xref: /sqlite-3.40.0/src/vdbe.c (revision 3c060c2a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** The next global variable is incremented each time the OP_Found opcode
91 ** is executed. This is used to test whether or not the foreign key
92 ** operation implemented using OP_FkIsZero is working. This variable
93 ** has no function other than to help verify the correct operation of the
94 ** library.
95 */
96 #ifdef SQLITE_TEST
97 int sqlite3_found_count = 0;
98 #endif
99 
100 /*
101 ** Test a register to see if it exceeds the current maximum blob size.
102 ** If it does, record the new maximum blob size.
103 */
104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
105 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
106 #else
107 # define UPDATE_MAX_BLOBSIZE(P)
108 #endif
109 
110 /*
111 ** Invoke the VDBE coverage callback, if that callback is defined.  This
112 ** feature is used for test suite validation only and does not appear an
113 ** production builds.
114 **
115 ** M is an integer, 2 or 3, that indices how many different ways the
116 ** branch can go.  It is usually 2.  "I" is the direction the branch
117 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
118 ** second alternative branch is taken.
119 **
120 ** iSrcLine is the source code line (from the __LINE__ macro) that
121 ** generated the VDBE instruction.  This instrumentation assumes that all
122 ** source code is in a single file (the amalgamation).  Special values 1
123 ** and 2 for the iSrcLine parameter mean that this particular branch is
124 ** always taken or never taken, respectively.
125 */
126 #if !defined(SQLITE_VDBE_COVERAGE)
127 # define VdbeBranchTaken(I,M)
128 #else
129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132       M = iSrcLine;
133       /* Assert the truth of VdbeCoverageAlwaysTaken() and
134       ** VdbeCoverageNeverTaken() */
135       assert( (M & I)==I );
136     }else{
137       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
138       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139                                       iSrcLine,I,M);
140     }
141   }
142 #endif
143 
144 /*
145 ** Convert the given register into a string if it isn't one
146 ** already. Return non-zero if a malloc() fails.
147 */
148 #define Stringify(P, enc) \
149    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
150      { goto no_mem; }
151 
152 /*
153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
154 ** a pointer to a dynamically allocated string where some other entity
155 ** is responsible for deallocating that string.  Because the register
156 ** does not control the string, it might be deleted without the register
157 ** knowing it.
158 **
159 ** This routine converts an ephemeral string into a dynamically allocated
160 ** string that the register itself controls.  In other words, it
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
162 */
163 #define Deephemeralize(P) \
164    if( ((P)->flags&MEM_Ephem)!=0 \
165        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
166 
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
168 #define isSorter(x) ((x)->pSorter!=0)
169 
170 /*
171 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
172 ** if we run out of memory.
173 */
174 static VdbeCursor *allocateCursor(
175   Vdbe *p,              /* The virtual machine */
176   int iCur,             /* Index of the new VdbeCursor */
177   int nField,           /* Number of fields in the table or index */
178   int iDb,              /* Database the cursor belongs to, or -1 */
179   int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
180 ){
181   /* Find the memory cell that will be used to store the blob of memory
182   ** required for this VdbeCursor structure. It is convenient to use a
183   ** vdbe memory cell to manage the memory allocation required for a
184   ** VdbeCursor structure for the following reasons:
185   **
186   **   * Sometimes cursor numbers are used for a couple of different
187   **     purposes in a vdbe program. The different uses might require
188   **     different sized allocations. Memory cells provide growable
189   **     allocations.
190   **
191   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192   **     be freed lazily via the sqlite3_release_memory() API. This
193   **     minimizes the number of malloc calls made by the system.
194   **
195   ** Memory cells for cursors are allocated at the top of the address
196   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198   */
199   Mem *pMem = &p->aMem[p->nMem-iCur];
200 
201   int nByte;
202   VdbeCursor *pCx = 0;
203   nByte =
204       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205       (isBtreeCursor?sqlite3BtreeCursorSize():0);
206 
207   assert( iCur<p->nCursor );
208   if( p->apCsr[iCur] ){
209     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
210     p->apCsr[iCur] = 0;
211   }
212   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
213     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
214     memset(pCx, 0, sizeof(VdbeCursor));
215     pCx->iDb = iDb;
216     pCx->nField = nField;
217     pCx->aOffset = &pCx->aType[nField];
218     if( isBtreeCursor ){
219       pCx->pCursor = (BtCursor*)
220           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
221       sqlite3BtreeCursorZero(pCx->pCursor);
222     }
223   }
224   return pCx;
225 }
226 
227 /*
228 ** Try to convert a value into a numeric representation if we can
229 ** do so without loss of information.  In other words, if the string
230 ** looks like a number, convert it into a number.  If it does not
231 ** look like a number, leave it alone.
232 **
233 ** If the bTryForInt flag is true, then extra effort is made to give
234 ** an integer representation.  Strings that look like floating point
235 ** values but which have no fractional component (example: '48.00')
236 ** will have a MEM_Int representation when bTryForInt is true.
237 **
238 ** If bTryForInt is false, then if the input string contains a decimal
239 ** point or exponential notation, the result is only MEM_Real, even
240 ** if there is an exact integer representation of the quantity.
241 */
242 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
243   double rValue;
244   i64 iValue;
245   u8 enc = pRec->enc;
246   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
247   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249     pRec->u.i = iValue;
250     pRec->flags |= MEM_Int;
251   }else{
252     pRec->u.r = rValue;
253     pRec->flags |= MEM_Real;
254     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
255   }
256 }
257 
258 /*
259 ** Processing is determine by the affinity parameter:
260 **
261 ** SQLITE_AFF_INTEGER:
262 ** SQLITE_AFF_REAL:
263 ** SQLITE_AFF_NUMERIC:
264 **    Try to convert pRec to an integer representation or a
265 **    floating-point representation if an integer representation
266 **    is not possible.  Note that the integer representation is
267 **    always preferred, even if the affinity is REAL, because
268 **    an integer representation is more space efficient on disk.
269 **
270 ** SQLITE_AFF_TEXT:
271 **    Convert pRec to a text representation.
272 **
273 ** SQLITE_AFF_BLOB:
274 **    No-op.  pRec is unchanged.
275 */
276 static void applyAffinity(
277   Mem *pRec,          /* The value to apply affinity to */
278   char affinity,      /* The affinity to be applied */
279   u8 enc              /* Use this text encoding */
280 ){
281   if( affinity>=SQLITE_AFF_NUMERIC ){
282     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283              || affinity==SQLITE_AFF_NUMERIC );
284     if( (pRec->flags & MEM_Int)==0 ){
285       if( (pRec->flags & MEM_Real)==0 ){
286         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
287       }else{
288         sqlite3VdbeIntegerAffinity(pRec);
289       }
290     }
291   }else if( affinity==SQLITE_AFF_TEXT ){
292     /* Only attempt the conversion to TEXT if there is an integer or real
293     ** representation (blob and NULL do not get converted) but no string
294     ** representation.
295     */
296     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297       sqlite3VdbeMemStringify(pRec, enc, 1);
298     }
299     pRec->flags &= ~(MEM_Real|MEM_Int);
300   }
301 }
302 
303 /*
304 ** Try to convert the type of a function argument or a result column
305 ** into a numeric representation.  Use either INTEGER or REAL whichever
306 ** is appropriate.  But only do the conversion if it is possible without
307 ** loss of information and return the revised type of the argument.
308 */
309 int sqlite3_value_numeric_type(sqlite3_value *pVal){
310   int eType = sqlite3_value_type(pVal);
311   if( eType==SQLITE_TEXT ){
312     Mem *pMem = (Mem*)pVal;
313     applyNumericAffinity(pMem, 0);
314     eType = sqlite3_value_type(pVal);
315   }
316   return eType;
317 }
318 
319 /*
320 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
321 ** not the internal Mem* type.
322 */
323 void sqlite3ValueApplyAffinity(
324   sqlite3_value *pVal,
325   u8 affinity,
326   u8 enc
327 ){
328   applyAffinity((Mem *)pVal, affinity, enc);
329 }
330 
331 /*
332 ** pMem currently only holds a string type (or maybe a BLOB that we can
333 ** interpret as a string if we want to).  Compute its corresponding
334 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
335 ** accordingly.
336 */
337 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
338   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
339   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
340   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
341     return 0;
342   }
343   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
344     return MEM_Int;
345   }
346   return MEM_Real;
347 }
348 
349 /*
350 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
351 ** none.
352 **
353 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
354 ** But it does set pMem->u.r and pMem->u.i appropriately.
355 */
356 static u16 numericType(Mem *pMem){
357   if( pMem->flags & (MEM_Int|MEM_Real) ){
358     return pMem->flags & (MEM_Int|MEM_Real);
359   }
360   if( pMem->flags & (MEM_Str|MEM_Blob) ){
361     return computeNumericType(pMem);
362   }
363   return 0;
364 }
365 
366 #ifdef SQLITE_DEBUG
367 /*
368 ** Write a nice string representation of the contents of cell pMem
369 ** into buffer zBuf, length nBuf.
370 */
371 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
372   char *zCsr = zBuf;
373   int f = pMem->flags;
374 
375   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
376 
377   if( f&MEM_Blob ){
378     int i;
379     char c;
380     if( f & MEM_Dyn ){
381       c = 'z';
382       assert( (f & (MEM_Static|MEM_Ephem))==0 );
383     }else if( f & MEM_Static ){
384       c = 't';
385       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
386     }else if( f & MEM_Ephem ){
387       c = 'e';
388       assert( (f & (MEM_Static|MEM_Dyn))==0 );
389     }else{
390       c = 's';
391     }
392 
393     sqlite3_snprintf(100, zCsr, "%c", c);
394     zCsr += sqlite3Strlen30(zCsr);
395     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
396     zCsr += sqlite3Strlen30(zCsr);
397     for(i=0; i<16 && i<pMem->n; i++){
398       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
399       zCsr += sqlite3Strlen30(zCsr);
400     }
401     for(i=0; i<16 && i<pMem->n; i++){
402       char z = pMem->z[i];
403       if( z<32 || z>126 ) *zCsr++ = '.';
404       else *zCsr++ = z;
405     }
406 
407     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
408     zCsr += sqlite3Strlen30(zCsr);
409     if( f & MEM_Zero ){
410       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
411       zCsr += sqlite3Strlen30(zCsr);
412     }
413     *zCsr = '\0';
414   }else if( f & MEM_Str ){
415     int j, k;
416     zBuf[0] = ' ';
417     if( f & MEM_Dyn ){
418       zBuf[1] = 'z';
419       assert( (f & (MEM_Static|MEM_Ephem))==0 );
420     }else if( f & MEM_Static ){
421       zBuf[1] = 't';
422       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
423     }else if( f & MEM_Ephem ){
424       zBuf[1] = 'e';
425       assert( (f & (MEM_Static|MEM_Dyn))==0 );
426     }else{
427       zBuf[1] = 's';
428     }
429     k = 2;
430     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
431     k += sqlite3Strlen30(&zBuf[k]);
432     zBuf[k++] = '[';
433     for(j=0; j<15 && j<pMem->n; j++){
434       u8 c = pMem->z[j];
435       if( c>=0x20 && c<0x7f ){
436         zBuf[k++] = c;
437       }else{
438         zBuf[k++] = '.';
439       }
440     }
441     zBuf[k++] = ']';
442     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
443     k += sqlite3Strlen30(&zBuf[k]);
444     zBuf[k++] = 0;
445   }
446 }
447 #endif
448 
449 #ifdef SQLITE_DEBUG
450 /*
451 ** Print the value of a register for tracing purposes:
452 */
453 static void memTracePrint(Mem *p){
454   if( p->flags & MEM_Undefined ){
455     printf(" undefined");
456   }else if( p->flags & MEM_Null ){
457     printf(" NULL");
458   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
459     printf(" si:%lld", p->u.i);
460   }else if( p->flags & MEM_Int ){
461     printf(" i:%lld", p->u.i);
462 #ifndef SQLITE_OMIT_FLOATING_POINT
463   }else if( p->flags & MEM_Real ){
464     printf(" r:%g", p->u.r);
465 #endif
466   }else if( p->flags & MEM_RowSet ){
467     printf(" (rowset)");
468   }else{
469     char zBuf[200];
470     sqlite3VdbeMemPrettyPrint(p, zBuf);
471     printf(" %s", zBuf);
472   }
473 }
474 static void registerTrace(int iReg, Mem *p){
475   printf("REG[%d] = ", iReg);
476   memTracePrint(p);
477   printf("\n");
478 }
479 #endif
480 
481 #ifdef SQLITE_DEBUG
482 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
483 #else
484 #  define REGISTER_TRACE(R,M)
485 #endif
486 
487 
488 #ifdef VDBE_PROFILE
489 
490 /*
491 ** hwtime.h contains inline assembler code for implementing
492 ** high-performance timing routines.
493 */
494 #include "hwtime.h"
495 
496 #endif
497 
498 #ifndef NDEBUG
499 /*
500 ** This function is only called from within an assert() expression. It
501 ** checks that the sqlite3.nTransaction variable is correctly set to
502 ** the number of non-transaction savepoints currently in the
503 ** linked list starting at sqlite3.pSavepoint.
504 **
505 ** Usage:
506 **
507 **     assert( checkSavepointCount(db) );
508 */
509 static int checkSavepointCount(sqlite3 *db){
510   int n = 0;
511   Savepoint *p;
512   for(p=db->pSavepoint; p; p=p->pNext) n++;
513   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
514   return 1;
515 }
516 #endif
517 
518 /*
519 ** Return the register of pOp->p2 after first preparing it to be
520 ** overwritten with an integer value.
521 */
522 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
523   sqlite3VdbeMemSetNull(pOut);
524   pOut->flags = MEM_Int;
525   return pOut;
526 }
527 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
528   Mem *pOut;
529   assert( pOp->p2>0 );
530   assert( pOp->p2<=(p->nMem-p->nCursor) );
531   pOut = &p->aMem[pOp->p2];
532   memAboutToChange(p, pOut);
533   if( VdbeMemDynamic(pOut) ){
534     return out2PrereleaseWithClear(pOut);
535   }else{
536     pOut->flags = MEM_Int;
537     return pOut;
538   }
539 }
540 
541 
542 /*
543 ** Execute as much of a VDBE program as we can.
544 ** This is the core of sqlite3_step().
545 */
546 int sqlite3VdbeExec(
547   Vdbe *p                    /* The VDBE */
548 ){
549   Op *aOp = p->aOp;          /* Copy of p->aOp */
550   Op *pOp = aOp;             /* Current operation */
551 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
552   Op *pOrigOp;               /* Value of pOp at the top of the loop */
553 #endif
554   int rc = SQLITE_OK;        /* Value to return */
555   sqlite3 *db = p->db;       /* The database */
556   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
557   u8 encoding = ENC(db);     /* The database encoding */
558   int iCompare = 0;          /* Result of last OP_Compare operation */
559   unsigned nVmStep = 0;      /* Number of virtual machine steps */
560 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
561   unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
562 #endif
563   Mem *aMem = p->aMem;       /* Copy of p->aMem */
564   Mem *pIn1 = 0;             /* 1st input operand */
565   Mem *pIn2 = 0;             /* 2nd input operand */
566   Mem *pIn3 = 0;             /* 3rd input operand */
567   Mem *pOut = 0;             /* Output operand */
568   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
569   i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
570 #ifdef VDBE_PROFILE
571   u64 start;                 /* CPU clock count at start of opcode */
572 #endif
573   /*** INSERT STACK UNION HERE ***/
574 
575   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
576   sqlite3VdbeEnter(p);
577   if( p->rc==SQLITE_NOMEM ){
578     /* This happens if a malloc() inside a call to sqlite3_column_text() or
579     ** sqlite3_column_text16() failed.  */
580     goto no_mem;
581   }
582   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
583   assert( p->bIsReader || p->readOnly!=0 );
584   p->rc = SQLITE_OK;
585   p->iCurrentTime = 0;
586   assert( p->explain==0 );
587   p->pResultSet = 0;
588   db->busyHandler.nBusy = 0;
589   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
590   sqlite3VdbeIOTraceSql(p);
591 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
592   if( db->xProgress ){
593     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
594     assert( 0 < db->nProgressOps );
595     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
596   }
597 #endif
598 #ifdef SQLITE_DEBUG
599   sqlite3BeginBenignMalloc();
600   if( p->pc==0
601    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
602   ){
603     int i;
604     int once = 1;
605     sqlite3VdbePrintSql(p);
606     if( p->db->flags & SQLITE_VdbeListing ){
607       printf("VDBE Program Listing:\n");
608       for(i=0; i<p->nOp; i++){
609         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
610       }
611     }
612     if( p->db->flags & SQLITE_VdbeEQP ){
613       for(i=0; i<p->nOp; i++){
614         if( aOp[i].opcode==OP_Explain ){
615           if( once ) printf("VDBE Query Plan:\n");
616           printf("%s\n", aOp[i].p4.z);
617           once = 0;
618         }
619       }
620     }
621     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
622   }
623   sqlite3EndBenignMalloc();
624 #endif
625   for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
626     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
627     if( db->mallocFailed ) goto no_mem;
628 #ifdef VDBE_PROFILE
629     start = sqlite3Hwtime();
630 #endif
631     nVmStep++;
632 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
633     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
634 #endif
635 
636     /* Only allow tracing if SQLITE_DEBUG is defined.
637     */
638 #ifdef SQLITE_DEBUG
639     if( db->flags & SQLITE_VdbeTrace ){
640       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
641     }
642 #endif
643 
644 
645     /* Check to see if we need to simulate an interrupt.  This only happens
646     ** if we have a special test build.
647     */
648 #ifdef SQLITE_TEST
649     if( sqlite3_interrupt_count>0 ){
650       sqlite3_interrupt_count--;
651       if( sqlite3_interrupt_count==0 ){
652         sqlite3_interrupt(db);
653       }
654     }
655 #endif
656 
657     /* Sanity checking on other operands */
658 #ifdef SQLITE_DEBUG
659     assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
660     if( (pOp->opflags & OPFLG_IN1)!=0 ){
661       assert( pOp->p1>0 );
662       assert( pOp->p1<=(p->nMem-p->nCursor) );
663       assert( memIsValid(&aMem[pOp->p1]) );
664       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
665       REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
666     }
667     if( (pOp->opflags & OPFLG_IN2)!=0 ){
668       assert( pOp->p2>0 );
669       assert( pOp->p2<=(p->nMem-p->nCursor) );
670       assert( memIsValid(&aMem[pOp->p2]) );
671       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
672       REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
673     }
674     if( (pOp->opflags & OPFLG_IN3)!=0 ){
675       assert( pOp->p3>0 );
676       assert( pOp->p3<=(p->nMem-p->nCursor) );
677       assert( memIsValid(&aMem[pOp->p3]) );
678       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
679       REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
680     }
681     if( (pOp->opflags & OPFLG_OUT2)!=0 ){
682       assert( pOp->p2>0 );
683       assert( pOp->p2<=(p->nMem-p->nCursor) );
684       memAboutToChange(p, &aMem[pOp->p2]);
685     }
686     if( (pOp->opflags & OPFLG_OUT3)!=0 ){
687       assert( pOp->p3>0 );
688       assert( pOp->p3<=(p->nMem-p->nCursor) );
689       memAboutToChange(p, &aMem[pOp->p3]);
690     }
691 #endif
692 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
693     pOrigOp = pOp;
694 #endif
695 
696     switch( pOp->opcode ){
697 
698 /*****************************************************************************
699 ** What follows is a massive switch statement where each case implements a
700 ** separate instruction in the virtual machine.  If we follow the usual
701 ** indentation conventions, each case should be indented by 6 spaces.  But
702 ** that is a lot of wasted space on the left margin.  So the code within
703 ** the switch statement will break with convention and be flush-left. Another
704 ** big comment (similar to this one) will mark the point in the code where
705 ** we transition back to normal indentation.
706 **
707 ** The formatting of each case is important.  The makefile for SQLite
708 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
709 ** file looking for lines that begin with "case OP_".  The opcodes.h files
710 ** will be filled with #defines that give unique integer values to each
711 ** opcode and the opcodes.c file is filled with an array of strings where
712 ** each string is the symbolic name for the corresponding opcode.  If the
713 ** case statement is followed by a comment of the form "/# same as ... #/"
714 ** that comment is used to determine the particular value of the opcode.
715 **
716 ** Other keywords in the comment that follows each case are used to
717 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
718 ** Keywords include: in1, in2, in3, out2, out3.  See
719 ** the mkopcodeh.awk script for additional information.
720 **
721 ** Documentation about VDBE opcodes is generated by scanning this file
722 ** for lines of that contain "Opcode:".  That line and all subsequent
723 ** comment lines are used in the generation of the opcode.html documentation
724 ** file.
725 **
726 ** SUMMARY:
727 **
728 **     Formatting is important to scripts that scan this file.
729 **     Do not deviate from the formatting style currently in use.
730 **
731 *****************************************************************************/
732 
733 /* Opcode:  Goto * P2 * * *
734 **
735 ** An unconditional jump to address P2.
736 ** The next instruction executed will be
737 ** the one at index P2 from the beginning of
738 ** the program.
739 **
740 ** The P1 parameter is not actually used by this opcode.  However, it
741 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
742 ** that this Goto is the bottom of a loop and that the lines from P2 down
743 ** to the current line should be indented for EXPLAIN output.
744 */
745 case OP_Goto: {             /* jump */
746 jump_to_p2_and_check_for_interrupt:
747   pOp = &aOp[pOp->p2 - 1];
748 
749   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
750   ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
751   ** completion.  Check to see if sqlite3_interrupt() has been called
752   ** or if the progress callback needs to be invoked.
753   **
754   ** This code uses unstructured "goto" statements and does not look clean.
755   ** But that is not due to sloppy coding habits. The code is written this
756   ** way for performance, to avoid having to run the interrupt and progress
757   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
758   ** faster according to "valgrind --tool=cachegrind" */
759 check_for_interrupt:
760   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
761 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
762   /* Call the progress callback if it is configured and the required number
763   ** of VDBE ops have been executed (either since this invocation of
764   ** sqlite3VdbeExec() or since last time the progress callback was called).
765   ** If the progress callback returns non-zero, exit the virtual machine with
766   ** a return code SQLITE_ABORT.
767   */
768   if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
769     assert( db->nProgressOps!=0 );
770     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
771     if( db->xProgress(db->pProgressArg) ){
772       rc = SQLITE_INTERRUPT;
773       goto vdbe_error_halt;
774     }
775   }
776 #endif
777 
778   break;
779 }
780 
781 /* Opcode:  Gosub P1 P2 * * *
782 **
783 ** Write the current address onto register P1
784 ** and then jump to address P2.
785 */
786 case OP_Gosub: {            /* jump */
787   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
788   pIn1 = &aMem[pOp->p1];
789   assert( VdbeMemDynamic(pIn1)==0 );
790   memAboutToChange(p, pIn1);
791   pIn1->flags = MEM_Int;
792   pIn1->u.i = (int)(pOp-aOp);
793   REGISTER_TRACE(pOp->p1, pIn1);
794 
795   /* Most jump operations do a goto to this spot in order to update
796   ** the pOp pointer. */
797 jump_to_p2:
798   pOp = &aOp[pOp->p2 - 1];
799   break;
800 }
801 
802 /* Opcode:  Return P1 * * * *
803 **
804 ** Jump to the next instruction after the address in register P1.  After
805 ** the jump, register P1 becomes undefined.
806 */
807 case OP_Return: {           /* in1 */
808   pIn1 = &aMem[pOp->p1];
809   assert( pIn1->flags==MEM_Int );
810   pOp = &aOp[pIn1->u.i];
811   pIn1->flags = MEM_Undefined;
812   break;
813 }
814 
815 /* Opcode: InitCoroutine P1 P2 P3 * *
816 **
817 ** Set up register P1 so that it will Yield to the coroutine
818 ** located at address P3.
819 **
820 ** If P2!=0 then the coroutine implementation immediately follows
821 ** this opcode.  So jump over the coroutine implementation to
822 ** address P2.
823 **
824 ** See also: EndCoroutine
825 */
826 case OP_InitCoroutine: {     /* jump */
827   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem-p->nCursor) );
828   assert( pOp->p2>=0 && pOp->p2<p->nOp );
829   assert( pOp->p3>=0 && pOp->p3<p->nOp );
830   pOut = &aMem[pOp->p1];
831   assert( !VdbeMemDynamic(pOut) );
832   pOut->u.i = pOp->p3 - 1;
833   pOut->flags = MEM_Int;
834   if( pOp->p2 ) goto jump_to_p2;
835   break;
836 }
837 
838 /* Opcode:  EndCoroutine P1 * * * *
839 **
840 ** The instruction at the address in register P1 is a Yield.
841 ** Jump to the P2 parameter of that Yield.
842 ** After the jump, register P1 becomes undefined.
843 **
844 ** See also: InitCoroutine
845 */
846 case OP_EndCoroutine: {           /* in1 */
847   VdbeOp *pCaller;
848   pIn1 = &aMem[pOp->p1];
849   assert( pIn1->flags==MEM_Int );
850   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
851   pCaller = &aOp[pIn1->u.i];
852   assert( pCaller->opcode==OP_Yield );
853   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
854   pOp = &aOp[pCaller->p2 - 1];
855   pIn1->flags = MEM_Undefined;
856   break;
857 }
858 
859 /* Opcode:  Yield P1 P2 * * *
860 **
861 ** Swap the program counter with the value in register P1.  This
862 ** has the effect of yielding to a coroutine.
863 **
864 ** If the coroutine that is launched by this instruction ends with
865 ** Yield or Return then continue to the next instruction.  But if
866 ** the coroutine launched by this instruction ends with
867 ** EndCoroutine, then jump to P2 rather than continuing with the
868 ** next instruction.
869 **
870 ** See also: InitCoroutine
871 */
872 case OP_Yield: {            /* in1, jump */
873   int pcDest;
874   pIn1 = &aMem[pOp->p1];
875   assert( VdbeMemDynamic(pIn1)==0 );
876   pIn1->flags = MEM_Int;
877   pcDest = (int)pIn1->u.i;
878   pIn1->u.i = (int)(pOp - aOp);
879   REGISTER_TRACE(pOp->p1, pIn1);
880   pOp = &aOp[pcDest];
881   break;
882 }
883 
884 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
885 ** Synopsis:  if r[P3]=null halt
886 **
887 ** Check the value in register P3.  If it is NULL then Halt using
888 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
889 ** value in register P3 is not NULL, then this routine is a no-op.
890 ** The P5 parameter should be 1.
891 */
892 case OP_HaltIfNull: {      /* in3 */
893   pIn3 = &aMem[pOp->p3];
894   if( (pIn3->flags & MEM_Null)==0 ) break;
895   /* Fall through into OP_Halt */
896 }
897 
898 /* Opcode:  Halt P1 P2 * P4 P5
899 **
900 ** Exit immediately.  All open cursors, etc are closed
901 ** automatically.
902 **
903 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
904 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
905 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
906 ** whether or not to rollback the current transaction.  Do not rollback
907 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
908 ** then back out all changes that have occurred during this execution of the
909 ** VDBE, but do not rollback the transaction.
910 **
911 ** If P4 is not null then it is an error message string.
912 **
913 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
914 **
915 **    0:  (no change)
916 **    1:  NOT NULL contraint failed: P4
917 **    2:  UNIQUE constraint failed: P4
918 **    3:  CHECK constraint failed: P4
919 **    4:  FOREIGN KEY constraint failed: P4
920 **
921 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
922 ** omitted.
923 **
924 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
925 ** every program.  So a jump past the last instruction of the program
926 ** is the same as executing Halt.
927 */
928 case OP_Halt: {
929   const char *zType;
930   const char *zLogFmt;
931   VdbeFrame *pFrame;
932   int pcx;
933 
934   pcx = (int)(pOp - aOp);
935   if( pOp->p1==SQLITE_OK && p->pFrame ){
936     /* Halt the sub-program. Return control to the parent frame. */
937     pFrame = p->pFrame;
938     p->pFrame = pFrame->pParent;
939     p->nFrame--;
940     sqlite3VdbeSetChanges(db, p->nChange);
941     pcx = sqlite3VdbeFrameRestore(pFrame);
942     lastRowid = db->lastRowid;
943     if( pOp->p2==OE_Ignore ){
944       /* Instruction pcx is the OP_Program that invoked the sub-program
945       ** currently being halted. If the p2 instruction of this OP_Halt
946       ** instruction is set to OE_Ignore, then the sub-program is throwing
947       ** an IGNORE exception. In this case jump to the address specified
948       ** as the p2 of the calling OP_Program.  */
949       pcx = p->aOp[pcx].p2-1;
950     }
951     aOp = p->aOp;
952     aMem = p->aMem;
953     pOp = &aOp[pcx];
954     break;
955   }
956   p->rc = pOp->p1;
957   p->errorAction = (u8)pOp->p2;
958   p->pc = pcx;
959   if( p->rc ){
960     if( pOp->p5 ){
961       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
962                                              "FOREIGN KEY" };
963       assert( pOp->p5>=1 && pOp->p5<=4 );
964       testcase( pOp->p5==1 );
965       testcase( pOp->p5==2 );
966       testcase( pOp->p5==3 );
967       testcase( pOp->p5==4 );
968       zType = azType[pOp->p5-1];
969     }else{
970       zType = 0;
971     }
972     assert( zType!=0 || pOp->p4.z!=0 );
973     zLogFmt = "abort at %d in [%s]: %s";
974     if( zType && pOp->p4.z ){
975       sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
976     }else if( pOp->p4.z ){
977       sqlite3VdbeError(p, "%s", pOp->p4.z);
978     }else{
979       sqlite3VdbeError(p, "%s constraint failed", zType);
980     }
981     sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
982   }
983   rc = sqlite3VdbeHalt(p);
984   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
985   if( rc==SQLITE_BUSY ){
986     p->rc = rc = SQLITE_BUSY;
987   }else{
988     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
989     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
990     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
991   }
992   goto vdbe_return;
993 }
994 
995 /* Opcode: Integer P1 P2 * * *
996 ** Synopsis: r[P2]=P1
997 **
998 ** The 32-bit integer value P1 is written into register P2.
999 */
1000 case OP_Integer: {         /* out2 */
1001   pOut = out2Prerelease(p, pOp);
1002   pOut->u.i = pOp->p1;
1003   break;
1004 }
1005 
1006 /* Opcode: Int64 * P2 * P4 *
1007 ** Synopsis: r[P2]=P4
1008 **
1009 ** P4 is a pointer to a 64-bit integer value.
1010 ** Write that value into register P2.
1011 */
1012 case OP_Int64: {           /* out2 */
1013   pOut = out2Prerelease(p, pOp);
1014   assert( pOp->p4.pI64!=0 );
1015   pOut->u.i = *pOp->p4.pI64;
1016   break;
1017 }
1018 
1019 #ifndef SQLITE_OMIT_FLOATING_POINT
1020 /* Opcode: Real * P2 * P4 *
1021 ** Synopsis: r[P2]=P4
1022 **
1023 ** P4 is a pointer to a 64-bit floating point value.
1024 ** Write that value into register P2.
1025 */
1026 case OP_Real: {            /* same as TK_FLOAT, out2 */
1027   pOut = out2Prerelease(p, pOp);
1028   pOut->flags = MEM_Real;
1029   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1030   pOut->u.r = *pOp->p4.pReal;
1031   break;
1032 }
1033 #endif
1034 
1035 /* Opcode: String8 * P2 * P4 *
1036 ** Synopsis: r[P2]='P4'
1037 **
1038 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1039 ** into a String opcode before it is executed for the first time.  During
1040 ** this transformation, the length of string P4 is computed and stored
1041 ** as the P1 parameter.
1042 */
1043 case OP_String8: {         /* same as TK_STRING, out2 */
1044   assert( pOp->p4.z!=0 );
1045   pOut = out2Prerelease(p, pOp);
1046   pOp->opcode = OP_String;
1047   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1048 
1049 #ifndef SQLITE_OMIT_UTF16
1050   if( encoding!=SQLITE_UTF8 ){
1051     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1052     if( rc==SQLITE_TOOBIG ) goto too_big;
1053     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1054     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1055     assert( VdbeMemDynamic(pOut)==0 );
1056     pOut->szMalloc = 0;
1057     pOut->flags |= MEM_Static;
1058     if( pOp->p4type==P4_DYNAMIC ){
1059       sqlite3DbFree(db, pOp->p4.z);
1060     }
1061     pOp->p4type = P4_DYNAMIC;
1062     pOp->p4.z = pOut->z;
1063     pOp->p1 = pOut->n;
1064   }
1065 #endif
1066   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1067     goto too_big;
1068   }
1069   /* Fall through to the next case, OP_String */
1070 }
1071 
1072 /* Opcode: String P1 P2 P3 P4 P5
1073 ** Synopsis: r[P2]='P4' (len=P1)
1074 **
1075 ** The string value P4 of length P1 (bytes) is stored in register P2.
1076 **
1077 ** If P5!=0 and the content of register P3 is greater than zero, then
1078 ** the datatype of the register P2 is converted to BLOB.  The content is
1079 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1080 ** of a string, as if it had been CAST.
1081 */
1082 case OP_String: {          /* out2 */
1083   assert( pOp->p4.z!=0 );
1084   pOut = out2Prerelease(p, pOp);
1085   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1086   pOut->z = pOp->p4.z;
1087   pOut->n = pOp->p1;
1088   pOut->enc = encoding;
1089   UPDATE_MAX_BLOBSIZE(pOut);
1090   if( pOp->p5 ){
1091     assert( pOp->p3>0 );
1092     assert( pOp->p3<=(p->nMem-p->nCursor) );
1093     pIn3 = &aMem[pOp->p3];
1094     assert( pIn3->flags & MEM_Int );
1095     if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1096   }
1097   break;
1098 }
1099 
1100 /* Opcode: Null P1 P2 P3 * *
1101 ** Synopsis:  r[P2..P3]=NULL
1102 **
1103 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1104 ** NULL into register P3 and every register in between P2 and P3.  If P3
1105 ** is less than P2 (typically P3 is zero) then only register P2 is
1106 ** set to NULL.
1107 **
1108 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1109 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1110 ** OP_Ne or OP_Eq.
1111 */
1112 case OP_Null: {           /* out2 */
1113   int cnt;
1114   u16 nullFlag;
1115   pOut = out2Prerelease(p, pOp);
1116   cnt = pOp->p3-pOp->p2;
1117   assert( pOp->p3<=(p->nMem-p->nCursor) );
1118   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1119   while( cnt>0 ){
1120     pOut++;
1121     memAboutToChange(p, pOut);
1122     sqlite3VdbeMemSetNull(pOut);
1123     pOut->flags = nullFlag;
1124     cnt--;
1125   }
1126   break;
1127 }
1128 
1129 /* Opcode: SoftNull P1 * * * *
1130 ** Synopsis:  r[P1]=NULL
1131 **
1132 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1133 ** instruction, but do not free any string or blob memory associated with
1134 ** the register, so that if the value was a string or blob that was
1135 ** previously copied using OP_SCopy, the copies will continue to be valid.
1136 */
1137 case OP_SoftNull: {
1138   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1139   pOut = &aMem[pOp->p1];
1140   pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1141   break;
1142 }
1143 
1144 /* Opcode: Blob P1 P2 * P4 *
1145 ** Synopsis: r[P2]=P4 (len=P1)
1146 **
1147 ** P4 points to a blob of data P1 bytes long.  Store this
1148 ** blob in register P2.
1149 */
1150 case OP_Blob: {                /* out2 */
1151   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1152   pOut = out2Prerelease(p, pOp);
1153   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1154   pOut->enc = encoding;
1155   UPDATE_MAX_BLOBSIZE(pOut);
1156   break;
1157 }
1158 
1159 /* Opcode: Variable P1 P2 * P4 *
1160 ** Synopsis: r[P2]=parameter(P1,P4)
1161 **
1162 ** Transfer the values of bound parameter P1 into register P2
1163 **
1164 ** If the parameter is named, then its name appears in P4.
1165 ** The P4 value is used by sqlite3_bind_parameter_name().
1166 */
1167 case OP_Variable: {            /* out2 */
1168   Mem *pVar;       /* Value being transferred */
1169 
1170   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1171   assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1172   pVar = &p->aVar[pOp->p1 - 1];
1173   if( sqlite3VdbeMemTooBig(pVar) ){
1174     goto too_big;
1175   }
1176   pOut = out2Prerelease(p, pOp);
1177   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1178   UPDATE_MAX_BLOBSIZE(pOut);
1179   break;
1180 }
1181 
1182 /* Opcode: Move P1 P2 P3 * *
1183 ** Synopsis:  r[P2@P3]=r[P1@P3]
1184 **
1185 ** Move the P3 values in register P1..P1+P3-1 over into
1186 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1187 ** left holding a NULL.  It is an error for register ranges
1188 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1189 ** for P3 to be less than 1.
1190 */
1191 case OP_Move: {
1192   int n;           /* Number of registers left to copy */
1193   int p1;          /* Register to copy from */
1194   int p2;          /* Register to copy to */
1195 
1196   n = pOp->p3;
1197   p1 = pOp->p1;
1198   p2 = pOp->p2;
1199   assert( n>0 && p1>0 && p2>0 );
1200   assert( p1+n<=p2 || p2+n<=p1 );
1201 
1202   pIn1 = &aMem[p1];
1203   pOut = &aMem[p2];
1204   do{
1205     assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1206     assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
1207     assert( memIsValid(pIn1) );
1208     memAboutToChange(p, pOut);
1209     sqlite3VdbeMemMove(pOut, pIn1);
1210 #ifdef SQLITE_DEBUG
1211     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1212       pOut->pScopyFrom += pOp->p2 - p1;
1213     }
1214 #endif
1215     Deephemeralize(pOut);
1216     REGISTER_TRACE(p2++, pOut);
1217     pIn1++;
1218     pOut++;
1219   }while( --n );
1220   break;
1221 }
1222 
1223 /* Opcode: Copy P1 P2 P3 * *
1224 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1225 **
1226 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1227 **
1228 ** This instruction makes a deep copy of the value.  A duplicate
1229 ** is made of any string or blob constant.  See also OP_SCopy.
1230 */
1231 case OP_Copy: {
1232   int n;
1233 
1234   n = pOp->p3;
1235   pIn1 = &aMem[pOp->p1];
1236   pOut = &aMem[pOp->p2];
1237   assert( pOut!=pIn1 );
1238   while( 1 ){
1239     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1240     Deephemeralize(pOut);
1241 #ifdef SQLITE_DEBUG
1242     pOut->pScopyFrom = 0;
1243 #endif
1244     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1245     if( (n--)==0 ) break;
1246     pOut++;
1247     pIn1++;
1248   }
1249   break;
1250 }
1251 
1252 /* Opcode: SCopy P1 P2 * * *
1253 ** Synopsis: r[P2]=r[P1]
1254 **
1255 ** Make a shallow copy of register P1 into register P2.
1256 **
1257 ** This instruction makes a shallow copy of the value.  If the value
1258 ** is a string or blob, then the copy is only a pointer to the
1259 ** original and hence if the original changes so will the copy.
1260 ** Worse, if the original is deallocated, the copy becomes invalid.
1261 ** Thus the program must guarantee that the original will not change
1262 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1263 ** copy.
1264 */
1265 case OP_SCopy: {            /* out2 */
1266   pIn1 = &aMem[pOp->p1];
1267   pOut = &aMem[pOp->p2];
1268   assert( pOut!=pIn1 );
1269   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1270 #ifdef SQLITE_DEBUG
1271   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1272 #endif
1273   break;
1274 }
1275 
1276 /* Opcode: IntCopy P1 P2 * * *
1277 ** Synopsis: r[P2]=r[P1]
1278 **
1279 ** Transfer the integer value held in register P1 into register P2.
1280 **
1281 ** This is an optimized version of SCopy that works only for integer
1282 ** values.
1283 */
1284 case OP_IntCopy: {            /* out2 */
1285   pIn1 = &aMem[pOp->p1];
1286   assert( (pIn1->flags & MEM_Int)!=0 );
1287   pOut = &aMem[pOp->p2];
1288   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1289   break;
1290 }
1291 
1292 /* Opcode: ResultRow P1 P2 * * *
1293 ** Synopsis:  output=r[P1@P2]
1294 **
1295 ** The registers P1 through P1+P2-1 contain a single row of
1296 ** results. This opcode causes the sqlite3_step() call to terminate
1297 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1298 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1299 ** the result row.
1300 */
1301 case OP_ResultRow: {
1302   Mem *pMem;
1303   int i;
1304   assert( p->nResColumn==pOp->p2 );
1305   assert( pOp->p1>0 );
1306   assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
1307 
1308 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1309   /* Run the progress counter just before returning.
1310   */
1311   if( db->xProgress!=0
1312    && nVmStep>=nProgressLimit
1313    && db->xProgress(db->pProgressArg)!=0
1314   ){
1315     rc = SQLITE_INTERRUPT;
1316     goto vdbe_error_halt;
1317   }
1318 #endif
1319 
1320   /* If this statement has violated immediate foreign key constraints, do
1321   ** not return the number of rows modified. And do not RELEASE the statement
1322   ** transaction. It needs to be rolled back.  */
1323   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1324     assert( db->flags&SQLITE_CountRows );
1325     assert( p->usesStmtJournal );
1326     break;
1327   }
1328 
1329   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1330   ** DML statements invoke this opcode to return the number of rows
1331   ** modified to the user. This is the only way that a VM that
1332   ** opens a statement transaction may invoke this opcode.
1333   **
1334   ** In case this is such a statement, close any statement transaction
1335   ** opened by this VM before returning control to the user. This is to
1336   ** ensure that statement-transactions are always nested, not overlapping.
1337   ** If the open statement-transaction is not closed here, then the user
1338   ** may step another VM that opens its own statement transaction. This
1339   ** may lead to overlapping statement transactions.
1340   **
1341   ** The statement transaction is never a top-level transaction.  Hence
1342   ** the RELEASE call below can never fail.
1343   */
1344   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1345   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1346   if( NEVER(rc!=SQLITE_OK) ){
1347     break;
1348   }
1349 
1350   /* Invalidate all ephemeral cursor row caches */
1351   p->cacheCtr = (p->cacheCtr + 2)|1;
1352 
1353   /* Make sure the results of the current row are \000 terminated
1354   ** and have an assigned type.  The results are de-ephemeralized as
1355   ** a side effect.
1356   */
1357   pMem = p->pResultSet = &aMem[pOp->p1];
1358   for(i=0; i<pOp->p2; i++){
1359     assert( memIsValid(&pMem[i]) );
1360     Deephemeralize(&pMem[i]);
1361     assert( (pMem[i].flags & MEM_Ephem)==0
1362             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1363     sqlite3VdbeMemNulTerminate(&pMem[i]);
1364     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1365   }
1366   if( db->mallocFailed ) goto no_mem;
1367 
1368   /* Return SQLITE_ROW
1369   */
1370   p->pc = (int)(pOp - aOp) + 1;
1371   rc = SQLITE_ROW;
1372   goto vdbe_return;
1373 }
1374 
1375 /* Opcode: Concat P1 P2 P3 * *
1376 ** Synopsis: r[P3]=r[P2]+r[P1]
1377 **
1378 ** Add the text in register P1 onto the end of the text in
1379 ** register P2 and store the result in register P3.
1380 ** If either the P1 or P2 text are NULL then store NULL in P3.
1381 **
1382 **   P3 = P2 || P1
1383 **
1384 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1385 ** if P3 is the same register as P2, the implementation is able
1386 ** to avoid a memcpy().
1387 */
1388 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1389   i64 nByte;
1390 
1391   pIn1 = &aMem[pOp->p1];
1392   pIn2 = &aMem[pOp->p2];
1393   pOut = &aMem[pOp->p3];
1394   assert( pIn1!=pOut );
1395   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1396     sqlite3VdbeMemSetNull(pOut);
1397     break;
1398   }
1399   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1400   Stringify(pIn1, encoding);
1401   Stringify(pIn2, encoding);
1402   nByte = pIn1->n + pIn2->n;
1403   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1404     goto too_big;
1405   }
1406   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1407     goto no_mem;
1408   }
1409   MemSetTypeFlag(pOut, MEM_Str);
1410   if( pOut!=pIn2 ){
1411     memcpy(pOut->z, pIn2->z, pIn2->n);
1412   }
1413   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1414   pOut->z[nByte]=0;
1415   pOut->z[nByte+1] = 0;
1416   pOut->flags |= MEM_Term;
1417   pOut->n = (int)nByte;
1418   pOut->enc = encoding;
1419   UPDATE_MAX_BLOBSIZE(pOut);
1420   break;
1421 }
1422 
1423 /* Opcode: Add P1 P2 P3 * *
1424 ** Synopsis:  r[P3]=r[P1]+r[P2]
1425 **
1426 ** Add the value in register P1 to the value in register P2
1427 ** and store the result in register P3.
1428 ** If either input is NULL, the result is NULL.
1429 */
1430 /* Opcode: Multiply P1 P2 P3 * *
1431 ** Synopsis:  r[P3]=r[P1]*r[P2]
1432 **
1433 **
1434 ** Multiply the value in register P1 by the value in register P2
1435 ** and store the result in register P3.
1436 ** If either input is NULL, the result is NULL.
1437 */
1438 /* Opcode: Subtract P1 P2 P3 * *
1439 ** Synopsis:  r[P3]=r[P2]-r[P1]
1440 **
1441 ** Subtract the value in register P1 from the value in register P2
1442 ** and store the result in register P3.
1443 ** If either input is NULL, the result is NULL.
1444 */
1445 /* Opcode: Divide P1 P2 P3 * *
1446 ** Synopsis:  r[P3]=r[P2]/r[P1]
1447 **
1448 ** Divide the value in register P1 by the value in register P2
1449 ** and store the result in register P3 (P3=P2/P1). If the value in
1450 ** register P1 is zero, then the result is NULL. If either input is
1451 ** NULL, the result is NULL.
1452 */
1453 /* Opcode: Remainder P1 P2 P3 * *
1454 ** Synopsis:  r[P3]=r[P2]%r[P1]
1455 **
1456 ** Compute the remainder after integer register P2 is divided by
1457 ** register P1 and store the result in register P3.
1458 ** If the value in register P1 is zero the result is NULL.
1459 ** If either operand is NULL, the result is NULL.
1460 */
1461 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1462 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1463 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1464 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1465 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1466   char bIntint;   /* Started out as two integer operands */
1467   u16 flags;      /* Combined MEM_* flags from both inputs */
1468   u16 type1;      /* Numeric type of left operand */
1469   u16 type2;      /* Numeric type of right operand */
1470   i64 iA;         /* Integer value of left operand */
1471   i64 iB;         /* Integer value of right operand */
1472   double rA;      /* Real value of left operand */
1473   double rB;      /* Real value of right operand */
1474 
1475   pIn1 = &aMem[pOp->p1];
1476   type1 = numericType(pIn1);
1477   pIn2 = &aMem[pOp->p2];
1478   type2 = numericType(pIn2);
1479   pOut = &aMem[pOp->p3];
1480   flags = pIn1->flags | pIn2->flags;
1481   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1482   if( (type1 & type2 & MEM_Int)!=0 ){
1483     iA = pIn1->u.i;
1484     iB = pIn2->u.i;
1485     bIntint = 1;
1486     switch( pOp->opcode ){
1487       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1488       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1489       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1490       case OP_Divide: {
1491         if( iA==0 ) goto arithmetic_result_is_null;
1492         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1493         iB /= iA;
1494         break;
1495       }
1496       default: {
1497         if( iA==0 ) goto arithmetic_result_is_null;
1498         if( iA==-1 ) iA = 1;
1499         iB %= iA;
1500         break;
1501       }
1502     }
1503     pOut->u.i = iB;
1504     MemSetTypeFlag(pOut, MEM_Int);
1505   }else{
1506     bIntint = 0;
1507 fp_math:
1508     rA = sqlite3VdbeRealValue(pIn1);
1509     rB = sqlite3VdbeRealValue(pIn2);
1510     switch( pOp->opcode ){
1511       case OP_Add:         rB += rA;       break;
1512       case OP_Subtract:    rB -= rA;       break;
1513       case OP_Multiply:    rB *= rA;       break;
1514       case OP_Divide: {
1515         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1516         if( rA==(double)0 ) goto arithmetic_result_is_null;
1517         rB /= rA;
1518         break;
1519       }
1520       default: {
1521         iA = (i64)rA;
1522         iB = (i64)rB;
1523         if( iA==0 ) goto arithmetic_result_is_null;
1524         if( iA==-1 ) iA = 1;
1525         rB = (double)(iB % iA);
1526         break;
1527       }
1528     }
1529 #ifdef SQLITE_OMIT_FLOATING_POINT
1530     pOut->u.i = rB;
1531     MemSetTypeFlag(pOut, MEM_Int);
1532 #else
1533     if( sqlite3IsNaN(rB) ){
1534       goto arithmetic_result_is_null;
1535     }
1536     pOut->u.r = rB;
1537     MemSetTypeFlag(pOut, MEM_Real);
1538     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1539       sqlite3VdbeIntegerAffinity(pOut);
1540     }
1541 #endif
1542   }
1543   break;
1544 
1545 arithmetic_result_is_null:
1546   sqlite3VdbeMemSetNull(pOut);
1547   break;
1548 }
1549 
1550 /* Opcode: CollSeq P1 * * P4
1551 **
1552 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1553 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1554 ** be returned. This is used by the built-in min(), max() and nullif()
1555 ** functions.
1556 **
1557 ** If P1 is not zero, then it is a register that a subsequent min() or
1558 ** max() aggregate will set to 1 if the current row is not the minimum or
1559 ** maximum.  The P1 register is initialized to 0 by this instruction.
1560 **
1561 ** The interface used by the implementation of the aforementioned functions
1562 ** to retrieve the collation sequence set by this opcode is not available
1563 ** publicly.  Only built-in functions have access to this feature.
1564 */
1565 case OP_CollSeq: {
1566   assert( pOp->p4type==P4_COLLSEQ );
1567   if( pOp->p1 ){
1568     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1569   }
1570   break;
1571 }
1572 
1573 /* Opcode: Function0 P1 P2 P3 P4 P5
1574 ** Synopsis: r[P3]=func(r[P2@P5])
1575 **
1576 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1577 ** defines the function) with P5 arguments taken from register P2 and
1578 ** successors.  The result of the function is stored in register P3.
1579 ** Register P3 must not be one of the function inputs.
1580 **
1581 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1582 ** function was determined to be constant at compile time. If the first
1583 ** argument was constant then bit 0 of P1 is set. This is used to determine
1584 ** whether meta data associated with a user function argument using the
1585 ** sqlite3_set_auxdata() API may be safely retained until the next
1586 ** invocation of this opcode.
1587 **
1588 ** See also: Function, AggStep, AggFinal
1589 */
1590 /* Opcode: Function P1 P2 P3 P4 P5
1591 ** Synopsis: r[P3]=func(r[P2@P5])
1592 **
1593 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1594 ** contains a pointer to the function to be run) with P5 arguments taken
1595 ** from register P2 and successors.  The result of the function is stored
1596 ** in register P3.  Register P3 must not be one of the function inputs.
1597 **
1598 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1599 ** function was determined to be constant at compile time. If the first
1600 ** argument was constant then bit 0 of P1 is set. This is used to determine
1601 ** whether meta data associated with a user function argument using the
1602 ** sqlite3_set_auxdata() API may be safely retained until the next
1603 ** invocation of this opcode.
1604 **
1605 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1606 ** to a FuncDef object.  But on first evaluation, the P4 operand is
1607 ** automatically converted into an sqlite3_context object and the operation
1608 ** changed to this OP_Function opcode.  In this way, the initialization of
1609 ** the sqlite3_context object occurs only once, rather than once for each
1610 ** evaluation of the function.
1611 **
1612 ** See also: Function0, AggStep, AggFinal
1613 */
1614 case OP_Function0: {
1615   int n;
1616   sqlite3_context *pCtx;
1617 
1618   assert( pOp->p4type==P4_FUNCDEF );
1619   n = pOp->p5;
1620   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1621   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
1622   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1623   pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1624   if( pCtx==0 ) goto no_mem;
1625   pCtx->pOut = 0;
1626   pCtx->pFunc = pOp->p4.pFunc;
1627   pCtx->iOp = (int)(pOp - aOp);
1628   pCtx->pVdbe = p;
1629   pCtx->argc = n;
1630   pOp->p4type = P4_FUNCCTX;
1631   pOp->p4.pCtx = pCtx;
1632   pOp->opcode = OP_Function;
1633   /* Fall through into OP_Function */
1634 }
1635 case OP_Function: {
1636   int i;
1637   sqlite3_context *pCtx;
1638 
1639   assert( pOp->p4type==P4_FUNCCTX );
1640   pCtx = pOp->p4.pCtx;
1641 
1642   /* If this function is inside of a trigger, the register array in aMem[]
1643   ** might change from one evaluation to the next.  The next block of code
1644   ** checks to see if the register array has changed, and if so it
1645   ** reinitializes the relavant parts of the sqlite3_context object */
1646   pOut = &aMem[pOp->p3];
1647   if( pCtx->pOut != pOut ){
1648     pCtx->pOut = pOut;
1649     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1650   }
1651 
1652   memAboutToChange(p, pCtx->pOut);
1653 #ifdef SQLITE_DEBUG
1654   for(i=0; i<pCtx->argc; i++){
1655     assert( memIsValid(pCtx->argv[i]) );
1656     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1657   }
1658 #endif
1659   MemSetTypeFlag(pCtx->pOut, MEM_Null);
1660   pCtx->fErrorOrAux = 0;
1661   db->lastRowid = lastRowid;
1662   (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */
1663   lastRowid = db->lastRowid;  /* Remember rowid changes made by xFunc */
1664 
1665   /* If the function returned an error, throw an exception */
1666   if( pCtx->fErrorOrAux ){
1667     if( pCtx->isError ){
1668       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1669       rc = pCtx->isError;
1670     }
1671     sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1);
1672   }
1673 
1674   /* Copy the result of the function into register P3 */
1675   if( pOut->flags & (MEM_Str|MEM_Blob) ){
1676     sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1677     if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1678   }
1679 
1680   REGISTER_TRACE(pOp->p3, pCtx->pOut);
1681   UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1682   break;
1683 }
1684 
1685 /* Opcode: BitAnd P1 P2 P3 * *
1686 ** Synopsis:  r[P3]=r[P1]&r[P2]
1687 **
1688 ** Take the bit-wise AND of the values in register P1 and P2 and
1689 ** store the result in register P3.
1690 ** If either input is NULL, the result is NULL.
1691 */
1692 /* Opcode: BitOr P1 P2 P3 * *
1693 ** Synopsis:  r[P3]=r[P1]|r[P2]
1694 **
1695 ** Take the bit-wise OR of the values in register P1 and P2 and
1696 ** store the result in register P3.
1697 ** If either input is NULL, the result is NULL.
1698 */
1699 /* Opcode: ShiftLeft P1 P2 P3 * *
1700 ** Synopsis:  r[P3]=r[P2]<<r[P1]
1701 **
1702 ** Shift the integer value in register P2 to the left by the
1703 ** number of bits specified by the integer in register P1.
1704 ** Store the result in register P3.
1705 ** If either input is NULL, the result is NULL.
1706 */
1707 /* Opcode: ShiftRight P1 P2 P3 * *
1708 ** Synopsis:  r[P3]=r[P2]>>r[P1]
1709 **
1710 ** Shift the integer value in register P2 to the right by the
1711 ** number of bits specified by the integer in register P1.
1712 ** Store the result in register P3.
1713 ** If either input is NULL, the result is NULL.
1714 */
1715 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1716 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1717 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1718 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1719   i64 iA;
1720   u64 uA;
1721   i64 iB;
1722   u8 op;
1723 
1724   pIn1 = &aMem[pOp->p1];
1725   pIn2 = &aMem[pOp->p2];
1726   pOut = &aMem[pOp->p3];
1727   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1728     sqlite3VdbeMemSetNull(pOut);
1729     break;
1730   }
1731   iA = sqlite3VdbeIntValue(pIn2);
1732   iB = sqlite3VdbeIntValue(pIn1);
1733   op = pOp->opcode;
1734   if( op==OP_BitAnd ){
1735     iA &= iB;
1736   }else if( op==OP_BitOr ){
1737     iA |= iB;
1738   }else if( iB!=0 ){
1739     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1740 
1741     /* If shifting by a negative amount, shift in the other direction */
1742     if( iB<0 ){
1743       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1744       op = 2*OP_ShiftLeft + 1 - op;
1745       iB = iB>(-64) ? -iB : 64;
1746     }
1747 
1748     if( iB>=64 ){
1749       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1750     }else{
1751       memcpy(&uA, &iA, sizeof(uA));
1752       if( op==OP_ShiftLeft ){
1753         uA <<= iB;
1754       }else{
1755         uA >>= iB;
1756         /* Sign-extend on a right shift of a negative number */
1757         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1758       }
1759       memcpy(&iA, &uA, sizeof(iA));
1760     }
1761   }
1762   pOut->u.i = iA;
1763   MemSetTypeFlag(pOut, MEM_Int);
1764   break;
1765 }
1766 
1767 /* Opcode: AddImm  P1 P2 * * *
1768 ** Synopsis:  r[P1]=r[P1]+P2
1769 **
1770 ** Add the constant P2 to the value in register P1.
1771 ** The result is always an integer.
1772 **
1773 ** To force any register to be an integer, just add 0.
1774 */
1775 case OP_AddImm: {            /* in1 */
1776   pIn1 = &aMem[pOp->p1];
1777   memAboutToChange(p, pIn1);
1778   sqlite3VdbeMemIntegerify(pIn1);
1779   pIn1->u.i += pOp->p2;
1780   break;
1781 }
1782 
1783 /* Opcode: MustBeInt P1 P2 * * *
1784 **
1785 ** Force the value in register P1 to be an integer.  If the value
1786 ** in P1 is not an integer and cannot be converted into an integer
1787 ** without data loss, then jump immediately to P2, or if P2==0
1788 ** raise an SQLITE_MISMATCH exception.
1789 */
1790 case OP_MustBeInt: {            /* jump, in1 */
1791   pIn1 = &aMem[pOp->p1];
1792   if( (pIn1->flags & MEM_Int)==0 ){
1793     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1794     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1795     if( (pIn1->flags & MEM_Int)==0 ){
1796       if( pOp->p2==0 ){
1797         rc = SQLITE_MISMATCH;
1798         goto abort_due_to_error;
1799       }else{
1800         goto jump_to_p2;
1801       }
1802     }
1803   }
1804   MemSetTypeFlag(pIn1, MEM_Int);
1805   break;
1806 }
1807 
1808 #ifndef SQLITE_OMIT_FLOATING_POINT
1809 /* Opcode: RealAffinity P1 * * * *
1810 **
1811 ** If register P1 holds an integer convert it to a real value.
1812 **
1813 ** This opcode is used when extracting information from a column that
1814 ** has REAL affinity.  Such column values may still be stored as
1815 ** integers, for space efficiency, but after extraction we want them
1816 ** to have only a real value.
1817 */
1818 case OP_RealAffinity: {                  /* in1 */
1819   pIn1 = &aMem[pOp->p1];
1820   if( pIn1->flags & MEM_Int ){
1821     sqlite3VdbeMemRealify(pIn1);
1822   }
1823   break;
1824 }
1825 #endif
1826 
1827 #ifndef SQLITE_OMIT_CAST
1828 /* Opcode: Cast P1 P2 * * *
1829 ** Synopsis: affinity(r[P1])
1830 **
1831 ** Force the value in register P1 to be the type defined by P2.
1832 **
1833 ** <ul>
1834 ** <li value="97"> TEXT
1835 ** <li value="98"> BLOB
1836 ** <li value="99"> NUMERIC
1837 ** <li value="100"> INTEGER
1838 ** <li value="101"> REAL
1839 ** </ul>
1840 **
1841 ** A NULL value is not changed by this routine.  It remains NULL.
1842 */
1843 case OP_Cast: {                  /* in1 */
1844   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1845   testcase( pOp->p2==SQLITE_AFF_TEXT );
1846   testcase( pOp->p2==SQLITE_AFF_BLOB );
1847   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1848   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1849   testcase( pOp->p2==SQLITE_AFF_REAL );
1850   pIn1 = &aMem[pOp->p1];
1851   memAboutToChange(p, pIn1);
1852   rc = ExpandBlob(pIn1);
1853   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1854   UPDATE_MAX_BLOBSIZE(pIn1);
1855   break;
1856 }
1857 #endif /* SQLITE_OMIT_CAST */
1858 
1859 /* Opcode: Lt P1 P2 P3 P4 P5
1860 ** Synopsis: if r[P1]<r[P3] goto P2
1861 **
1862 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1863 ** jump to address P2.
1864 **
1865 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1866 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
1867 ** bit is clear then fall through if either operand is NULL.
1868 **
1869 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1870 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1871 ** to coerce both inputs according to this affinity before the
1872 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1873 ** affinity is used. Note that the affinity conversions are stored
1874 ** back into the input registers P1 and P3.  So this opcode can cause
1875 ** persistent changes to registers P1 and P3.
1876 **
1877 ** Once any conversions have taken place, and neither value is NULL,
1878 ** the values are compared. If both values are blobs then memcmp() is
1879 ** used to determine the results of the comparison.  If both values
1880 ** are text, then the appropriate collating function specified in
1881 ** P4 is  used to do the comparison.  If P4 is not specified then
1882 ** memcmp() is used to compare text string.  If both values are
1883 ** numeric, then a numeric comparison is used. If the two values
1884 ** are of different types, then numbers are considered less than
1885 ** strings and strings are considered less than blobs.
1886 **
1887 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
1888 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1889 **
1890 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1891 ** equal to one another, provided that they do not have their MEM_Cleared
1892 ** bit set.
1893 */
1894 /* Opcode: Ne P1 P2 P3 P4 P5
1895 ** Synopsis: if r[P1]!=r[P3] goto P2
1896 **
1897 ** This works just like the Lt opcode except that the jump is taken if
1898 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
1899 ** additional information.
1900 **
1901 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1902 ** true or false and is never NULL.  If both operands are NULL then the result
1903 ** of comparison is false.  If either operand is NULL then the result is true.
1904 ** If neither operand is NULL the result is the same as it would be if
1905 ** the SQLITE_NULLEQ flag were omitted from P5.
1906 */
1907 /* Opcode: Eq P1 P2 P3 P4 P5
1908 ** Synopsis: if r[P1]==r[P3] goto P2
1909 **
1910 ** This works just like the Lt opcode except that the jump is taken if
1911 ** the operands in registers P1 and P3 are equal.
1912 ** See the Lt opcode for additional information.
1913 **
1914 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1915 ** true or false and is never NULL.  If both operands are NULL then the result
1916 ** of comparison is true.  If either operand is NULL then the result is false.
1917 ** If neither operand is NULL the result is the same as it would be if
1918 ** the SQLITE_NULLEQ flag were omitted from P5.
1919 */
1920 /* Opcode: Le P1 P2 P3 P4 P5
1921 ** Synopsis: if r[P1]<=r[P3] goto P2
1922 **
1923 ** This works just like the Lt opcode except that the jump is taken if
1924 ** the content of register P3 is less than or equal to the content of
1925 ** register P1.  See the Lt opcode for additional information.
1926 */
1927 /* Opcode: Gt P1 P2 P3 P4 P5
1928 ** Synopsis: if r[P1]>r[P3] goto P2
1929 **
1930 ** This works just like the Lt opcode except that the jump is taken if
1931 ** the content of register P3 is greater than the content of
1932 ** register P1.  See the Lt opcode for additional information.
1933 */
1934 /* Opcode: Ge P1 P2 P3 P4 P5
1935 ** Synopsis: if r[P1]>=r[P3] goto P2
1936 **
1937 ** This works just like the Lt opcode except that the jump is taken if
1938 ** the content of register P3 is greater than or equal to the content of
1939 ** register P1.  See the Lt opcode for additional information.
1940 */
1941 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1942 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1943 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1944 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1945 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1946 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1947   int res;            /* Result of the comparison of pIn1 against pIn3 */
1948   char affinity;      /* Affinity to use for comparison */
1949   u16 flags1;         /* Copy of initial value of pIn1->flags */
1950   u16 flags3;         /* Copy of initial value of pIn3->flags */
1951 
1952   pIn1 = &aMem[pOp->p1];
1953   pIn3 = &aMem[pOp->p3];
1954   flags1 = pIn1->flags;
1955   flags3 = pIn3->flags;
1956   if( (flags1 | flags3)&MEM_Null ){
1957     /* One or both operands are NULL */
1958     if( pOp->p5 & SQLITE_NULLEQ ){
1959       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1960       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1961       ** or not both operands are null.
1962       */
1963       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1964       assert( (flags1 & MEM_Cleared)==0 );
1965       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1966       if( (flags1&MEM_Null)!=0
1967        && (flags3&MEM_Null)!=0
1968        && (flags3&MEM_Cleared)==0
1969       ){
1970         res = 0;  /* Results are equal */
1971       }else{
1972         res = 1;  /* Results are not equal */
1973       }
1974     }else{
1975       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1976       ** then the result is always NULL.
1977       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1978       */
1979       if( pOp->p5 & SQLITE_STOREP2 ){
1980         pOut = &aMem[pOp->p2];
1981         MemSetTypeFlag(pOut, MEM_Null);
1982         REGISTER_TRACE(pOp->p2, pOut);
1983       }else{
1984         VdbeBranchTaken(2,3);
1985         if( pOp->p5 & SQLITE_JUMPIFNULL ){
1986           goto jump_to_p2;
1987         }
1988       }
1989       break;
1990     }
1991   }else{
1992     /* Neither operand is NULL.  Do a comparison. */
1993     affinity = pOp->p5 & SQLITE_AFF_MASK;
1994     if( affinity>=SQLITE_AFF_NUMERIC ){
1995       if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1996         applyNumericAffinity(pIn1,0);
1997       }
1998       if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1999         applyNumericAffinity(pIn3,0);
2000       }
2001     }else if( affinity==SQLITE_AFF_TEXT ){
2002       if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
2003         testcase( pIn1->flags & MEM_Int );
2004         testcase( pIn1->flags & MEM_Real );
2005         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2006         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2007         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2008       }
2009       if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
2010         testcase( pIn3->flags & MEM_Int );
2011         testcase( pIn3->flags & MEM_Real );
2012         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2013         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2014         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2015       }
2016     }
2017     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2018     if( pIn1->flags & MEM_Zero ){
2019       sqlite3VdbeMemExpandBlob(pIn1);
2020       flags1 &= ~MEM_Zero;
2021     }
2022     if( pIn3->flags & MEM_Zero ){
2023       sqlite3VdbeMemExpandBlob(pIn3);
2024       flags3 &= ~MEM_Zero;
2025     }
2026     if( db->mallocFailed ) goto no_mem;
2027     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2028   }
2029   switch( pOp->opcode ){
2030     case OP_Eq:    res = res==0;     break;
2031     case OP_Ne:    res = res!=0;     break;
2032     case OP_Lt:    res = res<0;      break;
2033     case OP_Le:    res = res<=0;     break;
2034     case OP_Gt:    res = res>0;      break;
2035     default:       res = res>=0;     break;
2036   }
2037 
2038   /* Undo any changes made by applyAffinity() to the input registers. */
2039   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2040   pIn1->flags = flags1;
2041   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2042   pIn3->flags = flags3;
2043 
2044   if( pOp->p5 & SQLITE_STOREP2 ){
2045     pOut = &aMem[pOp->p2];
2046     memAboutToChange(p, pOut);
2047     MemSetTypeFlag(pOut, MEM_Int);
2048     pOut->u.i = res;
2049     REGISTER_TRACE(pOp->p2, pOut);
2050   }else{
2051     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2052     if( res ){
2053       goto jump_to_p2;
2054     }
2055   }
2056   break;
2057 }
2058 
2059 /* Opcode: Permutation * * * P4 *
2060 **
2061 ** Set the permutation used by the OP_Compare operator to be the array
2062 ** of integers in P4.
2063 **
2064 ** The permutation is only valid until the next OP_Compare that has
2065 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2066 ** occur immediately prior to the OP_Compare.
2067 */
2068 case OP_Permutation: {
2069   assert( pOp->p4type==P4_INTARRAY );
2070   assert( pOp->p4.ai );
2071   aPermute = pOp->p4.ai;
2072   break;
2073 }
2074 
2075 /* Opcode: Compare P1 P2 P3 P4 P5
2076 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2077 **
2078 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2079 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2080 ** the comparison for use by the next OP_Jump instruct.
2081 **
2082 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2083 ** determined by the most recent OP_Permutation operator.  If the
2084 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2085 ** order.
2086 **
2087 ** P4 is a KeyInfo structure that defines collating sequences and sort
2088 ** orders for the comparison.  The permutation applies to registers
2089 ** only.  The KeyInfo elements are used sequentially.
2090 **
2091 ** The comparison is a sort comparison, so NULLs compare equal,
2092 ** NULLs are less than numbers, numbers are less than strings,
2093 ** and strings are less than blobs.
2094 */
2095 case OP_Compare: {
2096   int n;
2097   int i;
2098   int p1;
2099   int p2;
2100   const KeyInfo *pKeyInfo;
2101   int idx;
2102   CollSeq *pColl;    /* Collating sequence to use on this term */
2103   int bRev;          /* True for DESCENDING sort order */
2104 
2105   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
2106   n = pOp->p3;
2107   pKeyInfo = pOp->p4.pKeyInfo;
2108   assert( n>0 );
2109   assert( pKeyInfo!=0 );
2110   p1 = pOp->p1;
2111   p2 = pOp->p2;
2112 #if SQLITE_DEBUG
2113   if( aPermute ){
2114     int k, mx = 0;
2115     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2116     assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2117     assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
2118   }else{
2119     assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2120     assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
2121   }
2122 #endif /* SQLITE_DEBUG */
2123   for(i=0; i<n; i++){
2124     idx = aPermute ? aPermute[i] : i;
2125     assert( memIsValid(&aMem[p1+idx]) );
2126     assert( memIsValid(&aMem[p2+idx]) );
2127     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2128     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2129     assert( i<pKeyInfo->nField );
2130     pColl = pKeyInfo->aColl[i];
2131     bRev = pKeyInfo->aSortOrder[i];
2132     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2133     if( iCompare ){
2134       if( bRev ) iCompare = -iCompare;
2135       break;
2136     }
2137   }
2138   aPermute = 0;
2139   break;
2140 }
2141 
2142 /* Opcode: Jump P1 P2 P3 * *
2143 **
2144 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2145 ** in the most recent OP_Compare instruction the P1 vector was less than
2146 ** equal to, or greater than the P2 vector, respectively.
2147 */
2148 case OP_Jump: {             /* jump */
2149   if( iCompare<0 ){
2150     VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2151   }else if( iCompare==0 ){
2152     VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2153   }else{
2154     VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2155   }
2156   break;
2157 }
2158 
2159 /* Opcode: And P1 P2 P3 * *
2160 ** Synopsis: r[P3]=(r[P1] && r[P2])
2161 **
2162 ** Take the logical AND of the values in registers P1 and P2 and
2163 ** write the result into register P3.
2164 **
2165 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2166 ** the other input is NULL.  A NULL and true or two NULLs give
2167 ** a NULL output.
2168 */
2169 /* Opcode: Or P1 P2 P3 * *
2170 ** Synopsis: r[P3]=(r[P1] || r[P2])
2171 **
2172 ** Take the logical OR of the values in register P1 and P2 and
2173 ** store the answer in register P3.
2174 **
2175 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2176 ** even if the other input is NULL.  A NULL and false or two NULLs
2177 ** give a NULL output.
2178 */
2179 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2180 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2181   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2182   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2183 
2184   pIn1 = &aMem[pOp->p1];
2185   if( pIn1->flags & MEM_Null ){
2186     v1 = 2;
2187   }else{
2188     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2189   }
2190   pIn2 = &aMem[pOp->p2];
2191   if( pIn2->flags & MEM_Null ){
2192     v2 = 2;
2193   }else{
2194     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2195   }
2196   if( pOp->opcode==OP_And ){
2197     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2198     v1 = and_logic[v1*3+v2];
2199   }else{
2200     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2201     v1 = or_logic[v1*3+v2];
2202   }
2203   pOut = &aMem[pOp->p3];
2204   if( v1==2 ){
2205     MemSetTypeFlag(pOut, MEM_Null);
2206   }else{
2207     pOut->u.i = v1;
2208     MemSetTypeFlag(pOut, MEM_Int);
2209   }
2210   break;
2211 }
2212 
2213 /* Opcode: Not P1 P2 * * *
2214 ** Synopsis: r[P2]= !r[P1]
2215 **
2216 ** Interpret the value in register P1 as a boolean value.  Store the
2217 ** boolean complement in register P2.  If the value in register P1 is
2218 ** NULL, then a NULL is stored in P2.
2219 */
2220 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2221   pIn1 = &aMem[pOp->p1];
2222   pOut = &aMem[pOp->p2];
2223   sqlite3VdbeMemSetNull(pOut);
2224   if( (pIn1->flags & MEM_Null)==0 ){
2225     pOut->flags = MEM_Int;
2226     pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2227   }
2228   break;
2229 }
2230 
2231 /* Opcode: BitNot P1 P2 * * *
2232 ** Synopsis: r[P1]= ~r[P1]
2233 **
2234 ** Interpret the content of register P1 as an integer.  Store the
2235 ** ones-complement of the P1 value into register P2.  If P1 holds
2236 ** a NULL then store a NULL in P2.
2237 */
2238 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2239   pIn1 = &aMem[pOp->p1];
2240   pOut = &aMem[pOp->p2];
2241   sqlite3VdbeMemSetNull(pOut);
2242   if( (pIn1->flags & MEM_Null)==0 ){
2243     pOut->flags = MEM_Int;
2244     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2245   }
2246   break;
2247 }
2248 
2249 /* Opcode: Once P1 P2 * * *
2250 **
2251 ** Check the "once" flag number P1. If it is set, jump to instruction P2.
2252 ** Otherwise, set the flag and fall through to the next instruction.
2253 ** In other words, this opcode causes all following opcodes up through P2
2254 ** (but not including P2) to run just once and to be skipped on subsequent
2255 ** times through the loop.
2256 **
2257 ** All "once" flags are initially cleared whenever a prepared statement
2258 ** first begins to run.
2259 */
2260 case OP_Once: {             /* jump */
2261   assert( pOp->p1<p->nOnceFlag );
2262   VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
2263   if( p->aOnceFlag[pOp->p1] ){
2264     goto jump_to_p2;
2265   }else{
2266     p->aOnceFlag[pOp->p1] = 1;
2267   }
2268   break;
2269 }
2270 
2271 /* Opcode: If P1 P2 P3 * *
2272 **
2273 ** Jump to P2 if the value in register P1 is true.  The value
2274 ** is considered true if it is numeric and non-zero.  If the value
2275 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2276 */
2277 /* Opcode: IfNot P1 P2 P3 * *
2278 **
2279 ** Jump to P2 if the value in register P1 is False.  The value
2280 ** is considered false if it has a numeric value of zero.  If the value
2281 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2282 */
2283 case OP_If:                 /* jump, in1 */
2284 case OP_IfNot: {            /* jump, in1 */
2285   int c;
2286   pIn1 = &aMem[pOp->p1];
2287   if( pIn1->flags & MEM_Null ){
2288     c = pOp->p3;
2289   }else{
2290 #ifdef SQLITE_OMIT_FLOATING_POINT
2291     c = sqlite3VdbeIntValue(pIn1)!=0;
2292 #else
2293     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2294 #endif
2295     if( pOp->opcode==OP_IfNot ) c = !c;
2296   }
2297   VdbeBranchTaken(c!=0, 2);
2298   if( c ){
2299     goto jump_to_p2;
2300   }
2301   break;
2302 }
2303 
2304 /* Opcode: IsNull P1 P2 * * *
2305 ** Synopsis:  if r[P1]==NULL goto P2
2306 **
2307 ** Jump to P2 if the value in register P1 is NULL.
2308 */
2309 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2310   pIn1 = &aMem[pOp->p1];
2311   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2312   if( (pIn1->flags & MEM_Null)!=0 ){
2313     goto jump_to_p2;
2314   }
2315   break;
2316 }
2317 
2318 /* Opcode: NotNull P1 P2 * * *
2319 ** Synopsis: if r[P1]!=NULL goto P2
2320 **
2321 ** Jump to P2 if the value in register P1 is not NULL.
2322 */
2323 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2324   pIn1 = &aMem[pOp->p1];
2325   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2326   if( (pIn1->flags & MEM_Null)==0 ){
2327     goto jump_to_p2;
2328   }
2329   break;
2330 }
2331 
2332 /* Opcode: Column P1 P2 P3 P4 P5
2333 ** Synopsis:  r[P3]=PX
2334 **
2335 ** Interpret the data that cursor P1 points to as a structure built using
2336 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2337 ** information about the format of the data.)  Extract the P2-th column
2338 ** from this record.  If there are less that (P2+1)
2339 ** values in the record, extract a NULL.
2340 **
2341 ** The value extracted is stored in register P3.
2342 **
2343 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2344 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2345 ** the result.
2346 **
2347 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2348 ** then the cache of the cursor is reset prior to extracting the column.
2349 ** The first OP_Column against a pseudo-table after the value of the content
2350 ** register has changed should have this bit set.
2351 **
2352 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2353 ** the result is guaranteed to only be used as the argument of a length()
2354 ** or typeof() function, respectively.  The loading of large blobs can be
2355 ** skipped for length() and all content loading can be skipped for typeof().
2356 */
2357 case OP_Column: {
2358   i64 payloadSize64; /* Number of bytes in the record */
2359   int p2;            /* column number to retrieve */
2360   VdbeCursor *pC;    /* The VDBE cursor */
2361   BtCursor *pCrsr;   /* The BTree cursor */
2362   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2363   int len;           /* The length of the serialized data for the column */
2364   int i;             /* Loop counter */
2365   Mem *pDest;        /* Where to write the extracted value */
2366   Mem sMem;          /* For storing the record being decoded */
2367   const u8 *zData;   /* Part of the record being decoded */
2368   const u8 *zHdr;    /* Next unparsed byte of the header */
2369   const u8 *zEndHdr; /* Pointer to first byte after the header */
2370   u32 offset;        /* Offset into the data */
2371   u64 offset64;      /* 64-bit offset */
2372   u32 avail;         /* Number of bytes of available data */
2373   u32 t;             /* A type code from the record header */
2374   u16 fx;            /* pDest->flags value */
2375   Mem *pReg;         /* PseudoTable input register */
2376 
2377   p2 = pOp->p2;
2378   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2379   pDest = &aMem[pOp->p3];
2380   memAboutToChange(p, pDest);
2381   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2382   pC = p->apCsr[pOp->p1];
2383   assert( pC!=0 );
2384   assert( p2<pC->nField );
2385   aOffset = pC->aOffset;
2386 #ifndef SQLITE_OMIT_VIRTUALTABLE
2387   assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
2388 #endif
2389   pCrsr = pC->pCursor;
2390   assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2391   assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */
2392 
2393   /* If the cursor cache is stale, bring it up-to-date */
2394   rc = sqlite3VdbeCursorMoveto(pC);
2395   if( rc ) goto abort_due_to_error;
2396   if( pC->cacheStatus!=p->cacheCtr ){
2397     if( pC->nullRow ){
2398       if( pCrsr==0 ){
2399         assert( pC->pseudoTableReg>0 );
2400         pReg = &aMem[pC->pseudoTableReg];
2401         assert( pReg->flags & MEM_Blob );
2402         assert( memIsValid(pReg) );
2403         pC->payloadSize = pC->szRow = avail = pReg->n;
2404         pC->aRow = (u8*)pReg->z;
2405       }else{
2406         sqlite3VdbeMemSetNull(pDest);
2407         goto op_column_out;
2408       }
2409     }else{
2410       assert( pCrsr );
2411       if( pC->isTable==0 ){
2412         assert( sqlite3BtreeCursorIsValid(pCrsr) );
2413         VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2414         assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2415         /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2416         ** payload size, so it is impossible for payloadSize64 to be
2417         ** larger than 32 bits. */
2418         assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2419         pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2420         pC->payloadSize = (u32)payloadSize64;
2421       }else{
2422         assert( sqlite3BtreeCursorIsValid(pCrsr) );
2423         VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2424         assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
2425         pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
2426       }
2427       assert( avail<=65536 );  /* Maximum page size is 64KiB */
2428       if( pC->payloadSize <= (u32)avail ){
2429         pC->szRow = pC->payloadSize;
2430       }else{
2431         pC->szRow = avail;
2432       }
2433       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2434         goto too_big;
2435       }
2436     }
2437     pC->cacheStatus = p->cacheCtr;
2438     pC->iHdrOffset = getVarint32(pC->aRow, offset);
2439     pC->nHdrParsed = 0;
2440     aOffset[0] = offset;
2441 
2442 
2443     if( avail<offset ){
2444       /* pC->aRow does not have to hold the entire row, but it does at least
2445       ** need to cover the header of the record.  If pC->aRow does not contain
2446       ** the complete header, then set it to zero, forcing the header to be
2447       ** dynamically allocated. */
2448       pC->aRow = 0;
2449       pC->szRow = 0;
2450 
2451       /* Make sure a corrupt database has not given us an oversize header.
2452       ** Do this now to avoid an oversize memory allocation.
2453       **
2454       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2455       ** types use so much data space that there can only be 4096 and 32 of
2456       ** them, respectively.  So the maximum header length results from a
2457       ** 3-byte type for each of the maximum of 32768 columns plus three
2458       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2459       */
2460       if( offset > 98307 || offset > pC->payloadSize ){
2461         rc = SQLITE_CORRUPT_BKPT;
2462         goto op_column_error;
2463       }
2464     }
2465 
2466     /* The following goto is an optimization.  It can be omitted and
2467     ** everything will still work.  But OP_Column is measurably faster
2468     ** by skipping the subsequent conditional, which is always true.
2469     */
2470     assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2471     goto op_column_read_header;
2472   }
2473 
2474   /* Make sure at least the first p2+1 entries of the header have been
2475   ** parsed and valid information is in aOffset[] and pC->aType[].
2476   */
2477   if( pC->nHdrParsed<=p2 ){
2478     /* If there is more header available for parsing in the record, try
2479     ** to extract additional fields up through the p2+1-th field
2480     */
2481     op_column_read_header:
2482     if( pC->iHdrOffset<aOffset[0] ){
2483       /* Make sure zData points to enough of the record to cover the header. */
2484       if( pC->aRow==0 ){
2485         memset(&sMem, 0, sizeof(sMem));
2486         rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
2487         if( rc!=SQLITE_OK ) goto op_column_error;
2488         zData = (u8*)sMem.z;
2489       }else{
2490         zData = pC->aRow;
2491       }
2492 
2493       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2494       i = pC->nHdrParsed;
2495       offset64 = aOffset[i];
2496       zHdr = zData + pC->iHdrOffset;
2497       zEndHdr = zData + aOffset[0];
2498       assert( i<=p2 && zHdr<zEndHdr );
2499       do{
2500         if( (t = zHdr[0])<0x80 ){
2501           zHdr++;
2502           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2503         }else{
2504           zHdr += sqlite3GetVarint32(zHdr, &t);
2505           offset64 += sqlite3VdbeSerialTypeLen(t);
2506         }
2507         pC->aType[i++] = t;
2508         aOffset[i] = (u32)(offset64 & 0xffffffff);
2509       }while( i<=p2 && zHdr<zEndHdr );
2510       pC->nHdrParsed = i;
2511       pC->iHdrOffset = (u32)(zHdr - zData);
2512       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2513 
2514       /* The record is corrupt if any of the following are true:
2515       ** (1) the bytes of the header extend past the declared header size
2516       ** (2) the entire header was used but not all data was used
2517       ** (3) the end of the data extends beyond the end of the record.
2518       */
2519       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2520        || (offset64 > pC->payloadSize)
2521       ){
2522         rc = SQLITE_CORRUPT_BKPT;
2523         goto op_column_error;
2524       }
2525     }
2526 
2527     /* If after trying to extract new entries from the header, nHdrParsed is
2528     ** still not up to p2, that means that the record has fewer than p2
2529     ** columns.  So the result will be either the default value or a NULL.
2530     */
2531     if( pC->nHdrParsed<=p2 ){
2532       if( pOp->p4type==P4_MEM ){
2533         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2534       }else{
2535         sqlite3VdbeMemSetNull(pDest);
2536       }
2537       goto op_column_out;
2538     }
2539   }else{
2540     t = pC->aType[p2];
2541   }
2542 
2543   /* Extract the content for the p2+1-th column.  Control can only
2544   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2545   ** all valid.
2546   */
2547   assert( p2<pC->nHdrParsed );
2548   assert( rc==SQLITE_OK );
2549   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2550   if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
2551   assert( t==pC->aType[p2] );
2552   if( pC->szRow>=aOffset[p2+1] ){
2553     /* This is the common case where the desired content fits on the original
2554     ** page - where the content is not on an overflow page */
2555     sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
2556   }else{
2557     /* This branch happens only when content is on overflow pages */
2558     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2559           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2560      || (len = sqlite3VdbeSerialTypeLen(t))==0
2561     ){
2562       /* Content is irrelevant for
2563       **    1. the typeof() function,
2564       **    2. the length(X) function if X is a blob, and
2565       **    3. if the content length is zero.
2566       ** So we might as well use bogus content rather than reading
2567       ** content from disk.  NULL will work for the value for strings
2568       ** and blobs and whatever is in the payloadSize64 variable
2569       ** will work for everything else. */
2570       sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
2571     }else{
2572       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
2573                                    pDest);
2574       if( rc!=SQLITE_OK ){
2575         goto op_column_error;
2576       }
2577       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2578       pDest->flags &= ~MEM_Ephem;
2579     }
2580   }
2581   pDest->enc = encoding;
2582 
2583 op_column_out:
2584   /* If the column value is an ephemeral string, go ahead and persist
2585   ** that string in case the cursor moves before the column value is
2586   ** used.  The following code does the equivalent of Deephemeralize()
2587   ** but does it faster. */
2588   if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
2589     fx = pDest->flags & (MEM_Str|MEM_Blob);
2590     assert( fx!=0 );
2591     zData = (const u8*)pDest->z;
2592     len = pDest->n;
2593     if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2594     memcpy(pDest->z, zData, len);
2595     pDest->z[len] = 0;
2596     pDest->z[len+1] = 0;
2597     pDest->flags = fx|MEM_Term;
2598   }
2599 op_column_error:
2600   UPDATE_MAX_BLOBSIZE(pDest);
2601   REGISTER_TRACE(pOp->p3, pDest);
2602   break;
2603 }
2604 
2605 /* Opcode: Affinity P1 P2 * P4 *
2606 ** Synopsis: affinity(r[P1@P2])
2607 **
2608 ** Apply affinities to a range of P2 registers starting with P1.
2609 **
2610 ** P4 is a string that is P2 characters long. The nth character of the
2611 ** string indicates the column affinity that should be used for the nth
2612 ** memory cell in the range.
2613 */
2614 case OP_Affinity: {
2615   const char *zAffinity;   /* The affinity to be applied */
2616   char cAff;               /* A single character of affinity */
2617 
2618   zAffinity = pOp->p4.z;
2619   assert( zAffinity!=0 );
2620   assert( zAffinity[pOp->p2]==0 );
2621   pIn1 = &aMem[pOp->p1];
2622   while( (cAff = *(zAffinity++))!=0 ){
2623     assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
2624     assert( memIsValid(pIn1) );
2625     applyAffinity(pIn1, cAff, encoding);
2626     pIn1++;
2627   }
2628   break;
2629 }
2630 
2631 /* Opcode: MakeRecord P1 P2 P3 P4 *
2632 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2633 **
2634 ** Convert P2 registers beginning with P1 into the [record format]
2635 ** use as a data record in a database table or as a key
2636 ** in an index.  The OP_Column opcode can decode the record later.
2637 **
2638 ** P4 may be a string that is P2 characters long.  The nth character of the
2639 ** string indicates the column affinity that should be used for the nth
2640 ** field of the index key.
2641 **
2642 ** The mapping from character to affinity is given by the SQLITE_AFF_
2643 ** macros defined in sqliteInt.h.
2644 **
2645 ** If P4 is NULL then all index fields have the affinity BLOB.
2646 */
2647 case OP_MakeRecord: {
2648   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2649   Mem *pRec;             /* The new record */
2650   u64 nData;             /* Number of bytes of data space */
2651   int nHdr;              /* Number of bytes of header space */
2652   i64 nByte;             /* Data space required for this record */
2653   i64 nZero;             /* Number of zero bytes at the end of the record */
2654   int nVarint;           /* Number of bytes in a varint */
2655   u32 serial_type;       /* Type field */
2656   Mem *pData0;           /* First field to be combined into the record */
2657   Mem *pLast;            /* Last field of the record */
2658   int nField;            /* Number of fields in the record */
2659   char *zAffinity;       /* The affinity string for the record */
2660   int file_format;       /* File format to use for encoding */
2661   int i;                 /* Space used in zNewRecord[] header */
2662   int j;                 /* Space used in zNewRecord[] content */
2663   u32 len;               /* Length of a field */
2664 
2665   /* Assuming the record contains N fields, the record format looks
2666   ** like this:
2667   **
2668   ** ------------------------------------------------------------------------
2669   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2670   ** ------------------------------------------------------------------------
2671   **
2672   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2673   ** and so forth.
2674   **
2675   ** Each type field is a varint representing the serial type of the
2676   ** corresponding data element (see sqlite3VdbeSerialType()). The
2677   ** hdr-size field is also a varint which is the offset from the beginning
2678   ** of the record to data0.
2679   */
2680   nData = 0;         /* Number of bytes of data space */
2681   nHdr = 0;          /* Number of bytes of header space */
2682   nZero = 0;         /* Number of zero bytes at the end of the record */
2683   nField = pOp->p1;
2684   zAffinity = pOp->p4.z;
2685   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
2686   pData0 = &aMem[nField];
2687   nField = pOp->p2;
2688   pLast = &pData0[nField-1];
2689   file_format = p->minWriteFileFormat;
2690 
2691   /* Identify the output register */
2692   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2693   pOut = &aMem[pOp->p3];
2694   memAboutToChange(p, pOut);
2695 
2696   /* Apply the requested affinity to all inputs
2697   */
2698   assert( pData0<=pLast );
2699   if( zAffinity ){
2700     pRec = pData0;
2701     do{
2702       applyAffinity(pRec++, *(zAffinity++), encoding);
2703       assert( zAffinity[0]==0 || pRec<=pLast );
2704     }while( zAffinity[0] );
2705   }
2706 
2707   /* Loop through the elements that will make up the record to figure
2708   ** out how much space is required for the new record.
2709   */
2710   pRec = pLast;
2711   do{
2712     assert( memIsValid(pRec) );
2713     pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2714     if( pRec->flags & MEM_Zero ){
2715       if( nData ){
2716         if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2717       }else{
2718         nZero += pRec->u.nZero;
2719         len -= pRec->u.nZero;
2720       }
2721     }
2722     nData += len;
2723     testcase( serial_type==127 );
2724     testcase( serial_type==128 );
2725     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2726   }while( (--pRec)>=pData0 );
2727 
2728   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2729   ** which determines the total number of bytes in the header. The varint
2730   ** value is the size of the header in bytes including the size varint
2731   ** itself. */
2732   testcase( nHdr==126 );
2733   testcase( nHdr==127 );
2734   if( nHdr<=126 ){
2735     /* The common case */
2736     nHdr += 1;
2737   }else{
2738     /* Rare case of a really large header */
2739     nVarint = sqlite3VarintLen(nHdr);
2740     nHdr += nVarint;
2741     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2742   }
2743   nByte = nHdr+nData;
2744   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2745     goto too_big;
2746   }
2747 
2748   /* Make sure the output register has a buffer large enough to store
2749   ** the new record. The output register (pOp->p3) is not allowed to
2750   ** be one of the input registers (because the following call to
2751   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2752   */
2753   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2754     goto no_mem;
2755   }
2756   zNewRecord = (u8 *)pOut->z;
2757 
2758   /* Write the record */
2759   i = putVarint32(zNewRecord, nHdr);
2760   j = nHdr;
2761   assert( pData0<=pLast );
2762   pRec = pData0;
2763   do{
2764     serial_type = pRec->uTemp;
2765     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2766     ** additional varints, one per column. */
2767     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2768     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2769     ** immediately follow the header. */
2770     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2771   }while( (++pRec)<=pLast );
2772   assert( i==nHdr );
2773   assert( j==nByte );
2774 
2775   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2776   pOut->n = (int)nByte;
2777   pOut->flags = MEM_Blob;
2778   if( nZero ){
2779     pOut->u.nZero = nZero;
2780     pOut->flags |= MEM_Zero;
2781   }
2782   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2783   REGISTER_TRACE(pOp->p3, pOut);
2784   UPDATE_MAX_BLOBSIZE(pOut);
2785   break;
2786 }
2787 
2788 /* Opcode: Count P1 P2 * * *
2789 ** Synopsis: r[P2]=count()
2790 **
2791 ** Store the number of entries (an integer value) in the table or index
2792 ** opened by cursor P1 in register P2
2793 */
2794 #ifndef SQLITE_OMIT_BTREECOUNT
2795 case OP_Count: {         /* out2 */
2796   i64 nEntry;
2797   BtCursor *pCrsr;
2798 
2799   pCrsr = p->apCsr[pOp->p1]->pCursor;
2800   assert( pCrsr );
2801   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2802   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2803   pOut = out2Prerelease(p, pOp);
2804   pOut->u.i = nEntry;
2805   break;
2806 }
2807 #endif
2808 
2809 /* Opcode: Savepoint P1 * * P4 *
2810 **
2811 ** Open, release or rollback the savepoint named by parameter P4, depending
2812 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2813 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2814 */
2815 case OP_Savepoint: {
2816   int p1;                         /* Value of P1 operand */
2817   char *zName;                    /* Name of savepoint */
2818   int nName;
2819   Savepoint *pNew;
2820   Savepoint *pSavepoint;
2821   Savepoint *pTmp;
2822   int iSavepoint;
2823   int ii;
2824 
2825   p1 = pOp->p1;
2826   zName = pOp->p4.z;
2827 
2828   /* Assert that the p1 parameter is valid. Also that if there is no open
2829   ** transaction, then there cannot be any savepoints.
2830   */
2831   assert( db->pSavepoint==0 || db->autoCommit==0 );
2832   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2833   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2834   assert( checkSavepointCount(db) );
2835   assert( p->bIsReader );
2836 
2837   if( p1==SAVEPOINT_BEGIN ){
2838     if( db->nVdbeWrite>0 ){
2839       /* A new savepoint cannot be created if there are active write
2840       ** statements (i.e. open read/write incremental blob handles).
2841       */
2842       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2843       rc = SQLITE_BUSY;
2844     }else{
2845       nName = sqlite3Strlen30(zName);
2846 
2847 #ifndef SQLITE_OMIT_VIRTUALTABLE
2848       /* This call is Ok even if this savepoint is actually a transaction
2849       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2850       ** If this is a transaction savepoint being opened, it is guaranteed
2851       ** that the db->aVTrans[] array is empty.  */
2852       assert( db->autoCommit==0 || db->nVTrans==0 );
2853       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2854                                 db->nStatement+db->nSavepoint);
2855       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2856 #endif
2857 
2858       /* Create a new savepoint structure. */
2859       pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2860       if( pNew ){
2861         pNew->zName = (char *)&pNew[1];
2862         memcpy(pNew->zName, zName, nName+1);
2863 
2864         /* If there is no open transaction, then mark this as a special
2865         ** "transaction savepoint". */
2866         if( db->autoCommit ){
2867           db->autoCommit = 0;
2868           db->isTransactionSavepoint = 1;
2869         }else{
2870           db->nSavepoint++;
2871         }
2872 
2873         /* Link the new savepoint into the database handle's list. */
2874         pNew->pNext = db->pSavepoint;
2875         db->pSavepoint = pNew;
2876         pNew->nDeferredCons = db->nDeferredCons;
2877         pNew->nDeferredImmCons = db->nDeferredImmCons;
2878       }
2879     }
2880   }else{
2881     iSavepoint = 0;
2882 
2883     /* Find the named savepoint. If there is no such savepoint, then an
2884     ** an error is returned to the user.  */
2885     for(
2886       pSavepoint = db->pSavepoint;
2887       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2888       pSavepoint = pSavepoint->pNext
2889     ){
2890       iSavepoint++;
2891     }
2892     if( !pSavepoint ){
2893       sqlite3VdbeError(p, "no such savepoint: %s", zName);
2894       rc = SQLITE_ERROR;
2895     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2896       /* It is not possible to release (commit) a savepoint if there are
2897       ** active write statements.
2898       */
2899       sqlite3VdbeError(p, "cannot release savepoint - "
2900                           "SQL statements in progress");
2901       rc = SQLITE_BUSY;
2902     }else{
2903 
2904       /* Determine whether or not this is a transaction savepoint. If so,
2905       ** and this is a RELEASE command, then the current transaction
2906       ** is committed.
2907       */
2908       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2909       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2910         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2911           goto vdbe_return;
2912         }
2913         db->autoCommit = 1;
2914         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2915           p->pc = (int)(pOp - aOp);
2916           db->autoCommit = 0;
2917           p->rc = rc = SQLITE_BUSY;
2918           goto vdbe_return;
2919         }
2920         db->isTransactionSavepoint = 0;
2921         rc = p->rc;
2922       }else{
2923         int isSchemaChange;
2924         iSavepoint = db->nSavepoint - iSavepoint - 1;
2925         if( p1==SAVEPOINT_ROLLBACK ){
2926           isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
2927           for(ii=0; ii<db->nDb; ii++){
2928             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2929                                        SQLITE_ABORT_ROLLBACK,
2930                                        isSchemaChange==0);
2931             if( rc!=SQLITE_OK ) goto abort_due_to_error;
2932           }
2933         }else{
2934           isSchemaChange = 0;
2935         }
2936         for(ii=0; ii<db->nDb; ii++){
2937           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2938           if( rc!=SQLITE_OK ){
2939             goto abort_due_to_error;
2940           }
2941         }
2942         if( isSchemaChange ){
2943           sqlite3ExpirePreparedStatements(db);
2944           sqlite3ResetAllSchemasOfConnection(db);
2945           db->flags = (db->flags | SQLITE_InternChanges);
2946         }
2947       }
2948 
2949       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2950       ** savepoints nested inside of the savepoint being operated on. */
2951       while( db->pSavepoint!=pSavepoint ){
2952         pTmp = db->pSavepoint;
2953         db->pSavepoint = pTmp->pNext;
2954         sqlite3DbFree(db, pTmp);
2955         db->nSavepoint--;
2956       }
2957 
2958       /* If it is a RELEASE, then destroy the savepoint being operated on
2959       ** too. If it is a ROLLBACK TO, then set the number of deferred
2960       ** constraint violations present in the database to the value stored
2961       ** when the savepoint was created.  */
2962       if( p1==SAVEPOINT_RELEASE ){
2963         assert( pSavepoint==db->pSavepoint );
2964         db->pSavepoint = pSavepoint->pNext;
2965         sqlite3DbFree(db, pSavepoint);
2966         if( !isTransaction ){
2967           db->nSavepoint--;
2968         }
2969       }else{
2970         db->nDeferredCons = pSavepoint->nDeferredCons;
2971         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
2972       }
2973 
2974       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
2975         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2976         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2977       }
2978     }
2979   }
2980 
2981   break;
2982 }
2983 
2984 /* Opcode: AutoCommit P1 P2 * * *
2985 **
2986 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2987 ** back any currently active btree transactions. If there are any active
2988 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
2989 ** there are active writing VMs or active VMs that use shared cache.
2990 **
2991 ** This instruction causes the VM to halt.
2992 */
2993 case OP_AutoCommit: {
2994   int desiredAutoCommit;
2995   int iRollback;
2996   int turnOnAC;
2997 
2998   desiredAutoCommit = pOp->p1;
2999   iRollback = pOp->p2;
3000   turnOnAC = desiredAutoCommit && !db->autoCommit;
3001   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3002   assert( desiredAutoCommit==1 || iRollback==0 );
3003   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3004   assert( p->bIsReader );
3005 
3006   if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
3007     /* If this instruction implements a COMMIT and other VMs are writing
3008     ** return an error indicating that the other VMs must complete first.
3009     */
3010     sqlite3VdbeError(p, "cannot commit transaction - "
3011                         "SQL statements in progress");
3012     rc = SQLITE_BUSY;
3013   }else if( desiredAutoCommit!=db->autoCommit ){
3014     if( iRollback ){
3015       assert( desiredAutoCommit==1 );
3016       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3017       db->autoCommit = 1;
3018     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3019       goto vdbe_return;
3020     }else{
3021       db->autoCommit = (u8)desiredAutoCommit;
3022     }
3023     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3024       p->pc = (int)(pOp - aOp);
3025       db->autoCommit = (u8)(1-desiredAutoCommit);
3026       p->rc = rc = SQLITE_BUSY;
3027       goto vdbe_return;
3028     }
3029     assert( db->nStatement==0 );
3030     sqlite3CloseSavepoints(db);
3031     if( p->rc==SQLITE_OK ){
3032       rc = SQLITE_DONE;
3033     }else{
3034       rc = SQLITE_ERROR;
3035     }
3036     goto vdbe_return;
3037   }else{
3038     sqlite3VdbeError(p,
3039         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3040         (iRollback)?"cannot rollback - no transaction is active":
3041                    "cannot commit - no transaction is active"));
3042 
3043     rc = SQLITE_ERROR;
3044   }
3045   break;
3046 }
3047 
3048 /* Opcode: Transaction P1 P2 P3 P4 P5
3049 **
3050 ** Begin a transaction on database P1 if a transaction is not already
3051 ** active.
3052 ** If P2 is non-zero, then a write-transaction is started, or if a
3053 ** read-transaction is already active, it is upgraded to a write-transaction.
3054 ** If P2 is zero, then a read-transaction is started.
3055 **
3056 ** P1 is the index of the database file on which the transaction is
3057 ** started.  Index 0 is the main database file and index 1 is the
3058 ** file used for temporary tables.  Indices of 2 or more are used for
3059 ** attached databases.
3060 **
3061 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3062 ** true (this flag is set if the Vdbe may modify more than one row and may
3063 ** throw an ABORT exception), a statement transaction may also be opened.
3064 ** More specifically, a statement transaction is opened iff the database
3065 ** connection is currently not in autocommit mode, or if there are other
3066 ** active statements. A statement transaction allows the changes made by this
3067 ** VDBE to be rolled back after an error without having to roll back the
3068 ** entire transaction. If no error is encountered, the statement transaction
3069 ** will automatically commit when the VDBE halts.
3070 **
3071 ** If P5!=0 then this opcode also checks the schema cookie against P3
3072 ** and the schema generation counter against P4.
3073 ** The cookie changes its value whenever the database schema changes.
3074 ** This operation is used to detect when that the cookie has changed
3075 ** and that the current process needs to reread the schema.  If the schema
3076 ** cookie in P3 differs from the schema cookie in the database header or
3077 ** if the schema generation counter in P4 differs from the current
3078 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3079 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3080 ** statement and rerun it from the beginning.
3081 */
3082 case OP_Transaction: {
3083   Btree *pBt;
3084   int iMeta;
3085   int iGen;
3086 
3087   assert( p->bIsReader );
3088   assert( p->readOnly==0 || pOp->p2==0 );
3089   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3090   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3091   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3092     rc = SQLITE_READONLY;
3093     goto abort_due_to_error;
3094   }
3095   pBt = db->aDb[pOp->p1].pBt;
3096 
3097   if( pBt ){
3098     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3099     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3100     testcase( rc==SQLITE_BUSY_RECOVERY );
3101     if( (rc&0xff)==SQLITE_BUSY ){
3102       p->pc = (int)(pOp - aOp);
3103       p->rc = rc;
3104       goto vdbe_return;
3105     }
3106     if( rc!=SQLITE_OK ){
3107       goto abort_due_to_error;
3108     }
3109 
3110     if( pOp->p2 && p->usesStmtJournal
3111      && (db->autoCommit==0 || db->nVdbeRead>1)
3112     ){
3113       assert( sqlite3BtreeIsInTrans(pBt) );
3114       if( p->iStatement==0 ){
3115         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3116         db->nStatement++;
3117         p->iStatement = db->nSavepoint + db->nStatement;
3118       }
3119 
3120       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3121       if( rc==SQLITE_OK ){
3122         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3123       }
3124 
3125       /* Store the current value of the database handles deferred constraint
3126       ** counter. If the statement transaction needs to be rolled back,
3127       ** the value of this counter needs to be restored too.  */
3128       p->nStmtDefCons = db->nDeferredCons;
3129       p->nStmtDefImmCons = db->nDeferredImmCons;
3130     }
3131 
3132     /* Gather the schema version number for checking:
3133     ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3134     ** each time a query is executed to ensure that the internal cache of the
3135     ** schema used when compiling the SQL query matches the schema of the
3136     ** database against which the compiled query is actually executed.
3137     */
3138     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3139     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3140   }else{
3141     iGen = iMeta = 0;
3142   }
3143   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3144   if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3145     sqlite3DbFree(db, p->zErrMsg);
3146     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3147     /* If the schema-cookie from the database file matches the cookie
3148     ** stored with the in-memory representation of the schema, do
3149     ** not reload the schema from the database file.
3150     **
3151     ** If virtual-tables are in use, this is not just an optimization.
3152     ** Often, v-tables store their data in other SQLite tables, which
3153     ** are queried from within xNext() and other v-table methods using
3154     ** prepared queries. If such a query is out-of-date, we do not want to
3155     ** discard the database schema, as the user code implementing the
3156     ** v-table would have to be ready for the sqlite3_vtab structure itself
3157     ** to be invalidated whenever sqlite3_step() is called from within
3158     ** a v-table method.
3159     */
3160     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3161       sqlite3ResetOneSchema(db, pOp->p1);
3162     }
3163     p->expired = 1;
3164     rc = SQLITE_SCHEMA;
3165   }
3166   break;
3167 }
3168 
3169 /* Opcode: ReadCookie P1 P2 P3 * *
3170 **
3171 ** Read cookie number P3 from database P1 and write it into register P2.
3172 ** P3==1 is the schema version.  P3==2 is the database format.
3173 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3174 ** the main database file and P1==1 is the database file used to store
3175 ** temporary tables.
3176 **
3177 ** There must be a read-lock on the database (either a transaction
3178 ** must be started or there must be an open cursor) before
3179 ** executing this instruction.
3180 */
3181 case OP_ReadCookie: {               /* out2 */
3182   int iMeta;
3183   int iDb;
3184   int iCookie;
3185 
3186   assert( p->bIsReader );
3187   iDb = pOp->p1;
3188   iCookie = pOp->p3;
3189   assert( pOp->p3<SQLITE_N_BTREE_META );
3190   assert( iDb>=0 && iDb<db->nDb );
3191   assert( db->aDb[iDb].pBt!=0 );
3192   assert( DbMaskTest(p->btreeMask, iDb) );
3193 
3194   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3195   pOut = out2Prerelease(p, pOp);
3196   pOut->u.i = iMeta;
3197   break;
3198 }
3199 
3200 /* Opcode: SetCookie P1 P2 P3 * *
3201 **
3202 ** Write the content of register P3 (interpreted as an integer)
3203 ** into cookie number P2 of database P1.  P2==1 is the schema version.
3204 ** P2==2 is the database format. P2==3 is the recommended pager cache
3205 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3206 ** database file used to store temporary tables.
3207 **
3208 ** A transaction must be started before executing this opcode.
3209 */
3210 case OP_SetCookie: {       /* in3 */
3211   Db *pDb;
3212   assert( pOp->p2<SQLITE_N_BTREE_META );
3213   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3214   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3215   assert( p->readOnly==0 );
3216   pDb = &db->aDb[pOp->p1];
3217   assert( pDb->pBt!=0 );
3218   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3219   pIn3 = &aMem[pOp->p3];
3220   sqlite3VdbeMemIntegerify(pIn3);
3221   /* See note about index shifting on OP_ReadCookie */
3222   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3223   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3224     /* When the schema cookie changes, record the new cookie internally */
3225     pDb->pSchema->schema_cookie = (int)pIn3->u.i;
3226     db->flags |= SQLITE_InternChanges;
3227   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3228     /* Record changes in the file format */
3229     pDb->pSchema->file_format = (u8)pIn3->u.i;
3230   }
3231   if( pOp->p1==1 ){
3232     /* Invalidate all prepared statements whenever the TEMP database
3233     ** schema is changed.  Ticket #1644 */
3234     sqlite3ExpirePreparedStatements(db);
3235     p->expired = 0;
3236   }
3237   break;
3238 }
3239 
3240 /* Opcode: OpenRead P1 P2 P3 P4 P5
3241 ** Synopsis: root=P2 iDb=P3
3242 **
3243 ** Open a read-only cursor for the database table whose root page is
3244 ** P2 in a database file.  The database file is determined by P3.
3245 ** P3==0 means the main database, P3==1 means the database used for
3246 ** temporary tables, and P3>1 means used the corresponding attached
3247 ** database.  Give the new cursor an identifier of P1.  The P1
3248 ** values need not be contiguous but all P1 values should be small integers.
3249 ** It is an error for P1 to be negative.
3250 **
3251 ** If P5!=0 then use the content of register P2 as the root page, not
3252 ** the value of P2 itself.
3253 **
3254 ** There will be a read lock on the database whenever there is an
3255 ** open cursor.  If the database was unlocked prior to this instruction
3256 ** then a read lock is acquired as part of this instruction.  A read
3257 ** lock allows other processes to read the database but prohibits
3258 ** any other process from modifying the database.  The read lock is
3259 ** released when all cursors are closed.  If this instruction attempts
3260 ** to get a read lock but fails, the script terminates with an
3261 ** SQLITE_BUSY error code.
3262 **
3263 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3264 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3265 ** structure, then said structure defines the content and collating
3266 ** sequence of the index being opened. Otherwise, if P4 is an integer
3267 ** value, it is set to the number of columns in the table.
3268 **
3269 ** See also: OpenWrite, ReopenIdx
3270 */
3271 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3272 ** Synopsis: root=P2 iDb=P3
3273 **
3274 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3275 ** checks to see if the cursor on P1 is already open with a root page
3276 ** number of P2 and if it is this opcode becomes a no-op.  In other words,
3277 ** if the cursor is already open, do not reopen it.
3278 **
3279 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3280 ** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
3281 ** every other ReopenIdx or OpenRead for the same cursor number.
3282 **
3283 ** See the OpenRead opcode documentation for additional information.
3284 */
3285 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3286 ** Synopsis: root=P2 iDb=P3
3287 **
3288 ** Open a read/write cursor named P1 on the table or index whose root
3289 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3290 ** root page.
3291 **
3292 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3293 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3294 ** structure, then said structure defines the content and collating
3295 ** sequence of the index being opened. Otherwise, if P4 is an integer
3296 ** value, it is set to the number of columns in the table, or to the
3297 ** largest index of any column of the table that is actually used.
3298 **
3299 ** This instruction works just like OpenRead except that it opens the cursor
3300 ** in read/write mode.  For a given table, there can be one or more read-only
3301 ** cursors or a single read/write cursor but not both.
3302 **
3303 ** See also OpenRead.
3304 */
3305 case OP_ReopenIdx: {
3306   int nField;
3307   KeyInfo *pKeyInfo;
3308   int p2;
3309   int iDb;
3310   int wrFlag;
3311   Btree *pX;
3312   VdbeCursor *pCur;
3313   Db *pDb;
3314 
3315   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3316   assert( pOp->p4type==P4_KEYINFO );
3317   pCur = p->apCsr[pOp->p1];
3318   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3319     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3320     goto open_cursor_set_hints;
3321   }
3322   /* If the cursor is not currently open or is open on a different
3323   ** index, then fall through into OP_OpenRead to force a reopen */
3324 case OP_OpenRead:
3325 case OP_OpenWrite:
3326 
3327   assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR|OPFLAG_SEEKEQ))==pOp->p5 );
3328   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3329   assert( p->bIsReader );
3330   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3331           || p->readOnly==0 );
3332 
3333   if( p->expired ){
3334     rc = SQLITE_ABORT_ROLLBACK;
3335     break;
3336   }
3337 
3338   nField = 0;
3339   pKeyInfo = 0;
3340   p2 = pOp->p2;
3341   iDb = pOp->p3;
3342   assert( iDb>=0 && iDb<db->nDb );
3343   assert( DbMaskTest(p->btreeMask, iDb) );
3344   pDb = &db->aDb[iDb];
3345   pX = pDb->pBt;
3346   assert( pX!=0 );
3347   if( pOp->opcode==OP_OpenWrite ){
3348     wrFlag = 1;
3349     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3350     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3351       p->minWriteFileFormat = pDb->pSchema->file_format;
3352     }
3353   }else{
3354     wrFlag = 0;
3355   }
3356   if( pOp->p5 & OPFLAG_P2ISREG ){
3357     assert( p2>0 );
3358     assert( p2<=(p->nMem-p->nCursor) );
3359     pIn2 = &aMem[p2];
3360     assert( memIsValid(pIn2) );
3361     assert( (pIn2->flags & MEM_Int)!=0 );
3362     sqlite3VdbeMemIntegerify(pIn2);
3363     p2 = (int)pIn2->u.i;
3364     /* The p2 value always comes from a prior OP_CreateTable opcode and
3365     ** that opcode will always set the p2 value to 2 or more or else fail.
3366     ** If there were a failure, the prepared statement would have halted
3367     ** before reaching this instruction. */
3368     if( NEVER(p2<2) ) {
3369       rc = SQLITE_CORRUPT_BKPT;
3370       goto abort_due_to_error;
3371     }
3372   }
3373   if( pOp->p4type==P4_KEYINFO ){
3374     pKeyInfo = pOp->p4.pKeyInfo;
3375     assert( pKeyInfo->enc==ENC(db) );
3376     assert( pKeyInfo->db==db );
3377     nField = pKeyInfo->nField+pKeyInfo->nXField;
3378   }else if( pOp->p4type==P4_INT32 ){
3379     nField = pOp->p4.i;
3380   }
3381   assert( pOp->p1>=0 );
3382   assert( nField>=0 );
3383   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3384   pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3385   if( pCur==0 ) goto no_mem;
3386   pCur->nullRow = 1;
3387   pCur->isOrdered = 1;
3388   pCur->pgnoRoot = p2;
3389   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3390   pCur->pKeyInfo = pKeyInfo;
3391   /* Set the VdbeCursor.isTable variable. Previous versions of
3392   ** SQLite used to check if the root-page flags were sane at this point
3393   ** and report database corruption if they were not, but this check has
3394   ** since moved into the btree layer.  */
3395   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3396 
3397 open_cursor_set_hints:
3398   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3399   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3400   sqlite3BtreeCursorHints(pCur->pCursor,
3401                           (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3402   break;
3403 }
3404 
3405 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3406 ** Synopsis: nColumn=P2
3407 **
3408 ** Open a new cursor P1 to a transient table.
3409 ** The cursor is always opened read/write even if
3410 ** the main database is read-only.  The ephemeral
3411 ** table is deleted automatically when the cursor is closed.
3412 **
3413 ** P2 is the number of columns in the ephemeral table.
3414 ** The cursor points to a BTree table if P4==0 and to a BTree index
3415 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3416 ** that defines the format of keys in the index.
3417 **
3418 ** The P5 parameter can be a mask of the BTREE_* flags defined
3419 ** in btree.h.  These flags control aspects of the operation of
3420 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3421 ** added automatically.
3422 */
3423 /* Opcode: OpenAutoindex P1 P2 * P4 *
3424 ** Synopsis: nColumn=P2
3425 **
3426 ** This opcode works the same as OP_OpenEphemeral.  It has a
3427 ** different name to distinguish its use.  Tables created using
3428 ** by this opcode will be used for automatically created transient
3429 ** indices in joins.
3430 */
3431 case OP_OpenAutoindex:
3432 case OP_OpenEphemeral: {
3433   VdbeCursor *pCx;
3434   KeyInfo *pKeyInfo;
3435 
3436   static const int vfsFlags =
3437       SQLITE_OPEN_READWRITE |
3438       SQLITE_OPEN_CREATE |
3439       SQLITE_OPEN_EXCLUSIVE |
3440       SQLITE_OPEN_DELETEONCLOSE |
3441       SQLITE_OPEN_TRANSIENT_DB;
3442   assert( pOp->p1>=0 );
3443   assert( pOp->p2>=0 );
3444   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3445   if( pCx==0 ) goto no_mem;
3446   pCx->nullRow = 1;
3447   pCx->isEphemeral = 1;
3448   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3449                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3450   if( rc==SQLITE_OK ){
3451     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3452   }
3453   if( rc==SQLITE_OK ){
3454     /* If a transient index is required, create it by calling
3455     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3456     ** opening it. If a transient table is required, just use the
3457     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3458     */
3459     if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3460       int pgno;
3461       assert( pOp->p4type==P4_KEYINFO );
3462       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3463       if( rc==SQLITE_OK ){
3464         assert( pgno==MASTER_ROOT+1 );
3465         assert( pKeyInfo->db==db );
3466         assert( pKeyInfo->enc==ENC(db) );
3467         pCx->pKeyInfo = pKeyInfo;
3468         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
3469       }
3470       pCx->isTable = 0;
3471     }else{
3472       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3473       pCx->isTable = 1;
3474     }
3475   }
3476   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3477   break;
3478 }
3479 
3480 /* Opcode: SorterOpen P1 P2 P3 P4 *
3481 **
3482 ** This opcode works like OP_OpenEphemeral except that it opens
3483 ** a transient index that is specifically designed to sort large
3484 ** tables using an external merge-sort algorithm.
3485 **
3486 ** If argument P3 is non-zero, then it indicates that the sorter may
3487 ** assume that a stable sort considering the first P3 fields of each
3488 ** key is sufficient to produce the required results.
3489 */
3490 case OP_SorterOpen: {
3491   VdbeCursor *pCx;
3492 
3493   assert( pOp->p1>=0 );
3494   assert( pOp->p2>=0 );
3495   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3496   if( pCx==0 ) goto no_mem;
3497   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3498   assert( pCx->pKeyInfo->db==db );
3499   assert( pCx->pKeyInfo->enc==ENC(db) );
3500   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3501   break;
3502 }
3503 
3504 /* Opcode: SequenceTest P1 P2 * * *
3505 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3506 **
3507 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3508 ** to P2. Regardless of whether or not the jump is taken, increment the
3509 ** the sequence value.
3510 */
3511 case OP_SequenceTest: {
3512   VdbeCursor *pC;
3513   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3514   pC = p->apCsr[pOp->p1];
3515   assert( pC->pSorter );
3516   if( (pC->seqCount++)==0 ){
3517     goto jump_to_p2;
3518   }
3519   break;
3520 }
3521 
3522 /* Opcode: OpenPseudo P1 P2 P3 * *
3523 ** Synopsis: P3 columns in r[P2]
3524 **
3525 ** Open a new cursor that points to a fake table that contains a single
3526 ** row of data.  The content of that one row is the content of memory
3527 ** register P2.  In other words, cursor P1 becomes an alias for the
3528 ** MEM_Blob content contained in register P2.
3529 **
3530 ** A pseudo-table created by this opcode is used to hold a single
3531 ** row output from the sorter so that the row can be decomposed into
3532 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3533 ** is the only cursor opcode that works with a pseudo-table.
3534 **
3535 ** P3 is the number of fields in the records that will be stored by
3536 ** the pseudo-table.
3537 */
3538 case OP_OpenPseudo: {
3539   VdbeCursor *pCx;
3540 
3541   assert( pOp->p1>=0 );
3542   assert( pOp->p3>=0 );
3543   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3544   if( pCx==0 ) goto no_mem;
3545   pCx->nullRow = 1;
3546   pCx->pseudoTableReg = pOp->p2;
3547   pCx->isTable = 1;
3548   assert( pOp->p5==0 );
3549   break;
3550 }
3551 
3552 /* Opcode: Close P1 * * * *
3553 **
3554 ** Close a cursor previously opened as P1.  If P1 is not
3555 ** currently open, this instruction is a no-op.
3556 */
3557 case OP_Close: {
3558   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3559   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3560   p->apCsr[pOp->p1] = 0;
3561   break;
3562 }
3563 
3564 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3565 /* Opcode: ColumnsUsed P1 * * P4 *
3566 **
3567 ** This opcode (which only exists if SQLite was compiled with
3568 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3569 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3570 ** (P4_INT64) in which the first 63 bits are one for each of the
3571 ** first 63 columns of the table or index that are actually used
3572 ** by the cursor.  The high-order bit is set if any column after
3573 ** the 64th is used.
3574 */
3575 case OP_ColumnsUsed: {
3576   VdbeCursor *pC;
3577   pC = p->apCsr[pOp->p1];
3578   assert( pC->pCursor );
3579   pC->maskUsed = *(u64*)pOp->p4.pI64;
3580   break;
3581 }
3582 #endif
3583 
3584 /* Opcode: SeekGE P1 P2 P3 P4 *
3585 ** Synopsis: key=r[P3@P4]
3586 **
3587 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3588 ** use the value in register P3 as the key.  If cursor P1 refers
3589 ** to an SQL index, then P3 is the first in an array of P4 registers
3590 ** that are used as an unpacked index key.
3591 **
3592 ** Reposition cursor P1 so that  it points to the smallest entry that
3593 ** is greater than or equal to the key value. If there are no records
3594 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3595 **
3596 ** This opcode leaves the cursor configured to move in forward order,
3597 ** from the beginning toward the end.  In other words, the cursor is
3598 ** configured to use Next, not Prev.
3599 **
3600 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3601 */
3602 /* Opcode: SeekGT P1 P2 P3 P4 *
3603 ** Synopsis: key=r[P3@P4]
3604 **
3605 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3606 ** use the value in register P3 as a key. If cursor P1 refers
3607 ** to an SQL index, then P3 is the first in an array of P4 registers
3608 ** that are used as an unpacked index key.
3609 **
3610 ** Reposition cursor P1 so that  it points to the smallest entry that
3611 ** is greater than the key value. If there are no records greater than
3612 ** the key and P2 is not zero, then jump to P2.
3613 **
3614 ** This opcode leaves the cursor configured to move in forward order,
3615 ** from the beginning toward the end.  In other words, the cursor is
3616 ** configured to use Next, not Prev.
3617 **
3618 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3619 */
3620 /* Opcode: SeekLT P1 P2 P3 P4 *
3621 ** Synopsis: key=r[P3@P4]
3622 **
3623 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3624 ** use the value in register P3 as a key. If cursor P1 refers
3625 ** to an SQL index, then P3 is the first in an array of P4 registers
3626 ** that are used as an unpacked index key.
3627 **
3628 ** Reposition cursor P1 so that  it points to the largest entry that
3629 ** is less than the key value. If there are no records less than
3630 ** the key and P2 is not zero, then jump to P2.
3631 **
3632 ** This opcode leaves the cursor configured to move in reverse order,
3633 ** from the end toward the beginning.  In other words, the cursor is
3634 ** configured to use Prev, not Next.
3635 **
3636 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3637 */
3638 /* Opcode: SeekLE P1 P2 P3 P4 *
3639 ** Synopsis: key=r[P3@P4]
3640 **
3641 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3642 ** use the value in register P3 as a key. If cursor P1 refers
3643 ** to an SQL index, then P3 is the first in an array of P4 registers
3644 ** that are used as an unpacked index key.
3645 **
3646 ** Reposition cursor P1 so that it points to the largest entry that
3647 ** is less than or equal to the key value. If there are no records
3648 ** less than or equal to the key and P2 is not zero, then jump to P2.
3649 **
3650 ** This opcode leaves the cursor configured to move in reverse order,
3651 ** from the end toward the beginning.  In other words, the cursor is
3652 ** configured to use Prev, not Next.
3653 **
3654 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3655 */
3656 case OP_SeekLT:         /* jump, in3 */
3657 case OP_SeekLE:         /* jump, in3 */
3658 case OP_SeekGE:         /* jump, in3 */
3659 case OP_SeekGT: {       /* jump, in3 */
3660   int res;
3661   int oc;
3662   VdbeCursor *pC;
3663   UnpackedRecord r;
3664   int nField;
3665   i64 iKey;      /* The rowid we are to seek to */
3666 
3667   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3668   assert( pOp->p2!=0 );
3669   pC = p->apCsr[pOp->p1];
3670   assert( pC!=0 );
3671   assert( pC->pseudoTableReg==0 );
3672   assert( OP_SeekLE == OP_SeekLT+1 );
3673   assert( OP_SeekGE == OP_SeekLT+2 );
3674   assert( OP_SeekGT == OP_SeekLT+3 );
3675   assert( pC->isOrdered );
3676   assert( pC->pCursor!=0 );
3677   oc = pOp->opcode;
3678   pC->nullRow = 0;
3679 #ifdef SQLITE_DEBUG
3680   pC->seekOp = pOp->opcode;
3681 #endif
3682 
3683   /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3684   ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3685   ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3686   */
3687 #ifdef SQLITE_DEBUG
3688   if( sqlite3BtreeCursorHasHint(pC->pCursor, BTREE_SEEK_EQ) ){
3689     assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3690     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3691     assert( pOp[1].p1==pOp[0].p1 );
3692     assert( pOp[1].p2==pOp[0].p2 );
3693     assert( pOp[1].p3==pOp[0].p3 );
3694     assert( pOp[1].p4.i==pOp[0].p4.i );
3695   }
3696 #endif
3697 
3698   if( pC->isTable ){
3699     /* The input value in P3 might be of any type: integer, real, string,
3700     ** blob, or NULL.  But it needs to be an integer before we can do
3701     ** the seek, so convert it. */
3702     pIn3 = &aMem[pOp->p3];
3703     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3704       applyNumericAffinity(pIn3, 0);
3705     }
3706     iKey = sqlite3VdbeIntValue(pIn3);
3707 
3708     /* If the P3 value could not be converted into an integer without
3709     ** loss of information, then special processing is required... */
3710     if( (pIn3->flags & MEM_Int)==0 ){
3711       if( (pIn3->flags & MEM_Real)==0 ){
3712         /* If the P3 value cannot be converted into any kind of a number,
3713         ** then the seek is not possible, so jump to P2 */
3714         VdbeBranchTaken(1,2); goto jump_to_p2;
3715         break;
3716       }
3717 
3718       /* If the approximation iKey is larger than the actual real search
3719       ** term, substitute >= for > and < for <=. e.g. if the search term
3720       ** is 4.9 and the integer approximation 5:
3721       **
3722       **        (x >  4.9)    ->     (x >= 5)
3723       **        (x <= 4.9)    ->     (x <  5)
3724       */
3725       if( pIn3->u.r<(double)iKey ){
3726         assert( OP_SeekGE==(OP_SeekGT-1) );
3727         assert( OP_SeekLT==(OP_SeekLE-1) );
3728         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3729         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3730       }
3731 
3732       /* If the approximation iKey is smaller than the actual real search
3733       ** term, substitute <= for < and > for >=.  */
3734       else if( pIn3->u.r>(double)iKey ){
3735         assert( OP_SeekLE==(OP_SeekLT+1) );
3736         assert( OP_SeekGT==(OP_SeekGE+1) );
3737         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3738         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3739       }
3740     }
3741     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3742     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3743     if( rc!=SQLITE_OK ){
3744       goto abort_due_to_error;
3745     }
3746   }else{
3747     nField = pOp->p4.i;
3748     assert( pOp->p4type==P4_INT32 );
3749     assert( nField>0 );
3750     r.pKeyInfo = pC->pKeyInfo;
3751     r.nField = (u16)nField;
3752 
3753     /* The next line of code computes as follows, only faster:
3754     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3755     **     r.default_rc = -1;
3756     **   }else{
3757     **     r.default_rc = +1;
3758     **   }
3759     */
3760     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3761     assert( oc!=OP_SeekGT || r.default_rc==-1 );
3762     assert( oc!=OP_SeekLE || r.default_rc==-1 );
3763     assert( oc!=OP_SeekGE || r.default_rc==+1 );
3764     assert( oc!=OP_SeekLT || r.default_rc==+1 );
3765 
3766     r.aMem = &aMem[pOp->p3];
3767 #ifdef SQLITE_DEBUG
3768     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3769 #endif
3770     ExpandBlob(r.aMem);
3771     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3772     if( rc!=SQLITE_OK ){
3773       goto abort_due_to_error;
3774     }
3775   }
3776   pC->deferredMoveto = 0;
3777   pC->cacheStatus = CACHE_STALE;
3778 #ifdef SQLITE_TEST
3779   sqlite3_search_count++;
3780 #endif
3781   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
3782     if( res<0 || (res==0 && oc==OP_SeekGT) ){
3783       res = 0;
3784       rc = sqlite3BtreeNext(pC->pCursor, &res);
3785       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3786     }else{
3787       res = 0;
3788     }
3789   }else{
3790     assert( oc==OP_SeekLT || oc==OP_SeekLE );
3791     if( res>0 || (res==0 && oc==OP_SeekLT) ){
3792       res = 0;
3793       rc = sqlite3BtreePrevious(pC->pCursor, &res);
3794       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3795     }else{
3796       /* res might be negative because the table is empty.  Check to
3797       ** see if this is the case.
3798       */
3799       res = sqlite3BtreeEof(pC->pCursor);
3800     }
3801   }
3802   assert( pOp->p2>0 );
3803   VdbeBranchTaken(res!=0,2);
3804   if( res ){
3805     goto jump_to_p2;
3806   }
3807   break;
3808 }
3809 
3810 /* Opcode: Seek P1 P2 * * *
3811 ** Synopsis:  intkey=r[P2]
3812 **
3813 ** P1 is an open table cursor and P2 is a rowid integer.  Arrange
3814 ** for P1 to move so that it points to the rowid given by P2.
3815 **
3816 ** This is actually a deferred seek.  Nothing actually happens until
3817 ** the cursor is used to read a record.  That way, if no reads
3818 ** occur, no unnecessary I/O happens.
3819 */
3820 case OP_Seek: {    /* in2 */
3821   VdbeCursor *pC;
3822 
3823   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3824   pC = p->apCsr[pOp->p1];
3825   assert( pC!=0 );
3826   assert( pC->pCursor!=0 );
3827   assert( pC->isTable );
3828   pC->nullRow = 0;
3829   pIn2 = &aMem[pOp->p2];
3830   pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3831   pC->deferredMoveto = 1;
3832   break;
3833 }
3834 
3835 
3836 /* Opcode: Found P1 P2 P3 P4 *
3837 ** Synopsis: key=r[P3@P4]
3838 **
3839 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3840 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3841 ** record.
3842 **
3843 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3844 ** is a prefix of any entry in P1 then a jump is made to P2 and
3845 ** P1 is left pointing at the matching entry.
3846 **
3847 ** This operation leaves the cursor in a state where it can be
3848 ** advanced in the forward direction.  The Next instruction will work,
3849 ** but not the Prev instruction.
3850 **
3851 ** See also: NotFound, NoConflict, NotExists. SeekGe
3852 */
3853 /* Opcode: NotFound P1 P2 P3 P4 *
3854 ** Synopsis: key=r[P3@P4]
3855 **
3856 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3857 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3858 ** record.
3859 **
3860 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3861 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3862 ** does contain an entry whose prefix matches the P3/P4 record then control
3863 ** falls through to the next instruction and P1 is left pointing at the
3864 ** matching entry.
3865 **
3866 ** This operation leaves the cursor in a state where it cannot be
3867 ** advanced in either direction.  In other words, the Next and Prev
3868 ** opcodes do not work after this operation.
3869 **
3870 ** See also: Found, NotExists, NoConflict
3871 */
3872 /* Opcode: NoConflict P1 P2 P3 P4 *
3873 ** Synopsis: key=r[P3@P4]
3874 **
3875 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3876 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3877 ** record.
3878 **
3879 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3880 ** contains any NULL value, jump immediately to P2.  If all terms of the
3881 ** record are not-NULL then a check is done to determine if any row in the
3882 ** P1 index btree has a matching key prefix.  If there are no matches, jump
3883 ** immediately to P2.  If there is a match, fall through and leave the P1
3884 ** cursor pointing to the matching row.
3885 **
3886 ** This opcode is similar to OP_NotFound with the exceptions that the
3887 ** branch is always taken if any part of the search key input is NULL.
3888 **
3889 ** This operation leaves the cursor in a state where it cannot be
3890 ** advanced in either direction.  In other words, the Next and Prev
3891 ** opcodes do not work after this operation.
3892 **
3893 ** See also: NotFound, Found, NotExists
3894 */
3895 case OP_NoConflict:     /* jump, in3 */
3896 case OP_NotFound:       /* jump, in3 */
3897 case OP_Found: {        /* jump, in3 */
3898   int alreadyExists;
3899   int takeJump;
3900   int ii;
3901   VdbeCursor *pC;
3902   int res;
3903   char *pFree;
3904   UnpackedRecord *pIdxKey;
3905   UnpackedRecord r;
3906   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3907 
3908 #ifdef SQLITE_TEST
3909   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3910 #endif
3911 
3912   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3913   assert( pOp->p4type==P4_INT32 );
3914   pC = p->apCsr[pOp->p1];
3915   assert( pC!=0 );
3916 #ifdef SQLITE_DEBUG
3917   pC->seekOp = pOp->opcode;
3918 #endif
3919   pIn3 = &aMem[pOp->p3];
3920   assert( pC->pCursor!=0 );
3921   assert( pC->isTable==0 );
3922   pFree = 0;
3923   if( pOp->p4.i>0 ){
3924     r.pKeyInfo = pC->pKeyInfo;
3925     r.nField = (u16)pOp->p4.i;
3926     r.aMem = pIn3;
3927     for(ii=0; ii<r.nField; ii++){
3928       assert( memIsValid(&r.aMem[ii]) );
3929       ExpandBlob(&r.aMem[ii]);
3930 #ifdef SQLITE_DEBUG
3931       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
3932 #endif
3933     }
3934     pIdxKey = &r;
3935   }else{
3936     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3937         pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3938     );
3939     if( pIdxKey==0 ) goto no_mem;
3940     assert( pIn3->flags & MEM_Blob );
3941     ExpandBlob(pIn3);
3942     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3943   }
3944   pIdxKey->default_rc = 0;
3945   takeJump = 0;
3946   if( pOp->opcode==OP_NoConflict ){
3947     /* For the OP_NoConflict opcode, take the jump if any of the
3948     ** input fields are NULL, since any key with a NULL will not
3949     ** conflict */
3950     for(ii=0; ii<pIdxKey->nField; ii++){
3951       if( pIdxKey->aMem[ii].flags & MEM_Null ){
3952         takeJump = 1;
3953         break;
3954       }
3955     }
3956   }
3957   rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3958   sqlite3DbFree(db, pFree);
3959   if( rc!=SQLITE_OK ){
3960     break;
3961   }
3962   pC->seekResult = res;
3963   alreadyExists = (res==0);
3964   pC->nullRow = 1-alreadyExists;
3965   pC->deferredMoveto = 0;
3966   pC->cacheStatus = CACHE_STALE;
3967   if( pOp->opcode==OP_Found ){
3968     VdbeBranchTaken(alreadyExists!=0,2);
3969     if( alreadyExists ) goto jump_to_p2;
3970   }else{
3971     VdbeBranchTaken(takeJump||alreadyExists==0,2);
3972     if( takeJump || !alreadyExists ) goto jump_to_p2;
3973   }
3974   break;
3975 }
3976 
3977 /* Opcode: NotExists P1 P2 P3 * *
3978 ** Synopsis: intkey=r[P3]
3979 **
3980 ** P1 is the index of a cursor open on an SQL table btree (with integer
3981 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
3982 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
3983 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
3984 ** leave the cursor pointing at that record and fall through to the next
3985 ** instruction.
3986 **
3987 ** The OP_NotFound opcode performs the same operation on index btrees
3988 ** (with arbitrary multi-value keys).
3989 **
3990 ** This opcode leaves the cursor in a state where it cannot be advanced
3991 ** in either direction.  In other words, the Next and Prev opcodes will
3992 ** not work following this opcode.
3993 **
3994 ** See also: Found, NotFound, NoConflict
3995 */
3996 case OP_NotExists: {        /* jump, in3 */
3997   VdbeCursor *pC;
3998   BtCursor *pCrsr;
3999   int res;
4000   u64 iKey;
4001 
4002   pIn3 = &aMem[pOp->p3];
4003   assert( pIn3->flags & MEM_Int );
4004   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4005   pC = p->apCsr[pOp->p1];
4006   assert( pC!=0 );
4007 #ifdef SQLITE_DEBUG
4008   pC->seekOp = 0;
4009 #endif
4010   assert( pC->isTable );
4011   assert( pC->pseudoTableReg==0 );
4012   pCrsr = pC->pCursor;
4013   assert( pCrsr!=0 );
4014   res = 0;
4015   iKey = pIn3->u.i;
4016   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4017   assert( rc==SQLITE_OK || res==0 );
4018   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4019   pC->nullRow = 0;
4020   pC->cacheStatus = CACHE_STALE;
4021   pC->deferredMoveto = 0;
4022   VdbeBranchTaken(res!=0,2);
4023   pC->seekResult = res;
4024   if( res!=0 ){
4025     assert( rc==SQLITE_OK );
4026     if( pOp->p2==0 ){
4027       rc = SQLITE_CORRUPT_BKPT;
4028     }else{
4029       goto jump_to_p2;
4030     }
4031   }
4032   break;
4033 }
4034 
4035 /* Opcode: Sequence P1 P2 * * *
4036 ** Synopsis: r[P2]=cursor[P1].ctr++
4037 **
4038 ** Find the next available sequence number for cursor P1.
4039 ** Write the sequence number into register P2.
4040 ** The sequence number on the cursor is incremented after this
4041 ** instruction.
4042 */
4043 case OP_Sequence: {           /* out2 */
4044   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4045   assert( p->apCsr[pOp->p1]!=0 );
4046   pOut = out2Prerelease(p, pOp);
4047   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4048   break;
4049 }
4050 
4051 
4052 /* Opcode: NewRowid P1 P2 P3 * *
4053 ** Synopsis: r[P2]=rowid
4054 **
4055 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4056 ** The record number is not previously used as a key in the database
4057 ** table that cursor P1 points to.  The new record number is written
4058 ** written to register P2.
4059 **
4060 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4061 ** the largest previously generated record number. No new record numbers are
4062 ** allowed to be less than this value. When this value reaches its maximum,
4063 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4064 ** generated record number. This P3 mechanism is used to help implement the
4065 ** AUTOINCREMENT feature.
4066 */
4067 case OP_NewRowid: {           /* out2 */
4068   i64 v;                 /* The new rowid */
4069   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4070   int res;               /* Result of an sqlite3BtreeLast() */
4071   int cnt;               /* Counter to limit the number of searches */
4072   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4073   VdbeFrame *pFrame;     /* Root frame of VDBE */
4074 
4075   v = 0;
4076   res = 0;
4077   pOut = out2Prerelease(p, pOp);
4078   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4079   pC = p->apCsr[pOp->p1];
4080   assert( pC!=0 );
4081   assert( pC->pCursor!=0 );
4082   {
4083     /* The next rowid or record number (different terms for the same
4084     ** thing) is obtained in a two-step algorithm.
4085     **
4086     ** First we attempt to find the largest existing rowid and add one
4087     ** to that.  But if the largest existing rowid is already the maximum
4088     ** positive integer, we have to fall through to the second
4089     ** probabilistic algorithm
4090     **
4091     ** The second algorithm is to select a rowid at random and see if
4092     ** it already exists in the table.  If it does not exist, we have
4093     ** succeeded.  If the random rowid does exist, we select a new one
4094     ** and try again, up to 100 times.
4095     */
4096     assert( pC->isTable );
4097 
4098 #ifdef SQLITE_32BIT_ROWID
4099 #   define MAX_ROWID 0x7fffffff
4100 #else
4101     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4102     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4103     ** to provide the constant while making all compilers happy.
4104     */
4105 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4106 #endif
4107 
4108     if( !pC->useRandomRowid ){
4109       rc = sqlite3BtreeLast(pC->pCursor, &res);
4110       if( rc!=SQLITE_OK ){
4111         goto abort_due_to_error;
4112       }
4113       if( res ){
4114         v = 1;   /* IMP: R-61914-48074 */
4115       }else{
4116         assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
4117         rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4118         assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
4119         if( v>=MAX_ROWID ){
4120           pC->useRandomRowid = 1;
4121         }else{
4122           v++;   /* IMP: R-29538-34987 */
4123         }
4124       }
4125     }
4126 
4127 #ifndef SQLITE_OMIT_AUTOINCREMENT
4128     if( pOp->p3 ){
4129       /* Assert that P3 is a valid memory cell. */
4130       assert( pOp->p3>0 );
4131       if( p->pFrame ){
4132         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4133         /* Assert that P3 is a valid memory cell. */
4134         assert( pOp->p3<=pFrame->nMem );
4135         pMem = &pFrame->aMem[pOp->p3];
4136       }else{
4137         /* Assert that P3 is a valid memory cell. */
4138         assert( pOp->p3<=(p->nMem-p->nCursor) );
4139         pMem = &aMem[pOp->p3];
4140         memAboutToChange(p, pMem);
4141       }
4142       assert( memIsValid(pMem) );
4143 
4144       REGISTER_TRACE(pOp->p3, pMem);
4145       sqlite3VdbeMemIntegerify(pMem);
4146       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4147       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4148         rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
4149         goto abort_due_to_error;
4150       }
4151       if( v<pMem->u.i+1 ){
4152         v = pMem->u.i + 1;
4153       }
4154       pMem->u.i = v;
4155     }
4156 #endif
4157     if( pC->useRandomRowid ){
4158       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4159       ** largest possible integer (9223372036854775807) then the database
4160       ** engine starts picking positive candidate ROWIDs at random until
4161       ** it finds one that is not previously used. */
4162       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4163                              ** an AUTOINCREMENT table. */
4164       cnt = 0;
4165       do{
4166         sqlite3_randomness(sizeof(v), &v);
4167         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4168       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
4169                                                  0, &res))==SQLITE_OK)
4170             && (res==0)
4171             && (++cnt<100));
4172       if( rc==SQLITE_OK && res==0 ){
4173         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4174         goto abort_due_to_error;
4175       }
4176       assert( v>0 );  /* EV: R-40812-03570 */
4177     }
4178     pC->deferredMoveto = 0;
4179     pC->cacheStatus = CACHE_STALE;
4180   }
4181   pOut->u.i = v;
4182   break;
4183 }
4184 
4185 /* Opcode: Insert P1 P2 P3 P4 P5
4186 ** Synopsis: intkey=r[P3] data=r[P2]
4187 **
4188 ** Write an entry into the table of cursor P1.  A new entry is
4189 ** created if it doesn't already exist or the data for an existing
4190 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4191 ** number P2. The key is stored in register P3. The key must
4192 ** be a MEM_Int.
4193 **
4194 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4195 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4196 ** then rowid is stored for subsequent return by the
4197 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4198 **
4199 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4200 ** the last seek operation (OP_NotExists) was a success, then this
4201 ** operation will not attempt to find the appropriate row before doing
4202 ** the insert but will instead overwrite the row that the cursor is
4203 ** currently pointing to.  Presumably, the prior OP_NotExists opcode
4204 ** has already positioned the cursor correctly.  This is an optimization
4205 ** that boosts performance by avoiding redundant seeks.
4206 **
4207 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4208 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4209 ** is part of an INSERT operation.  The difference is only important to
4210 ** the update hook.
4211 **
4212 ** Parameter P4 may point to a string containing the table-name, or
4213 ** may be NULL. If it is not NULL, then the update-hook
4214 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4215 **
4216 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4217 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4218 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4219 ** value of register P2 will then change.  Make sure this does not
4220 ** cause any problems.)
4221 **
4222 ** This instruction only works on tables.  The equivalent instruction
4223 ** for indices is OP_IdxInsert.
4224 */
4225 /* Opcode: InsertInt P1 P2 P3 P4 P5
4226 ** Synopsis:  intkey=P3 data=r[P2]
4227 **
4228 ** This works exactly like OP_Insert except that the key is the
4229 ** integer value P3, not the value of the integer stored in register P3.
4230 */
4231 case OP_Insert:
4232 case OP_InsertInt: {
4233   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4234   Mem *pKey;        /* MEM cell holding key  for the record */
4235   i64 iKey;         /* The integer ROWID or key for the record to be inserted */
4236   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4237   int nZero;        /* Number of zero-bytes to append */
4238   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4239   const char *zDb;  /* database name - used by the update hook */
4240   const char *zTbl; /* Table name - used by the opdate hook */
4241   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4242 
4243   pData = &aMem[pOp->p2];
4244   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4245   assert( memIsValid(pData) );
4246   pC = p->apCsr[pOp->p1];
4247   assert( pC!=0 );
4248   assert( pC->pCursor!=0 );
4249   assert( pC->pseudoTableReg==0 );
4250   assert( pC->isTable );
4251   REGISTER_TRACE(pOp->p2, pData);
4252 
4253   if( pOp->opcode==OP_Insert ){
4254     pKey = &aMem[pOp->p3];
4255     assert( pKey->flags & MEM_Int );
4256     assert( memIsValid(pKey) );
4257     REGISTER_TRACE(pOp->p3, pKey);
4258     iKey = pKey->u.i;
4259   }else{
4260     assert( pOp->opcode==OP_InsertInt );
4261     iKey = pOp->p3;
4262   }
4263 
4264   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4265   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4266   if( pData->flags & MEM_Null ){
4267     pData->z = 0;
4268     pData->n = 0;
4269   }else{
4270     assert( pData->flags & (MEM_Blob|MEM_Str) );
4271   }
4272   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4273   if( pData->flags & MEM_Zero ){
4274     nZero = pData->u.nZero;
4275   }else{
4276     nZero = 0;
4277   }
4278   rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4279                           pData->z, pData->n, nZero,
4280                           (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4281   );
4282   pC->deferredMoveto = 0;
4283   pC->cacheStatus = CACHE_STALE;
4284 
4285   /* Invoke the update-hook if required. */
4286   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4287     zDb = db->aDb[pC->iDb].zName;
4288     zTbl = pOp->p4.z;
4289     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4290     assert( pC->isTable );
4291     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4292     assert( pC->iDb>=0 );
4293   }
4294   break;
4295 }
4296 
4297 /* Opcode: Delete P1 P2 * P4 P5
4298 **
4299 ** Delete the record at which the P1 cursor is currently pointing.
4300 **
4301 ** If the P5 parameter is non-zero, the cursor will be left pointing at
4302 ** either the next or the previous record in the table. If it is left
4303 ** pointing at the next record, then the next Next instruction will be a
4304 ** no-op. As a result, in this case it is OK to delete a record from within a
4305 ** Next loop. If P5 is zero, then the cursor is left in an undefined state.
4306 **
4307 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4308 ** incremented (otherwise not).
4309 **
4310 ** P1 must not be pseudo-table.  It has to be a real table with
4311 ** multiple rows.
4312 **
4313 ** If P4 is not NULL, then it is the name of the table that P1 is
4314 ** pointing to.  The update hook will be invoked, if it exists.
4315 ** If P4 is not NULL then the P1 cursor must have been positioned
4316 ** using OP_NotFound prior to invoking this opcode.
4317 */
4318 case OP_Delete: {
4319   VdbeCursor *pC;
4320   u8 hasUpdateCallback;
4321 
4322   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4323   pC = p->apCsr[pOp->p1];
4324   assert( pC!=0 );
4325   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
4326   assert( pC->deferredMoveto==0 );
4327 
4328   hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
4329   if( pOp->p5 && hasUpdateCallback ){
4330     sqlite3BtreeKeySize(pC->pCursor, &pC->movetoTarget);
4331   }
4332 
4333 #ifdef SQLITE_DEBUG
4334   /* The seek operation that positioned the cursor prior to OP_Delete will
4335   ** have also set the pC->movetoTarget field to the rowid of the row that
4336   ** is being deleted */
4337   if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
4338     i64 iKey = 0;
4339     sqlite3BtreeKeySize(pC->pCursor, &iKey);
4340     assert( pC->movetoTarget==iKey );
4341   }
4342 #endif
4343 
4344   rc = sqlite3BtreeDelete(pC->pCursor, pOp->p5);
4345   pC->cacheStatus = CACHE_STALE;
4346 
4347   /* Invoke the update-hook if required. */
4348   if( rc==SQLITE_OK && hasUpdateCallback ){
4349     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
4350                         db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
4351     assert( pC->iDb>=0 );
4352   }
4353   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4354   break;
4355 }
4356 /* Opcode: ResetCount * * * * *
4357 **
4358 ** The value of the change counter is copied to the database handle
4359 ** change counter (returned by subsequent calls to sqlite3_changes()).
4360 ** Then the VMs internal change counter resets to 0.
4361 ** This is used by trigger programs.
4362 */
4363 case OP_ResetCount: {
4364   sqlite3VdbeSetChanges(db, p->nChange);
4365   p->nChange = 0;
4366   break;
4367 }
4368 
4369 /* Opcode: SorterCompare P1 P2 P3 P4
4370 ** Synopsis:  if key(P1)!=trim(r[P3],P4) goto P2
4371 **
4372 ** P1 is a sorter cursor. This instruction compares a prefix of the
4373 ** record blob in register P3 against a prefix of the entry that
4374 ** the sorter cursor currently points to.  Only the first P4 fields
4375 ** of r[P3] and the sorter record are compared.
4376 **
4377 ** If either P3 or the sorter contains a NULL in one of their significant
4378 ** fields (not counting the P4 fields at the end which are ignored) then
4379 ** the comparison is assumed to be equal.
4380 **
4381 ** Fall through to next instruction if the two records compare equal to
4382 ** each other.  Jump to P2 if they are different.
4383 */
4384 case OP_SorterCompare: {
4385   VdbeCursor *pC;
4386   int res;
4387   int nKeyCol;
4388 
4389   pC = p->apCsr[pOp->p1];
4390   assert( isSorter(pC) );
4391   assert( pOp->p4type==P4_INT32 );
4392   pIn3 = &aMem[pOp->p3];
4393   nKeyCol = pOp->p4.i;
4394   res = 0;
4395   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4396   VdbeBranchTaken(res!=0,2);
4397   if( res ) goto jump_to_p2;
4398   break;
4399 };
4400 
4401 /* Opcode: SorterData P1 P2 P3 * *
4402 ** Synopsis: r[P2]=data
4403 **
4404 ** Write into register P2 the current sorter data for sorter cursor P1.
4405 ** Then clear the column header cache on cursor P3.
4406 **
4407 ** This opcode is normally use to move a record out of the sorter and into
4408 ** a register that is the source for a pseudo-table cursor created using
4409 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4410 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4411 ** us from having to issue a separate NullRow instruction to clear that cache.
4412 */
4413 case OP_SorterData: {
4414   VdbeCursor *pC;
4415 
4416   pOut = &aMem[pOp->p2];
4417   pC = p->apCsr[pOp->p1];
4418   assert( isSorter(pC) );
4419   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4420   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4421   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4422   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4423   break;
4424 }
4425 
4426 /* Opcode: RowData P1 P2 * * *
4427 ** Synopsis: r[P2]=data
4428 **
4429 ** Write into register P2 the complete row data for cursor P1.
4430 ** There is no interpretation of the data.
4431 ** It is just copied onto the P2 register exactly as
4432 ** it is found in the database file.
4433 **
4434 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4435 ** of a real table, not a pseudo-table.
4436 */
4437 /* Opcode: RowKey P1 P2 * * *
4438 ** Synopsis: r[P2]=key
4439 **
4440 ** Write into register P2 the complete row key for cursor P1.
4441 ** There is no interpretation of the data.
4442 ** The key is copied onto the P2 register exactly as
4443 ** it is found in the database file.
4444 **
4445 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4446 ** of a real table, not a pseudo-table.
4447 */
4448 case OP_RowKey:
4449 case OP_RowData: {
4450   VdbeCursor *pC;
4451   BtCursor *pCrsr;
4452   u32 n;
4453   i64 n64;
4454 
4455   pOut = &aMem[pOp->p2];
4456   memAboutToChange(p, pOut);
4457 
4458   /* Note that RowKey and RowData are really exactly the same instruction */
4459   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4460   pC = p->apCsr[pOp->p1];
4461   assert( isSorter(pC)==0 );
4462   assert( pC->isTable || pOp->opcode!=OP_RowData );
4463   assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4464   assert( pC!=0 );
4465   assert( pC->nullRow==0 );
4466   assert( pC->pseudoTableReg==0 );
4467   assert( pC->pCursor!=0 );
4468   pCrsr = pC->pCursor;
4469 
4470   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4471   ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4472   ** the cursor.  If this where not the case, on of the following assert()s
4473   ** would fail.  Should this ever change (because of changes in the code
4474   ** generator) then the fix would be to insert a call to
4475   ** sqlite3VdbeCursorMoveto().
4476   */
4477   assert( pC->deferredMoveto==0 );
4478   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4479 #if 0  /* Not required due to the previous to assert() statements */
4480   rc = sqlite3VdbeCursorMoveto(pC);
4481   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4482 #endif
4483 
4484   if( pC->isTable==0 ){
4485     assert( !pC->isTable );
4486     VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4487     assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
4488     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4489       goto too_big;
4490     }
4491     n = (u32)n64;
4492   }else{
4493     VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4494     assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
4495     if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4496       goto too_big;
4497     }
4498   }
4499   testcase( n==0 );
4500   if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
4501     goto no_mem;
4502   }
4503   pOut->n = n;
4504   MemSetTypeFlag(pOut, MEM_Blob);
4505   if( pC->isTable==0 ){
4506     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4507   }else{
4508     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4509   }
4510   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4511   UPDATE_MAX_BLOBSIZE(pOut);
4512   REGISTER_TRACE(pOp->p2, pOut);
4513   break;
4514 }
4515 
4516 /* Opcode: Rowid P1 P2 * * *
4517 ** Synopsis: r[P2]=rowid
4518 **
4519 ** Store in register P2 an integer which is the key of the table entry that
4520 ** P1 is currently point to.
4521 **
4522 ** P1 can be either an ordinary table or a virtual table.  There used to
4523 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4524 ** one opcode now works for both table types.
4525 */
4526 case OP_Rowid: {                 /* out2 */
4527   VdbeCursor *pC;
4528   i64 v;
4529   sqlite3_vtab *pVtab;
4530   const sqlite3_module *pModule;
4531 
4532   pOut = out2Prerelease(p, pOp);
4533   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4534   pC = p->apCsr[pOp->p1];
4535   assert( pC!=0 );
4536   assert( pC->pseudoTableReg==0 || pC->nullRow );
4537   if( pC->nullRow ){
4538     pOut->flags = MEM_Null;
4539     break;
4540   }else if( pC->deferredMoveto ){
4541     v = pC->movetoTarget;
4542 #ifndef SQLITE_OMIT_VIRTUALTABLE
4543   }else if( pC->pVtabCursor ){
4544     pVtab = pC->pVtabCursor->pVtab;
4545     pModule = pVtab->pModule;
4546     assert( pModule->xRowid );
4547     rc = pModule->xRowid(pC->pVtabCursor, &v);
4548     sqlite3VtabImportErrmsg(p, pVtab);
4549 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4550   }else{
4551     assert( pC->pCursor!=0 );
4552     rc = sqlite3VdbeCursorRestore(pC);
4553     if( rc ) goto abort_due_to_error;
4554     if( pC->nullRow ){
4555       pOut->flags = MEM_Null;
4556       break;
4557     }
4558     rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4559     assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
4560   }
4561   pOut->u.i = v;
4562   break;
4563 }
4564 
4565 /* Opcode: NullRow P1 * * * *
4566 **
4567 ** Move the cursor P1 to a null row.  Any OP_Column operations
4568 ** that occur while the cursor is on the null row will always
4569 ** write a NULL.
4570 */
4571 case OP_NullRow: {
4572   VdbeCursor *pC;
4573 
4574   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4575   pC = p->apCsr[pOp->p1];
4576   assert( pC!=0 );
4577   pC->nullRow = 1;
4578   pC->cacheStatus = CACHE_STALE;
4579   if( pC->pCursor ){
4580     sqlite3BtreeClearCursor(pC->pCursor);
4581   }
4582   break;
4583 }
4584 
4585 /* Opcode: Last P1 P2 P3 * *
4586 **
4587 ** The next use of the Rowid or Column or Prev instruction for P1
4588 ** will refer to the last entry in the database table or index.
4589 ** If the table or index is empty and P2>0, then jump immediately to P2.
4590 ** If P2 is 0 or if the table or index is not empty, fall through
4591 ** to the following instruction.
4592 **
4593 ** This opcode leaves the cursor configured to move in reverse order,
4594 ** from the end toward the beginning.  In other words, the cursor is
4595 ** configured to use Prev, not Next.
4596 */
4597 case OP_Last: {        /* jump */
4598   VdbeCursor *pC;
4599   BtCursor *pCrsr;
4600   int res;
4601 
4602   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4603   pC = p->apCsr[pOp->p1];
4604   assert( pC!=0 );
4605   pCrsr = pC->pCursor;
4606   res = 0;
4607   assert( pCrsr!=0 );
4608   rc = sqlite3BtreeLast(pCrsr, &res);
4609   pC->nullRow = (u8)res;
4610   pC->deferredMoveto = 0;
4611   pC->cacheStatus = CACHE_STALE;
4612   pC->seekResult = pOp->p3;
4613 #ifdef SQLITE_DEBUG
4614   pC->seekOp = OP_Last;
4615 #endif
4616   if( pOp->p2>0 ){
4617     VdbeBranchTaken(res!=0,2);
4618     if( res ) goto jump_to_p2;
4619   }
4620   break;
4621 }
4622 
4623 
4624 /* Opcode: Sort P1 P2 * * *
4625 **
4626 ** This opcode does exactly the same thing as OP_Rewind except that
4627 ** it increments an undocumented global variable used for testing.
4628 **
4629 ** Sorting is accomplished by writing records into a sorting index,
4630 ** then rewinding that index and playing it back from beginning to
4631 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4632 ** rewinding so that the global variable will be incremented and
4633 ** regression tests can determine whether or not the optimizer is
4634 ** correctly optimizing out sorts.
4635 */
4636 case OP_SorterSort:    /* jump */
4637 case OP_Sort: {        /* jump */
4638 #ifdef SQLITE_TEST
4639   sqlite3_sort_count++;
4640   sqlite3_search_count--;
4641 #endif
4642   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4643   /* Fall through into OP_Rewind */
4644 }
4645 /* Opcode: Rewind P1 P2 * * *
4646 **
4647 ** The next use of the Rowid or Column or Next instruction for P1
4648 ** will refer to the first entry in the database table or index.
4649 ** If the table or index is empty, jump immediately to P2.
4650 ** If the table or index is not empty, fall through to the following
4651 ** instruction.
4652 **
4653 ** This opcode leaves the cursor configured to move in forward order,
4654 ** from the beginning toward the end.  In other words, the cursor is
4655 ** configured to use Next, not Prev.
4656 */
4657 case OP_Rewind: {        /* jump */
4658   VdbeCursor *pC;
4659   BtCursor *pCrsr;
4660   int res;
4661 
4662   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4663   pC = p->apCsr[pOp->p1];
4664   assert( pC!=0 );
4665   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4666   res = 1;
4667 #ifdef SQLITE_DEBUG
4668   pC->seekOp = OP_Rewind;
4669 #endif
4670   if( isSorter(pC) ){
4671     rc = sqlite3VdbeSorterRewind(pC, &res);
4672   }else{
4673     pCrsr = pC->pCursor;
4674     assert( pCrsr );
4675     rc = sqlite3BtreeFirst(pCrsr, &res);
4676     pC->deferredMoveto = 0;
4677     pC->cacheStatus = CACHE_STALE;
4678   }
4679   pC->nullRow = (u8)res;
4680   assert( pOp->p2>0 && pOp->p2<p->nOp );
4681   VdbeBranchTaken(res!=0,2);
4682   if( res ) goto jump_to_p2;
4683   break;
4684 }
4685 
4686 /* Opcode: Next P1 P2 P3 P4 P5
4687 **
4688 ** Advance cursor P1 so that it points to the next key/data pair in its
4689 ** table or index.  If there are no more key/value pairs then fall through
4690 ** to the following instruction.  But if the cursor advance was successful,
4691 ** jump immediately to P2.
4692 **
4693 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4694 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
4695 ** to follow SeekLT, SeekLE, or OP_Last.
4696 **
4697 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
4698 ** been opened prior to this opcode or the program will segfault.
4699 **
4700 ** The P3 value is a hint to the btree implementation. If P3==1, that
4701 ** means P1 is an SQL index and that this instruction could have been
4702 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4703 ** always either 0 or 1.
4704 **
4705 ** P4 is always of type P4_ADVANCE. The function pointer points to
4706 ** sqlite3BtreeNext().
4707 **
4708 ** If P5 is positive and the jump is taken, then event counter
4709 ** number P5-1 in the prepared statement is incremented.
4710 **
4711 ** See also: Prev, NextIfOpen
4712 */
4713 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4714 **
4715 ** This opcode works just like Next except that if cursor P1 is not
4716 ** open it behaves a no-op.
4717 */
4718 /* Opcode: Prev P1 P2 P3 P4 P5
4719 **
4720 ** Back up cursor P1 so that it points to the previous key/data pair in its
4721 ** table or index.  If there is no previous key/value pairs then fall through
4722 ** to the following instruction.  But if the cursor backup was successful,
4723 ** jump immediately to P2.
4724 **
4725 **
4726 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4727 ** OP_Last opcode used to position the cursor.  Prev is not allowed
4728 ** to follow SeekGT, SeekGE, or OP_Rewind.
4729 **
4730 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
4731 ** not open then the behavior is undefined.
4732 **
4733 ** The P3 value is a hint to the btree implementation. If P3==1, that
4734 ** means P1 is an SQL index and that this instruction could have been
4735 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4736 ** always either 0 or 1.
4737 **
4738 ** P4 is always of type P4_ADVANCE. The function pointer points to
4739 ** sqlite3BtreePrevious().
4740 **
4741 ** If P5 is positive and the jump is taken, then event counter
4742 ** number P5-1 in the prepared statement is incremented.
4743 */
4744 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4745 **
4746 ** This opcode works just like Prev except that if cursor P1 is not
4747 ** open it behaves a no-op.
4748 */
4749 case OP_SorterNext: {  /* jump */
4750   VdbeCursor *pC;
4751   int res;
4752 
4753   pC = p->apCsr[pOp->p1];
4754   assert( isSorter(pC) );
4755   res = 0;
4756   rc = sqlite3VdbeSorterNext(db, pC, &res);
4757   goto next_tail;
4758 case OP_PrevIfOpen:    /* jump */
4759 case OP_NextIfOpen:    /* jump */
4760   if( p->apCsr[pOp->p1]==0 ) break;
4761   /* Fall through */
4762 case OP_Prev:          /* jump */
4763 case OP_Next:          /* jump */
4764   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4765   assert( pOp->p5<ArraySize(p->aCounter) );
4766   pC = p->apCsr[pOp->p1];
4767   res = pOp->p3;
4768   assert( pC!=0 );
4769   assert( pC->deferredMoveto==0 );
4770   assert( pC->pCursor );
4771   assert( res==0 || (res==1 && pC->isTable==0) );
4772   testcase( res==1 );
4773   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4774   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4775   assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4776   assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4777 
4778   /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4779   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4780   assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4781        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4782        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4783   assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4784        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4785        || pC->seekOp==OP_Last );
4786 
4787   rc = pOp->p4.xAdvance(pC->pCursor, &res);
4788 next_tail:
4789   pC->cacheStatus = CACHE_STALE;
4790   VdbeBranchTaken(res==0,2);
4791   if( res==0 ){
4792     pC->nullRow = 0;
4793     p->aCounter[pOp->p5]++;
4794 #ifdef SQLITE_TEST
4795     sqlite3_search_count++;
4796 #endif
4797     goto jump_to_p2_and_check_for_interrupt;
4798   }else{
4799     pC->nullRow = 1;
4800   }
4801   goto check_for_interrupt;
4802 }
4803 
4804 /* Opcode: IdxInsert P1 P2 P3 * P5
4805 ** Synopsis: key=r[P2]
4806 **
4807 ** Register P2 holds an SQL index key made using the
4808 ** MakeRecord instructions.  This opcode writes that key
4809 ** into the index P1.  Data for the entry is nil.
4810 **
4811 ** P3 is a flag that provides a hint to the b-tree layer that this
4812 ** insert is likely to be an append.
4813 **
4814 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4815 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
4816 ** then the change counter is unchanged.
4817 **
4818 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4819 ** just done a seek to the spot where the new entry is to be inserted.
4820 ** This flag avoids doing an extra seek.
4821 **
4822 ** This instruction only works for indices.  The equivalent instruction
4823 ** for tables is OP_Insert.
4824 */
4825 case OP_SorterInsert:       /* in2 */
4826 case OP_IdxInsert: {        /* in2 */
4827   VdbeCursor *pC;
4828   int nKey;
4829   const char *zKey;
4830 
4831   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4832   pC = p->apCsr[pOp->p1];
4833   assert( pC!=0 );
4834   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
4835   pIn2 = &aMem[pOp->p2];
4836   assert( pIn2->flags & MEM_Blob );
4837   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4838   assert( pC->pCursor!=0 );
4839   assert( pC->isTable==0 );
4840   rc = ExpandBlob(pIn2);
4841   if( rc==SQLITE_OK ){
4842     if( pOp->opcode==OP_SorterInsert ){
4843       rc = sqlite3VdbeSorterWrite(pC, pIn2);
4844     }else{
4845       nKey = pIn2->n;
4846       zKey = pIn2->z;
4847       rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, "", 0, 0, pOp->p3,
4848           ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4849           );
4850       assert( pC->deferredMoveto==0 );
4851       pC->cacheStatus = CACHE_STALE;
4852     }
4853   }
4854   break;
4855 }
4856 
4857 /* Opcode: IdxDelete P1 P2 P3 * *
4858 ** Synopsis: key=r[P2@P3]
4859 **
4860 ** The content of P3 registers starting at register P2 form
4861 ** an unpacked index key. This opcode removes that entry from the
4862 ** index opened by cursor P1.
4863 */
4864 case OP_IdxDelete: {
4865   VdbeCursor *pC;
4866   BtCursor *pCrsr;
4867   int res;
4868   UnpackedRecord r;
4869 
4870   assert( pOp->p3>0 );
4871   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
4872   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4873   pC = p->apCsr[pOp->p1];
4874   assert( pC!=0 );
4875   pCrsr = pC->pCursor;
4876   assert( pCrsr!=0 );
4877   assert( pOp->p5==0 );
4878   r.pKeyInfo = pC->pKeyInfo;
4879   r.nField = (u16)pOp->p3;
4880   r.default_rc = 0;
4881   r.aMem = &aMem[pOp->p2];
4882 #ifdef SQLITE_DEBUG
4883   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4884 #endif
4885   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4886   if( rc==SQLITE_OK && res==0 ){
4887     rc = sqlite3BtreeDelete(pCrsr, 0);
4888   }
4889   assert( pC->deferredMoveto==0 );
4890   pC->cacheStatus = CACHE_STALE;
4891   break;
4892 }
4893 
4894 /* Opcode: IdxRowid P1 P2 * * *
4895 ** Synopsis: r[P2]=rowid
4896 **
4897 ** Write into register P2 an integer which is the last entry in the record at
4898 ** the end of the index key pointed to by cursor P1.  This integer should be
4899 ** the rowid of the table entry to which this index entry points.
4900 **
4901 ** See also: Rowid, MakeRecord.
4902 */
4903 case OP_IdxRowid: {              /* out2 */
4904   BtCursor *pCrsr;
4905   VdbeCursor *pC;
4906   i64 rowid;
4907 
4908   pOut = out2Prerelease(p, pOp);
4909   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4910   pC = p->apCsr[pOp->p1];
4911   assert( pC!=0 );
4912   pCrsr = pC->pCursor;
4913   assert( pCrsr!=0 );
4914   pOut->flags = MEM_Null;
4915   assert( pC->isTable==0 );
4916   assert( pC->deferredMoveto==0 );
4917 
4918   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4919   ** out from under the cursor.  That will never happend for an IdxRowid
4920   ** opcode, hence the NEVER() arround the check of the return value.
4921   */
4922   rc = sqlite3VdbeCursorRestore(pC);
4923   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4924 
4925   if( !pC->nullRow ){
4926     rowid = 0;  /* Not needed.  Only used to silence a warning. */
4927     rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4928     if( rc!=SQLITE_OK ){
4929       goto abort_due_to_error;
4930     }
4931     pOut->u.i = rowid;
4932     pOut->flags = MEM_Int;
4933   }
4934   break;
4935 }
4936 
4937 /* Opcode: IdxGE P1 P2 P3 P4 P5
4938 ** Synopsis: key=r[P3@P4]
4939 **
4940 ** The P4 register values beginning with P3 form an unpacked index
4941 ** key that omits the PRIMARY KEY.  Compare this key value against the index
4942 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4943 ** fields at the end.
4944 **
4945 ** If the P1 index entry is greater than or equal to the key value
4946 ** then jump to P2.  Otherwise fall through to the next instruction.
4947 */
4948 /* Opcode: IdxGT P1 P2 P3 P4 P5
4949 ** Synopsis: key=r[P3@P4]
4950 **
4951 ** The P4 register values beginning with P3 form an unpacked index
4952 ** key that omits the PRIMARY KEY.  Compare this key value against the index
4953 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4954 ** fields at the end.
4955 **
4956 ** If the P1 index entry is greater than the key value
4957 ** then jump to P2.  Otherwise fall through to the next instruction.
4958 */
4959 /* Opcode: IdxLT P1 P2 P3 P4 P5
4960 ** Synopsis: key=r[P3@P4]
4961 **
4962 ** The P4 register values beginning with P3 form an unpacked index
4963 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
4964 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4965 ** ROWID on the P1 index.
4966 **
4967 ** If the P1 index entry is less than the key value then jump to P2.
4968 ** Otherwise fall through to the next instruction.
4969 */
4970 /* Opcode: IdxLE P1 P2 P3 P4 P5
4971 ** Synopsis: key=r[P3@P4]
4972 **
4973 ** The P4 register values beginning with P3 form an unpacked index
4974 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
4975 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4976 ** ROWID on the P1 index.
4977 **
4978 ** If the P1 index entry is less than or equal to the key value then jump
4979 ** to P2. Otherwise fall through to the next instruction.
4980 */
4981 case OP_IdxLE:          /* jump */
4982 case OP_IdxGT:          /* jump */
4983 case OP_IdxLT:          /* jump */
4984 case OP_IdxGE:  {       /* jump */
4985   VdbeCursor *pC;
4986   int res;
4987   UnpackedRecord r;
4988 
4989   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4990   pC = p->apCsr[pOp->p1];
4991   assert( pC!=0 );
4992   assert( pC->isOrdered );
4993   assert( pC->pCursor!=0);
4994   assert( pC->deferredMoveto==0 );
4995   assert( pOp->p5==0 || pOp->p5==1 );
4996   assert( pOp->p4type==P4_INT32 );
4997   r.pKeyInfo = pC->pKeyInfo;
4998   r.nField = (u16)pOp->p4.i;
4999   if( pOp->opcode<OP_IdxLT ){
5000     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5001     r.default_rc = -1;
5002   }else{
5003     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5004     r.default_rc = 0;
5005   }
5006   r.aMem = &aMem[pOp->p3];
5007 #ifdef SQLITE_DEBUG
5008   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5009 #endif
5010   res = 0;  /* Not needed.  Only used to silence a warning. */
5011   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5012   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5013   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5014     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5015     res = -res;
5016   }else{
5017     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5018     res++;
5019   }
5020   VdbeBranchTaken(res>0,2);
5021   if( res>0 ) goto jump_to_p2;
5022   break;
5023 }
5024 
5025 /* Opcode: Destroy P1 P2 P3 * *
5026 **
5027 ** Delete an entire database table or index whose root page in the database
5028 ** file is given by P1.
5029 **
5030 ** The table being destroyed is in the main database file if P3==0.  If
5031 ** P3==1 then the table to be clear is in the auxiliary database file
5032 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5033 **
5034 ** If AUTOVACUUM is enabled then it is possible that another root page
5035 ** might be moved into the newly deleted root page in order to keep all
5036 ** root pages contiguous at the beginning of the database.  The former
5037 ** value of the root page that moved - its value before the move occurred -
5038 ** is stored in register P2.  If no page
5039 ** movement was required (because the table being dropped was already
5040 ** the last one in the database) then a zero is stored in register P2.
5041 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
5042 **
5043 ** See also: Clear
5044 */
5045 case OP_Destroy: {     /* out2 */
5046   int iMoved;
5047   int iDb;
5048 
5049   assert( p->readOnly==0 );
5050   pOut = out2Prerelease(p, pOp);
5051   pOut->flags = MEM_Null;
5052   if( db->nVdbeRead > db->nVDestroy+1 ){
5053     rc = SQLITE_LOCKED;
5054     p->errorAction = OE_Abort;
5055   }else{
5056     iDb = pOp->p3;
5057     assert( DbMaskTest(p->btreeMask, iDb) );
5058     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5059     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5060     pOut->flags = MEM_Int;
5061     pOut->u.i = iMoved;
5062 #ifndef SQLITE_OMIT_AUTOVACUUM
5063     if( rc==SQLITE_OK && iMoved!=0 ){
5064       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5065       /* All OP_Destroy operations occur on the same btree */
5066       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5067       resetSchemaOnFault = iDb+1;
5068     }
5069 #endif
5070   }
5071   break;
5072 }
5073 
5074 /* Opcode: Clear P1 P2 P3
5075 **
5076 ** Delete all contents of the database table or index whose root page
5077 ** in the database file is given by P1.  But, unlike Destroy, do not
5078 ** remove the table or index from the database file.
5079 **
5080 ** The table being clear is in the main database file if P2==0.  If
5081 ** P2==1 then the table to be clear is in the auxiliary database file
5082 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5083 **
5084 ** If the P3 value is non-zero, then the table referred to must be an
5085 ** intkey table (an SQL table, not an index). In this case the row change
5086 ** count is incremented by the number of rows in the table being cleared.
5087 ** If P3 is greater than zero, then the value stored in register P3 is
5088 ** also incremented by the number of rows in the table being cleared.
5089 **
5090 ** See also: Destroy
5091 */
5092 case OP_Clear: {
5093   int nChange;
5094 
5095   nChange = 0;
5096   assert( p->readOnly==0 );
5097   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5098   rc = sqlite3BtreeClearTable(
5099       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5100   );
5101   if( pOp->p3 ){
5102     p->nChange += nChange;
5103     if( pOp->p3>0 ){
5104       assert( memIsValid(&aMem[pOp->p3]) );
5105       memAboutToChange(p, &aMem[pOp->p3]);
5106       aMem[pOp->p3].u.i += nChange;
5107     }
5108   }
5109   break;
5110 }
5111 
5112 /* Opcode: ResetSorter P1 * * * *
5113 **
5114 ** Delete all contents from the ephemeral table or sorter
5115 ** that is open on cursor P1.
5116 **
5117 ** This opcode only works for cursors used for sorting and
5118 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5119 */
5120 case OP_ResetSorter: {
5121   VdbeCursor *pC;
5122 
5123   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5124   pC = p->apCsr[pOp->p1];
5125   assert( pC!=0 );
5126   if( pC->pSorter ){
5127     sqlite3VdbeSorterReset(db, pC->pSorter);
5128   }else{
5129     assert( pC->isEphemeral );
5130     rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
5131   }
5132   break;
5133 }
5134 
5135 /* Opcode: CreateTable P1 P2 * * *
5136 ** Synopsis: r[P2]=root iDb=P1
5137 **
5138 ** Allocate a new table in the main database file if P1==0 or in the
5139 ** auxiliary database file if P1==1 or in an attached database if
5140 ** P1>1.  Write the root page number of the new table into
5141 ** register P2
5142 **
5143 ** The difference between a table and an index is this:  A table must
5144 ** have a 4-byte integer key and can have arbitrary data.  An index
5145 ** has an arbitrary key but no data.
5146 **
5147 ** See also: CreateIndex
5148 */
5149 /* Opcode: CreateIndex P1 P2 * * *
5150 ** Synopsis: r[P2]=root iDb=P1
5151 **
5152 ** Allocate a new index in the main database file if P1==0 or in the
5153 ** auxiliary database file if P1==1 or in an attached database if
5154 ** P1>1.  Write the root page number of the new table into
5155 ** register P2.
5156 **
5157 ** See documentation on OP_CreateTable for additional information.
5158 */
5159 case OP_CreateIndex:            /* out2 */
5160 case OP_CreateTable: {          /* out2 */
5161   int pgno;
5162   int flags;
5163   Db *pDb;
5164 
5165   pOut = out2Prerelease(p, pOp);
5166   pgno = 0;
5167   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5168   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5169   assert( p->readOnly==0 );
5170   pDb = &db->aDb[pOp->p1];
5171   assert( pDb->pBt!=0 );
5172   if( pOp->opcode==OP_CreateTable ){
5173     /* flags = BTREE_INTKEY; */
5174     flags = BTREE_INTKEY;
5175   }else{
5176     flags = BTREE_BLOBKEY;
5177   }
5178   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5179   pOut->u.i = pgno;
5180   break;
5181 }
5182 
5183 /* Opcode: ParseSchema P1 * * P4 *
5184 **
5185 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5186 ** that match the WHERE clause P4.
5187 **
5188 ** This opcode invokes the parser to create a new virtual machine,
5189 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5190 */
5191 case OP_ParseSchema: {
5192   int iDb;
5193   const char *zMaster;
5194   char *zSql;
5195   InitData initData;
5196 
5197   /* Any prepared statement that invokes this opcode will hold mutexes
5198   ** on every btree.  This is a prerequisite for invoking
5199   ** sqlite3InitCallback().
5200   */
5201 #ifdef SQLITE_DEBUG
5202   for(iDb=0; iDb<db->nDb; iDb++){
5203     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5204   }
5205 #endif
5206 
5207   iDb = pOp->p1;
5208   assert( iDb>=0 && iDb<db->nDb );
5209   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5210   /* Used to be a conditional */ {
5211     zMaster = SCHEMA_TABLE(iDb);
5212     initData.db = db;
5213     initData.iDb = pOp->p1;
5214     initData.pzErrMsg = &p->zErrMsg;
5215     zSql = sqlite3MPrintf(db,
5216        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5217        db->aDb[iDb].zName, zMaster, pOp->p4.z);
5218     if( zSql==0 ){
5219       rc = SQLITE_NOMEM;
5220     }else{
5221       assert( db->init.busy==0 );
5222       db->init.busy = 1;
5223       initData.rc = SQLITE_OK;
5224       assert( !db->mallocFailed );
5225       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5226       if( rc==SQLITE_OK ) rc = initData.rc;
5227       sqlite3DbFree(db, zSql);
5228       db->init.busy = 0;
5229     }
5230   }
5231   if( rc ) sqlite3ResetAllSchemasOfConnection(db);
5232   if( rc==SQLITE_NOMEM ){
5233     goto no_mem;
5234   }
5235   break;
5236 }
5237 
5238 #if !defined(SQLITE_OMIT_ANALYZE)
5239 /* Opcode: LoadAnalysis P1 * * * *
5240 **
5241 ** Read the sqlite_stat1 table for database P1 and load the content
5242 ** of that table into the internal index hash table.  This will cause
5243 ** the analysis to be used when preparing all subsequent queries.
5244 */
5245 case OP_LoadAnalysis: {
5246   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5247   rc = sqlite3AnalysisLoad(db, pOp->p1);
5248   break;
5249 }
5250 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5251 
5252 /* Opcode: DropTable P1 * * P4 *
5253 **
5254 ** Remove the internal (in-memory) data structures that describe
5255 ** the table named P4 in database P1.  This is called after a table
5256 ** is dropped from disk (using the Destroy opcode) in order to keep
5257 ** the internal representation of the
5258 ** schema consistent with what is on disk.
5259 */
5260 case OP_DropTable: {
5261   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5262   break;
5263 }
5264 
5265 /* Opcode: DropIndex P1 * * P4 *
5266 **
5267 ** Remove the internal (in-memory) data structures that describe
5268 ** the index named P4 in database P1.  This is called after an index
5269 ** is dropped from disk (using the Destroy opcode)
5270 ** in order to keep the internal representation of the
5271 ** schema consistent with what is on disk.
5272 */
5273 case OP_DropIndex: {
5274   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5275   break;
5276 }
5277 
5278 /* Opcode: DropTrigger P1 * * P4 *
5279 **
5280 ** Remove the internal (in-memory) data structures that describe
5281 ** the trigger named P4 in database P1.  This is called after a trigger
5282 ** is dropped from disk (using the Destroy opcode) in order to keep
5283 ** the internal representation of the
5284 ** schema consistent with what is on disk.
5285 */
5286 case OP_DropTrigger: {
5287   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5288   break;
5289 }
5290 
5291 
5292 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5293 /* Opcode: IntegrityCk P1 P2 P3 * P5
5294 **
5295 ** Do an analysis of the currently open database.  Store in
5296 ** register P1 the text of an error message describing any problems.
5297 ** If no problems are found, store a NULL in register P1.
5298 **
5299 ** The register P3 contains the maximum number of allowed errors.
5300 ** At most reg(P3) errors will be reported.
5301 ** In other words, the analysis stops as soon as reg(P1) errors are
5302 ** seen.  Reg(P1) is updated with the number of errors remaining.
5303 **
5304 ** The root page numbers of all tables in the database are integer
5305 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
5306 ** total.
5307 **
5308 ** If P5 is not zero, the check is done on the auxiliary database
5309 ** file, not the main database file.
5310 **
5311 ** This opcode is used to implement the integrity_check pragma.
5312 */
5313 case OP_IntegrityCk: {
5314   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5315   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5316   int j;          /* Loop counter */
5317   int nErr;       /* Number of errors reported */
5318   char *z;        /* Text of the error report */
5319   Mem *pnErr;     /* Register keeping track of errors remaining */
5320 
5321   assert( p->bIsReader );
5322   nRoot = pOp->p2;
5323   assert( nRoot>0 );
5324   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
5325   if( aRoot==0 ) goto no_mem;
5326   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5327   pnErr = &aMem[pOp->p3];
5328   assert( (pnErr->flags & MEM_Int)!=0 );
5329   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5330   pIn1 = &aMem[pOp->p1];
5331   for(j=0; j<nRoot; j++){
5332     aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
5333   }
5334   aRoot[j] = 0;
5335   assert( pOp->p5<db->nDb );
5336   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5337   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5338                                  (int)pnErr->u.i, &nErr);
5339   sqlite3DbFree(db, aRoot);
5340   pnErr->u.i -= nErr;
5341   sqlite3VdbeMemSetNull(pIn1);
5342   if( nErr==0 ){
5343     assert( z==0 );
5344   }else if( z==0 ){
5345     goto no_mem;
5346   }else{
5347     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5348   }
5349   UPDATE_MAX_BLOBSIZE(pIn1);
5350   sqlite3VdbeChangeEncoding(pIn1, encoding);
5351   break;
5352 }
5353 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5354 
5355 /* Opcode: RowSetAdd P1 P2 * * *
5356 ** Synopsis:  rowset(P1)=r[P2]
5357 **
5358 ** Insert the integer value held by register P2 into a boolean index
5359 ** held in register P1.
5360 **
5361 ** An assertion fails if P2 is not an integer.
5362 */
5363 case OP_RowSetAdd: {       /* in1, in2 */
5364   pIn1 = &aMem[pOp->p1];
5365   pIn2 = &aMem[pOp->p2];
5366   assert( (pIn2->flags & MEM_Int)!=0 );
5367   if( (pIn1->flags & MEM_RowSet)==0 ){
5368     sqlite3VdbeMemSetRowSet(pIn1);
5369     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5370   }
5371   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5372   break;
5373 }
5374 
5375 /* Opcode: RowSetRead P1 P2 P3 * *
5376 ** Synopsis:  r[P3]=rowset(P1)
5377 **
5378 ** Extract the smallest value from boolean index P1 and put that value into
5379 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
5380 ** unchanged and jump to instruction P2.
5381 */
5382 case OP_RowSetRead: {       /* jump, in1, out3 */
5383   i64 val;
5384 
5385   pIn1 = &aMem[pOp->p1];
5386   if( (pIn1->flags & MEM_RowSet)==0
5387    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5388   ){
5389     /* The boolean index is empty */
5390     sqlite3VdbeMemSetNull(pIn1);
5391     VdbeBranchTaken(1,2);
5392     goto jump_to_p2_and_check_for_interrupt;
5393   }else{
5394     /* A value was pulled from the index */
5395     VdbeBranchTaken(0,2);
5396     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5397   }
5398   goto check_for_interrupt;
5399 }
5400 
5401 /* Opcode: RowSetTest P1 P2 P3 P4
5402 ** Synopsis: if r[P3] in rowset(P1) goto P2
5403 **
5404 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5405 ** contains a RowSet object and that RowSet object contains
5406 ** the value held in P3, jump to register P2. Otherwise, insert the
5407 ** integer in P3 into the RowSet and continue on to the
5408 ** next opcode.
5409 **
5410 ** The RowSet object is optimized for the case where successive sets
5411 ** of integers, where each set contains no duplicates. Each set
5412 ** of values is identified by a unique P4 value. The first set
5413 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
5414 ** non-negative.  For non-negative values of P4 only the lower 4
5415 ** bits are significant.
5416 **
5417 ** This allows optimizations: (a) when P4==0 there is no need to test
5418 ** the rowset object for P3, as it is guaranteed not to contain it,
5419 ** (b) when P4==-1 there is no need to insert the value, as it will
5420 ** never be tested for, and (c) when a value that is part of set X is
5421 ** inserted, there is no need to search to see if the same value was
5422 ** previously inserted as part of set X (only if it was previously
5423 ** inserted as part of some other set).
5424 */
5425 case OP_RowSetTest: {                     /* jump, in1, in3 */
5426   int iSet;
5427   int exists;
5428 
5429   pIn1 = &aMem[pOp->p1];
5430   pIn3 = &aMem[pOp->p3];
5431   iSet = pOp->p4.i;
5432   assert( pIn3->flags&MEM_Int );
5433 
5434   /* If there is anything other than a rowset object in memory cell P1,
5435   ** delete it now and initialize P1 with an empty rowset
5436   */
5437   if( (pIn1->flags & MEM_RowSet)==0 ){
5438     sqlite3VdbeMemSetRowSet(pIn1);
5439     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5440   }
5441 
5442   assert( pOp->p4type==P4_INT32 );
5443   assert( iSet==-1 || iSet>=0 );
5444   if( iSet ){
5445     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5446     VdbeBranchTaken(exists!=0,2);
5447     if( exists ) goto jump_to_p2;
5448   }
5449   if( iSet>=0 ){
5450     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5451   }
5452   break;
5453 }
5454 
5455 
5456 #ifndef SQLITE_OMIT_TRIGGER
5457 
5458 /* Opcode: Program P1 P2 P3 P4 P5
5459 **
5460 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5461 **
5462 ** P1 contains the address of the memory cell that contains the first memory
5463 ** cell in an array of values used as arguments to the sub-program. P2
5464 ** contains the address to jump to if the sub-program throws an IGNORE
5465 ** exception using the RAISE() function. Register P3 contains the address
5466 ** of a memory cell in this (the parent) VM that is used to allocate the
5467 ** memory required by the sub-vdbe at runtime.
5468 **
5469 ** P4 is a pointer to the VM containing the trigger program.
5470 **
5471 ** If P5 is non-zero, then recursive program invocation is enabled.
5472 */
5473 case OP_Program: {        /* jump */
5474   int nMem;               /* Number of memory registers for sub-program */
5475   int nByte;              /* Bytes of runtime space required for sub-program */
5476   Mem *pRt;               /* Register to allocate runtime space */
5477   Mem *pMem;              /* Used to iterate through memory cells */
5478   Mem *pEnd;              /* Last memory cell in new array */
5479   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5480   SubProgram *pProgram;   /* Sub-program to execute */
5481   void *t;                /* Token identifying trigger */
5482 
5483   pProgram = pOp->p4.pProgram;
5484   pRt = &aMem[pOp->p3];
5485   assert( pProgram->nOp>0 );
5486 
5487   /* If the p5 flag is clear, then recursive invocation of triggers is
5488   ** disabled for backwards compatibility (p5 is set if this sub-program
5489   ** is really a trigger, not a foreign key action, and the flag set
5490   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5491   **
5492   ** It is recursive invocation of triggers, at the SQL level, that is
5493   ** disabled. In some cases a single trigger may generate more than one
5494   ** SubProgram (if the trigger may be executed with more than one different
5495   ** ON CONFLICT algorithm). SubProgram structures associated with a
5496   ** single trigger all have the same value for the SubProgram.token
5497   ** variable.  */
5498   if( pOp->p5 ){
5499     t = pProgram->token;
5500     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5501     if( pFrame ) break;
5502   }
5503 
5504   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5505     rc = SQLITE_ERROR;
5506     sqlite3VdbeError(p, "too many levels of trigger recursion");
5507     break;
5508   }
5509 
5510   /* Register pRt is used to store the memory required to save the state
5511   ** of the current program, and the memory required at runtime to execute
5512   ** the trigger program. If this trigger has been fired before, then pRt
5513   ** is already allocated. Otherwise, it must be initialized.  */
5514   if( (pRt->flags&MEM_Frame)==0 ){
5515     /* SubProgram.nMem is set to the number of memory cells used by the
5516     ** program stored in SubProgram.aOp. As well as these, one memory
5517     ** cell is required for each cursor used by the program. Set local
5518     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5519     */
5520     nMem = pProgram->nMem + pProgram->nCsr;
5521     nByte = ROUND8(sizeof(VdbeFrame))
5522               + nMem * sizeof(Mem)
5523               + pProgram->nCsr * sizeof(VdbeCursor *)
5524               + pProgram->nOnce * sizeof(u8);
5525     pFrame = sqlite3DbMallocZero(db, nByte);
5526     if( !pFrame ){
5527       goto no_mem;
5528     }
5529     sqlite3VdbeMemRelease(pRt);
5530     pRt->flags = MEM_Frame;
5531     pRt->u.pFrame = pFrame;
5532 
5533     pFrame->v = p;
5534     pFrame->nChildMem = nMem;
5535     pFrame->nChildCsr = pProgram->nCsr;
5536     pFrame->pc = (int)(pOp - aOp);
5537     pFrame->aMem = p->aMem;
5538     pFrame->nMem = p->nMem;
5539     pFrame->apCsr = p->apCsr;
5540     pFrame->nCursor = p->nCursor;
5541     pFrame->aOp = p->aOp;
5542     pFrame->nOp = p->nOp;
5543     pFrame->token = pProgram->token;
5544     pFrame->aOnceFlag = p->aOnceFlag;
5545     pFrame->nOnceFlag = p->nOnceFlag;
5546 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5547     pFrame->anExec = p->anExec;
5548 #endif
5549 
5550     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5551     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5552       pMem->flags = MEM_Undefined;
5553       pMem->db = db;
5554     }
5555   }else{
5556     pFrame = pRt->u.pFrame;
5557     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5558     assert( pProgram->nCsr==pFrame->nChildCsr );
5559     assert( (int)(pOp - aOp)==pFrame->pc );
5560   }
5561 
5562   p->nFrame++;
5563   pFrame->pParent = p->pFrame;
5564   pFrame->lastRowid = lastRowid;
5565   pFrame->nChange = p->nChange;
5566   pFrame->nDbChange = p->db->nChange;
5567   p->nChange = 0;
5568   p->pFrame = pFrame;
5569   p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5570   p->nMem = pFrame->nChildMem;
5571   p->nCursor = (u16)pFrame->nChildCsr;
5572   p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5573   p->aOp = aOp = pProgram->aOp;
5574   p->nOp = pProgram->nOp;
5575   p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5576   p->nOnceFlag = pProgram->nOnce;
5577 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5578   p->anExec = 0;
5579 #endif
5580   pOp = &aOp[-1];
5581   memset(p->aOnceFlag, 0, p->nOnceFlag);
5582 
5583   break;
5584 }
5585 
5586 /* Opcode: Param P1 P2 * * *
5587 **
5588 ** This opcode is only ever present in sub-programs called via the
5589 ** OP_Program instruction. Copy a value currently stored in a memory
5590 ** cell of the calling (parent) frame to cell P2 in the current frames
5591 ** address space. This is used by trigger programs to access the new.*
5592 ** and old.* values.
5593 **
5594 ** The address of the cell in the parent frame is determined by adding
5595 ** the value of the P1 argument to the value of the P1 argument to the
5596 ** calling OP_Program instruction.
5597 */
5598 case OP_Param: {           /* out2 */
5599   VdbeFrame *pFrame;
5600   Mem *pIn;
5601   pOut = out2Prerelease(p, pOp);
5602   pFrame = p->pFrame;
5603   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5604   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5605   break;
5606 }
5607 
5608 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5609 
5610 #ifndef SQLITE_OMIT_FOREIGN_KEY
5611 /* Opcode: FkCounter P1 P2 * * *
5612 ** Synopsis: fkctr[P1]+=P2
5613 **
5614 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5615 ** If P1 is non-zero, the database constraint counter is incremented
5616 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5617 ** statement counter is incremented (immediate foreign key constraints).
5618 */
5619 case OP_FkCounter: {
5620   if( db->flags & SQLITE_DeferFKs ){
5621     db->nDeferredImmCons += pOp->p2;
5622   }else if( pOp->p1 ){
5623     db->nDeferredCons += pOp->p2;
5624   }else{
5625     p->nFkConstraint += pOp->p2;
5626   }
5627   break;
5628 }
5629 
5630 /* Opcode: FkIfZero P1 P2 * * *
5631 ** Synopsis: if fkctr[P1]==0 goto P2
5632 **
5633 ** This opcode tests if a foreign key constraint-counter is currently zero.
5634 ** If so, jump to instruction P2. Otherwise, fall through to the next
5635 ** instruction.
5636 **
5637 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5638 ** is zero (the one that counts deferred constraint violations). If P1 is
5639 ** zero, the jump is taken if the statement constraint-counter is zero
5640 ** (immediate foreign key constraint violations).
5641 */
5642 case OP_FkIfZero: {         /* jump */
5643   if( pOp->p1 ){
5644     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5645     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5646   }else{
5647     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5648     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5649   }
5650   break;
5651 }
5652 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5653 
5654 #ifndef SQLITE_OMIT_AUTOINCREMENT
5655 /* Opcode: MemMax P1 P2 * * *
5656 ** Synopsis: r[P1]=max(r[P1],r[P2])
5657 **
5658 ** P1 is a register in the root frame of this VM (the root frame is
5659 ** different from the current frame if this instruction is being executed
5660 ** within a sub-program). Set the value of register P1 to the maximum of
5661 ** its current value and the value in register P2.
5662 **
5663 ** This instruction throws an error if the memory cell is not initially
5664 ** an integer.
5665 */
5666 case OP_MemMax: {        /* in2 */
5667   VdbeFrame *pFrame;
5668   if( p->pFrame ){
5669     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5670     pIn1 = &pFrame->aMem[pOp->p1];
5671   }else{
5672     pIn1 = &aMem[pOp->p1];
5673   }
5674   assert( memIsValid(pIn1) );
5675   sqlite3VdbeMemIntegerify(pIn1);
5676   pIn2 = &aMem[pOp->p2];
5677   sqlite3VdbeMemIntegerify(pIn2);
5678   if( pIn1->u.i<pIn2->u.i){
5679     pIn1->u.i = pIn2->u.i;
5680   }
5681   break;
5682 }
5683 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5684 
5685 /* Opcode: IfPos P1 P2 P3 * *
5686 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
5687 **
5688 ** Register P1 must contain an integer.
5689 ** If the value of register P1 is 1 or greater, subtract P3 from the
5690 ** value in P1 and jump to P2.
5691 **
5692 ** If the initial value of register P1 is less than 1, then the
5693 ** value is unchanged and control passes through to the next instruction.
5694 */
5695 case OP_IfPos: {        /* jump, in1 */
5696   pIn1 = &aMem[pOp->p1];
5697   assert( pIn1->flags&MEM_Int );
5698   VdbeBranchTaken( pIn1->u.i>0, 2);
5699   if( pIn1->u.i>0 ){
5700     pIn1->u.i -= pOp->p3;
5701     goto jump_to_p2;
5702   }
5703   break;
5704 }
5705 
5706 /* Opcode: SetIfNotPos P1 P2 P3 * *
5707 ** Synopsis: if r[P1]<=0 then r[P2]=P3
5708 **
5709 ** Register P1 must contain an integer.
5710 ** If the value of register P1 is not positive (if it is less than 1) then
5711 ** set the value of register P2 to be the integer P3.
5712 */
5713 case OP_SetIfNotPos: {        /* in1, in2 */
5714   pIn1 = &aMem[pOp->p1];
5715   assert( pIn1->flags&MEM_Int );
5716   if( pIn1->u.i<=0 ){
5717     pOut = out2Prerelease(p, pOp);
5718     pOut->u.i = pOp->p3;
5719   }
5720   break;
5721 }
5722 
5723 /* Opcode: IfNotZero P1 P2 P3 * *
5724 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
5725 **
5726 ** Register P1 must contain an integer.  If the content of register P1 is
5727 ** initially nonzero, then subtract P3 from the value in register P1 and
5728 ** jump to P2.  If register P1 is initially zero, leave it unchanged
5729 ** and fall through.
5730 */
5731 case OP_IfNotZero: {        /* jump, in1 */
5732   pIn1 = &aMem[pOp->p1];
5733   assert( pIn1->flags&MEM_Int );
5734   VdbeBranchTaken(pIn1->u.i<0, 2);
5735   if( pIn1->u.i ){
5736      pIn1->u.i -= pOp->p3;
5737      goto jump_to_p2;
5738   }
5739   break;
5740 }
5741 
5742 /* Opcode: DecrJumpZero P1 P2 * * *
5743 ** Synopsis: if (--r[P1])==0 goto P2
5744 **
5745 ** Register P1 must hold an integer.  Decrement the value in register P1
5746 ** then jump to P2 if the new value is exactly zero.
5747 */
5748 case OP_DecrJumpZero: {      /* jump, in1 */
5749   pIn1 = &aMem[pOp->p1];
5750   assert( pIn1->flags&MEM_Int );
5751   pIn1->u.i--;
5752   VdbeBranchTaken(pIn1->u.i==0, 2);
5753   if( pIn1->u.i==0 ) goto jump_to_p2;
5754   break;
5755 }
5756 
5757 
5758 /* Opcode: JumpZeroIncr P1 P2 * * *
5759 ** Synopsis: if (r[P1]++)==0 ) goto P2
5760 **
5761 ** The register P1 must contain an integer.  If register P1 is initially
5762 ** zero, then jump to P2.  Increment register P1 regardless of whether or
5763 ** not the jump is taken.
5764 */
5765 case OP_JumpZeroIncr: {        /* jump, in1 */
5766   pIn1 = &aMem[pOp->p1];
5767   assert( pIn1->flags&MEM_Int );
5768   VdbeBranchTaken(pIn1->u.i==0, 2);
5769   if( (pIn1->u.i++)==0 ) goto jump_to_p2;
5770   break;
5771 }
5772 
5773 /* Opcode: AggStep0 * P2 P3 P4 P5
5774 ** Synopsis: accum=r[P3] step(r[P2@P5])
5775 **
5776 ** Execute the step function for an aggregate.  The
5777 ** function has P5 arguments.   P4 is a pointer to the FuncDef
5778 ** structure that specifies the function.  Register P3 is the
5779 ** accumulator.
5780 **
5781 ** The P5 arguments are taken from register P2 and its
5782 ** successors.
5783 */
5784 /* Opcode: AggStep * P2 P3 P4 P5
5785 ** Synopsis: accum=r[P3] step(r[P2@P5])
5786 **
5787 ** Execute the step function for an aggregate.  The
5788 ** function has P5 arguments.   P4 is a pointer to an sqlite3_context
5789 ** object that is used to run the function.  Register P3 is
5790 ** as the accumulator.
5791 **
5792 ** The P5 arguments are taken from register P2 and its
5793 ** successors.
5794 **
5795 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
5796 ** the FuncDef stored in P4 is converted into an sqlite3_context and
5797 ** the opcode is changed.  In this way, the initialization of the
5798 ** sqlite3_context only happens once, instead of on each call to the
5799 ** step function.
5800 */
5801 case OP_AggStep0: {
5802   int n;
5803   sqlite3_context *pCtx;
5804 
5805   assert( pOp->p4type==P4_FUNCDEF );
5806   n = pOp->p5;
5807   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5808   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
5809   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
5810   pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
5811   if( pCtx==0 ) goto no_mem;
5812   pCtx->pMem = 0;
5813   pCtx->pFunc = pOp->p4.pFunc;
5814   pCtx->iOp = (int)(pOp - aOp);
5815   pCtx->pVdbe = p;
5816   pCtx->argc = n;
5817   pOp->p4type = P4_FUNCCTX;
5818   pOp->p4.pCtx = pCtx;
5819   pOp->opcode = OP_AggStep;
5820   /* Fall through into OP_AggStep */
5821 }
5822 case OP_AggStep: {
5823   int i;
5824   sqlite3_context *pCtx;
5825   Mem *pMem;
5826   Mem t;
5827 
5828   assert( pOp->p4type==P4_FUNCCTX );
5829   pCtx = pOp->p4.pCtx;
5830   pMem = &aMem[pOp->p3];
5831 
5832   /* If this function is inside of a trigger, the register array in aMem[]
5833   ** might change from one evaluation to the next.  The next block of code
5834   ** checks to see if the register array has changed, and if so it
5835   ** reinitializes the relavant parts of the sqlite3_context object */
5836   if( pCtx->pMem != pMem ){
5837     pCtx->pMem = pMem;
5838     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
5839   }
5840 
5841 #ifdef SQLITE_DEBUG
5842   for(i=0; i<pCtx->argc; i++){
5843     assert( memIsValid(pCtx->argv[i]) );
5844     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
5845   }
5846 #endif
5847 
5848   pMem->n++;
5849   sqlite3VdbeMemInit(&t, db, MEM_Null);
5850   pCtx->pOut = &t;
5851   pCtx->fErrorOrAux = 0;
5852   pCtx->skipFlag = 0;
5853   (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
5854   if( pCtx->fErrorOrAux ){
5855     if( pCtx->isError ){
5856       sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
5857       rc = pCtx->isError;
5858     }
5859     sqlite3VdbeMemRelease(&t);
5860   }else{
5861     assert( t.flags==MEM_Null );
5862   }
5863   if( pCtx->skipFlag ){
5864     assert( pOp[-1].opcode==OP_CollSeq );
5865     i = pOp[-1].p1;
5866     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5867   }
5868   break;
5869 }
5870 
5871 /* Opcode: AggFinal P1 P2 * P4 *
5872 ** Synopsis: accum=r[P1] N=P2
5873 **
5874 ** Execute the finalizer function for an aggregate.  P1 is
5875 ** the memory location that is the accumulator for the aggregate.
5876 **
5877 ** P2 is the number of arguments that the step function takes and
5878 ** P4 is a pointer to the FuncDef for this function.  The P2
5879 ** argument is not used by this opcode.  It is only there to disambiguate
5880 ** functions that can take varying numbers of arguments.  The
5881 ** P4 argument is only needed for the degenerate case where
5882 ** the step function was not previously called.
5883 */
5884 case OP_AggFinal: {
5885   Mem *pMem;
5886   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
5887   pMem = &aMem[pOp->p1];
5888   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5889   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5890   if( rc ){
5891     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
5892   }
5893   sqlite3VdbeChangeEncoding(pMem, encoding);
5894   UPDATE_MAX_BLOBSIZE(pMem);
5895   if( sqlite3VdbeMemTooBig(pMem) ){
5896     goto too_big;
5897   }
5898   break;
5899 }
5900 
5901 #ifndef SQLITE_OMIT_WAL
5902 /* Opcode: Checkpoint P1 P2 P3 * *
5903 **
5904 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5905 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5906 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
5907 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
5908 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5909 ** in the WAL that have been checkpointed after the checkpoint
5910 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
5911 ** mem[P3+2] are initialized to -1.
5912 */
5913 case OP_Checkpoint: {
5914   int i;                          /* Loop counter */
5915   int aRes[3];                    /* Results */
5916   Mem *pMem;                      /* Write results here */
5917 
5918   assert( p->readOnly==0 );
5919   aRes[0] = 0;
5920   aRes[1] = aRes[2] = -1;
5921   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5922        || pOp->p2==SQLITE_CHECKPOINT_FULL
5923        || pOp->p2==SQLITE_CHECKPOINT_RESTART
5924        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
5925   );
5926   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5927   if( rc==SQLITE_BUSY ){
5928     rc = SQLITE_OK;
5929     aRes[0] = 1;
5930   }
5931   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5932     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5933   }
5934   break;
5935 };
5936 #endif
5937 
5938 #ifndef SQLITE_OMIT_PRAGMA
5939 /* Opcode: JournalMode P1 P2 P3 * *
5940 **
5941 ** Change the journal mode of database P1 to P3. P3 must be one of the
5942 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5943 ** modes (delete, truncate, persist, off and memory), this is a simple
5944 ** operation. No IO is required.
5945 **
5946 ** If changing into or out of WAL mode the procedure is more complicated.
5947 **
5948 ** Write a string containing the final journal-mode to register P2.
5949 */
5950 case OP_JournalMode: {    /* out2 */
5951   Btree *pBt;                     /* Btree to change journal mode of */
5952   Pager *pPager;                  /* Pager associated with pBt */
5953   int eNew;                       /* New journal mode */
5954   int eOld;                       /* The old journal mode */
5955 #ifndef SQLITE_OMIT_WAL
5956   const char *zFilename;          /* Name of database file for pPager */
5957 #endif
5958 
5959   pOut = out2Prerelease(p, pOp);
5960   eNew = pOp->p3;
5961   assert( eNew==PAGER_JOURNALMODE_DELETE
5962        || eNew==PAGER_JOURNALMODE_TRUNCATE
5963        || eNew==PAGER_JOURNALMODE_PERSIST
5964        || eNew==PAGER_JOURNALMODE_OFF
5965        || eNew==PAGER_JOURNALMODE_MEMORY
5966        || eNew==PAGER_JOURNALMODE_WAL
5967        || eNew==PAGER_JOURNALMODE_QUERY
5968   );
5969   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5970   assert( p->readOnly==0 );
5971 
5972   pBt = db->aDb[pOp->p1].pBt;
5973   pPager = sqlite3BtreePager(pBt);
5974   eOld = sqlite3PagerGetJournalMode(pPager);
5975   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5976   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5977 
5978 #ifndef SQLITE_OMIT_WAL
5979   zFilename = sqlite3PagerFilename(pPager, 1);
5980 
5981   /* Do not allow a transition to journal_mode=WAL for a database
5982   ** in temporary storage or if the VFS does not support shared memory
5983   */
5984   if( eNew==PAGER_JOURNALMODE_WAL
5985    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
5986        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
5987   ){
5988     eNew = eOld;
5989   }
5990 
5991   if( (eNew!=eOld)
5992    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5993   ){
5994     if( !db->autoCommit || db->nVdbeRead>1 ){
5995       rc = SQLITE_ERROR;
5996       sqlite3VdbeError(p,
5997           "cannot change %s wal mode from within a transaction",
5998           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5999       );
6000       break;
6001     }else{
6002 
6003       if( eOld==PAGER_JOURNALMODE_WAL ){
6004         /* If leaving WAL mode, close the log file. If successful, the call
6005         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6006         ** file. An EXCLUSIVE lock may still be held on the database file
6007         ** after a successful return.
6008         */
6009         rc = sqlite3PagerCloseWal(pPager);
6010         if( rc==SQLITE_OK ){
6011           sqlite3PagerSetJournalMode(pPager, eNew);
6012         }
6013       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6014         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6015         ** as an intermediate */
6016         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6017       }
6018 
6019       /* Open a transaction on the database file. Regardless of the journal
6020       ** mode, this transaction always uses a rollback journal.
6021       */
6022       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6023       if( rc==SQLITE_OK ){
6024         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6025       }
6026     }
6027   }
6028 #endif /* ifndef SQLITE_OMIT_WAL */
6029 
6030   if( rc ){
6031     eNew = eOld;
6032   }
6033   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6034 
6035   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6036   pOut->z = (char *)sqlite3JournalModename(eNew);
6037   pOut->n = sqlite3Strlen30(pOut->z);
6038   pOut->enc = SQLITE_UTF8;
6039   sqlite3VdbeChangeEncoding(pOut, encoding);
6040   break;
6041 };
6042 #endif /* SQLITE_OMIT_PRAGMA */
6043 
6044 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6045 /* Opcode: Vacuum * * * * *
6046 **
6047 ** Vacuum the entire database.  This opcode will cause other virtual
6048 ** machines to be created and run.  It may not be called from within
6049 ** a transaction.
6050 */
6051 case OP_Vacuum: {
6052   assert( p->readOnly==0 );
6053   rc = sqlite3RunVacuum(&p->zErrMsg, db);
6054   break;
6055 }
6056 #endif
6057 
6058 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6059 /* Opcode: IncrVacuum P1 P2 * * *
6060 **
6061 ** Perform a single step of the incremental vacuum procedure on
6062 ** the P1 database. If the vacuum has finished, jump to instruction
6063 ** P2. Otherwise, fall through to the next instruction.
6064 */
6065 case OP_IncrVacuum: {        /* jump */
6066   Btree *pBt;
6067 
6068   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6069   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6070   assert( p->readOnly==0 );
6071   pBt = db->aDb[pOp->p1].pBt;
6072   rc = sqlite3BtreeIncrVacuum(pBt);
6073   VdbeBranchTaken(rc==SQLITE_DONE,2);
6074   if( rc==SQLITE_DONE ){
6075     rc = SQLITE_OK;
6076     goto jump_to_p2;
6077   }
6078   break;
6079 }
6080 #endif
6081 
6082 /* Opcode: Expire P1 * * * *
6083 **
6084 ** Cause precompiled statements to expire.  When an expired statement
6085 ** is executed using sqlite3_step() it will either automatically
6086 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6087 ** or it will fail with SQLITE_SCHEMA.
6088 **
6089 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6090 ** then only the currently executing statement is expired.
6091 */
6092 case OP_Expire: {
6093   if( !pOp->p1 ){
6094     sqlite3ExpirePreparedStatements(db);
6095   }else{
6096     p->expired = 1;
6097   }
6098   break;
6099 }
6100 
6101 #ifndef SQLITE_OMIT_SHARED_CACHE
6102 /* Opcode: TableLock P1 P2 P3 P4 *
6103 ** Synopsis: iDb=P1 root=P2 write=P3
6104 **
6105 ** Obtain a lock on a particular table. This instruction is only used when
6106 ** the shared-cache feature is enabled.
6107 **
6108 ** P1 is the index of the database in sqlite3.aDb[] of the database
6109 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6110 ** a write lock if P3==1.
6111 **
6112 ** P2 contains the root-page of the table to lock.
6113 **
6114 ** P4 contains a pointer to the name of the table being locked. This is only
6115 ** used to generate an error message if the lock cannot be obtained.
6116 */
6117 case OP_TableLock: {
6118   u8 isWriteLock = (u8)pOp->p3;
6119   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6120     int p1 = pOp->p1;
6121     assert( p1>=0 && p1<db->nDb );
6122     assert( DbMaskTest(p->btreeMask, p1) );
6123     assert( isWriteLock==0 || isWriteLock==1 );
6124     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6125     if( (rc&0xFF)==SQLITE_LOCKED ){
6126       const char *z = pOp->p4.z;
6127       sqlite3VdbeError(p, "database table is locked: %s", z);
6128     }
6129   }
6130   break;
6131 }
6132 #endif /* SQLITE_OMIT_SHARED_CACHE */
6133 
6134 #ifndef SQLITE_OMIT_VIRTUALTABLE
6135 /* Opcode: VBegin * * * P4 *
6136 **
6137 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6138 ** xBegin method for that table.
6139 **
6140 ** Also, whether or not P4 is set, check that this is not being called from
6141 ** within a callback to a virtual table xSync() method. If it is, the error
6142 ** code will be set to SQLITE_LOCKED.
6143 */
6144 case OP_VBegin: {
6145   VTable *pVTab;
6146   pVTab = pOp->p4.pVtab;
6147   rc = sqlite3VtabBegin(db, pVTab);
6148   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6149   break;
6150 }
6151 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6152 
6153 #ifndef SQLITE_OMIT_VIRTUALTABLE
6154 /* Opcode: VCreate P1 P2 * * *
6155 **
6156 ** P2 is a register that holds the name of a virtual table in database
6157 ** P1. Call the xCreate method for that table.
6158 */
6159 case OP_VCreate: {
6160   Mem sMem;          /* For storing the record being decoded */
6161   const char *zTab;  /* Name of the virtual table */
6162 
6163   memset(&sMem, 0, sizeof(sMem));
6164   sMem.db = db;
6165   /* Because P2 is always a static string, it is impossible for the
6166   ** sqlite3VdbeMemCopy() to fail */
6167   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6168   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6169   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6170   assert( rc==SQLITE_OK );
6171   zTab = (const char*)sqlite3_value_text(&sMem);
6172   assert( zTab || db->mallocFailed );
6173   if( zTab ){
6174     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6175   }
6176   sqlite3VdbeMemRelease(&sMem);
6177   break;
6178 }
6179 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6180 
6181 #ifndef SQLITE_OMIT_VIRTUALTABLE
6182 /* Opcode: VDestroy P1 * * P4 *
6183 **
6184 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6185 ** of that table.
6186 */
6187 case OP_VDestroy: {
6188   db->nVDestroy++;
6189   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6190   db->nVDestroy--;
6191   break;
6192 }
6193 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6194 
6195 #ifndef SQLITE_OMIT_VIRTUALTABLE
6196 /* Opcode: VOpen P1 * * P4 *
6197 **
6198 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6199 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6200 ** table and stores that cursor in P1.
6201 */
6202 case OP_VOpen: {
6203   VdbeCursor *pCur;
6204   sqlite3_vtab_cursor *pVtabCursor;
6205   sqlite3_vtab *pVtab;
6206   const sqlite3_module *pModule;
6207 
6208   assert( p->bIsReader );
6209   pCur = 0;
6210   pVtabCursor = 0;
6211   pVtab = pOp->p4.pVtab->pVtab;
6212   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6213     rc = SQLITE_LOCKED;
6214     break;
6215   }
6216   pModule = pVtab->pModule;
6217   rc = pModule->xOpen(pVtab, &pVtabCursor);
6218   sqlite3VtabImportErrmsg(p, pVtab);
6219   if( SQLITE_OK==rc ){
6220     /* Initialize sqlite3_vtab_cursor base class */
6221     pVtabCursor->pVtab = pVtab;
6222 
6223     /* Initialize vdbe cursor object */
6224     pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
6225     if( pCur ){
6226       pCur->pVtabCursor = pVtabCursor;
6227       pVtab->nRef++;
6228     }else{
6229       assert( db->mallocFailed );
6230       pModule->xClose(pVtabCursor);
6231       goto no_mem;
6232     }
6233   }
6234   break;
6235 }
6236 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6237 
6238 #ifndef SQLITE_OMIT_VIRTUALTABLE
6239 /* Opcode: VFilter P1 P2 P3 P4 *
6240 ** Synopsis: iplan=r[P3] zplan='P4'
6241 **
6242 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6243 ** the filtered result set is empty.
6244 **
6245 ** P4 is either NULL or a string that was generated by the xBestIndex
6246 ** method of the module.  The interpretation of the P4 string is left
6247 ** to the module implementation.
6248 **
6249 ** This opcode invokes the xFilter method on the virtual table specified
6250 ** by P1.  The integer query plan parameter to xFilter is stored in register
6251 ** P3. Register P3+1 stores the argc parameter to be passed to the
6252 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6253 ** additional parameters which are passed to
6254 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6255 **
6256 ** A jump is made to P2 if the result set after filtering would be empty.
6257 */
6258 case OP_VFilter: {   /* jump */
6259   int nArg;
6260   int iQuery;
6261   const sqlite3_module *pModule;
6262   Mem *pQuery;
6263   Mem *pArgc;
6264   sqlite3_vtab_cursor *pVtabCursor;
6265   sqlite3_vtab *pVtab;
6266   VdbeCursor *pCur;
6267   int res;
6268   int i;
6269   Mem **apArg;
6270 
6271   pQuery = &aMem[pOp->p3];
6272   pArgc = &pQuery[1];
6273   pCur = p->apCsr[pOp->p1];
6274   assert( memIsValid(pQuery) );
6275   REGISTER_TRACE(pOp->p3, pQuery);
6276   assert( pCur->pVtabCursor );
6277   pVtabCursor = pCur->pVtabCursor;
6278   pVtab = pVtabCursor->pVtab;
6279   pModule = pVtab->pModule;
6280 
6281   /* Grab the index number and argc parameters */
6282   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6283   nArg = (int)pArgc->u.i;
6284   iQuery = (int)pQuery->u.i;
6285 
6286   /* Invoke the xFilter method */
6287   res = 0;
6288   apArg = p->apArg;
6289   for(i = 0; i<nArg; i++){
6290     apArg[i] = &pArgc[i+1];
6291   }
6292   rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
6293   sqlite3VtabImportErrmsg(p, pVtab);
6294   if( rc==SQLITE_OK ){
6295     res = pModule->xEof(pVtabCursor);
6296   }
6297   pCur->nullRow = 0;
6298   VdbeBranchTaken(res!=0,2);
6299   if( res ) goto jump_to_p2;
6300   break;
6301 }
6302 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6303 
6304 #ifndef SQLITE_OMIT_VIRTUALTABLE
6305 /* Opcode: VColumn P1 P2 P3 * *
6306 ** Synopsis: r[P3]=vcolumn(P2)
6307 **
6308 ** Store the value of the P2-th column of
6309 ** the row of the virtual-table that the
6310 ** P1 cursor is pointing to into register P3.
6311 */
6312 case OP_VColumn: {
6313   sqlite3_vtab *pVtab;
6314   const sqlite3_module *pModule;
6315   Mem *pDest;
6316   sqlite3_context sContext;
6317 
6318   VdbeCursor *pCur = p->apCsr[pOp->p1];
6319   assert( pCur->pVtabCursor );
6320   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
6321   pDest = &aMem[pOp->p3];
6322   memAboutToChange(p, pDest);
6323   if( pCur->nullRow ){
6324     sqlite3VdbeMemSetNull(pDest);
6325     break;
6326   }
6327   pVtab = pCur->pVtabCursor->pVtab;
6328   pModule = pVtab->pModule;
6329   assert( pModule->xColumn );
6330   memset(&sContext, 0, sizeof(sContext));
6331   sContext.pOut = pDest;
6332   MemSetTypeFlag(pDest, MEM_Null);
6333   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
6334   sqlite3VtabImportErrmsg(p, pVtab);
6335   if( sContext.isError ){
6336     rc = sContext.isError;
6337   }
6338   sqlite3VdbeChangeEncoding(pDest, encoding);
6339   REGISTER_TRACE(pOp->p3, pDest);
6340   UPDATE_MAX_BLOBSIZE(pDest);
6341 
6342   if( sqlite3VdbeMemTooBig(pDest) ){
6343     goto too_big;
6344   }
6345   break;
6346 }
6347 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6348 
6349 #ifndef SQLITE_OMIT_VIRTUALTABLE
6350 /* Opcode: VNext P1 P2 * * *
6351 **
6352 ** Advance virtual table P1 to the next row in its result set and
6353 ** jump to instruction P2.  Or, if the virtual table has reached
6354 ** the end of its result set, then fall through to the next instruction.
6355 */
6356 case OP_VNext: {   /* jump */
6357   sqlite3_vtab *pVtab;
6358   const sqlite3_module *pModule;
6359   int res;
6360   VdbeCursor *pCur;
6361 
6362   res = 0;
6363   pCur = p->apCsr[pOp->p1];
6364   assert( pCur->pVtabCursor );
6365   if( pCur->nullRow ){
6366     break;
6367   }
6368   pVtab = pCur->pVtabCursor->pVtab;
6369   pModule = pVtab->pModule;
6370   assert( pModule->xNext );
6371 
6372   /* Invoke the xNext() method of the module. There is no way for the
6373   ** underlying implementation to return an error if one occurs during
6374   ** xNext(). Instead, if an error occurs, true is returned (indicating that
6375   ** data is available) and the error code returned when xColumn or
6376   ** some other method is next invoked on the save virtual table cursor.
6377   */
6378   rc = pModule->xNext(pCur->pVtabCursor);
6379   sqlite3VtabImportErrmsg(p, pVtab);
6380   if( rc==SQLITE_OK ){
6381     res = pModule->xEof(pCur->pVtabCursor);
6382   }
6383   VdbeBranchTaken(!res,2);
6384   if( !res ){
6385     /* If there is data, jump to P2 */
6386     goto jump_to_p2_and_check_for_interrupt;
6387   }
6388   goto check_for_interrupt;
6389 }
6390 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6391 
6392 #ifndef SQLITE_OMIT_VIRTUALTABLE
6393 /* Opcode: VRename P1 * * P4 *
6394 **
6395 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6396 ** This opcode invokes the corresponding xRename method. The value
6397 ** in register P1 is passed as the zName argument to the xRename method.
6398 */
6399 case OP_VRename: {
6400   sqlite3_vtab *pVtab;
6401   Mem *pName;
6402 
6403   pVtab = pOp->p4.pVtab->pVtab;
6404   pName = &aMem[pOp->p1];
6405   assert( pVtab->pModule->xRename );
6406   assert( memIsValid(pName) );
6407   assert( p->readOnly==0 );
6408   REGISTER_TRACE(pOp->p1, pName);
6409   assert( pName->flags & MEM_Str );
6410   testcase( pName->enc==SQLITE_UTF8 );
6411   testcase( pName->enc==SQLITE_UTF16BE );
6412   testcase( pName->enc==SQLITE_UTF16LE );
6413   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6414   if( rc==SQLITE_OK ){
6415     rc = pVtab->pModule->xRename(pVtab, pName->z);
6416     sqlite3VtabImportErrmsg(p, pVtab);
6417     p->expired = 0;
6418   }
6419   break;
6420 }
6421 #endif
6422 
6423 #ifndef SQLITE_OMIT_VIRTUALTABLE
6424 /* Opcode: VUpdate P1 P2 P3 P4 P5
6425 ** Synopsis: data=r[P3@P2]
6426 **
6427 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6428 ** This opcode invokes the corresponding xUpdate method. P2 values
6429 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6430 ** invocation. The value in register (P3+P2-1) corresponds to the
6431 ** p2th element of the argv array passed to xUpdate.
6432 **
6433 ** The xUpdate method will do a DELETE or an INSERT or both.
6434 ** The argv[0] element (which corresponds to memory cell P3)
6435 ** is the rowid of a row to delete.  If argv[0] is NULL then no
6436 ** deletion occurs.  The argv[1] element is the rowid of the new
6437 ** row.  This can be NULL to have the virtual table select the new
6438 ** rowid for itself.  The subsequent elements in the array are
6439 ** the values of columns in the new row.
6440 **
6441 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6442 ** a row to delete.
6443 **
6444 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6445 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6446 ** is set to the value of the rowid for the row just inserted.
6447 **
6448 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6449 ** apply in the case of a constraint failure on an insert or update.
6450 */
6451 case OP_VUpdate: {
6452   sqlite3_vtab *pVtab;
6453   const sqlite3_module *pModule;
6454   int nArg;
6455   int i;
6456   sqlite_int64 rowid;
6457   Mem **apArg;
6458   Mem *pX;
6459 
6460   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6461        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6462   );
6463   assert( p->readOnly==0 );
6464   pVtab = pOp->p4.pVtab->pVtab;
6465   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6466     rc = SQLITE_LOCKED;
6467     break;
6468   }
6469   pModule = pVtab->pModule;
6470   nArg = pOp->p2;
6471   assert( pOp->p4type==P4_VTAB );
6472   if( ALWAYS(pModule->xUpdate) ){
6473     u8 vtabOnConflict = db->vtabOnConflict;
6474     apArg = p->apArg;
6475     pX = &aMem[pOp->p3];
6476     for(i=0; i<nArg; i++){
6477       assert( memIsValid(pX) );
6478       memAboutToChange(p, pX);
6479       apArg[i] = pX;
6480       pX++;
6481     }
6482     db->vtabOnConflict = pOp->p5;
6483     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6484     db->vtabOnConflict = vtabOnConflict;
6485     sqlite3VtabImportErrmsg(p, pVtab);
6486     if( rc==SQLITE_OK && pOp->p1 ){
6487       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6488       db->lastRowid = lastRowid = rowid;
6489     }
6490     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6491       if( pOp->p5==OE_Ignore ){
6492         rc = SQLITE_OK;
6493       }else{
6494         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6495       }
6496     }else{
6497       p->nChange++;
6498     }
6499   }
6500   break;
6501 }
6502 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6503 
6504 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6505 /* Opcode: Pagecount P1 P2 * * *
6506 **
6507 ** Write the current number of pages in database P1 to memory cell P2.
6508 */
6509 case OP_Pagecount: {            /* out2 */
6510   pOut = out2Prerelease(p, pOp);
6511   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6512   break;
6513 }
6514 #endif
6515 
6516 
6517 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6518 /* Opcode: MaxPgcnt P1 P2 P3 * *
6519 **
6520 ** Try to set the maximum page count for database P1 to the value in P3.
6521 ** Do not let the maximum page count fall below the current page count and
6522 ** do not change the maximum page count value if P3==0.
6523 **
6524 ** Store the maximum page count after the change in register P2.
6525 */
6526 case OP_MaxPgcnt: {            /* out2 */
6527   unsigned int newMax;
6528   Btree *pBt;
6529 
6530   pOut = out2Prerelease(p, pOp);
6531   pBt = db->aDb[pOp->p1].pBt;
6532   newMax = 0;
6533   if( pOp->p3 ){
6534     newMax = sqlite3BtreeLastPage(pBt);
6535     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6536   }
6537   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6538   break;
6539 }
6540 #endif
6541 
6542 
6543 /* Opcode: Init * P2 * P4 *
6544 ** Synopsis:  Start at P2
6545 **
6546 ** Programs contain a single instance of this opcode as the very first
6547 ** opcode.
6548 **
6549 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6550 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6551 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6552 **
6553 ** If P2 is not zero, jump to instruction P2.
6554 */
6555 case OP_Init: {          /* jump */
6556   char *zTrace;
6557   char *z;
6558 
6559 #ifndef SQLITE_OMIT_TRACE
6560   if( db->xTrace
6561    && !p->doingRerun
6562    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6563   ){
6564     z = sqlite3VdbeExpandSql(p, zTrace);
6565     db->xTrace(db->pTraceArg, z);
6566     sqlite3DbFree(db, z);
6567   }
6568 #ifdef SQLITE_USE_FCNTL_TRACE
6569   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6570   if( zTrace ){
6571     int i;
6572     for(i=0; i<db->nDb; i++){
6573       if( DbMaskTest(p->btreeMask, i)==0 ) continue;
6574       sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6575     }
6576   }
6577 #endif /* SQLITE_USE_FCNTL_TRACE */
6578 #ifdef SQLITE_DEBUG
6579   if( (db->flags & SQLITE_SqlTrace)!=0
6580    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6581   ){
6582     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6583   }
6584 #endif /* SQLITE_DEBUG */
6585 #endif /* SQLITE_OMIT_TRACE */
6586   if( pOp->p2 ) goto jump_to_p2;
6587   break;
6588 }
6589 
6590 
6591 /* Opcode: Noop * * * * *
6592 **
6593 ** Do nothing.  This instruction is often useful as a jump
6594 ** destination.
6595 */
6596 /*
6597 ** The magic Explain opcode are only inserted when explain==2 (which
6598 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6599 ** This opcode records information from the optimizer.  It is the
6600 ** the same as a no-op.  This opcodesnever appears in a real VM program.
6601 */
6602 default: {          /* This is really OP_Noop and OP_Explain */
6603   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6604   break;
6605 }
6606 
6607 /*****************************************************************************
6608 ** The cases of the switch statement above this line should all be indented
6609 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
6610 ** readability.  From this point on down, the normal indentation rules are
6611 ** restored.
6612 *****************************************************************************/
6613     }
6614 
6615 #ifdef VDBE_PROFILE
6616     {
6617       u64 endTime = sqlite3Hwtime();
6618       if( endTime>start ) pOrigOp->cycles += endTime - start;
6619       pOrigOp->cnt++;
6620     }
6621 #endif
6622 
6623     /* The following code adds nothing to the actual functionality
6624     ** of the program.  It is only here for testing and debugging.
6625     ** On the other hand, it does burn CPU cycles every time through
6626     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
6627     */
6628 #ifndef NDEBUG
6629     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
6630 
6631 #ifdef SQLITE_DEBUG
6632     if( db->flags & SQLITE_VdbeTrace ){
6633       if( rc!=0 ) printf("rc=%d\n",rc);
6634       if( pOrigOp->opflags & (OPFLG_OUT2) ){
6635         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
6636       }
6637       if( pOrigOp->opflags & OPFLG_OUT3 ){
6638         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
6639       }
6640     }
6641 #endif  /* SQLITE_DEBUG */
6642 #endif  /* NDEBUG */
6643   }  /* The end of the for(;;) loop the loops through opcodes */
6644 
6645   /* If we reach this point, it means that execution is finished with
6646   ** an error of some kind.
6647   */
6648 vdbe_error_halt:
6649   assert( rc );
6650   p->rc = rc;
6651   testcase( sqlite3GlobalConfig.xLog!=0 );
6652   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6653                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
6654   sqlite3VdbeHalt(p);
6655   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6656   rc = SQLITE_ERROR;
6657   if( resetSchemaOnFault>0 ){
6658     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6659   }
6660 
6661   /* This is the only way out of this procedure.  We have to
6662   ** release the mutexes on btrees that were acquired at the
6663   ** top. */
6664 vdbe_return:
6665   db->lastRowid = lastRowid;
6666   testcase( nVmStep>0 );
6667   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6668   sqlite3VdbeLeave(p);
6669   return rc;
6670 
6671   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6672   ** is encountered.
6673   */
6674 too_big:
6675   sqlite3VdbeError(p, "string or blob too big");
6676   rc = SQLITE_TOOBIG;
6677   goto vdbe_error_halt;
6678 
6679   /* Jump to here if a malloc() fails.
6680   */
6681 no_mem:
6682   db->mallocFailed = 1;
6683   sqlite3VdbeError(p, "out of memory");
6684   rc = SQLITE_NOMEM;
6685   goto vdbe_error_halt;
6686 
6687   /* Jump to here for any other kind of fatal error.  The "rc" variable
6688   ** should hold the error number.
6689   */
6690 abort_due_to_error:
6691   assert( p->zErrMsg==0 );
6692   if( db->mallocFailed ) rc = SQLITE_NOMEM;
6693   if( rc!=SQLITE_IOERR_NOMEM ){
6694     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6695   }
6696   goto vdbe_error_halt;
6697 
6698   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6699   ** flag.
6700   */
6701 abort_due_to_interrupt:
6702   assert( db->u1.isInterrupted );
6703   rc = SQLITE_INTERRUPT;
6704   p->rc = rc;
6705   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6706   goto vdbe_error_halt;
6707 }
6708