same as it would be if
1894 ** the SQLITE_NULLEQ flag were omitted from P5.
1895 */
1896 /* Opcode: Le P1 P2 P3 P4 P5
1897 ** Synopsis: if r[P1]<=r[P3] goto P2
1898 **
1899 ** This works just like the Lt opcode except that the jump is taken if
1900 ** the content of register P3 is less than or equal to the content of
1901 ** register P1.  See the Lt opcode for additional information.
1902 */
1903 /* Opcode: Gt P1 P2 P3 P4 P5
1904 ** Synopsis: if r[P1]>r[P3] goto P2
1905 **
1906 ** This works just like the Lt opcode except that the jump is taken if
1907 ** the content of register P3 is greater than the content of
1908 ** register P1.  See the Lt opcode for additional information.
1909 */
1910 /* Opcode: Ge P1 P2 P3 P4 P5
1911 ** Synopsis: if r[P1]>=r[P3] goto P2
1912 **
1913 ** This works just like the Lt opcode except that the jump is taken if
1914 ** the content of register P3 is greater than or equal to the content of
1915 ** register P1.  See the Lt opcode for additional information.
1916 */
1917 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1918 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1919 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1920 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1921 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1922 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1923   int res;            /* Result of the comparison of pIn1 against pIn3 */
1924   char affinity;      /* Affinity to use for comparison */
1925   u16 flags1;         /* Copy of initial value of pIn1->flags */
1926   u16 flags3;         /* Copy of initial value of pIn3->flags */
1927 
1928   pIn1 = &aMem[pOp->p1];
1929   pIn3 = &aMem[pOp->p3];
1930   flags1 = pIn1->flags;
1931   flags3 = pIn3->flags;
1932   if( (flags1 | flags3)&MEM_Null ){
1933     /* One or both operands are NULL */
1934     if( pOp->p5 & SQLITE_NULLEQ ){
1935       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1936       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1937       ** or not both operands are null.
1938       */
1939       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1940       assert( (flags1 & MEM_Cleared)==0 );
1941       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1942       if( (flags1&MEM_Null)!=0
1943        && (flags3&MEM_Null)!=0
1944        && (flags3&MEM_Cleared)==0
1945       ){
1946         res = 0;  /* Results are equal */
1947       }else{
1948         res = 1;  /* Results are not equal */
1949       }
1950     }else{
1951       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1952       ** then the result is always NULL.
1953       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1954       */
1955       if( pOp->p5 & SQLITE_STOREP2 ){
1956         pOut = &aMem[pOp->p2];
1957         MemSetTypeFlag(pOut, MEM_Null);
1958         REGISTER_TRACE(pOp->p2, pOut);
1959       }else{
1960         VdbeBranchTaken(2,3);
1961         if( pOp->p5 & SQLITE_JUMPIFNULL ){
1962           goto jump_to_p2;
1963         }
1964       }
1965       break;
1966     }
1967   }else{
1968     /* Neither operand is NULL.  Do a comparison. */
1969     affinity = pOp->p5 & SQLITE_AFF_MASK;
1970     if( affinity>=SQLITE_AFF_NUMERIC ){
1971       if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1972         applyNumericAffinity(pIn1,0);
1973       }
1974       if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1975         applyNumericAffinity(pIn3,0);
1976       }
1977     }else if( affinity==SQLITE_AFF_TEXT ){
1978       if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
1979         testcase( pIn1->flags & MEM_Int );
1980         testcase( pIn1->flags & MEM_Real );
1981         sqlite3VdbeMemStringify(pIn1, encoding, 1);
1982         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1983         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
1984       }
1985       if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
1986         testcase( pIn3->flags & MEM_Int );
1987         testcase( pIn3->flags & MEM_Real );
1988         sqlite3VdbeMemStringify(pIn3, encoding, 1);
1989         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1990         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
1991       }
1992     }
1993     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1994     if( pIn1->flags & MEM_Zero ){
1995       sqlite3VdbeMemExpandBlob(pIn1);
1996       flags1 &= ~MEM_Zero;
1997     }
1998     if( pIn3->flags & MEM_Zero ){
1999       sqlite3VdbeMemExpandBlob(pIn3);
2000       flags3 &= ~MEM_Zero;
2001     }
2002     if( db->mallocFailed ) goto no_mem;
2003     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2004   }
2005   switch( pOp->opcode ){
2006     case OP_Eq:    res = res==0;     break;
2007     case OP_Ne:    res = res!=0;     break;
2008     case OP_Lt:    res = res<0;      break;
2009     case OP_Le:    res = res<=0;     break;
2010     case OP_Gt:    res = res>0;      break;
2011     default:       res = res>=0;     break;
2012   }
2013 
2014   /* Undo any changes made by applyAffinity() to the input registers. */
2015   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2016   pIn1->flags = flags1;
2017   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2018   pIn3->flags = flags3;
2019 
2020   if( pOp->p5 & SQLITE_STOREP2 ){
2021     pOut = &aMem[pOp->p2];
2022     memAboutToChange(p, pOut);
2023     MemSetTypeFlag(pOut, MEM_Int);
2024     pOut->u.i = res;
2025     REGISTER_TRACE(pOp->p2, pOut);
2026   }else{
2027     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2028     if( res ){
2029       goto jump_to_p2;
2030     }
2031   }
2032   break;
2033 }
2034 
2035 /* Opcode: Permutation * * * P4 *
2036 **
2037 ** Set the permutation used by the OP_Compare operator to be the array
2038 ** of integers in P4.
2039 **
2040 ** The permutation is only valid until the next OP_Compare that has
2041 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2042 ** occur immediately prior to the OP_Compare.
2043 */
2044 case OP_Permutation: {
2045   assert( pOp->p4type==P4_INTARRAY );
2046   assert( pOp->p4.ai );
2047   aPermute = pOp->p4.ai;
2048   break;
2049 }
2050 
2051 /* Opcode: Compare P1 P2 P3 P4 P5
2052 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2053 **
2054 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2055 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2056 ** the comparison for use by the next OP_Jump instruct.
2057 **
2058 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2059 ** determined by the most recent OP_Permutation operator.  If the
2060 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2061 ** order.
2062 **
2063 ** P4 is a KeyInfo structure that defines collating sequences and sort
2064 ** orders for the comparison.  The permutation applies to registers
2065 ** only.  The KeyInfo elements are used sequentially.
2066 **
2067 ** The comparison is a sort comparison, so NULLs compare equal,
2068 ** NULLs are less than numbers, numbers are less than strings,
2069 ** and strings are less than blobs.
2070 */
2071 case OP_Compare: {
2072   int n;
2073   int i;
2074   int p1;
2075   int p2;
2076   const KeyInfo *pKeyInfo;
2077   int idx;
2078   CollSeq *pColl;    /* Collating sequence to use on this term */
2079   int bRev;          /* True for DESCENDING sort order */
2080 
2081   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
2082   n = pOp->p3;
2083   pKeyInfo = pOp->p4.pKeyInfo;
2084   assert( n>0 );
2085   assert( pKeyInfo!=0 );
2086   p1 = pOp->p1;
2087   p2 = pOp->p2;
2088 #if SQLITE_DEBUG
2089   if( aPermute ){
2090     int k, mx = 0;
2091     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2092     assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2093     assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
2094   }else{
2095     assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2096     assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
2097   }
2098 #endif /* SQLITE_DEBUG */
2099   for(i=0; i<n; i++){
2100     idx = aPermute ? aPermute[i] : i;
2101     assert( memIsValid(&aMem[p1+idx]) );
2102     assert( memIsValid(&aMem[p2+idx]) );
2103     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2104     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2105     assert( i<pKeyInfo->nField );
2106     pColl = pKeyInfo->aColl[i];
2107     bRev = pKeyInfo->aSortOrder[i];
2108     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2109     if( iCompare ){
2110       if( bRev ) iCompare = -iCompare;
2111       break;
2112     }
2113   }
2114   aPermute = 0;
2115   break;
2116 }
2117 
2118 /* Opcode: Jump P1 P2 P3 * *
2119 **
2120 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2121 ** in the most recent OP_Compare instruction the P1 vector was less than
2122 ** equal to, or greater than the P2 vector, respectively.
2123 */
2124 case OP_Jump: {             /* jump */
2125   if( iCompare<0 ){
2126     VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2127   }else if( iCompare==0 ){
2128     VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2129   }else{
2130     VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2131   }
2132   break;
2133 }
2134 
2135 /* Opcode: And P1 P2 P3 * *
2136 ** Synopsis: r[P3]=(r[P1] && r[P2])
2137 **
2138 ** Take the logical AND of the values in registers P1 and P2 and
2139 ** write the result into register P3.
2140 **
2141 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2142 ** the other input is NULL.  A NULL and true or two NULLs give
2143 ** a NULL output.
2144 */
2145 /* Opcode: Or P1 P2 P3 * *
2146 ** Synopsis: r[P3]=(r[P1] || r[P2])
2147 **
2148 ** Take the logical OR of the values in register P1 and P2 and
2149 ** store the answer in register P3.
2150 **
2151 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2152 ** even if the other input is NULL.  A NULL and false or two NULLs
2153 ** give a NULL output.
2154 */
2155 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2156 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2157   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2158   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2159 
2160   pIn1 = &aMem[pOp->p1];
2161   if( pIn1->flags & MEM_Null ){
2162     v1 = 2;
2163   }else{
2164     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2165   }
2166   pIn2 = &aMem[pOp->p2];
2167   if( pIn2->flags & MEM_Null ){
2168     v2 = 2;
2169   }else{
2170     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2171   }
2172   if( pOp->opcode==OP_And ){
2173     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2174     v1 = and_logic[v1*3+v2];
2175   }else{
2176     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2177     v1 = or_logic[v1*3+v2];
2178   }
2179   pOut = &aMem[pOp->p3];
2180   if( v1==2 ){
2181     MemSetTypeFlag(pOut, MEM_Null);
2182   }else{
2183     pOut->u.i = v1;
2184     MemSetTypeFlag(pOut, MEM_Int);
2185   }
2186   break;
2187 }
2188 
2189 /* Opcode: Not P1 P2 * * *
2190 ** Synopsis: r[P2]= !r[P1]
2191 **
2192 ** Interpret the value in register P1 as a boolean value.  Store the
2193 ** boolean complement in register P2.  If the value in register P1 is
2194 ** NULL, then a NULL is stored in P2.
2195 */
2196 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2197   pIn1 = &aMem[pOp->p1];
2198   pOut = &aMem[pOp->p2];
2199   sqlite3VdbeMemSetNull(pOut);
2200   if( (pIn1->flags & MEM_Null)==0 ){
2201     pOut->flags = MEM_Int;
2202     pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2203   }
2204   break;
2205 }
2206 
2207 /* Opcode: BitNot P1 P2 * * *
2208 ** Synopsis: r[P1]= ~r[P1]
2209 **
2210 ** Interpret the content of register P1 as an integer.  Store the
2211 ** ones-complement of the P1 value into register P2.  If P1 holds
2212 ** a NULL then store a NULL in P2.
2213 */
2214 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2215   pIn1 = &aMem[pOp->p1];
2216   pOut = &aMem[pOp->p2];
2217   sqlite3VdbeMemSetNull(pOut);
2218   if( (pIn1->flags & MEM_Null)==0 ){
2219     pOut->flags = MEM_Int;
2220     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2221   }
2222   break;
2223 }
2224 
2225 /* Opcode: Once P1 P2 * * *
2226 **
2227 ** Check the "once" flag number P1. If it is set, jump to instruction P2.
2228 ** Otherwise, set the flag and fall through to the next instruction.
2229 ** In other words, this opcode causes all following opcodes up through P2
2230 ** (but not including P2) to run just once and to be skipped on subsequent
2231 ** times through the loop.
2232 **
2233 ** All "once" flags are initially cleared whenever a prepared statement
2234 ** first begins to run.
2235 */
2236 case OP_Once: {             /* jump */
2237   assert( pOp->p1<p->nOnceFlag );
2238   VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
2239   if( p->aOnceFlag[pOp->p1] ){
2240     goto jump_to_p2;
2241   }else{
2242     p->aOnceFlag[pOp->p1] = 1;
2243   }
2244   break;
2245 }
2246 
2247 /* Opcode: If P1 P2 P3 * *
2248 **
2249 ** Jump to P2 if the value in register P1 is true.  The value
2250 ** is considered true if it is numeric and non-zero.  If the value
2251 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2252 */
2253 /* Opcode: IfNot P1 P2 P3 * *
2254 **
2255 ** Jump to P2 if the value in register P1 is False.  The value
2256 ** is considered false if it has a numeric value of zero.  If the value
2257 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2258 */
2259 case OP_If:                 /* jump, in1 */
2260 case OP_IfNot: {            /* jump, in1 */
2261   int c;
2262   pIn1 = &aMem[pOp->p1];
2263   if( pIn1->flags & MEM_Null ){
2264     c = pOp->p3;
2265   }else{
2266 #ifdef SQLITE_OMIT_FLOATING_POINT
2267     c = sqlite3VdbeIntValue(pIn1)!=0;
2268 #else
2269     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2270 #endif
2271     if( pOp->opcode==OP_IfNot ) c = !c;
2272   }
2273   VdbeBranchTaken(c!=0, 2);
2274   if( c ){
2275     goto jump_to_p2;
2276   }
2277   break;
2278 }
2279 
2280 /* Opcode: IsNull P1 P2 * * *
2281 ** Synopsis:  if r[P1]==NULL goto P2
2282 **
2283 ** Jump to P2 if the value in register P1 is NULL.
2284 */
2285 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2286   pIn1 = &aMem[pOp->p1];
2287   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2288   if( (pIn1->flags & MEM_Null)!=0 ){
2289     goto jump_to_p2;
2290   }
2291   break;
2292 }
2293 
2294 /* Opcode: NotNull P1 P2 * * *
2295 ** Synopsis: if r[P1]!=NULL goto P2
2296 **
2297 ** Jump to P2 if the value in register P1 is not NULL.
2298 */
2299 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2300   pIn1 = &aMem[pOp->p1];
2301   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2302   if( (pIn1->flags & MEM_Null)==0 ){
2303     goto jump_to_p2;
2304   }
2305   break;
2306 }
2307 
2308 /* Opcode: Column P1 P2 P3 P4 P5
2309 ** Synopsis:  r[P3]=PX
2310 **
2311 ** Interpret the data that cursor P1 points to as a structure built using
2312 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2313 ** information about the format of the data.)  Extract the P2-th column
2314 ** from this record.  If there are less that (P2+1)
2315 ** values in the record, extract a NULL.
2316 **
2317 ** The value extracted is stored in register P3.
2318 **
2319 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2320 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2321 ** the result.
2322 **
2323 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2324 ** then the cache of the cursor is reset prior to extracting the column.
2325 ** The first OP_Column against a pseudo-table after the value of the content
2326 ** register has changed should have this bit set.
2327 **
2328 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2329 ** the result is guaranteed to only be used as the argument of a length()
2330 ** or typeof() function, respectively.  The loading of large blobs can be
2331 ** skipped for length() and all content loading can be skipped for typeof().
2332 */
2333 case OP_Column: {
2334   i64 payloadSize64; /* Number of bytes in the record */
2335   int p2;            /* column number to retrieve */
2336   VdbeCursor *pC;    /* The VDBE cursor */
2337   BtCursor *pCrsr;   /* The BTree cursor */
2338   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2339   int len;           /* The length of the serialized data for the column */
2340   int i;             /* Loop counter */
2341   Mem *pDest;        /* Where to write the extracted value */
2342   Mem sMem;          /* For storing the record being decoded */
2343   const u8 *zData;   /* Part of the record being decoded */
2344   const u8 *zHdr;    /* Next unparsed byte of the header */
2345   const u8 *zEndHdr; /* Pointer to first byte after the header */
2346   u32 offset;        /* Offset into the data */
2347   u32 szField;       /* Number of bytes in the content of a field */
2348   u32 avail;         /* Number of bytes of available data */
2349   u32 t;             /* A type code from the record header */
2350   u16 fx;            /* pDest->flags value */
2351   Mem *pReg;         /* PseudoTable input register */
2352 
2353   p2 = pOp->p2;
2354   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2355   pDest = &aMem[pOp->p3];
2356   memAboutToChange(p, pDest);
2357   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2358   pC = p->apCsr[pOp->p1];
2359   assert( pC!=0 );
2360   assert( p2<pC->nField );
2361   aOffset = pC->aOffset;
2362 #ifndef SQLITE_OMIT_VIRTUALTABLE
2363   assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
2364 #endif
2365   pCrsr = pC->pCursor;
2366   assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2367   assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */
2368 
2369   /* If the cursor cache is stale, bring it up-to-date */
2370   rc = sqlite3VdbeCursorMoveto(pC);
2371   if( rc ) goto abort_due_to_error;
2372   if( pC->cacheStatus!=p->cacheCtr ){
2373     if( pC->nullRow ){
2374       if( pCrsr==0 ){
2375         assert( pC->pseudoTableReg>0 );
2376         pReg = &aMem[pC->pseudoTableReg];
2377         assert( pReg->flags & MEM_Blob );
2378         assert( memIsValid(pReg) );
2379         pC->payloadSize = pC->szRow = avail = pReg->n;
2380         pC->aRow = (u8*)pReg->z;
2381       }else{
2382         sqlite3VdbeMemSetNull(pDest);
2383         goto op_column_out;
2384       }
2385     }else{
2386       assert( pCrsr );
2387       if( pC->isTable==0 ){
2388         assert( sqlite3BtreeCursorIsValid(pCrsr) );
2389         VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2390         assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2391         /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2392         ** payload size, so it is impossible for payloadSize64 to be
2393         ** larger than 32 bits. */
2394         assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2395         pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2396         pC->payloadSize = (u32)payloadSize64;
2397       }else{
2398         assert( sqlite3BtreeCursorIsValid(pCrsr) );
2399         VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2400         assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
2401         pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
2402       }
2403       assert( avail<=65536 );  /* Maximum page size is 64KiB */
2404       if( pC->payloadSize <= (u32)avail ){
2405         pC->szRow = pC->payloadSize;
2406       }else{
2407         pC->szRow = avail;
2408       }
2409       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2410         goto too_big;
2411       }
2412     }
2413     pC->cacheStatus = p->cacheCtr;
2414     pC->iHdrOffset = getVarint32(pC->aRow, offset);
2415     pC->nHdrParsed = 0;
2416     aOffset[0] = offset;
2417 
2418     /* Make sure a corrupt database has not given us an oversize header.
2419     ** Do this now to avoid an oversize memory allocation.
2420     **
2421     ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2422     ** types use so much data space that there can only be 4096 and 32 of
2423     ** them, respectively.  So the maximum header length results from a
2424     ** 3-byte type for each of the maximum of 32768 columns plus three
2425     ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2426     */
2427     if( offset > 98307 || offset > pC->payloadSize ){
2428       rc = SQLITE_CORRUPT_BKPT;
2429       goto op_column_error;
2430     }
2431 
2432     if( avail<offset ){
2433       /* pC->aRow does not have to hold the entire row, but it does at least
2434       ** need to cover the header of the record.  If pC->aRow does not contain
2435       ** the complete header, then set it to zero, forcing the header to be
2436       ** dynamically allocated. */
2437       pC->aRow = 0;
2438       pC->szRow = 0;
2439     }
2440 
2441     /* The following goto is an optimization.  It can be omitted and
2442     ** everything will still work.  But OP_Column is measurably faster
2443     ** by skipping the subsequent conditional, which is always true.
2444     */
2445     assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2446     goto op_column_read_header;
2447   }
2448 
2449   /* Make sure at least the first p2+1 entries of the header have been
2450   ** parsed and valid information is in aOffset[] and pC->aType[].
2451   */
2452   if( pC->nHdrParsed<=p2 ){
2453     /* If there is more header available for parsing in the record, try
2454     ** to extract additional fields up through the p2+1-th field
2455     */
2456     op_column_read_header:
2457     if( pC->iHdrOffset<aOffset[0] ){
2458       /* Make sure zData points to enough of the record to cover the header. */
2459       if( pC->aRow==0 ){
2460         memset(&sMem, 0, sizeof(sMem));
2461         rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
2462                                      !pC->isTable, &sMem);
2463         if( rc!=SQLITE_OK ){
2464           goto op_column_error;
2465         }
2466         zData = (u8*)sMem.z;
2467       }else{
2468         zData = pC->aRow;
2469       }
2470 
2471       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2472       i = pC->nHdrParsed;
2473       offset = aOffset[i];
2474       zHdr = zData + pC->iHdrOffset;
2475       zEndHdr = zData + aOffset[0];
2476       assert( i<=p2 && zHdr<zEndHdr );
2477       do{
2478         if( zHdr[0]<0x80 ){
2479           t = zHdr[0];
2480           zHdr++;
2481         }else{
2482           zHdr += sqlite3GetVarint32(zHdr, &t);
2483         }
2484         pC->aType[i] = t;
2485         szField = sqlite3VdbeSerialTypeLen(t);
2486         offset += szField;
2487         if( offset<szField ){  /* True if offset overflows */
2488           zHdr = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
2489           break;
2490         }
2491         i++;
2492         aOffset[i] = offset;
2493       }while( i<=p2 && zHdr<zEndHdr );
2494       pC->nHdrParsed = i;
2495       pC->iHdrOffset = (u32)(zHdr - zData);
2496       if( pC->aRow==0 ){
2497         sqlite3VdbeMemRelease(&sMem);
2498         sMem.flags = MEM_Null;
2499       }
2500 
2501       /* The record is corrupt if any of the following are true:
2502       ** (1) the bytes of the header extend past the declared header size
2503       **          (zHdr>zEndHdr)
2504       ** (2) the entire header was used but not all data was used
2505       **          (zHdr==zEndHdr && offset!=pC->payloadSize)
2506       ** (3) the end of the data extends beyond the end of the record.
2507       **          (offset > pC->payloadSize)
2508       */
2509       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
2510        || (offset > pC->payloadSize)
2511       ){
2512         rc = SQLITE_CORRUPT_BKPT;
2513         goto op_column_error;
2514       }
2515     }
2516 
2517     /* If after trying to extract new entries from the header, nHdrParsed is
2518     ** still not up to p2, that means that the record has fewer than p2
2519     ** columns.  So the result will be either the default value or a NULL.
2520     */
2521     if( pC->nHdrParsed<=p2 ){
2522       if( pOp->p4type==P4_MEM ){
2523         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2524       }else{
2525         sqlite3VdbeMemSetNull(pDest);
2526       }
2527       goto op_column_out;
2528     }
2529   }
2530 
2531   /* Extract the content for the p2+1-th column.  Control can only
2532   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2533   ** all valid.
2534   */
2535   assert( p2<pC->nHdrParsed );
2536   assert( rc==SQLITE_OK );
2537   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2538   if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
2539   t = pC->aType[p2];
2540   if( pC->szRow>=aOffset[p2+1] ){
2541     /* This is the common case where the desired content fits on the original
2542     ** page - where the content is not on an overflow page */
2543     sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
2544   }else{
2545     /* This branch happens only when content is on overflow pages */
2546     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2547           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2548      || (len = sqlite3VdbeSerialTypeLen(t))==0
2549     ){
2550       /* Content is irrelevant for
2551       **    1. the typeof() function,
2552       **    2. the length(X) function if X is a blob, and
2553       **    3. if the content length is zero.
2554       ** So we might as well use bogus content rather than reading
2555       ** content from disk.  NULL will work for the value for strings
2556       ** and blobs and whatever is in the payloadSize64 variable
2557       ** will work for everything else. */
2558       sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
2559     }else{
2560       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
2561                                    pDest);
2562       if( rc!=SQLITE_OK ){
2563         goto op_column_error;
2564       }
2565       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2566       pDest->flags &= ~MEM_Ephem;
2567     }
2568   }
2569   pDest->enc = encoding;
2570 
2571 op_column_out:
2572   /* If the column value is an ephemeral string, go ahead and persist
2573   ** that string in case the cursor moves before the column value is
2574   ** used.  The following code does the equivalent of Deephemeralize()
2575   ** but does it faster. */
2576   if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
2577     fx = pDest->flags & (MEM_Str|MEM_Blob);
2578     assert( fx!=0 );
2579     zData = (const u8*)pDest->z;
2580     len = pDest->n;
2581     if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2582     memcpy(pDest->z, zData, len);
2583     pDest->z[len] = 0;
2584     pDest->z[len+1] = 0;
2585     pDest->flags = fx|MEM_Term;
2586   }
2587 op_column_error:
2588   UPDATE_MAX_BLOBSIZE(pDest);
2589   REGISTER_TRACE(pOp->p3, pDest);
2590   break;
2591 }
2592 
2593 /* Opcode: Affinity P1 P2 * P4 *
2594 ** Synopsis: affinity(r[P1@P2])
2595 **
2596 ** Apply affinities to a range of P2 registers starting with P1.
2597 **
2598 ** P4 is a string that is P2 characters long. The nth character of the
2599 ** string indicates the column affinity that should be used for the nth
2600 ** memory cell in the range.
2601 */
2602 case OP_Affinity: {
2603   const char *zAffinity;   /* The affinity to be applied */
2604   char cAff;               /* A single character of affinity */
2605 
2606   zAffinity = pOp->p4.z;
2607   assert( zAffinity!=0 );
2608   assert( zAffinity[pOp->p2]==0 );
2609   pIn1 = &aMem[pOp->p1];
2610   while( (cAff = *(zAffinity++))!=0 ){
2611     assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
2612     assert( memIsValid(pIn1) );
2613     applyAffinity(pIn1, cAff, encoding);
2614     pIn1++;
2615   }
2616   break;
2617 }
2618 
2619 /* Opcode: MakeRecord P1 P2 P3 P4 *
2620 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2621 **
2622 ** Convert P2 registers beginning with P1 into the [record format]
2623 ** use as a data record in a database table or as a key
2624 ** in an index.  The OP_Column opcode can decode the record later.
2625 **
2626 ** P4 may be a string that is P2 characters long.  The nth character of the
2627 ** string indicates the column affinity that should be used for the nth
2628 ** field of the index key.
2629 **
2630 ** The mapping from character to affinity is given by the SQLITE_AFF_
2631 ** macros defined in sqliteInt.h.
2632 **
2633 ** If P4 is NULL then all index fields have the affinity BLOB.
2634 */
2635 case OP_MakeRecord: {
2636   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2637   Mem *pRec;             /* The new record */
2638   u64 nData;             /* Number of bytes of data space */
2639   int nHdr;              /* Number of bytes of header space */
2640   i64 nByte;             /* Data space required for this record */
2641   i64 nZero;             /* Number of zero bytes at the end of the record */
2642   int nVarint;           /* Number of bytes in a varint */
2643   u32 serial_type;       /* Type field */
2644   Mem *pData0;           /* First field to be combined into the record */
2645   Mem *pLast;            /* Last field of the record */
2646   int nField;            /* Number of fields in the record */
2647   char *zAffinity;       /* The affinity string for the record */
2648   int file_format;       /* File format to use for encoding */
2649   int i;                 /* Space used in zNewRecord[] header */
2650   int j;                 /* Space used in zNewRecord[] content */
2651   int len;               /* Length of a field */
2652 
2653   /* Assuming the record contains N fields, the record format looks
2654   ** like this:
2655   **
2656   ** ------------------------------------------------------------------------
2657   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2658   ** ------------------------------------------------------------------------
2659   **
2660   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2661   ** and so forth.
2662   **
2663   ** Each type field is a varint representing the serial type of the
2664   ** corresponding data element (see sqlite3VdbeSerialType()). The
2665   ** hdr-size field is also a varint which is the offset from the beginning
2666   ** of the record to data0.
2667   */
2668   nData = 0;         /* Number of bytes of data space */
2669   nHdr = 0;          /* Number of bytes of header space */
2670   nZero = 0;         /* Number of zero bytes at the end of the record */
2671   nField = pOp->p1;
2672   zAffinity = pOp->p4.z;
2673   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
2674   pData0 = &aMem[nField];
2675   nField = pOp->p2;
2676   pLast = &pData0[nField-1];
2677   file_format = p->minWriteFileFormat;
2678 
2679   /* Identify the output register */
2680   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2681   pOut = &aMem[pOp->p3];
2682   memAboutToChange(p, pOut);
2683 
2684   /* Apply the requested affinity to all inputs
2685   */
2686   assert( pData0<=pLast );
2687   if( zAffinity ){
2688     pRec = pData0;
2689     do{
2690       applyAffinity(pRec++, *(zAffinity++), encoding);
2691       assert( zAffinity[0]==0 || pRec<=pLast );
2692     }while( zAffinity[0] );
2693   }
2694 
2695   /* Loop through the elements that will make up the record to figure
2696   ** out how much space is required for the new record.
2697   */
2698   pRec = pLast;
2699   do{
2700     assert( memIsValid(pRec) );
2701     pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
2702     len = sqlite3VdbeSerialTypeLen(serial_type);
2703     if( pRec->flags & MEM_Zero ){
2704       if( nData ){
2705         sqlite3VdbeMemExpandBlob(pRec);
2706       }else{
2707         nZero += pRec->u.nZero;
2708         len -= pRec->u.nZero;
2709       }
2710     }
2711     nData += len;
2712     testcase( serial_type==127 );
2713     testcase( serial_type==128 );
2714     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2715   }while( (--pRec)>=pData0 );
2716 
2717   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2718   ** which determines the total number of bytes in the header. The varint
2719   ** value is the size of the header in bytes including the size varint
2720   ** itself. */
2721   testcase( nHdr==126 );
2722   testcase( nHdr==127 );
2723   if( nHdr<=126 ){
2724     /* The common case */
2725     nHdr += 1;
2726   }else{
2727     /* Rare case of a really large header */
2728     nVarint = sqlite3VarintLen(nHdr);
2729     nHdr += nVarint;
2730     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2731   }
2732   nByte = nHdr+nData;
2733   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2734     goto too_big;
2735   }
2736 
2737   /* Make sure the output register has a buffer large enough to store
2738   ** the new record. The output register (pOp->p3) is not allowed to
2739   ** be one of the input registers (because the following call to
2740   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2741   */
2742   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2743     goto no_mem;
2744   }
2745   zNewRecord = (u8 *)pOut->z;
2746 
2747   /* Write the record */
2748   i = putVarint32(zNewRecord, nHdr);
2749   j = nHdr;
2750   assert( pData0<=pLast );
2751   pRec = pData0;
2752   do{
2753     serial_type = pRec->uTemp;
2754     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2755     ** additional varints, one per column. */
2756     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2757     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2758     ** immediately follow the header. */
2759     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2760   }while( (++pRec)<=pLast );
2761   assert( i==nHdr );
2762   assert( j==nByte );
2763 
2764   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2765   pOut->n = (int)nByte;
2766   pOut->flags = MEM_Blob;
2767   if( nZero ){
2768     pOut->u.nZero = nZero;
2769     pOut->flags |= MEM_Zero;
2770   }
2771   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2772   REGISTER_TRACE(pOp->p3, pOut);
2773   UPDATE_MAX_BLOBSIZE(pOut);
2774   break;
2775 }
2776 
2777 /* Opcode: Count P1 P2 * * *
2778 ** Synopsis: r[P2]=count()
2779 **
2780 ** Store the number of entries (an integer value) in the table or index
2781 ** opened by cursor P1 in register P2
2782 */
2783 #ifndef SQLITE_OMIT_BTREECOUNT
2784 case OP_Count: {         /* out2 */
2785   i64 nEntry;
2786   BtCursor *pCrsr;
2787 
2788   pCrsr = p->apCsr[pOp->p1]->pCursor;
2789   assert( pCrsr );
2790   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2791   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2792   pOut = out2Prerelease(p, pOp);
2793   pOut->u.i = nEntry;
2794   break;
2795 }
2796 #endif
2797 
2798 /* Opcode: Savepoint P1 * * P4 *
2799 **
2800 ** Open, release or rollback the savepoint named by parameter P4, depending
2801 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2802 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2803 */
2804 case OP_Savepoint: {
2805   int p1;                         /* Value of P1 operand */
2806   char *zName;                    /* Name of savepoint */
2807   int nName;
2808   Savepoint *pNew;
2809   Savepoint *pSavepoint;
2810   Savepoint *pTmp;
2811   int iSavepoint;
2812   int ii;
2813 
2814   p1 = pOp->p1;
2815   zName = pOp->p4.z;
2816 
2817   /* Assert that the p1 parameter is valid. Also that if there is no open
2818   ** transaction, then there cannot be any savepoints.
2819   */
2820   assert( db->pSavepoint==0 || db->autoCommit==0 );
2821   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2822   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2823   assert( checkSavepointCount(db) );
2824   assert( p->bIsReader );
2825 
2826   if( p1==SAVEPOINT_BEGIN ){
2827     if( db->nVdbeWrite>0 ){
2828       /* A new savepoint cannot be created if there are active write
2829       ** statements (i.e. open read/write incremental blob handles).
2830       */
2831       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2832       rc = SQLITE_BUSY;
2833     }else{
2834       nName = sqlite3Strlen30(zName);
2835 
2836 #ifndef SQLITE_OMIT_VIRTUALTABLE
2837       /* This call is Ok even if this savepoint is actually a transaction
2838       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2839       ** If this is a transaction savepoint being opened, it is guaranteed
2840       ** that the db->aVTrans[] array is empty.  */
2841       assert( db->autoCommit==0 || db->nVTrans==0 );
2842       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2843                                 db->nStatement+db->nSavepoint);
2844       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2845 #endif
2846 
2847       /* Create a new savepoint structure. */
2848       pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2849       if( pNew ){
2850         pNew->zName = (char *)&pNew[1];
2851         memcpy(pNew->zName, zName, nName+1);
2852 
2853         /* If there is no open transaction, then mark this as a special
2854         ** "transaction savepoint". */
2855         if( db->autoCommit ){
2856           db->autoCommit = 0;
2857           db->isTransactionSavepoint = 1;
2858         }else{
2859           db->nSavepoint++;
2860         }
2861 
2862         /* Link the new savepoint into the database handle's list. */
2863         pNew->pNext = db->pSavepoint;
2864         db->pSavepoint = pNew;
2865         pNew->nDeferredCons = db->nDeferredCons;
2866         pNew->nDeferredImmCons = db->nDeferredImmCons;
2867       }
2868     }
2869   }else{
2870     iSavepoint = 0;
2871 
2872     /* Find the named savepoint. If there is no such savepoint, then an
2873     ** an error is returned to the user.  */
2874     for(
2875       pSavepoint = db->pSavepoint;
2876       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2877       pSavepoint = pSavepoint->pNext
2878     ){
2879       iSavepoint++;
2880     }
2881     if( !pSavepoint ){
2882       sqlite3VdbeError(p, "no such savepoint: %s", zName);
2883       rc = SQLITE_ERROR;
2884     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2885       /* It is not possible to release (commit) a savepoint if there are
2886       ** active write statements.
2887       */
2888       sqlite3VdbeError(p, "cannot release savepoint - "
2889                           "SQL statements in progress");
2890       rc = SQLITE_BUSY;
2891     }else{
2892 
2893       /* Determine whether or not this is a transaction savepoint. If so,
2894       ** and this is a RELEASE command, then the current transaction
2895       ** is committed.
2896       */
2897       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2898       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2899         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2900           goto vdbe_return;
2901         }
2902         db->autoCommit = 1;
2903         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2904           p->pc = (int)(pOp - aOp);
2905           db->autoCommit = 0;
2906           p->rc = rc = SQLITE_BUSY;
2907           goto vdbe_return;
2908         }
2909         db->isTransactionSavepoint = 0;
2910         rc = p->rc;
2911       }else{
2912         int isSchemaChange;
2913         iSavepoint = db->nSavepoint - iSavepoint - 1;
2914         if( p1==SAVEPOINT_ROLLBACK ){
2915           isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
2916           for(ii=0; ii<db->nDb; ii++){
2917             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2918                                        SQLITE_ABORT_ROLLBACK,
2919                                        isSchemaChange==0);
2920             if( rc!=SQLITE_OK ) goto abort_due_to_error;
2921           }
2922         }else{
2923           isSchemaChange = 0;
2924         }
2925         for(ii=0; ii<db->nDb; ii++){
2926           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2927           if( rc!=SQLITE_OK ){
2928             goto abort_due_to_error;
2929           }
2930         }
2931         if( isSchemaChange ){
2932           sqlite3ExpirePreparedStatements(db);
2933           sqlite3ResetAllSchemasOfConnection(db);
2934           db->flags = (db->flags | SQLITE_InternChanges);
2935         }
2936       }
2937 
2938       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2939       ** savepoints nested inside of the savepoint being operated on. */
2940       while( db->pSavepoint!=pSavepoint ){
2941         pTmp = db->pSavepoint;
2942         db->pSavepoint = pTmp->pNext;
2943         sqlite3DbFree(db, pTmp);
2944         db->nSavepoint--;
2945       }
2946 
2947       /* If it is a RELEASE, then destroy the savepoint being operated on
2948       ** too. If it is a ROLLBACK TO, then set the number of deferred
2949       ** constraint violations present in the database to the value stored
2950       ** when the savepoint was created.  */
2951       if( p1==SAVEPOINT_RELEASE ){
2952         assert( pSavepoint==db->pSavepoint );
2953         db->pSavepoint = pSavepoint->pNext;
2954         sqlite3DbFree(db, pSavepoint);
2955         if( !isTransaction ){
2956           db->nSavepoint--;
2957         }
2958       }else{
2959         db->nDeferredCons = pSavepoint->nDeferredCons;
2960         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
2961       }
2962 
2963       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
2964         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2965         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2966       }
2967     }
2968   }
2969 
2970   break;
2971 }
2972 
2973 /* Opcode: AutoCommit P1 P2 * * *
2974 **
2975 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2976 ** back any currently active btree transactions. If there are any active
2977 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
2978 ** there are active writing VMs or active VMs that use shared cache.
2979 **
2980 ** This instruction causes the VM to halt.
2981 */
2982 case OP_AutoCommit: {
2983   int desiredAutoCommit;
2984   int iRollback;
2985   int turnOnAC;
2986 
2987   desiredAutoCommit = pOp->p1;
2988   iRollback = pOp->p2;
2989   turnOnAC = desiredAutoCommit && !db->autoCommit;
2990   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2991   assert( desiredAutoCommit==1 || iRollback==0 );
2992   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
2993   assert( p->bIsReader );
2994 
2995   if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
2996     /* If this instruction implements a COMMIT and other VMs are writing
2997     ** return an error indicating that the other VMs must complete first.
2998     */
2999     sqlite3VdbeError(p, "cannot commit transaction - "
3000                         "SQL statements in progress");
3001     rc = SQLITE_BUSY;
3002   }else if( desiredAutoCommit!=db->autoCommit ){
3003     if( iRollback ){
3004       assert( desiredAutoCommit==1 );
3005       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3006       db->autoCommit = 1;
3007     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3008       goto vdbe_return;
3009     }else{
3010       db->autoCommit = (u8)desiredAutoCommit;
3011       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3012         p->pc = (int)(pOp - aOp);
3013         db->autoCommit = (u8)(1-desiredAutoCommit);
3014         p->rc = rc = SQLITE_BUSY;
3015         goto vdbe_return;
3016       }
3017     }
3018     assert( db->nStatement==0 );
3019     sqlite3CloseSavepoints(db);
3020     if( p->rc==SQLITE_OK ){
3021       rc = SQLITE_DONE;
3022     }else{
3023       rc = SQLITE_ERROR;
3024     }
3025     goto vdbe_return;
3026   }else{
3027     sqlite3VdbeError(p,
3028         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3029         (iRollback)?"cannot rollback - no transaction is active":
3030                    "cannot commit - no transaction is active"));
3031 
3032     rc = SQLITE_ERROR;
3033   }
3034   break;
3035 }
3036 
3037 /* Opcode: Transaction P1 P2 P3 P4 P5
3038 **
3039 ** Begin a transaction on database P1 if a transaction is not already
3040 ** active.
3041 ** If P2 is non-zero, then a write-transaction is started, or if a
3042 ** read-transaction is already active, it is upgraded to a write-transaction.
3043 ** If P2 is zero, then a read-transaction is started.
3044 **
3045 ** P1 is the index of the database file on which the transaction is
3046 ** started.  Index 0 is the main database file and index 1 is the
3047 ** file used for temporary tables.  Indices of 2 or more are used for
3048 ** attached databases.
3049 **
3050 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3051 ** true (this flag is set if the Vdbe may modify more than one row and may
3052 ** throw an ABORT exception), a statement transaction may also be opened.
3053 ** More specifically, a statement transaction is opened iff the database
3054 ** connection is currently not in autocommit mode, or if there are other
3055 ** active statements. A statement transaction allows the changes made by this
3056 ** VDBE to be rolled back after an error without having to roll back the
3057 ** entire transaction. If no error is encountered, the statement transaction
3058 ** will automatically commit when the VDBE halts.
3059 **
3060 ** If P5!=0 then this opcode also checks the schema cookie against P3
3061 ** and the schema generation counter against P4.
3062 ** The cookie changes its value whenever the database schema changes.
3063 ** This operation is used to detect when that the cookie has changed
3064 ** and that the current process needs to reread the schema.  If the schema
3065 ** cookie in P3 differs from the schema cookie in the database header or
3066 ** if the schema generation counter in P4 differs from the current
3067 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3068 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3069 ** statement and rerun it from the beginning.
3070 */
3071 case OP_Transaction: {
3072   Btree *pBt;
3073   int iMeta;
3074   int iGen;
3075 
3076   assert( p->bIsReader );
3077   assert( p->readOnly==0 || pOp->p2==0 );
3078   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3079   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3080   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3081     rc = SQLITE_READONLY;
3082     goto abort_due_to_error;
3083   }
3084   pBt = db->aDb[pOp->p1].pBt;
3085 
3086   if( pBt ){
3087     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3088     if( rc==SQLITE_BUSY ){
3089       p->pc = (int)(pOp - aOp);
3090       p->rc = rc = SQLITE_BUSY;
3091       goto vdbe_return;
3092     }
3093     if( rc!=SQLITE_OK ){
3094       goto abort_due_to_error;
3095     }
3096 
3097     if( pOp->p2 && p->usesStmtJournal
3098      && (db->autoCommit==0 || db->nVdbeRead>1)
3099     ){
3100       assert( sqlite3BtreeIsInTrans(pBt) );
3101       if( p->iStatement==0 ){
3102         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3103         db->nStatement++;
3104         p->iStatement = db->nSavepoint + db->nStatement;
3105       }
3106 
3107       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3108       if( rc==SQLITE_OK ){
3109         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3110       }
3111 
3112       /* Store the current value of the database handles deferred constraint
3113       ** counter. If the statement transaction needs to be rolled back,
3114       ** the value of this counter needs to be restored too.  */
3115       p->nStmtDefCons = db->nDeferredCons;
3116       p->nStmtDefImmCons = db->nDeferredImmCons;
3117     }
3118 
3119     /* Gather the schema version number for checking:
3120     ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3121     ** each time a query is executed to ensure that the internal cache of the
3122     ** schema used when compiling the SQL query matches the schema of the
3123     ** database against which the compiled query is actually executed.
3124     */
3125     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3126     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3127   }else{
3128     iGen = iMeta = 0;
3129   }
3130   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3131   if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3132     sqlite3DbFree(db, p->zErrMsg);
3133     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3134     /* If the schema-cookie from the database file matches the cookie
3135     ** stored with the in-memory representation of the schema, do
3136     ** not reload the schema from the database file.
3137     **
3138     ** If virtual-tables are in use, this is not just an optimization.
3139     ** Often, v-tables store their data in other SQLite tables, which
3140     ** are queried from within xNext() and other v-table methods using
3141     ** prepared queries. If such a query is out-of-date, we do not want to
3142     ** discard the database schema, as the user code implementing the
3143     ** v-table would have to be ready for the sqlite3_vtab structure itself
3144     ** to be invalidated whenever sqlite3_step() is called from within
3145     ** a v-table method.
3146     */
3147     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3148       sqlite3ResetOneSchema(db, pOp->p1);
3149     }
3150     p->expired = 1;
3151     rc = SQLITE_SCHEMA;
3152   }
3153   break;
3154 }
3155 
3156 /* Opcode: ReadCookie P1 P2 P3 * *
3157 **
3158 ** Read cookie number P3 from database P1 and write it into register P2.
3159 ** P3==1 is the schema version.  P3==2 is the database format.
3160 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3161 ** the main database file and P1==1 is the database file used to store
3162 ** temporary tables.
3163 **
3164 ** There must be a read-lock on the database (either a transaction
3165 ** must be started or there must be an open cursor) before
3166 ** executing this instruction.
3167 */
3168 case OP_ReadCookie: {               /* out2 */
3169   int iMeta;
3170   int iDb;
3171   int iCookie;
3172 
3173   assert( p->bIsReader );
3174   iDb = pOp->p1;
3175   iCookie = pOp->p3;
3176   assert( pOp->p3<SQLITE_N_BTREE_META );
3177   assert( iDb>=0 && iDb<db->nDb );
3178   assert( db->aDb[iDb].pBt!=0 );
3179   assert( DbMaskTest(p->btreeMask, iDb) );
3180 
3181   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3182   pOut = out2Prerelease(p, pOp);
3183   pOut->u.i = iMeta;
3184   break;
3185 }
3186 
3187 /* Opcode: SetCookie P1 P2 P3 * *
3188 **
3189 ** Write the content of register P3 (interpreted as an integer)
3190 ** into cookie number P2 of database P1.  P2==1 is the schema version.
3191 ** P2==2 is the database format. P2==3 is the recommended pager cache
3192 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3193 ** database file used to store temporary tables.
3194 **
3195 ** A transaction must be started before executing this opcode.
3196 */
3197 case OP_SetCookie: {       /* in3 */
3198   Db *pDb;
3199   assert( pOp->p2<SQLITE_N_BTREE_META );
3200   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3201   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3202   assert( p->readOnly==0 );
3203   pDb = &db->aDb[pOp->p1];
3204   assert( pDb->pBt!=0 );
3205   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3206   pIn3 = &aMem[pOp->p3];
3207   sqlite3VdbeMemIntegerify(pIn3);
3208   /* See note about index shifting on OP_ReadCookie */
3209   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3210   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3211     /* When the schema cookie changes, record the new cookie internally */
3212     pDb->pSchema->schema_cookie = (int)pIn3->u.i;
3213     db->flags |= SQLITE_InternChanges;
3214   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3215     /* Record changes in the file format */
3216     pDb->pSchema->file_format = (u8)pIn3->u.i;
3217   }
3218   if( pOp->p1==1 ){
3219     /* Invalidate all prepared statements whenever the TEMP database
3220     ** schema is changed.  Ticket #1644 */
3221     sqlite3ExpirePreparedStatements(db);
3222     p->expired = 0;
3223   }
3224   break;
3225 }
3226 
3227 /* Opcode: OpenRead P1 P2 P3 P4 P5
3228 ** Synopsis: root=P2 iDb=P3
3229 **
3230 ** Open a read-only cursor for the database table whose root page is
3231 ** P2 in a database file.  The database file is determined by P3.
3232 ** P3==0 means the main database, P3==1 means the database used for
3233 ** temporary tables, and P3>1 means used the corresponding attached
3234 ** database.  Give the new cursor an identifier of P1.  The P1
3235 ** values need not be contiguous but all P1 values should be small integers.
3236 ** It is an error for P1 to be negative.
3237 **
3238 ** If P5!=0 then use the content of register P2 as the root page, not
3239 ** the value of P2 itself.
3240 **
3241 ** There will be a read lock on the database whenever there is an
3242 ** open cursor.  If the database was unlocked prior to this instruction
3243 ** then a read lock is acquired as part of this instruction.  A read
3244 ** lock allows other processes to read the database but prohibits
3245 ** any other process from modifying the database.  The read lock is
3246 ** released when all cursors are closed.  If this instruction attempts
3247 ** to get a read lock but fails, the script terminates with an
3248 ** SQLITE_BUSY error code.
3249 **
3250 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3251 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3252 ** structure, then said structure defines the content and collating
3253 ** sequence of the index being opened. Otherwise, if P4 is an integer
3254 ** value, it is set to the number of columns in the table.
3255 **
3256 ** See also: OpenWrite, ReopenIdx
3257 */
3258 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3259 ** Synopsis: root=P2 iDb=P3
3260 **
3261 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3262 ** checks to see if the cursor on P1 is already open with a root page
3263 ** number of P2 and if it is this opcode becomes a no-op.  In other words,
3264 ** if the cursor is already open, do not reopen it.
3265 **
3266 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3267 ** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
3268 ** every other ReopenIdx or OpenRead for the same cursor number.
3269 **
3270 ** See the OpenRead opcode documentation for additional information.
3271 */
3272 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3273 ** Synopsis: root=P2 iDb=P3
3274 **
3275 ** Open a read/write cursor named P1 on the table or index whose root
3276 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3277 ** root page.
3278 **
3279 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3280 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3281 ** structure, then said structure defines the content and collating
3282 ** sequence of the index being opened. Otherwise, if P4 is an integer
3283 ** value, it is set to the number of columns in the table, or to the
3284 ** largest index of any column of the table that is actually used.
3285 **
3286 ** This instruction works just like OpenRead except that it opens the cursor
3287 ** in read/write mode.  For a given table, there can be one or more read-only
3288 ** cursors or a single read/write cursor but not both.
3289 **
3290 ** See also OpenRead.
3291 */
3292 case OP_ReopenIdx: {
3293   int nField;
3294   KeyInfo *pKeyInfo;
3295   int p2;
3296   int iDb;
3297   int wrFlag;
3298   Btree *pX;
3299   VdbeCursor *pCur;
3300   Db *pDb;
3301 
3302   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3303   assert( pOp->p4type==P4_KEYINFO );
3304   pCur = p->apCsr[pOp->p1];
3305   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3306     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3307     goto open_cursor_set_hints;
3308   }
3309   /* If the cursor is not currently open or is open on a different
3310   ** index, then fall through into OP_OpenRead to force a reopen */
3311 case OP_OpenRead:
3312 case OP_OpenWrite:
3313 
3314   assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR|OPFLAG_SEEKEQ))==pOp->p5 );
3315   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3316   assert( p->bIsReader );
3317   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3318           || p->readOnly==0 );
3319 
3320   if( p->expired ){
3321     rc = SQLITE_ABORT_ROLLBACK;
3322     break;
3323   }
3324 
3325   nField = 0;
3326   pKeyInfo = 0;
3327   p2 = pOp->p2;
3328   iDb = pOp->p3;
3329   assert( iDb>=0 && iDb<db->nDb );
3330   assert( DbMaskTest(p->btreeMask, iDb) );
3331   pDb = &db->aDb[iDb];
3332   pX = pDb->pBt;
3333   assert( pX!=0 );
3334   if( pOp->opcode==OP_OpenWrite ){
3335     wrFlag = 1;
3336     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3337     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3338       p->minWriteFileFormat = pDb->pSchema->file_format;
3339     }
3340   }else{
3341     wrFlag = 0;
3342   }
3343   if( pOp->p5 & OPFLAG_P2ISREG ){
3344     assert( p2>0 );
3345     assert( p2<=(p->nMem-p->nCursor) );
3346     pIn2 = &aMem[p2];
3347     assert( memIsValid(pIn2) );
3348     assert( (pIn2->flags & MEM_Int)!=0 );
3349     sqlite3VdbeMemIntegerify(pIn2);
3350     p2 = (int)pIn2->u.i;
3351     /* The p2 value always comes from a prior OP_CreateTable opcode and
3352     ** that opcode will always set the p2 value to 2 or more or else fail.
3353     ** If there were a failure, the prepared statement would have halted
3354     ** before reaching this instruction. */
3355     if( NEVER(p2<2) ) {
3356       rc = SQLITE_CORRUPT_BKPT;
3357       goto abort_due_to_error;
3358     }
3359   }
3360   if( pOp->p4type==P4_KEYINFO ){
3361     pKeyInfo = pOp->p4.pKeyInfo;
3362     assert( pKeyInfo->enc==ENC(db) );
3363     assert( pKeyInfo->db==db );
3364     nField = pKeyInfo->nField+pKeyInfo->nXField;
3365   }else if( pOp->p4type==P4_INT32 ){
3366     nField = pOp->p4.i;
3367   }
3368   assert( pOp->p1>=0 );
3369   assert( nField>=0 );
3370   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3371   pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3372   if( pCur==0 ) goto no_mem;
3373   pCur->nullRow = 1;
3374   pCur->isOrdered = 1;
3375   pCur->pgnoRoot = p2;
3376   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3377   pCur->pKeyInfo = pKeyInfo;
3378   /* Set the VdbeCursor.isTable variable. Previous versions of
3379   ** SQLite used to check if the root-page flags were sane at this point
3380   ** and report database corruption if they were not, but this check has
3381   ** since moved into the btree layer.  */
3382   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3383 
3384 open_cursor_set_hints:
3385   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3386   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3387   sqlite3BtreeCursorHints(pCur->pCursor,
3388                           (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3389   break;
3390 }
3391 
3392 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3393 ** Synopsis: nColumn=P2
3394 **
3395 ** Open a new cursor P1 to a transient table.
3396 ** The cursor is always opened read/write even if
3397 ** the main database is read-only.  The ephemeral
3398 ** table is deleted automatically when the cursor is closed.
3399 **
3400 ** P2 is the number of columns in the ephemeral table.
3401 ** The cursor points to a BTree table if P4==0 and to a BTree index
3402 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3403 ** that defines the format of keys in the index.
3404 **
3405 ** The P5 parameter can be a mask of the BTREE_* flags defined
3406 ** in btree.h.  These flags control aspects of the operation of
3407 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3408 ** added automatically.
3409 */
3410 /* Opcode: OpenAutoindex P1 P2 * P4 *
3411 ** Synopsis: nColumn=P2
3412 **
3413 ** This opcode works the same as OP_OpenEphemeral.  It has a
3414 ** different name to distinguish its use.  Tables created using
3415 ** by this opcode will be used for automatically created transient
3416 ** indices in joins.
3417 */
3418 case OP_OpenAutoindex:
3419 case OP_OpenEphemeral: {
3420   VdbeCursor *pCx;
3421   KeyInfo *pKeyInfo;
3422 
3423   static const int vfsFlags =
3424       SQLITE_OPEN_READWRITE |
3425       SQLITE_OPEN_CREATE |
3426       SQLITE_OPEN_EXCLUSIVE |
3427       SQLITE_OPEN_DELETEONCLOSE |
3428       SQLITE_OPEN_TRANSIENT_DB;
3429   assert( pOp->p1>=0 );
3430   assert( pOp->p2>=0 );
3431   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3432   if( pCx==0 ) goto no_mem;
3433   pCx->nullRow = 1;
3434   pCx->isEphemeral = 1;
3435   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3436                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3437   if( rc==SQLITE_OK ){
3438     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3439   }
3440   if( rc==SQLITE_OK ){
3441     /* If a transient index is required, create it by calling
3442     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3443     ** opening it. If a transient table is required, just use the
3444     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3445     */
3446     if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3447       int pgno;
3448       assert( pOp->p4type==P4_KEYINFO );
3449       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3450       if( rc==SQLITE_OK ){
3451         assert( pgno==MASTER_ROOT+1 );
3452         assert( pKeyInfo->db==db );
3453         assert( pKeyInfo->enc==ENC(db) );
3454         pCx->pKeyInfo = pKeyInfo;
3455         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
3456       }
3457       pCx->isTable = 0;
3458     }else{
3459       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3460       pCx->isTable = 1;
3461     }
3462   }
3463   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3464   break;
3465 }
3466 
3467 /* Opcode: SorterOpen P1 P2 P3 P4 *
3468 **
3469 ** This opcode works like OP_OpenEphemeral except that it opens
3470 ** a transient index that is specifically designed to sort large
3471 ** tables using an external merge-sort algorithm.
3472 **
3473 ** If argument P3 is non-zero, then it indicates that the sorter may
3474 ** assume that a stable sort considering the first P3 fields of each
3475 ** key is sufficient to produce the required results.
3476 */
3477 case OP_SorterOpen: {
3478   VdbeCursor *pCx;
3479 
3480   assert( pOp->p1>=0 );
3481   assert( pOp->p2>=0 );
3482   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3483   if( pCx==0 ) goto no_mem;
3484   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3485   assert( pCx->pKeyInfo->db==db );
3486   assert( pCx->pKeyInfo->enc==ENC(db) );
3487   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3488   break;
3489 }
3490 
3491 /* Opcode: SequenceTest P1 P2 * * *
3492 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3493 **
3494 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3495 ** to P2. Regardless of whether or not the jump is taken, increment the
3496 ** the sequence value.
3497 */
3498 case OP_SequenceTest: {
3499   VdbeCursor *pC;
3500   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3501   pC = p->apCsr[pOp->p1];
3502   assert( pC->pSorter );
3503   if( (pC->seqCount++)==0 ){
3504     goto jump_to_p2;
3505   }
3506   break;
3507 }
3508 
3509 /* Opcode: OpenPseudo P1 P2 P3 * *
3510 ** Synopsis: P3 columns in r[P2]
3511 **
3512 ** Open a new cursor that points to a fake table that contains a single
3513 ** row of data.  The content of that one row is the content of memory
3514 ** register P2.  In other words, cursor P1 becomes an alias for the
3515 ** MEM_Blob content contained in register P2.
3516 **
3517 ** A pseudo-table created by this opcode is used to hold a single
3518 ** row output from the sorter so that the row can be decomposed into
3519 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3520 ** is the only cursor opcode that works with a pseudo-table.
3521 **
3522 ** P3 is the number of fields in the records that will be stored by
3523 ** the pseudo-table.
3524 */
3525 case OP_OpenPseudo: {
3526   VdbeCursor *pCx;
3527 
3528   assert( pOp->p1>=0 );
3529   assert( pOp->p3>=0 );
3530   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3531   if( pCx==0 ) goto no_mem;
3532   pCx->nullRow = 1;
3533   pCx->pseudoTableReg = pOp->p2;
3534   pCx->isTable = 1;
3535   assert( pOp->p5==0 );
3536   break;
3537 }
3538 
3539 /* Opcode: Close P1 * * * *
3540 **
3541 ** Close a cursor previously opened as P1.  If P1 is not
3542 ** currently open, this instruction is a no-op.
3543 */
3544 case OP_Close: {
3545   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3546   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3547   p->apCsr[pOp->p1] = 0;
3548   break;
3549 }
3550 
3551 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3552 /* Opcode: ColumnsUsed P1 * * P4 *
3553 **
3554 ** This opcode (which only exists if SQLite was compiled with
3555 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3556 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3557 ** (P4_INT64) in which the first 63 bits are one for each of the
3558 ** first 63 columns of the table or index that are actually used
3559 ** by the cursor.  The high-order bit is set if any column after
3560 ** the 64th is used.
3561 */
3562 case OP_ColumnsUsed: {
3563   VdbeCursor *pC;
3564   pC = p->apCsr[pOp->p1];
3565   assert( pC->pCursor );
3566   pC->maskUsed = *(u64*)pOp->p4.pI64;
3567   break;
3568 }
3569 #endif
3570 
3571 /* Opcode: SeekGE P1 P2 P3 P4 *
3572 ** Synopsis: key=r[P3@P4]
3573 **
3574 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3575 ** use the value in register P3 as the key.  If cursor P1 refers
3576 ** to an SQL index, then P3 is the first in an array of P4 registers
3577 ** that are used as an unpacked index key.
3578 **
3579 ** Reposition cursor P1 so that  it points to the smallest entry that
3580 ** is greater than or equal to the key value. If there are no records
3581 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3582 **
3583 ** This opcode leaves the cursor configured to move in forward order,
3584 ** from the beginning toward the end.  In other words, the cursor is
3585 ** configured to use Next, not Prev.
3586 **
3587 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3588 */
3589 /* Opcode: SeekGT P1 P2 P3 P4 *
3590 ** Synopsis: key=r[P3@P4]
3591 **
3592 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3593 ** use the value in register P3 as a key. If cursor P1 refers
3594 ** to an SQL index, then P3 is the first in an array of P4 registers
3595 ** that are used as an unpacked index key.
3596 **
3597 ** Reposition cursor P1 so that  it points to the smallest entry that
3598 ** is greater than the key value. If there are no records greater than
3599 ** the key and P2 is not zero, then jump to P2.
3600 **
3601 ** This opcode leaves the cursor configured to move in forward order,
3602 ** from the beginning toward the end.  In other words, the cursor is
3603 ** configured to use Next, not Prev.
3604 **
3605 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3606 */
3607 /* Opcode: SeekLT P1 P2 P3 P4 *
3608 ** Synopsis: key=r[P3@P4]
3609 **
3610 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3611 ** use the value in register P3 as a key. If cursor P1 refers
3612 ** to an SQL index, then P3 is the first in an array of P4 registers
3613 ** that are used as an unpacked index key.
3614 **
3615 ** Reposition cursor P1 so that  it points to the largest entry that
3616 ** is less than the key value. If there are no records less than
3617 ** the key and P2 is not zero, then jump to P2.
3618 **
3619 ** This opcode leaves the cursor configured to move in reverse order,
3620 ** from the end toward the beginning.  In other words, the cursor is
3621 ** configured to use Prev, not Next.
3622 **
3623 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3624 */
3625 /* Opcode: SeekLE P1 P2 P3 P4 *
3626 ** Synopsis: key=r[P3@P4]
3627 **
3628 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3629 ** use the value in register P3 as a key. If cursor P1 refers
3630 ** to an SQL index, then P3 is the first in an array of P4 registers
3631 ** that are used as an unpacked index key.
3632 **
3633 ** Reposition cursor P1 so that it points to the largest entry that
3634 ** is less than or equal to the key value. If there are no records
3635 ** less than or equal to the key and P2 is not zero, then jump to P2.
3636 **
3637 ** This opcode leaves the cursor configured to move in reverse order,
3638 ** from the end toward the beginning.  In other words, the cursor is
3639 ** configured to use Prev, not Next.
3640 **
3641 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3642 */
3643 case OP_SeekLT:         /* jump, in3 */
3644 case OP_SeekLE:         /* jump, in3 */
3645 case OP_SeekGE:         /* jump, in3 */
3646 case OP_SeekGT: {       /* jump, in3 */
3647   int res;
3648   int oc;
3649   VdbeCursor *pC;
3650   UnpackedRecord r;
3651   int nField;
3652   i64 iKey;      /* The rowid we are to seek to */
3653 
3654   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3655   assert( pOp->p2!=0 );
3656   pC = p->apCsr[pOp->p1];
3657   assert( pC!=0 );
3658   assert( pC->pseudoTableReg==0 );
3659   assert( OP_SeekLE == OP_SeekLT+1 );
3660   assert( OP_SeekGE == OP_SeekLT+2 );
3661   assert( OP_SeekGT == OP_SeekLT+3 );
3662   assert( pC->isOrdered );
3663   assert( pC->pCursor!=0 );
3664   oc = pOp->opcode;
3665   pC->nullRow = 0;
3666 #ifdef SQLITE_DEBUG
3667   pC->seekOp = pOp->opcode;
3668 #endif
3669 
3670   /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3671   ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3672   ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3673   */
3674 #ifdef SQLITE_DEBUG
3675   if( sqlite3BtreeCursorHasHint(pC->pCursor, BTREE_SEEK_EQ) ){
3676     assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3677     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3678     assert( pOp[1].p1==pOp[0].p1 );
3679     assert( pOp[1].p2==pOp[0].p2 );
3680     assert( pOp[1].p3==pOp[0].p3 );
3681     assert( pOp[1].p4.i==pOp[0].p4.i );
3682   }
3683 #endif
3684 
3685   if( pC->isTable ){
3686     /* The input value in P3 might be of any type: integer, real, string,
3687     ** blob, or NULL.  But it needs to be an integer before we can do
3688     ** the seek, so convert it. */
3689     pIn3 = &aMem[pOp->p3];
3690     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3691       applyNumericAffinity(pIn3, 0);
3692     }
3693     iKey = sqlite3VdbeIntValue(pIn3);
3694 
3695     /* If the P3 value could not be converted into an integer without
3696     ** loss of information, then special processing is required... */
3697     if( (pIn3->flags & MEM_Int)==0 ){
3698       if( (pIn3->flags & MEM_Real)==0 ){
3699         /* If the P3 value cannot be converted into any kind of a number,
3700         ** then the seek is not possible, so jump to P2 */
3701         VdbeBranchTaken(1,2); goto jump_to_p2;
3702         break;
3703       }
3704 
3705       /* If the approximation iKey is larger than the actual real search
3706       ** term, substitute >= for > and < for <=. e.g. if the search term
3707       ** is 4.9 and the integer approximation 5:
3708       **
3709       **        (x >  4.9)    ->     (x >= 5)
3710       **        (x <= 4.9)    ->     (x <  5)
3711       */
3712       if( pIn3->u.r<(double)iKey ){
3713         assert( OP_SeekGE==(OP_SeekGT-1) );
3714         assert( OP_SeekLT==(OP_SeekLE-1) );
3715         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3716         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3717       }
3718 
3719       /* If the approximation iKey is smaller than the actual real search
3720       ** term, substitute <= for < and > for >=.  */
3721       else if( pIn3->u.r>(double)iKey ){
3722         assert( OP_SeekLE==(OP_SeekLT+1) );
3723         assert( OP_SeekGT==(OP_SeekGE+1) );
3724         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3725         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3726       }
3727     }
3728     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3729     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3730     if( rc!=SQLITE_OK ){
3731       goto abort_due_to_error;
3732     }
3733   }else{
3734     nField = pOp->p4.i;
3735     assert( pOp->p4type==P4_INT32 );
3736     assert( nField>0 );
3737     r.pKeyInfo = pC->pKeyInfo;
3738     r.nField = (u16)nField;
3739 
3740     /* The next line of code computes as follows, only faster:
3741     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3742     **     r.default_rc = -1;
3743     **   }else{
3744     **     r.default_rc = +1;
3745     **   }
3746     */
3747     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3748     assert( oc!=OP_SeekGT || r.default_rc==-1 );
3749     assert( oc!=OP_SeekLE || r.default_rc==-1 );
3750     assert( oc!=OP_SeekGE || r.default_rc==+1 );
3751     assert( oc!=OP_SeekLT || r.default_rc==+1 );
3752 
3753     r.aMem = &aMem[pOp->p3];
3754 #ifdef SQLITE_DEBUG
3755     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3756 #endif
3757     ExpandBlob(r.aMem);
3758     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3759     if( rc!=SQLITE_OK ){
3760       goto abort_due_to_error;
3761     }
3762   }
3763   pC->deferredMoveto = 0;
3764   pC->cacheStatus = CACHE_STALE;
3765 #ifdef SQLITE_TEST
3766   sqlite3_search_count++;
3767 #endif
3768   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
3769     if( res<0 || (res==0 && oc==OP_SeekGT) ){
3770       res = 0;
3771       rc = sqlite3BtreeNext(pC->pCursor, &res);
3772       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3773     }else{
3774       res = 0;
3775     }
3776   }else{
3777     assert( oc==OP_SeekLT || oc==OP_SeekLE );
3778     if( res>0 || (res==0 && oc==OP_SeekLT) ){
3779       res = 0;
3780       rc = sqlite3BtreePrevious(pC->pCursor, &res);
3781       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3782     }else{
3783       /* res might be negative because the table is empty.  Check to
3784       ** see if this is the case.
3785       */
3786       res = sqlite3BtreeEof(pC->pCursor);
3787     }
3788   }
3789   assert( pOp->p2>0 );
3790   VdbeBranchTaken(res!=0,2);
3791   if( res ){
3792     goto jump_to_p2;
3793   }
3794   break;
3795 }
3796 
3797 /* Opcode: Seek P1 P2 * * *
3798 ** Synopsis:  intkey=r[P2]
3799 **
3800 ** P1 is an open table cursor and P2 is a rowid integer.  Arrange
3801 ** for P1 to move so that it points to the rowid given by P2.
3802 **
3803 ** This is actually a deferred seek.  Nothing actually happens until
3804 ** the cursor is used to read a record.  That way, if no reads
3805 ** occur, no unnecessary I/O happens.
3806 */
3807 case OP_Seek: {    /* in2 */
3808   VdbeCursor *pC;
3809 
3810   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3811   pC = p->apCsr[pOp->p1];
3812   assert( pC!=0 );
3813   assert( pC->pCursor!=0 );
3814   assert( pC->isTable );
3815   pC->nullRow = 0;
3816   pIn2 = &aMem[pOp->p2];
3817   pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3818   pC->deferredMoveto = 1;
3819   break;
3820 }
3821 
3822 
3823 /* Opcode: Found P1 P2 P3 P4 *
3824 ** Synopsis: key=r[P3@P4]
3825 **
3826 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3827 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3828 ** record.
3829 **
3830 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3831 ** is a prefix of any entry in P1 then a jump is made to P2 and
3832 ** P1 is left pointing at the matching entry.
3833 **
3834 ** This operation leaves the cursor in a state where it can be
3835 ** advanced in the forward direction.  The Next instruction will work,
3836 ** but not the Prev instruction.
3837 **
3838 ** See also: NotFound, NoConflict, NotExists. SeekGe
3839 */
3840 /* Opcode: NotFound P1 P2 P3 P4 *
3841 ** Synopsis: key=r[P3@P4]
3842 **
3843 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3844 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3845 ** record.
3846 **
3847 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3848 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3849 ** does contain an entry whose prefix matches the P3/P4 record then control
3850 ** falls through to the next instruction and P1 is left pointing at the
3851 ** matching entry.
3852 **
3853 ** This operation leaves the cursor in a state where it cannot be
3854 ** advanced in either direction.  In other words, the Next and Prev
3855 ** opcodes do not work after this operation.
3856 **
3857 ** See also: Found, NotExists, NoConflict
3858 */
3859 /* Opcode: NoConflict P1 P2 P3 P4 *
3860 ** Synopsis: key=r[P3@P4]
3861 **
3862 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3863 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3864 ** record.
3865 **
3866 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3867 ** contains any NULL value, jump immediately to P2.  If all terms of the
3868 ** record are not-NULL then a check is done to determine if any row in the
3869 ** P1 index btree has a matching key prefix.  If there are no matches, jump
3870 ** immediately to P2.  If there is a match, fall through and leave the P1
3871 ** cursor pointing to the matching row.
3872 **
3873 ** This opcode is similar to OP_NotFound with the exceptions that the
3874 ** branch is always taken if any part of the search key input is NULL.
3875 **
3876 ** This operation leaves the cursor in a state where it cannot be
3877 ** advanced in either direction.  In other words, the Next and Prev
3878 ** opcodes do not work after this operation.
3879 **
3880 ** See also: NotFound, Found, NotExists
3881 */
3882 case OP_NoConflict:     /* jump, in3 */
3883 case OP_NotFound:       /* jump, in3 */
3884 case OP_Found: {        /* jump, in3 */
3885   int alreadyExists;
3886   int takeJump;
3887   int ii;
3888   VdbeCursor *pC;
3889   int res;
3890   char *pFree;
3891   UnpackedRecord *pIdxKey;
3892   UnpackedRecord r;
3893   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3894 
3895 #ifdef SQLITE_TEST
3896   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3897 #endif
3898 
3899   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3900   assert( pOp->p4type==P4_INT32 );
3901   pC = p->apCsr[pOp->p1];
3902   assert( pC!=0 );
3903 #ifdef SQLITE_DEBUG
3904   pC->seekOp = pOp->opcode;
3905 #endif
3906   pIn3 = &aMem[pOp->p3];
3907   assert( pC->pCursor!=0 );
3908   assert( pC->isTable==0 );
3909   pFree = 0;
3910   if( pOp->p4.i>0 ){
3911     r.pKeyInfo = pC->pKeyInfo;
3912     r.nField = (u16)pOp->p4.i;
3913     r.aMem = pIn3;
3914     for(ii=0; ii<r.nField; ii++){
3915       assert( memIsValid(&r.aMem[ii]) );
3916       ExpandBlob(&r.aMem[ii]);
3917 #ifdef SQLITE_DEBUG
3918       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
3919 #endif
3920     }
3921     pIdxKey = &r;
3922   }else{
3923     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3924         pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3925     );
3926     if( pIdxKey==0 ) goto no_mem;
3927     assert( pIn3->flags & MEM_Blob );
3928     ExpandBlob(pIn3);
3929     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3930   }
3931   pIdxKey->default_rc = 0;
3932   takeJump = 0;
3933   if( pOp->opcode==OP_NoConflict ){
3934     /* For the OP_NoConflict opcode, take the jump if any of the
3935     ** input fields are NULL, since any key with a NULL will not
3936     ** conflict */
3937     for(ii=0; ii<pIdxKey->nField; ii++){
3938       if( pIdxKey->aMem[ii].flags & MEM_Null ){
3939         takeJump = 1;
3940         break;
3941       }
3942     }
3943   }
3944   rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3945   sqlite3DbFree(db, pFree);
3946   if( rc!=SQLITE_OK ){
3947     break;
3948   }
3949   pC->seekResult = res;
3950   alreadyExists = (res==0);
3951   pC->nullRow = 1-alreadyExists;
3952   pC->deferredMoveto = 0;
3953   pC->cacheStatus = CACHE_STALE;
3954   if( pOp->opcode==OP_Found ){
3955     VdbeBranchTaken(alreadyExists!=0,2);
3956     if( alreadyExists ) goto jump_to_p2;
3957   }else{
3958     VdbeBranchTaken(takeJump||alreadyExists==0,2);
3959     if( takeJump || !alreadyExists ) goto jump_to_p2;
3960   }
3961   break;
3962 }
3963 
3964 /* Opcode: NotExists P1 P2 P3 * *
3965 ** Synopsis: intkey=r[P3]
3966 **
3967 ** P1 is the index of a cursor open on an SQL table btree (with integer
3968 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
3969 ** rowid P3 then jump immediately to P2.  If P1 does contain a record
3970 ** with rowid P3 then leave the cursor pointing at that record and fall
3971 ** through to the next instruction.
3972 **
3973 ** The OP_NotFound opcode performs the same operation on index btrees
3974 ** (with arbitrary multi-value keys).
3975 **
3976 ** This opcode leaves the cursor in a state where it cannot be advanced
3977 ** in either direction.  In other words, the Next and Prev opcodes will
3978 ** not work following this opcode.
3979 **
3980 ** See also: Found, NotFound, NoConflict
3981 */
3982 case OP_NotExists: {        /* jump, in3 */
3983   VdbeCursor *pC;
3984   BtCursor *pCrsr;
3985   int res;
3986   u64 iKey;
3987 
3988   pIn3 = &aMem[pOp->p3];
3989   assert( pIn3->flags & MEM_Int );
3990   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3991   pC = p->apCsr[pOp->p1];
3992   assert( pC!=0 );
3993 #ifdef SQLITE_DEBUG
3994   pC->seekOp = 0;
3995 #endif
3996   assert( pC->isTable );
3997   assert( pC->pseudoTableReg==0 );
3998   pCrsr = pC->pCursor;
3999   assert( pCrsr!=0 );
4000   res = 0;
4001   iKey = pIn3->u.i;
4002   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4003   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4004   pC->nullRow = 0;
4005   pC->cacheStatus = CACHE_STALE;
4006   pC->deferredMoveto = 0;
4007   VdbeBranchTaken(res!=0,2);
4008   pC->seekResult = res;
4009   if( res!=0 ) goto jump_to_p2;
4010   break;
4011 }
4012 
4013 /* Opcode: Sequence P1 P2 * * *
4014 ** Synopsis: r[P2]=cursor[P1].ctr++
4015 **
4016 ** Find the next available sequence number for cursor P1.
4017 ** Write the sequence number into register P2.
4018 ** The sequence number on the cursor is incremented after this
4019 ** instruction.
4020 */
4021 case OP_Sequence: {           /* out2 */
4022   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4023   assert( p->apCsr[pOp->p1]!=0 );
4024   pOut = out2Prerelease(p, pOp);
4025   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4026   break;
4027 }
4028 
4029 
4030 /* Opcode: NewRowid P1 P2 P3 * *
4031 ** Synopsis: r[P2]=rowid
4032 **
4033 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4034 ** The record number is not previously used as a key in the database
4035 ** table that cursor P1 points to.  The new record number is written
4036 ** written to register P2.
4037 **
4038 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4039 ** the largest previously generated record number. No new record numbers are
4040 ** allowed to be less than this value. When this value reaches its maximum,
4041 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4042 ** generated record number. This P3 mechanism is used to help implement the
4043 ** AUTOINCREMENT feature.
4044 */
4045 case OP_NewRowid: {           /* out2 */
4046   i64 v;                 /* The new rowid */
4047   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4048   int res;               /* Result of an sqlite3BtreeLast() */
4049   int cnt;               /* Counter to limit the number of searches */
4050   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4051   VdbeFrame *pFrame;     /* Root frame of VDBE */
4052 
4053   v = 0;
4054   res = 0;
4055   pOut = out2Prerelease(p, pOp);
4056   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4057   pC = p->apCsr[pOp->p1];
4058   assert( pC!=0 );
4059   assert( pC->pCursor!=0 );
4060   {
4061     /* The next rowid or record number (different terms for the same
4062     ** thing) is obtained in a two-step algorithm.
4063     **
4064     ** First we attempt to find the largest existing rowid and add one
4065     ** to that.  But if the largest existing rowid is already the maximum
4066     ** positive integer, we have to fall through to the second
4067     ** probabilistic algorithm
4068     **
4069     ** The second algorithm is to select a rowid at random and see if
4070     ** it already exists in the table.  If it does not exist, we have
4071     ** succeeded.  If the random rowid does exist, we select a new one
4072     ** and try again, up to 100 times.
4073     */
4074     assert( pC->isTable );
4075 
4076 #ifdef SQLITE_32BIT_ROWID
4077 #   define MAX_ROWID 0x7fffffff
4078 #else
4079     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4080     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4081     ** to provide the constant while making all compilers happy.
4082     */
4083 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4084 #endif
4085 
4086     if( !pC->useRandomRowid ){
4087       rc = sqlite3BtreeLast(pC->pCursor, &res);
4088       if( rc!=SQLITE_OK ){
4089         goto abort_due_to_error;
4090       }
4091       if( res ){
4092         v = 1;   /* IMP: R-61914-48074 */
4093       }else{
4094         assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
4095         rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4096         assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
4097         if( v>=MAX_ROWID ){
4098           pC->useRandomRowid = 1;
4099         }else{
4100           v++;   /* IMP: R-29538-34987 */
4101         }
4102       }
4103     }
4104 
4105 #ifndef SQLITE_OMIT_AUTOINCREMENT
4106     if( pOp->p3 ){
4107       /* Assert that P3 is a valid memory cell. */
4108       assert( pOp->p3>0 );
4109       if( p->pFrame ){
4110         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4111         /* Assert that P3 is a valid memory cell. */
4112         assert( pOp->p3<=pFrame->nMem );
4113         pMem = &pFrame->aMem[pOp->p3];
4114       }else{
4115         /* Assert that P3 is a valid memory cell. */
4116         assert( pOp->p3<=(p->nMem-p->nCursor) );
4117         pMem = &aMem[pOp->p3];
4118         memAboutToChange(p, pMem);
4119       }
4120       assert( memIsValid(pMem) );
4121 
4122       REGISTER_TRACE(pOp->p3, pMem);
4123       sqlite3VdbeMemIntegerify(pMem);
4124       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4125       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4126         rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
4127         goto abort_due_to_error;
4128       }
4129       if( v<pMem->u.i+1 ){
4130         v = pMem->u.i + 1;
4131       }
4132       pMem->u.i = v;
4133     }
4134 #endif
4135     if( pC->useRandomRowid ){
4136       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4137       ** largest possible integer (9223372036854775807) then the database
4138       ** engine starts picking positive candidate ROWIDs at random until
4139       ** it finds one that is not previously used. */
4140       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4141                              ** an AUTOINCREMENT table. */
4142       cnt = 0;
4143       do{
4144         sqlite3_randomness(sizeof(v), &v);
4145         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4146       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
4147                                                  0, &res))==SQLITE_OK)
4148             && (res==0)
4149             && (++cnt<100));
4150       if( rc==SQLITE_OK && res==0 ){
4151         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4152         goto abort_due_to_error;
4153       }
4154       assert( v>0 );  /* EV: R-40812-03570 */
4155     }
4156     pC->deferredMoveto = 0;
4157     pC->cacheStatus = CACHE_STALE;
4158   }
4159   pOut->u.i = v;
4160   break;
4161 }
4162 
4163 /* Opcode: Insert P1 P2 P3 P4 P5
4164 ** Synopsis: intkey=r[P3] data=r[P2]
4165 **
4166 ** Write an entry into the table of cursor P1.  A new entry is
4167 ** created if it doesn't already exist or the data for an existing
4168 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4169 ** number P2. The key is stored in register P3. The key must
4170 ** be a MEM_Int.
4171 **
4172 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4173 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4174 ** then rowid is stored for subsequent return by the
4175 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4176 **
4177 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4178 ** the last seek operation (OP_NotExists) was a success, then this
4179 ** operation will not attempt to find the appropriate row before doing
4180 ** the insert but will instead overwrite the row that the cursor is
4181 ** currently pointing to.  Presumably, the prior OP_NotExists opcode
4182 ** has already positioned the cursor correctly.  This is an optimization
4183 ** that boosts performance by avoiding redundant seeks.
4184 **
4185 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4186 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4187 ** is part of an INSERT operation.  The difference is only important to
4188 ** the update hook.
4189 **
4190 ** Parameter P4 may point to a string containing the table-name, or
4191 ** may be NULL. If it is not NULL, then the update-hook
4192 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4193 **
4194 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4195 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4196 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4197 ** value of register P2 will then change.  Make sure this does not
4198 ** cause any problems.)
4199 **
4200 ** This instruction only works on tables.  The equivalent instruction
4201 ** for indices is OP_IdxInsert.
4202 */
4203 /* Opcode: InsertInt P1 P2 P3 P4 P5
4204 ** Synopsis:  intkey=P3 data=r[P2]
4205 **
4206 ** This works exactly like OP_Insert except that the key is the
4207 ** integer value P3, not the value of the integer stored in register P3.
4208 */
4209 case OP_Insert:
4210 case OP_InsertInt: {
4211   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4212   Mem *pKey;        /* MEM cell holding key  for the record */
4213   i64 iKey;         /* The integer ROWID or key for the record to be inserted */
4214   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4215   int nZero;        /* Number of zero-bytes to append */
4216   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4217   const char *zDb;  /* database name - used by the update hook */
4218   const char *zTbl; /* Table name - used by the opdate hook */
4219   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4220 
4221   pData = &aMem[pOp->p2];
4222   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4223   assert( memIsValid(pData) );
4224   pC = p->apCsr[pOp->p1];
4225   assert( pC!=0 );
4226   assert( pC->pCursor!=0 );
4227   assert( pC->pseudoTableReg==0 );
4228   assert( pC->isTable );
4229   REGISTER_TRACE(pOp->p2, pData);
4230 
4231   if( pOp->opcode==OP_Insert ){
4232     pKey = &aMem[pOp->p3];
4233     assert( pKey->flags & MEM_Int );
4234     assert( memIsValid(pKey) );
4235     REGISTER_TRACE(pOp->p3, pKey);
4236     iKey = pKey->u.i;
4237   }else{
4238     assert( pOp->opcode==OP_InsertInt );
4239     iKey = pOp->p3;
4240   }
4241 
4242   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4243   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4244   if( pData->flags & MEM_Null ){
4245     pData->z = 0;
4246     pData->n = 0;
4247   }else{
4248     assert( pData->flags & (MEM_Blob|MEM_Str) );
4249   }
4250   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4251   if( pData->flags & MEM_Zero ){
4252     nZero = pData->u.nZero;
4253   }else{
4254     nZero = 0;
4255   }
4256   rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4257                           pData->z, pData->n, nZero,
4258                           (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4259   );
4260   pC->deferredMoveto = 0;
4261   pC->cacheStatus = CACHE_STALE;
4262 
4263   /* Invoke the update-hook if required. */
4264   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4265     zDb = db->aDb[pC->iDb].zName;
4266     zTbl = pOp->p4.z;
4267     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4268     assert( pC->isTable );
4269     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4270     assert( pC->iDb>=0 );
4271   }
4272   break;
4273 }
4274 
4275 /* Opcode: Delete P1 P2 * P4 *
4276 **
4277 ** Delete the record at which the P1 cursor is currently pointing.
4278 **
4279 ** The cursor will be left pointing at either the next or the previous
4280 ** record in the table. If it is left pointing at the next record, then
4281 ** the next Next instruction will be a no-op.  Hence it is OK to delete
4282 ** a record from within a Next loop.
4283 **
4284 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4285 ** incremented (otherwise not).
4286 **
4287 ** P1 must not be pseudo-table.  It has to be a real table with
4288 ** multiple rows.
4289 **
4290 ** If P4 is not NULL, then it is the name of the table that P1 is
4291 ** pointing to.  The update hook will be invoked, if it exists.
4292 ** If P4 is not NULL then the P1 cursor must have been positioned
4293 ** using OP_NotFound prior to invoking this opcode.
4294 */
4295 case OP_Delete: {
4296   VdbeCursor *pC;
4297 
4298   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4299   pC = p->apCsr[pOp->p1];
4300   assert( pC!=0 );
4301   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
4302   assert( pC->deferredMoveto==0 );
4303 
4304 #ifdef SQLITE_DEBUG
4305   /* The seek operation that positioned the cursor prior to OP_Delete will
4306   ** have also set the pC->movetoTarget field to the rowid of the row that
4307   ** is being deleted */
4308   if( pOp->p4.z && pC->isTable ){
4309     i64 iKey = 0;
4310     sqlite3BtreeKeySize(pC->pCursor, &iKey);
4311     assert( pC->movetoTarget==iKey );
4312   }
4313 #endif
4314 
4315   rc = sqlite3BtreeDelete(pC->pCursor);
4316   pC->cacheStatus = CACHE_STALE;
4317 
4318   /* Invoke the update-hook if required. */
4319   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
4320     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
4321                         db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
4322     assert( pC->iDb>=0 );
4323   }
4324   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4325   break;
4326 }
4327 /* Opcode: ResetCount * * * * *
4328 **
4329 ** The value of the change counter is copied to the database handle
4330 ** change counter (returned by subsequent calls to sqlite3_changes()).
4331 ** Then the VMs internal change counter resets to 0.
4332 ** This is used by trigger programs.
4333 */
4334 case OP_ResetCount: {
4335   sqlite3VdbeSetChanges(db, p->nChange);
4336   p->nChange = 0;
4337   break;
4338 }
4339 
4340 /* Opcode: SorterCompare P1 P2 P3 P4
4341 ** Synopsis:  if key(P1)!=trim(r[P3],P4) goto P2
4342 **
4343 ** P1 is a sorter cursor. This instruction compares a prefix of the
4344 ** record blob in register P3 against a prefix of the entry that
4345 ** the sorter cursor currently points to.  Only the first P4 fields
4346 ** of r[P3] and the sorter record are compared.
4347 **
4348 ** If either P3 or the sorter contains a NULL in one of their significant
4349 ** fields (not counting the P4 fields at the end which are ignored) then
4350 ** the comparison is assumed to be equal.
4351 **
4352 ** Fall through to next instruction if the two records compare equal to
4353 ** each other.  Jump to P2 if they are different.
4354 */
4355 case OP_SorterCompare: {
4356   VdbeCursor *pC;
4357   int res;
4358   int nKeyCol;
4359 
4360   pC = p->apCsr[pOp->p1];
4361   assert( isSorter(pC) );
4362   assert( pOp->p4type==P4_INT32 );
4363   pIn3 = &aMem[pOp->p3];
4364   nKeyCol = pOp->p4.i;
4365   res = 0;
4366   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4367   VdbeBranchTaken(res!=0,2);
4368   if( res ) goto jump_to_p2;
4369   break;
4370 };
4371 
4372 /* Opcode: SorterData P1 P2 P3 * *
4373 ** Synopsis: r[P2]=data
4374 **
4375 ** Write into register P2 the current sorter data for sorter cursor P1.
4376 ** Then clear the column header cache on cursor P3.
4377 **
4378 ** This opcode is normally use to move a record out of the sorter and into
4379 ** a register that is the source for a pseudo-table cursor created using
4380 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4381 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4382 ** us from having to issue a separate NullRow instruction to clear that cache.
4383 */
4384 case OP_SorterData: {
4385   VdbeCursor *pC;
4386 
4387   pOut = &aMem[pOp->p2];
4388   pC = p->apCsr[pOp->p1];
4389   assert( isSorter(pC) );
4390   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4391   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4392   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4393   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4394   break;
4395 }
4396 
4397 /* Opcode: RowData P1 P2 * * *
4398 ** Synopsis: r[P2]=data
4399 **
4400 ** Write into register P2 the complete row data for cursor P1.
4401 ** There is no interpretation of the data.
4402 ** It is just copied onto the P2 register exactly as
4403 ** it is found in the database file.
4404 **
4405 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4406 ** of a real table, not a pseudo-table.
4407 */
4408 /* Opcode: RowKey P1 P2 * * *
4409 ** Synopsis: r[P2]=key
4410 **
4411 ** Write into register P2 the complete row key for cursor P1.
4412 ** There is no interpretation of the data.
4413 ** The key is copied onto the P2 register exactly as
4414 ** it is found in the database file.
4415 **
4416 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4417 ** of a real table, not a pseudo-table.
4418 */
4419 case OP_RowKey:
4420 case OP_RowData: {
4421   VdbeCursor *pC;
4422   BtCursor *pCrsr;
4423   u32 n;
4424   i64 n64;
4425 
4426   pOut = &aMem[pOp->p2];
4427   memAboutToChange(p, pOut);
4428 
4429   /* Note that RowKey and RowData are really exactly the same instruction */
4430   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4431   pC = p->apCsr[pOp->p1];
4432   assert( isSorter(pC)==0 );
4433   assert( pC->isTable || pOp->opcode!=OP_RowData );
4434   assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4435   assert( pC!=0 );
4436   assert( pC->nullRow==0 );
4437   assert( pC->pseudoTableReg==0 );
4438   assert( pC->pCursor!=0 );
4439   pCrsr = pC->pCursor;
4440 
4441   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4442   ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4443   ** the cursor.  If this where not the case, on of the following assert()s
4444   ** would fail.  Should this ever change (because of changes in the code
4445   ** generator) then the fix would be to insert a call to
4446   ** sqlite3VdbeCursorMoveto().
4447   */
4448   assert( pC->deferredMoveto==0 );
4449   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4450 #if 0  /* Not required due to the previous to assert() statements */
4451   rc = sqlite3VdbeCursorMoveto(pC);
4452   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4453 #endif
4454 
4455   if( pC->isTable==0 ){
4456     assert( !pC->isTable );
4457     VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4458     assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
4459     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4460       goto too_big;
4461     }
4462     n = (u32)n64;
4463   }else{
4464     VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4465     assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
4466     if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4467       goto too_big;
4468     }
4469   }
4470   testcase( n==0 );
4471   if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
4472     goto no_mem;
4473   }
4474   pOut->n = n;
4475   MemSetTypeFlag(pOut, MEM_Blob);
4476   if( pC->isTable==0 ){
4477     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4478   }else{
4479     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4480   }
4481   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4482   UPDATE_MAX_BLOBSIZE(pOut);
4483   REGISTER_TRACE(pOp->p2, pOut);
4484   break;
4485 }
4486 
4487 /* Opcode: Rowid P1 P2 * * *
4488 ** Synopsis: r[P2]=rowid
4489 **
4490 ** Store in register P2 an integer which is the key of the table entry that
4491 ** P1 is currently point to.
4492 **
4493 ** P1 can be either an ordinary table or a virtual table.  There used to
4494 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4495 ** one opcode now works for both table types.
4496 */
4497 case OP_Rowid: {                 /* out2 */
4498   VdbeCursor *pC;
4499   i64 v;
4500   sqlite3_vtab *pVtab;
4501   const sqlite3_module *pModule;
4502 
4503   pOut = out2Prerelease(p, pOp);
4504   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4505   pC = p->apCsr[pOp->p1];
4506   assert( pC!=0 );
4507   assert( pC->pseudoTableReg==0 || pC->nullRow );
4508   if( pC->nullRow ){
4509     pOut->flags = MEM_Null;
4510     break;
4511   }else if( pC->deferredMoveto ){
4512     v = pC->movetoTarget;
4513 #ifndef SQLITE_OMIT_VIRTUALTABLE
4514   }else if( pC->pVtabCursor ){
4515     pVtab = pC->pVtabCursor->pVtab;
4516     pModule = pVtab->pModule;
4517     assert( pModule->xRowid );
4518     rc = pModule->xRowid(pC->pVtabCursor, &v);
4519     sqlite3VtabImportErrmsg(p, pVtab);
4520 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4521   }else{
4522     assert( pC->pCursor!=0 );
4523     rc = sqlite3VdbeCursorRestore(pC);
4524     if( rc ) goto abort_due_to_error;
4525     if( pC->nullRow ){
4526       pOut->flags = MEM_Null;
4527       break;
4528     }
4529     rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4530     assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
4531   }
4532   pOut->u.i = v;
4533   break;
4534 }
4535 
4536 /* Opcode: NullRow P1 * * * *
4537 **
4538 ** Move the cursor P1 to a null row.  Any OP_Column operations
4539 ** that occur while the cursor is on the null row will always
4540 ** write a NULL.
4541 */
4542 case OP_NullRow: {
4543   VdbeCursor *pC;
4544 
4545   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4546   pC = p->apCsr[pOp->p1];
4547   assert( pC!=0 );
4548   pC->nullRow = 1;
4549   pC->cacheStatus = CACHE_STALE;
4550   if( pC->pCursor ){
4551     sqlite3BtreeClearCursor(pC->pCursor);
4552   }
4553   break;
4554 }
4555 
4556 /* Opcode: Last P1 P2 P3 * *
4557 **
4558 ** The next use of the Rowid or Column or Prev instruction for P1
4559 ** will refer to the last entry in the database table or index.
4560 ** If the table or index is empty and P2>0, then jump immediately to P2.
4561 ** If P2 is 0 or if the table or index is not empty, fall through
4562 ** to the following instruction.
4563 **
4564 ** This opcode leaves the cursor configured to move in reverse order,
4565 ** from the end toward the beginning.  In other words, the cursor is
4566 ** configured to use Prev, not Next.
4567 */
4568 case OP_Last: {        /* jump */
4569   VdbeCursor *pC;
4570   BtCursor *pCrsr;
4571   int res;
4572 
4573   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4574   pC = p->apCsr[pOp->p1];
4575   assert( pC!=0 );
4576   pCrsr = pC->pCursor;
4577   res = 0;
4578   assert( pCrsr!=0 );
4579   rc = sqlite3BtreeLast(pCrsr, &res);
4580   pC->nullRow = (u8)res;
4581   pC->deferredMoveto = 0;
4582   pC->cacheStatus = CACHE_STALE;
4583   pC->seekResult = pOp->p3;
4584 #ifdef SQLITE_DEBUG
4585   pC->seekOp = OP_Last;
4586 #endif
4587   if( pOp->p2>0 ){
4588     VdbeBranchTaken(res!=0,2);
4589     if( res ) goto jump_to_p2;
4590   }
4591   break;
4592 }
4593 
4594 
4595 /* Opcode: Sort P1 P2 * * *
4596 **
4597 ** This opcode does exactly the same thing as OP_Rewind except that
4598 ** it increments an undocumented global variable used for testing.
4599 **
4600 ** Sorting is accomplished by writing records into a sorting index,
4601 ** then rewinding that index and playing it back from beginning to
4602 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4603 ** rewinding so that the global variable will be incremented and
4604 ** regression tests can determine whether or not the optimizer is
4605 ** correctly optimizing out sorts.
4606 */
4607 case OP_SorterSort:    /* jump */
4608 case OP_Sort: {        /* jump */
4609 #ifdef SQLITE_TEST
4610   sqlite3_sort_count++;
4611   sqlite3_search_count--;
4612 #endif
4613   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4614   /* Fall through into OP_Rewind */
4615 }
4616 /* Opcode: Rewind P1 P2 * * *
4617 **
4618 ** The next use of the Rowid or Column or Next instruction for P1
4619 ** will refer to the first entry in the database table or index.
4620 ** If the table or index is empty, jump immediately to P2.
4621 ** If the table or index is not empty, fall through to the following
4622 ** instruction.
4623 **
4624 ** This opcode leaves the cursor configured to move in forward order,
4625 ** from the beginning toward the end.  In other words, the cursor is
4626 ** configured to use Next, not Prev.
4627 */
4628 case OP_Rewind: {        /* jump */
4629   VdbeCursor *pC;
4630   BtCursor *pCrsr;
4631   int res;
4632 
4633   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4634   pC = p->apCsr[pOp->p1];
4635   assert( pC!=0 );
4636   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4637   res = 1;
4638 #ifdef SQLITE_DEBUG
4639   pC->seekOp = OP_Rewind;
4640 #endif
4641   if( isSorter(pC) ){
4642     rc = sqlite3VdbeSorterRewind(pC, &res);
4643   }else{
4644     pCrsr = pC->pCursor;
4645     assert( pCrsr );
4646     rc = sqlite3BtreeFirst(pCrsr, &res);
4647     pC->deferredMoveto = 0;
4648     pC->cacheStatus = CACHE_STALE;
4649   }
4650   pC->nullRow = (u8)res;
4651   assert( pOp->p2>0 && pOp->p2<p->nOp );
4652   VdbeBranchTaken(res!=0,2);
4653   if( res ) goto jump_to_p2;
4654   break;
4655 }
4656 
4657 /* Opcode: Next P1 P2 P3 P4 P5
4658 **
4659 ** Advance cursor P1 so that it points to the next key/data pair in its
4660 ** table or index.  If there are no more key/value pairs then fall through
4661 ** to the following instruction.  But if the cursor advance was successful,
4662 ** jump immediately to P2.
4663 **
4664 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4665 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
4666 ** to follow SeekLT, SeekLE, or OP_Last.
4667 **
4668 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
4669 ** been opened prior to this opcode or the program will segfault.
4670 **
4671 ** The P3 value is a hint to the btree implementation. If P3==1, that
4672 ** means P1 is an SQL index and that this instruction could have been
4673 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4674 ** always either 0 or 1.
4675 **
4676 ** P4 is always of type P4_ADVANCE. The function pointer points to
4677 ** sqlite3BtreeNext().
4678 **
4679 ** If P5 is positive and the jump is taken, then event counter
4680 ** number P5-1 in the prepared statement is incremented.
4681 **
4682 ** See also: Prev, NextIfOpen
4683 */
4684 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4685 **
4686 ** This opcode works just like Next except that if cursor P1 is not
4687 ** open it behaves a no-op.
4688 */
4689 /* Opcode: Prev P1 P2 P3 P4 P5
4690 **
4691 ** Back up cursor P1 so that it points to the previous key/data pair in its
4692 ** table or index.  If there is no previous key/value pairs then fall through
4693 ** to the following instruction.  But if the cursor backup was successful,
4694 ** jump immediately to P2.
4695 **
4696 **
4697 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4698 ** OP_Last opcode used to position the cursor.  Prev is not allowed
4699 ** to follow SeekGT, SeekGE, or OP_Rewind.
4700 **
4701 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
4702 ** not open then the behavior is undefined.
4703 **
4704 ** The P3 value is a hint to the btree implementation. If P3==1, that
4705 ** means P1 is an SQL index and that this instruction could have been
4706 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4707 ** always either 0 or 1.
4708 **
4709 ** P4 is always of type P4_ADVANCE. The function pointer points to
4710 ** sqlite3BtreePrevious().
4711 **
4712 ** If P5 is positive and the jump is taken, then event counter
4713 ** number P5-1 in the prepared statement is incremented.
4714 */
4715 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4716 **
4717 ** This opcode works just like Prev except that if cursor P1 is not
4718 ** open it behaves a no-op.
4719 */
4720 case OP_SorterNext: {  /* jump */
4721   VdbeCursor *pC;
4722   int res;
4723 
4724   pC = p->apCsr[pOp->p1];
4725   assert( isSorter(pC) );
4726   res = 0;
4727   rc = sqlite3VdbeSorterNext(db, pC, &res);
4728   goto next_tail;
4729 case OP_PrevIfOpen:    /* jump */
4730 case OP_NextIfOpen:    /* jump */
4731   if( p->apCsr[pOp->p1]==0 ) break;
4732   /* Fall through */
4733 case OP_Prev:          /* jump */
4734 case OP_Next:          /* jump */
4735   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4736   assert( pOp->p5<ArraySize(p->aCounter) );
4737   pC = p->apCsr[pOp->p1];
4738   res = pOp->p3;
4739   assert( pC!=0 );
4740   assert( pC->deferredMoveto==0 );
4741   assert( pC->pCursor );
4742   assert( res==0 || (res==1 && pC->isTable==0) );
4743   testcase( res==1 );
4744   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4745   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4746   assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4747   assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4748 
4749   /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4750   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4751   assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4752        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4753        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4754   assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4755        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4756        || pC->seekOp==OP_Last );
4757 
4758   rc = pOp->p4.xAdvance(pC->pCursor, &res);
4759 next_tail:
4760   pC->cacheStatus = CACHE_STALE;
4761   VdbeBranchTaken(res==0,2);
4762   if( res==0 ){
4763     pC->nullRow = 0;
4764     p->aCounter[pOp->p5]++;
4765 #ifdef SQLITE_TEST
4766     sqlite3_search_count++;
4767 #endif
4768     goto jump_to_p2_and_check_for_interrupt;
4769   }else{
4770     pC->nullRow = 1;
4771   }
4772   goto check_for_interrupt;
4773 }
4774 
4775 /* Opcode: IdxInsert P1 P2 P3 * P5
4776 ** Synopsis: key=r[P2]
4777 **
4778 ** Register P2 holds an SQL index key made using the
4779 ** MakeRecord instructions.  This opcode writes that key
4780 ** into the index P1.  Data for the entry is nil.
4781 **
4782 ** P3 is a flag that provides a hint to the b-tree layer that this
4783 ** insert is likely to be an append.
4784 **
4785 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4786 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
4787 ** then the change counter is unchanged.
4788 **
4789 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4790 ** just done a seek to the spot where the new entry is to be inserted.
4791 ** This flag avoids doing an extra seek.
4792 **
4793 ** This instruction only works for indices.  The equivalent instruction
4794 ** for tables is OP_Insert.
4795 */
4796 case OP_SorterInsert:       /* in2 */
4797 case OP_IdxInsert: {        /* in2 */
4798   VdbeCursor *pC;
4799   int nKey;
4800   const char *zKey;
4801 
4802   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4803   pC = p->apCsr[pOp->p1];
4804   assert( pC!=0 );
4805   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
4806   pIn2 = &aMem[pOp->p2];
4807   assert( pIn2->flags & MEM_Blob );
4808   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4809   assert( pC->pCursor!=0 );
4810   assert( pC->isTable==0 );
4811   rc = ExpandBlob(pIn2);
4812   if( rc==SQLITE_OK ){
4813     if( pOp->opcode==OP_SorterInsert ){
4814       rc = sqlite3VdbeSorterWrite(pC, pIn2);
4815     }else{
4816       nKey = pIn2->n;
4817       zKey = pIn2->z;
4818       rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, "", 0, 0, pOp->p3,
4819           ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4820           );
4821       assert( pC->deferredMoveto==0 );
4822       pC->cacheStatus = CACHE_STALE;
4823     }
4824   }
4825   break;
4826 }
4827 
4828 /* Opcode: IdxDelete P1 P2 P3 * *
4829 ** Synopsis: key=r[P2@P3]
4830 **
4831 ** The content of P3 registers starting at register P2 form
4832 ** an unpacked index key. This opcode removes that entry from the
4833 ** index opened by cursor P1.
4834 */
4835 case OP_IdxDelete: {
4836   VdbeCursor *pC;
4837   BtCursor *pCrsr;
4838   int res;
4839   UnpackedRecord r;
4840 
4841   assert( pOp->p3>0 );
4842   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
4843   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4844   pC = p->apCsr[pOp->p1];
4845   assert( pC!=0 );
4846   pCrsr = pC->pCursor;
4847   assert( pCrsr!=0 );
4848   assert( pOp->p5==0 );
4849   r.pKeyInfo = pC->pKeyInfo;
4850   r.nField = (u16)pOp->p3;
4851   r.default_rc = 0;
4852   r.aMem = &aMem[pOp->p2];
4853 #ifdef SQLITE_DEBUG
4854   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4855 #endif
4856   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4857   if( rc==SQLITE_OK && res==0 ){
4858     rc = sqlite3BtreeDelete(pCrsr);
4859   }
4860   assert( pC->deferredMoveto==0 );
4861   pC->cacheStatus = CACHE_STALE;
4862   break;
4863 }
4864 
4865 /* Opcode: IdxRowid P1 P2 * * *
4866 ** Synopsis: r[P2]=rowid
4867 **
4868 ** Write into register P2 an integer which is the last entry in the record at
4869 ** the end of the index key pointed to by cursor P1.  This integer should be
4870 ** the rowid of the table entry to which this index entry points.
4871 **
4872 ** See also: Rowid, MakeRecord.
4873 */
4874 case OP_IdxRowid: {              /* out2 */
4875   BtCursor *pCrsr;
4876   VdbeCursor *pC;
4877   i64 rowid;
4878 
4879   pOut = out2Prerelease(p, pOp);
4880   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4881   pC = p->apCsr[pOp->p1];
4882   assert( pC!=0 );
4883   pCrsr = pC->pCursor;
4884   assert( pCrsr!=0 );
4885   pOut->flags = MEM_Null;
4886   assert( pC->isTable==0 );
4887   assert( pC->deferredMoveto==0 );
4888 
4889   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4890   ** out from under the cursor.  That will never happend for an IdxRowid
4891   ** opcode, hence the NEVER() arround the check of the return value.
4892   */
4893   rc = sqlite3VdbeCursorRestore(pC);
4894   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4895 
4896   if( !pC->nullRow ){
4897     rowid = 0;  /* Not needed.  Only used to silence a warning. */
4898     rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4899     if( rc!=SQLITE_OK ){
4900       goto abort_due_to_error;
4901     }
4902     pOut->u.i = rowid;
4903     pOut->flags = MEM_Int;
4904   }
4905   break;
4906 }
4907 
4908 /* Opcode: IdxGE P1 P2 P3 P4 P5
4909 ** Synopsis: key=r[P3@P4]
4910 **
4911 ** The P4 register values beginning with P3 form an unpacked index
4912 ** key that omits the PRIMARY KEY.  Compare this key value against the index
4913 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4914 ** fields at the end.
4915 **
4916 ** If the P1 index entry is greater than or equal to the key value
4917 ** then jump to P2.  Otherwise fall through to the next instruction.
4918 */
4919 /* Opcode: IdxGT P1 P2 P3 P4 P5
4920 ** Synopsis: key=r[P3@P4]
4921 **
4922 ** The P4 register values beginning with P3 form an unpacked index
4923 ** key that omits the PRIMARY KEY.  Compare this key value against the index
4924 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4925 ** fields at the end.
4926 **
4927 ** If the P1 index entry is greater than the key value
4928 ** then jump to P2.  Otherwise fall through to the next instruction.
4929 */
4930 /* Opcode: IdxLT P1 P2 P3 P4 P5
4931 ** Synopsis: key=r[P3@P4]
4932 **
4933 ** The P4 register values beginning with P3 form an unpacked index
4934 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
4935 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4936 ** ROWID on the P1 index.
4937 **
4938 ** If the P1 index entry is less than the key value then jump to P2.
4939 ** Otherwise fall through to the next instruction.
4940 */
4941 /* Opcode: IdxLE P1 P2 P3 P4 P5
4942 ** Synopsis: key=r[P3@P4]
4943 **
4944 ** The P4 register values beginning with P3 form an unpacked index
4945 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
4946 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4947 ** ROWID on the P1 index.
4948 **
4949 ** If the P1 index entry is less than or equal to the key value then jump
4950 ** to P2. Otherwise fall through to the next instruction.
4951 */
4952 case OP_IdxLE:          /* jump */
4953 case OP_IdxGT:          /* jump */
4954 case OP_IdxLT:          /* jump */
4955 case OP_IdxGE:  {       /* jump */
4956   VdbeCursor *pC;
4957   int res;
4958   UnpackedRecord r;
4959 
4960   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4961   pC = p->apCsr[pOp->p1];
4962   assert( pC!=0 );
4963   assert( pC->isOrdered );
4964   assert( pC->pCursor!=0);
4965   assert( pC->deferredMoveto==0 );
4966   assert( pOp->p5==0 || pOp->p5==1 );
4967   assert( pOp->p4type==P4_INT32 );
4968   r.pKeyInfo = pC->pKeyInfo;
4969   r.nField = (u16)pOp->p4.i;
4970   if( pOp->opcode<OP_IdxLT ){
4971     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
4972     r.default_rc = -1;
4973   }else{
4974     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
4975     r.default_rc = 0;
4976   }
4977   r.aMem = &aMem[pOp->p3];
4978 #ifdef SQLITE_DEBUG
4979   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4980 #endif
4981   res = 0;  /* Not needed.  Only used to silence a warning. */
4982   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4983   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
4984   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
4985     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
4986     res = -res;
4987   }else{
4988     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
4989     res++;
4990   }
4991   VdbeBranchTaken(res>0,2);
4992   if( res>0 ) goto jump_to_p2;
4993   break;
4994 }
4995 
4996 /* Opcode: Destroy P1 P2 P3 * *
4997 **
4998 ** Delete an entire database table or index whose root page in the database
4999 ** file is given by P1.
5000 **
5001 ** The table being destroyed is in the main database file if P3==0.  If
5002 ** P3==1 then the table to be clear is in the auxiliary database file
5003 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5004 **
5005 ** If AUTOVACUUM is enabled then it is possible that another root page
5006 ** might be moved into the newly deleted root page in order to keep all
5007 ** root pages contiguous at the beginning of the database.  The former
5008 ** value of the root page that moved - its value before the move occurred -
5009 ** is stored in register P2.  If no page
5010 ** movement was required (because the table being dropped was already
5011 ** the last one in the database) then a zero is stored in register P2.
5012 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
5013 **
5014 ** See also: Clear
5015 */
5016 case OP_Destroy: {     /* out2 */
5017   int iMoved;
5018   int iDb;
5019 
5020   assert( p->readOnly==0 );
5021   pOut = out2Prerelease(p, pOp);
5022   pOut->flags = MEM_Null;
5023   if( db->nVdbeRead > db->nVDestroy+1 ){
5024     rc = SQLITE_LOCKED;
5025     p->errorAction = OE_Abort;
5026   }else{
5027     iDb = pOp->p3;
5028     assert( DbMaskTest(p->btreeMask, iDb) );
5029     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5030     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5031     pOut->flags = MEM_Int;
5032     pOut->u.i = iMoved;
5033 #ifndef SQLITE_OMIT_AUTOVACUUM
5034     if( rc==SQLITE_OK && iMoved!=0 ){
5035       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5036       /* All OP_Destroy operations occur on the same btree */
5037       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5038       resetSchemaOnFault = iDb+1;
5039     }
5040 #endif
5041   }
5042   break;
5043 }
5044 
5045 /* Opcode: Clear P1 P2 P3
5046 **
5047 ** Delete all contents of the database table or index whose root page
5048 ** in the database file is given by P1.  But, unlike Destroy, do not
5049 ** remove the table or index from the database file.
5050 **
5051 ** The table being clear is in the main database file if P2==0.  If
5052 ** P2==1 then the table to be clear is in the auxiliary database file
5053 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5054 **
5055 ** If the P3 value is non-zero, then the table referred to must be an
5056 ** intkey table (an SQL table, not an index). In this case the row change
5057 ** count is incremented by the number of rows in the table being cleared.
5058 ** If P3 is greater than zero, then the value stored in register P3 is
5059 ** also incremented by the number of rows in the table being cleared.
5060 **
5061 ** See also: Destroy
5062 */
5063 case OP_Clear: {
5064   int nChange;
5065 
5066   nChange = 0;
5067   assert( p->readOnly==0 );
5068   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5069   rc = sqlite3BtreeClearTable(
5070       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5071   );
5072   if( pOp->p3 ){
5073     p->nChange += nChange;
5074     if( pOp->p3>0 ){
5075       assert( memIsValid(&aMem[pOp->p3]) );
5076       memAboutToChange(p, &aMem[pOp->p3]);
5077       aMem[pOp->p3].u.i += nChange;
5078     }
5079   }
5080   break;
5081 }
5082 
5083 /* Opcode: ResetSorter P1 * * * *
5084 **
5085 ** Delete all contents from the ephemeral table or sorter
5086 ** that is open on cursor P1.
5087 **
5088 ** This opcode only works for cursors used for sorting and
5089 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5090 */
5091 case OP_ResetSorter: {
5092   VdbeCursor *pC;
5093 
5094   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5095   pC = p->apCsr[pOp->p1];
5096   assert( pC!=0 );
5097   if( pC->pSorter ){
5098     sqlite3VdbeSorterReset(db, pC->pSorter);
5099   }else{
5100     assert( pC->isEphemeral );
5101     rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
5102   }
5103   break;
5104 }
5105 
5106 /* Opcode: CreateTable P1 P2 * * *
5107 ** Synopsis: r[P2]=root iDb=P1
5108 **
5109 ** Allocate a new table in the main database file if P1==0 or in the
5110 ** auxiliary database file if P1==1 or in an attached database if
5111 ** P1>1.  Write the root page number of the new table into
5112 ** register P2
5113 **
5114 ** The difference between a table and an index is this:  A table must
5115 ** have a 4-byte integer key and can have arbitrary data.  An index
5116 ** has an arbitrary key but no data.
5117 **
5118 ** See also: CreateIndex
5119 */
5120 /* Opcode: CreateIndex P1 P2 * * *
5121 ** Synopsis: r[P2]=root iDb=P1
5122 **
5123 ** Allocate a new index in the main database file if P1==0 or in the
5124 ** auxiliary database file if P1==1 or in an attached database if
5125 ** P1>1.  Write the root page number of the new table into
5126 ** register P2.
5127 **
5128 ** See documentation on OP_CreateTable for additional information.
5129 */
5130 case OP_CreateIndex:            /* out2 */
5131 case OP_CreateTable: {          /* out2 */
5132   int pgno;
5133   int flags;
5134   Db *pDb;
5135 
5136   pOut = out2Prerelease(p, pOp);
5137   pgno = 0;
5138   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5139   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5140   assert( p->readOnly==0 );
5141   pDb = &db->aDb[pOp->p1];
5142   assert( pDb->pBt!=0 );
5143   if( pOp->opcode==OP_CreateTable ){
5144     /* flags = BTREE_INTKEY; */
5145     flags = BTREE_INTKEY;
5146   }else{
5147     flags = BTREE_BLOBKEY;
5148   }
5149   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5150   pOut->u.i = pgno;
5151   break;
5152 }
5153 
5154 /* Opcode: ParseSchema P1 * * P4 *
5155 **
5156 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5157 ** that match the WHERE clause P4.
5158 **
5159 ** This opcode invokes the parser to create a new virtual machine,
5160 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5161 */
5162 case OP_ParseSchema: {
5163   int iDb;
5164   const char *zMaster;
5165   char *zSql;
5166   InitData initData;
5167 
5168   /* Any prepared statement that invokes this opcode will hold mutexes
5169   ** on every btree.  This is a prerequisite for invoking
5170   ** sqlite3InitCallback().
5171   */
5172 #ifdef SQLITE_DEBUG
5173   for(iDb=0; iDb<db->nDb; iDb++){
5174     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5175   }
5176 #endif
5177 
5178   iDb = pOp->p1;
5179   assert( iDb>=0 && iDb<db->nDb );
5180   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5181   /* Used to be a conditional */ {
5182     zMaster = SCHEMA_TABLE(iDb);
5183     initData.db = db;
5184     initData.iDb = pOp->p1;
5185     initData.pzErrMsg = &p->zErrMsg;
5186     zSql = sqlite3MPrintf(db,
5187        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5188        db->aDb[iDb].zName, zMaster, pOp->p4.z);
5189     if( zSql==0 ){
5190       rc = SQLITE_NOMEM;
5191     }else{
5192       assert( db->init.busy==0 );
5193       db->init.busy = 1;
5194       initData.rc = SQLITE_OK;
5195       assert( !db->mallocFailed );
5196       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5197       if( rc==SQLITE_OK ) rc = initData.rc;
5198       sqlite3DbFree(db, zSql);
5199       db->init.busy = 0;
5200     }
5201   }
5202   if( rc ) sqlite3ResetAllSchemasOfConnection(db);
5203   if( rc==SQLITE_NOMEM ){
5204     goto no_mem;
5205   }
5206   break;
5207 }
5208 
5209 #if !defined(SQLITE_OMIT_ANALYZE)
5210 /* Opcode: LoadAnalysis P1 * * * *
5211 **
5212 ** Read the sqlite_stat1 table for database P1 and load the content
5213 ** of that table into the internal index hash table.  This will cause
5214 ** the analysis to be used when preparing all subsequent queries.
5215 */
5216 case OP_LoadAnalysis: {
5217   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5218   rc = sqlite3AnalysisLoad(db, pOp->p1);
5219   break;
5220 }
5221 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5222 
5223 /* Opcode: DropTable P1 * * P4 *
5224 **
5225 ** Remove the internal (in-memory) data structures that describe
5226 ** the table named P4 in database P1.  This is called after a table
5227 ** is dropped from disk (using the Destroy opcode) in order to keep
5228 ** the internal representation of the
5229 ** schema consistent with what is on disk.
5230 */
5231 case OP_DropTable: {
5232   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5233   break;
5234 }
5235 
5236 /* Opcode: DropIndex P1 * * P4 *
5237 **
5238 ** Remove the internal (in-memory) data structures that describe
5239 ** the index named P4 in database P1.  This is called after an index
5240 ** is dropped from disk (using the Destroy opcode)
5241 ** in order to keep the internal representation of the
5242 ** schema consistent with what is on disk.
5243 */
5244 case OP_DropIndex: {
5245   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5246   break;
5247 }
5248 
5249 /* Opcode: DropTrigger P1 * * P4 *
5250 **
5251 ** Remove the internal (in-memory) data structures that describe
5252 ** the trigger named P4 in database P1.  This is called after a trigger
5253 ** is dropped from disk (using the Destroy opcode) in order to keep
5254 ** the internal representation of the
5255 ** schema consistent with what is on disk.
5256 */
5257 case OP_DropTrigger: {
5258   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5259   break;
5260 }
5261 
5262 
5263 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5264 /* Opcode: IntegrityCk P1 P2 P3 * P5
5265 **
5266 ** Do an analysis of the currently open database.  Store in
5267 ** register P1 the text of an error message describing any problems.
5268 ** If no problems are found, store a NULL in register P1.
5269 **
5270 ** The register P3 contains the maximum number of allowed errors.
5271 ** At most reg(P3) errors will be reported.
5272 ** In other words, the analysis stops as soon as reg(P1) errors are
5273 ** seen.  Reg(P1) is updated with the number of errors remaining.
5274 **
5275 ** The root page numbers of all tables in the database are integer
5276 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
5277 ** total.
5278 **
5279 ** If P5 is not zero, the check is done on the auxiliary database
5280 ** file, not the main database file.
5281 **
5282 ** This opcode is used to implement the integrity_check pragma.
5283 */
5284 case OP_IntegrityCk: {
5285   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5286   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5287   int j;          /* Loop counter */
5288   int nErr;       /* Number of errors reported */
5289   char *z;        /* Text of the error report */
5290   Mem *pnErr;     /* Register keeping track of errors remaining */
5291 
5292   assert( p->bIsReader );
5293   nRoot = pOp->p2;
5294   assert( nRoot>0 );
5295   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
5296   if( aRoot==0 ) goto no_mem;
5297   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5298   pnErr = &aMem[pOp->p3];
5299   assert( (pnErr->flags & MEM_Int)!=0 );
5300   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5301   pIn1 = &aMem[pOp->p1];
5302   for(j=0; j<nRoot; j++){
5303     aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
5304   }
5305   aRoot[j] = 0;
5306   assert( pOp->p5<db->nDb );
5307   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5308   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5309                                  (int)pnErr->u.i, &nErr);
5310   sqlite3DbFree(db, aRoot);
5311   pnErr->u.i -= nErr;
5312   sqlite3VdbeMemSetNull(pIn1);
5313   if( nErr==0 ){
5314     assert( z==0 );
5315   }else if( z==0 ){
5316     goto no_mem;
5317   }else{
5318     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5319   }
5320   UPDATE_MAX_BLOBSIZE(pIn1);
5321   sqlite3VdbeChangeEncoding(pIn1, encoding);
5322   break;
5323 }
5324 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5325 
5326 /* Opcode: RowSetAdd P1 P2 * * *
5327 ** Synopsis:  rowset(P1)=r[P2]
5328 **
5329 ** Insert the integer value held by register P2 into a boolean index
5330 ** held in register P1.
5331 **
5332 ** An assertion fails if P2 is not an integer.
5333 */
5334 case OP_RowSetAdd: {       /* in1, in2 */
5335   pIn1 = &aMem[pOp->p1];
5336   pIn2 = &aMem[pOp->p2];
5337   assert( (pIn2->flags & MEM_Int)!=0 );
5338   if( (pIn1->flags & MEM_RowSet)==0 ){
5339     sqlite3VdbeMemSetRowSet(pIn1);
5340     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5341   }
5342   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5343   break;
5344 }
5345 
5346 /* Opcode: RowSetRead P1 P2 P3 * *
5347 ** Synopsis:  r[P3]=rowset(P1)
5348 **
5349 ** Extract the smallest value from boolean index P1 and put that value into
5350 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
5351 ** unchanged and jump to instruction P2.
5352 */
5353 case OP_RowSetRead: {       /* jump, in1, out3 */
5354   i64 val;
5355 
5356   pIn1 = &aMem[pOp->p1];
5357   if( (pIn1->flags & MEM_RowSet)==0
5358    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5359   ){
5360     /* The boolean index is empty */
5361     sqlite3VdbeMemSetNull(pIn1);
5362     VdbeBranchTaken(1,2);
5363     goto jump_to_p2_and_check_for_interrupt;
5364   }else{
5365     /* A value was pulled from the index */
5366     VdbeBranchTaken(0,2);
5367     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5368   }
5369   goto check_for_interrupt;
5370 }
5371 
5372 /* Opcode: RowSetTest P1 P2 P3 P4
5373 ** Synopsis: if r[P3] in rowset(P1) goto P2
5374 **
5375 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5376 ** contains a RowSet object and that RowSet object contains
5377 ** the value held in P3, jump to register P2. Otherwise, insert the
5378 ** integer in P3 into the RowSet and continue on to the
5379 ** next opcode.
5380 **
5381 ** The RowSet object is optimized for the case where successive sets
5382 ** of integers, where each set contains no duplicates. Each set
5383 ** of values is identified by a unique P4 value. The first set
5384 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
5385 ** non-negative.  For non-negative values of P4 only the lower 4
5386 ** bits are significant.
5387 **
5388 ** This allows optimizations: (a) when P4==0 there is no need to test
5389 ** the rowset object for P3, as it is guaranteed not to contain it,
5390 ** (b) when P4==-1 there is no need to insert the value, as it will
5391 ** never be tested for, and (c) when a value that is part of set X is
5392 ** inserted, there is no need to search to see if the same value was
5393 ** previously inserted as part of set X (only if it was previously
5394 ** inserted as part of some other set).
5395 */
5396 case OP_RowSetTest: {                     /* jump, in1, in3 */
5397   int iSet;
5398   int exists;
5399 
5400   pIn1 = &aMem[pOp->p1];
5401   pIn3 = &aMem[pOp->p3];
5402   iSet = pOp->p4.i;
5403   assert( pIn3->flags&MEM_Int );
5404 
5405   /* If there is anything other than a rowset object in memory cell P1,
5406   ** delete it now and initialize P1 with an empty rowset
5407   */
5408   if( (pIn1->flags & MEM_RowSet)==0 ){
5409     sqlite3VdbeMemSetRowSet(pIn1);
5410     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5411   }
5412 
5413   assert( pOp->p4type==P4_INT32 );
5414   assert( iSet==-1 || iSet>=0 );
5415   if( iSet ){
5416     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5417     VdbeBranchTaken(exists!=0,2);
5418     if( exists ) goto jump_to_p2;
5419   }
5420   if( iSet>=0 ){
5421     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5422   }
5423   break;
5424 }
5425 
5426 
5427 #ifndef SQLITE_OMIT_TRIGGER
5428 
5429 /* Opcode: Program P1 P2 P3 P4 P5
5430 **
5431 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5432 **
5433 ** P1 contains the address of the memory cell that contains the first memory
5434 ** cell in an array of values used as arguments to the sub-program. P2
5435 ** contains the address to jump to if the sub-program throws an IGNORE
5436 ** exception using the RAISE() function. Register P3 contains the address
5437 ** of a memory cell in this (the parent) VM that is used to allocate the
5438 ** memory required by the sub-vdbe at runtime.
5439 **
5440 ** P4 is a pointer to the VM containing the trigger program.
5441 **
5442 ** If P5 is non-zero, then recursive program invocation is enabled.
5443 */
5444 case OP_Program: {        /* jump */
5445   int nMem;               /* Number of memory registers for sub-program */
5446   int nByte;              /* Bytes of runtime space required for sub-program */
5447   Mem *pRt;               /* Register to allocate runtime space */
5448   Mem *pMem;              /* Used to iterate through memory cells */
5449   Mem *pEnd;              /* Last memory cell in new array */
5450   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5451   SubProgram *pProgram;   /* Sub-program to execute */
5452   void *t;                /* Token identifying trigger */
5453 
5454   pProgram = pOp->p4.pProgram;
5455   pRt = &aMem[pOp->p3];
5456   assert( pProgram->nOp>0 );
5457 
5458   /* If the p5 flag is clear, then recursive invocation of triggers is
5459   ** disabled for backwards compatibility (p5 is set if this sub-program
5460   ** is really a trigger, not a foreign key action, and the flag set
5461   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5462   **
5463   ** It is recursive invocation of triggers, at the SQL level, that is
5464   ** disabled. In some cases a single trigger may generate more than one
5465   ** SubProgram (if the trigger may be executed with more than one different
5466   ** ON CONFLICT algorithm). SubProgram structures associated with a
5467   ** single trigger all have the same value for the SubProgram.token
5468   ** variable.  */
5469   if( pOp->p5 ){
5470     t = pProgram->token;
5471     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5472     if( pFrame ) break;
5473   }
5474 
5475   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5476     rc = SQLITE_ERROR;
5477     sqlite3VdbeError(p, "too many levels of trigger recursion");
5478     break;
5479   }
5480 
5481   /* Register pRt is used to store the memory required to save the state
5482   ** of the current program, and the memory required at runtime to execute
5483   ** the trigger program. If this trigger has been fired before, then pRt
5484   ** is already allocated. Otherwise, it must be initialized.  */
5485   if( (pRt->flags&MEM_Frame)==0 ){
5486     /* SubProgram.nMem is set to the number of memory cells used by the
5487     ** program stored in SubProgram.aOp. As well as these, one memory
5488     ** cell is required for each cursor used by the program. Set local
5489     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5490     */
5491     nMem = pProgram->nMem + pProgram->nCsr;
5492     nByte = ROUND8(sizeof(VdbeFrame))
5493               + nMem * sizeof(Mem)
5494               + pProgram->nCsr * sizeof(VdbeCursor *)
5495               + pProgram->nOnce * sizeof(u8);
5496     pFrame = sqlite3DbMallocZero(db, nByte);
5497     if( !pFrame ){
5498       goto no_mem;
5499     }
5500     sqlite3VdbeMemRelease(pRt);
5501     pRt->flags = MEM_Frame;
5502     pRt->u.pFrame = pFrame;
5503 
5504     pFrame->v = p;
5505     pFrame->nChildMem = nMem;
5506     pFrame->nChildCsr = pProgram->nCsr;
5507     pFrame->pc = (int)(pOp - aOp);
5508     pFrame->aMem = p->aMem;
5509     pFrame->nMem = p->nMem;
5510     pFrame->apCsr = p->apCsr;
5511     pFrame->nCursor = p->nCursor;
5512     pFrame->aOp = p->aOp;
5513     pFrame->nOp = p->nOp;
5514     pFrame->token = pProgram->token;
5515     pFrame->aOnceFlag = p->aOnceFlag;
5516     pFrame->nOnceFlag = p->nOnceFlag;
5517 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5518     pFrame->anExec = p->anExec;
5519 #endif
5520 
5521     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5522     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5523       pMem->flags = MEM_Undefined;
5524       pMem->db = db;
5525     }
5526   }else{
5527     pFrame = pRt->u.pFrame;
5528     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5529     assert( pProgram->nCsr==pFrame->nChildCsr );
5530     assert( (int)(pOp - aOp)==pFrame->pc );
5531   }
5532 
5533   p->nFrame++;
5534   pFrame->pParent = p->pFrame;
5535   pFrame->lastRowid = lastRowid;
5536   pFrame->nChange = p->nChange;
5537   pFrame->nDbChange = p->db->nChange;
5538   p->nChange = 0;
5539   p->pFrame = pFrame;
5540   p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5541   p->nMem = pFrame->nChildMem;
5542   p->nCursor = (u16)pFrame->nChildCsr;
5543   p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5544   p->aOp = aOp = pProgram->aOp;
5545   p->nOp = pProgram->nOp;
5546   p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5547   p->nOnceFlag = pProgram->nOnce;
5548 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5549   p->anExec = 0;
5550 #endif
5551   pOp = &aOp[-1];
5552   memset(p->aOnceFlag, 0, p->nOnceFlag);
5553 
5554   break;
5555 }
5556 
5557 /* Opcode: Param P1 P2 * * *
5558 **
5559 ** This opcode is only ever present in sub-programs called via the
5560 ** OP_Program instruction. Copy a value currently stored in a memory
5561 ** cell of the calling (parent) frame to cell P2 in the current frames
5562 ** address space. This is used by trigger programs to access the new.*
5563 ** and old.* values.
5564 **
5565 ** The address of the cell in the parent frame is determined by adding
5566 ** the value of the P1 argument to the value of the P1 argument to the
5567 ** calling OP_Program instruction.
5568 */
5569 case OP_Param: {           /* out2 */
5570   VdbeFrame *pFrame;
5571   Mem *pIn;
5572   pOut = out2Prerelease(p, pOp);
5573   pFrame = p->pFrame;
5574   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5575   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5576   break;
5577 }
5578 
5579 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5580 
5581 #ifndef SQLITE_OMIT_FOREIGN_KEY
5582 /* Opcode: FkCounter P1 P2 * * *
5583 ** Synopsis: fkctr[P1]+=P2
5584 **
5585 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5586 ** If P1 is non-zero, the database constraint counter is incremented
5587 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5588 ** statement counter is incremented (immediate foreign key constraints).
5589 */
5590 case OP_FkCounter: {
5591   if( db->flags & SQLITE_DeferFKs ){
5592     db->nDeferredImmCons += pOp->p2;
5593   }else if( pOp->p1 ){
5594     db->nDeferredCons += pOp->p2;
5595   }else{
5596     p->nFkConstraint += pOp->p2;
5597   }
5598   break;
5599 }
5600 
5601 /* Opcode: FkIfZero P1 P2 * * *
5602 ** Synopsis: if fkctr[P1]==0 goto P2
5603 **
5604 ** This opcode tests if a foreign key constraint-counter is currently zero.
5605 ** If so, jump to instruction P2. Otherwise, fall through to the next
5606 ** instruction.
5607 **
5608 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5609 ** is zero (the one that counts deferred constraint violations). If P1 is
5610 ** zero, the jump is taken if the statement constraint-counter is zero
5611 ** (immediate foreign key constraint violations).
5612 */
5613 case OP_FkIfZero: {         /* jump */
5614   if( pOp->p1 ){
5615     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5616     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5617   }else{
5618     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5619     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5620   }
5621   break;
5622 }
5623 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5624 
5625 #ifndef SQLITE_OMIT_AUTOINCREMENT
5626 /* Opcode: MemMax P1 P2 * * *
5627 ** Synopsis: r[P1]=max(r[P1],r[P2])
5628 **
5629 ** P1 is a register in the root frame of this VM (the root frame is
5630 ** different from the current frame if this instruction is being executed
5631 ** within a sub-program). Set the value of register P1 to the maximum of
5632 ** its current value and the value in register P2.
5633 **
5634 ** This instruction throws an error if the memory cell is not initially
5635 ** an integer.
5636 */
5637 case OP_MemMax: {        /* in2 */
5638   VdbeFrame *pFrame;
5639   if( p->pFrame ){
5640     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5641     pIn1 = &pFrame->aMem[pOp->p1];
5642   }else{
5643     pIn1 = &aMem[pOp->p1];
5644   }
5645   assert( memIsValid(pIn1) );
5646   sqlite3VdbeMemIntegerify(pIn1);
5647   pIn2 = &aMem[pOp->p2];
5648   sqlite3VdbeMemIntegerify(pIn2);
5649   if( pIn1->u.i<pIn2->u.i){
5650     pIn1->u.i = pIn2->u.i;
5651   }
5652   break;
5653 }
5654 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5655 
5656 /* Opcode: IfPos P1 P2 * * *
5657 ** Synopsis: if r[P1]>0 goto P2
5658 **
5659 ** Register P1 must contain an integer.
5660 ** If the value of register P1 is 1 or greater, jump to P2 and
5661 ** add the literal value P3 to register P1.
5662 **
5663 ** If the initial value of register P1 is less than 1, then the
5664 ** value is unchanged and control passes through to the next instruction.
5665 */
5666 case OP_IfPos: {        /* jump, in1 */
5667   pIn1 = &aMem[pOp->p1];
5668   assert( pIn1->flags&MEM_Int );
5669   VdbeBranchTaken( pIn1->u.i>0, 2);
5670   if( pIn1->u.i>0 ) goto jump_to_p2;
5671   break;
5672 }
5673 
5674 /* Opcode: IfNeg P1 P2 P3 * *
5675 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
5676 **
5677 ** Register P1 must contain an integer.  Add literal P3 to the value in
5678 ** register P1 then if the value of register P1 is less than zero, jump to P2.
5679 */
5680 case OP_IfNeg: {        /* jump, in1 */
5681   pIn1 = &aMem[pOp->p1];
5682   assert( pIn1->flags&MEM_Int );
5683   pIn1->u.i += pOp->p3;
5684   VdbeBranchTaken(pIn1->u.i<0, 2);
5685   if( pIn1->u.i<0 ) goto jump_to_p2;
5686   break;
5687 }
5688 
5689 /* Opcode: IfNotZero P1 P2 P3 * *
5690 ** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2
5691 **
5692 ** Register P1 must contain an integer.  If the content of register P1 is
5693 ** initially nonzero, then add P3 to P1 and jump to P2.  If register P1 is
5694 ** initially zero, leave it unchanged and fall through.
5695 */
5696 case OP_IfNotZero: {        /* jump, in1 */
5697   pIn1 = &aMem[pOp->p1];
5698   assert( pIn1->flags&MEM_Int );
5699   VdbeBranchTaken(pIn1->u.i<0, 2);
5700   if( pIn1->u.i ){
5701      pIn1->u.i += pOp->p3;
5702      goto jump_to_p2;
5703   }
5704   break;
5705 }
5706 
5707 /* Opcode: DecrJumpZero P1 P2 * * *
5708 ** Synopsis: if (--r[P1])==0 goto P2
5709 **
5710 ** Register P1 must hold an integer.  Decrement the value in register P1
5711 ** then jump to P2 if the new value is exactly zero.
5712 */
5713 case OP_DecrJumpZero: {      /* jump, in1 */
5714   pIn1 = &aMem[pOp->p1];
5715   assert( pIn1->flags&MEM_Int );
5716   pIn1->u.i--;
5717   VdbeBranchTaken(pIn1->u.i==0, 2);
5718   if( pIn1->u.i==0 ) goto jump_to_p2;
5719   break;
5720 }
5721 
5722 
5723 /* Opcode: JumpZeroIncr P1 P2 * * *
5724 ** Synopsis: if (r[P1]++)==0 ) goto P2
5725 **
5726 ** The register P1 must contain an integer.  If register P1 is initially
5727 ** zero, then jump to P2.  Increment register P1 regardless of whether or
5728 ** not the jump is taken.
5729 */
5730 case OP_JumpZeroIncr: {        /* jump, in1 */
5731   pIn1 = &aMem[pOp->p1];
5732   assert( pIn1->flags&MEM_Int );
5733   VdbeBranchTaken(pIn1->u.i==0, 2);
5734   if( (pIn1->u.i++)==0 ) goto jump_to_p2;
5735   break;
5736 }
5737 
5738 /* Opcode: AggStep0 * P2 P3 P4 P5
5739 ** Synopsis: accum=r[P3] step(r[P2@P5])
5740 **
5741 ** Execute the step function for an aggregate.  The
5742 ** function has P5 arguments.   P4 is a pointer to the FuncDef
5743 ** structure that specifies the function.  Register P3 is the
5744 ** accumulator.
5745 **
5746 ** The P5 arguments are taken from register P2 and its
5747 ** successors.
5748 */
5749 /* Opcode: AggStep * P2 P3 P4 P5
5750 ** Synopsis: accum=r[P3] step(r[P2@P5])
5751 **
5752 ** Execute the step function for an aggregate.  The
5753 ** function has P5 arguments.   P4 is a pointer to an sqlite3_context
5754 ** object that is used to run the function.  Register P3 is
5755 ** as the accumulator.
5756 **
5757 ** The P5 arguments are taken from register P2 and its
5758 ** successors.
5759 **
5760 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
5761 ** the FuncDef stored in P4 is converted into an sqlite3_context and
5762 ** the opcode is changed.  In this way, the initialization of the
5763 ** sqlite3_context only happens once, instead of on each call to the
5764 ** step function.
5765 */
5766 case OP_AggStep0: {
5767   int n;
5768   sqlite3_context *pCtx;
5769 
5770   assert( pOp->p4type==P4_FUNCDEF );
5771   n = pOp->p5;
5772   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5773   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
5774   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
5775   pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
5776   if( pCtx==0 ) goto no_mem;
5777   pCtx->pMem = 0;
5778   pCtx->pFunc = pOp->p4.pFunc;
5779   pCtx->iOp = (int)(pOp - aOp);
5780   pCtx->pVdbe = p;
5781   pCtx->argc = n;
5782   pOp->p4type = P4_FUNCCTX;
5783   pOp->p4.pCtx = pCtx;
5784   pOp->opcode = OP_AggStep;
5785   /* Fall through into OP_AggStep */
5786 }
5787 case OP_AggStep: {
5788   int i;
5789   sqlite3_context *pCtx;
5790   Mem *pMem;
5791   Mem t;
5792 
5793   assert( pOp->p4type==P4_FUNCCTX );
5794   pCtx = pOp->p4.pCtx;
5795   pMem = &aMem[pOp->p3];
5796 
5797   /* If this function is inside of a trigger, the register array in aMem[]
5798   ** might change from one evaluation to the next.  The next block of code
5799   ** checks to see if the register array has changed, and if so it
5800   ** reinitializes the relavant parts of the sqlite3_context object */
5801   if( pCtx->pMem != pMem ){
5802     pCtx->pMem = pMem;
5803     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
5804   }
5805 
5806 #ifdef SQLITE_DEBUG
5807   for(i=0; i<pCtx->argc; i++){
5808     assert( memIsValid(pCtx->argv[i]) );
5809     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
5810   }
5811 #endif
5812 
5813   pMem->n++;
5814   sqlite3VdbeMemInit(&t, db, MEM_Null);
5815   pCtx->pOut = &t;
5816   pCtx->fErrorOrAux = 0;
5817   pCtx->skipFlag = 0;
5818   (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
5819   if( pCtx->fErrorOrAux ){
5820     if( pCtx->isError ){
5821       sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
5822       rc = pCtx->isError;
5823     }
5824     sqlite3VdbeMemRelease(&t);
5825   }else{
5826     assert( t.flags==MEM_Null );
5827   }
5828   if( pCtx->skipFlag ){
5829     assert( pOp[-1].opcode==OP_CollSeq );
5830     i = pOp[-1].p1;
5831     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5832   }
5833   break;
5834 }
5835 
5836 /* Opcode: AggFinal P1 P2 * P4 *
5837 ** Synopsis: accum=r[P1] N=P2
5838 **
5839 ** Execute the finalizer function for an aggregate.  P1 is
5840 ** the memory location that is the accumulator for the aggregate.
5841 **
5842 ** P2 is the number of arguments that the step function takes and
5843 ** P4 is a pointer to the FuncDef for this function.  The P2
5844 ** argument is not used by this opcode.  It is only there to disambiguate
5845 ** functions that can take varying numbers of arguments.  The
5846 ** P4 argument is only needed for the degenerate case where
5847 ** the step function was not previously called.
5848 */
5849 case OP_AggFinal: {
5850   Mem *pMem;
5851   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
5852   pMem = &aMem[pOp->p1];
5853   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5854   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5855   if( rc ){
5856     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
5857   }
5858   sqlite3VdbeChangeEncoding(pMem, encoding);
5859   UPDATE_MAX_BLOBSIZE(pMem);
5860   if( sqlite3VdbeMemTooBig(pMem) ){
5861     goto too_big;
5862   }
5863   break;
5864 }
5865 
5866 #ifndef SQLITE_OMIT_WAL
5867 /* Opcode: Checkpoint P1 P2 P3 * *
5868 **
5869 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5870 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5871 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
5872 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
5873 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5874 ** in the WAL that have been checkpointed after the checkpoint
5875 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
5876 ** mem[P3+2] are initialized to -1.
5877 */
5878 case OP_Checkpoint: {
5879   int i;                          /* Loop counter */
5880   int aRes[3];                    /* Results */
5881   Mem *pMem;                      /* Write results here */
5882 
5883   assert( p->readOnly==0 );
5884   aRes[0] = 0;
5885   aRes[1] = aRes[2] = -1;
5886   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5887        || pOp->p2==SQLITE_CHECKPOINT_FULL
5888        || pOp->p2==SQLITE_CHECKPOINT_RESTART
5889        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
5890   );
5891   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5892   if( rc==SQLITE_BUSY ){
5893     rc = SQLITE_OK;
5894     aRes[0] = 1;
5895   }
5896   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5897     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5898   }
5899   break;
5900 };
5901 #endif
5902 
5903 #ifndef SQLITE_OMIT_PRAGMA
5904 /* Opcode: JournalMode P1 P2 P3 * *
5905 **
5906 ** Change the journal mode of database P1 to P3. P3 must be one of the
5907 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5908 ** modes (delete, truncate, persist, off and memory), this is a simple
5909 ** operation. No IO is required.
5910 **
5911 ** If changing into or out of WAL mode the procedure is more complicated.
5912 **
5913 ** Write a string containing the final journal-mode to register P2.
5914 */
5915 case OP_JournalMode: {    /* out2 */
5916   Btree *pBt;                     /* Btree to change journal mode of */
5917   Pager *pPager;                  /* Pager associated with pBt */
5918   int eNew;                       /* New journal mode */
5919   int eOld;                       /* The old journal mode */
5920 #ifndef SQLITE_OMIT_WAL
5921   const char *zFilename;          /* Name of database file for pPager */
5922 #endif
5923 
5924   pOut = out2Prerelease(p, pOp);
5925   eNew = pOp->p3;
5926   assert( eNew==PAGER_JOURNALMODE_DELETE
5927        || eNew==PAGER_JOURNALMODE_TRUNCATE
5928        || eNew==PAGER_JOURNALMODE_PERSIST
5929        || eNew==PAGER_JOURNALMODE_OFF
5930        || eNew==PAGER_JOURNALMODE_MEMORY
5931        || eNew==PAGER_JOURNALMODE_WAL
5932        || eNew==PAGER_JOURNALMODE_QUERY
5933   );
5934   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5935   assert( p->readOnly==0 );
5936 
5937   pBt = db->aDb[pOp->p1].pBt;
5938   pPager = sqlite3BtreePager(pBt);
5939   eOld = sqlite3PagerGetJournalMode(pPager);
5940   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5941   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5942 
5943 #ifndef SQLITE_OMIT_WAL
5944   zFilename = sqlite3PagerFilename(pPager, 1);
5945 
5946   /* Do not allow a transition to journal_mode=WAL for a database
5947   ** in temporary storage or if the VFS does not support shared memory
5948   */
5949   if( eNew==PAGER_JOURNALMODE_WAL
5950    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
5951        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
5952   ){
5953     eNew = eOld;
5954   }
5955 
5956   if( (eNew!=eOld)
5957    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5958   ){
5959     if( !db->autoCommit || db->nVdbeRead>1 ){
5960       rc = SQLITE_ERROR;
5961       sqlite3VdbeError(p,
5962           "cannot change %s wal mode from within a transaction",
5963           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5964       );
5965       break;
5966     }else{
5967 
5968       if( eOld==PAGER_JOURNALMODE_WAL ){
5969         /* If leaving WAL mode, close the log file. If successful, the call
5970         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5971         ** file. An EXCLUSIVE lock may still be held on the database file
5972         ** after a successful return.
5973         */
5974         rc = sqlite3PagerCloseWal(pPager);
5975         if( rc==SQLITE_OK ){
5976           sqlite3PagerSetJournalMode(pPager, eNew);
5977         }
5978       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5979         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
5980         ** as an intermediate */
5981         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5982       }
5983 
5984       /* Open a transaction on the database file. Regardless of the journal
5985       ** mode, this transaction always uses a rollback journal.
5986       */
5987       assert( sqlite3BtreeIsInTrans(pBt)==0 );
5988       if( rc==SQLITE_OK ){
5989         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5990       }
5991     }
5992   }
5993 #endif /* ifndef SQLITE_OMIT_WAL */
5994 
5995   if( rc ){
5996     eNew = eOld;
5997   }
5998   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5999 
6000   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6001   pOut->z = (char *)sqlite3JournalModename(eNew);
6002   pOut->n = sqlite3Strlen30(pOut->z);
6003   pOut->enc = SQLITE_UTF8;
6004   sqlite3VdbeChangeEncoding(pOut, encoding);
6005   break;
6006 };
6007 #endif /* SQLITE_OMIT_PRAGMA */
6008 
6009 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6010 /* Opcode: Vacuum * * * * *
6011 **
6012 ** Vacuum the entire database.  This opcode will cause other virtual
6013 ** machines to be created and run.  It may not be called from within
6014 ** a transaction.
6015 */
6016 case OP_Vacuum: {
6017   assert( p->readOnly==0 );
6018   rc = sqlite3RunVacuum(&p->zErrMsg, db);
6019   break;
6020 }
6021 #endif
6022 
6023 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6024 /* Opcode: IncrVacuum P1 P2 * * *
6025 **
6026 ** Perform a single step of the incremental vacuum procedure on
6027 ** the P1 database. If the vacuum has finished, jump to instruction
6028 ** P2. Otherwise, fall through to the next instruction.
6029 */
6030 case OP_IncrVacuum: {        /* jump */
6031   Btree *pBt;
6032 
6033   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6034   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6035   assert( p->readOnly==0 );
6036   pBt = db->aDb[pOp->p1].pBt;
6037   rc = sqlite3BtreeIncrVacuum(pBt);
6038   VdbeBranchTaken(rc==SQLITE_DONE,2);
6039   if( rc==SQLITE_DONE ){
6040     rc = SQLITE_OK;
6041     goto jump_to_p2;
6042   }
6043   break;
6044 }
6045 #endif
6046 
6047 /* Opcode: Expire P1 * * * *
6048 **
6049 ** Cause precompiled statements to expire.  When an expired statement
6050 ** is executed using sqlite3_step() it will either automatically
6051 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6052 ** or it will fail with SQLITE_SCHEMA.
6053 **
6054 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6055 ** then only the currently executing statement is expired.
6056 */
6057 case OP_Expire: {
6058   if( !pOp->p1 ){
6059     sqlite3ExpirePreparedStatements(db);
6060   }else{
6061     p->expired = 1;
6062   }
6063   break;
6064 }
6065 
6066 #ifndef SQLITE_OMIT_SHARED_CACHE
6067 /* Opcode: TableLock P1 P2 P3 P4 *
6068 ** Synopsis: iDb=P1 root=P2 write=P3
6069 **
6070 ** Obtain a lock on a particular table. This instruction is only used when
6071 ** the shared-cache feature is enabled.
6072 **
6073 ** P1 is the index of the database in sqlite3.aDb[] of the database
6074 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6075 ** a write lock if P3==1.
6076 **
6077 ** P2 contains the root-page of the table to lock.
6078 **
6079 ** P4 contains a pointer to the name of the table being locked. This is only
6080 ** used to generate an error message if the lock cannot be obtained.
6081 */
6082 case OP_TableLock: {
6083   u8 isWriteLock = (u8)pOp->p3;
6084   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6085     int p1 = pOp->p1;
6086     assert( p1>=0 && p1<db->nDb );
6087     assert( DbMaskTest(p->btreeMask, p1) );
6088     assert( isWriteLock==0 || isWriteLock==1 );
6089     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6090     if( (rc&0xFF)==SQLITE_LOCKED ){
6091       const char *z = pOp->p4.z;
6092       sqlite3VdbeError(p, "database table is locked: %s", z);
6093     }
6094   }
6095   break;
6096 }
6097 #endif /* SQLITE_OMIT_SHARED_CACHE */
6098 
6099 #ifndef SQLITE_OMIT_VIRTUALTABLE
6100 /* Opcode: VBegin * * * P4 *
6101 **
6102 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6103 ** xBegin method for that table.
6104 **
6105 ** Also, whether or not P4 is set, check that this is not being called from
6106 ** within a callback to a virtual table xSync() method. If it is, the error
6107 ** code will be set to SQLITE_LOCKED.
6108 */
6109 case OP_VBegin: {
6110   VTable *pVTab;
6111   pVTab = pOp->p4.pVtab;
6112   rc = sqlite3VtabBegin(db, pVTab);
6113   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6114   break;
6115 }
6116 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6117 
6118 #ifndef SQLITE_OMIT_VIRTUALTABLE
6119 /* Opcode: VCreate P1 P2 * * *
6120 **
6121 ** P2 is a register that holds the name of a virtual table in database
6122 ** P1. Call the xCreate method for that table.
6123 */
6124 case OP_VCreate: {
6125   Mem sMem;          /* For storing the record being decoded */
6126   const char *zTab;  /* Name of the virtual table */
6127 
6128   memset(&sMem, 0, sizeof(sMem));
6129   sMem.db = db;
6130   /* Because P2 is always a static string, it is impossible for the
6131   ** sqlite3VdbeMemCopy() to fail */
6132   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6133   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6134   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6135   assert( rc==SQLITE_OK );
6136   zTab = (const char*)sqlite3_value_text(&sMem);
6137   assert( zTab || db->mallocFailed );
6138   if( zTab ){
6139     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6140   }
6141   sqlite3VdbeMemRelease(&sMem);
6142   break;
6143 }
6144 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6145 
6146 #ifndef SQLITE_OMIT_VIRTUALTABLE
6147 /* Opcode: VDestroy P1 * * P4 *
6148 **
6149 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6150 ** of that table.
6151 */
6152 case OP_VDestroy: {
6153   db->nVDestroy++;
6154   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6155   db->nVDestroy--;
6156   break;
6157 }
6158 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6159 
6160 #ifndef SQLITE_OMIT_VIRTUALTABLE
6161 /* Opcode: VOpen P1 * * P4 *
6162 **
6163 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6164 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6165 ** table and stores that cursor in P1.
6166 */
6167 case OP_VOpen: {
6168   VdbeCursor *pCur;
6169   sqlite3_vtab_cursor *pVtabCursor;
6170   sqlite3_vtab *pVtab;
6171   const sqlite3_module *pModule;
6172 
6173   assert( p->bIsReader );
6174   pCur = 0;
6175   pVtabCursor = 0;
6176   pVtab = pOp->p4.pVtab->pVtab;
6177   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6178     rc = SQLITE_LOCKED;
6179     break;
6180   }
6181   pModule = pVtab->pModule;
6182   rc = pModule->xOpen(pVtab, &pVtabCursor);
6183   sqlite3VtabImportErrmsg(p, pVtab);
6184   if( SQLITE_OK==rc ){
6185     /* Initialize sqlite3_vtab_cursor base class */
6186     pVtabCursor->pVtab = pVtab;
6187 
6188     /* Initialize vdbe cursor object */
6189     pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
6190     if( pCur ){
6191       pCur->pVtabCursor = pVtabCursor;
6192       pVtab->nRef++;
6193     }else{
6194       assert( db->mallocFailed );
6195       pModule->xClose(pVtabCursor);
6196       goto no_mem;
6197     }
6198   }
6199   break;
6200 }
6201 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6202 
6203 #ifndef SQLITE_OMIT_VIRTUALTABLE
6204 /* Opcode: VFilter P1 P2 P3 P4 *
6205 ** Synopsis: iplan=r[P3] zplan='P4'
6206 **
6207 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6208 ** the filtered result set is empty.
6209 **
6210 ** P4 is either NULL or a string that was generated by the xBestIndex
6211 ** method of the module.  The interpretation of the P4 string is left
6212 ** to the module implementation.
6213 **
6214 ** This opcode invokes the xFilter method on the virtual table specified
6215 ** by P1.  The integer query plan parameter to xFilter is stored in register
6216 ** P3. Register P3+1 stores the argc parameter to be passed to the
6217 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6218 ** additional parameters which are passed to
6219 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6220 **
6221 ** A jump is made to P2 if the result set after filtering would be empty.
6222 */
6223 case OP_VFilter: {   /* jump */
6224   int nArg;
6225   int iQuery;
6226   const sqlite3_module *pModule;
6227   Mem *pQuery;
6228   Mem *pArgc;
6229   sqlite3_vtab_cursor *pVtabCursor;
6230   sqlite3_vtab *pVtab;
6231   VdbeCursor *pCur;
6232   int res;
6233   int i;
6234   Mem **apArg;
6235 
6236   pQuery = &aMem[pOp->p3];
6237   pArgc = &pQuery[1];
6238   pCur = p->apCsr[pOp->p1];
6239   assert( memIsValid(pQuery) );
6240   REGISTER_TRACE(pOp->p3, pQuery);
6241   assert( pCur->pVtabCursor );
6242   pVtabCursor = pCur->pVtabCursor;
6243   pVtab = pVtabCursor->pVtab;
6244   pModule = pVtab->pModule;
6245 
6246   /* Grab the index number and argc parameters */
6247   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6248   nArg = (int)pArgc->u.i;
6249   iQuery = (int)pQuery->u.i;
6250 
6251   /* Invoke the xFilter method */
6252   res = 0;
6253   apArg = p->apArg;
6254   for(i = 0; i<nArg; i++){
6255     apArg[i] = &pArgc[i+1];
6256   }
6257   rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
6258   sqlite3VtabImportErrmsg(p, pVtab);
6259   if( rc==SQLITE_OK ){
6260     res = pModule->xEof(pVtabCursor);
6261   }
6262   pCur->nullRow = 0;
6263   VdbeBranchTaken(res!=0,2);
6264   if( res ) goto jump_to_p2;
6265   break;
6266 }
6267 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6268 
6269 #ifndef SQLITE_OMIT_VIRTUALTABLE
6270 /* Opcode: VColumn P1 P2 P3 * *
6271 ** Synopsis: r[P3]=vcolumn(P2)
6272 **
6273 ** Store the value of the P2-th column of
6274 ** the row of the virtual-table that the
6275 ** P1 cursor is pointing to into register P3.
6276 */
6277 case OP_VColumn: {
6278   sqlite3_vtab *pVtab;
6279   const sqlite3_module *pModule;
6280   Mem *pDest;
6281   sqlite3_context sContext;
6282 
6283   VdbeCursor *pCur = p->apCsr[pOp->p1];
6284   assert( pCur->pVtabCursor );
6285   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
6286   pDest = &aMem[pOp->p3];
6287   memAboutToChange(p, pDest);
6288   if( pCur->nullRow ){
6289     sqlite3VdbeMemSetNull(pDest);
6290     break;
6291   }
6292   pVtab = pCur->pVtabCursor->pVtab;
6293   pModule = pVtab->pModule;
6294   assert( pModule->xColumn );
6295   memset(&sContext, 0, sizeof(sContext));
6296   sContext.pOut = pDest;
6297   MemSetTypeFlag(pDest, MEM_Null);
6298   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
6299   sqlite3VtabImportErrmsg(p, pVtab);
6300   if( sContext.isError ){
6301     rc = sContext.isError;
6302   }
6303   sqlite3VdbeChangeEncoding(pDest, encoding);
6304   REGISTER_TRACE(pOp->p3, pDest);
6305   UPDATE_MAX_BLOBSIZE(pDest);
6306 
6307   if( sqlite3VdbeMemTooBig(pDest) ){
6308     goto too_big;
6309   }
6310   break;
6311 }
6312 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6313 
6314 #ifndef SQLITE_OMIT_VIRTUALTABLE
6315 /* Opcode: VNext P1 P2 * * *
6316 **
6317 ** Advance virtual table P1 to the next row in its result set and
6318 ** jump to instruction P2.  Or, if the virtual table has reached
6319 ** the end of its result set, then fall through to the next instruction.
6320 */
6321 case OP_VNext: {   /* jump */
6322   sqlite3_vtab *pVtab;
6323   const sqlite3_module *pModule;
6324   int res;
6325   VdbeCursor *pCur;
6326 
6327   res = 0;
6328   pCur = p->apCsr[pOp->p1];
6329   assert( pCur->pVtabCursor );
6330   if( pCur->nullRow ){
6331     break;
6332   }
6333   pVtab = pCur->pVtabCursor->pVtab;
6334   pModule = pVtab->pModule;
6335   assert( pModule->xNext );
6336 
6337   /* Invoke the xNext() method of the module. There is no way for the
6338   ** underlying implementation to return an error if one occurs during
6339   ** xNext(). Instead, if an error occurs, true is returned (indicating that
6340   ** data is available) and the error code returned when xColumn or
6341   ** some other method is next invoked on the save virtual table cursor.
6342   */
6343   rc = pModule->xNext(pCur->pVtabCursor);
6344   sqlite3VtabImportErrmsg(p, pVtab);
6345   if( rc==SQLITE_OK ){
6346     res = pModule->xEof(pCur->pVtabCursor);
6347   }
6348   VdbeBranchTaken(!res,2);
6349   if( !res ){
6350     /* If there is data, jump to P2 */
6351     goto jump_to_p2_and_check_for_interrupt;
6352   }
6353   goto check_for_interrupt;
6354 }
6355 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6356 
6357 #ifndef SQLITE_OMIT_VIRTUALTABLE
6358 /* Opcode: VRename P1 * * P4 *
6359 **
6360 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6361 ** This opcode invokes the corresponding xRename method. The value
6362 ** in register P1 is passed as the zName argument to the xRename method.
6363 */
6364 case OP_VRename: {
6365   sqlite3_vtab *pVtab;
6366   Mem *pName;
6367 
6368   pVtab = pOp->p4.pVtab->pVtab;
6369   pName = &aMem[pOp->p1];
6370   assert( pVtab->pModule->xRename );
6371   assert( memIsValid(pName) );
6372   assert( p->readOnly==0 );
6373   REGISTER_TRACE(pOp->p1, pName);
6374   assert( pName->flags & MEM_Str );
6375   testcase( pName->enc==SQLITE_UTF8 );
6376   testcase( pName->enc==SQLITE_UTF16BE );
6377   testcase( pName->enc==SQLITE_UTF16LE );
6378   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6379   if( rc==SQLITE_OK ){
6380     rc = pVtab->pModule->xRename(pVtab, pName->z);
6381     sqlite3VtabImportErrmsg(p, pVtab);
6382     p->expired = 0;
6383   }
6384   break;
6385 }
6386 #endif
6387 
6388 #ifndef SQLITE_OMIT_VIRTUALTABLE
6389 /* Opcode: VUpdate P1 P2 P3 P4 P5
6390 ** Synopsis: data=r[P3@P2]
6391 **
6392 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6393 ** This opcode invokes the corresponding xUpdate method. P2 values
6394 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6395 ** invocation. The value in register (P3+P2-1) corresponds to the
6396 ** p2th element of the argv array passed to xUpdate.
6397 **
6398 ** The xUpdate method will do a DELETE or an INSERT or both.
6399 ** The argv[0] element (which corresponds to memory cell P3)
6400 ** is the rowid of a row to delete.  If argv[0] is NULL then no
6401 ** deletion occurs.  The argv[1] element is the rowid of the new
6402 ** row.  This can be NULL to have the virtual table select the new
6403 ** rowid for itself.  The subsequent elements in the array are
6404 ** the values of columns in the new row.
6405 **
6406 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6407 ** a row to delete.
6408 **
6409 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6410 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6411 ** is set to the value of the rowid for the row just inserted.
6412 **
6413 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6414 ** apply in the case of a constraint failure on an insert or update.
6415 */
6416 case OP_VUpdate: {
6417   sqlite3_vtab *pVtab;
6418   const sqlite3_module *pModule;
6419   int nArg;
6420   int i;
6421   sqlite_int64 rowid;
6422   Mem **apArg;
6423   Mem *pX;
6424 
6425   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6426        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6427   );
6428   assert( p->readOnly==0 );
6429   pVtab = pOp->p4.pVtab->pVtab;
6430   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6431     rc = SQLITE_LOCKED;
6432     break;
6433   }
6434   pModule = pVtab->pModule;
6435   nArg = pOp->p2;
6436   assert( pOp->p4type==P4_VTAB );
6437   if( ALWAYS(pModule->xUpdate) ){
6438     u8 vtabOnConflict = db->vtabOnConflict;
6439     apArg = p->apArg;
6440     pX = &aMem[pOp->p3];
6441     for(i=0; i<nArg; i++){
6442       assert( memIsValid(pX) );
6443       memAboutToChange(p, pX);
6444       apArg[i] = pX;
6445       pX++;
6446     }
6447     db->vtabOnConflict = pOp->p5;
6448     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6449     db->vtabOnConflict = vtabOnConflict;
6450     sqlite3VtabImportErrmsg(p, pVtab);
6451     if( rc==SQLITE_OK && pOp->p1 ){
6452       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6453       db->lastRowid = lastRowid = rowid;
6454     }
6455     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6456       if( pOp->p5==OE_Ignore ){
6457         rc = SQLITE_OK;
6458       }else{
6459         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6460       }
6461     }else{
6462       p->nChange++;
6463     }
6464   }
6465   break;
6466 }
6467 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6468 
6469 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6470 /* Opcode: Pagecount P1 P2 * * *
6471 **
6472 ** Write the current number of pages in database P1 to memory cell P2.
6473 */
6474 case OP_Pagecount: {            /* out2 */
6475   pOut = out2Prerelease(p, pOp);
6476   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6477   break;
6478 }
6479 #endif
6480 
6481 
6482 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6483 /* Opcode: MaxPgcnt P1 P2 P3 * *
6484 **
6485 ** Try to set the maximum page count for database P1 to the value in P3.
6486 ** Do not let the maximum page count fall below the current page count and
6487 ** do not change the maximum page count value if P3==0.
6488 **
6489 ** Store the maximum page count after the change in register P2.
6490 */
6491 case OP_MaxPgcnt: {            /* out2 */
6492   unsigned int newMax;
6493   Btree *pBt;
6494 
6495   pOut = out2Prerelease(p, pOp);
6496   pBt = db->aDb[pOp->p1].pBt;
6497   newMax = 0;
6498   if( pOp->p3 ){
6499     newMax = sqlite3BtreeLastPage(pBt);
6500     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6501   }
6502   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6503   break;
6504 }
6505 #endif
6506 
6507 
6508 /* Opcode: Init * P2 * P4 *
6509 ** Synopsis:  Start at P2
6510 **
6511 ** Programs contain a single instance of this opcode as the very first
6512 ** opcode.
6513 **
6514 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6515 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6516 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6517 **
6518 ** If P2 is not zero, jump to instruction P2.
6519 */
6520 case OP_Init: {          /* jump */
6521   char *zTrace;
6522   char *z;
6523 
6524 #ifndef SQLITE_OMIT_TRACE
6525   if( db->xTrace
6526    && !p->doingRerun
6527    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6528   ){
6529     z = sqlite3VdbeExpandSql(p, zTrace);
6530     db->xTrace(db->pTraceArg, z);
6531     sqlite3DbFree(db, z);
6532   }
6533 #ifdef SQLITE_USE_FCNTL_TRACE
6534   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6535   if( zTrace ){
6536     int i;
6537     for(i=0; i<db->nDb; i++){
6538       if( DbMaskTest(p->btreeMask, i)==0 ) continue;
6539       sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6540     }
6541   }
6542 #endif /* SQLITE_USE_FCNTL_TRACE */
6543 #ifdef SQLITE_DEBUG
6544   if( (db->flags & SQLITE_SqlTrace)!=0
6545    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6546   ){
6547     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6548   }
6549 #endif /* SQLITE_DEBUG */
6550 #endif /* SQLITE_OMIT_TRACE */
6551   if( pOp->p2 ) goto jump_to_p2;
6552   break;
6553 }
6554 
6555 
6556 /* Opcode: Noop * * * * *
6557 **
6558 ** Do nothing.  This instruction is often useful as a jump
6559 ** destination.
6560 */
6561 /*
6562 ** The magic Explain opcode are only inserted when explain==2 (which
6563 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6564 ** This opcode records information from the optimizer.  It is the
6565 ** the same as a no-op.  This opcodesnever appears in a real VM program.
6566 */
6567 default: {          /* This is really OP_Noop and OP_Explain */
6568   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6569   break;
6570 }
6571 
6572 /*****************************************************************************
6573 ** The cases of the switch statement above this line should all be indented
6574 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
6575 ** readability.  From this point on down, the normal indentation rules are
6576 ** restored.
6577 *****************************************************************************/
6578     }
6579 
6580 #ifdef VDBE_PROFILE
6581     {
6582       u64 endTime = sqlite3Hwtime();
6583       if( endTime>start ) pOrigOp->cycles += endTime - start;
6584       pOrigOp->cnt++;
6585     }
6586 #endif
6587 
6588     /* The following code adds nothing to the actual functionality
6589     ** of the program.  It is only here for testing and debugging.
6590     ** On the other hand, it does burn CPU cycles every time through
6591     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
6592     */
6593 #ifndef NDEBUG
6594     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
6595 
6596 #ifdef SQLITE_DEBUG
6597     if( db->flags & SQLITE_VdbeTrace ){
6598       if( rc!=0 ) printf("rc=%d\n",rc);
6599       if( pOrigOp->opflags & (OPFLG_OUT2) ){
6600         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
6601       }
6602       if( pOrigOp->opflags & OPFLG_OUT3 ){
6603         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
6604       }
6605     }
6606 #endif  /* SQLITE_DEBUG */
6607 #endif  /* NDEBUG */
6608   }  /* The end of the for(;;) loop the loops through opcodes */
6609 
6610   /* If we reach this point, it means that execution is finished with
6611   ** an error of some kind.
6612   */
6613 vdbe_error_halt:
6614   assert( rc );
6615   p->rc = rc;
6616   testcase( sqlite3GlobalConfig.xLog!=0 );
6617   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6618                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
6619   sqlite3VdbeHalt(p);
6620   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6621   rc = SQLITE_ERROR;
6622   if( resetSchemaOnFault>0 ){
6623     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6624   }
6625 
6626   /* This is the only way out of this procedure.  We have to
6627   ** release the mutexes on btrees that were acquired at the
6628   ** top. */
6629 vdbe_return:
6630   db->lastRowid = lastRowid;
6631   testcase( nVmStep>0 );
6632   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6633   sqlite3VdbeLeave(p);
6634   return rc;
6635 
6636   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6637   ** is encountered.
6638   */
6639 too_big:
6640   sqlite3VdbeError(p, "string or blob too big");
6641   rc = SQLITE_TOOBIG;
6642   goto vdbe_error_halt;
6643 
6644   /* Jump to here if a malloc() fails.
6645   */
6646 no_mem:
6647   db->mallocFailed = 1;
6648   sqlite3VdbeError(p, "out of memory");
6649   rc = SQLITE_NOMEM;
6650   goto vdbe_error_halt;
6651 
6652   /* Jump to here for any other kind of fatal error.  The "rc" variable
6653   ** should hold the error number.
6654   */
6655 abort_due_to_error:
6656   assert( p->zErrMsg==0 );
6657   if( db->mallocFailed ) rc = SQLITE_NOMEM;
6658   if( rc!=SQLITE_IOERR_NOMEM ){
6659     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6660   }
6661   goto vdbe_error_halt;
6662 
6663   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6664   ** flag.
6665   */
6666 abort_due_to_interrupt:
6667   assert( db->u1.isInterrupted );
6668   rc = SQLITE_INTERRUPT;
6669   p->rc = rc;
6670   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6671   goto vdbe_error_halt;
6672 }
6673