1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 u8 eCurType /* Type of the new cursor */ 245 ){ 246 /* Find the memory cell that will be used to store the blob of memory 247 ** required for this VdbeCursor structure. It is convenient to use a 248 ** vdbe memory cell to manage the memory allocation required for a 249 ** VdbeCursor structure for the following reasons: 250 ** 251 ** * Sometimes cursor numbers are used for a couple of different 252 ** purposes in a vdbe program. The different uses might require 253 ** different sized allocations. Memory cells provide growable 254 ** allocations. 255 ** 256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 257 ** be freed lazily via the sqlite3_release_memory() API. This 258 ** minimizes the number of malloc calls made by the system. 259 ** 260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 263 */ 264 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 265 266 int nByte; 267 VdbeCursor *pCx = 0; 268 nByte = 269 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 270 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 271 272 assert( iCur>=0 && iCur<p->nCursor ); 273 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 274 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); 275 p->apCsr[iCur] = 0; 276 } 277 278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 279 ** the pMem used to hold space for the cursor has enough storage available 280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 281 ** to hold cursors, it is faster to in-line the logic. */ 282 assert( pMem->flags==MEM_Undefined ); 283 assert( (pMem->flags & MEM_Dyn)==0 ); 284 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 285 if( pMem->szMalloc<nByte ){ 286 if( pMem->szMalloc>0 ){ 287 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 288 } 289 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 290 if( pMem->zMalloc==0 ){ 291 pMem->szMalloc = 0; 292 return 0; 293 } 294 pMem->szMalloc = nByte; 295 } 296 297 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 298 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 299 pCx->eCurType = eCurType; 300 pCx->nField = nField; 301 pCx->aOffset = &pCx->aType[nField]; 302 if( eCurType==CURTYPE_BTREE ){ 303 pCx->uc.pCursor = (BtCursor*) 304 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 305 sqlite3BtreeCursorZero(pCx->uc.pCursor); 306 } 307 return pCx; 308 } 309 310 /* 311 ** The string in pRec is known to look like an integer and to have a 312 ** floating point value of rValue. Return true and set *piValue to the 313 ** integer value if the string is in range to be an integer. Otherwise, 314 ** return false. 315 */ 316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 317 i64 iValue = (double)rValue; 318 if( sqlite3RealSameAsInt(rValue,iValue) ){ 319 *piValue = iValue; 320 return 1; 321 } 322 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 323 } 324 325 /* 326 ** Try to convert a value into a numeric representation if we can 327 ** do so without loss of information. In other words, if the string 328 ** looks like a number, convert it into a number. If it does not 329 ** look like a number, leave it alone. 330 ** 331 ** If the bTryForInt flag is true, then extra effort is made to give 332 ** an integer representation. Strings that look like floating point 333 ** values but which have no fractional component (example: '48.00') 334 ** will have a MEM_Int representation when bTryForInt is true. 335 ** 336 ** If bTryForInt is false, then if the input string contains a decimal 337 ** point or exponential notation, the result is only MEM_Real, even 338 ** if there is an exact integer representation of the quantity. 339 */ 340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 341 double rValue; 342 u8 enc = pRec->enc; 343 int rc; 344 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 345 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 346 if( rc<=0 ) return; 347 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 348 pRec->flags |= MEM_Int; 349 }else{ 350 pRec->u.r = rValue; 351 pRec->flags |= MEM_Real; 352 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 353 } 354 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 355 ** string representation after computing a numeric equivalent, because the 356 ** string representation might not be the canonical representation for the 357 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 358 pRec->flags &= ~MEM_Str; 359 } 360 361 /* 362 ** Processing is determine by the affinity parameter: 363 ** 364 ** SQLITE_AFF_INTEGER: 365 ** SQLITE_AFF_REAL: 366 ** SQLITE_AFF_NUMERIC: 367 ** Try to convert pRec to an integer representation or a 368 ** floating-point representation if an integer representation 369 ** is not possible. Note that the integer representation is 370 ** always preferred, even if the affinity is REAL, because 371 ** an integer representation is more space efficient on disk. 372 ** 373 ** SQLITE_AFF_TEXT: 374 ** Convert pRec to a text representation. 375 ** 376 ** SQLITE_AFF_BLOB: 377 ** SQLITE_AFF_NONE: 378 ** No-op. pRec is unchanged. 379 */ 380 static void applyAffinity( 381 Mem *pRec, /* The value to apply affinity to */ 382 char affinity, /* The affinity to be applied */ 383 u8 enc /* Use this text encoding */ 384 ){ 385 if( affinity>=SQLITE_AFF_NUMERIC ){ 386 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 387 || affinity==SQLITE_AFF_NUMERIC ); 388 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 389 if( (pRec->flags & MEM_Real)==0 ){ 390 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 391 }else{ 392 sqlite3VdbeIntegerAffinity(pRec); 393 } 394 } 395 }else if( affinity==SQLITE_AFF_TEXT ){ 396 /* Only attempt the conversion to TEXT if there is an integer or real 397 ** representation (blob and NULL do not get converted) but no string 398 ** representation. It would be harmless to repeat the conversion if 399 ** there is already a string rep, but it is pointless to waste those 400 ** CPU cycles. */ 401 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 402 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 403 testcase( pRec->flags & MEM_Int ); 404 testcase( pRec->flags & MEM_Real ); 405 testcase( pRec->flags & MEM_IntReal ); 406 sqlite3VdbeMemStringify(pRec, enc, 1); 407 } 408 } 409 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 410 } 411 } 412 413 /* 414 ** Try to convert the type of a function argument or a result column 415 ** into a numeric representation. Use either INTEGER or REAL whichever 416 ** is appropriate. But only do the conversion if it is possible without 417 ** loss of information and return the revised type of the argument. 418 */ 419 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 420 int eType = sqlite3_value_type(pVal); 421 if( eType==SQLITE_TEXT ){ 422 Mem *pMem = (Mem*)pVal; 423 applyNumericAffinity(pMem, 0); 424 eType = sqlite3_value_type(pVal); 425 } 426 return eType; 427 } 428 429 /* 430 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 431 ** not the internal Mem* type. 432 */ 433 void sqlite3ValueApplyAffinity( 434 sqlite3_value *pVal, 435 u8 affinity, 436 u8 enc 437 ){ 438 applyAffinity((Mem *)pVal, affinity, enc); 439 } 440 441 /* 442 ** pMem currently only holds a string type (or maybe a BLOB that we can 443 ** interpret as a string if we want to). Compute its corresponding 444 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 445 ** accordingly. 446 */ 447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 448 int rc; 449 sqlite3_int64 ix; 450 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 451 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 452 if( ExpandBlob(pMem) ){ 453 pMem->u.i = 0; 454 return MEM_Int; 455 } 456 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 457 if( rc<=0 ){ 458 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 459 pMem->u.i = ix; 460 return MEM_Int; 461 }else{ 462 return MEM_Real; 463 } 464 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 465 pMem->u.i = ix; 466 return MEM_Int; 467 } 468 return MEM_Real; 469 } 470 471 /* 472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 473 ** none. 474 ** 475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 476 ** But it does set pMem->u.r and pMem->u.i appropriately. 477 */ 478 static u16 numericType(Mem *pMem){ 479 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 480 testcase( pMem->flags & MEM_Int ); 481 testcase( pMem->flags & MEM_Real ); 482 testcase( pMem->flags & MEM_IntReal ); 483 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 484 } 485 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 486 testcase( pMem->flags & MEM_Str ); 487 testcase( pMem->flags & MEM_Blob ); 488 return computeNumericType(pMem); 489 } 490 return 0; 491 } 492 493 #ifdef SQLITE_DEBUG 494 /* 495 ** Write a nice string representation of the contents of cell pMem 496 ** into buffer zBuf, length nBuf. 497 */ 498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 499 int f = pMem->flags; 500 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 501 if( f&MEM_Blob ){ 502 int i; 503 char c; 504 if( f & MEM_Dyn ){ 505 c = 'z'; 506 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 507 }else if( f & MEM_Static ){ 508 c = 't'; 509 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 510 }else if( f & MEM_Ephem ){ 511 c = 'e'; 512 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 513 }else{ 514 c = 's'; 515 } 516 sqlite3_str_appendf(pStr, "%cx[", c); 517 for(i=0; i<25 && i<pMem->n; i++){ 518 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 519 } 520 sqlite3_str_appendf(pStr, "|"); 521 for(i=0; i<25 && i<pMem->n; i++){ 522 char z = pMem->z[i]; 523 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 524 } 525 sqlite3_str_appendf(pStr,"]"); 526 if( f & MEM_Zero ){ 527 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 528 } 529 }else if( f & MEM_Str ){ 530 int j; 531 u8 c; 532 if( f & MEM_Dyn ){ 533 c = 'z'; 534 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 535 }else if( f & MEM_Static ){ 536 c = 't'; 537 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 538 }else if( f & MEM_Ephem ){ 539 c = 'e'; 540 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 541 }else{ 542 c = 's'; 543 } 544 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 545 for(j=0; j<25 && j<pMem->n; j++){ 546 c = pMem->z[j]; 547 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 548 } 549 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 550 } 551 } 552 #endif 553 554 #ifdef SQLITE_DEBUG 555 /* 556 ** Print the value of a register for tracing purposes: 557 */ 558 static void memTracePrint(Mem *p){ 559 if( p->flags & MEM_Undefined ){ 560 printf(" undefined"); 561 }else if( p->flags & MEM_Null ){ 562 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 563 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 564 printf(" si:%lld", p->u.i); 565 }else if( (p->flags & (MEM_IntReal))!=0 ){ 566 printf(" ir:%lld", p->u.i); 567 }else if( p->flags & MEM_Int ){ 568 printf(" i:%lld", p->u.i); 569 #ifndef SQLITE_OMIT_FLOATING_POINT 570 }else if( p->flags & MEM_Real ){ 571 printf(" r:%.17g", p->u.r); 572 #endif 573 }else if( sqlite3VdbeMemIsRowSet(p) ){ 574 printf(" (rowset)"); 575 }else{ 576 StrAccum acc; 577 char zBuf[1000]; 578 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 579 sqlite3VdbeMemPrettyPrint(p, &acc); 580 printf(" %s", sqlite3StrAccumFinish(&acc)); 581 } 582 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 583 } 584 static void registerTrace(int iReg, Mem *p){ 585 printf("R[%d] = ", iReg); 586 memTracePrint(p); 587 if( p->pScopyFrom ){ 588 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 589 } 590 printf("\n"); 591 sqlite3VdbeCheckMemInvariants(p); 592 } 593 /**/ void sqlite3PrintMem(Mem *pMem){ 594 memTracePrint(pMem); 595 printf("\n"); 596 fflush(stdout); 597 } 598 #endif 599 600 #ifdef SQLITE_DEBUG 601 /* 602 ** Show the values of all registers in the virtual machine. Used for 603 ** interactive debugging. 604 */ 605 void sqlite3VdbeRegisterDump(Vdbe *v){ 606 int i; 607 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 608 } 609 #endif /* SQLITE_DEBUG */ 610 611 612 #ifdef SQLITE_DEBUG 613 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 614 #else 615 # define REGISTER_TRACE(R,M) 616 #endif 617 618 619 #ifdef VDBE_PROFILE 620 621 /* 622 ** hwtime.h contains inline assembler code for implementing 623 ** high-performance timing routines. 624 */ 625 #include "hwtime.h" 626 627 #endif 628 629 #ifndef NDEBUG 630 /* 631 ** This function is only called from within an assert() expression. It 632 ** checks that the sqlite3.nTransaction variable is correctly set to 633 ** the number of non-transaction savepoints currently in the 634 ** linked list starting at sqlite3.pSavepoint. 635 ** 636 ** Usage: 637 ** 638 ** assert( checkSavepointCount(db) ); 639 */ 640 static int checkSavepointCount(sqlite3 *db){ 641 int n = 0; 642 Savepoint *p; 643 for(p=db->pSavepoint; p; p=p->pNext) n++; 644 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 645 return 1; 646 } 647 #endif 648 649 /* 650 ** Return the register of pOp->p2 after first preparing it to be 651 ** overwritten with an integer value. 652 */ 653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 654 sqlite3VdbeMemSetNull(pOut); 655 pOut->flags = MEM_Int; 656 return pOut; 657 } 658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 659 Mem *pOut; 660 assert( pOp->p2>0 ); 661 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 662 pOut = &p->aMem[pOp->p2]; 663 memAboutToChange(p, pOut); 664 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 665 return out2PrereleaseWithClear(pOut); 666 }else{ 667 pOut->flags = MEM_Int; 668 return pOut; 669 } 670 } 671 672 /* 673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 674 ** with pOp->p3. Return the hash. 675 */ 676 static u64 filterHash(const Mem *aMem, const Op *pOp){ 677 int i, mx; 678 u64 h = 0; 679 680 assert( pOp->p4type==P4_INT32 ); 681 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 682 const Mem *p = &aMem[i]; 683 if( p->flags & (MEM_Int|MEM_IntReal) ){ 684 h += p->u.i; 685 }else if( p->flags & MEM_Real ){ 686 h += sqlite3VdbeIntValue(p); 687 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 688 h += p->n; 689 if( p->flags & MEM_Zero ) h += p->u.nZero; 690 } 691 } 692 return h; 693 } 694 695 /* 696 ** Return the symbolic name for the data type of a pMem 697 */ 698 static const char *vdbeMemTypeName(Mem *pMem){ 699 static const char *azTypes[] = { 700 /* SQLITE_INTEGER */ "INT", 701 /* SQLITE_FLOAT */ "REAL", 702 /* SQLITE_TEXT */ "TEXT", 703 /* SQLITE_BLOB */ "BLOB", 704 /* SQLITE_NULL */ "NULL" 705 }; 706 return azTypes[sqlite3_value_type(pMem)-1]; 707 } 708 709 /* 710 ** Execute as much of a VDBE program as we can. 711 ** This is the core of sqlite3_step(). 712 */ 713 int sqlite3VdbeExec( 714 Vdbe *p /* The VDBE */ 715 ){ 716 Op *aOp = p->aOp; /* Copy of p->aOp */ 717 Op *pOp = aOp; /* Current operation */ 718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 719 Op *pOrigOp; /* Value of pOp at the top of the loop */ 720 #endif 721 #ifdef SQLITE_DEBUG 722 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 723 #endif 724 int rc = SQLITE_OK; /* Value to return */ 725 sqlite3 *db = p->db; /* The database */ 726 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 727 u8 encoding = ENC(db); /* The database encoding */ 728 int iCompare = 0; /* Result of last comparison */ 729 u64 nVmStep = 0; /* Number of virtual machine steps */ 730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 731 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 732 #endif 733 Mem *aMem = p->aMem; /* Copy of p->aMem */ 734 Mem *pIn1 = 0; /* 1st input operand */ 735 Mem *pIn2 = 0; /* 2nd input operand */ 736 Mem *pIn3 = 0; /* 3rd input operand */ 737 Mem *pOut = 0; /* Output operand */ 738 #ifdef VDBE_PROFILE 739 u64 start; /* CPU clock count at start of opcode */ 740 #endif 741 /*** INSERT STACK UNION HERE ***/ 742 743 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ 744 sqlite3VdbeEnter(p); 745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 746 if( db->xProgress ){ 747 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 748 assert( 0 < db->nProgressOps ); 749 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 750 }else{ 751 nProgressLimit = LARGEST_UINT64; 752 } 753 #endif 754 if( p->rc==SQLITE_NOMEM ){ 755 /* This happens if a malloc() inside a call to sqlite3_column_text() or 756 ** sqlite3_column_text16() failed. */ 757 goto no_mem; 758 } 759 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 760 testcase( p->rc!=SQLITE_OK ); 761 p->rc = SQLITE_OK; 762 assert( p->bIsReader || p->readOnly!=0 ); 763 p->iCurrentTime = 0; 764 assert( p->explain==0 ); 765 p->pResultSet = 0; 766 db->busyHandler.nBusy = 0; 767 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 768 sqlite3VdbeIOTraceSql(p); 769 #ifdef SQLITE_DEBUG 770 sqlite3BeginBenignMalloc(); 771 if( p->pc==0 772 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 773 ){ 774 int i; 775 int once = 1; 776 sqlite3VdbePrintSql(p); 777 if( p->db->flags & SQLITE_VdbeListing ){ 778 printf("VDBE Program Listing:\n"); 779 for(i=0; i<p->nOp; i++){ 780 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 781 } 782 } 783 if( p->db->flags & SQLITE_VdbeEQP ){ 784 for(i=0; i<p->nOp; i++){ 785 if( aOp[i].opcode==OP_Explain ){ 786 if( once ) printf("VDBE Query Plan:\n"); 787 printf("%s\n", aOp[i].p4.z); 788 once = 0; 789 } 790 } 791 } 792 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 793 } 794 sqlite3EndBenignMalloc(); 795 #endif 796 for(pOp=&aOp[p->pc]; 1; pOp++){ 797 /* Errors are detected by individual opcodes, with an immediate 798 ** jumps to abort_due_to_error. */ 799 assert( rc==SQLITE_OK ); 800 801 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 802 #ifdef VDBE_PROFILE 803 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 804 #endif 805 nVmStep++; 806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 807 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 808 #endif 809 810 /* Only allow tracing if SQLITE_DEBUG is defined. 811 */ 812 #ifdef SQLITE_DEBUG 813 if( db->flags & SQLITE_VdbeTrace ){ 814 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 815 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 816 } 817 #endif 818 819 820 /* Check to see if we need to simulate an interrupt. This only happens 821 ** if we have a special test build. 822 */ 823 #ifdef SQLITE_TEST 824 if( sqlite3_interrupt_count>0 ){ 825 sqlite3_interrupt_count--; 826 if( sqlite3_interrupt_count==0 ){ 827 sqlite3_interrupt(db); 828 } 829 } 830 #endif 831 832 /* Sanity checking on other operands */ 833 #ifdef SQLITE_DEBUG 834 { 835 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 836 if( (opProperty & OPFLG_IN1)!=0 ){ 837 assert( pOp->p1>0 ); 838 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 839 assert( memIsValid(&aMem[pOp->p1]) ); 840 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 841 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 842 } 843 if( (opProperty & OPFLG_IN2)!=0 ){ 844 assert( pOp->p2>0 ); 845 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 846 assert( memIsValid(&aMem[pOp->p2]) ); 847 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 848 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 849 } 850 if( (opProperty & OPFLG_IN3)!=0 ){ 851 assert( pOp->p3>0 ); 852 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 853 assert( memIsValid(&aMem[pOp->p3]) ); 854 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 855 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 856 } 857 if( (opProperty & OPFLG_OUT2)!=0 ){ 858 assert( pOp->p2>0 ); 859 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 860 memAboutToChange(p, &aMem[pOp->p2]); 861 } 862 if( (opProperty & OPFLG_OUT3)!=0 ){ 863 assert( pOp->p3>0 ); 864 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 865 memAboutToChange(p, &aMem[pOp->p3]); 866 } 867 } 868 #endif 869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 870 pOrigOp = pOp; 871 #endif 872 873 switch( pOp->opcode ){ 874 875 /***************************************************************************** 876 ** What follows is a massive switch statement where each case implements a 877 ** separate instruction in the virtual machine. If we follow the usual 878 ** indentation conventions, each case should be indented by 6 spaces. But 879 ** that is a lot of wasted space on the left margin. So the code within 880 ** the switch statement will break with convention and be flush-left. Another 881 ** big comment (similar to this one) will mark the point in the code where 882 ** we transition back to normal indentation. 883 ** 884 ** The formatting of each case is important. The makefile for SQLite 885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 886 ** file looking for lines that begin with "case OP_". The opcodes.h files 887 ** will be filled with #defines that give unique integer values to each 888 ** opcode and the opcodes.c file is filled with an array of strings where 889 ** each string is the symbolic name for the corresponding opcode. If the 890 ** case statement is followed by a comment of the form "/# same as ... #/" 891 ** that comment is used to determine the particular value of the opcode. 892 ** 893 ** Other keywords in the comment that follows each case are used to 894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 895 ** Keywords include: in1, in2, in3, out2, out3. See 896 ** the mkopcodeh.awk script for additional information. 897 ** 898 ** Documentation about VDBE opcodes is generated by scanning this file 899 ** for lines of that contain "Opcode:". That line and all subsequent 900 ** comment lines are used in the generation of the opcode.html documentation 901 ** file. 902 ** 903 ** SUMMARY: 904 ** 905 ** Formatting is important to scripts that scan this file. 906 ** Do not deviate from the formatting style currently in use. 907 ** 908 *****************************************************************************/ 909 910 /* Opcode: Goto * P2 * * * 911 ** 912 ** An unconditional jump to address P2. 913 ** The next instruction executed will be 914 ** the one at index P2 from the beginning of 915 ** the program. 916 ** 917 ** The P1 parameter is not actually used by this opcode. However, it 918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 919 ** that this Goto is the bottom of a loop and that the lines from P2 down 920 ** to the current line should be indented for EXPLAIN output. 921 */ 922 case OP_Goto: { /* jump */ 923 924 #ifdef SQLITE_DEBUG 925 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 926 ** means we should really jump back to the preceeding OP_ReleaseReg 927 ** instruction. */ 928 if( pOp->p5 ){ 929 assert( pOp->p2 < (int)(pOp - aOp) ); 930 assert( pOp->p2 > 1 ); 931 pOp = &aOp[pOp->p2 - 2]; 932 assert( pOp[1].opcode==OP_ReleaseReg ); 933 goto check_for_interrupt; 934 } 935 #endif 936 937 jump_to_p2_and_check_for_interrupt: 938 pOp = &aOp[pOp->p2 - 1]; 939 940 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 941 ** OP_VNext, or OP_SorterNext) all jump here upon 942 ** completion. Check to see if sqlite3_interrupt() has been called 943 ** or if the progress callback needs to be invoked. 944 ** 945 ** This code uses unstructured "goto" statements and does not look clean. 946 ** But that is not due to sloppy coding habits. The code is written this 947 ** way for performance, to avoid having to run the interrupt and progress 948 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 949 ** faster according to "valgrind --tool=cachegrind" */ 950 check_for_interrupt: 951 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 953 /* Call the progress callback if it is configured and the required number 954 ** of VDBE ops have been executed (either since this invocation of 955 ** sqlite3VdbeExec() or since last time the progress callback was called). 956 ** If the progress callback returns non-zero, exit the virtual machine with 957 ** a return code SQLITE_ABORT. 958 */ 959 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 960 assert( db->nProgressOps!=0 ); 961 nProgressLimit += db->nProgressOps; 962 if( db->xProgress(db->pProgressArg) ){ 963 nProgressLimit = LARGEST_UINT64; 964 rc = SQLITE_INTERRUPT; 965 goto abort_due_to_error; 966 } 967 } 968 #endif 969 970 break; 971 } 972 973 /* Opcode: Gosub P1 P2 * * * 974 ** 975 ** Write the current address onto register P1 976 ** and then jump to address P2. 977 */ 978 case OP_Gosub: { /* jump */ 979 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 980 pIn1 = &aMem[pOp->p1]; 981 assert( VdbeMemDynamic(pIn1)==0 ); 982 memAboutToChange(p, pIn1); 983 pIn1->flags = MEM_Int; 984 pIn1->u.i = (int)(pOp-aOp); 985 REGISTER_TRACE(pOp->p1, pIn1); 986 goto jump_to_p2_and_check_for_interrupt; 987 } 988 989 /* Opcode: Return P1 P2 P3 * * 990 ** 991 ** Jump to the address stored in register P1. If P1 is a return address 992 ** register, then this accomplishes a return from a subroutine. 993 ** 994 ** If P3 is 1, then the jump is only taken if register P1 holds an integer 995 ** values, otherwise execution falls through to the next opcode, and the 996 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an 997 ** integer or else an assert() is raised. P3 should be set to 1 when 998 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 999 ** otherwise. 1000 ** 1001 ** The value in register P1 is unchanged by this opcode. 1002 ** 1003 ** P2 is not used by the byte-code engine. However, if P2 is positive 1004 ** and also less than the current address, then the "EXPLAIN" output 1005 ** formatter in the CLI will indent all opcodes from the P2 opcode up 1006 ** to be not including the current Return. P2 should be the first opcode 1007 ** in the subroutine from which this opcode is returning. Thus the P2 1008 ** value is a byte-code indentation hint. See tag-20220407a in 1009 ** wherecode.c and shell.c. 1010 */ 1011 case OP_Return: { /* in1 */ 1012 pIn1 = &aMem[pOp->p1]; 1013 if( pIn1->flags & MEM_Int ){ 1014 if( pOp->p3 ){ VdbeBranchTaken(1, 2); } 1015 pOp = &aOp[pIn1->u.i]; 1016 }else if( ALWAYS(pOp->p3) ){ 1017 VdbeBranchTaken(0, 2); 1018 } 1019 break; 1020 } 1021 1022 /* Opcode: InitCoroutine P1 P2 P3 * * 1023 ** 1024 ** Set up register P1 so that it will Yield to the coroutine 1025 ** located at address P3. 1026 ** 1027 ** If P2!=0 then the coroutine implementation immediately follows 1028 ** this opcode. So jump over the coroutine implementation to 1029 ** address P2. 1030 ** 1031 ** See also: EndCoroutine 1032 */ 1033 case OP_InitCoroutine: { /* jump */ 1034 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1035 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1036 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1037 pOut = &aMem[pOp->p1]; 1038 assert( !VdbeMemDynamic(pOut) ); 1039 pOut->u.i = pOp->p3 - 1; 1040 pOut->flags = MEM_Int; 1041 if( pOp->p2==0 ) break; 1042 1043 /* Most jump operations do a goto to this spot in order to update 1044 ** the pOp pointer. */ 1045 jump_to_p2: 1046 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ 1047 assert( pOp->p2<p->nOp ); /* Jumps must be in range */ 1048 pOp = &aOp[pOp->p2 - 1]; 1049 break; 1050 } 1051 1052 /* Opcode: EndCoroutine P1 * * * * 1053 ** 1054 ** The instruction at the address in register P1 is a Yield. 1055 ** Jump to the P2 parameter of that Yield. 1056 ** After the jump, register P1 becomes undefined. 1057 ** 1058 ** See also: InitCoroutine 1059 */ 1060 case OP_EndCoroutine: { /* in1 */ 1061 VdbeOp *pCaller; 1062 pIn1 = &aMem[pOp->p1]; 1063 assert( pIn1->flags==MEM_Int ); 1064 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1065 pCaller = &aOp[pIn1->u.i]; 1066 assert( pCaller->opcode==OP_Yield ); 1067 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1068 pOp = &aOp[pCaller->p2 - 1]; 1069 pIn1->flags = MEM_Undefined; 1070 break; 1071 } 1072 1073 /* Opcode: Yield P1 P2 * * * 1074 ** 1075 ** Swap the program counter with the value in register P1. This 1076 ** has the effect of yielding to a coroutine. 1077 ** 1078 ** If the coroutine that is launched by this instruction ends with 1079 ** Yield or Return then continue to the next instruction. But if 1080 ** the coroutine launched by this instruction ends with 1081 ** EndCoroutine, then jump to P2 rather than continuing with the 1082 ** next instruction. 1083 ** 1084 ** See also: InitCoroutine 1085 */ 1086 case OP_Yield: { /* in1, jump */ 1087 int pcDest; 1088 pIn1 = &aMem[pOp->p1]; 1089 assert( VdbeMemDynamic(pIn1)==0 ); 1090 pIn1->flags = MEM_Int; 1091 pcDest = (int)pIn1->u.i; 1092 pIn1->u.i = (int)(pOp - aOp); 1093 REGISTER_TRACE(pOp->p1, pIn1); 1094 pOp = &aOp[pcDest]; 1095 break; 1096 } 1097 1098 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1099 ** Synopsis: if r[P3]=null halt 1100 ** 1101 ** Check the value in register P3. If it is NULL then Halt using 1102 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1103 ** value in register P3 is not NULL, then this routine is a no-op. 1104 ** The P5 parameter should be 1. 1105 */ 1106 case OP_HaltIfNull: { /* in3 */ 1107 pIn3 = &aMem[pOp->p3]; 1108 #ifdef SQLITE_DEBUG 1109 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1110 #endif 1111 if( (pIn3->flags & MEM_Null)==0 ) break; 1112 /* Fall through into OP_Halt */ 1113 /* no break */ deliberate_fall_through 1114 } 1115 1116 /* Opcode: Halt P1 P2 * P4 P5 1117 ** 1118 ** Exit immediately. All open cursors, etc are closed 1119 ** automatically. 1120 ** 1121 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1122 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1123 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1124 ** whether or not to rollback the current transaction. Do not rollback 1125 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1126 ** then back out all changes that have occurred during this execution of the 1127 ** VDBE, but do not rollback the transaction. 1128 ** 1129 ** If P4 is not null then it is an error message string. 1130 ** 1131 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1132 ** 1133 ** 0: (no change) 1134 ** 1: NOT NULL contraint failed: P4 1135 ** 2: UNIQUE constraint failed: P4 1136 ** 3: CHECK constraint failed: P4 1137 ** 4: FOREIGN KEY constraint failed: P4 1138 ** 1139 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1140 ** omitted. 1141 ** 1142 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1143 ** every program. So a jump past the last instruction of the program 1144 ** is the same as executing Halt. 1145 */ 1146 case OP_Halt: { 1147 VdbeFrame *pFrame; 1148 int pcx; 1149 1150 #ifdef SQLITE_DEBUG 1151 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1152 #endif 1153 if( p->pFrame && pOp->p1==SQLITE_OK ){ 1154 /* Halt the sub-program. Return control to the parent frame. */ 1155 pFrame = p->pFrame; 1156 p->pFrame = pFrame->pParent; 1157 p->nFrame--; 1158 sqlite3VdbeSetChanges(db, p->nChange); 1159 pcx = sqlite3VdbeFrameRestore(pFrame); 1160 if( pOp->p2==OE_Ignore ){ 1161 /* Instruction pcx is the OP_Program that invoked the sub-program 1162 ** currently being halted. If the p2 instruction of this OP_Halt 1163 ** instruction is set to OE_Ignore, then the sub-program is throwing 1164 ** an IGNORE exception. In this case jump to the address specified 1165 ** as the p2 of the calling OP_Program. */ 1166 pcx = p->aOp[pcx].p2-1; 1167 } 1168 aOp = p->aOp; 1169 aMem = p->aMem; 1170 pOp = &aOp[pcx]; 1171 break; 1172 } 1173 p->rc = pOp->p1; 1174 p->errorAction = (u8)pOp->p2; 1175 assert( pOp->p5<=4 ); 1176 if( p->rc ){ 1177 if( pOp->p5 ){ 1178 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1179 "FOREIGN KEY" }; 1180 testcase( pOp->p5==1 ); 1181 testcase( pOp->p5==2 ); 1182 testcase( pOp->p5==3 ); 1183 testcase( pOp->p5==4 ); 1184 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1185 if( pOp->p4.z ){ 1186 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1187 } 1188 }else{ 1189 sqlite3VdbeError(p, "%s", pOp->p4.z); 1190 } 1191 pcx = (int)(pOp - aOp); 1192 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1193 } 1194 rc = sqlite3VdbeHalt(p); 1195 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1196 if( rc==SQLITE_BUSY ){ 1197 p->rc = SQLITE_BUSY; 1198 }else{ 1199 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1200 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1201 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1202 } 1203 goto vdbe_return; 1204 } 1205 1206 /* Opcode: Integer P1 P2 * * * 1207 ** Synopsis: r[P2]=P1 1208 ** 1209 ** The 32-bit integer value P1 is written into register P2. 1210 */ 1211 case OP_Integer: { /* out2 */ 1212 pOut = out2Prerelease(p, pOp); 1213 pOut->u.i = pOp->p1; 1214 break; 1215 } 1216 1217 /* Opcode: Int64 * P2 * P4 * 1218 ** Synopsis: r[P2]=P4 1219 ** 1220 ** P4 is a pointer to a 64-bit integer value. 1221 ** Write that value into register P2. 1222 */ 1223 case OP_Int64: { /* out2 */ 1224 pOut = out2Prerelease(p, pOp); 1225 assert( pOp->p4.pI64!=0 ); 1226 pOut->u.i = *pOp->p4.pI64; 1227 break; 1228 } 1229 1230 #ifndef SQLITE_OMIT_FLOATING_POINT 1231 /* Opcode: Real * P2 * P4 * 1232 ** Synopsis: r[P2]=P4 1233 ** 1234 ** P4 is a pointer to a 64-bit floating point value. 1235 ** Write that value into register P2. 1236 */ 1237 case OP_Real: { /* same as TK_FLOAT, out2 */ 1238 pOut = out2Prerelease(p, pOp); 1239 pOut->flags = MEM_Real; 1240 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1241 pOut->u.r = *pOp->p4.pReal; 1242 break; 1243 } 1244 #endif 1245 1246 /* Opcode: String8 * P2 * P4 * 1247 ** Synopsis: r[P2]='P4' 1248 ** 1249 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1250 ** into a String opcode before it is executed for the first time. During 1251 ** this transformation, the length of string P4 is computed and stored 1252 ** as the P1 parameter. 1253 */ 1254 case OP_String8: { /* same as TK_STRING, out2 */ 1255 assert( pOp->p4.z!=0 ); 1256 pOut = out2Prerelease(p, pOp); 1257 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1258 1259 #ifndef SQLITE_OMIT_UTF16 1260 if( encoding!=SQLITE_UTF8 ){ 1261 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1262 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1263 if( rc ) goto too_big; 1264 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1265 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1266 assert( VdbeMemDynamic(pOut)==0 ); 1267 pOut->szMalloc = 0; 1268 pOut->flags |= MEM_Static; 1269 if( pOp->p4type==P4_DYNAMIC ){ 1270 sqlite3DbFree(db, pOp->p4.z); 1271 } 1272 pOp->p4type = P4_DYNAMIC; 1273 pOp->p4.z = pOut->z; 1274 pOp->p1 = pOut->n; 1275 } 1276 #endif 1277 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1278 goto too_big; 1279 } 1280 pOp->opcode = OP_String; 1281 assert( rc==SQLITE_OK ); 1282 /* Fall through to the next case, OP_String */ 1283 /* no break */ deliberate_fall_through 1284 } 1285 1286 /* Opcode: String P1 P2 P3 P4 P5 1287 ** Synopsis: r[P2]='P4' (len=P1) 1288 ** 1289 ** The string value P4 of length P1 (bytes) is stored in register P2. 1290 ** 1291 ** If P3 is not zero and the content of register P3 is equal to P5, then 1292 ** the datatype of the register P2 is converted to BLOB. The content is 1293 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1294 ** of a string, as if it had been CAST. In other words: 1295 ** 1296 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1297 */ 1298 case OP_String: { /* out2 */ 1299 assert( pOp->p4.z!=0 ); 1300 pOut = out2Prerelease(p, pOp); 1301 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1302 pOut->z = pOp->p4.z; 1303 pOut->n = pOp->p1; 1304 pOut->enc = encoding; 1305 UPDATE_MAX_BLOBSIZE(pOut); 1306 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1307 if( pOp->p3>0 ){ 1308 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1309 pIn3 = &aMem[pOp->p3]; 1310 assert( pIn3->flags & MEM_Int ); 1311 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1312 } 1313 #endif 1314 break; 1315 } 1316 1317 /* Opcode: BeginSubrtn * P2 * * * 1318 ** Synopsis: r[P2]=NULL 1319 ** 1320 ** Mark the beginning of a subroutine that can be entered in-line 1321 ** or that can be called using OP_Gosub. The subroutine should 1322 ** be terminated by an OP_Return instruction that has a P1 operand that 1323 ** is the same as the P2 operand to this opcode and that has P3 set to 1. 1324 ** If the subroutine is entered in-line, then the OP_Return will simply 1325 ** fall through. But if the subroutine is entered using OP_Gosub, then 1326 ** the OP_Return will jump back to the first instruction after the OP_Gosub. 1327 ** 1328 ** This routine works by loading a NULL into the P2 register. When the 1329 ** return address register contains a NULL, the OP_Return instruction is 1330 ** a no-op that simply falls through to the next instruction (assuming that 1331 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is 1332 ** entered in-line, then the OP_Return will cause in-line execution to 1333 ** continue. But if the subroutine is entered via OP_Gosub, then the 1334 ** OP_Return will cause a return to the address following the OP_Gosub. 1335 ** 1336 ** This opcode is identical to OP_Null. It has a different name 1337 ** only to make the byte code easier to read and verify. 1338 */ 1339 /* Opcode: Null P1 P2 P3 * * 1340 ** Synopsis: r[P2..P3]=NULL 1341 ** 1342 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1343 ** NULL into register P3 and every register in between P2 and P3. If P3 1344 ** is less than P2 (typically P3 is zero) then only register P2 is 1345 ** set to NULL. 1346 ** 1347 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1348 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1349 ** OP_Ne or OP_Eq. 1350 */ 1351 case OP_BeginSubrtn: 1352 case OP_Null: { /* out2 */ 1353 int cnt; 1354 u16 nullFlag; 1355 pOut = out2Prerelease(p, pOp); 1356 cnt = pOp->p3-pOp->p2; 1357 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1358 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1359 pOut->n = 0; 1360 #ifdef SQLITE_DEBUG 1361 pOut->uTemp = 0; 1362 #endif 1363 while( cnt>0 ){ 1364 pOut++; 1365 memAboutToChange(p, pOut); 1366 sqlite3VdbeMemSetNull(pOut); 1367 pOut->flags = nullFlag; 1368 pOut->n = 0; 1369 cnt--; 1370 } 1371 break; 1372 } 1373 1374 /* Opcode: SoftNull P1 * * * * 1375 ** Synopsis: r[P1]=NULL 1376 ** 1377 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1378 ** instruction, but do not free any string or blob memory associated with 1379 ** the register, so that if the value was a string or blob that was 1380 ** previously copied using OP_SCopy, the copies will continue to be valid. 1381 */ 1382 case OP_SoftNull: { 1383 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1384 pOut = &aMem[pOp->p1]; 1385 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1386 break; 1387 } 1388 1389 /* Opcode: Blob P1 P2 * P4 * 1390 ** Synopsis: r[P2]=P4 (len=P1) 1391 ** 1392 ** P4 points to a blob of data P1 bytes long. Store this 1393 ** blob in register P2. If P4 is a NULL pointer, then construct 1394 ** a zero-filled blob that is P1 bytes long in P2. 1395 */ 1396 case OP_Blob: { /* out2 */ 1397 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1398 pOut = out2Prerelease(p, pOp); 1399 if( pOp->p4.z==0 ){ 1400 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 1401 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 1402 }else{ 1403 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1404 } 1405 pOut->enc = encoding; 1406 UPDATE_MAX_BLOBSIZE(pOut); 1407 break; 1408 } 1409 1410 /* Opcode: Variable P1 P2 * P4 * 1411 ** Synopsis: r[P2]=parameter(P1,P4) 1412 ** 1413 ** Transfer the values of bound parameter P1 into register P2 1414 ** 1415 ** If the parameter is named, then its name appears in P4. 1416 ** The P4 value is used by sqlite3_bind_parameter_name(). 1417 */ 1418 case OP_Variable: { /* out2 */ 1419 Mem *pVar; /* Value being transferred */ 1420 1421 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1422 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1423 pVar = &p->aVar[pOp->p1 - 1]; 1424 if( sqlite3VdbeMemTooBig(pVar) ){ 1425 goto too_big; 1426 } 1427 pOut = &aMem[pOp->p2]; 1428 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1429 memcpy(pOut, pVar, MEMCELLSIZE); 1430 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1431 pOut->flags |= MEM_Static|MEM_FromBind; 1432 UPDATE_MAX_BLOBSIZE(pOut); 1433 break; 1434 } 1435 1436 /* Opcode: Move P1 P2 P3 * * 1437 ** Synopsis: r[P2@P3]=r[P1@P3] 1438 ** 1439 ** Move the P3 values in register P1..P1+P3-1 over into 1440 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1441 ** left holding a NULL. It is an error for register ranges 1442 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1443 ** for P3 to be less than 1. 1444 */ 1445 case OP_Move: { 1446 int n; /* Number of registers left to copy */ 1447 int p1; /* Register to copy from */ 1448 int p2; /* Register to copy to */ 1449 1450 n = pOp->p3; 1451 p1 = pOp->p1; 1452 p2 = pOp->p2; 1453 assert( n>0 && p1>0 && p2>0 ); 1454 assert( p1+n<=p2 || p2+n<=p1 ); 1455 1456 pIn1 = &aMem[p1]; 1457 pOut = &aMem[p2]; 1458 do{ 1459 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1460 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1461 assert( memIsValid(pIn1) ); 1462 memAboutToChange(p, pOut); 1463 sqlite3VdbeMemMove(pOut, pIn1); 1464 #ifdef SQLITE_DEBUG 1465 pIn1->pScopyFrom = 0; 1466 { int i; 1467 for(i=1; i<p->nMem; i++){ 1468 if( aMem[i].pScopyFrom==pIn1 ){ 1469 aMem[i].pScopyFrom = pOut; 1470 } 1471 } 1472 } 1473 #endif 1474 Deephemeralize(pOut); 1475 REGISTER_TRACE(p2++, pOut); 1476 pIn1++; 1477 pOut++; 1478 }while( --n ); 1479 break; 1480 } 1481 1482 /* Opcode: Copy P1 P2 P3 * P5 1483 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1484 ** 1485 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1486 ** 1487 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the 1488 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot 1489 ** be merged. The 0x0001 bit is used by the query planner and does not 1490 ** come into play during query execution. 1491 ** 1492 ** This instruction makes a deep copy of the value. A duplicate 1493 ** is made of any string or blob constant. See also OP_SCopy. 1494 */ 1495 case OP_Copy: { 1496 int n; 1497 1498 n = pOp->p3; 1499 pIn1 = &aMem[pOp->p1]; 1500 pOut = &aMem[pOp->p2]; 1501 assert( pOut!=pIn1 ); 1502 while( 1 ){ 1503 memAboutToChange(p, pOut); 1504 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1505 Deephemeralize(pOut); 1506 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ 1507 pOut->flags &= ~MEM_Subtype; 1508 } 1509 #ifdef SQLITE_DEBUG 1510 pOut->pScopyFrom = 0; 1511 #endif 1512 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1513 if( (n--)==0 ) break; 1514 pOut++; 1515 pIn1++; 1516 } 1517 break; 1518 } 1519 1520 /* Opcode: SCopy P1 P2 * * * 1521 ** Synopsis: r[P2]=r[P1] 1522 ** 1523 ** Make a shallow copy of register P1 into register P2. 1524 ** 1525 ** This instruction makes a shallow copy of the value. If the value 1526 ** is a string or blob, then the copy is only a pointer to the 1527 ** original and hence if the original changes so will the copy. 1528 ** Worse, if the original is deallocated, the copy becomes invalid. 1529 ** Thus the program must guarantee that the original will not change 1530 ** during the lifetime of the copy. Use OP_Copy to make a complete 1531 ** copy. 1532 */ 1533 case OP_SCopy: { /* out2 */ 1534 pIn1 = &aMem[pOp->p1]; 1535 pOut = &aMem[pOp->p2]; 1536 assert( pOut!=pIn1 ); 1537 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1538 #ifdef SQLITE_DEBUG 1539 pOut->pScopyFrom = pIn1; 1540 pOut->mScopyFlags = pIn1->flags; 1541 #endif 1542 break; 1543 } 1544 1545 /* Opcode: IntCopy P1 P2 * * * 1546 ** Synopsis: r[P2]=r[P1] 1547 ** 1548 ** Transfer the integer value held in register P1 into register P2. 1549 ** 1550 ** This is an optimized version of SCopy that works only for integer 1551 ** values. 1552 */ 1553 case OP_IntCopy: { /* out2 */ 1554 pIn1 = &aMem[pOp->p1]; 1555 assert( (pIn1->flags & MEM_Int)!=0 ); 1556 pOut = &aMem[pOp->p2]; 1557 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1558 break; 1559 } 1560 1561 /* Opcode: FkCheck * * * * * 1562 ** 1563 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 1564 ** foreign key constraint violations. If there are no foreign key 1565 ** constraint violations, this is a no-op. 1566 ** 1567 ** FK constraint violations are also checked when the prepared statement 1568 ** exits. This opcode is used to raise foreign key constraint errors prior 1569 ** to returning results such as a row change count or the result of a 1570 ** RETURNING clause. 1571 */ 1572 case OP_FkCheck: { 1573 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1574 goto abort_due_to_error; 1575 } 1576 break; 1577 } 1578 1579 /* Opcode: ResultRow P1 P2 * * * 1580 ** Synopsis: output=r[P1@P2] 1581 ** 1582 ** The registers P1 through P1+P2-1 contain a single row of 1583 ** results. This opcode causes the sqlite3_step() call to terminate 1584 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1585 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1586 ** the result row. 1587 */ 1588 case OP_ResultRow: { 1589 assert( p->nResColumn==pOp->p2 ); 1590 assert( pOp->p1>0 || CORRUPT_DB ); 1591 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1592 1593 p->cacheCtr = (p->cacheCtr + 2)|1; 1594 p->pResultSet = &aMem[pOp->p1]; 1595 #ifdef SQLITE_DEBUG 1596 { 1597 Mem *pMem = p->pResultSet; 1598 int i; 1599 for(i=0; i<pOp->p2; i++){ 1600 assert( memIsValid(&pMem[i]) ); 1601 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1602 /* The registers in the result will not be used again when the 1603 ** prepared statement restarts. This is because sqlite3_column() 1604 ** APIs might have caused type conversions of made other changes to 1605 ** the register values. Therefore, we can go ahead and break any 1606 ** OP_SCopy dependencies. */ 1607 pMem[i].pScopyFrom = 0; 1608 } 1609 } 1610 #endif 1611 if( db->mallocFailed ) goto no_mem; 1612 if( db->mTrace & SQLITE_TRACE_ROW ){ 1613 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1614 } 1615 p->pc = (int)(pOp - aOp) + 1; 1616 rc = SQLITE_ROW; 1617 goto vdbe_return; 1618 } 1619 1620 /* Opcode: Concat P1 P2 P3 * * 1621 ** Synopsis: r[P3]=r[P2]+r[P1] 1622 ** 1623 ** Add the text in register P1 onto the end of the text in 1624 ** register P2 and store the result in register P3. 1625 ** If either the P1 or P2 text are NULL then store NULL in P3. 1626 ** 1627 ** P3 = P2 || P1 1628 ** 1629 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1630 ** if P3 is the same register as P2, the implementation is able 1631 ** to avoid a memcpy(). 1632 */ 1633 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1634 i64 nByte; /* Total size of the output string or blob */ 1635 u16 flags1; /* Initial flags for P1 */ 1636 u16 flags2; /* Initial flags for P2 */ 1637 1638 pIn1 = &aMem[pOp->p1]; 1639 pIn2 = &aMem[pOp->p2]; 1640 pOut = &aMem[pOp->p3]; 1641 testcase( pOut==pIn2 ); 1642 assert( pIn1!=pOut ); 1643 flags1 = pIn1->flags; 1644 testcase( flags1 & MEM_Null ); 1645 testcase( pIn2->flags & MEM_Null ); 1646 if( (flags1 | pIn2->flags) & MEM_Null ){ 1647 sqlite3VdbeMemSetNull(pOut); 1648 break; 1649 } 1650 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1651 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1652 flags1 = pIn1->flags & ~MEM_Str; 1653 }else if( (flags1 & MEM_Zero)!=0 ){ 1654 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1655 flags1 = pIn1->flags & ~MEM_Str; 1656 } 1657 flags2 = pIn2->flags; 1658 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1659 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1660 flags2 = pIn2->flags & ~MEM_Str; 1661 }else if( (flags2 & MEM_Zero)!=0 ){ 1662 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1663 flags2 = pIn2->flags & ~MEM_Str; 1664 } 1665 nByte = pIn1->n + pIn2->n; 1666 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1667 goto too_big; 1668 } 1669 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1670 goto no_mem; 1671 } 1672 MemSetTypeFlag(pOut, MEM_Str); 1673 if( pOut!=pIn2 ){ 1674 memcpy(pOut->z, pIn2->z, pIn2->n); 1675 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1676 pIn2->flags = flags2; 1677 } 1678 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1679 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1680 pIn1->flags = flags1; 1681 if( encoding>SQLITE_UTF8 ) nByte &= ~1; 1682 pOut->z[nByte]=0; 1683 pOut->z[nByte+1] = 0; 1684 pOut->flags |= MEM_Term; 1685 pOut->n = (int)nByte; 1686 pOut->enc = encoding; 1687 UPDATE_MAX_BLOBSIZE(pOut); 1688 break; 1689 } 1690 1691 /* Opcode: Add P1 P2 P3 * * 1692 ** Synopsis: r[P3]=r[P1]+r[P2] 1693 ** 1694 ** Add the value in register P1 to the value in register P2 1695 ** and store the result in register P3. 1696 ** If either input is NULL, the result is NULL. 1697 */ 1698 /* Opcode: Multiply P1 P2 P3 * * 1699 ** Synopsis: r[P3]=r[P1]*r[P2] 1700 ** 1701 ** 1702 ** Multiply the value in register P1 by the value in register P2 1703 ** and store the result in register P3. 1704 ** If either input is NULL, the result is NULL. 1705 */ 1706 /* Opcode: Subtract P1 P2 P3 * * 1707 ** Synopsis: r[P3]=r[P2]-r[P1] 1708 ** 1709 ** Subtract the value in register P1 from the value in register P2 1710 ** and store the result in register P3. 1711 ** If either input is NULL, the result is NULL. 1712 */ 1713 /* Opcode: Divide P1 P2 P3 * * 1714 ** Synopsis: r[P3]=r[P2]/r[P1] 1715 ** 1716 ** Divide the value in register P1 by the value in register P2 1717 ** and store the result in register P3 (P3=P2/P1). If the value in 1718 ** register P1 is zero, then the result is NULL. If either input is 1719 ** NULL, the result is NULL. 1720 */ 1721 /* Opcode: Remainder P1 P2 P3 * * 1722 ** Synopsis: r[P3]=r[P2]%r[P1] 1723 ** 1724 ** Compute the remainder after integer register P2 is divided by 1725 ** register P1 and store the result in register P3. 1726 ** If the value in register P1 is zero the result is NULL. 1727 ** If either operand is NULL, the result is NULL. 1728 */ 1729 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1730 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1731 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1732 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1733 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1734 u16 type1; /* Numeric type of left operand */ 1735 u16 type2; /* Numeric type of right operand */ 1736 i64 iA; /* Integer value of left operand */ 1737 i64 iB; /* Integer value of right operand */ 1738 double rA; /* Real value of left operand */ 1739 double rB; /* Real value of right operand */ 1740 1741 pIn1 = &aMem[pOp->p1]; 1742 type1 = pIn1->flags; 1743 pIn2 = &aMem[pOp->p2]; 1744 type2 = pIn2->flags; 1745 pOut = &aMem[pOp->p3]; 1746 if( (type1 & type2 & MEM_Int)!=0 ){ 1747 int_math: 1748 iA = pIn1->u.i; 1749 iB = pIn2->u.i; 1750 switch( pOp->opcode ){ 1751 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1752 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1753 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1754 case OP_Divide: { 1755 if( iA==0 ) goto arithmetic_result_is_null; 1756 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1757 iB /= iA; 1758 break; 1759 } 1760 default: { 1761 if( iA==0 ) goto arithmetic_result_is_null; 1762 if( iA==-1 ) iA = 1; 1763 iB %= iA; 1764 break; 1765 } 1766 } 1767 pOut->u.i = iB; 1768 MemSetTypeFlag(pOut, MEM_Int); 1769 }else if( ((type1 | type2) & MEM_Null)!=0 ){ 1770 goto arithmetic_result_is_null; 1771 }else{ 1772 type1 = numericType(pIn1); 1773 type2 = numericType(pIn2); 1774 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; 1775 fp_math: 1776 rA = sqlite3VdbeRealValue(pIn1); 1777 rB = sqlite3VdbeRealValue(pIn2); 1778 switch( pOp->opcode ){ 1779 case OP_Add: rB += rA; break; 1780 case OP_Subtract: rB -= rA; break; 1781 case OP_Multiply: rB *= rA; break; 1782 case OP_Divide: { 1783 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1784 if( rA==(double)0 ) goto arithmetic_result_is_null; 1785 rB /= rA; 1786 break; 1787 } 1788 default: { 1789 iA = sqlite3VdbeIntValue(pIn1); 1790 iB = sqlite3VdbeIntValue(pIn2); 1791 if( iA==0 ) goto arithmetic_result_is_null; 1792 if( iA==-1 ) iA = 1; 1793 rB = (double)(iB % iA); 1794 break; 1795 } 1796 } 1797 #ifdef SQLITE_OMIT_FLOATING_POINT 1798 pOut->u.i = rB; 1799 MemSetTypeFlag(pOut, MEM_Int); 1800 #else 1801 if( sqlite3IsNaN(rB) ){ 1802 goto arithmetic_result_is_null; 1803 } 1804 pOut->u.r = rB; 1805 MemSetTypeFlag(pOut, MEM_Real); 1806 #endif 1807 } 1808 break; 1809 1810 arithmetic_result_is_null: 1811 sqlite3VdbeMemSetNull(pOut); 1812 break; 1813 } 1814 1815 /* Opcode: CollSeq P1 * * P4 1816 ** 1817 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1818 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1819 ** be returned. This is used by the built-in min(), max() and nullif() 1820 ** functions. 1821 ** 1822 ** If P1 is not zero, then it is a register that a subsequent min() or 1823 ** max() aggregate will set to 1 if the current row is not the minimum or 1824 ** maximum. The P1 register is initialized to 0 by this instruction. 1825 ** 1826 ** The interface used by the implementation of the aforementioned functions 1827 ** to retrieve the collation sequence set by this opcode is not available 1828 ** publicly. Only built-in functions have access to this feature. 1829 */ 1830 case OP_CollSeq: { 1831 assert( pOp->p4type==P4_COLLSEQ ); 1832 if( pOp->p1 ){ 1833 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1834 } 1835 break; 1836 } 1837 1838 /* Opcode: BitAnd P1 P2 P3 * * 1839 ** Synopsis: r[P3]=r[P1]&r[P2] 1840 ** 1841 ** Take the bit-wise AND of the values in register P1 and P2 and 1842 ** store the result in register P3. 1843 ** If either input is NULL, the result is NULL. 1844 */ 1845 /* Opcode: BitOr P1 P2 P3 * * 1846 ** Synopsis: r[P3]=r[P1]|r[P2] 1847 ** 1848 ** Take the bit-wise OR of the values in register P1 and P2 and 1849 ** store the result in register P3. 1850 ** If either input is NULL, the result is NULL. 1851 */ 1852 /* Opcode: ShiftLeft P1 P2 P3 * * 1853 ** Synopsis: r[P3]=r[P2]<<r[P1] 1854 ** 1855 ** Shift the integer value in register P2 to the left by the 1856 ** number of bits specified by the integer in register P1. 1857 ** Store the result in register P3. 1858 ** If either input is NULL, the result is NULL. 1859 */ 1860 /* Opcode: ShiftRight P1 P2 P3 * * 1861 ** Synopsis: r[P3]=r[P2]>>r[P1] 1862 ** 1863 ** Shift the integer value in register P2 to the right by the 1864 ** number of bits specified by the integer in register P1. 1865 ** Store the result in register P3. 1866 ** If either input is NULL, the result is NULL. 1867 */ 1868 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1869 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1870 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1871 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1872 i64 iA; 1873 u64 uA; 1874 i64 iB; 1875 u8 op; 1876 1877 pIn1 = &aMem[pOp->p1]; 1878 pIn2 = &aMem[pOp->p2]; 1879 pOut = &aMem[pOp->p3]; 1880 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1881 sqlite3VdbeMemSetNull(pOut); 1882 break; 1883 } 1884 iA = sqlite3VdbeIntValue(pIn2); 1885 iB = sqlite3VdbeIntValue(pIn1); 1886 op = pOp->opcode; 1887 if( op==OP_BitAnd ){ 1888 iA &= iB; 1889 }else if( op==OP_BitOr ){ 1890 iA |= iB; 1891 }else if( iB!=0 ){ 1892 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1893 1894 /* If shifting by a negative amount, shift in the other direction */ 1895 if( iB<0 ){ 1896 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1897 op = 2*OP_ShiftLeft + 1 - op; 1898 iB = iB>(-64) ? -iB : 64; 1899 } 1900 1901 if( iB>=64 ){ 1902 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1903 }else{ 1904 memcpy(&uA, &iA, sizeof(uA)); 1905 if( op==OP_ShiftLeft ){ 1906 uA <<= iB; 1907 }else{ 1908 uA >>= iB; 1909 /* Sign-extend on a right shift of a negative number */ 1910 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1911 } 1912 memcpy(&iA, &uA, sizeof(iA)); 1913 } 1914 } 1915 pOut->u.i = iA; 1916 MemSetTypeFlag(pOut, MEM_Int); 1917 break; 1918 } 1919 1920 /* Opcode: AddImm P1 P2 * * * 1921 ** Synopsis: r[P1]=r[P1]+P2 1922 ** 1923 ** Add the constant P2 to the value in register P1. 1924 ** The result is always an integer. 1925 ** 1926 ** To force any register to be an integer, just add 0. 1927 */ 1928 case OP_AddImm: { /* in1 */ 1929 pIn1 = &aMem[pOp->p1]; 1930 memAboutToChange(p, pIn1); 1931 sqlite3VdbeMemIntegerify(pIn1); 1932 pIn1->u.i += pOp->p2; 1933 break; 1934 } 1935 1936 /* Opcode: MustBeInt P1 P2 * * * 1937 ** 1938 ** Force the value in register P1 to be an integer. If the value 1939 ** in P1 is not an integer and cannot be converted into an integer 1940 ** without data loss, then jump immediately to P2, or if P2==0 1941 ** raise an SQLITE_MISMATCH exception. 1942 */ 1943 case OP_MustBeInt: { /* jump, in1 */ 1944 pIn1 = &aMem[pOp->p1]; 1945 if( (pIn1->flags & MEM_Int)==0 ){ 1946 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1947 if( (pIn1->flags & MEM_Int)==0 ){ 1948 VdbeBranchTaken(1, 2); 1949 if( pOp->p2==0 ){ 1950 rc = SQLITE_MISMATCH; 1951 goto abort_due_to_error; 1952 }else{ 1953 goto jump_to_p2; 1954 } 1955 } 1956 } 1957 VdbeBranchTaken(0, 2); 1958 MemSetTypeFlag(pIn1, MEM_Int); 1959 break; 1960 } 1961 1962 #ifndef SQLITE_OMIT_FLOATING_POINT 1963 /* Opcode: RealAffinity P1 * * * * 1964 ** 1965 ** If register P1 holds an integer convert it to a real value. 1966 ** 1967 ** This opcode is used when extracting information from a column that 1968 ** has REAL affinity. Such column values may still be stored as 1969 ** integers, for space efficiency, but after extraction we want them 1970 ** to have only a real value. 1971 */ 1972 case OP_RealAffinity: { /* in1 */ 1973 pIn1 = &aMem[pOp->p1]; 1974 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1975 testcase( pIn1->flags & MEM_Int ); 1976 testcase( pIn1->flags & MEM_IntReal ); 1977 sqlite3VdbeMemRealify(pIn1); 1978 REGISTER_TRACE(pOp->p1, pIn1); 1979 } 1980 break; 1981 } 1982 #endif 1983 1984 #ifndef SQLITE_OMIT_CAST 1985 /* Opcode: Cast P1 P2 * * * 1986 ** Synopsis: affinity(r[P1]) 1987 ** 1988 ** Force the value in register P1 to be the type defined by P2. 1989 ** 1990 ** <ul> 1991 ** <li> P2=='A' → BLOB 1992 ** <li> P2=='B' → TEXT 1993 ** <li> P2=='C' → NUMERIC 1994 ** <li> P2=='D' → INTEGER 1995 ** <li> P2=='E' → REAL 1996 ** </ul> 1997 ** 1998 ** A NULL value is not changed by this routine. It remains NULL. 1999 */ 2000 case OP_Cast: { /* in1 */ 2001 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 2002 testcase( pOp->p2==SQLITE_AFF_TEXT ); 2003 testcase( pOp->p2==SQLITE_AFF_BLOB ); 2004 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 2005 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 2006 testcase( pOp->p2==SQLITE_AFF_REAL ); 2007 pIn1 = &aMem[pOp->p1]; 2008 memAboutToChange(p, pIn1); 2009 rc = ExpandBlob(pIn1); 2010 if( rc ) goto abort_due_to_error; 2011 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 2012 if( rc ) goto abort_due_to_error; 2013 UPDATE_MAX_BLOBSIZE(pIn1); 2014 REGISTER_TRACE(pOp->p1, pIn1); 2015 break; 2016 } 2017 #endif /* SQLITE_OMIT_CAST */ 2018 2019 /* Opcode: Eq P1 P2 P3 P4 P5 2020 ** Synopsis: IF r[P3]==r[P1] 2021 ** 2022 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 2023 ** jump to address P2. 2024 ** 2025 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2026 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2027 ** to coerce both inputs according to this affinity before the 2028 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2029 ** affinity is used. Note that the affinity conversions are stored 2030 ** back into the input registers P1 and P3. So this opcode can cause 2031 ** persistent changes to registers P1 and P3. 2032 ** 2033 ** Once any conversions have taken place, and neither value is NULL, 2034 ** the values are compared. If both values are blobs then memcmp() is 2035 ** used to determine the results of the comparison. If both values 2036 ** are text, then the appropriate collating function specified in 2037 ** P4 is used to do the comparison. If P4 is not specified then 2038 ** memcmp() is used to compare text string. If both values are 2039 ** numeric, then a numeric comparison is used. If the two values 2040 ** are of different types, then numbers are considered less than 2041 ** strings and strings are considered less than blobs. 2042 ** 2043 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 2044 ** true or false and is never NULL. If both operands are NULL then the result 2045 ** of comparison is true. If either operand is NULL then the result is false. 2046 ** If neither operand is NULL the result is the same as it would be if 2047 ** the SQLITE_NULLEQ flag were omitted from P5. 2048 ** 2049 ** This opcode saves the result of comparison for use by the new 2050 ** OP_Jump opcode. 2051 */ 2052 /* Opcode: Ne P1 P2 P3 P4 P5 2053 ** Synopsis: IF r[P3]!=r[P1] 2054 ** 2055 ** This works just like the Eq opcode except that the jump is taken if 2056 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 2057 ** additional information. 2058 */ 2059 /* Opcode: Lt P1 P2 P3 P4 P5 2060 ** Synopsis: IF r[P3]<r[P1] 2061 ** 2062 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 2063 ** jump to address P2. 2064 ** 2065 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2066 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2067 ** bit is clear then fall through if either operand is NULL. 2068 ** 2069 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2070 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2071 ** to coerce both inputs according to this affinity before the 2072 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2073 ** affinity is used. Note that the affinity conversions are stored 2074 ** back into the input registers P1 and P3. So this opcode can cause 2075 ** persistent changes to registers P1 and P3. 2076 ** 2077 ** Once any conversions have taken place, and neither value is NULL, 2078 ** the values are compared. If both values are blobs then memcmp() is 2079 ** used to determine the results of the comparison. If both values 2080 ** are text, then the appropriate collating function specified in 2081 ** P4 is used to do the comparison. If P4 is not specified then 2082 ** memcmp() is used to compare text string. If both values are 2083 ** numeric, then a numeric comparison is used. If the two values 2084 ** are of different types, then numbers are considered less than 2085 ** strings and strings are considered less than blobs. 2086 ** 2087 ** This opcode saves the result of comparison for use by the new 2088 ** OP_Jump opcode. 2089 */ 2090 /* Opcode: Le P1 P2 P3 P4 P5 2091 ** Synopsis: IF r[P3]<=r[P1] 2092 ** 2093 ** This works just like the Lt opcode except that the jump is taken if 2094 ** the content of register P3 is less than or equal to the content of 2095 ** register P1. See the Lt opcode for additional information. 2096 */ 2097 /* Opcode: Gt P1 P2 P3 P4 P5 2098 ** Synopsis: IF r[P3]>r[P1] 2099 ** 2100 ** This works just like the Lt opcode except that the jump is taken if 2101 ** the content of register P3 is greater than the content of 2102 ** register P1. See the Lt opcode for additional information. 2103 */ 2104 /* Opcode: Ge P1 P2 P3 P4 P5 2105 ** Synopsis: IF r[P3]>=r[P1] 2106 ** 2107 ** This works just like the Lt opcode except that the jump is taken if 2108 ** the content of register P3 is greater than or equal to the content of 2109 ** register P1. See the Lt opcode for additional information. 2110 */ 2111 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2112 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2113 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2114 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2115 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2116 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2117 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2118 char affinity; /* Affinity to use for comparison */ 2119 u16 flags1; /* Copy of initial value of pIn1->flags */ 2120 u16 flags3; /* Copy of initial value of pIn3->flags */ 2121 2122 pIn1 = &aMem[pOp->p1]; 2123 pIn3 = &aMem[pOp->p3]; 2124 flags1 = pIn1->flags; 2125 flags3 = pIn3->flags; 2126 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2127 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2128 /* Common case of comparison of two integers */ 2129 if( pIn3->u.i > pIn1->u.i ){ 2130 if( sqlite3aGTb[pOp->opcode] ){ 2131 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2132 goto jump_to_p2; 2133 } 2134 iCompare = +1; 2135 }else if( pIn3->u.i < pIn1->u.i ){ 2136 if( sqlite3aLTb[pOp->opcode] ){ 2137 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2138 goto jump_to_p2; 2139 } 2140 iCompare = -1; 2141 }else{ 2142 if( sqlite3aEQb[pOp->opcode] ){ 2143 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2144 goto jump_to_p2; 2145 } 2146 iCompare = 0; 2147 } 2148 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2149 break; 2150 } 2151 if( (flags1 | flags3)&MEM_Null ){ 2152 /* One or both operands are NULL */ 2153 if( pOp->p5 & SQLITE_NULLEQ ){ 2154 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2155 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2156 ** or not both operands are null. 2157 */ 2158 assert( (flags1 & MEM_Cleared)==0 ); 2159 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2160 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2161 if( (flags1&flags3&MEM_Null)!=0 2162 && (flags3&MEM_Cleared)==0 2163 ){ 2164 res = 0; /* Operands are equal */ 2165 }else{ 2166 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2167 } 2168 }else{ 2169 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2170 ** then the result is always NULL. 2171 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2172 */ 2173 VdbeBranchTaken(2,3); 2174 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2175 goto jump_to_p2; 2176 } 2177 iCompare = 1; /* Operands are not equal */ 2178 break; 2179 } 2180 }else{ 2181 /* Neither operand is NULL and we couldn't do the special high-speed 2182 ** integer comparison case. So do a general-case comparison. */ 2183 affinity = pOp->p5 & SQLITE_AFF_MASK; 2184 if( affinity>=SQLITE_AFF_NUMERIC ){ 2185 if( (flags1 | flags3)&MEM_Str ){ 2186 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2187 applyNumericAffinity(pIn1,0); 2188 testcase( flags3==pIn3->flags ); 2189 flags3 = pIn3->flags; 2190 } 2191 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2192 applyNumericAffinity(pIn3,0); 2193 } 2194 } 2195 }else if( affinity==SQLITE_AFF_TEXT ){ 2196 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2197 testcase( pIn1->flags & MEM_Int ); 2198 testcase( pIn1->flags & MEM_Real ); 2199 testcase( pIn1->flags & MEM_IntReal ); 2200 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2201 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2202 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2203 if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str; 2204 } 2205 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2206 testcase( pIn3->flags & MEM_Int ); 2207 testcase( pIn3->flags & MEM_Real ); 2208 testcase( pIn3->flags & MEM_IntReal ); 2209 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2210 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2211 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2212 } 2213 } 2214 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2215 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2216 } 2217 2218 /* At this point, res is negative, zero, or positive if reg[P1] is 2219 ** less than, equal to, or greater than reg[P3], respectively. Compute 2220 ** the answer to this operator in res2, depending on what the comparison 2221 ** operator actually is. The next block of code depends on the fact 2222 ** that the 6 comparison operators are consecutive integers in this 2223 ** order: NE, EQ, GT, LE, LT, GE */ 2224 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2225 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2226 if( res<0 ){ 2227 res2 = sqlite3aLTb[pOp->opcode]; 2228 }else if( res==0 ){ 2229 res2 = sqlite3aEQb[pOp->opcode]; 2230 }else{ 2231 res2 = sqlite3aGTb[pOp->opcode]; 2232 } 2233 iCompare = res; 2234 2235 /* Undo any changes made by applyAffinity() to the input registers. */ 2236 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2237 pIn3->flags = flags3; 2238 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2239 pIn1->flags = flags1; 2240 2241 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2242 if( res2 ){ 2243 goto jump_to_p2; 2244 } 2245 break; 2246 } 2247 2248 /* Opcode: ElseEq * P2 * * * 2249 ** 2250 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2251 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2252 ** opcodes are allowed to occur between this instruction and the previous 2253 ** OP_Lt or OP_Gt. 2254 ** 2255 ** If result of an OP_Eq comparison on the same two operands as the 2256 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2257 ** If the result of an OP_Eq comparison on the two previous 2258 ** operands would have been false or NULL, then fall through. 2259 */ 2260 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2261 2262 #ifdef SQLITE_DEBUG 2263 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2264 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2265 int iAddr; 2266 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2267 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2268 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2269 break; 2270 } 2271 #endif /* SQLITE_DEBUG */ 2272 VdbeBranchTaken(iCompare==0, 2); 2273 if( iCompare==0 ) goto jump_to_p2; 2274 break; 2275 } 2276 2277 2278 /* Opcode: Permutation * * * P4 * 2279 ** 2280 ** Set the permutation used by the OP_Compare operator in the next 2281 ** instruction. The permutation is stored in the P4 operand. 2282 ** 2283 ** The permutation is only valid for the next opcode which must be 2284 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. 2285 ** 2286 ** The first integer in the P4 integer array is the length of the array 2287 ** and does not become part of the permutation. 2288 */ 2289 case OP_Permutation: { 2290 assert( pOp->p4type==P4_INTARRAY ); 2291 assert( pOp->p4.ai ); 2292 assert( pOp[1].opcode==OP_Compare ); 2293 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2294 break; 2295 } 2296 2297 /* Opcode: Compare P1 P2 P3 P4 P5 2298 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2299 ** 2300 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2301 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2302 ** the comparison for use by the next OP_Jump instruct. 2303 ** 2304 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2305 ** determined by the most recent OP_Permutation operator. If the 2306 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2307 ** order. 2308 ** 2309 ** P4 is a KeyInfo structure that defines collating sequences and sort 2310 ** orders for the comparison. The permutation applies to registers 2311 ** only. The KeyInfo elements are used sequentially. 2312 ** 2313 ** The comparison is a sort comparison, so NULLs compare equal, 2314 ** NULLs are less than numbers, numbers are less than strings, 2315 ** and strings are less than blobs. 2316 ** 2317 ** This opcode must be immediately followed by an OP_Jump opcode. 2318 */ 2319 case OP_Compare: { 2320 int n; 2321 int i; 2322 int p1; 2323 int p2; 2324 const KeyInfo *pKeyInfo; 2325 u32 idx; 2326 CollSeq *pColl; /* Collating sequence to use on this term */ 2327 int bRev; /* True for DESCENDING sort order */ 2328 u32 *aPermute; /* The permutation */ 2329 2330 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2331 aPermute = 0; 2332 }else{ 2333 assert( pOp>aOp ); 2334 assert( pOp[-1].opcode==OP_Permutation ); 2335 assert( pOp[-1].p4type==P4_INTARRAY ); 2336 aPermute = pOp[-1].p4.ai + 1; 2337 assert( aPermute!=0 ); 2338 } 2339 n = pOp->p3; 2340 pKeyInfo = pOp->p4.pKeyInfo; 2341 assert( n>0 ); 2342 assert( pKeyInfo!=0 ); 2343 p1 = pOp->p1; 2344 p2 = pOp->p2; 2345 #ifdef SQLITE_DEBUG 2346 if( aPermute ){ 2347 int k, mx = 0; 2348 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2349 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2350 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2351 }else{ 2352 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2353 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2354 } 2355 #endif /* SQLITE_DEBUG */ 2356 for(i=0; i<n; i++){ 2357 idx = aPermute ? aPermute[i] : (u32)i; 2358 assert( memIsValid(&aMem[p1+idx]) ); 2359 assert( memIsValid(&aMem[p2+idx]) ); 2360 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2361 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2362 assert( i<pKeyInfo->nKeyField ); 2363 pColl = pKeyInfo->aColl[i]; 2364 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2365 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2366 if( iCompare ){ 2367 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2368 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2369 ){ 2370 iCompare = -iCompare; 2371 } 2372 if( bRev ) iCompare = -iCompare; 2373 break; 2374 } 2375 } 2376 assert( pOp[1].opcode==OP_Jump ); 2377 break; 2378 } 2379 2380 /* Opcode: Jump P1 P2 P3 * * 2381 ** 2382 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2383 ** in the most recent OP_Compare instruction the P1 vector was less than 2384 ** equal to, or greater than the P2 vector, respectively. 2385 ** 2386 ** This opcode must immediately follow an OP_Compare opcode. 2387 */ 2388 case OP_Jump: { /* jump */ 2389 assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); 2390 if( iCompare<0 ){ 2391 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2392 }else if( iCompare==0 ){ 2393 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2394 }else{ 2395 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2396 } 2397 break; 2398 } 2399 2400 /* Opcode: And P1 P2 P3 * * 2401 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2402 ** 2403 ** Take the logical AND of the values in registers P1 and P2 and 2404 ** write the result into register P3. 2405 ** 2406 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2407 ** the other input is NULL. A NULL and true or two NULLs give 2408 ** a NULL output. 2409 */ 2410 /* Opcode: Or P1 P2 P3 * * 2411 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2412 ** 2413 ** Take the logical OR of the values in register P1 and P2 and 2414 ** store the answer in register P3. 2415 ** 2416 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2417 ** even if the other input is NULL. A NULL and false or two NULLs 2418 ** give a NULL output. 2419 */ 2420 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2421 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2422 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2423 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2424 2425 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2426 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2427 if( pOp->opcode==OP_And ){ 2428 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2429 v1 = and_logic[v1*3+v2]; 2430 }else{ 2431 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2432 v1 = or_logic[v1*3+v2]; 2433 } 2434 pOut = &aMem[pOp->p3]; 2435 if( v1==2 ){ 2436 MemSetTypeFlag(pOut, MEM_Null); 2437 }else{ 2438 pOut->u.i = v1; 2439 MemSetTypeFlag(pOut, MEM_Int); 2440 } 2441 break; 2442 } 2443 2444 /* Opcode: IsTrue P1 P2 P3 P4 * 2445 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2446 ** 2447 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2448 ** IS NOT FALSE operators. 2449 ** 2450 ** Interpret the value in register P1 as a boolean value. Store that 2451 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2452 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2453 ** is 1. 2454 ** 2455 ** The logic is summarized like this: 2456 ** 2457 ** <ul> 2458 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2459 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2460 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2461 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2462 ** </ul> 2463 */ 2464 case OP_IsTrue: { /* in1, out2 */ 2465 assert( pOp->p4type==P4_INT32 ); 2466 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2467 assert( pOp->p3==0 || pOp->p3==1 ); 2468 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2469 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2470 break; 2471 } 2472 2473 /* Opcode: Not P1 P2 * * * 2474 ** Synopsis: r[P2]= !r[P1] 2475 ** 2476 ** Interpret the value in register P1 as a boolean value. Store the 2477 ** boolean complement in register P2. If the value in register P1 is 2478 ** NULL, then a NULL is stored in P2. 2479 */ 2480 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2481 pIn1 = &aMem[pOp->p1]; 2482 pOut = &aMem[pOp->p2]; 2483 if( (pIn1->flags & MEM_Null)==0 ){ 2484 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2485 }else{ 2486 sqlite3VdbeMemSetNull(pOut); 2487 } 2488 break; 2489 } 2490 2491 /* Opcode: BitNot P1 P2 * * * 2492 ** Synopsis: r[P2]= ~r[P1] 2493 ** 2494 ** Interpret the content of register P1 as an integer. Store the 2495 ** ones-complement of the P1 value into register P2. If P1 holds 2496 ** a NULL then store a NULL in P2. 2497 */ 2498 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2499 pIn1 = &aMem[pOp->p1]; 2500 pOut = &aMem[pOp->p2]; 2501 sqlite3VdbeMemSetNull(pOut); 2502 if( (pIn1->flags & MEM_Null)==0 ){ 2503 pOut->flags = MEM_Int; 2504 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2505 } 2506 break; 2507 } 2508 2509 /* Opcode: Once P1 P2 * * * 2510 ** 2511 ** Fall through to the next instruction the first time this opcode is 2512 ** encountered on each invocation of the byte-code program. Jump to P2 2513 ** on the second and all subsequent encounters during the same invocation. 2514 ** 2515 ** Top-level programs determine first invocation by comparing the P1 2516 ** operand against the P1 operand on the OP_Init opcode at the beginning 2517 ** of the program. If the P1 values differ, then fall through and make 2518 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2519 ** the same then take the jump. 2520 ** 2521 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2522 ** whether or not the jump should be taken. The bitmask is necessary 2523 ** because the self-altering code trick does not work for recursive 2524 ** triggers. 2525 */ 2526 case OP_Once: { /* jump */ 2527 u32 iAddr; /* Address of this instruction */ 2528 assert( p->aOp[0].opcode==OP_Init ); 2529 if( p->pFrame ){ 2530 iAddr = (int)(pOp - p->aOp); 2531 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2532 VdbeBranchTaken(1, 2); 2533 goto jump_to_p2; 2534 } 2535 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2536 }else{ 2537 if( p->aOp[0].p1==pOp->p1 ){ 2538 VdbeBranchTaken(1, 2); 2539 goto jump_to_p2; 2540 } 2541 } 2542 VdbeBranchTaken(0, 2); 2543 pOp->p1 = p->aOp[0].p1; 2544 break; 2545 } 2546 2547 /* Opcode: If P1 P2 P3 * * 2548 ** 2549 ** Jump to P2 if the value in register P1 is true. The value 2550 ** is considered true if it is numeric and non-zero. If the value 2551 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2552 */ 2553 case OP_If: { /* jump, in1 */ 2554 int c; 2555 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2556 VdbeBranchTaken(c!=0, 2); 2557 if( c ) goto jump_to_p2; 2558 break; 2559 } 2560 2561 /* Opcode: IfNot P1 P2 P3 * * 2562 ** 2563 ** Jump to P2 if the value in register P1 is False. The value 2564 ** is considered false if it has a numeric value of zero. If the value 2565 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2566 */ 2567 case OP_IfNot: { /* jump, in1 */ 2568 int c; 2569 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2570 VdbeBranchTaken(c!=0, 2); 2571 if( c ) goto jump_to_p2; 2572 break; 2573 } 2574 2575 /* Opcode: IsNull P1 P2 * * * 2576 ** Synopsis: if r[P1]==NULL goto P2 2577 ** 2578 ** Jump to P2 if the value in register P1 is NULL. 2579 */ 2580 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2581 pIn1 = &aMem[pOp->p1]; 2582 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2583 if( (pIn1->flags & MEM_Null)!=0 ){ 2584 goto jump_to_p2; 2585 } 2586 break; 2587 } 2588 2589 /* Opcode: IsNullOrType P1 P2 P3 * * 2590 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2 2591 ** 2592 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3. 2593 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT, 2594 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT. 2595 */ 2596 case OP_IsNullOrType: { /* jump, in1 */ 2597 int doTheJump; 2598 pIn1 = &aMem[pOp->p1]; 2599 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3; 2600 VdbeBranchTaken( doTheJump, 2); 2601 if( doTheJump ) goto jump_to_p2; 2602 break; 2603 } 2604 2605 /* Opcode: ZeroOrNull P1 P2 P3 * * 2606 ** Synopsis: r[P2] = 0 OR NULL 2607 ** 2608 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2609 ** register P2. If either registers P1 or P3 are NULL then put 2610 ** a NULL in register P2. 2611 */ 2612 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2613 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2614 || (aMem[pOp->p3].flags & MEM_Null)!=0 2615 ){ 2616 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2617 }else{ 2618 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2619 } 2620 break; 2621 } 2622 2623 /* Opcode: NotNull P1 P2 * * * 2624 ** Synopsis: if r[P1]!=NULL goto P2 2625 ** 2626 ** Jump to P2 if the value in register P1 is not NULL. 2627 */ 2628 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2629 pIn1 = &aMem[pOp->p1]; 2630 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2631 if( (pIn1->flags & MEM_Null)==0 ){ 2632 goto jump_to_p2; 2633 } 2634 break; 2635 } 2636 2637 /* Opcode: IfNullRow P1 P2 P3 * * 2638 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2639 ** 2640 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2641 ** If it is, then set register P3 to NULL and jump immediately to P2. 2642 ** If P1 is not on a NULL row, then fall through without making any 2643 ** changes. 2644 ** 2645 ** If P1 is not an open cursor, then this opcode is a no-op. 2646 */ 2647 case OP_IfNullRow: { /* jump */ 2648 VdbeCursor *pC; 2649 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2650 pC = p->apCsr[pOp->p1]; 2651 if( ALWAYS(pC) && pC->nullRow ){ 2652 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2653 goto jump_to_p2; 2654 } 2655 break; 2656 } 2657 2658 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2659 /* Opcode: Offset P1 P2 P3 * * 2660 ** Synopsis: r[P3] = sqlite_offset(P1) 2661 ** 2662 ** Store in register r[P3] the byte offset into the database file that is the 2663 ** start of the payload for the record at which that cursor P1 is currently 2664 ** pointing. 2665 ** 2666 ** P2 is the column number for the argument to the sqlite_offset() function. 2667 ** This opcode does not use P2 itself, but the P2 value is used by the 2668 ** code generator. The P1, P2, and P3 operands to this opcode are the 2669 ** same as for OP_Column. 2670 ** 2671 ** This opcode is only available if SQLite is compiled with the 2672 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2673 */ 2674 case OP_Offset: { /* out3 */ 2675 VdbeCursor *pC; /* The VDBE cursor */ 2676 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2677 pC = p->apCsr[pOp->p1]; 2678 pOut = &p->aMem[pOp->p3]; 2679 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ 2680 sqlite3VdbeMemSetNull(pOut); 2681 }else{ 2682 if( pC->deferredMoveto ){ 2683 rc = sqlite3VdbeFinishMoveto(pC); 2684 if( rc ) goto abort_due_to_error; 2685 } 2686 if( sqlite3BtreeEof(pC->uc.pCursor) ){ 2687 sqlite3VdbeMemSetNull(pOut); 2688 }else{ 2689 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2690 } 2691 } 2692 break; 2693 } 2694 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2695 2696 /* Opcode: Column P1 P2 P3 P4 P5 2697 ** Synopsis: r[P3]=PX cursor P1 column P2 2698 ** 2699 ** Interpret the data that cursor P1 points to as a structure built using 2700 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2701 ** information about the format of the data.) Extract the P2-th column 2702 ** from this record. If there are less that (P2+1) 2703 ** values in the record, extract a NULL. 2704 ** 2705 ** The value extracted is stored in register P3. 2706 ** 2707 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2708 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2709 ** the result. 2710 ** 2711 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2712 ** the result is guaranteed to only be used as the argument of a length() 2713 ** or typeof() function, respectively. The loading of large blobs can be 2714 ** skipped for length() and all content loading can be skipped for typeof(). 2715 */ 2716 case OP_Column: { 2717 u32 p2; /* column number to retrieve */ 2718 VdbeCursor *pC; /* The VDBE cursor */ 2719 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 2720 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2721 int len; /* The length of the serialized data for the column */ 2722 int i; /* Loop counter */ 2723 Mem *pDest; /* Where to write the extracted value */ 2724 Mem sMem; /* For storing the record being decoded */ 2725 const u8 *zData; /* Part of the record being decoded */ 2726 const u8 *zHdr; /* Next unparsed byte of the header */ 2727 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2728 u64 offset64; /* 64-bit offset */ 2729 u32 t; /* A type code from the record header */ 2730 Mem *pReg; /* PseudoTable input register */ 2731 2732 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2733 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2734 pC = p->apCsr[pOp->p1]; 2735 p2 = (u32)pOp->p2; 2736 2737 op_column_restart: 2738 assert( pC!=0 ); 2739 assert( p2<(u32)pC->nField 2740 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); 2741 aOffset = pC->aOffset; 2742 assert( aOffset==pC->aType+pC->nField ); 2743 assert( pC->eCurType!=CURTYPE_VTAB ); 2744 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2745 assert( pC->eCurType!=CURTYPE_SORTER ); 2746 2747 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2748 if( pC->nullRow ){ 2749 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ 2750 /* For the special case of as pseudo-cursor, the seekResult field 2751 ** identifies the register that holds the record */ 2752 pReg = &aMem[pC->seekResult]; 2753 assert( pReg->flags & MEM_Blob ); 2754 assert( memIsValid(pReg) ); 2755 pC->payloadSize = pC->szRow = pReg->n; 2756 pC->aRow = (u8*)pReg->z; 2757 }else{ 2758 pDest = &aMem[pOp->p3]; 2759 memAboutToChange(p, pDest); 2760 sqlite3VdbeMemSetNull(pDest); 2761 goto op_column_out; 2762 } 2763 }else{ 2764 pCrsr = pC->uc.pCursor; 2765 if( pC->deferredMoveto ){ 2766 u32 iMap; 2767 assert( !pC->isEphemeral ); 2768 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 2769 pC = pC->pAltCursor; 2770 p2 = iMap - 1; 2771 goto op_column_restart; 2772 } 2773 rc = sqlite3VdbeFinishMoveto(pC); 2774 if( rc ) goto abort_due_to_error; 2775 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 2776 rc = sqlite3VdbeHandleMovedCursor(pC); 2777 if( rc ) goto abort_due_to_error; 2778 goto op_column_restart; 2779 } 2780 assert( pC->eCurType==CURTYPE_BTREE ); 2781 assert( pCrsr ); 2782 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2783 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2784 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2785 assert( pC->szRow<=pC->payloadSize ); 2786 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2787 } 2788 pC->cacheStatus = p->cacheCtr; 2789 if( (aOffset[0] = pC->aRow[0])<0x80 ){ 2790 pC->iHdrOffset = 1; 2791 }else{ 2792 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); 2793 } 2794 pC->nHdrParsed = 0; 2795 2796 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2797 /* pC->aRow does not have to hold the entire row, but it does at least 2798 ** need to cover the header of the record. If pC->aRow does not contain 2799 ** the complete header, then set it to zero, forcing the header to be 2800 ** dynamically allocated. */ 2801 pC->aRow = 0; 2802 pC->szRow = 0; 2803 2804 /* Make sure a corrupt database has not given us an oversize header. 2805 ** Do this now to avoid an oversize memory allocation. 2806 ** 2807 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2808 ** types use so much data space that there can only be 4096 and 32 of 2809 ** them, respectively. So the maximum header length results from a 2810 ** 3-byte type for each of the maximum of 32768 columns plus three 2811 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2812 */ 2813 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2814 goto op_column_corrupt; 2815 } 2816 }else{ 2817 /* This is an optimization. By skipping over the first few tests 2818 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2819 ** measurable performance gain. 2820 ** 2821 ** This branch is taken even if aOffset[0]==0. Such a record is never 2822 ** generated by SQLite, and could be considered corruption, but we 2823 ** accept it for historical reasons. When aOffset[0]==0, the code this 2824 ** branch jumps to reads past the end of the record, but never more 2825 ** than a few bytes. Even if the record occurs at the end of the page 2826 ** content area, the "page header" comes after the page content and so 2827 ** this overread is harmless. Similar overreads can occur for a corrupt 2828 ** database file. 2829 */ 2830 zData = pC->aRow; 2831 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2832 testcase( aOffset[0]==0 ); 2833 goto op_column_read_header; 2834 } 2835 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 2836 rc = sqlite3VdbeHandleMovedCursor(pC); 2837 if( rc ) goto abort_due_to_error; 2838 goto op_column_restart; 2839 } 2840 2841 /* Make sure at least the first p2+1 entries of the header have been 2842 ** parsed and valid information is in aOffset[] and pC->aType[]. 2843 */ 2844 if( pC->nHdrParsed<=p2 ){ 2845 /* If there is more header available for parsing in the record, try 2846 ** to extract additional fields up through the p2+1-th field 2847 */ 2848 if( pC->iHdrOffset<aOffset[0] ){ 2849 /* Make sure zData points to enough of the record to cover the header. */ 2850 if( pC->aRow==0 ){ 2851 memset(&sMem, 0, sizeof(sMem)); 2852 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2853 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2854 zData = (u8*)sMem.z; 2855 }else{ 2856 zData = pC->aRow; 2857 } 2858 2859 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2860 op_column_read_header: 2861 i = pC->nHdrParsed; 2862 offset64 = aOffset[i]; 2863 zHdr = zData + pC->iHdrOffset; 2864 zEndHdr = zData + aOffset[0]; 2865 testcase( zHdr>=zEndHdr ); 2866 do{ 2867 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2868 zHdr++; 2869 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2870 }else{ 2871 zHdr += sqlite3GetVarint32(zHdr, &t); 2872 pC->aType[i] = t; 2873 offset64 += sqlite3VdbeSerialTypeLen(t); 2874 } 2875 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2876 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2877 2878 /* The record is corrupt if any of the following are true: 2879 ** (1) the bytes of the header extend past the declared header size 2880 ** (2) the entire header was used but not all data was used 2881 ** (3) the end of the data extends beyond the end of the record. 2882 */ 2883 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2884 || (offset64 > pC->payloadSize) 2885 ){ 2886 if( aOffset[0]==0 ){ 2887 i = 0; 2888 zHdr = zEndHdr; 2889 }else{ 2890 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2891 goto op_column_corrupt; 2892 } 2893 } 2894 2895 pC->nHdrParsed = i; 2896 pC->iHdrOffset = (u32)(zHdr - zData); 2897 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2898 }else{ 2899 t = 0; 2900 } 2901 2902 /* If after trying to extract new entries from the header, nHdrParsed is 2903 ** still not up to p2, that means that the record has fewer than p2 2904 ** columns. So the result will be either the default value or a NULL. 2905 */ 2906 if( pC->nHdrParsed<=p2 ){ 2907 pDest = &aMem[pOp->p3]; 2908 memAboutToChange(p, pDest); 2909 if( pOp->p4type==P4_MEM ){ 2910 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2911 }else{ 2912 sqlite3VdbeMemSetNull(pDest); 2913 } 2914 goto op_column_out; 2915 } 2916 }else{ 2917 t = pC->aType[p2]; 2918 } 2919 2920 /* Extract the content for the p2+1-th column. Control can only 2921 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2922 ** all valid. 2923 */ 2924 assert( p2<pC->nHdrParsed ); 2925 assert( rc==SQLITE_OK ); 2926 pDest = &aMem[pOp->p3]; 2927 memAboutToChange(p, pDest); 2928 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2929 if( VdbeMemDynamic(pDest) ){ 2930 sqlite3VdbeMemSetNull(pDest); 2931 } 2932 assert( t==pC->aType[p2] ); 2933 if( pC->szRow>=aOffset[p2+1] ){ 2934 /* This is the common case where the desired content fits on the original 2935 ** page - where the content is not on an overflow page */ 2936 zData = pC->aRow + aOffset[p2]; 2937 if( t<12 ){ 2938 sqlite3VdbeSerialGet(zData, t, pDest); 2939 }else{ 2940 /* If the column value is a string, we need a persistent value, not 2941 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2942 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2943 */ 2944 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2945 pDest->n = len = (t-12)/2; 2946 pDest->enc = encoding; 2947 if( pDest->szMalloc < len+2 ){ 2948 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2949 pDest->flags = MEM_Null; 2950 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2951 }else{ 2952 pDest->z = pDest->zMalloc; 2953 } 2954 memcpy(pDest->z, zData, len); 2955 pDest->z[len] = 0; 2956 pDest->z[len+1] = 0; 2957 pDest->flags = aFlag[t&1]; 2958 } 2959 }else{ 2960 pDest->enc = encoding; 2961 /* This branch happens only when content is on overflow pages */ 2962 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2963 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2964 || (len = sqlite3VdbeSerialTypeLen(t))==0 2965 ){ 2966 /* Content is irrelevant for 2967 ** 1. the typeof() function, 2968 ** 2. the length(X) function if X is a blob, and 2969 ** 3. if the content length is zero. 2970 ** So we might as well use bogus content rather than reading 2971 ** content from disk. 2972 ** 2973 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2974 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2975 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2976 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2977 ** and it begins with a bunch of zeros. 2978 */ 2979 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2980 }else{ 2981 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2982 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2983 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2984 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2985 pDest->flags &= ~MEM_Ephem; 2986 } 2987 } 2988 2989 op_column_out: 2990 UPDATE_MAX_BLOBSIZE(pDest); 2991 REGISTER_TRACE(pOp->p3, pDest); 2992 break; 2993 2994 op_column_corrupt: 2995 if( aOp[0].p3>0 ){ 2996 pOp = &aOp[aOp[0].p3-1]; 2997 break; 2998 }else{ 2999 rc = SQLITE_CORRUPT_BKPT; 3000 goto abort_due_to_error; 3001 } 3002 } 3003 3004 /* Opcode: TypeCheck P1 P2 P3 P4 * 3005 ** Synopsis: typecheck(r[P1@P2]) 3006 ** 3007 ** Apply affinities to the range of P2 registers beginning with P1. 3008 ** Take the affinities from the Table object in P4. If any value 3009 ** cannot be coerced into the correct type, then raise an error. 3010 ** 3011 ** This opcode is similar to OP_Affinity except that this opcode 3012 ** forces the register type to the Table column type. This is used 3013 ** to implement "strict affinity". 3014 ** 3015 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 3016 ** is zero. When P3 is non-zero, no type checking occurs for 3017 ** static generated columns. Virtual columns are computed at query time 3018 ** and so they are never checked. 3019 ** 3020 ** Preconditions: 3021 ** 3022 ** <ul> 3023 ** <li> P2 should be the number of non-virtual columns in the 3024 ** table of P4. 3025 ** <li> Table P4 should be a STRICT table. 3026 ** </ul> 3027 ** 3028 ** If any precondition is false, an assertion fault occurs. 3029 */ 3030 case OP_TypeCheck: { 3031 Table *pTab; 3032 Column *aCol; 3033 int i; 3034 3035 assert( pOp->p4type==P4_TABLE ); 3036 pTab = pOp->p4.pTab; 3037 assert( pTab->tabFlags & TF_Strict ); 3038 assert( pTab->nNVCol==pOp->p2 ); 3039 aCol = pTab->aCol; 3040 pIn1 = &aMem[pOp->p1]; 3041 for(i=0; i<pTab->nCol; i++){ 3042 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 3043 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 3044 if( pOp->p3 ){ pIn1++; continue; } 3045 } 3046 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 3047 applyAffinity(pIn1, aCol[i].affinity, encoding); 3048 if( (pIn1->flags & MEM_Null)==0 ){ 3049 switch( aCol[i].eCType ){ 3050 case COLTYPE_BLOB: { 3051 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 3052 break; 3053 } 3054 case COLTYPE_INTEGER: 3055 case COLTYPE_INT: { 3056 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 3057 break; 3058 } 3059 case COLTYPE_TEXT: { 3060 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 3061 break; 3062 } 3063 case COLTYPE_REAL: { 3064 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 3065 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal ); 3066 if( pIn1->flags & MEM_Int ){ 3067 /* When applying REAL affinity, if the result is still an MEM_Int 3068 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3069 ** so that we keep the high-resolution integer value but know that 3070 ** the type really wants to be REAL. */ 3071 testcase( pIn1->u.i==140737488355328LL ); 3072 testcase( pIn1->u.i==140737488355327LL ); 3073 testcase( pIn1->u.i==-140737488355328LL ); 3074 testcase( pIn1->u.i==-140737488355329LL ); 3075 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 3076 pIn1->flags |= MEM_IntReal; 3077 pIn1->flags &= ~MEM_Int; 3078 }else{ 3079 pIn1->u.r = (double)pIn1->u.i; 3080 pIn1->flags |= MEM_Real; 3081 pIn1->flags &= ~MEM_Int; 3082 } 3083 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 3084 goto vdbe_type_error; 3085 } 3086 break; 3087 } 3088 default: { 3089 /* COLTYPE_ANY. Accept anything. */ 3090 break; 3091 } 3092 } 3093 } 3094 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3095 pIn1++; 3096 } 3097 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 3098 break; 3099 3100 vdbe_type_error: 3101 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 3102 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 3103 pTab->zName, aCol[i].zCnName); 3104 rc = SQLITE_CONSTRAINT_DATATYPE; 3105 goto abort_due_to_error; 3106 } 3107 3108 /* Opcode: Affinity P1 P2 * P4 * 3109 ** Synopsis: affinity(r[P1@P2]) 3110 ** 3111 ** Apply affinities to a range of P2 registers starting with P1. 3112 ** 3113 ** P4 is a string that is P2 characters long. The N-th character of the 3114 ** string indicates the column affinity that should be used for the N-th 3115 ** memory cell in the range. 3116 */ 3117 case OP_Affinity: { 3118 const char *zAffinity; /* The affinity to be applied */ 3119 3120 zAffinity = pOp->p4.z; 3121 assert( zAffinity!=0 ); 3122 assert( pOp->p2>0 ); 3123 assert( zAffinity[pOp->p2]==0 ); 3124 pIn1 = &aMem[pOp->p1]; 3125 while( 1 /*exit-by-break*/ ){ 3126 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3127 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3128 applyAffinity(pIn1, zAffinity[0], encoding); 3129 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3130 /* When applying REAL affinity, if the result is still an MEM_Int 3131 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3132 ** so that we keep the high-resolution integer value but know that 3133 ** the type really wants to be REAL. */ 3134 testcase( pIn1->u.i==140737488355328LL ); 3135 testcase( pIn1->u.i==140737488355327LL ); 3136 testcase( pIn1->u.i==-140737488355328LL ); 3137 testcase( pIn1->u.i==-140737488355329LL ); 3138 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3139 pIn1->flags |= MEM_IntReal; 3140 pIn1->flags &= ~MEM_Int; 3141 }else{ 3142 pIn1->u.r = (double)pIn1->u.i; 3143 pIn1->flags |= MEM_Real; 3144 pIn1->flags &= ~MEM_Int; 3145 } 3146 } 3147 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3148 zAffinity++; 3149 if( zAffinity[0]==0 ) break; 3150 pIn1++; 3151 } 3152 break; 3153 } 3154 3155 /* Opcode: MakeRecord P1 P2 P3 P4 * 3156 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3157 ** 3158 ** Convert P2 registers beginning with P1 into the [record format] 3159 ** use as a data record in a database table or as a key 3160 ** in an index. The OP_Column opcode can decode the record later. 3161 ** 3162 ** P4 may be a string that is P2 characters long. The N-th character of the 3163 ** string indicates the column affinity that should be used for the N-th 3164 ** field of the index key. 3165 ** 3166 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3167 ** macros defined in sqliteInt.h. 3168 ** 3169 ** If P4 is NULL then all index fields have the affinity BLOB. 3170 ** 3171 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3172 ** compile-time option is enabled: 3173 ** 3174 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3175 ** of the right-most table that can be null-trimmed. 3176 ** 3177 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3178 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3179 ** accept no-change records with serial_type 10. This value is 3180 ** only used inside an assert() and does not affect the end result. 3181 */ 3182 case OP_MakeRecord: { 3183 Mem *pRec; /* The new record */ 3184 u64 nData; /* Number of bytes of data space */ 3185 int nHdr; /* Number of bytes of header space */ 3186 i64 nByte; /* Data space required for this record */ 3187 i64 nZero; /* Number of zero bytes at the end of the record */ 3188 int nVarint; /* Number of bytes in a varint */ 3189 u32 serial_type; /* Type field */ 3190 Mem *pData0; /* First field to be combined into the record */ 3191 Mem *pLast; /* Last field of the record */ 3192 int nField; /* Number of fields in the record */ 3193 char *zAffinity; /* The affinity string for the record */ 3194 u32 len; /* Length of a field */ 3195 u8 *zHdr; /* Where to write next byte of the header */ 3196 u8 *zPayload; /* Where to write next byte of the payload */ 3197 3198 /* Assuming the record contains N fields, the record format looks 3199 ** like this: 3200 ** 3201 ** ------------------------------------------------------------------------ 3202 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3203 ** ------------------------------------------------------------------------ 3204 ** 3205 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3206 ** and so forth. 3207 ** 3208 ** Each type field is a varint representing the serial type of the 3209 ** corresponding data element (see sqlite3VdbeSerialType()). The 3210 ** hdr-size field is also a varint which is the offset from the beginning 3211 ** of the record to data0. 3212 */ 3213 nData = 0; /* Number of bytes of data space */ 3214 nHdr = 0; /* Number of bytes of header space */ 3215 nZero = 0; /* Number of zero bytes at the end of the record */ 3216 nField = pOp->p1; 3217 zAffinity = pOp->p4.z; 3218 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3219 pData0 = &aMem[nField]; 3220 nField = pOp->p2; 3221 pLast = &pData0[nField-1]; 3222 3223 /* Identify the output register */ 3224 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3225 pOut = &aMem[pOp->p3]; 3226 memAboutToChange(p, pOut); 3227 3228 /* Apply the requested affinity to all inputs 3229 */ 3230 assert( pData0<=pLast ); 3231 if( zAffinity ){ 3232 pRec = pData0; 3233 do{ 3234 applyAffinity(pRec, zAffinity[0], encoding); 3235 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3236 pRec->flags |= MEM_IntReal; 3237 pRec->flags &= ~(MEM_Int); 3238 } 3239 REGISTER_TRACE((int)(pRec-aMem), pRec); 3240 zAffinity++; 3241 pRec++; 3242 assert( zAffinity[0]==0 || pRec<=pLast ); 3243 }while( zAffinity[0] ); 3244 } 3245 3246 #ifdef SQLITE_ENABLE_NULL_TRIM 3247 /* NULLs can be safely trimmed from the end of the record, as long as 3248 ** as the schema format is 2 or more and none of the omitted columns 3249 ** have a non-NULL default value. Also, the record must be left with 3250 ** at least one field. If P5>0 then it will be one more than the 3251 ** index of the right-most column with a non-NULL default value */ 3252 if( pOp->p5 ){ 3253 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3254 pLast--; 3255 nField--; 3256 } 3257 } 3258 #endif 3259 3260 /* Loop through the elements that will make up the record to figure 3261 ** out how much space is required for the new record. After this loop, 3262 ** the Mem.uTemp field of each term should hold the serial-type that will 3263 ** be used for that term in the generated record: 3264 ** 3265 ** Mem.uTemp value type 3266 ** --------------- --------------- 3267 ** 0 NULL 3268 ** 1 1-byte signed integer 3269 ** 2 2-byte signed integer 3270 ** 3 3-byte signed integer 3271 ** 4 4-byte signed integer 3272 ** 5 6-byte signed integer 3273 ** 6 8-byte signed integer 3274 ** 7 IEEE float 3275 ** 8 Integer constant 0 3276 ** 9 Integer constant 1 3277 ** 10,11 reserved for expansion 3278 ** N>=12 and even BLOB 3279 ** N>=13 and odd text 3280 ** 3281 ** The following additional values are computed: 3282 ** nHdr Number of bytes needed for the record header 3283 ** nData Number of bytes of data space needed for the record 3284 ** nZero Zero bytes at the end of the record 3285 */ 3286 pRec = pLast; 3287 do{ 3288 assert( memIsValid(pRec) ); 3289 if( pRec->flags & MEM_Null ){ 3290 if( pRec->flags & MEM_Zero ){ 3291 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3292 ** table methods that never invoke sqlite3_result_xxxxx() while 3293 ** computing an unchanging column value in an UPDATE statement. 3294 ** Give such values a special internal-use-only serial-type of 10 3295 ** so that they can be passed through to xUpdate and have 3296 ** a true sqlite3_value_nochange(). */ 3297 #ifndef SQLITE_ENABLE_NULL_TRIM 3298 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3299 #endif 3300 pRec->uTemp = 10; 3301 }else{ 3302 pRec->uTemp = 0; 3303 } 3304 nHdr++; 3305 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3306 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3307 i64 i = pRec->u.i; 3308 u64 uu; 3309 testcase( pRec->flags & MEM_Int ); 3310 testcase( pRec->flags & MEM_IntReal ); 3311 if( i<0 ){ 3312 uu = ~i; 3313 }else{ 3314 uu = i; 3315 } 3316 nHdr++; 3317 testcase( uu==127 ); testcase( uu==128 ); 3318 testcase( uu==32767 ); testcase( uu==32768 ); 3319 testcase( uu==8388607 ); testcase( uu==8388608 ); 3320 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 3321 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3322 if( uu<=127 ){ 3323 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 3324 pRec->uTemp = 8+(u32)uu; 3325 }else{ 3326 nData++; 3327 pRec->uTemp = 1; 3328 } 3329 }else if( uu<=32767 ){ 3330 nData += 2; 3331 pRec->uTemp = 2; 3332 }else if( uu<=8388607 ){ 3333 nData += 3; 3334 pRec->uTemp = 3; 3335 }else if( uu<=2147483647 ){ 3336 nData += 4; 3337 pRec->uTemp = 4; 3338 }else if( uu<=140737488355327LL ){ 3339 nData += 6; 3340 pRec->uTemp = 5; 3341 }else{ 3342 nData += 8; 3343 if( pRec->flags & MEM_IntReal ){ 3344 /* If the value is IntReal and is going to take up 8 bytes to store 3345 ** as an integer, then we might as well make it an 8-byte floating 3346 ** point value */ 3347 pRec->u.r = (double)pRec->u.i; 3348 pRec->flags &= ~MEM_IntReal; 3349 pRec->flags |= MEM_Real; 3350 pRec->uTemp = 7; 3351 }else{ 3352 pRec->uTemp = 6; 3353 } 3354 } 3355 }else if( pRec->flags & MEM_Real ){ 3356 nHdr++; 3357 nData += 8; 3358 pRec->uTemp = 7; 3359 }else{ 3360 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3361 assert( pRec->n>=0 ); 3362 len = (u32)pRec->n; 3363 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3364 if( pRec->flags & MEM_Zero ){ 3365 serial_type += pRec->u.nZero*2; 3366 if( nData ){ 3367 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3368 len += pRec->u.nZero; 3369 }else{ 3370 nZero += pRec->u.nZero; 3371 } 3372 } 3373 nData += len; 3374 nHdr += sqlite3VarintLen(serial_type); 3375 pRec->uTemp = serial_type; 3376 } 3377 if( pRec==pData0 ) break; 3378 pRec--; 3379 }while(1); 3380 3381 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3382 ** which determines the total number of bytes in the header. The varint 3383 ** value is the size of the header in bytes including the size varint 3384 ** itself. */ 3385 testcase( nHdr==126 ); 3386 testcase( nHdr==127 ); 3387 if( nHdr<=126 ){ 3388 /* The common case */ 3389 nHdr += 1; 3390 }else{ 3391 /* Rare case of a really large header */ 3392 nVarint = sqlite3VarintLen(nHdr); 3393 nHdr += nVarint; 3394 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3395 } 3396 nByte = nHdr+nData; 3397 3398 /* Make sure the output register has a buffer large enough to store 3399 ** the new record. The output register (pOp->p3) is not allowed to 3400 ** be one of the input registers (because the following call to 3401 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3402 */ 3403 if( nByte+nZero<=pOut->szMalloc ){ 3404 /* The output register is already large enough to hold the record. 3405 ** No error checks or buffer enlargement is required */ 3406 pOut->z = pOut->zMalloc; 3407 }else{ 3408 /* Need to make sure that the output is not too big and then enlarge 3409 ** the output register to hold the full result */ 3410 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3411 goto too_big; 3412 } 3413 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3414 goto no_mem; 3415 } 3416 } 3417 pOut->n = (int)nByte; 3418 pOut->flags = MEM_Blob; 3419 if( nZero ){ 3420 pOut->u.nZero = nZero; 3421 pOut->flags |= MEM_Zero; 3422 } 3423 UPDATE_MAX_BLOBSIZE(pOut); 3424 zHdr = (u8 *)pOut->z; 3425 zPayload = zHdr + nHdr; 3426 3427 /* Write the record */ 3428 if( nHdr<0x80 ){ 3429 *(zHdr++) = nHdr; 3430 }else{ 3431 zHdr += sqlite3PutVarint(zHdr,nHdr); 3432 } 3433 assert( pData0<=pLast ); 3434 pRec = pData0; 3435 while( 1 /*exit-by-break*/ ){ 3436 serial_type = pRec->uTemp; 3437 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3438 ** additional varints, one per column. 3439 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record 3440 ** immediately follow the header. */ 3441 if( serial_type<=7 ){ 3442 *(zHdr++) = serial_type; 3443 if( serial_type==0 ){ 3444 /* NULL value. No change in zPayload */ 3445 }else{ 3446 u64 v; 3447 u32 i; 3448 if( serial_type==7 ){ 3449 assert( sizeof(v)==sizeof(pRec->u.r) ); 3450 memcpy(&v, &pRec->u.r, sizeof(v)); 3451 swapMixedEndianFloat(v); 3452 }else{ 3453 v = pRec->u.i; 3454 } 3455 len = i = sqlite3SmallTypeSizes[serial_type]; 3456 assert( i>0 ); 3457 while( 1 /*exit-by-break*/ ){ 3458 zPayload[--i] = (u8)(v&0xFF); 3459 if( i==0 ) break; 3460 v >>= 8; 3461 } 3462 zPayload += len; 3463 } 3464 }else if( serial_type<0x80 ){ 3465 *(zHdr++) = serial_type; 3466 if( serial_type>=14 && pRec->n>0 ){ 3467 assert( pRec->z!=0 ); 3468 memcpy(zPayload, pRec->z, pRec->n); 3469 zPayload += pRec->n; 3470 } 3471 }else{ 3472 zHdr += sqlite3PutVarint(zHdr, serial_type); 3473 if( pRec->n ){ 3474 assert( pRec->z!=0 ); 3475 memcpy(zPayload, pRec->z, pRec->n); 3476 zPayload += pRec->n; 3477 } 3478 } 3479 if( pRec==pLast ) break; 3480 pRec++; 3481 } 3482 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3483 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3484 3485 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3486 REGISTER_TRACE(pOp->p3, pOut); 3487 break; 3488 } 3489 3490 /* Opcode: Count P1 P2 P3 * * 3491 ** Synopsis: r[P2]=count() 3492 ** 3493 ** Store the number of entries (an integer value) in the table or index 3494 ** opened by cursor P1 in register P2. 3495 ** 3496 ** If P3==0, then an exact count is obtained, which involves visiting 3497 ** every btree page of the table. But if P3 is non-zero, an estimate 3498 ** is returned based on the current cursor position. 3499 */ 3500 case OP_Count: { /* out2 */ 3501 i64 nEntry; 3502 BtCursor *pCrsr; 3503 3504 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3505 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3506 assert( pCrsr ); 3507 if( pOp->p3 ){ 3508 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3509 }else{ 3510 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3511 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3512 if( rc ) goto abort_due_to_error; 3513 } 3514 pOut = out2Prerelease(p, pOp); 3515 pOut->u.i = nEntry; 3516 goto check_for_interrupt; 3517 } 3518 3519 /* Opcode: Savepoint P1 * * P4 * 3520 ** 3521 ** Open, release or rollback the savepoint named by parameter P4, depending 3522 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3523 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3524 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3525 */ 3526 case OP_Savepoint: { 3527 int p1; /* Value of P1 operand */ 3528 char *zName; /* Name of savepoint */ 3529 int nName; 3530 Savepoint *pNew; 3531 Savepoint *pSavepoint; 3532 Savepoint *pTmp; 3533 int iSavepoint; 3534 int ii; 3535 3536 p1 = pOp->p1; 3537 zName = pOp->p4.z; 3538 3539 /* Assert that the p1 parameter is valid. Also that if there is no open 3540 ** transaction, then there cannot be any savepoints. 3541 */ 3542 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3543 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3544 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3545 assert( checkSavepointCount(db) ); 3546 assert( p->bIsReader ); 3547 3548 if( p1==SAVEPOINT_BEGIN ){ 3549 if( db->nVdbeWrite>0 ){ 3550 /* A new savepoint cannot be created if there are active write 3551 ** statements (i.e. open read/write incremental blob handles). 3552 */ 3553 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3554 rc = SQLITE_BUSY; 3555 }else{ 3556 nName = sqlite3Strlen30(zName); 3557 3558 #ifndef SQLITE_OMIT_VIRTUALTABLE 3559 /* This call is Ok even if this savepoint is actually a transaction 3560 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3561 ** If this is a transaction savepoint being opened, it is guaranteed 3562 ** that the db->aVTrans[] array is empty. */ 3563 assert( db->autoCommit==0 || db->nVTrans==0 ); 3564 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3565 db->nStatement+db->nSavepoint); 3566 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3567 #endif 3568 3569 /* Create a new savepoint structure. */ 3570 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3571 if( pNew ){ 3572 pNew->zName = (char *)&pNew[1]; 3573 memcpy(pNew->zName, zName, nName+1); 3574 3575 /* If there is no open transaction, then mark this as a special 3576 ** "transaction savepoint". */ 3577 if( db->autoCommit ){ 3578 db->autoCommit = 0; 3579 db->isTransactionSavepoint = 1; 3580 }else{ 3581 db->nSavepoint++; 3582 } 3583 3584 /* Link the new savepoint into the database handle's list. */ 3585 pNew->pNext = db->pSavepoint; 3586 db->pSavepoint = pNew; 3587 pNew->nDeferredCons = db->nDeferredCons; 3588 pNew->nDeferredImmCons = db->nDeferredImmCons; 3589 } 3590 } 3591 }else{ 3592 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3593 iSavepoint = 0; 3594 3595 /* Find the named savepoint. If there is no such savepoint, then an 3596 ** an error is returned to the user. */ 3597 for( 3598 pSavepoint = db->pSavepoint; 3599 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3600 pSavepoint = pSavepoint->pNext 3601 ){ 3602 iSavepoint++; 3603 } 3604 if( !pSavepoint ){ 3605 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3606 rc = SQLITE_ERROR; 3607 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3608 /* It is not possible to release (commit) a savepoint if there are 3609 ** active write statements. 3610 */ 3611 sqlite3VdbeError(p, "cannot release savepoint - " 3612 "SQL statements in progress"); 3613 rc = SQLITE_BUSY; 3614 }else{ 3615 3616 /* Determine whether or not this is a transaction savepoint. If so, 3617 ** and this is a RELEASE command, then the current transaction 3618 ** is committed. 3619 */ 3620 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3621 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3622 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3623 goto vdbe_return; 3624 } 3625 db->autoCommit = 1; 3626 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3627 p->pc = (int)(pOp - aOp); 3628 db->autoCommit = 0; 3629 p->rc = rc = SQLITE_BUSY; 3630 goto vdbe_return; 3631 } 3632 rc = p->rc; 3633 if( rc ){ 3634 db->autoCommit = 0; 3635 }else{ 3636 db->isTransactionSavepoint = 0; 3637 } 3638 }else{ 3639 int isSchemaChange; 3640 iSavepoint = db->nSavepoint - iSavepoint - 1; 3641 if( p1==SAVEPOINT_ROLLBACK ){ 3642 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3643 for(ii=0; ii<db->nDb; ii++){ 3644 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3645 SQLITE_ABORT_ROLLBACK, 3646 isSchemaChange==0); 3647 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3648 } 3649 }else{ 3650 assert( p1==SAVEPOINT_RELEASE ); 3651 isSchemaChange = 0; 3652 } 3653 for(ii=0; ii<db->nDb; ii++){ 3654 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3655 if( rc!=SQLITE_OK ){ 3656 goto abort_due_to_error; 3657 } 3658 } 3659 if( isSchemaChange ){ 3660 sqlite3ExpirePreparedStatements(db, 0); 3661 sqlite3ResetAllSchemasOfConnection(db); 3662 db->mDbFlags |= DBFLAG_SchemaChange; 3663 } 3664 } 3665 if( rc ) goto abort_due_to_error; 3666 3667 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3668 ** savepoints nested inside of the savepoint being operated on. */ 3669 while( db->pSavepoint!=pSavepoint ){ 3670 pTmp = db->pSavepoint; 3671 db->pSavepoint = pTmp->pNext; 3672 sqlite3DbFree(db, pTmp); 3673 db->nSavepoint--; 3674 } 3675 3676 /* If it is a RELEASE, then destroy the savepoint being operated on 3677 ** too. If it is a ROLLBACK TO, then set the number of deferred 3678 ** constraint violations present in the database to the value stored 3679 ** when the savepoint was created. */ 3680 if( p1==SAVEPOINT_RELEASE ){ 3681 assert( pSavepoint==db->pSavepoint ); 3682 db->pSavepoint = pSavepoint->pNext; 3683 sqlite3DbFree(db, pSavepoint); 3684 if( !isTransaction ){ 3685 db->nSavepoint--; 3686 } 3687 }else{ 3688 assert( p1==SAVEPOINT_ROLLBACK ); 3689 db->nDeferredCons = pSavepoint->nDeferredCons; 3690 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3691 } 3692 3693 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3694 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3695 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3696 } 3697 } 3698 } 3699 if( rc ) goto abort_due_to_error; 3700 if( p->eVdbeState==VDBE_HALT_STATE ){ 3701 rc = SQLITE_DONE; 3702 goto vdbe_return; 3703 } 3704 break; 3705 } 3706 3707 /* Opcode: AutoCommit P1 P2 * * * 3708 ** 3709 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3710 ** back any currently active btree transactions. If there are any active 3711 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3712 ** there are active writing VMs or active VMs that use shared cache. 3713 ** 3714 ** This instruction causes the VM to halt. 3715 */ 3716 case OP_AutoCommit: { 3717 int desiredAutoCommit; 3718 int iRollback; 3719 3720 desiredAutoCommit = pOp->p1; 3721 iRollback = pOp->p2; 3722 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3723 assert( desiredAutoCommit==1 || iRollback==0 ); 3724 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3725 assert( p->bIsReader ); 3726 3727 if( desiredAutoCommit!=db->autoCommit ){ 3728 if( iRollback ){ 3729 assert( desiredAutoCommit==1 ); 3730 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3731 db->autoCommit = 1; 3732 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3733 /* If this instruction implements a COMMIT and other VMs are writing 3734 ** return an error indicating that the other VMs must complete first. 3735 */ 3736 sqlite3VdbeError(p, "cannot commit transaction - " 3737 "SQL statements in progress"); 3738 rc = SQLITE_BUSY; 3739 goto abort_due_to_error; 3740 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3741 goto vdbe_return; 3742 }else{ 3743 db->autoCommit = (u8)desiredAutoCommit; 3744 } 3745 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3746 p->pc = (int)(pOp - aOp); 3747 db->autoCommit = (u8)(1-desiredAutoCommit); 3748 p->rc = rc = SQLITE_BUSY; 3749 goto vdbe_return; 3750 } 3751 sqlite3CloseSavepoints(db); 3752 if( p->rc==SQLITE_OK ){ 3753 rc = SQLITE_DONE; 3754 }else{ 3755 rc = SQLITE_ERROR; 3756 } 3757 goto vdbe_return; 3758 }else{ 3759 sqlite3VdbeError(p, 3760 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3761 (iRollback)?"cannot rollback - no transaction is active": 3762 "cannot commit - no transaction is active")); 3763 3764 rc = SQLITE_ERROR; 3765 goto abort_due_to_error; 3766 } 3767 /*NOTREACHED*/ assert(0); 3768 } 3769 3770 /* Opcode: Transaction P1 P2 P3 P4 P5 3771 ** 3772 ** Begin a transaction on database P1 if a transaction is not already 3773 ** active. 3774 ** If P2 is non-zero, then a write-transaction is started, or if a 3775 ** read-transaction is already active, it is upgraded to a write-transaction. 3776 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3777 ** then an exclusive transaction is started. 3778 ** 3779 ** P1 is the index of the database file on which the transaction is 3780 ** started. Index 0 is the main database file and index 1 is the 3781 ** file used for temporary tables. Indices of 2 or more are used for 3782 ** attached databases. 3783 ** 3784 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3785 ** true (this flag is set if the Vdbe may modify more than one row and may 3786 ** throw an ABORT exception), a statement transaction may also be opened. 3787 ** More specifically, a statement transaction is opened iff the database 3788 ** connection is currently not in autocommit mode, or if there are other 3789 ** active statements. A statement transaction allows the changes made by this 3790 ** VDBE to be rolled back after an error without having to roll back the 3791 ** entire transaction. If no error is encountered, the statement transaction 3792 ** will automatically commit when the VDBE halts. 3793 ** 3794 ** If P5!=0 then this opcode also checks the schema cookie against P3 3795 ** and the schema generation counter against P4. 3796 ** The cookie changes its value whenever the database schema changes. 3797 ** This operation is used to detect when that the cookie has changed 3798 ** and that the current process needs to reread the schema. If the schema 3799 ** cookie in P3 differs from the schema cookie in the database header or 3800 ** if the schema generation counter in P4 differs from the current 3801 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3802 ** halts. The sqlite3_step() wrapper function might then reprepare the 3803 ** statement and rerun it from the beginning. 3804 */ 3805 case OP_Transaction: { 3806 Btree *pBt; 3807 Db *pDb; 3808 int iMeta = 0; 3809 3810 assert( p->bIsReader ); 3811 assert( p->readOnly==0 || pOp->p2==0 ); 3812 assert( pOp->p2>=0 && pOp->p2<=2 ); 3813 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3814 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3815 assert( rc==SQLITE_OK ); 3816 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3817 if( db->flags & SQLITE_QueryOnly ){ 3818 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3819 rc = SQLITE_READONLY; 3820 }else{ 3821 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3822 ** transaction */ 3823 rc = SQLITE_CORRUPT; 3824 } 3825 goto abort_due_to_error; 3826 } 3827 pDb = &db->aDb[pOp->p1]; 3828 pBt = pDb->pBt; 3829 3830 if( pBt ){ 3831 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3832 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3833 testcase( rc==SQLITE_BUSY_RECOVERY ); 3834 if( rc!=SQLITE_OK ){ 3835 if( (rc&0xff)==SQLITE_BUSY ){ 3836 p->pc = (int)(pOp - aOp); 3837 p->rc = rc; 3838 goto vdbe_return; 3839 } 3840 goto abort_due_to_error; 3841 } 3842 3843 if( p->usesStmtJournal 3844 && pOp->p2 3845 && (db->autoCommit==0 || db->nVdbeRead>1) 3846 ){ 3847 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3848 if( p->iStatement==0 ){ 3849 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3850 db->nStatement++; 3851 p->iStatement = db->nSavepoint + db->nStatement; 3852 } 3853 3854 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3855 if( rc==SQLITE_OK ){ 3856 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3857 } 3858 3859 /* Store the current value of the database handles deferred constraint 3860 ** counter. If the statement transaction needs to be rolled back, 3861 ** the value of this counter needs to be restored too. */ 3862 p->nStmtDefCons = db->nDeferredCons; 3863 p->nStmtDefImmCons = db->nDeferredImmCons; 3864 } 3865 } 3866 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3867 if( rc==SQLITE_OK 3868 && pOp->p5 3869 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) 3870 ){ 3871 /* 3872 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3873 ** version is checked to ensure that the schema has not changed since the 3874 ** SQL statement was prepared. 3875 */ 3876 sqlite3DbFree(db, p->zErrMsg); 3877 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3878 /* If the schema-cookie from the database file matches the cookie 3879 ** stored with the in-memory representation of the schema, do 3880 ** not reload the schema from the database file. 3881 ** 3882 ** If virtual-tables are in use, this is not just an optimization. 3883 ** Often, v-tables store their data in other SQLite tables, which 3884 ** are queried from within xNext() and other v-table methods using 3885 ** prepared queries. If such a query is out-of-date, we do not want to 3886 ** discard the database schema, as the user code implementing the 3887 ** v-table would have to be ready for the sqlite3_vtab structure itself 3888 ** to be invalidated whenever sqlite3_step() is called from within 3889 ** a v-table method. 3890 */ 3891 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3892 sqlite3ResetOneSchema(db, pOp->p1); 3893 } 3894 p->expired = 1; 3895 rc = SQLITE_SCHEMA; 3896 3897 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() 3898 ** from being modified in sqlite3VdbeHalt(). If this statement is 3899 ** reprepared, changeCntOn will be set again. */ 3900 p->changeCntOn = 0; 3901 } 3902 if( rc ) goto abort_due_to_error; 3903 break; 3904 } 3905 3906 /* Opcode: ReadCookie P1 P2 P3 * * 3907 ** 3908 ** Read cookie number P3 from database P1 and write it into register P2. 3909 ** P3==1 is the schema version. P3==2 is the database format. 3910 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3911 ** the main database file and P1==1 is the database file used to store 3912 ** temporary tables. 3913 ** 3914 ** There must be a read-lock on the database (either a transaction 3915 ** must be started or there must be an open cursor) before 3916 ** executing this instruction. 3917 */ 3918 case OP_ReadCookie: { /* out2 */ 3919 int iMeta; 3920 int iDb; 3921 int iCookie; 3922 3923 assert( p->bIsReader ); 3924 iDb = pOp->p1; 3925 iCookie = pOp->p3; 3926 assert( pOp->p3<SQLITE_N_BTREE_META ); 3927 assert( iDb>=0 && iDb<db->nDb ); 3928 assert( db->aDb[iDb].pBt!=0 ); 3929 assert( DbMaskTest(p->btreeMask, iDb) ); 3930 3931 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3932 pOut = out2Prerelease(p, pOp); 3933 pOut->u.i = iMeta; 3934 break; 3935 } 3936 3937 /* Opcode: SetCookie P1 P2 P3 * P5 3938 ** 3939 ** Write the integer value P3 into cookie number P2 of database P1. 3940 ** P2==1 is the schema version. P2==2 is the database format. 3941 ** P2==3 is the recommended pager cache 3942 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3943 ** database file used to store temporary tables. 3944 ** 3945 ** A transaction must be started before executing this opcode. 3946 ** 3947 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3948 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3949 ** has P5 set to 1, so that the internal schema version will be different 3950 ** from the database schema version, resulting in a schema reset. 3951 */ 3952 case OP_SetCookie: { 3953 Db *pDb; 3954 3955 sqlite3VdbeIncrWriteCounter(p, 0); 3956 assert( pOp->p2<SQLITE_N_BTREE_META ); 3957 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3958 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3959 assert( p->readOnly==0 ); 3960 pDb = &db->aDb[pOp->p1]; 3961 assert( pDb->pBt!=0 ); 3962 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3963 /* See note about index shifting on OP_ReadCookie */ 3964 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3965 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3966 /* When the schema cookie changes, record the new cookie internally */ 3967 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; 3968 db->mDbFlags |= DBFLAG_SchemaChange; 3969 sqlite3FkClearTriggerCache(db, pOp->p1); 3970 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3971 /* Record changes in the file format */ 3972 pDb->pSchema->file_format = pOp->p3; 3973 } 3974 if( pOp->p1==1 ){ 3975 /* Invalidate all prepared statements whenever the TEMP database 3976 ** schema is changed. Ticket #1644 */ 3977 sqlite3ExpirePreparedStatements(db, 0); 3978 p->expired = 0; 3979 } 3980 if( rc ) goto abort_due_to_error; 3981 break; 3982 } 3983 3984 /* Opcode: OpenRead P1 P2 P3 P4 P5 3985 ** Synopsis: root=P2 iDb=P3 3986 ** 3987 ** Open a read-only cursor for the database table whose root page is 3988 ** P2 in a database file. The database file is determined by P3. 3989 ** P3==0 means the main database, P3==1 means the database used for 3990 ** temporary tables, and P3>1 means used the corresponding attached 3991 ** database. Give the new cursor an identifier of P1. The P1 3992 ** values need not be contiguous but all P1 values should be small integers. 3993 ** It is an error for P1 to be negative. 3994 ** 3995 ** Allowed P5 bits: 3996 ** <ul> 3997 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3998 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3999 ** of OP_SeekLE/OP_IdxLT) 4000 ** </ul> 4001 ** 4002 ** The P4 value may be either an integer (P4_INT32) or a pointer to 4003 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 4004 ** object, then table being opened must be an [index b-tree] where the 4005 ** KeyInfo object defines the content and collating 4006 ** sequence of that index b-tree. Otherwise, if P4 is an integer 4007 ** value, then the table being opened must be a [table b-tree] with a 4008 ** number of columns no less than the value of P4. 4009 ** 4010 ** See also: OpenWrite, ReopenIdx 4011 */ 4012 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 4013 ** Synopsis: root=P2 iDb=P3 4014 ** 4015 ** The ReopenIdx opcode works like OP_OpenRead except that it first 4016 ** checks to see if the cursor on P1 is already open on the same 4017 ** b-tree and if it is this opcode becomes a no-op. In other words, 4018 ** if the cursor is already open, do not reopen it. 4019 ** 4020 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 4021 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 4022 ** be the same as every other ReopenIdx or OpenRead for the same cursor 4023 ** number. 4024 ** 4025 ** Allowed P5 bits: 4026 ** <ul> 4027 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4028 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4029 ** of OP_SeekLE/OP_IdxLT) 4030 ** </ul> 4031 ** 4032 ** See also: OP_OpenRead, OP_OpenWrite 4033 */ 4034 /* Opcode: OpenWrite P1 P2 P3 P4 P5 4035 ** Synopsis: root=P2 iDb=P3 4036 ** 4037 ** Open a read/write cursor named P1 on the table or index whose root 4038 ** page is P2 (or whose root page is held in register P2 if the 4039 ** OPFLAG_P2ISREG bit is set in P5 - see below). 4040 ** 4041 ** The P4 value may be either an integer (P4_INT32) or a pointer to 4042 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 4043 ** object, then table being opened must be an [index b-tree] where the 4044 ** KeyInfo object defines the content and collating 4045 ** sequence of that index b-tree. Otherwise, if P4 is an integer 4046 ** value, then the table being opened must be a [table b-tree] with a 4047 ** number of columns no less than the value of P4. 4048 ** 4049 ** Allowed P5 bits: 4050 ** <ul> 4051 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4052 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4053 ** of OP_SeekLE/OP_IdxLT) 4054 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 4055 ** and subsequently delete entries in an index btree. This is a 4056 ** hint to the storage engine that the storage engine is allowed to 4057 ** ignore. The hint is not used by the official SQLite b*tree storage 4058 ** engine, but is used by COMDB2. 4059 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 4060 ** as the root page, not the value of P2 itself. 4061 ** </ul> 4062 ** 4063 ** This instruction works like OpenRead except that it opens the cursor 4064 ** in read/write mode. 4065 ** 4066 ** See also: OP_OpenRead, OP_ReopenIdx 4067 */ 4068 case OP_ReopenIdx: { 4069 int nField; 4070 KeyInfo *pKeyInfo; 4071 u32 p2; 4072 int iDb; 4073 int wrFlag; 4074 Btree *pX; 4075 VdbeCursor *pCur; 4076 Db *pDb; 4077 4078 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4079 assert( pOp->p4type==P4_KEYINFO ); 4080 pCur = p->apCsr[pOp->p1]; 4081 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 4082 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 4083 assert( pCur->eCurType==CURTYPE_BTREE ); 4084 sqlite3BtreeClearCursor(pCur->uc.pCursor); 4085 goto open_cursor_set_hints; 4086 } 4087 /* If the cursor is not currently open or is open on a different 4088 ** index, then fall through into OP_OpenRead to force a reopen */ 4089 case OP_OpenRead: 4090 case OP_OpenWrite: 4091 4092 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4093 assert( p->bIsReader ); 4094 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 4095 || p->readOnly==0 ); 4096 4097 if( p->expired==1 ){ 4098 rc = SQLITE_ABORT_ROLLBACK; 4099 goto abort_due_to_error; 4100 } 4101 4102 nField = 0; 4103 pKeyInfo = 0; 4104 p2 = (u32)pOp->p2; 4105 iDb = pOp->p3; 4106 assert( iDb>=0 && iDb<db->nDb ); 4107 assert( DbMaskTest(p->btreeMask, iDb) ); 4108 pDb = &db->aDb[iDb]; 4109 pX = pDb->pBt; 4110 assert( pX!=0 ); 4111 if( pOp->opcode==OP_OpenWrite ){ 4112 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 4113 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 4114 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4115 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 4116 p->minWriteFileFormat = pDb->pSchema->file_format; 4117 } 4118 }else{ 4119 wrFlag = 0; 4120 } 4121 if( pOp->p5 & OPFLAG_P2ISREG ){ 4122 assert( p2>0 ); 4123 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 4124 assert( pOp->opcode==OP_OpenWrite ); 4125 pIn2 = &aMem[p2]; 4126 assert( memIsValid(pIn2) ); 4127 assert( (pIn2->flags & MEM_Int)!=0 ); 4128 sqlite3VdbeMemIntegerify(pIn2); 4129 p2 = (int)pIn2->u.i; 4130 /* The p2 value always comes from a prior OP_CreateBtree opcode and 4131 ** that opcode will always set the p2 value to 2 or more or else fail. 4132 ** If there were a failure, the prepared statement would have halted 4133 ** before reaching this instruction. */ 4134 assert( p2>=2 ); 4135 } 4136 if( pOp->p4type==P4_KEYINFO ){ 4137 pKeyInfo = pOp->p4.pKeyInfo; 4138 assert( pKeyInfo->enc==ENC(db) ); 4139 assert( pKeyInfo->db==db ); 4140 nField = pKeyInfo->nAllField; 4141 }else if( pOp->p4type==P4_INT32 ){ 4142 nField = pOp->p4.i; 4143 } 4144 assert( pOp->p1>=0 ); 4145 assert( nField>=0 ); 4146 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 4147 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 4148 if( pCur==0 ) goto no_mem; 4149 pCur->iDb = iDb; 4150 pCur->nullRow = 1; 4151 pCur->isOrdered = 1; 4152 pCur->pgnoRoot = p2; 4153 #ifdef SQLITE_DEBUG 4154 pCur->wrFlag = wrFlag; 4155 #endif 4156 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4157 pCur->pKeyInfo = pKeyInfo; 4158 /* Set the VdbeCursor.isTable variable. Previous versions of 4159 ** SQLite used to check if the root-page flags were sane at this point 4160 ** and report database corruption if they were not, but this check has 4161 ** since moved into the btree layer. */ 4162 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4163 4164 open_cursor_set_hints: 4165 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4166 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4167 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4168 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4169 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4170 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4171 if( rc ) goto abort_due_to_error; 4172 break; 4173 } 4174 4175 /* Opcode: OpenDup P1 P2 * * * 4176 ** 4177 ** Open a new cursor P1 that points to the same ephemeral table as 4178 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4179 ** opcode. Only ephemeral cursors may be duplicated. 4180 ** 4181 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4182 */ 4183 case OP_OpenDup: { 4184 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4185 VdbeCursor *pCx; /* The new cursor */ 4186 4187 pOrig = p->apCsr[pOp->p2]; 4188 assert( pOrig ); 4189 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4190 4191 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 4192 if( pCx==0 ) goto no_mem; 4193 pCx->nullRow = 1; 4194 pCx->isEphemeral = 1; 4195 pCx->pKeyInfo = pOrig->pKeyInfo; 4196 pCx->isTable = pOrig->isTable; 4197 pCx->pgnoRoot = pOrig->pgnoRoot; 4198 pCx->isOrdered = pOrig->isOrdered; 4199 pCx->ub.pBtx = pOrig->ub.pBtx; 4200 pCx->noReuse = 1; 4201 pOrig->noReuse = 1; 4202 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4203 pCx->pKeyInfo, pCx->uc.pCursor); 4204 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4205 ** opened for a database. Since there is already an open cursor when this 4206 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4207 assert( rc==SQLITE_OK ); 4208 break; 4209 } 4210 4211 4212 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4213 ** Synopsis: nColumn=P2 4214 ** 4215 ** Open a new cursor P1 to a transient table. 4216 ** The cursor is always opened read/write even if 4217 ** the main database is read-only. The ephemeral 4218 ** table is deleted automatically when the cursor is closed. 4219 ** 4220 ** If the cursor P1 is already opened on an ephemeral table, the table 4221 ** is cleared (all content is erased). 4222 ** 4223 ** P2 is the number of columns in the ephemeral table. 4224 ** The cursor points to a BTree table if P4==0 and to a BTree index 4225 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4226 ** that defines the format of keys in the index. 4227 ** 4228 ** The P5 parameter can be a mask of the BTREE_* flags defined 4229 ** in btree.h. These flags control aspects of the operation of 4230 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4231 ** added automatically. 4232 ** 4233 ** If P3 is positive, then reg[P3] is modified slightly so that it 4234 ** can be used as zero-length data for OP_Insert. This is an optimization 4235 ** that avoids an extra OP_Blob opcode to initialize that register. 4236 */ 4237 /* Opcode: OpenAutoindex P1 P2 * P4 * 4238 ** Synopsis: nColumn=P2 4239 ** 4240 ** This opcode works the same as OP_OpenEphemeral. It has a 4241 ** different name to distinguish its use. Tables created using 4242 ** by this opcode will be used for automatically created transient 4243 ** indices in joins. 4244 */ 4245 case OP_OpenAutoindex: 4246 case OP_OpenEphemeral: { 4247 VdbeCursor *pCx; 4248 KeyInfo *pKeyInfo; 4249 4250 static const int vfsFlags = 4251 SQLITE_OPEN_READWRITE | 4252 SQLITE_OPEN_CREATE | 4253 SQLITE_OPEN_EXCLUSIVE | 4254 SQLITE_OPEN_DELETEONCLOSE | 4255 SQLITE_OPEN_TRANSIENT_DB; 4256 assert( pOp->p1>=0 ); 4257 assert( pOp->p2>=0 ); 4258 if( pOp->p3>0 ){ 4259 /* Make register reg[P3] into a value that can be used as the data 4260 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4261 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4262 assert( pOp->opcode==OP_OpenEphemeral ); 4263 assert( aMem[pOp->p3].flags & MEM_Null ); 4264 aMem[pOp->p3].n = 0; 4265 aMem[pOp->p3].z = ""; 4266 } 4267 pCx = p->apCsr[pOp->p1]; 4268 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ 4269 /* If the ephermeral table is already open and has no duplicates from 4270 ** OP_OpenDup, then erase all existing content so that the table is 4271 ** empty again, rather than creating a new table. */ 4272 assert( pCx->isEphemeral ); 4273 pCx->seqCount = 0; 4274 pCx->cacheStatus = CACHE_STALE; 4275 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 4276 }else{ 4277 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 4278 if( pCx==0 ) goto no_mem; 4279 pCx->isEphemeral = 1; 4280 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 4281 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4282 vfsFlags); 4283 if( rc==SQLITE_OK ){ 4284 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 4285 if( rc==SQLITE_OK ){ 4286 /* If a transient index is required, create it by calling 4287 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4288 ** opening it. If a transient table is required, just use the 4289 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4290 */ 4291 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4292 assert( pOp->p4type==P4_KEYINFO ); 4293 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 4294 BTREE_BLOBKEY | pOp->p5); 4295 if( rc==SQLITE_OK ){ 4296 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4297 assert( pKeyInfo->db==db ); 4298 assert( pKeyInfo->enc==ENC(db) ); 4299 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4300 pKeyInfo, pCx->uc.pCursor); 4301 } 4302 pCx->isTable = 0; 4303 }else{ 4304 pCx->pgnoRoot = SCHEMA_ROOT; 4305 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4306 0, pCx->uc.pCursor); 4307 pCx->isTable = 1; 4308 } 4309 } 4310 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4311 if( rc ){ 4312 sqlite3BtreeClose(pCx->ub.pBtx); 4313 } 4314 } 4315 } 4316 if( rc ) goto abort_due_to_error; 4317 pCx->nullRow = 1; 4318 break; 4319 } 4320 4321 /* Opcode: SorterOpen P1 P2 P3 P4 * 4322 ** 4323 ** This opcode works like OP_OpenEphemeral except that it opens 4324 ** a transient index that is specifically designed to sort large 4325 ** tables using an external merge-sort algorithm. 4326 ** 4327 ** If argument P3 is non-zero, then it indicates that the sorter may 4328 ** assume that a stable sort considering the first P3 fields of each 4329 ** key is sufficient to produce the required results. 4330 */ 4331 case OP_SorterOpen: { 4332 VdbeCursor *pCx; 4333 4334 assert( pOp->p1>=0 ); 4335 assert( pOp->p2>=0 ); 4336 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 4337 if( pCx==0 ) goto no_mem; 4338 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4339 assert( pCx->pKeyInfo->db==db ); 4340 assert( pCx->pKeyInfo->enc==ENC(db) ); 4341 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4342 if( rc ) goto abort_due_to_error; 4343 break; 4344 } 4345 4346 /* Opcode: SequenceTest P1 P2 * * * 4347 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4348 ** 4349 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4350 ** to P2. Regardless of whether or not the jump is taken, increment the 4351 ** the sequence value. 4352 */ 4353 case OP_SequenceTest: { 4354 VdbeCursor *pC; 4355 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4356 pC = p->apCsr[pOp->p1]; 4357 assert( isSorter(pC) ); 4358 if( (pC->seqCount++)==0 ){ 4359 goto jump_to_p2; 4360 } 4361 break; 4362 } 4363 4364 /* Opcode: OpenPseudo P1 P2 P3 * * 4365 ** Synopsis: P3 columns in r[P2] 4366 ** 4367 ** Open a new cursor that points to a fake table that contains a single 4368 ** row of data. The content of that one row is the content of memory 4369 ** register P2. In other words, cursor P1 becomes an alias for the 4370 ** MEM_Blob content contained in register P2. 4371 ** 4372 ** A pseudo-table created by this opcode is used to hold a single 4373 ** row output from the sorter so that the row can be decomposed into 4374 ** individual columns using the OP_Column opcode. The OP_Column opcode 4375 ** is the only cursor opcode that works with a pseudo-table. 4376 ** 4377 ** P3 is the number of fields in the records that will be stored by 4378 ** the pseudo-table. 4379 */ 4380 case OP_OpenPseudo: { 4381 VdbeCursor *pCx; 4382 4383 assert( pOp->p1>=0 ); 4384 assert( pOp->p3>=0 ); 4385 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 4386 if( pCx==0 ) goto no_mem; 4387 pCx->nullRow = 1; 4388 pCx->seekResult = pOp->p2; 4389 pCx->isTable = 1; 4390 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4391 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4392 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4393 ** which is a performance optimization */ 4394 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4395 assert( pOp->p5==0 ); 4396 break; 4397 } 4398 4399 /* Opcode: Close P1 * * * * 4400 ** 4401 ** Close a cursor previously opened as P1. If P1 is not 4402 ** currently open, this instruction is a no-op. 4403 */ 4404 case OP_Close: { 4405 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4406 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4407 p->apCsr[pOp->p1] = 0; 4408 break; 4409 } 4410 4411 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4412 /* Opcode: ColumnsUsed P1 * * P4 * 4413 ** 4414 ** This opcode (which only exists if SQLite was compiled with 4415 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4416 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4417 ** (P4_INT64) in which the first 63 bits are one for each of the 4418 ** first 63 columns of the table or index that are actually used 4419 ** by the cursor. The high-order bit is set if any column after 4420 ** the 64th is used. 4421 */ 4422 case OP_ColumnsUsed: { 4423 VdbeCursor *pC; 4424 pC = p->apCsr[pOp->p1]; 4425 assert( pC->eCurType==CURTYPE_BTREE ); 4426 pC->maskUsed = *(u64*)pOp->p4.pI64; 4427 break; 4428 } 4429 #endif 4430 4431 /* Opcode: SeekGE P1 P2 P3 P4 * 4432 ** Synopsis: key=r[P3@P4] 4433 ** 4434 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4435 ** use the value in register P3 as the key. If cursor P1 refers 4436 ** to an SQL index, then P3 is the first in an array of P4 registers 4437 ** that are used as an unpacked index key. 4438 ** 4439 ** Reposition cursor P1 so that it points to the smallest entry that 4440 ** is greater than or equal to the key value. If there are no records 4441 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4442 ** 4443 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4444 ** opcode will either land on a record that exactly matches the key, or 4445 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4446 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4447 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4448 ** IdxGT opcode will be used on subsequent loop iterations. The 4449 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4450 ** is an equality search. 4451 ** 4452 ** This opcode leaves the cursor configured to move in forward order, 4453 ** from the beginning toward the end. In other words, the cursor is 4454 ** configured to use Next, not Prev. 4455 ** 4456 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4457 */ 4458 /* Opcode: SeekGT P1 P2 P3 P4 * 4459 ** Synopsis: key=r[P3@P4] 4460 ** 4461 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4462 ** use the value in register P3 as a key. If cursor P1 refers 4463 ** to an SQL index, then P3 is the first in an array of P4 registers 4464 ** that are used as an unpacked index key. 4465 ** 4466 ** Reposition cursor P1 so that it points to the smallest entry that 4467 ** is greater than the key value. If there are no records greater than 4468 ** the key and P2 is not zero, then jump to P2. 4469 ** 4470 ** This opcode leaves the cursor configured to move in forward order, 4471 ** from the beginning toward the end. In other words, the cursor is 4472 ** configured to use Next, not Prev. 4473 ** 4474 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4475 */ 4476 /* Opcode: SeekLT P1 P2 P3 P4 * 4477 ** Synopsis: key=r[P3@P4] 4478 ** 4479 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4480 ** use the value in register P3 as a key. If cursor P1 refers 4481 ** to an SQL index, then P3 is the first in an array of P4 registers 4482 ** that are used as an unpacked index key. 4483 ** 4484 ** Reposition cursor P1 so that it points to the largest entry that 4485 ** is less than the key value. If there are no records less than 4486 ** the key and P2 is not zero, then jump to P2. 4487 ** 4488 ** This opcode leaves the cursor configured to move in reverse order, 4489 ** from the end toward the beginning. In other words, the cursor is 4490 ** configured to use Prev, not Next. 4491 ** 4492 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4493 */ 4494 /* Opcode: SeekLE P1 P2 P3 P4 * 4495 ** Synopsis: key=r[P3@P4] 4496 ** 4497 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4498 ** use the value in register P3 as a key. If cursor P1 refers 4499 ** to an SQL index, then P3 is the first in an array of P4 registers 4500 ** that are used as an unpacked index key. 4501 ** 4502 ** Reposition cursor P1 so that it points to the largest entry that 4503 ** is less than or equal to the key value. If there are no records 4504 ** less than or equal to the key and P2 is not zero, then jump to P2. 4505 ** 4506 ** This opcode leaves the cursor configured to move in reverse order, 4507 ** from the end toward the beginning. In other words, the cursor is 4508 ** configured to use Prev, not Next. 4509 ** 4510 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4511 ** opcode will either land on a record that exactly matches the key, or 4512 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4513 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4514 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4515 ** IdxGE opcode will be used on subsequent loop iterations. The 4516 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4517 ** is an equality search. 4518 ** 4519 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4520 */ 4521 case OP_SeekLT: /* jump, in3, group */ 4522 case OP_SeekLE: /* jump, in3, group */ 4523 case OP_SeekGE: /* jump, in3, group */ 4524 case OP_SeekGT: { /* jump, in3, group */ 4525 int res; /* Comparison result */ 4526 int oc; /* Opcode */ 4527 VdbeCursor *pC; /* The cursor to seek */ 4528 UnpackedRecord r; /* The key to seek for */ 4529 int nField; /* Number of columns or fields in the key */ 4530 i64 iKey; /* The rowid we are to seek to */ 4531 int eqOnly; /* Only interested in == results */ 4532 4533 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4534 assert( pOp->p2!=0 ); 4535 pC = p->apCsr[pOp->p1]; 4536 assert( pC!=0 ); 4537 assert( pC->eCurType==CURTYPE_BTREE ); 4538 assert( OP_SeekLE == OP_SeekLT+1 ); 4539 assert( OP_SeekGE == OP_SeekLT+2 ); 4540 assert( OP_SeekGT == OP_SeekLT+3 ); 4541 assert( pC->isOrdered ); 4542 assert( pC->uc.pCursor!=0 ); 4543 oc = pOp->opcode; 4544 eqOnly = 0; 4545 pC->nullRow = 0; 4546 #ifdef SQLITE_DEBUG 4547 pC->seekOp = pOp->opcode; 4548 #endif 4549 4550 pC->deferredMoveto = 0; 4551 pC->cacheStatus = CACHE_STALE; 4552 if( pC->isTable ){ 4553 u16 flags3, newType; 4554 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4555 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4556 || CORRUPT_DB ); 4557 4558 /* The input value in P3 might be of any type: integer, real, string, 4559 ** blob, or NULL. But it needs to be an integer before we can do 4560 ** the seek, so convert it. */ 4561 pIn3 = &aMem[pOp->p3]; 4562 flags3 = pIn3->flags; 4563 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4564 applyNumericAffinity(pIn3, 0); 4565 } 4566 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4567 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4568 pIn3->flags = flags3; /* But convert the type back to its original */ 4569 4570 /* If the P3 value could not be converted into an integer without 4571 ** loss of information, then special processing is required... */ 4572 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4573 int c; 4574 if( (newType & MEM_Real)==0 ){ 4575 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4576 VdbeBranchTaken(1,2); 4577 goto jump_to_p2; 4578 }else{ 4579 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4580 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4581 goto seek_not_found; 4582 } 4583 } 4584 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4585 4586 /* If the approximation iKey is larger than the actual real search 4587 ** term, substitute >= for > and < for <=. e.g. if the search term 4588 ** is 4.9 and the integer approximation 5: 4589 ** 4590 ** (x > 4.9) -> (x >= 5) 4591 ** (x <= 4.9) -> (x < 5) 4592 */ 4593 if( c>0 ){ 4594 assert( OP_SeekGE==(OP_SeekGT-1) ); 4595 assert( OP_SeekLT==(OP_SeekLE-1) ); 4596 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4597 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4598 } 4599 4600 /* If the approximation iKey is smaller than the actual real search 4601 ** term, substitute <= for < and > for >=. */ 4602 else if( c<0 ){ 4603 assert( OP_SeekLE==(OP_SeekLT+1) ); 4604 assert( OP_SeekGT==(OP_SeekGE+1) ); 4605 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4606 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4607 } 4608 } 4609 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4610 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4611 if( rc!=SQLITE_OK ){ 4612 goto abort_due_to_error; 4613 } 4614 }else{ 4615 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4616 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4617 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4618 ** with the same key. 4619 */ 4620 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4621 eqOnly = 1; 4622 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4623 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4624 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4625 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4626 assert( pOp[1].p1==pOp[0].p1 ); 4627 assert( pOp[1].p2==pOp[0].p2 ); 4628 assert( pOp[1].p3==pOp[0].p3 ); 4629 assert( pOp[1].p4.i==pOp[0].p4.i ); 4630 } 4631 4632 nField = pOp->p4.i; 4633 assert( pOp->p4type==P4_INT32 ); 4634 assert( nField>0 ); 4635 r.pKeyInfo = pC->pKeyInfo; 4636 r.nField = (u16)nField; 4637 4638 /* The next line of code computes as follows, only faster: 4639 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4640 ** r.default_rc = -1; 4641 ** }else{ 4642 ** r.default_rc = +1; 4643 ** } 4644 */ 4645 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4646 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4647 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4648 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4649 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4650 4651 r.aMem = &aMem[pOp->p3]; 4652 #ifdef SQLITE_DEBUG 4653 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4654 #endif 4655 r.eqSeen = 0; 4656 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4657 if( rc!=SQLITE_OK ){ 4658 goto abort_due_to_error; 4659 } 4660 if( eqOnly && r.eqSeen==0 ){ 4661 assert( res!=0 ); 4662 goto seek_not_found; 4663 } 4664 } 4665 #ifdef SQLITE_TEST 4666 sqlite3_search_count++; 4667 #endif 4668 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4669 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4670 res = 0; 4671 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4672 if( rc!=SQLITE_OK ){ 4673 if( rc==SQLITE_DONE ){ 4674 rc = SQLITE_OK; 4675 res = 1; 4676 }else{ 4677 goto abort_due_to_error; 4678 } 4679 } 4680 }else{ 4681 res = 0; 4682 } 4683 }else{ 4684 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4685 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4686 res = 0; 4687 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4688 if( rc!=SQLITE_OK ){ 4689 if( rc==SQLITE_DONE ){ 4690 rc = SQLITE_OK; 4691 res = 1; 4692 }else{ 4693 goto abort_due_to_error; 4694 } 4695 } 4696 }else{ 4697 /* res might be negative because the table is empty. Check to 4698 ** see if this is the case. 4699 */ 4700 res = sqlite3BtreeEof(pC->uc.pCursor); 4701 } 4702 } 4703 seek_not_found: 4704 assert( pOp->p2>0 ); 4705 VdbeBranchTaken(res!=0,2); 4706 if( res ){ 4707 goto jump_to_p2; 4708 }else if( eqOnly ){ 4709 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4710 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4711 } 4712 break; 4713 } 4714 4715 4716 /* Opcode: SeekScan P1 P2 * * * 4717 ** Synopsis: Scan-ahead up to P1 rows 4718 ** 4719 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4720 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4721 ** checked by assert() statements. 4722 ** 4723 ** This opcode uses the P1 through P4 operands of the subsequent 4724 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4725 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4726 ** the P1 and P2 operands of this opcode are also used, and are called 4727 ** This.P1 and This.P2. 4728 ** 4729 ** This opcode helps to optimize IN operators on a multi-column index 4730 ** where the IN operator is on the later terms of the index by avoiding 4731 ** unnecessary seeks on the btree, substituting steps to the next row 4732 ** of the b-tree instead. A correct answer is obtained if this opcode 4733 ** is omitted or is a no-op. 4734 ** 4735 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4736 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4737 ** to. Call this SeekGE.P4/P5 row the "target". 4738 ** 4739 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4740 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4741 ** 4742 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4743 ** might be the target row, or it might be near and slightly before the 4744 ** target row. This opcode attempts to position the cursor on the target 4745 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4746 ** between 0 and This.P1 times. 4747 ** 4748 ** There are three possible outcomes from this opcode:<ol> 4749 ** 4750 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4751 ** is earlier in the btree than the target row, then fall through 4752 ** into the subsquence OP_SeekGE opcode. 4753 ** 4754 ** <li> If the cursor is successfully moved to the target row by 0 or more 4755 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4756 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4757 ** 4758 ** <li> If the cursor ends up past the target row (indicating the the target 4759 ** row does not exist in the btree) then jump to SeekOP.P2. 4760 ** </ol> 4761 */ 4762 case OP_SeekScan: { 4763 VdbeCursor *pC; 4764 int res; 4765 int nStep; 4766 UnpackedRecord r; 4767 4768 assert( pOp[1].opcode==OP_SeekGE ); 4769 4770 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4771 ** follows the OP_SeekGE. */ 4772 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4773 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4774 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4775 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4776 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4777 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4778 4779 assert( pOp->p1>0 ); 4780 pC = p->apCsr[pOp[1].p1]; 4781 assert( pC!=0 ); 4782 assert( pC->eCurType==CURTYPE_BTREE ); 4783 assert( !pC->isTable ); 4784 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4785 #ifdef SQLITE_DEBUG 4786 if( db->flags&SQLITE_VdbeTrace ){ 4787 printf("... cursor not valid - fall through\n"); 4788 } 4789 #endif 4790 break; 4791 } 4792 nStep = pOp->p1; 4793 assert( nStep>=1 ); 4794 r.pKeyInfo = pC->pKeyInfo; 4795 r.nField = (u16)pOp[1].p4.i; 4796 r.default_rc = 0; 4797 r.aMem = &aMem[pOp[1].p3]; 4798 #ifdef SQLITE_DEBUG 4799 { 4800 int i; 4801 for(i=0; i<r.nField; i++){ 4802 assert( memIsValid(&r.aMem[i]) ); 4803 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4804 } 4805 } 4806 #endif 4807 res = 0; /* Not needed. Only used to silence a warning. */ 4808 while(1){ 4809 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4810 if( rc ) goto abort_due_to_error; 4811 if( res>0 ){ 4812 seekscan_search_fail: 4813 #ifdef SQLITE_DEBUG 4814 if( db->flags&SQLITE_VdbeTrace ){ 4815 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4816 } 4817 #endif 4818 VdbeBranchTaken(1,3); 4819 pOp++; 4820 goto jump_to_p2; 4821 } 4822 if( res==0 ){ 4823 #ifdef SQLITE_DEBUG 4824 if( db->flags&SQLITE_VdbeTrace ){ 4825 printf("... %d steps and then success\n", pOp->p1 - nStep); 4826 } 4827 #endif 4828 VdbeBranchTaken(2,3); 4829 goto jump_to_p2; 4830 break; 4831 } 4832 if( nStep<=0 ){ 4833 #ifdef SQLITE_DEBUG 4834 if( db->flags&SQLITE_VdbeTrace ){ 4835 printf("... fall through after %d steps\n", pOp->p1); 4836 } 4837 #endif 4838 VdbeBranchTaken(0,3); 4839 break; 4840 } 4841 nStep--; 4842 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4843 if( rc ){ 4844 if( rc==SQLITE_DONE ){ 4845 rc = SQLITE_OK; 4846 goto seekscan_search_fail; 4847 }else{ 4848 goto abort_due_to_error; 4849 } 4850 } 4851 } 4852 4853 break; 4854 } 4855 4856 4857 /* Opcode: SeekHit P1 P2 P3 * * 4858 ** Synopsis: set P2<=seekHit<=P3 4859 ** 4860 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4861 ** so that it is no less than P2 and no greater than P3. 4862 ** 4863 ** The seekHit integer represents the maximum of terms in an index for which 4864 ** there is known to be at least one match. If the seekHit value is smaller 4865 ** than the total number of equality terms in an index lookup, then the 4866 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4867 ** early, thus saving work. This is part of the IN-early-out optimization. 4868 ** 4869 ** P1 must be a valid b-tree cursor. 4870 */ 4871 case OP_SeekHit: { 4872 VdbeCursor *pC; 4873 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4874 pC = p->apCsr[pOp->p1]; 4875 assert( pC!=0 ); 4876 assert( pOp->p3>=pOp->p2 ); 4877 if( pC->seekHit<pOp->p2 ){ 4878 #ifdef SQLITE_DEBUG 4879 if( db->flags&SQLITE_VdbeTrace ){ 4880 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4881 } 4882 #endif 4883 pC->seekHit = pOp->p2; 4884 }else if( pC->seekHit>pOp->p3 ){ 4885 #ifdef SQLITE_DEBUG 4886 if( db->flags&SQLITE_VdbeTrace ){ 4887 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4888 } 4889 #endif 4890 pC->seekHit = pOp->p3; 4891 } 4892 break; 4893 } 4894 4895 /* Opcode: IfNotOpen P1 P2 * * * 4896 ** Synopsis: if( !csr[P1] ) goto P2 4897 ** 4898 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4899 */ 4900 case OP_IfNotOpen: { /* jump */ 4901 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4902 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4903 if( !p->apCsr[pOp->p1] ){ 4904 goto jump_to_p2_and_check_for_interrupt; 4905 } 4906 break; 4907 } 4908 4909 /* Opcode: Found P1 P2 P3 P4 * 4910 ** Synopsis: key=r[P3@P4] 4911 ** 4912 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4913 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4914 ** record. 4915 ** 4916 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4917 ** is a prefix of any entry in P1 then a jump is made to P2 and 4918 ** P1 is left pointing at the matching entry. 4919 ** 4920 ** This operation leaves the cursor in a state where it can be 4921 ** advanced in the forward direction. The Next instruction will work, 4922 ** but not the Prev instruction. 4923 ** 4924 ** See also: NotFound, NoConflict, NotExists. SeekGe 4925 */ 4926 /* Opcode: NotFound P1 P2 P3 P4 * 4927 ** Synopsis: key=r[P3@P4] 4928 ** 4929 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4930 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4931 ** record. 4932 ** 4933 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4934 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4935 ** does contain an entry whose prefix matches the P3/P4 record then control 4936 ** falls through to the next instruction and P1 is left pointing at the 4937 ** matching entry. 4938 ** 4939 ** This operation leaves the cursor in a state where it cannot be 4940 ** advanced in either direction. In other words, the Next and Prev 4941 ** opcodes do not work after this operation. 4942 ** 4943 ** See also: Found, NotExists, NoConflict, IfNoHope 4944 */ 4945 /* Opcode: IfNoHope P1 P2 P3 P4 * 4946 ** Synopsis: key=r[P3@P4] 4947 ** 4948 ** Register P3 is the first of P4 registers that form an unpacked 4949 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4950 ** In other words, the operands to this opcode are the same as the 4951 ** operands to OP_NotFound and OP_IdxGT. 4952 ** 4953 ** This opcode is an optimization attempt only. If this opcode always 4954 ** falls through, the correct answer is still obtained, but extra works 4955 ** is performed. 4956 ** 4957 ** A value of N in the seekHit flag of cursor P1 means that there exists 4958 ** a key P3:N that will match some record in the index. We want to know 4959 ** if it is possible for a record P3:P4 to match some record in the 4960 ** index. If it is not possible, we can skips some work. So if seekHit 4961 ** is less than P4, attempt to find out if a match is possible by running 4962 ** OP_NotFound. 4963 ** 4964 ** This opcode is used in IN clause processing for a multi-column key. 4965 ** If an IN clause is attached to an element of the key other than the 4966 ** left-most element, and if there are no matches on the most recent 4967 ** seek over the whole key, then it might be that one of the key element 4968 ** to the left is prohibiting a match, and hence there is "no hope" of 4969 ** any match regardless of how many IN clause elements are checked. 4970 ** In such a case, we abandon the IN clause search early, using this 4971 ** opcode. The opcode name comes from the fact that the 4972 ** jump is taken if there is "no hope" of achieving a match. 4973 ** 4974 ** See also: NotFound, SeekHit 4975 */ 4976 /* Opcode: NoConflict P1 P2 P3 P4 * 4977 ** Synopsis: key=r[P3@P4] 4978 ** 4979 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4980 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4981 ** record. 4982 ** 4983 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4984 ** contains any NULL value, jump immediately to P2. If all terms of the 4985 ** record are not-NULL then a check is done to determine if any row in the 4986 ** P1 index btree has a matching key prefix. If there are no matches, jump 4987 ** immediately to P2. If there is a match, fall through and leave the P1 4988 ** cursor pointing to the matching row. 4989 ** 4990 ** This opcode is similar to OP_NotFound with the exceptions that the 4991 ** branch is always taken if any part of the search key input is NULL. 4992 ** 4993 ** This operation leaves the cursor in a state where it cannot be 4994 ** advanced in either direction. In other words, the Next and Prev 4995 ** opcodes do not work after this operation. 4996 ** 4997 ** See also: NotFound, Found, NotExists 4998 */ 4999 case OP_IfNoHope: { /* jump, in3 */ 5000 VdbeCursor *pC; 5001 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5002 pC = p->apCsr[pOp->p1]; 5003 assert( pC!=0 ); 5004 #ifdef SQLITE_DEBUG 5005 if( db->flags&SQLITE_VdbeTrace ){ 5006 printf("seekHit is %d\n", pC->seekHit); 5007 } 5008 #endif 5009 if( pC->seekHit>=pOp->p4.i ) break; 5010 /* Fall through into OP_NotFound */ 5011 /* no break */ deliberate_fall_through 5012 } 5013 case OP_NoConflict: /* jump, in3 */ 5014 case OP_NotFound: /* jump, in3 */ 5015 case OP_Found: { /* jump, in3 */ 5016 int alreadyExists; 5017 int ii; 5018 VdbeCursor *pC; 5019 UnpackedRecord *pIdxKey; 5020 UnpackedRecord r; 5021 5022 #ifdef SQLITE_TEST 5023 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 5024 #endif 5025 5026 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5027 assert( pOp->p4type==P4_INT32 ); 5028 pC = p->apCsr[pOp->p1]; 5029 assert( pC!=0 ); 5030 #ifdef SQLITE_DEBUG 5031 pC->seekOp = pOp->opcode; 5032 #endif 5033 r.aMem = &aMem[pOp->p3]; 5034 assert( pC->eCurType==CURTYPE_BTREE ); 5035 assert( pC->uc.pCursor!=0 ); 5036 assert( pC->isTable==0 ); 5037 r.nField = (u16)pOp->p4.i; 5038 if( r.nField>0 ){ 5039 /* Key values in an array of registers */ 5040 r.pKeyInfo = pC->pKeyInfo; 5041 r.default_rc = 0; 5042 #ifdef SQLITE_DEBUG 5043 for(ii=0; ii<r.nField; ii++){ 5044 assert( memIsValid(&r.aMem[ii]) ); 5045 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 5046 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 5047 } 5048 #endif 5049 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); 5050 }else{ 5051 /* Composite key generated by OP_MakeRecord */ 5052 assert( r.aMem->flags & MEM_Blob ); 5053 assert( pOp->opcode!=OP_NoConflict ); 5054 rc = ExpandBlob(r.aMem); 5055 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5056 if( rc ) goto no_mem; 5057 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 5058 if( pIdxKey==0 ) goto no_mem; 5059 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); 5060 pIdxKey->default_rc = 0; 5061 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); 5062 sqlite3DbFreeNN(db, pIdxKey); 5063 } 5064 if( rc!=SQLITE_OK ){ 5065 goto abort_due_to_error; 5066 } 5067 alreadyExists = (pC->seekResult==0); 5068 pC->nullRow = 1-alreadyExists; 5069 pC->deferredMoveto = 0; 5070 pC->cacheStatus = CACHE_STALE; 5071 if( pOp->opcode==OP_Found ){ 5072 VdbeBranchTaken(alreadyExists!=0,2); 5073 if( alreadyExists ) goto jump_to_p2; 5074 }else{ 5075 if( !alreadyExists ){ 5076 VdbeBranchTaken(1,2); 5077 goto jump_to_p2; 5078 } 5079 if( pOp->opcode==OP_NoConflict ){ 5080 /* For the OP_NoConflict opcode, take the jump if any of the 5081 ** input fields are NULL, since any key with a NULL will not 5082 ** conflict */ 5083 for(ii=0; ii<r.nField; ii++){ 5084 if( r.aMem[ii].flags & MEM_Null ){ 5085 VdbeBranchTaken(1,2); 5086 goto jump_to_p2; 5087 } 5088 } 5089 } 5090 VdbeBranchTaken(0,2); 5091 if( pOp->opcode==OP_IfNoHope ){ 5092 pC->seekHit = pOp->p4.i; 5093 } 5094 } 5095 break; 5096 } 5097 5098 /* Opcode: SeekRowid P1 P2 P3 * * 5099 ** Synopsis: intkey=r[P3] 5100 ** 5101 ** P1 is the index of a cursor open on an SQL table btree (with integer 5102 ** keys). If register P3 does not contain an integer or if P1 does not 5103 ** contain a record with rowid P3 then jump immediately to P2. 5104 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 5105 ** a record with rowid P3 then 5106 ** leave the cursor pointing at that record and fall through to the next 5107 ** instruction. 5108 ** 5109 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 5110 ** the P3 register must be guaranteed to contain an integer value. With this 5111 ** opcode, register P3 might not contain an integer. 5112 ** 5113 ** The OP_NotFound opcode performs the same operation on index btrees 5114 ** (with arbitrary multi-value keys). 5115 ** 5116 ** This opcode leaves the cursor in a state where it cannot be advanced 5117 ** in either direction. In other words, the Next and Prev opcodes will 5118 ** not work following this opcode. 5119 ** 5120 ** See also: Found, NotFound, NoConflict, SeekRowid 5121 */ 5122 /* Opcode: NotExists P1 P2 P3 * * 5123 ** Synopsis: intkey=r[P3] 5124 ** 5125 ** P1 is the index of a cursor open on an SQL table btree (with integer 5126 ** keys). P3 is an integer rowid. If P1 does not contain a record with 5127 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 5128 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 5129 ** leave the cursor pointing at that record and fall through to the next 5130 ** instruction. 5131 ** 5132 ** The OP_SeekRowid opcode performs the same operation but also allows the 5133 ** P3 register to contain a non-integer value, in which case the jump is 5134 ** always taken. This opcode requires that P3 always contain an integer. 5135 ** 5136 ** The OP_NotFound opcode performs the same operation on index btrees 5137 ** (with arbitrary multi-value keys). 5138 ** 5139 ** This opcode leaves the cursor in a state where it cannot be advanced 5140 ** in either direction. In other words, the Next and Prev opcodes will 5141 ** not work following this opcode. 5142 ** 5143 ** See also: Found, NotFound, NoConflict, SeekRowid 5144 */ 5145 case OP_SeekRowid: { /* jump, in3 */ 5146 VdbeCursor *pC; 5147 BtCursor *pCrsr; 5148 int res; 5149 u64 iKey; 5150 5151 pIn3 = &aMem[pOp->p3]; 5152 testcase( pIn3->flags & MEM_Int ); 5153 testcase( pIn3->flags & MEM_IntReal ); 5154 testcase( pIn3->flags & MEM_Real ); 5155 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 5156 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5157 /* If pIn3->u.i does not contain an integer, compute iKey as the 5158 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5159 ** into an integer without loss of information. Take care to avoid 5160 ** changing the datatype of pIn3, however, as it is used by other 5161 ** parts of the prepared statement. */ 5162 Mem x = pIn3[0]; 5163 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5164 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5165 iKey = x.u.i; 5166 goto notExistsWithKey; 5167 } 5168 /* Fall through into OP_NotExists */ 5169 /* no break */ deliberate_fall_through 5170 case OP_NotExists: /* jump, in3 */ 5171 pIn3 = &aMem[pOp->p3]; 5172 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5173 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5174 iKey = pIn3->u.i; 5175 notExistsWithKey: 5176 pC = p->apCsr[pOp->p1]; 5177 assert( pC!=0 ); 5178 #ifdef SQLITE_DEBUG 5179 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5180 #endif 5181 assert( pC->isTable ); 5182 assert( pC->eCurType==CURTYPE_BTREE ); 5183 pCrsr = pC->uc.pCursor; 5184 assert( pCrsr!=0 ); 5185 res = 0; 5186 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5187 assert( rc==SQLITE_OK || res==0 ); 5188 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5189 pC->nullRow = 0; 5190 pC->cacheStatus = CACHE_STALE; 5191 pC->deferredMoveto = 0; 5192 VdbeBranchTaken(res!=0,2); 5193 pC->seekResult = res; 5194 if( res!=0 ){ 5195 assert( rc==SQLITE_OK ); 5196 if( pOp->p2==0 ){ 5197 rc = SQLITE_CORRUPT_BKPT; 5198 }else{ 5199 goto jump_to_p2; 5200 } 5201 } 5202 if( rc ) goto abort_due_to_error; 5203 break; 5204 } 5205 5206 /* Opcode: Sequence P1 P2 * * * 5207 ** Synopsis: r[P2]=cursor[P1].ctr++ 5208 ** 5209 ** Find the next available sequence number for cursor P1. 5210 ** Write the sequence number into register P2. 5211 ** The sequence number on the cursor is incremented after this 5212 ** instruction. 5213 */ 5214 case OP_Sequence: { /* out2 */ 5215 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5216 assert( p->apCsr[pOp->p1]!=0 ); 5217 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5218 pOut = out2Prerelease(p, pOp); 5219 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5220 break; 5221 } 5222 5223 5224 /* Opcode: NewRowid P1 P2 P3 * * 5225 ** Synopsis: r[P2]=rowid 5226 ** 5227 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5228 ** The record number is not previously used as a key in the database 5229 ** table that cursor P1 points to. The new record number is written 5230 ** written to register P2. 5231 ** 5232 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5233 ** the largest previously generated record number. No new record numbers are 5234 ** allowed to be less than this value. When this value reaches its maximum, 5235 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5236 ** generated record number. This P3 mechanism is used to help implement the 5237 ** AUTOINCREMENT feature. 5238 */ 5239 case OP_NewRowid: { /* out2 */ 5240 i64 v; /* The new rowid */ 5241 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5242 int res; /* Result of an sqlite3BtreeLast() */ 5243 int cnt; /* Counter to limit the number of searches */ 5244 #ifndef SQLITE_OMIT_AUTOINCREMENT 5245 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5246 VdbeFrame *pFrame; /* Root frame of VDBE */ 5247 #endif 5248 5249 v = 0; 5250 res = 0; 5251 pOut = out2Prerelease(p, pOp); 5252 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5253 pC = p->apCsr[pOp->p1]; 5254 assert( pC!=0 ); 5255 assert( pC->isTable ); 5256 assert( pC->eCurType==CURTYPE_BTREE ); 5257 assert( pC->uc.pCursor!=0 ); 5258 { 5259 /* The next rowid or record number (different terms for the same 5260 ** thing) is obtained in a two-step algorithm. 5261 ** 5262 ** First we attempt to find the largest existing rowid and add one 5263 ** to that. But if the largest existing rowid is already the maximum 5264 ** positive integer, we have to fall through to the second 5265 ** probabilistic algorithm 5266 ** 5267 ** The second algorithm is to select a rowid at random and see if 5268 ** it already exists in the table. If it does not exist, we have 5269 ** succeeded. If the random rowid does exist, we select a new one 5270 ** and try again, up to 100 times. 5271 */ 5272 assert( pC->isTable ); 5273 5274 #ifdef SQLITE_32BIT_ROWID 5275 # define MAX_ROWID 0x7fffffff 5276 #else 5277 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5278 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5279 ** to provide the constant while making all compilers happy. 5280 */ 5281 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5282 #endif 5283 5284 if( !pC->useRandomRowid ){ 5285 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5286 if( rc!=SQLITE_OK ){ 5287 goto abort_due_to_error; 5288 } 5289 if( res ){ 5290 v = 1; /* IMP: R-61914-48074 */ 5291 }else{ 5292 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5293 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5294 if( v>=MAX_ROWID ){ 5295 pC->useRandomRowid = 1; 5296 }else{ 5297 v++; /* IMP: R-29538-34987 */ 5298 } 5299 } 5300 } 5301 5302 #ifndef SQLITE_OMIT_AUTOINCREMENT 5303 if( pOp->p3 ){ 5304 /* Assert that P3 is a valid memory cell. */ 5305 assert( pOp->p3>0 ); 5306 if( p->pFrame ){ 5307 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5308 /* Assert that P3 is a valid memory cell. */ 5309 assert( pOp->p3<=pFrame->nMem ); 5310 pMem = &pFrame->aMem[pOp->p3]; 5311 }else{ 5312 /* Assert that P3 is a valid memory cell. */ 5313 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5314 pMem = &aMem[pOp->p3]; 5315 memAboutToChange(p, pMem); 5316 } 5317 assert( memIsValid(pMem) ); 5318 5319 REGISTER_TRACE(pOp->p3, pMem); 5320 sqlite3VdbeMemIntegerify(pMem); 5321 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5322 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5323 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5324 goto abort_due_to_error; 5325 } 5326 if( v<pMem->u.i+1 ){ 5327 v = pMem->u.i + 1; 5328 } 5329 pMem->u.i = v; 5330 } 5331 #endif 5332 if( pC->useRandomRowid ){ 5333 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5334 ** largest possible integer (9223372036854775807) then the database 5335 ** engine starts picking positive candidate ROWIDs at random until 5336 ** it finds one that is not previously used. */ 5337 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5338 ** an AUTOINCREMENT table. */ 5339 cnt = 0; 5340 do{ 5341 sqlite3_randomness(sizeof(v), &v); 5342 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5343 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5344 0, &res))==SQLITE_OK) 5345 && (res==0) 5346 && (++cnt<100)); 5347 if( rc ) goto abort_due_to_error; 5348 if( res==0 ){ 5349 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5350 goto abort_due_to_error; 5351 } 5352 assert( v>0 ); /* EV: R-40812-03570 */ 5353 } 5354 pC->deferredMoveto = 0; 5355 pC->cacheStatus = CACHE_STALE; 5356 } 5357 pOut->u.i = v; 5358 break; 5359 } 5360 5361 /* Opcode: Insert P1 P2 P3 P4 P5 5362 ** Synopsis: intkey=r[P3] data=r[P2] 5363 ** 5364 ** Write an entry into the table of cursor P1. A new entry is 5365 ** created if it doesn't already exist or the data for an existing 5366 ** entry is overwritten. The data is the value MEM_Blob stored in register 5367 ** number P2. The key is stored in register P3. The key must 5368 ** be a MEM_Int. 5369 ** 5370 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5371 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5372 ** then rowid is stored for subsequent return by the 5373 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5374 ** 5375 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5376 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5377 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5378 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5379 ** 5380 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5381 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5382 ** is part of an INSERT operation. The difference is only important to 5383 ** the update hook. 5384 ** 5385 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5386 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5387 ** following a successful insert. 5388 ** 5389 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5390 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5391 ** and register P2 becomes ephemeral. If the cursor is changed, the 5392 ** value of register P2 will then change. Make sure this does not 5393 ** cause any problems.) 5394 ** 5395 ** This instruction only works on tables. The equivalent instruction 5396 ** for indices is OP_IdxInsert. 5397 */ 5398 case OP_Insert: { 5399 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5400 Mem *pKey; /* MEM cell holding key for the record */ 5401 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5402 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5403 const char *zDb; /* database name - used by the update hook */ 5404 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5405 BtreePayload x; /* Payload to be inserted */ 5406 5407 pData = &aMem[pOp->p2]; 5408 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5409 assert( memIsValid(pData) ); 5410 pC = p->apCsr[pOp->p1]; 5411 assert( pC!=0 ); 5412 assert( pC->eCurType==CURTYPE_BTREE ); 5413 assert( pC->deferredMoveto==0 ); 5414 assert( pC->uc.pCursor!=0 ); 5415 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5416 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5417 REGISTER_TRACE(pOp->p2, pData); 5418 sqlite3VdbeIncrWriteCounter(p, pC); 5419 5420 pKey = &aMem[pOp->p3]; 5421 assert( pKey->flags & MEM_Int ); 5422 assert( memIsValid(pKey) ); 5423 REGISTER_TRACE(pOp->p3, pKey); 5424 x.nKey = pKey->u.i; 5425 5426 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5427 assert( pC->iDb>=0 ); 5428 zDb = db->aDb[pC->iDb].zDbSName; 5429 pTab = pOp->p4.pTab; 5430 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5431 }else{ 5432 pTab = 0; 5433 zDb = 0; 5434 } 5435 5436 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5437 /* Invoke the pre-update hook, if any */ 5438 if( pTab ){ 5439 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5440 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5441 } 5442 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5443 /* Prevent post-update hook from running in cases when it should not */ 5444 pTab = 0; 5445 } 5446 } 5447 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5448 #endif 5449 5450 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5451 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5452 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5453 x.pData = pData->z; 5454 x.nData = pData->n; 5455 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5456 if( pData->flags & MEM_Zero ){ 5457 x.nZero = pData->u.nZero; 5458 }else{ 5459 x.nZero = 0; 5460 } 5461 x.pKey = 0; 5462 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5463 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5464 seekResult 5465 ); 5466 pC->deferredMoveto = 0; 5467 pC->cacheStatus = CACHE_STALE; 5468 5469 /* Invoke the update-hook if required. */ 5470 if( rc ) goto abort_due_to_error; 5471 if( pTab ){ 5472 assert( db->xUpdateCallback!=0 ); 5473 assert( pTab->aCol!=0 ); 5474 db->xUpdateCallback(db->pUpdateArg, 5475 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5476 zDb, pTab->zName, x.nKey); 5477 } 5478 break; 5479 } 5480 5481 /* Opcode: RowCell P1 P2 P3 * * 5482 ** 5483 ** P1 and P2 are both open cursors. Both must be opened on the same type 5484 ** of table - intkey or index. This opcode is used as part of copying 5485 ** the current row from P2 into P1. If the cursors are opened on intkey 5486 ** tables, register P3 contains the rowid to use with the new record in 5487 ** P1. If they are opened on index tables, P3 is not used. 5488 ** 5489 ** This opcode must be followed by either an Insert or InsertIdx opcode 5490 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5491 */ 5492 case OP_RowCell: { 5493 VdbeCursor *pDest; /* Cursor to write to */ 5494 VdbeCursor *pSrc; /* Cursor to read from */ 5495 i64 iKey; /* Rowid value to insert with */ 5496 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5497 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5498 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5499 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5500 pDest = p->apCsr[pOp->p1]; 5501 pSrc = p->apCsr[pOp->p2]; 5502 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5503 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5504 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5505 break; 5506 }; 5507 5508 /* Opcode: Delete P1 P2 P3 P4 P5 5509 ** 5510 ** Delete the record at which the P1 cursor is currently pointing. 5511 ** 5512 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5513 ** the cursor will be left pointing at either the next or the previous 5514 ** record in the table. If it is left pointing at the next record, then 5515 ** the next Next instruction will be a no-op. As a result, in this case 5516 ** it is ok to delete a record from within a Next loop. If 5517 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5518 ** left in an undefined state. 5519 ** 5520 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5521 ** delete one of several associated with deleting a table row and all its 5522 ** associated index entries. Exactly one of those deletes is the "primary" 5523 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5524 ** marked with the AUXDELETE flag. 5525 ** 5526 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5527 ** change count is incremented (otherwise not). 5528 ** 5529 ** P1 must not be pseudo-table. It has to be a real table with 5530 ** multiple rows. 5531 ** 5532 ** If P4 is not NULL then it points to a Table object. In this case either 5533 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5534 ** have been positioned using OP_NotFound prior to invoking this opcode in 5535 ** this case. Specifically, if one is configured, the pre-update hook is 5536 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5537 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5538 ** 5539 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5540 ** of the memory cell that contains the value that the rowid of the row will 5541 ** be set to by the update. 5542 */ 5543 case OP_Delete: { 5544 VdbeCursor *pC; 5545 const char *zDb; 5546 Table *pTab; 5547 int opflags; 5548 5549 opflags = pOp->p2; 5550 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5551 pC = p->apCsr[pOp->p1]; 5552 assert( pC!=0 ); 5553 assert( pC->eCurType==CURTYPE_BTREE ); 5554 assert( pC->uc.pCursor!=0 ); 5555 assert( pC->deferredMoveto==0 ); 5556 sqlite3VdbeIncrWriteCounter(p, pC); 5557 5558 #ifdef SQLITE_DEBUG 5559 if( pOp->p4type==P4_TABLE 5560 && HasRowid(pOp->p4.pTab) 5561 && pOp->p5==0 5562 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5563 ){ 5564 /* If p5 is zero, the seek operation that positioned the cursor prior to 5565 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5566 ** the row that is being deleted */ 5567 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5568 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5569 } 5570 #endif 5571 5572 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5573 ** the name of the db to pass as to it. Also set local pTab to a copy 5574 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5575 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5576 ** VdbeCursor.movetoTarget to the current rowid. */ 5577 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5578 assert( pC->iDb>=0 ); 5579 assert( pOp->p4.pTab!=0 ); 5580 zDb = db->aDb[pC->iDb].zDbSName; 5581 pTab = pOp->p4.pTab; 5582 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5583 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5584 } 5585 }else{ 5586 zDb = 0; 5587 pTab = 0; 5588 } 5589 5590 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5591 /* Invoke the pre-update-hook if required. */ 5592 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5593 if( db->xPreUpdateCallback && pTab ){ 5594 assert( !(opflags & OPFLAG_ISUPDATE) 5595 || HasRowid(pTab)==0 5596 || (aMem[pOp->p3].flags & MEM_Int) 5597 ); 5598 sqlite3VdbePreUpdateHook(p, pC, 5599 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5600 zDb, pTab, pC->movetoTarget, 5601 pOp->p3, -1 5602 ); 5603 } 5604 if( opflags & OPFLAG_ISNOOP ) break; 5605 #endif 5606 5607 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5608 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5609 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5610 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5611 5612 #ifdef SQLITE_DEBUG 5613 if( p->pFrame==0 ){ 5614 if( pC->isEphemeral==0 5615 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5616 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5617 ){ 5618 nExtraDelete++; 5619 } 5620 if( pOp->p2 & OPFLAG_NCHANGE ){ 5621 nExtraDelete--; 5622 } 5623 } 5624 #endif 5625 5626 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5627 pC->cacheStatus = CACHE_STALE; 5628 pC->seekResult = 0; 5629 if( rc ) goto abort_due_to_error; 5630 5631 /* Invoke the update-hook if required. */ 5632 if( opflags & OPFLAG_NCHANGE ){ 5633 p->nChange++; 5634 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5635 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5636 pC->movetoTarget); 5637 assert( pC->iDb>=0 ); 5638 } 5639 } 5640 5641 break; 5642 } 5643 /* Opcode: ResetCount * * * * * 5644 ** 5645 ** The value of the change counter is copied to the database handle 5646 ** change counter (returned by subsequent calls to sqlite3_changes()). 5647 ** Then the VMs internal change counter resets to 0. 5648 ** This is used by trigger programs. 5649 */ 5650 case OP_ResetCount: { 5651 sqlite3VdbeSetChanges(db, p->nChange); 5652 p->nChange = 0; 5653 break; 5654 } 5655 5656 /* Opcode: SorterCompare P1 P2 P3 P4 5657 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5658 ** 5659 ** P1 is a sorter cursor. This instruction compares a prefix of the 5660 ** record blob in register P3 against a prefix of the entry that 5661 ** the sorter cursor currently points to. Only the first P4 fields 5662 ** of r[P3] and the sorter record are compared. 5663 ** 5664 ** If either P3 or the sorter contains a NULL in one of their significant 5665 ** fields (not counting the P4 fields at the end which are ignored) then 5666 ** the comparison is assumed to be equal. 5667 ** 5668 ** Fall through to next instruction if the two records compare equal to 5669 ** each other. Jump to P2 if they are different. 5670 */ 5671 case OP_SorterCompare: { 5672 VdbeCursor *pC; 5673 int res; 5674 int nKeyCol; 5675 5676 pC = p->apCsr[pOp->p1]; 5677 assert( isSorter(pC) ); 5678 assert( pOp->p4type==P4_INT32 ); 5679 pIn3 = &aMem[pOp->p3]; 5680 nKeyCol = pOp->p4.i; 5681 res = 0; 5682 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5683 VdbeBranchTaken(res!=0,2); 5684 if( rc ) goto abort_due_to_error; 5685 if( res ) goto jump_to_p2; 5686 break; 5687 }; 5688 5689 /* Opcode: SorterData P1 P2 P3 * * 5690 ** Synopsis: r[P2]=data 5691 ** 5692 ** Write into register P2 the current sorter data for sorter cursor P1. 5693 ** Then clear the column header cache on cursor P3. 5694 ** 5695 ** This opcode is normally use to move a record out of the sorter and into 5696 ** a register that is the source for a pseudo-table cursor created using 5697 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5698 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5699 ** us from having to issue a separate NullRow instruction to clear that cache. 5700 */ 5701 case OP_SorterData: { 5702 VdbeCursor *pC; 5703 5704 pOut = &aMem[pOp->p2]; 5705 pC = p->apCsr[pOp->p1]; 5706 assert( isSorter(pC) ); 5707 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5708 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5709 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5710 if( rc ) goto abort_due_to_error; 5711 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5712 break; 5713 } 5714 5715 /* Opcode: RowData P1 P2 P3 * * 5716 ** Synopsis: r[P2]=data 5717 ** 5718 ** Write into register P2 the complete row content for the row at 5719 ** which cursor P1 is currently pointing. 5720 ** There is no interpretation of the data. 5721 ** It is just copied onto the P2 register exactly as 5722 ** it is found in the database file. 5723 ** 5724 ** If cursor P1 is an index, then the content is the key of the row. 5725 ** If cursor P2 is a table, then the content extracted is the data. 5726 ** 5727 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5728 ** of a real table, not a pseudo-table. 5729 ** 5730 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5731 ** into the database page. That means that the content of the output 5732 ** register will be invalidated as soon as the cursor moves - including 5733 ** moves caused by other cursors that "save" the current cursors 5734 ** position in order that they can write to the same table. If P3==0 5735 ** then a copy of the data is made into memory. P3!=0 is faster, but 5736 ** P3==0 is safer. 5737 ** 5738 ** If P3!=0 then the content of the P2 register is unsuitable for use 5739 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5740 ** The P2 register content is invalidated by opcodes like OP_Function or 5741 ** by any use of another cursor pointing to the same table. 5742 */ 5743 case OP_RowData: { 5744 VdbeCursor *pC; 5745 BtCursor *pCrsr; 5746 u32 n; 5747 5748 pOut = out2Prerelease(p, pOp); 5749 5750 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5751 pC = p->apCsr[pOp->p1]; 5752 assert( pC!=0 ); 5753 assert( pC->eCurType==CURTYPE_BTREE ); 5754 assert( isSorter(pC)==0 ); 5755 assert( pC->nullRow==0 ); 5756 assert( pC->uc.pCursor!=0 ); 5757 pCrsr = pC->uc.pCursor; 5758 5759 /* The OP_RowData opcodes always follow OP_NotExists or 5760 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5761 ** that might invalidate the cursor. 5762 ** If this where not the case, on of the following assert()s 5763 ** would fail. Should this ever change (because of changes in the code 5764 ** generator) then the fix would be to insert a call to 5765 ** sqlite3VdbeCursorMoveto(). 5766 */ 5767 assert( pC->deferredMoveto==0 ); 5768 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5769 5770 n = sqlite3BtreePayloadSize(pCrsr); 5771 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5772 goto too_big; 5773 } 5774 testcase( n==0 ); 5775 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5776 if( rc ) goto abort_due_to_error; 5777 if( !pOp->p3 ) Deephemeralize(pOut); 5778 UPDATE_MAX_BLOBSIZE(pOut); 5779 REGISTER_TRACE(pOp->p2, pOut); 5780 break; 5781 } 5782 5783 /* Opcode: Rowid P1 P2 * * * 5784 ** Synopsis: r[P2]=PX rowid of P1 5785 ** 5786 ** Store in register P2 an integer which is the key of the table entry that 5787 ** P1 is currently point to. 5788 ** 5789 ** P1 can be either an ordinary table or a virtual table. There used to 5790 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5791 ** one opcode now works for both table types. 5792 */ 5793 case OP_Rowid: { /* out2 */ 5794 VdbeCursor *pC; 5795 i64 v; 5796 sqlite3_vtab *pVtab; 5797 const sqlite3_module *pModule; 5798 5799 pOut = out2Prerelease(p, pOp); 5800 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5801 pC = p->apCsr[pOp->p1]; 5802 assert( pC!=0 ); 5803 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5804 if( pC->nullRow ){ 5805 pOut->flags = MEM_Null; 5806 break; 5807 }else if( pC->deferredMoveto ){ 5808 v = pC->movetoTarget; 5809 #ifndef SQLITE_OMIT_VIRTUALTABLE 5810 }else if( pC->eCurType==CURTYPE_VTAB ){ 5811 assert( pC->uc.pVCur!=0 ); 5812 pVtab = pC->uc.pVCur->pVtab; 5813 pModule = pVtab->pModule; 5814 assert( pModule->xRowid ); 5815 rc = pModule->xRowid(pC->uc.pVCur, &v); 5816 sqlite3VtabImportErrmsg(p, pVtab); 5817 if( rc ) goto abort_due_to_error; 5818 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5819 }else{ 5820 assert( pC->eCurType==CURTYPE_BTREE ); 5821 assert( pC->uc.pCursor!=0 ); 5822 rc = sqlite3VdbeCursorRestore(pC); 5823 if( rc ) goto abort_due_to_error; 5824 if( pC->nullRow ){ 5825 pOut->flags = MEM_Null; 5826 break; 5827 } 5828 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5829 } 5830 pOut->u.i = v; 5831 break; 5832 } 5833 5834 /* Opcode: NullRow P1 * * * * 5835 ** 5836 ** Move the cursor P1 to a null row. Any OP_Column operations 5837 ** that occur while the cursor is on the null row will always 5838 ** write a NULL. 5839 ** 5840 ** If cursor P1 is not previously opened, open it now to a special 5841 ** pseudo-cursor that always returns NULL for every column. 5842 */ 5843 case OP_NullRow: { 5844 VdbeCursor *pC; 5845 5846 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5847 pC = p->apCsr[pOp->p1]; 5848 if( pC==0 ){ 5849 /* If the cursor is not already open, create a special kind of 5850 ** pseudo-cursor that always gives null rows. */ 5851 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); 5852 if( pC==0 ) goto no_mem; 5853 pC->seekResult = 0; 5854 pC->isTable = 1; 5855 pC->noReuse = 1; 5856 pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); 5857 } 5858 pC->nullRow = 1; 5859 pC->cacheStatus = CACHE_STALE; 5860 if( pC->eCurType==CURTYPE_BTREE ){ 5861 assert( pC->uc.pCursor!=0 ); 5862 sqlite3BtreeClearCursor(pC->uc.pCursor); 5863 } 5864 #ifdef SQLITE_DEBUG 5865 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5866 #endif 5867 break; 5868 } 5869 5870 /* Opcode: SeekEnd P1 * * * * 5871 ** 5872 ** Position cursor P1 at the end of the btree for the purpose of 5873 ** appending a new entry onto the btree. 5874 ** 5875 ** It is assumed that the cursor is used only for appending and so 5876 ** if the cursor is valid, then the cursor must already be pointing 5877 ** at the end of the btree and so no changes are made to 5878 ** the cursor. 5879 */ 5880 /* Opcode: Last P1 P2 * * * 5881 ** 5882 ** The next use of the Rowid or Column or Prev instruction for P1 5883 ** will refer to the last entry in the database table or index. 5884 ** If the table or index is empty and P2>0, then jump immediately to P2. 5885 ** If P2 is 0 or if the table or index is not empty, fall through 5886 ** to the following instruction. 5887 ** 5888 ** This opcode leaves the cursor configured to move in reverse order, 5889 ** from the end toward the beginning. In other words, the cursor is 5890 ** configured to use Prev, not Next. 5891 */ 5892 case OP_SeekEnd: 5893 case OP_Last: { /* jump */ 5894 VdbeCursor *pC; 5895 BtCursor *pCrsr; 5896 int res; 5897 5898 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5899 pC = p->apCsr[pOp->p1]; 5900 assert( pC!=0 ); 5901 assert( pC->eCurType==CURTYPE_BTREE ); 5902 pCrsr = pC->uc.pCursor; 5903 res = 0; 5904 assert( pCrsr!=0 ); 5905 #ifdef SQLITE_DEBUG 5906 pC->seekOp = pOp->opcode; 5907 #endif 5908 if( pOp->opcode==OP_SeekEnd ){ 5909 assert( pOp->p2==0 ); 5910 pC->seekResult = -1; 5911 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5912 break; 5913 } 5914 } 5915 rc = sqlite3BtreeLast(pCrsr, &res); 5916 pC->nullRow = (u8)res; 5917 pC->deferredMoveto = 0; 5918 pC->cacheStatus = CACHE_STALE; 5919 if( rc ) goto abort_due_to_error; 5920 if( pOp->p2>0 ){ 5921 VdbeBranchTaken(res!=0,2); 5922 if( res ) goto jump_to_p2; 5923 } 5924 break; 5925 } 5926 5927 /* Opcode: IfSmaller P1 P2 P3 * * 5928 ** 5929 ** Estimate the number of rows in the table P1. Jump to P2 if that 5930 ** estimate is less than approximately 2**(0.1*P3). 5931 */ 5932 case OP_IfSmaller: { /* jump */ 5933 VdbeCursor *pC; 5934 BtCursor *pCrsr; 5935 int res; 5936 i64 sz; 5937 5938 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5939 pC = p->apCsr[pOp->p1]; 5940 assert( pC!=0 ); 5941 pCrsr = pC->uc.pCursor; 5942 assert( pCrsr ); 5943 rc = sqlite3BtreeFirst(pCrsr, &res); 5944 if( rc ) goto abort_due_to_error; 5945 if( res==0 ){ 5946 sz = sqlite3BtreeRowCountEst(pCrsr); 5947 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5948 } 5949 VdbeBranchTaken(res!=0,2); 5950 if( res ) goto jump_to_p2; 5951 break; 5952 } 5953 5954 5955 /* Opcode: SorterSort P1 P2 * * * 5956 ** 5957 ** After all records have been inserted into the Sorter object 5958 ** identified by P1, invoke this opcode to actually do the sorting. 5959 ** Jump to P2 if there are no records to be sorted. 5960 ** 5961 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5962 ** for Sorter objects. 5963 */ 5964 /* Opcode: Sort P1 P2 * * * 5965 ** 5966 ** This opcode does exactly the same thing as OP_Rewind except that 5967 ** it increments an undocumented global variable used for testing. 5968 ** 5969 ** Sorting is accomplished by writing records into a sorting index, 5970 ** then rewinding that index and playing it back from beginning to 5971 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5972 ** rewinding so that the global variable will be incremented and 5973 ** regression tests can determine whether or not the optimizer is 5974 ** correctly optimizing out sorts. 5975 */ 5976 case OP_SorterSort: /* jump */ 5977 case OP_Sort: { /* jump */ 5978 #ifdef SQLITE_TEST 5979 sqlite3_sort_count++; 5980 sqlite3_search_count--; 5981 #endif 5982 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5983 /* Fall through into OP_Rewind */ 5984 /* no break */ deliberate_fall_through 5985 } 5986 /* Opcode: Rewind P1 P2 * * * 5987 ** 5988 ** The next use of the Rowid or Column or Next instruction for P1 5989 ** will refer to the first entry in the database table or index. 5990 ** If the table or index is empty, jump immediately to P2. 5991 ** If the table or index is not empty, fall through to the following 5992 ** instruction. 5993 ** 5994 ** This opcode leaves the cursor configured to move in forward order, 5995 ** from the beginning toward the end. In other words, the cursor is 5996 ** configured to use Next, not Prev. 5997 */ 5998 case OP_Rewind: { /* jump */ 5999 VdbeCursor *pC; 6000 BtCursor *pCrsr; 6001 int res; 6002 6003 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6004 assert( pOp->p5==0 ); 6005 pC = p->apCsr[pOp->p1]; 6006 assert( pC!=0 ); 6007 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 6008 res = 1; 6009 #ifdef SQLITE_DEBUG 6010 pC->seekOp = OP_Rewind; 6011 #endif 6012 if( isSorter(pC) ){ 6013 rc = sqlite3VdbeSorterRewind(pC, &res); 6014 }else{ 6015 assert( pC->eCurType==CURTYPE_BTREE ); 6016 pCrsr = pC->uc.pCursor; 6017 assert( pCrsr ); 6018 rc = sqlite3BtreeFirst(pCrsr, &res); 6019 pC->deferredMoveto = 0; 6020 pC->cacheStatus = CACHE_STALE; 6021 } 6022 if( rc ) goto abort_due_to_error; 6023 pC->nullRow = (u8)res; 6024 assert( pOp->p2>0 && pOp->p2<p->nOp ); 6025 VdbeBranchTaken(res!=0,2); 6026 if( res ) goto jump_to_p2; 6027 break; 6028 } 6029 6030 /* Opcode: Next P1 P2 P3 * P5 6031 ** 6032 ** Advance cursor P1 so that it points to the next key/data pair in its 6033 ** table or index. If there are no more key/value pairs then fall through 6034 ** to the following instruction. But if the cursor advance was successful, 6035 ** jump immediately to P2. 6036 ** 6037 ** The Next opcode is only valid following an SeekGT, SeekGE, or 6038 ** OP_Rewind opcode used to position the cursor. Next is not allowed 6039 ** to follow SeekLT, SeekLE, or OP_Last. 6040 ** 6041 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 6042 ** been opened prior to this opcode or the program will segfault. 6043 ** 6044 ** The P3 value is a hint to the btree implementation. If P3==1, that 6045 ** means P1 is an SQL index and that this instruction could have been 6046 ** omitted if that index had been unique. P3 is usually 0. P3 is 6047 ** always either 0 or 1. 6048 ** 6049 ** If P5 is positive and the jump is taken, then event counter 6050 ** number P5-1 in the prepared statement is incremented. 6051 ** 6052 ** See also: Prev 6053 */ 6054 /* Opcode: Prev P1 P2 P3 * P5 6055 ** 6056 ** Back up cursor P1 so that it points to the previous key/data pair in its 6057 ** table or index. If there is no previous key/value pairs then fall through 6058 ** to the following instruction. But if the cursor backup was successful, 6059 ** jump immediately to P2. 6060 ** 6061 ** 6062 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 6063 ** OP_Last opcode used to position the cursor. Prev is not allowed 6064 ** to follow SeekGT, SeekGE, or OP_Rewind. 6065 ** 6066 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 6067 ** not open then the behavior is undefined. 6068 ** 6069 ** The P3 value is a hint to the btree implementation. If P3==1, that 6070 ** means P1 is an SQL index and that this instruction could have been 6071 ** omitted if that index had been unique. P3 is usually 0. P3 is 6072 ** always either 0 or 1. 6073 ** 6074 ** If P5 is positive and the jump is taken, then event counter 6075 ** number P5-1 in the prepared statement is incremented. 6076 */ 6077 /* Opcode: SorterNext P1 P2 * * P5 6078 ** 6079 ** This opcode works just like OP_Next except that P1 must be a 6080 ** sorter object for which the OP_SorterSort opcode has been 6081 ** invoked. This opcode advances the cursor to the next sorted 6082 ** record, or jumps to P2 if there are no more sorted records. 6083 */ 6084 case OP_SorterNext: { /* jump */ 6085 VdbeCursor *pC; 6086 6087 pC = p->apCsr[pOp->p1]; 6088 assert( isSorter(pC) ); 6089 rc = sqlite3VdbeSorterNext(db, pC); 6090 goto next_tail; 6091 6092 case OP_Prev: /* jump */ 6093 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6094 assert( pOp->p5<ArraySize(p->aCounter) ); 6095 pC = p->apCsr[pOp->p1]; 6096 assert( pC!=0 ); 6097 assert( pC->deferredMoveto==0 ); 6098 assert( pC->eCurType==CURTYPE_BTREE ); 6099 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 6100 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 6101 || pC->seekOp==OP_NullRow); 6102 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 6103 goto next_tail; 6104 6105 case OP_Next: /* jump */ 6106 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6107 assert( pOp->p5<ArraySize(p->aCounter) ); 6108 pC = p->apCsr[pOp->p1]; 6109 assert( pC!=0 ); 6110 assert( pC->deferredMoveto==0 ); 6111 assert( pC->eCurType==CURTYPE_BTREE ); 6112 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 6113 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 6114 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 6115 || pC->seekOp==OP_IfNoHope); 6116 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 6117 6118 next_tail: 6119 pC->cacheStatus = CACHE_STALE; 6120 VdbeBranchTaken(rc==SQLITE_OK,2); 6121 if( rc==SQLITE_OK ){ 6122 pC->nullRow = 0; 6123 p->aCounter[pOp->p5]++; 6124 #ifdef SQLITE_TEST 6125 sqlite3_search_count++; 6126 #endif 6127 goto jump_to_p2_and_check_for_interrupt; 6128 } 6129 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6130 rc = SQLITE_OK; 6131 pC->nullRow = 1; 6132 goto check_for_interrupt; 6133 } 6134 6135 /* Opcode: IdxInsert P1 P2 P3 P4 P5 6136 ** Synopsis: key=r[P2] 6137 ** 6138 ** Register P2 holds an SQL index key made using the 6139 ** MakeRecord instructions. This opcode writes that key 6140 ** into the index P1. Data for the entry is nil. 6141 ** 6142 ** If P4 is not zero, then it is the number of values in the unpacked 6143 ** key of reg(P2). In that case, P3 is the index of the first register 6144 ** for the unpacked key. The availability of the unpacked key can sometimes 6145 ** be an optimization. 6146 ** 6147 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 6148 ** that this insert is likely to be an append. 6149 ** 6150 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 6151 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 6152 ** then the change counter is unchanged. 6153 ** 6154 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 6155 ** run faster by avoiding an unnecessary seek on cursor P1. However, 6156 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 6157 ** seeks on the cursor or if the most recent seek used a key equivalent 6158 ** to P2. 6159 ** 6160 ** This instruction only works for indices. The equivalent instruction 6161 ** for tables is OP_Insert. 6162 */ 6163 case OP_IdxInsert: { /* in2 */ 6164 VdbeCursor *pC; 6165 BtreePayload x; 6166 6167 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6168 pC = p->apCsr[pOp->p1]; 6169 sqlite3VdbeIncrWriteCounter(p, pC); 6170 assert( pC!=0 ); 6171 assert( !isSorter(pC) ); 6172 pIn2 = &aMem[pOp->p2]; 6173 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6174 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6175 assert( pC->eCurType==CURTYPE_BTREE ); 6176 assert( pC->isTable==0 ); 6177 rc = ExpandBlob(pIn2); 6178 if( rc ) goto abort_due_to_error; 6179 x.nKey = pIn2->n; 6180 x.pKey = pIn2->z; 6181 x.aMem = aMem + pOp->p3; 6182 x.nMem = (u16)pOp->p4.i; 6183 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6184 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6185 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6186 ); 6187 assert( pC->deferredMoveto==0 ); 6188 pC->cacheStatus = CACHE_STALE; 6189 if( rc) goto abort_due_to_error; 6190 break; 6191 } 6192 6193 /* Opcode: SorterInsert P1 P2 * * * 6194 ** Synopsis: key=r[P2] 6195 ** 6196 ** Register P2 holds an SQL index key made using the 6197 ** MakeRecord instructions. This opcode writes that key 6198 ** into the sorter P1. Data for the entry is nil. 6199 */ 6200 case OP_SorterInsert: { /* in2 */ 6201 VdbeCursor *pC; 6202 6203 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6204 pC = p->apCsr[pOp->p1]; 6205 sqlite3VdbeIncrWriteCounter(p, pC); 6206 assert( pC!=0 ); 6207 assert( isSorter(pC) ); 6208 pIn2 = &aMem[pOp->p2]; 6209 assert( pIn2->flags & MEM_Blob ); 6210 assert( pC->isTable==0 ); 6211 rc = ExpandBlob(pIn2); 6212 if( rc ) goto abort_due_to_error; 6213 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6214 if( rc) goto abort_due_to_error; 6215 break; 6216 } 6217 6218 /* Opcode: IdxDelete P1 P2 P3 * P5 6219 ** Synopsis: key=r[P2@P3] 6220 ** 6221 ** The content of P3 registers starting at register P2 form 6222 ** an unpacked index key. This opcode removes that entry from the 6223 ** index opened by cursor P1. 6224 ** 6225 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6226 ** if no matching index entry is found. This happens when running 6227 ** an UPDATE or DELETE statement and the index entry to be updated 6228 ** or deleted is not found. For some uses of IdxDelete 6229 ** (example: the EXCEPT operator) it does not matter that no matching 6230 ** entry is found. For those cases, P5 is zero. Also, do not raise 6231 ** this (self-correcting and non-critical) error if in writable_schema mode. 6232 */ 6233 case OP_IdxDelete: { 6234 VdbeCursor *pC; 6235 BtCursor *pCrsr; 6236 int res; 6237 UnpackedRecord r; 6238 6239 assert( pOp->p3>0 ); 6240 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6241 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6242 pC = p->apCsr[pOp->p1]; 6243 assert( pC!=0 ); 6244 assert( pC->eCurType==CURTYPE_BTREE ); 6245 sqlite3VdbeIncrWriteCounter(p, pC); 6246 pCrsr = pC->uc.pCursor; 6247 assert( pCrsr!=0 ); 6248 r.pKeyInfo = pC->pKeyInfo; 6249 r.nField = (u16)pOp->p3; 6250 r.default_rc = 0; 6251 r.aMem = &aMem[pOp->p2]; 6252 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6253 if( rc ) goto abort_due_to_error; 6254 if( res==0 ){ 6255 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6256 if( rc ) goto abort_due_to_error; 6257 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6258 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6259 goto abort_due_to_error; 6260 } 6261 assert( pC->deferredMoveto==0 ); 6262 pC->cacheStatus = CACHE_STALE; 6263 pC->seekResult = 0; 6264 break; 6265 } 6266 6267 /* Opcode: DeferredSeek P1 * P3 P4 * 6268 ** Synopsis: Move P3 to P1.rowid if needed 6269 ** 6270 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6271 ** table. This opcode does a deferred seek of the P3 table cursor 6272 ** to the row that corresponds to the current row of P1. 6273 ** 6274 ** This is a deferred seek. Nothing actually happens until 6275 ** the cursor is used to read a record. That way, if no reads 6276 ** occur, no unnecessary I/O happens. 6277 ** 6278 ** P4 may be an array of integers (type P4_INTARRAY) containing 6279 ** one entry for each column in the P3 table. If array entry a(i) 6280 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6281 ** equivalent to performing the deferred seek and then reading column i 6282 ** from P1. This information is stored in P3 and used to redirect 6283 ** reads against P3 over to P1, thus possibly avoiding the need to 6284 ** seek and read cursor P3. 6285 */ 6286 /* Opcode: IdxRowid P1 P2 * * * 6287 ** Synopsis: r[P2]=rowid 6288 ** 6289 ** Write into register P2 an integer which is the last entry in the record at 6290 ** the end of the index key pointed to by cursor P1. This integer should be 6291 ** the rowid of the table entry to which this index entry points. 6292 ** 6293 ** See also: Rowid, MakeRecord. 6294 */ 6295 case OP_DeferredSeek: 6296 case OP_IdxRowid: { /* out2 */ 6297 VdbeCursor *pC; /* The P1 index cursor */ 6298 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6299 i64 rowid; /* Rowid that P1 current points to */ 6300 6301 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6302 pC = p->apCsr[pOp->p1]; 6303 assert( pC!=0 ); 6304 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); 6305 assert( pC->uc.pCursor!=0 ); 6306 assert( pC->isTable==0 || IsNullCursor(pC) ); 6307 assert( pC->deferredMoveto==0 ); 6308 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6309 6310 /* The IdxRowid and Seek opcodes are combined because of the commonality 6311 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6312 rc = sqlite3VdbeCursorRestore(pC); 6313 6314 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 6315 ** out from under the cursor. That will never happens for an IdxRowid 6316 ** or Seek opcode */ 6317 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 6318 6319 if( !pC->nullRow ){ 6320 rowid = 0; /* Not needed. Only used to silence a warning. */ 6321 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6322 if( rc!=SQLITE_OK ){ 6323 goto abort_due_to_error; 6324 } 6325 if( pOp->opcode==OP_DeferredSeek ){ 6326 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6327 pTabCur = p->apCsr[pOp->p3]; 6328 assert( pTabCur!=0 ); 6329 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6330 assert( pTabCur->uc.pCursor!=0 ); 6331 assert( pTabCur->isTable ); 6332 pTabCur->nullRow = 0; 6333 pTabCur->movetoTarget = rowid; 6334 pTabCur->deferredMoveto = 1; 6335 pTabCur->cacheStatus = CACHE_STALE; 6336 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6337 assert( !pTabCur->isEphemeral ); 6338 pTabCur->ub.aAltMap = pOp->p4.ai; 6339 assert( !pC->isEphemeral ); 6340 pTabCur->pAltCursor = pC; 6341 }else{ 6342 pOut = out2Prerelease(p, pOp); 6343 pOut->u.i = rowid; 6344 } 6345 }else{ 6346 assert( pOp->opcode==OP_IdxRowid ); 6347 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6348 } 6349 break; 6350 } 6351 6352 /* Opcode: FinishSeek P1 * * * * 6353 ** 6354 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6355 ** seek operation now, without further delay. If the cursor seek has 6356 ** already occurred, this instruction is a no-op. 6357 */ 6358 case OP_FinishSeek: { 6359 VdbeCursor *pC; /* The P1 index cursor */ 6360 6361 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6362 pC = p->apCsr[pOp->p1]; 6363 if( pC->deferredMoveto ){ 6364 rc = sqlite3VdbeFinishMoveto(pC); 6365 if( rc ) goto abort_due_to_error; 6366 } 6367 break; 6368 } 6369 6370 /* Opcode: IdxGE P1 P2 P3 P4 * 6371 ** Synopsis: key=r[P3@P4] 6372 ** 6373 ** The P4 register values beginning with P3 form an unpacked index 6374 ** key that omits the PRIMARY KEY. Compare this key value against the index 6375 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6376 ** fields at the end. 6377 ** 6378 ** If the P1 index entry is greater than or equal to the key value 6379 ** then jump to P2. Otherwise fall through to the next instruction. 6380 */ 6381 /* Opcode: IdxGT P1 P2 P3 P4 * 6382 ** Synopsis: key=r[P3@P4] 6383 ** 6384 ** The P4 register values beginning with P3 form an unpacked index 6385 ** key that omits the PRIMARY KEY. Compare this key value against the index 6386 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6387 ** fields at the end. 6388 ** 6389 ** If the P1 index entry is greater than the key value 6390 ** then jump to P2. Otherwise fall through to the next instruction. 6391 */ 6392 /* Opcode: IdxLT P1 P2 P3 P4 * 6393 ** Synopsis: key=r[P3@P4] 6394 ** 6395 ** The P4 register values beginning with P3 form an unpacked index 6396 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6397 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6398 ** ROWID on the P1 index. 6399 ** 6400 ** If the P1 index entry is less than the key value then jump to P2. 6401 ** Otherwise fall through to the next instruction. 6402 */ 6403 /* Opcode: IdxLE P1 P2 P3 P4 * 6404 ** Synopsis: key=r[P3@P4] 6405 ** 6406 ** The P4 register values beginning with P3 form an unpacked index 6407 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6408 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6409 ** ROWID on the P1 index. 6410 ** 6411 ** If the P1 index entry is less than or equal to the key value then jump 6412 ** to P2. Otherwise fall through to the next instruction. 6413 */ 6414 case OP_IdxLE: /* jump */ 6415 case OP_IdxGT: /* jump */ 6416 case OP_IdxLT: /* jump */ 6417 case OP_IdxGE: { /* jump */ 6418 VdbeCursor *pC; 6419 int res; 6420 UnpackedRecord r; 6421 6422 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6423 pC = p->apCsr[pOp->p1]; 6424 assert( pC!=0 ); 6425 assert( pC->isOrdered ); 6426 assert( pC->eCurType==CURTYPE_BTREE ); 6427 assert( pC->uc.pCursor!=0); 6428 assert( pC->deferredMoveto==0 ); 6429 assert( pOp->p4type==P4_INT32 ); 6430 r.pKeyInfo = pC->pKeyInfo; 6431 r.nField = (u16)pOp->p4.i; 6432 if( pOp->opcode<OP_IdxLT ){ 6433 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6434 r.default_rc = -1; 6435 }else{ 6436 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6437 r.default_rc = 0; 6438 } 6439 r.aMem = &aMem[pOp->p3]; 6440 #ifdef SQLITE_DEBUG 6441 { 6442 int i; 6443 for(i=0; i<r.nField; i++){ 6444 assert( memIsValid(&r.aMem[i]) ); 6445 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6446 } 6447 } 6448 #endif 6449 6450 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6451 { 6452 i64 nCellKey = 0; 6453 BtCursor *pCur; 6454 Mem m; 6455 6456 assert( pC->eCurType==CURTYPE_BTREE ); 6457 pCur = pC->uc.pCursor; 6458 assert( sqlite3BtreeCursorIsValid(pCur) ); 6459 nCellKey = sqlite3BtreePayloadSize(pCur); 6460 /* nCellKey will always be between 0 and 0xffffffff because of the way 6461 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6462 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6463 rc = SQLITE_CORRUPT_BKPT; 6464 goto abort_due_to_error; 6465 } 6466 sqlite3VdbeMemInit(&m, db, 0); 6467 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6468 if( rc ) goto abort_due_to_error; 6469 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6470 sqlite3VdbeMemReleaseMalloc(&m); 6471 } 6472 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6473 6474 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6475 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6476 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6477 res = -res; 6478 }else{ 6479 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6480 res++; 6481 } 6482 VdbeBranchTaken(res>0,2); 6483 assert( rc==SQLITE_OK ); 6484 if( res>0 ) goto jump_to_p2; 6485 break; 6486 } 6487 6488 /* Opcode: Destroy P1 P2 P3 * * 6489 ** 6490 ** Delete an entire database table or index whose root page in the database 6491 ** file is given by P1. 6492 ** 6493 ** The table being destroyed is in the main database file if P3==0. If 6494 ** P3==1 then the table to be clear is in the auxiliary database file 6495 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6496 ** 6497 ** If AUTOVACUUM is enabled then it is possible that another root page 6498 ** might be moved into the newly deleted root page in order to keep all 6499 ** root pages contiguous at the beginning of the database. The former 6500 ** value of the root page that moved - its value before the move occurred - 6501 ** is stored in register P2. If no page movement was required (because the 6502 ** table being dropped was already the last one in the database) then a 6503 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6504 ** is stored in register P2. 6505 ** 6506 ** This opcode throws an error if there are any active reader VMs when 6507 ** it is invoked. This is done to avoid the difficulty associated with 6508 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6509 ** database. This error is thrown even if the database is not an AUTOVACUUM 6510 ** db in order to avoid introducing an incompatibility between autovacuum 6511 ** and non-autovacuum modes. 6512 ** 6513 ** See also: Clear 6514 */ 6515 case OP_Destroy: { /* out2 */ 6516 int iMoved; 6517 int iDb; 6518 6519 sqlite3VdbeIncrWriteCounter(p, 0); 6520 assert( p->readOnly==0 ); 6521 assert( pOp->p1>1 ); 6522 pOut = out2Prerelease(p, pOp); 6523 pOut->flags = MEM_Null; 6524 if( db->nVdbeRead > db->nVDestroy+1 ){ 6525 rc = SQLITE_LOCKED; 6526 p->errorAction = OE_Abort; 6527 goto abort_due_to_error; 6528 }else{ 6529 iDb = pOp->p3; 6530 assert( DbMaskTest(p->btreeMask, iDb) ); 6531 iMoved = 0; /* Not needed. Only to silence a warning. */ 6532 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6533 pOut->flags = MEM_Int; 6534 pOut->u.i = iMoved; 6535 if( rc ) goto abort_due_to_error; 6536 #ifndef SQLITE_OMIT_AUTOVACUUM 6537 if( iMoved!=0 ){ 6538 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6539 /* All OP_Destroy operations occur on the same btree */ 6540 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6541 resetSchemaOnFault = iDb+1; 6542 } 6543 #endif 6544 } 6545 break; 6546 } 6547 6548 /* Opcode: Clear P1 P2 P3 6549 ** 6550 ** Delete all contents of the database table or index whose root page 6551 ** in the database file is given by P1. But, unlike Destroy, do not 6552 ** remove the table or index from the database file. 6553 ** 6554 ** The table being clear is in the main database file if P2==0. If 6555 ** P2==1 then the table to be clear is in the auxiliary database file 6556 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6557 ** 6558 ** If the P3 value is non-zero, then the row change count is incremented 6559 ** by the number of rows in the table being cleared. If P3 is greater 6560 ** than zero, then the value stored in register P3 is also incremented 6561 ** by the number of rows in the table being cleared. 6562 ** 6563 ** See also: Destroy 6564 */ 6565 case OP_Clear: { 6566 i64 nChange; 6567 6568 sqlite3VdbeIncrWriteCounter(p, 0); 6569 nChange = 0; 6570 assert( p->readOnly==0 ); 6571 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6572 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6573 if( pOp->p3 ){ 6574 p->nChange += nChange; 6575 if( pOp->p3>0 ){ 6576 assert( memIsValid(&aMem[pOp->p3]) ); 6577 memAboutToChange(p, &aMem[pOp->p3]); 6578 aMem[pOp->p3].u.i += nChange; 6579 } 6580 } 6581 if( rc ) goto abort_due_to_error; 6582 break; 6583 } 6584 6585 /* Opcode: ResetSorter P1 * * * * 6586 ** 6587 ** Delete all contents from the ephemeral table or sorter 6588 ** that is open on cursor P1. 6589 ** 6590 ** This opcode only works for cursors used for sorting and 6591 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6592 */ 6593 case OP_ResetSorter: { 6594 VdbeCursor *pC; 6595 6596 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6597 pC = p->apCsr[pOp->p1]; 6598 assert( pC!=0 ); 6599 if( isSorter(pC) ){ 6600 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6601 }else{ 6602 assert( pC->eCurType==CURTYPE_BTREE ); 6603 assert( pC->isEphemeral ); 6604 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6605 if( rc ) goto abort_due_to_error; 6606 } 6607 break; 6608 } 6609 6610 /* Opcode: CreateBtree P1 P2 P3 * * 6611 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6612 ** 6613 ** Allocate a new b-tree in the main database file if P1==0 or in the 6614 ** TEMP database file if P1==1 or in an attached database if 6615 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6616 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6617 ** The root page number of the new b-tree is stored in register P2. 6618 */ 6619 case OP_CreateBtree: { /* out2 */ 6620 Pgno pgno; 6621 Db *pDb; 6622 6623 sqlite3VdbeIncrWriteCounter(p, 0); 6624 pOut = out2Prerelease(p, pOp); 6625 pgno = 0; 6626 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6627 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6628 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6629 assert( p->readOnly==0 ); 6630 pDb = &db->aDb[pOp->p1]; 6631 assert( pDb->pBt!=0 ); 6632 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6633 if( rc ) goto abort_due_to_error; 6634 pOut->u.i = pgno; 6635 break; 6636 } 6637 6638 /* Opcode: SqlExec * * * P4 * 6639 ** 6640 ** Run the SQL statement or statements specified in the P4 string. 6641 */ 6642 case OP_SqlExec: { 6643 sqlite3VdbeIncrWriteCounter(p, 0); 6644 db->nSqlExec++; 6645 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6646 db->nSqlExec--; 6647 if( rc ) goto abort_due_to_error; 6648 break; 6649 } 6650 6651 /* Opcode: ParseSchema P1 * * P4 * 6652 ** 6653 ** Read and parse all entries from the schema table of database P1 6654 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6655 ** entire schema for P1 is reparsed. 6656 ** 6657 ** This opcode invokes the parser to create a new virtual machine, 6658 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6659 */ 6660 case OP_ParseSchema: { 6661 int iDb; 6662 const char *zSchema; 6663 char *zSql; 6664 InitData initData; 6665 6666 /* Any prepared statement that invokes this opcode will hold mutexes 6667 ** on every btree. This is a prerequisite for invoking 6668 ** sqlite3InitCallback(). 6669 */ 6670 #ifdef SQLITE_DEBUG 6671 for(iDb=0; iDb<db->nDb; iDb++){ 6672 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6673 } 6674 #endif 6675 6676 iDb = pOp->p1; 6677 assert( iDb>=0 && iDb<db->nDb ); 6678 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6679 || db->mallocFailed 6680 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6681 6682 #ifndef SQLITE_OMIT_ALTERTABLE 6683 if( pOp->p4.z==0 ){ 6684 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6685 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6686 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6687 db->mDbFlags |= DBFLAG_SchemaChange; 6688 p->expired = 0; 6689 }else 6690 #endif 6691 { 6692 zSchema = LEGACY_SCHEMA_TABLE; 6693 initData.db = db; 6694 initData.iDb = iDb; 6695 initData.pzErrMsg = &p->zErrMsg; 6696 initData.mInitFlags = 0; 6697 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6698 zSql = sqlite3MPrintf(db, 6699 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6700 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6701 if( zSql==0 ){ 6702 rc = SQLITE_NOMEM_BKPT; 6703 }else{ 6704 assert( db->init.busy==0 ); 6705 db->init.busy = 1; 6706 initData.rc = SQLITE_OK; 6707 initData.nInitRow = 0; 6708 assert( !db->mallocFailed ); 6709 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6710 if( rc==SQLITE_OK ) rc = initData.rc; 6711 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6712 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6713 ** at least one SQL statement. Any less than that indicates that 6714 ** the sqlite_schema table is corrupt. */ 6715 rc = SQLITE_CORRUPT_BKPT; 6716 } 6717 sqlite3DbFreeNN(db, zSql); 6718 db->init.busy = 0; 6719 } 6720 } 6721 if( rc ){ 6722 sqlite3ResetAllSchemasOfConnection(db); 6723 if( rc==SQLITE_NOMEM ){ 6724 goto no_mem; 6725 } 6726 goto abort_due_to_error; 6727 } 6728 break; 6729 } 6730 6731 #if !defined(SQLITE_OMIT_ANALYZE) 6732 /* Opcode: LoadAnalysis P1 * * * * 6733 ** 6734 ** Read the sqlite_stat1 table for database P1 and load the content 6735 ** of that table into the internal index hash table. This will cause 6736 ** the analysis to be used when preparing all subsequent queries. 6737 */ 6738 case OP_LoadAnalysis: { 6739 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6740 rc = sqlite3AnalysisLoad(db, pOp->p1); 6741 if( rc ) goto abort_due_to_error; 6742 break; 6743 } 6744 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6745 6746 /* Opcode: DropTable P1 * * P4 * 6747 ** 6748 ** Remove the internal (in-memory) data structures that describe 6749 ** the table named P4 in database P1. This is called after a table 6750 ** is dropped from disk (using the Destroy opcode) in order to keep 6751 ** the internal representation of the 6752 ** schema consistent with what is on disk. 6753 */ 6754 case OP_DropTable: { 6755 sqlite3VdbeIncrWriteCounter(p, 0); 6756 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6757 break; 6758 } 6759 6760 /* Opcode: DropIndex P1 * * P4 * 6761 ** 6762 ** Remove the internal (in-memory) data structures that describe 6763 ** the index named P4 in database P1. This is called after an index 6764 ** is dropped from disk (using the Destroy opcode) 6765 ** in order to keep the internal representation of the 6766 ** schema consistent with what is on disk. 6767 */ 6768 case OP_DropIndex: { 6769 sqlite3VdbeIncrWriteCounter(p, 0); 6770 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6771 break; 6772 } 6773 6774 /* Opcode: DropTrigger P1 * * P4 * 6775 ** 6776 ** Remove the internal (in-memory) data structures that describe 6777 ** the trigger named P4 in database P1. This is called after a trigger 6778 ** is dropped from disk (using the Destroy opcode) in order to keep 6779 ** the internal representation of the 6780 ** schema consistent with what is on disk. 6781 */ 6782 case OP_DropTrigger: { 6783 sqlite3VdbeIncrWriteCounter(p, 0); 6784 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6785 break; 6786 } 6787 6788 6789 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6790 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6791 ** 6792 ** Do an analysis of the currently open database. Store in 6793 ** register P1 the text of an error message describing any problems. 6794 ** If no problems are found, store a NULL in register P1. 6795 ** 6796 ** The register P3 contains one less than the maximum number of allowed errors. 6797 ** At most reg(P3) errors will be reported. 6798 ** In other words, the analysis stops as soon as reg(P1) errors are 6799 ** seen. Reg(P1) is updated with the number of errors remaining. 6800 ** 6801 ** The root page numbers of all tables in the database are integers 6802 ** stored in P4_INTARRAY argument. 6803 ** 6804 ** If P5 is not zero, the check is done on the auxiliary database 6805 ** file, not the main database file. 6806 ** 6807 ** This opcode is used to implement the integrity_check pragma. 6808 */ 6809 case OP_IntegrityCk: { 6810 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6811 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6812 int nErr; /* Number of errors reported */ 6813 char *z; /* Text of the error report */ 6814 Mem *pnErr; /* Register keeping track of errors remaining */ 6815 6816 assert( p->bIsReader ); 6817 nRoot = pOp->p2; 6818 aRoot = pOp->p4.ai; 6819 assert( nRoot>0 ); 6820 assert( aRoot[0]==(Pgno)nRoot ); 6821 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6822 pnErr = &aMem[pOp->p3]; 6823 assert( (pnErr->flags & MEM_Int)!=0 ); 6824 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6825 pIn1 = &aMem[pOp->p1]; 6826 assert( pOp->p5<db->nDb ); 6827 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6828 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6829 (int)pnErr->u.i+1, &nErr); 6830 sqlite3VdbeMemSetNull(pIn1); 6831 if( nErr==0 ){ 6832 assert( z==0 ); 6833 }else if( z==0 ){ 6834 goto no_mem; 6835 }else{ 6836 pnErr->u.i -= nErr-1; 6837 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6838 } 6839 UPDATE_MAX_BLOBSIZE(pIn1); 6840 sqlite3VdbeChangeEncoding(pIn1, encoding); 6841 goto check_for_interrupt; 6842 } 6843 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6844 6845 /* Opcode: RowSetAdd P1 P2 * * * 6846 ** Synopsis: rowset(P1)=r[P2] 6847 ** 6848 ** Insert the integer value held by register P2 into a RowSet object 6849 ** held in register P1. 6850 ** 6851 ** An assertion fails if P2 is not an integer. 6852 */ 6853 case OP_RowSetAdd: { /* in1, in2 */ 6854 pIn1 = &aMem[pOp->p1]; 6855 pIn2 = &aMem[pOp->p2]; 6856 assert( (pIn2->flags & MEM_Int)!=0 ); 6857 if( (pIn1->flags & MEM_Blob)==0 ){ 6858 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6859 } 6860 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6861 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6862 break; 6863 } 6864 6865 /* Opcode: RowSetRead P1 P2 P3 * * 6866 ** Synopsis: r[P3]=rowset(P1) 6867 ** 6868 ** Extract the smallest value from the RowSet object in P1 6869 ** and put that value into register P3. 6870 ** Or, if RowSet object P1 is initially empty, leave P3 6871 ** unchanged and jump to instruction P2. 6872 */ 6873 case OP_RowSetRead: { /* jump, in1, out3 */ 6874 i64 val; 6875 6876 pIn1 = &aMem[pOp->p1]; 6877 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6878 if( (pIn1->flags & MEM_Blob)==0 6879 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6880 ){ 6881 /* The boolean index is empty */ 6882 sqlite3VdbeMemSetNull(pIn1); 6883 VdbeBranchTaken(1,2); 6884 goto jump_to_p2_and_check_for_interrupt; 6885 }else{ 6886 /* A value was pulled from the index */ 6887 VdbeBranchTaken(0,2); 6888 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6889 } 6890 goto check_for_interrupt; 6891 } 6892 6893 /* Opcode: RowSetTest P1 P2 P3 P4 6894 ** Synopsis: if r[P3] in rowset(P1) goto P2 6895 ** 6896 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6897 ** contains a RowSet object and that RowSet object contains 6898 ** the value held in P3, jump to register P2. Otherwise, insert the 6899 ** integer in P3 into the RowSet and continue on to the 6900 ** next opcode. 6901 ** 6902 ** The RowSet object is optimized for the case where sets of integers 6903 ** are inserted in distinct phases, which each set contains no duplicates. 6904 ** Each set is identified by a unique P4 value. The first set 6905 ** must have P4==0, the final set must have P4==-1, and for all other sets 6906 ** must have P4>0. 6907 ** 6908 ** This allows optimizations: (a) when P4==0 there is no need to test 6909 ** the RowSet object for P3, as it is guaranteed not to contain it, 6910 ** (b) when P4==-1 there is no need to insert the value, as it will 6911 ** never be tested for, and (c) when a value that is part of set X is 6912 ** inserted, there is no need to search to see if the same value was 6913 ** previously inserted as part of set X (only if it was previously 6914 ** inserted as part of some other set). 6915 */ 6916 case OP_RowSetTest: { /* jump, in1, in3 */ 6917 int iSet; 6918 int exists; 6919 6920 pIn1 = &aMem[pOp->p1]; 6921 pIn3 = &aMem[pOp->p3]; 6922 iSet = pOp->p4.i; 6923 assert( pIn3->flags&MEM_Int ); 6924 6925 /* If there is anything other than a rowset object in memory cell P1, 6926 ** delete it now and initialize P1 with an empty rowset 6927 */ 6928 if( (pIn1->flags & MEM_Blob)==0 ){ 6929 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6930 } 6931 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6932 assert( pOp->p4type==P4_INT32 ); 6933 assert( iSet==-1 || iSet>=0 ); 6934 if( iSet ){ 6935 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6936 VdbeBranchTaken(exists!=0,2); 6937 if( exists ) goto jump_to_p2; 6938 } 6939 if( iSet>=0 ){ 6940 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6941 } 6942 break; 6943 } 6944 6945 6946 #ifndef SQLITE_OMIT_TRIGGER 6947 6948 /* Opcode: Program P1 P2 P3 P4 P5 6949 ** 6950 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6951 ** 6952 ** P1 contains the address of the memory cell that contains the first memory 6953 ** cell in an array of values used as arguments to the sub-program. P2 6954 ** contains the address to jump to if the sub-program throws an IGNORE 6955 ** exception using the RAISE() function. Register P3 contains the address 6956 ** of a memory cell in this (the parent) VM that is used to allocate the 6957 ** memory required by the sub-vdbe at runtime. 6958 ** 6959 ** P4 is a pointer to the VM containing the trigger program. 6960 ** 6961 ** If P5 is non-zero, then recursive program invocation is enabled. 6962 */ 6963 case OP_Program: { /* jump */ 6964 int nMem; /* Number of memory registers for sub-program */ 6965 int nByte; /* Bytes of runtime space required for sub-program */ 6966 Mem *pRt; /* Register to allocate runtime space */ 6967 Mem *pMem; /* Used to iterate through memory cells */ 6968 Mem *pEnd; /* Last memory cell in new array */ 6969 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6970 SubProgram *pProgram; /* Sub-program to execute */ 6971 void *t; /* Token identifying trigger */ 6972 6973 pProgram = pOp->p4.pProgram; 6974 pRt = &aMem[pOp->p3]; 6975 assert( pProgram->nOp>0 ); 6976 6977 /* If the p5 flag is clear, then recursive invocation of triggers is 6978 ** disabled for backwards compatibility (p5 is set if this sub-program 6979 ** is really a trigger, not a foreign key action, and the flag set 6980 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6981 ** 6982 ** It is recursive invocation of triggers, at the SQL level, that is 6983 ** disabled. In some cases a single trigger may generate more than one 6984 ** SubProgram (if the trigger may be executed with more than one different 6985 ** ON CONFLICT algorithm). SubProgram structures associated with a 6986 ** single trigger all have the same value for the SubProgram.token 6987 ** variable. */ 6988 if( pOp->p5 ){ 6989 t = pProgram->token; 6990 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6991 if( pFrame ) break; 6992 } 6993 6994 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6995 rc = SQLITE_ERROR; 6996 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6997 goto abort_due_to_error; 6998 } 6999 7000 /* Register pRt is used to store the memory required to save the state 7001 ** of the current program, and the memory required at runtime to execute 7002 ** the trigger program. If this trigger has been fired before, then pRt 7003 ** is already allocated. Otherwise, it must be initialized. */ 7004 if( (pRt->flags&MEM_Blob)==0 ){ 7005 /* SubProgram.nMem is set to the number of memory cells used by the 7006 ** program stored in SubProgram.aOp. As well as these, one memory 7007 ** cell is required for each cursor used by the program. Set local 7008 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 7009 */ 7010 nMem = pProgram->nMem + pProgram->nCsr; 7011 assert( nMem>0 ); 7012 if( pProgram->nCsr==0 ) nMem++; 7013 nByte = ROUND8(sizeof(VdbeFrame)) 7014 + nMem * sizeof(Mem) 7015 + pProgram->nCsr * sizeof(VdbeCursor*) 7016 + (pProgram->nOp + 7)/8; 7017 pFrame = sqlite3DbMallocZero(db, nByte); 7018 if( !pFrame ){ 7019 goto no_mem; 7020 } 7021 sqlite3VdbeMemRelease(pRt); 7022 pRt->flags = MEM_Blob|MEM_Dyn; 7023 pRt->z = (char*)pFrame; 7024 pRt->n = nByte; 7025 pRt->xDel = sqlite3VdbeFrameMemDel; 7026 7027 pFrame->v = p; 7028 pFrame->nChildMem = nMem; 7029 pFrame->nChildCsr = pProgram->nCsr; 7030 pFrame->pc = (int)(pOp - aOp); 7031 pFrame->aMem = p->aMem; 7032 pFrame->nMem = p->nMem; 7033 pFrame->apCsr = p->apCsr; 7034 pFrame->nCursor = p->nCursor; 7035 pFrame->aOp = p->aOp; 7036 pFrame->nOp = p->nOp; 7037 pFrame->token = pProgram->token; 7038 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 7039 pFrame->anExec = p->anExec; 7040 #endif 7041 #ifdef SQLITE_DEBUG 7042 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 7043 #endif 7044 7045 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 7046 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 7047 pMem->flags = MEM_Undefined; 7048 pMem->db = db; 7049 } 7050 }else{ 7051 pFrame = (VdbeFrame*)pRt->z; 7052 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 7053 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 7054 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 7055 assert( pProgram->nCsr==pFrame->nChildCsr ); 7056 assert( (int)(pOp - aOp)==pFrame->pc ); 7057 } 7058 7059 p->nFrame++; 7060 pFrame->pParent = p->pFrame; 7061 pFrame->lastRowid = db->lastRowid; 7062 pFrame->nChange = p->nChange; 7063 pFrame->nDbChange = p->db->nChange; 7064 assert( pFrame->pAuxData==0 ); 7065 pFrame->pAuxData = p->pAuxData; 7066 p->pAuxData = 0; 7067 p->nChange = 0; 7068 p->pFrame = pFrame; 7069 p->aMem = aMem = VdbeFrameMem(pFrame); 7070 p->nMem = pFrame->nChildMem; 7071 p->nCursor = (u16)pFrame->nChildCsr; 7072 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 7073 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 7074 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 7075 p->aOp = aOp = pProgram->aOp; 7076 p->nOp = pProgram->nOp; 7077 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 7078 p->anExec = 0; 7079 #endif 7080 #ifdef SQLITE_DEBUG 7081 /* Verify that second and subsequent executions of the same trigger do not 7082 ** try to reuse register values from the first use. */ 7083 { 7084 int i; 7085 for(i=0; i<p->nMem; i++){ 7086 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 7087 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 7088 } 7089 } 7090 #endif 7091 pOp = &aOp[-1]; 7092 goto check_for_interrupt; 7093 } 7094 7095 /* Opcode: Param P1 P2 * * * 7096 ** 7097 ** This opcode is only ever present in sub-programs called via the 7098 ** OP_Program instruction. Copy a value currently stored in a memory 7099 ** cell of the calling (parent) frame to cell P2 in the current frames 7100 ** address space. This is used by trigger programs to access the new.* 7101 ** and old.* values. 7102 ** 7103 ** The address of the cell in the parent frame is determined by adding 7104 ** the value of the P1 argument to the value of the P1 argument to the 7105 ** calling OP_Program instruction. 7106 */ 7107 case OP_Param: { /* out2 */ 7108 VdbeFrame *pFrame; 7109 Mem *pIn; 7110 pOut = out2Prerelease(p, pOp); 7111 pFrame = p->pFrame; 7112 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 7113 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 7114 break; 7115 } 7116 7117 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 7118 7119 #ifndef SQLITE_OMIT_FOREIGN_KEY 7120 /* Opcode: FkCounter P1 P2 * * * 7121 ** Synopsis: fkctr[P1]+=P2 7122 ** 7123 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 7124 ** If P1 is non-zero, the database constraint counter is incremented 7125 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 7126 ** statement counter is incremented (immediate foreign key constraints). 7127 */ 7128 case OP_FkCounter: { 7129 if( db->flags & SQLITE_DeferFKs ){ 7130 db->nDeferredImmCons += pOp->p2; 7131 }else if( pOp->p1 ){ 7132 db->nDeferredCons += pOp->p2; 7133 }else{ 7134 p->nFkConstraint += pOp->p2; 7135 } 7136 break; 7137 } 7138 7139 /* Opcode: FkIfZero P1 P2 * * * 7140 ** Synopsis: if fkctr[P1]==0 goto P2 7141 ** 7142 ** This opcode tests if a foreign key constraint-counter is currently zero. 7143 ** If so, jump to instruction P2. Otherwise, fall through to the next 7144 ** instruction. 7145 ** 7146 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 7147 ** is zero (the one that counts deferred constraint violations). If P1 is 7148 ** zero, the jump is taken if the statement constraint-counter is zero 7149 ** (immediate foreign key constraint violations). 7150 */ 7151 case OP_FkIfZero: { /* jump */ 7152 if( pOp->p1 ){ 7153 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 7154 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7155 }else{ 7156 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 7157 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7158 } 7159 break; 7160 } 7161 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 7162 7163 #ifndef SQLITE_OMIT_AUTOINCREMENT 7164 /* Opcode: MemMax P1 P2 * * * 7165 ** Synopsis: r[P1]=max(r[P1],r[P2]) 7166 ** 7167 ** P1 is a register in the root frame of this VM (the root frame is 7168 ** different from the current frame if this instruction is being executed 7169 ** within a sub-program). Set the value of register P1 to the maximum of 7170 ** its current value and the value in register P2. 7171 ** 7172 ** This instruction throws an error if the memory cell is not initially 7173 ** an integer. 7174 */ 7175 case OP_MemMax: { /* in2 */ 7176 VdbeFrame *pFrame; 7177 if( p->pFrame ){ 7178 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7179 pIn1 = &pFrame->aMem[pOp->p1]; 7180 }else{ 7181 pIn1 = &aMem[pOp->p1]; 7182 } 7183 assert( memIsValid(pIn1) ); 7184 sqlite3VdbeMemIntegerify(pIn1); 7185 pIn2 = &aMem[pOp->p2]; 7186 sqlite3VdbeMemIntegerify(pIn2); 7187 if( pIn1->u.i<pIn2->u.i){ 7188 pIn1->u.i = pIn2->u.i; 7189 } 7190 break; 7191 } 7192 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7193 7194 /* Opcode: IfPos P1 P2 P3 * * 7195 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7196 ** 7197 ** Register P1 must contain an integer. 7198 ** If the value of register P1 is 1 or greater, subtract P3 from the 7199 ** value in P1 and jump to P2. 7200 ** 7201 ** If the initial value of register P1 is less than 1, then the 7202 ** value is unchanged and control passes through to the next instruction. 7203 */ 7204 case OP_IfPos: { /* jump, in1 */ 7205 pIn1 = &aMem[pOp->p1]; 7206 assert( pIn1->flags&MEM_Int ); 7207 VdbeBranchTaken( pIn1->u.i>0, 2); 7208 if( pIn1->u.i>0 ){ 7209 pIn1->u.i -= pOp->p3; 7210 goto jump_to_p2; 7211 } 7212 break; 7213 } 7214 7215 /* Opcode: OffsetLimit P1 P2 P3 * * 7216 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7217 ** 7218 ** This opcode performs a commonly used computation associated with 7219 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 7220 ** holds the offset counter. The opcode computes the combined value 7221 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7222 ** value computed is the total number of rows that will need to be 7223 ** visited in order to complete the query. 7224 ** 7225 ** If r[P3] is zero or negative, that means there is no OFFSET 7226 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7227 ** 7228 ** if r[P1] is zero or negative, that means there is no LIMIT 7229 ** and r[P2] is set to -1. 7230 ** 7231 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7232 */ 7233 case OP_OffsetLimit: { /* in1, out2, in3 */ 7234 i64 x; 7235 pIn1 = &aMem[pOp->p1]; 7236 pIn3 = &aMem[pOp->p3]; 7237 pOut = out2Prerelease(p, pOp); 7238 assert( pIn1->flags & MEM_Int ); 7239 assert( pIn3->flags & MEM_Int ); 7240 x = pIn1->u.i; 7241 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7242 /* If the LIMIT is less than or equal to zero, loop forever. This 7243 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7244 ** also loop forever. This is undocumented. In fact, one could argue 7245 ** that the loop should terminate. But assuming 1 billion iterations 7246 ** per second (far exceeding the capabilities of any current hardware) 7247 ** it would take nearly 300 years to actually reach the limit. So 7248 ** looping forever is a reasonable approximation. */ 7249 pOut->u.i = -1; 7250 }else{ 7251 pOut->u.i = x; 7252 } 7253 break; 7254 } 7255 7256 /* Opcode: IfNotZero P1 P2 * * * 7257 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7258 ** 7259 ** Register P1 must contain an integer. If the content of register P1 is 7260 ** initially greater than zero, then decrement the value in register P1. 7261 ** If it is non-zero (negative or positive) and then also jump to P2. 7262 ** If register P1 is initially zero, leave it unchanged and fall through. 7263 */ 7264 case OP_IfNotZero: { /* jump, in1 */ 7265 pIn1 = &aMem[pOp->p1]; 7266 assert( pIn1->flags&MEM_Int ); 7267 VdbeBranchTaken(pIn1->u.i<0, 2); 7268 if( pIn1->u.i ){ 7269 if( pIn1->u.i>0 ) pIn1->u.i--; 7270 goto jump_to_p2; 7271 } 7272 break; 7273 } 7274 7275 /* Opcode: DecrJumpZero P1 P2 * * * 7276 ** Synopsis: if (--r[P1])==0 goto P2 7277 ** 7278 ** Register P1 must hold an integer. Decrement the value in P1 7279 ** and jump to P2 if the new value is exactly zero. 7280 */ 7281 case OP_DecrJumpZero: { /* jump, in1 */ 7282 pIn1 = &aMem[pOp->p1]; 7283 assert( pIn1->flags&MEM_Int ); 7284 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7285 VdbeBranchTaken(pIn1->u.i==0, 2); 7286 if( pIn1->u.i==0 ) goto jump_to_p2; 7287 break; 7288 } 7289 7290 7291 /* Opcode: AggStep * P2 P3 P4 P5 7292 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7293 ** 7294 ** Execute the xStep function for an aggregate. 7295 ** The function has P5 arguments. P4 is a pointer to the 7296 ** FuncDef structure that specifies the function. Register P3 is the 7297 ** accumulator. 7298 ** 7299 ** The P5 arguments are taken from register P2 and its 7300 ** successors. 7301 */ 7302 /* Opcode: AggInverse * P2 P3 P4 P5 7303 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7304 ** 7305 ** Execute the xInverse function for an aggregate. 7306 ** The function has P5 arguments. P4 is a pointer to the 7307 ** FuncDef structure that specifies the function. Register P3 is the 7308 ** accumulator. 7309 ** 7310 ** The P5 arguments are taken from register P2 and its 7311 ** successors. 7312 */ 7313 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7314 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7315 ** 7316 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7317 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7318 ** FuncDef structure that specifies the function. Register P3 is the 7319 ** accumulator. 7320 ** 7321 ** The P5 arguments are taken from register P2 and its 7322 ** successors. 7323 ** 7324 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7325 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7326 ** the opcode is changed. In this way, the initialization of the 7327 ** sqlite3_context only happens once, instead of on each call to the 7328 ** step function. 7329 */ 7330 case OP_AggInverse: 7331 case OP_AggStep: { 7332 int n; 7333 sqlite3_context *pCtx; 7334 7335 assert( pOp->p4type==P4_FUNCDEF ); 7336 n = pOp->p5; 7337 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7338 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7339 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7340 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7341 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7342 if( pCtx==0 ) goto no_mem; 7343 pCtx->pMem = 0; 7344 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7345 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7346 pCtx->pFunc = pOp->p4.pFunc; 7347 pCtx->iOp = (int)(pOp - aOp); 7348 pCtx->pVdbe = p; 7349 pCtx->skipFlag = 0; 7350 pCtx->isError = 0; 7351 pCtx->enc = encoding; 7352 pCtx->argc = n; 7353 pOp->p4type = P4_FUNCCTX; 7354 pOp->p4.pCtx = pCtx; 7355 7356 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7357 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7358 7359 pOp->opcode = OP_AggStep1; 7360 /* Fall through into OP_AggStep */ 7361 /* no break */ deliberate_fall_through 7362 } 7363 case OP_AggStep1: { 7364 int i; 7365 sqlite3_context *pCtx; 7366 Mem *pMem; 7367 7368 assert( pOp->p4type==P4_FUNCCTX ); 7369 pCtx = pOp->p4.pCtx; 7370 pMem = &aMem[pOp->p3]; 7371 7372 #ifdef SQLITE_DEBUG 7373 if( pOp->p1 ){ 7374 /* This is an OP_AggInverse call. Verify that xStep has always 7375 ** been called at least once prior to any xInverse call. */ 7376 assert( pMem->uTemp==0x1122e0e3 ); 7377 }else{ 7378 /* This is an OP_AggStep call. Mark it as such. */ 7379 pMem->uTemp = 0x1122e0e3; 7380 } 7381 #endif 7382 7383 /* If this function is inside of a trigger, the register array in aMem[] 7384 ** might change from one evaluation to the next. The next block of code 7385 ** checks to see if the register array has changed, and if so it 7386 ** reinitializes the relavant parts of the sqlite3_context object */ 7387 if( pCtx->pMem != pMem ){ 7388 pCtx->pMem = pMem; 7389 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7390 } 7391 7392 #ifdef SQLITE_DEBUG 7393 for(i=0; i<pCtx->argc; i++){ 7394 assert( memIsValid(pCtx->argv[i]) ); 7395 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7396 } 7397 #endif 7398 7399 pMem->n++; 7400 assert( pCtx->pOut->flags==MEM_Null ); 7401 assert( pCtx->isError==0 ); 7402 assert( pCtx->skipFlag==0 ); 7403 #ifndef SQLITE_OMIT_WINDOWFUNC 7404 if( pOp->p1 ){ 7405 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7406 }else 7407 #endif 7408 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7409 7410 if( pCtx->isError ){ 7411 if( pCtx->isError>0 ){ 7412 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7413 rc = pCtx->isError; 7414 } 7415 if( pCtx->skipFlag ){ 7416 assert( pOp[-1].opcode==OP_CollSeq ); 7417 i = pOp[-1].p1; 7418 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7419 pCtx->skipFlag = 0; 7420 } 7421 sqlite3VdbeMemRelease(pCtx->pOut); 7422 pCtx->pOut->flags = MEM_Null; 7423 pCtx->isError = 0; 7424 if( rc ) goto abort_due_to_error; 7425 } 7426 assert( pCtx->pOut->flags==MEM_Null ); 7427 assert( pCtx->skipFlag==0 ); 7428 break; 7429 } 7430 7431 /* Opcode: AggFinal P1 P2 * P4 * 7432 ** Synopsis: accum=r[P1] N=P2 7433 ** 7434 ** P1 is the memory location that is the accumulator for an aggregate 7435 ** or window function. Execute the finalizer function 7436 ** for an aggregate and store the result in P1. 7437 ** 7438 ** P2 is the number of arguments that the step function takes and 7439 ** P4 is a pointer to the FuncDef for this function. The P2 7440 ** argument is not used by this opcode. It is only there to disambiguate 7441 ** functions that can take varying numbers of arguments. The 7442 ** P4 argument is only needed for the case where 7443 ** the step function was not previously called. 7444 */ 7445 /* Opcode: AggValue * P2 P3 P4 * 7446 ** Synopsis: r[P3]=value N=P2 7447 ** 7448 ** Invoke the xValue() function and store the result in register P3. 7449 ** 7450 ** P2 is the number of arguments that the step function takes and 7451 ** P4 is a pointer to the FuncDef for this function. The P2 7452 ** argument is not used by this opcode. It is only there to disambiguate 7453 ** functions that can take varying numbers of arguments. The 7454 ** P4 argument is only needed for the case where 7455 ** the step function was not previously called. 7456 */ 7457 case OP_AggValue: 7458 case OP_AggFinal: { 7459 Mem *pMem; 7460 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7461 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7462 pMem = &aMem[pOp->p1]; 7463 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7464 #ifndef SQLITE_OMIT_WINDOWFUNC 7465 if( pOp->p3 ){ 7466 memAboutToChange(p, &aMem[pOp->p3]); 7467 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7468 pMem = &aMem[pOp->p3]; 7469 }else 7470 #endif 7471 { 7472 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7473 } 7474 7475 if( rc ){ 7476 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7477 goto abort_due_to_error; 7478 } 7479 sqlite3VdbeChangeEncoding(pMem, encoding); 7480 UPDATE_MAX_BLOBSIZE(pMem); 7481 break; 7482 } 7483 7484 #ifndef SQLITE_OMIT_WAL 7485 /* Opcode: Checkpoint P1 P2 P3 * * 7486 ** 7487 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7488 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7489 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7490 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7491 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7492 ** in the WAL that have been checkpointed after the checkpoint 7493 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7494 ** mem[P3+2] are initialized to -1. 7495 */ 7496 case OP_Checkpoint: { 7497 int i; /* Loop counter */ 7498 int aRes[3]; /* Results */ 7499 Mem *pMem; /* Write results here */ 7500 7501 assert( p->readOnly==0 ); 7502 aRes[0] = 0; 7503 aRes[1] = aRes[2] = -1; 7504 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7505 || pOp->p2==SQLITE_CHECKPOINT_FULL 7506 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7507 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7508 ); 7509 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7510 if( rc ){ 7511 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7512 rc = SQLITE_OK; 7513 aRes[0] = 1; 7514 } 7515 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7516 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7517 } 7518 break; 7519 }; 7520 #endif 7521 7522 #ifndef SQLITE_OMIT_PRAGMA 7523 /* Opcode: JournalMode P1 P2 P3 * * 7524 ** 7525 ** Change the journal mode of database P1 to P3. P3 must be one of the 7526 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7527 ** modes (delete, truncate, persist, off and memory), this is a simple 7528 ** operation. No IO is required. 7529 ** 7530 ** If changing into or out of WAL mode the procedure is more complicated. 7531 ** 7532 ** Write a string containing the final journal-mode to register P2. 7533 */ 7534 case OP_JournalMode: { /* out2 */ 7535 Btree *pBt; /* Btree to change journal mode of */ 7536 Pager *pPager; /* Pager associated with pBt */ 7537 int eNew; /* New journal mode */ 7538 int eOld; /* The old journal mode */ 7539 #ifndef SQLITE_OMIT_WAL 7540 const char *zFilename; /* Name of database file for pPager */ 7541 #endif 7542 7543 pOut = out2Prerelease(p, pOp); 7544 eNew = pOp->p3; 7545 assert( eNew==PAGER_JOURNALMODE_DELETE 7546 || eNew==PAGER_JOURNALMODE_TRUNCATE 7547 || eNew==PAGER_JOURNALMODE_PERSIST 7548 || eNew==PAGER_JOURNALMODE_OFF 7549 || eNew==PAGER_JOURNALMODE_MEMORY 7550 || eNew==PAGER_JOURNALMODE_WAL 7551 || eNew==PAGER_JOURNALMODE_QUERY 7552 ); 7553 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7554 assert( p->readOnly==0 ); 7555 7556 pBt = db->aDb[pOp->p1].pBt; 7557 pPager = sqlite3BtreePager(pBt); 7558 eOld = sqlite3PagerGetJournalMode(pPager); 7559 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7560 assert( sqlite3BtreeHoldsMutex(pBt) ); 7561 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7562 7563 #ifndef SQLITE_OMIT_WAL 7564 zFilename = sqlite3PagerFilename(pPager, 1); 7565 7566 /* Do not allow a transition to journal_mode=WAL for a database 7567 ** in temporary storage or if the VFS does not support shared memory 7568 */ 7569 if( eNew==PAGER_JOURNALMODE_WAL 7570 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7571 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7572 ){ 7573 eNew = eOld; 7574 } 7575 7576 if( (eNew!=eOld) 7577 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7578 ){ 7579 if( !db->autoCommit || db->nVdbeRead>1 ){ 7580 rc = SQLITE_ERROR; 7581 sqlite3VdbeError(p, 7582 "cannot change %s wal mode from within a transaction", 7583 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7584 ); 7585 goto abort_due_to_error; 7586 }else{ 7587 7588 if( eOld==PAGER_JOURNALMODE_WAL ){ 7589 /* If leaving WAL mode, close the log file. If successful, the call 7590 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7591 ** file. An EXCLUSIVE lock may still be held on the database file 7592 ** after a successful return. 7593 */ 7594 rc = sqlite3PagerCloseWal(pPager, db); 7595 if( rc==SQLITE_OK ){ 7596 sqlite3PagerSetJournalMode(pPager, eNew); 7597 } 7598 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7599 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7600 ** as an intermediate */ 7601 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7602 } 7603 7604 /* Open a transaction on the database file. Regardless of the journal 7605 ** mode, this transaction always uses a rollback journal. 7606 */ 7607 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7608 if( rc==SQLITE_OK ){ 7609 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7610 } 7611 } 7612 } 7613 #endif /* ifndef SQLITE_OMIT_WAL */ 7614 7615 if( rc ) eNew = eOld; 7616 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7617 7618 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7619 pOut->z = (char *)sqlite3JournalModename(eNew); 7620 pOut->n = sqlite3Strlen30(pOut->z); 7621 pOut->enc = SQLITE_UTF8; 7622 sqlite3VdbeChangeEncoding(pOut, encoding); 7623 if( rc ) goto abort_due_to_error; 7624 break; 7625 }; 7626 #endif /* SQLITE_OMIT_PRAGMA */ 7627 7628 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7629 /* Opcode: Vacuum P1 P2 * * * 7630 ** 7631 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7632 ** for an attached database. The "temp" database may not be vacuumed. 7633 ** 7634 ** If P2 is not zero, then it is a register holding a string which is 7635 ** the file into which the result of vacuum should be written. When 7636 ** P2 is zero, the vacuum overwrites the original database. 7637 */ 7638 case OP_Vacuum: { 7639 assert( p->readOnly==0 ); 7640 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7641 pOp->p2 ? &aMem[pOp->p2] : 0); 7642 if( rc ) goto abort_due_to_error; 7643 break; 7644 } 7645 #endif 7646 7647 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7648 /* Opcode: IncrVacuum P1 P2 * * * 7649 ** 7650 ** Perform a single step of the incremental vacuum procedure on 7651 ** the P1 database. If the vacuum has finished, jump to instruction 7652 ** P2. Otherwise, fall through to the next instruction. 7653 */ 7654 case OP_IncrVacuum: { /* jump */ 7655 Btree *pBt; 7656 7657 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7658 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7659 assert( p->readOnly==0 ); 7660 pBt = db->aDb[pOp->p1].pBt; 7661 rc = sqlite3BtreeIncrVacuum(pBt); 7662 VdbeBranchTaken(rc==SQLITE_DONE,2); 7663 if( rc ){ 7664 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7665 rc = SQLITE_OK; 7666 goto jump_to_p2; 7667 } 7668 break; 7669 } 7670 #endif 7671 7672 /* Opcode: Expire P1 P2 * * * 7673 ** 7674 ** Cause precompiled statements to expire. When an expired statement 7675 ** is executed using sqlite3_step() it will either automatically 7676 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7677 ** or it will fail with SQLITE_SCHEMA. 7678 ** 7679 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7680 ** then only the currently executing statement is expired. 7681 ** 7682 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7683 ** then running SQL statements are allowed to continue to run to completion. 7684 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7685 ** that might help the statement run faster but which does not affect the 7686 ** correctness of operation. 7687 */ 7688 case OP_Expire: { 7689 assert( pOp->p2==0 || pOp->p2==1 ); 7690 if( !pOp->p1 ){ 7691 sqlite3ExpirePreparedStatements(db, pOp->p2); 7692 }else{ 7693 p->expired = pOp->p2+1; 7694 } 7695 break; 7696 } 7697 7698 /* Opcode: CursorLock P1 * * * * 7699 ** 7700 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7701 ** written by an other cursor. 7702 */ 7703 case OP_CursorLock: { 7704 VdbeCursor *pC; 7705 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7706 pC = p->apCsr[pOp->p1]; 7707 assert( pC!=0 ); 7708 assert( pC->eCurType==CURTYPE_BTREE ); 7709 sqlite3BtreeCursorPin(pC->uc.pCursor); 7710 break; 7711 } 7712 7713 /* Opcode: CursorUnlock P1 * * * * 7714 ** 7715 ** Unlock the btree to which cursor P1 is pointing so that it can be 7716 ** written by other cursors. 7717 */ 7718 case OP_CursorUnlock: { 7719 VdbeCursor *pC; 7720 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7721 pC = p->apCsr[pOp->p1]; 7722 assert( pC!=0 ); 7723 assert( pC->eCurType==CURTYPE_BTREE ); 7724 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7725 break; 7726 } 7727 7728 #ifndef SQLITE_OMIT_SHARED_CACHE 7729 /* Opcode: TableLock P1 P2 P3 P4 * 7730 ** Synopsis: iDb=P1 root=P2 write=P3 7731 ** 7732 ** Obtain a lock on a particular table. This instruction is only used when 7733 ** the shared-cache feature is enabled. 7734 ** 7735 ** P1 is the index of the database in sqlite3.aDb[] of the database 7736 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7737 ** a write lock if P3==1. 7738 ** 7739 ** P2 contains the root-page of the table to lock. 7740 ** 7741 ** P4 contains a pointer to the name of the table being locked. This is only 7742 ** used to generate an error message if the lock cannot be obtained. 7743 */ 7744 case OP_TableLock: { 7745 u8 isWriteLock = (u8)pOp->p3; 7746 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7747 int p1 = pOp->p1; 7748 assert( p1>=0 && p1<db->nDb ); 7749 assert( DbMaskTest(p->btreeMask, p1) ); 7750 assert( isWriteLock==0 || isWriteLock==1 ); 7751 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7752 if( rc ){ 7753 if( (rc&0xFF)==SQLITE_LOCKED ){ 7754 const char *z = pOp->p4.z; 7755 sqlite3VdbeError(p, "database table is locked: %s", z); 7756 } 7757 goto abort_due_to_error; 7758 } 7759 } 7760 break; 7761 } 7762 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7763 7764 #ifndef SQLITE_OMIT_VIRTUALTABLE 7765 /* Opcode: VBegin * * * P4 * 7766 ** 7767 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7768 ** xBegin method for that table. 7769 ** 7770 ** Also, whether or not P4 is set, check that this is not being called from 7771 ** within a callback to a virtual table xSync() method. If it is, the error 7772 ** code will be set to SQLITE_LOCKED. 7773 */ 7774 case OP_VBegin: { 7775 VTable *pVTab; 7776 pVTab = pOp->p4.pVtab; 7777 rc = sqlite3VtabBegin(db, pVTab); 7778 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7779 if( rc ) goto abort_due_to_error; 7780 break; 7781 } 7782 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7783 7784 #ifndef SQLITE_OMIT_VIRTUALTABLE 7785 /* Opcode: VCreate P1 P2 * * * 7786 ** 7787 ** P2 is a register that holds the name of a virtual table in database 7788 ** P1. Call the xCreate method for that table. 7789 */ 7790 case OP_VCreate: { 7791 Mem sMem; /* For storing the record being decoded */ 7792 const char *zTab; /* Name of the virtual table */ 7793 7794 memset(&sMem, 0, sizeof(sMem)); 7795 sMem.db = db; 7796 /* Because P2 is always a static string, it is impossible for the 7797 ** sqlite3VdbeMemCopy() to fail */ 7798 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7799 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7800 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7801 assert( rc==SQLITE_OK ); 7802 zTab = (const char*)sqlite3_value_text(&sMem); 7803 assert( zTab || db->mallocFailed ); 7804 if( zTab ){ 7805 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7806 } 7807 sqlite3VdbeMemRelease(&sMem); 7808 if( rc ) goto abort_due_to_error; 7809 break; 7810 } 7811 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7812 7813 #ifndef SQLITE_OMIT_VIRTUALTABLE 7814 /* Opcode: VDestroy P1 * * P4 * 7815 ** 7816 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7817 ** of that table. 7818 */ 7819 case OP_VDestroy: { 7820 db->nVDestroy++; 7821 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7822 db->nVDestroy--; 7823 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7824 if( rc ) goto abort_due_to_error; 7825 break; 7826 } 7827 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7828 7829 #ifndef SQLITE_OMIT_VIRTUALTABLE 7830 /* Opcode: VOpen P1 * * P4 * 7831 ** 7832 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7833 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7834 ** table and stores that cursor in P1. 7835 */ 7836 case OP_VOpen: { 7837 VdbeCursor *pCur; 7838 sqlite3_vtab_cursor *pVCur; 7839 sqlite3_vtab *pVtab; 7840 const sqlite3_module *pModule; 7841 7842 assert( p->bIsReader ); 7843 pCur = 0; 7844 pVCur = 0; 7845 pVtab = pOp->p4.pVtab->pVtab; 7846 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7847 rc = SQLITE_LOCKED; 7848 goto abort_due_to_error; 7849 } 7850 pModule = pVtab->pModule; 7851 rc = pModule->xOpen(pVtab, &pVCur); 7852 sqlite3VtabImportErrmsg(p, pVtab); 7853 if( rc ) goto abort_due_to_error; 7854 7855 /* Initialize sqlite3_vtab_cursor base class */ 7856 pVCur->pVtab = pVtab; 7857 7858 /* Initialize vdbe cursor object */ 7859 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 7860 if( pCur ){ 7861 pCur->uc.pVCur = pVCur; 7862 pVtab->nRef++; 7863 }else{ 7864 assert( db->mallocFailed ); 7865 pModule->xClose(pVCur); 7866 goto no_mem; 7867 } 7868 break; 7869 } 7870 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7871 7872 #ifndef SQLITE_OMIT_VIRTUALTABLE 7873 /* Opcode: VInitIn P1 P2 P3 * * 7874 ** Synopsis: r[P2]=ValueList(P1,P3) 7875 ** 7876 ** Set register P2 to be a pointer to a ValueList object for cursor P1 7877 ** with cache register P3 and output register P3+1. This ValueList object 7878 ** can be used as the first argument to sqlite3_vtab_in_first() and 7879 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 7880 ** cursor. Register P3 is used to hold the values returned by 7881 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 7882 */ 7883 case OP_VInitIn: { /* out2 */ 7884 VdbeCursor *pC; /* The cursor containing the RHS values */ 7885 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 7886 7887 pC = p->apCsr[pOp->p1]; 7888 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 7889 if( pRhs==0 ) goto no_mem; 7890 pRhs->pCsr = pC->uc.pCursor; 7891 pRhs->pOut = &aMem[pOp->p3]; 7892 pOut = out2Prerelease(p, pOp); 7893 pOut->flags = MEM_Null; 7894 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free); 7895 break; 7896 } 7897 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7898 7899 7900 #ifndef SQLITE_OMIT_VIRTUALTABLE 7901 /* Opcode: VFilter P1 P2 P3 P4 * 7902 ** Synopsis: iplan=r[P3] zplan='P4' 7903 ** 7904 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7905 ** the filtered result set is empty. 7906 ** 7907 ** P4 is either NULL or a string that was generated by the xBestIndex 7908 ** method of the module. The interpretation of the P4 string is left 7909 ** to the module implementation. 7910 ** 7911 ** This opcode invokes the xFilter method on the virtual table specified 7912 ** by P1. The integer query plan parameter to xFilter is stored in register 7913 ** P3. Register P3+1 stores the argc parameter to be passed to the 7914 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7915 ** additional parameters which are passed to 7916 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7917 ** 7918 ** A jump is made to P2 if the result set after filtering would be empty. 7919 */ 7920 case OP_VFilter: { /* jump */ 7921 int nArg; 7922 int iQuery; 7923 const sqlite3_module *pModule; 7924 Mem *pQuery; 7925 Mem *pArgc; 7926 sqlite3_vtab_cursor *pVCur; 7927 sqlite3_vtab *pVtab; 7928 VdbeCursor *pCur; 7929 int res; 7930 int i; 7931 Mem **apArg; 7932 7933 pQuery = &aMem[pOp->p3]; 7934 pArgc = &pQuery[1]; 7935 pCur = p->apCsr[pOp->p1]; 7936 assert( memIsValid(pQuery) ); 7937 REGISTER_TRACE(pOp->p3, pQuery); 7938 assert( pCur!=0 ); 7939 assert( pCur->eCurType==CURTYPE_VTAB ); 7940 pVCur = pCur->uc.pVCur; 7941 pVtab = pVCur->pVtab; 7942 pModule = pVtab->pModule; 7943 7944 /* Grab the index number and argc parameters */ 7945 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7946 nArg = (int)pArgc->u.i; 7947 iQuery = (int)pQuery->u.i; 7948 7949 /* Invoke the xFilter method */ 7950 apArg = p->apArg; 7951 for(i = 0; i<nArg; i++){ 7952 apArg[i] = &pArgc[i+1]; 7953 } 7954 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7955 sqlite3VtabImportErrmsg(p, pVtab); 7956 if( rc ) goto abort_due_to_error; 7957 res = pModule->xEof(pVCur); 7958 pCur->nullRow = 0; 7959 VdbeBranchTaken(res!=0,2); 7960 if( res ) goto jump_to_p2; 7961 break; 7962 } 7963 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7964 7965 #ifndef SQLITE_OMIT_VIRTUALTABLE 7966 /* Opcode: VColumn P1 P2 P3 * P5 7967 ** Synopsis: r[P3]=vcolumn(P2) 7968 ** 7969 ** Store in register P3 the value of the P2-th column of 7970 ** the current row of the virtual-table of cursor P1. 7971 ** 7972 ** If the VColumn opcode is being used to fetch the value of 7973 ** an unchanging column during an UPDATE operation, then the P5 7974 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7975 ** function to return true inside the xColumn method of the virtual 7976 ** table implementation. The P5 column might also contain other 7977 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7978 ** unused by OP_VColumn. 7979 */ 7980 case OP_VColumn: { 7981 sqlite3_vtab *pVtab; 7982 const sqlite3_module *pModule; 7983 Mem *pDest; 7984 sqlite3_context sContext; 7985 7986 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7987 assert( pCur!=0 ); 7988 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7989 pDest = &aMem[pOp->p3]; 7990 memAboutToChange(p, pDest); 7991 if( pCur->nullRow ){ 7992 sqlite3VdbeMemSetNull(pDest); 7993 break; 7994 } 7995 assert( pCur->eCurType==CURTYPE_VTAB ); 7996 pVtab = pCur->uc.pVCur->pVtab; 7997 pModule = pVtab->pModule; 7998 assert( pModule->xColumn ); 7999 memset(&sContext, 0, sizeof(sContext)); 8000 sContext.pOut = pDest; 8001 sContext.enc = encoding; 8002 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 8003 if( pOp->p5 & OPFLAG_NOCHNG ){ 8004 sqlite3VdbeMemSetNull(pDest); 8005 pDest->flags = MEM_Null|MEM_Zero; 8006 pDest->u.nZero = 0; 8007 }else{ 8008 MemSetTypeFlag(pDest, MEM_Null); 8009 } 8010 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 8011 sqlite3VtabImportErrmsg(p, pVtab); 8012 if( sContext.isError>0 ){ 8013 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 8014 rc = sContext.isError; 8015 } 8016 sqlite3VdbeChangeEncoding(pDest, encoding); 8017 REGISTER_TRACE(pOp->p3, pDest); 8018 UPDATE_MAX_BLOBSIZE(pDest); 8019 8020 if( rc ) goto abort_due_to_error; 8021 break; 8022 } 8023 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8024 8025 #ifndef SQLITE_OMIT_VIRTUALTABLE 8026 /* Opcode: VNext P1 P2 * * * 8027 ** 8028 ** Advance virtual table P1 to the next row in its result set and 8029 ** jump to instruction P2. Or, if the virtual table has reached 8030 ** the end of its result set, then fall through to the next instruction. 8031 */ 8032 case OP_VNext: { /* jump */ 8033 sqlite3_vtab *pVtab; 8034 const sqlite3_module *pModule; 8035 int res; 8036 VdbeCursor *pCur; 8037 8038 pCur = p->apCsr[pOp->p1]; 8039 assert( pCur!=0 ); 8040 assert( pCur->eCurType==CURTYPE_VTAB ); 8041 if( pCur->nullRow ){ 8042 break; 8043 } 8044 pVtab = pCur->uc.pVCur->pVtab; 8045 pModule = pVtab->pModule; 8046 assert( pModule->xNext ); 8047 8048 /* Invoke the xNext() method of the module. There is no way for the 8049 ** underlying implementation to return an error if one occurs during 8050 ** xNext(). Instead, if an error occurs, true is returned (indicating that 8051 ** data is available) and the error code returned when xColumn or 8052 ** some other method is next invoked on the save virtual table cursor. 8053 */ 8054 rc = pModule->xNext(pCur->uc.pVCur); 8055 sqlite3VtabImportErrmsg(p, pVtab); 8056 if( rc ) goto abort_due_to_error; 8057 res = pModule->xEof(pCur->uc.pVCur); 8058 VdbeBranchTaken(!res,2); 8059 if( !res ){ 8060 /* If there is data, jump to P2 */ 8061 goto jump_to_p2_and_check_for_interrupt; 8062 } 8063 goto check_for_interrupt; 8064 } 8065 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8066 8067 #ifndef SQLITE_OMIT_VIRTUALTABLE 8068 /* Opcode: VRename P1 * * P4 * 8069 ** 8070 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8071 ** This opcode invokes the corresponding xRename method. The value 8072 ** in register P1 is passed as the zName argument to the xRename method. 8073 */ 8074 case OP_VRename: { 8075 sqlite3_vtab *pVtab; 8076 Mem *pName; 8077 int isLegacy; 8078 8079 isLegacy = (db->flags & SQLITE_LegacyAlter); 8080 db->flags |= SQLITE_LegacyAlter; 8081 pVtab = pOp->p4.pVtab->pVtab; 8082 pName = &aMem[pOp->p1]; 8083 assert( pVtab->pModule->xRename ); 8084 assert( memIsValid(pName) ); 8085 assert( p->readOnly==0 ); 8086 REGISTER_TRACE(pOp->p1, pName); 8087 assert( pName->flags & MEM_Str ); 8088 testcase( pName->enc==SQLITE_UTF8 ); 8089 testcase( pName->enc==SQLITE_UTF16BE ); 8090 testcase( pName->enc==SQLITE_UTF16LE ); 8091 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 8092 if( rc ) goto abort_due_to_error; 8093 rc = pVtab->pModule->xRename(pVtab, pName->z); 8094 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 8095 sqlite3VtabImportErrmsg(p, pVtab); 8096 p->expired = 0; 8097 if( rc ) goto abort_due_to_error; 8098 break; 8099 } 8100 #endif 8101 8102 #ifndef SQLITE_OMIT_VIRTUALTABLE 8103 /* Opcode: VUpdate P1 P2 P3 P4 P5 8104 ** Synopsis: data=r[P3@P2] 8105 ** 8106 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8107 ** This opcode invokes the corresponding xUpdate method. P2 values 8108 ** are contiguous memory cells starting at P3 to pass to the xUpdate 8109 ** invocation. The value in register (P3+P2-1) corresponds to the 8110 ** p2th element of the argv array passed to xUpdate. 8111 ** 8112 ** The xUpdate method will do a DELETE or an INSERT or both. 8113 ** The argv[0] element (which corresponds to memory cell P3) 8114 ** is the rowid of a row to delete. If argv[0] is NULL then no 8115 ** deletion occurs. The argv[1] element is the rowid of the new 8116 ** row. This can be NULL to have the virtual table select the new 8117 ** rowid for itself. The subsequent elements in the array are 8118 ** the values of columns in the new row. 8119 ** 8120 ** If P2==1 then no insert is performed. argv[0] is the rowid of 8121 ** a row to delete. 8122 ** 8123 ** P1 is a boolean flag. If it is set to true and the xUpdate call 8124 ** is successful, then the value returned by sqlite3_last_insert_rowid() 8125 ** is set to the value of the rowid for the row just inserted. 8126 ** 8127 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 8128 ** apply in the case of a constraint failure on an insert or update. 8129 */ 8130 case OP_VUpdate: { 8131 sqlite3_vtab *pVtab; 8132 const sqlite3_module *pModule; 8133 int nArg; 8134 int i; 8135 sqlite_int64 rowid = 0; 8136 Mem **apArg; 8137 Mem *pX; 8138 8139 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 8140 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 8141 ); 8142 assert( p->readOnly==0 ); 8143 if( db->mallocFailed ) goto no_mem; 8144 sqlite3VdbeIncrWriteCounter(p, 0); 8145 pVtab = pOp->p4.pVtab->pVtab; 8146 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 8147 rc = SQLITE_LOCKED; 8148 goto abort_due_to_error; 8149 } 8150 pModule = pVtab->pModule; 8151 nArg = pOp->p2; 8152 assert( pOp->p4type==P4_VTAB ); 8153 if( ALWAYS(pModule->xUpdate) ){ 8154 u8 vtabOnConflict = db->vtabOnConflict; 8155 apArg = p->apArg; 8156 pX = &aMem[pOp->p3]; 8157 for(i=0; i<nArg; i++){ 8158 assert( memIsValid(pX) ); 8159 memAboutToChange(p, pX); 8160 apArg[i] = pX; 8161 pX++; 8162 } 8163 db->vtabOnConflict = pOp->p5; 8164 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 8165 db->vtabOnConflict = vtabOnConflict; 8166 sqlite3VtabImportErrmsg(p, pVtab); 8167 if( rc==SQLITE_OK && pOp->p1 ){ 8168 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 8169 db->lastRowid = rowid; 8170 } 8171 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 8172 if( pOp->p5==OE_Ignore ){ 8173 rc = SQLITE_OK; 8174 }else{ 8175 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 8176 } 8177 }else{ 8178 p->nChange++; 8179 } 8180 if( rc ) goto abort_due_to_error; 8181 } 8182 break; 8183 } 8184 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8185 8186 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8187 /* Opcode: Pagecount P1 P2 * * * 8188 ** 8189 ** Write the current number of pages in database P1 to memory cell P2. 8190 */ 8191 case OP_Pagecount: { /* out2 */ 8192 pOut = out2Prerelease(p, pOp); 8193 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8194 break; 8195 } 8196 #endif 8197 8198 8199 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8200 /* Opcode: MaxPgcnt P1 P2 P3 * * 8201 ** 8202 ** Try to set the maximum page count for database P1 to the value in P3. 8203 ** Do not let the maximum page count fall below the current page count and 8204 ** do not change the maximum page count value if P3==0. 8205 ** 8206 ** Store the maximum page count after the change in register P2. 8207 */ 8208 case OP_MaxPgcnt: { /* out2 */ 8209 unsigned int newMax; 8210 Btree *pBt; 8211 8212 pOut = out2Prerelease(p, pOp); 8213 pBt = db->aDb[pOp->p1].pBt; 8214 newMax = 0; 8215 if( pOp->p3 ){ 8216 newMax = sqlite3BtreeLastPage(pBt); 8217 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8218 } 8219 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8220 break; 8221 } 8222 #endif 8223 8224 /* Opcode: Function P1 P2 P3 P4 * 8225 ** Synopsis: r[P3]=func(r[P2@NP]) 8226 ** 8227 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8228 ** contains a pointer to the function to be run) with arguments taken 8229 ** from register P2 and successors. The number of arguments is in 8230 ** the sqlite3_context object that P4 points to. 8231 ** The result of the function is stored 8232 ** in register P3. Register P3 must not be one of the function inputs. 8233 ** 8234 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8235 ** function was determined to be constant at compile time. If the first 8236 ** argument was constant then bit 0 of P1 is set. This is used to determine 8237 ** whether meta data associated with a user function argument using the 8238 ** sqlite3_set_auxdata() API may be safely retained until the next 8239 ** invocation of this opcode. 8240 ** 8241 ** See also: AggStep, AggFinal, PureFunc 8242 */ 8243 /* Opcode: PureFunc P1 P2 P3 P4 * 8244 ** Synopsis: r[P3]=func(r[P2@NP]) 8245 ** 8246 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8247 ** contains a pointer to the function to be run) with arguments taken 8248 ** from register P2 and successors. The number of arguments is in 8249 ** the sqlite3_context object that P4 points to. 8250 ** The result of the function is stored 8251 ** in register P3. Register P3 must not be one of the function inputs. 8252 ** 8253 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8254 ** function was determined to be constant at compile time. If the first 8255 ** argument was constant then bit 0 of P1 is set. This is used to determine 8256 ** whether meta data associated with a user function argument using the 8257 ** sqlite3_set_auxdata() API may be safely retained until the next 8258 ** invocation of this opcode. 8259 ** 8260 ** This opcode works exactly like OP_Function. The only difference is in 8261 ** its name. This opcode is used in places where the function must be 8262 ** purely non-deterministic. Some built-in date/time functions can be 8263 ** either determinitic of non-deterministic, depending on their arguments. 8264 ** When those function are used in a non-deterministic way, they will check 8265 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8266 ** if they were, they throw an error. 8267 ** 8268 ** See also: AggStep, AggFinal, Function 8269 */ 8270 case OP_PureFunc: /* group */ 8271 case OP_Function: { /* group */ 8272 int i; 8273 sqlite3_context *pCtx; 8274 8275 assert( pOp->p4type==P4_FUNCCTX ); 8276 pCtx = pOp->p4.pCtx; 8277 8278 /* If this function is inside of a trigger, the register array in aMem[] 8279 ** might change from one evaluation to the next. The next block of code 8280 ** checks to see if the register array has changed, and if so it 8281 ** reinitializes the relavant parts of the sqlite3_context object */ 8282 pOut = &aMem[pOp->p3]; 8283 if( pCtx->pOut != pOut ){ 8284 pCtx->pVdbe = p; 8285 pCtx->pOut = pOut; 8286 pCtx->enc = encoding; 8287 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8288 } 8289 assert( pCtx->pVdbe==p ); 8290 8291 memAboutToChange(p, pOut); 8292 #ifdef SQLITE_DEBUG 8293 for(i=0; i<pCtx->argc; i++){ 8294 assert( memIsValid(pCtx->argv[i]) ); 8295 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8296 } 8297 #endif 8298 MemSetTypeFlag(pOut, MEM_Null); 8299 assert( pCtx->isError==0 ); 8300 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8301 8302 /* If the function returned an error, throw an exception */ 8303 if( pCtx->isError ){ 8304 if( pCtx->isError>0 ){ 8305 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8306 rc = pCtx->isError; 8307 } 8308 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8309 pCtx->isError = 0; 8310 if( rc ) goto abort_due_to_error; 8311 } 8312 8313 assert( (pOut->flags&MEM_Str)==0 8314 || pOut->enc==encoding 8315 || db->mallocFailed ); 8316 assert( !sqlite3VdbeMemTooBig(pOut) ); 8317 8318 REGISTER_TRACE(pOp->p3, pOut); 8319 UPDATE_MAX_BLOBSIZE(pOut); 8320 break; 8321 } 8322 8323 /* Opcode: ClrSubtype P1 * * * * 8324 ** Synopsis: r[P1].subtype = 0 8325 ** 8326 ** Clear the subtype from register P1. 8327 */ 8328 case OP_ClrSubtype: { /* in1 */ 8329 pIn1 = &aMem[pOp->p1]; 8330 pIn1->flags &= ~MEM_Subtype; 8331 break; 8332 } 8333 8334 /* Opcode: FilterAdd P1 * P3 P4 * 8335 ** Synopsis: filter(P1) += key(P3@P4) 8336 ** 8337 ** Compute a hash on the P4 registers starting with r[P3] and 8338 ** add that hash to the bloom filter contained in r[P1]. 8339 */ 8340 case OP_FilterAdd: { 8341 u64 h; 8342 8343 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8344 pIn1 = &aMem[pOp->p1]; 8345 assert( pIn1->flags & MEM_Blob ); 8346 assert( pIn1->n>0 ); 8347 h = filterHash(aMem, pOp); 8348 #ifdef SQLITE_DEBUG 8349 if( db->flags&SQLITE_VdbeTrace ){ 8350 int ii; 8351 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8352 registerTrace(ii, &aMem[ii]); 8353 } 8354 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8355 } 8356 #endif 8357 h %= pIn1->n; 8358 pIn1->z[h/8] |= 1<<(h&7); 8359 break; 8360 } 8361 8362 /* Opcode: Filter P1 P2 P3 P4 * 8363 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 8364 ** 8365 ** Compute a hash on the key contained in the P4 registers starting 8366 ** with r[P3]. Check to see if that hash is found in the 8367 ** bloom filter hosted by register P1. If it is not present then 8368 ** maybe jump to P2. Otherwise fall through. 8369 ** 8370 ** False negatives are harmless. It is always safe to fall through, 8371 ** even if the value is in the bloom filter. A false negative causes 8372 ** more CPU cycles to be used, but it should still yield the correct 8373 ** answer. However, an incorrect answer may well arise from a 8374 ** false positive - if the jump is taken when it should fall through. 8375 */ 8376 case OP_Filter: { /* jump */ 8377 u64 h; 8378 8379 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8380 pIn1 = &aMem[pOp->p1]; 8381 assert( (pIn1->flags & MEM_Blob)!=0 ); 8382 assert( pIn1->n >= 1 ); 8383 h = filterHash(aMem, pOp); 8384 #ifdef SQLITE_DEBUG 8385 if( db->flags&SQLITE_VdbeTrace ){ 8386 int ii; 8387 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8388 registerTrace(ii, &aMem[ii]); 8389 } 8390 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8391 } 8392 #endif 8393 h %= pIn1->n; 8394 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 8395 VdbeBranchTaken(1, 2); 8396 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 8397 goto jump_to_p2; 8398 }else{ 8399 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 8400 VdbeBranchTaken(0, 2); 8401 } 8402 break; 8403 } 8404 8405 /* Opcode: Trace P1 P2 * P4 * 8406 ** 8407 ** Write P4 on the statement trace output if statement tracing is 8408 ** enabled. 8409 ** 8410 ** Operand P1 must be 0x7fffffff and P2 must positive. 8411 */ 8412 /* Opcode: Init P1 P2 P3 P4 * 8413 ** Synopsis: Start at P2 8414 ** 8415 ** Programs contain a single instance of this opcode as the very first 8416 ** opcode. 8417 ** 8418 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8419 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8420 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8421 ** 8422 ** If P2 is not zero, jump to instruction P2. 8423 ** 8424 ** Increment the value of P1 so that OP_Once opcodes will jump the 8425 ** first time they are evaluated for this run. 8426 ** 8427 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8428 ** error is encountered. 8429 */ 8430 case OP_Trace: 8431 case OP_Init: { /* jump */ 8432 int i; 8433 #ifndef SQLITE_OMIT_TRACE 8434 char *zTrace; 8435 #endif 8436 8437 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8438 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8439 ** 8440 ** This assert() provides evidence for: 8441 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8442 ** would have been returned by the legacy sqlite3_trace() interface by 8443 ** using the X argument when X begins with "--" and invoking 8444 ** sqlite3_expanded_sql(P) otherwise. 8445 */ 8446 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8447 8448 /* OP_Init is always instruction 0 */ 8449 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8450 8451 #ifndef SQLITE_OMIT_TRACE 8452 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8453 && p->minWriteFileFormat!=254 /* tag-20220401a */ 8454 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8455 ){ 8456 #ifndef SQLITE_OMIT_DEPRECATED 8457 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8458 char *z = sqlite3VdbeExpandSql(p, zTrace); 8459 db->trace.xLegacy(db->pTraceArg, z); 8460 sqlite3_free(z); 8461 }else 8462 #endif 8463 if( db->nVdbeExec>1 ){ 8464 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8465 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8466 sqlite3DbFree(db, z); 8467 }else{ 8468 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8469 } 8470 } 8471 #ifdef SQLITE_USE_FCNTL_TRACE 8472 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8473 if( zTrace ){ 8474 int j; 8475 for(j=0; j<db->nDb; j++){ 8476 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8477 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8478 } 8479 } 8480 #endif /* SQLITE_USE_FCNTL_TRACE */ 8481 #ifdef SQLITE_DEBUG 8482 if( (db->flags & SQLITE_SqlTrace)!=0 8483 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8484 ){ 8485 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8486 } 8487 #endif /* SQLITE_DEBUG */ 8488 #endif /* SQLITE_OMIT_TRACE */ 8489 assert( pOp->p2>0 ); 8490 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8491 if( pOp->opcode==OP_Trace ) break; 8492 for(i=1; i<p->nOp; i++){ 8493 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8494 } 8495 pOp->p1 = 0; 8496 } 8497 pOp->p1++; 8498 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8499 goto jump_to_p2; 8500 } 8501 8502 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8503 /* Opcode: CursorHint P1 * * P4 * 8504 ** 8505 ** Provide a hint to cursor P1 that it only needs to return rows that 8506 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8507 ** to values currently held in registers. TK_COLUMN terms in the P4 8508 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8509 */ 8510 case OP_CursorHint: { 8511 VdbeCursor *pC; 8512 8513 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8514 assert( pOp->p4type==P4_EXPR ); 8515 pC = p->apCsr[pOp->p1]; 8516 if( pC ){ 8517 assert( pC->eCurType==CURTYPE_BTREE ); 8518 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8519 pOp->p4.pExpr, aMem); 8520 } 8521 break; 8522 } 8523 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8524 8525 #ifdef SQLITE_DEBUG 8526 /* Opcode: Abortable * * * * * 8527 ** 8528 ** Verify that an Abort can happen. Assert if an Abort at this point 8529 ** might cause database corruption. This opcode only appears in debugging 8530 ** builds. 8531 ** 8532 ** An Abort is safe if either there have been no writes, or if there is 8533 ** an active statement journal. 8534 */ 8535 case OP_Abortable: { 8536 sqlite3VdbeAssertAbortable(p); 8537 break; 8538 } 8539 #endif 8540 8541 #ifdef SQLITE_DEBUG 8542 /* Opcode: ReleaseReg P1 P2 P3 * P5 8543 ** Synopsis: release r[P1@P2] mask P3 8544 ** 8545 ** Release registers from service. Any content that was in the 8546 ** the registers is unreliable after this opcode completes. 8547 ** 8548 ** The registers released will be the P2 registers starting at P1, 8549 ** except if bit ii of P3 set, then do not release register P1+ii. 8550 ** In other words, P3 is a mask of registers to preserve. 8551 ** 8552 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8553 ** that if the content of the released register was set using OP_SCopy, 8554 ** a change to the value of the source register for the OP_SCopy will no longer 8555 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8556 ** 8557 ** If P5 is set, then all released registers have their type set 8558 ** to MEM_Undefined so that any subsequent attempt to read the released 8559 ** register (before it is reinitialized) will generate an assertion fault. 8560 ** 8561 ** P5 ought to be set on every call to this opcode. 8562 ** However, there are places in the code generator will release registers 8563 ** before their are used, under the (valid) assumption that the registers 8564 ** will not be reallocated for some other purpose before they are used and 8565 ** hence are safe to release. 8566 ** 8567 ** This opcode is only available in testing and debugging builds. It is 8568 ** not generated for release builds. The purpose of this opcode is to help 8569 ** validate the generated bytecode. This opcode does not actually contribute 8570 ** to computing an answer. 8571 */ 8572 case OP_ReleaseReg: { 8573 Mem *pMem; 8574 int i; 8575 u32 constMask; 8576 assert( pOp->p1>0 ); 8577 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8578 pMem = &aMem[pOp->p1]; 8579 constMask = pOp->p3; 8580 for(i=0; i<pOp->p2; i++, pMem++){ 8581 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8582 pMem->pScopyFrom = 0; 8583 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8584 } 8585 } 8586 break; 8587 } 8588 #endif 8589 8590 /* Opcode: Noop * * * * * 8591 ** 8592 ** Do nothing. This instruction is often useful as a jump 8593 ** destination. 8594 */ 8595 /* 8596 ** The magic Explain opcode are only inserted when explain==2 (which 8597 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8598 ** This opcode records information from the optimizer. It is the 8599 ** the same as a no-op. This opcodesnever appears in a real VM program. 8600 */ 8601 default: { /* This is really OP_Noop, OP_Explain */ 8602 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8603 8604 break; 8605 } 8606 8607 /***************************************************************************** 8608 ** The cases of the switch statement above this line should all be indented 8609 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8610 ** readability. From this point on down, the normal indentation rules are 8611 ** restored. 8612 *****************************************************************************/ 8613 } 8614 8615 #ifdef VDBE_PROFILE 8616 { 8617 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8618 if( endTime>start ) pOrigOp->cycles += endTime - start; 8619 pOrigOp->cnt++; 8620 } 8621 #endif 8622 8623 /* The following code adds nothing to the actual functionality 8624 ** of the program. It is only here for testing and debugging. 8625 ** On the other hand, it does burn CPU cycles every time through 8626 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8627 */ 8628 #ifndef NDEBUG 8629 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8630 8631 #ifdef SQLITE_DEBUG 8632 if( db->flags & SQLITE_VdbeTrace ){ 8633 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8634 if( rc!=0 ) printf("rc=%d\n",rc); 8635 if( opProperty & (OPFLG_OUT2) ){ 8636 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8637 } 8638 if( opProperty & OPFLG_OUT3 ){ 8639 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8640 } 8641 if( opProperty==0xff ){ 8642 /* Never happens. This code exists to avoid a harmless linkage 8643 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8644 ** used. */ 8645 sqlite3VdbeRegisterDump(p); 8646 } 8647 } 8648 #endif /* SQLITE_DEBUG */ 8649 #endif /* NDEBUG */ 8650 } /* The end of the for(;;) loop the loops through opcodes */ 8651 8652 /* If we reach this point, it means that execution is finished with 8653 ** an error of some kind. 8654 */ 8655 abort_due_to_error: 8656 if( db->mallocFailed ){ 8657 rc = SQLITE_NOMEM_BKPT; 8658 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8659 rc = SQLITE_CORRUPT_BKPT; 8660 } 8661 assert( rc ); 8662 #ifdef SQLITE_DEBUG 8663 if( db->flags & SQLITE_VdbeTrace ){ 8664 const char *zTrace = p->zSql; 8665 if( zTrace==0 ){ 8666 if( aOp[0].opcode==OP_Trace ){ 8667 zTrace = aOp[0].p4.z; 8668 } 8669 if( zTrace==0 ) zTrace = "???"; 8670 } 8671 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8672 } 8673 #endif 8674 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8675 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8676 } 8677 p->rc = rc; 8678 sqlite3SystemError(db, rc); 8679 testcase( sqlite3GlobalConfig.xLog!=0 ); 8680 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8681 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8682 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 8683 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8684 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8685 db->flags |= SQLITE_CorruptRdOnly; 8686 } 8687 rc = SQLITE_ERROR; 8688 if( resetSchemaOnFault>0 ){ 8689 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8690 } 8691 8692 /* This is the only way out of this procedure. We have to 8693 ** release the mutexes on btrees that were acquired at the 8694 ** top. */ 8695 vdbe_return: 8696 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8697 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8698 nProgressLimit += db->nProgressOps; 8699 if( db->xProgress(db->pProgressArg) ){ 8700 nProgressLimit = LARGEST_UINT64; 8701 rc = SQLITE_INTERRUPT; 8702 goto abort_due_to_error; 8703 } 8704 } 8705 #endif 8706 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8707 sqlite3VdbeLeave(p); 8708 assert( rc!=SQLITE_OK || nExtraDelete==0 8709 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8710 ); 8711 return rc; 8712 8713 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8714 ** is encountered. 8715 */ 8716 too_big: 8717 sqlite3VdbeError(p, "string or blob too big"); 8718 rc = SQLITE_TOOBIG; 8719 goto abort_due_to_error; 8720 8721 /* Jump to here if a malloc() fails. 8722 */ 8723 no_mem: 8724 sqlite3OomFault(db); 8725 sqlite3VdbeError(p, "out of memory"); 8726 rc = SQLITE_NOMEM_BKPT; 8727 goto abort_due_to_error; 8728 8729 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8730 ** flag. 8731 */ 8732 abort_due_to_interrupt: 8733 assert( AtomicLoad(&db->u1.isInterrupted) ); 8734 rc = SQLITE_INTERRUPT; 8735 goto abort_due_to_error; 8736 } 8737