1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 /* 121 ** Invoke the VDBE coverage callback, if that callback is defined. This 122 ** feature is used for test suite validation only and does not appear an 123 ** production builds. 124 ** 125 ** M is an integer, 2 or 3, that indices how many different ways the 126 ** branch can go. It is usually 2. "I" is the direction the branch 127 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 128 ** second alternative branch is taken. 129 ** 130 ** iSrcLine is the source code line (from the __LINE__ macro) that 131 ** generated the VDBE instruction. This instrumentation assumes that all 132 ** source code is in a single file (the amalgamation). Special values 1 133 ** and 2 for the iSrcLine parameter mean that this particular branch is 134 ** always taken or never taken, respectively. 135 */ 136 #if !defined(SQLITE_VDBE_COVERAGE) 137 # define VdbeBranchTaken(I,M) 138 #else 139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 142 M = iSrcLine; 143 /* Assert the truth of VdbeCoverageAlwaysTaken() and 144 ** VdbeCoverageNeverTaken() */ 145 assert( (M & I)==I ); 146 }else{ 147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 149 iSrcLine,I,M); 150 } 151 } 152 #endif 153 154 /* 155 ** Convert the given register into a string if it isn't one 156 ** already. Return non-zero if a malloc() fails. 157 */ 158 #define Stringify(P, enc) \ 159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 160 { goto no_mem; } 161 162 /* 163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 164 ** a pointer to a dynamically allocated string where some other entity 165 ** is responsible for deallocating that string. Because the register 166 ** does not control the string, it might be deleted without the register 167 ** knowing it. 168 ** 169 ** This routine converts an ephemeral string into a dynamically allocated 170 ** string that the register itself controls. In other words, it 171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 172 */ 173 #define Deephemeralize(P) \ 174 if( ((P)->flags&MEM_Ephem)!=0 \ 175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 176 177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 179 180 /* 181 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 182 ** if we run out of memory. 183 */ 184 static VdbeCursor *allocateCursor( 185 Vdbe *p, /* The virtual machine */ 186 int iCur, /* Index of the new VdbeCursor */ 187 int nField, /* Number of fields in the table or index */ 188 int iDb, /* Database the cursor belongs to, or -1 */ 189 u8 eCurType /* Type of the new cursor */ 190 ){ 191 /* Find the memory cell that will be used to store the blob of memory 192 ** required for this VdbeCursor structure. It is convenient to use a 193 ** vdbe memory cell to manage the memory allocation required for a 194 ** VdbeCursor structure for the following reasons: 195 ** 196 ** * Sometimes cursor numbers are used for a couple of different 197 ** purposes in a vdbe program. The different uses might require 198 ** different sized allocations. Memory cells provide growable 199 ** allocations. 200 ** 201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 202 ** be freed lazily via the sqlite3_release_memory() API. This 203 ** minimizes the number of malloc calls made by the system. 204 ** 205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 208 */ 209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 210 211 int nByte; 212 VdbeCursor *pCx = 0; 213 nByte = 214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 216 217 assert( iCur>=0 && iCur<p->nCursor ); 218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 220 p->apCsr[iCur] = 0; 221 } 222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 224 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 225 pCx->eCurType = eCurType; 226 pCx->iDb = iDb; 227 pCx->nField = nField; 228 pCx->aOffset = &pCx->aType[nField]; 229 if( eCurType==CURTYPE_BTREE ){ 230 pCx->uc.pCursor = (BtCursor*) 231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 232 sqlite3BtreeCursorZero(pCx->uc.pCursor); 233 } 234 } 235 return pCx; 236 } 237 238 /* 239 ** Try to convert a value into a numeric representation if we can 240 ** do so without loss of information. In other words, if the string 241 ** looks like a number, convert it into a number. If it does not 242 ** look like a number, leave it alone. 243 ** 244 ** If the bTryForInt flag is true, then extra effort is made to give 245 ** an integer representation. Strings that look like floating point 246 ** values but which have no fractional component (example: '48.00') 247 ** will have a MEM_Int representation when bTryForInt is true. 248 ** 249 ** If bTryForInt is false, then if the input string contains a decimal 250 ** point or exponential notation, the result is only MEM_Real, even 251 ** if there is an exact integer representation of the quantity. 252 */ 253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 254 double rValue; 255 i64 iValue; 256 u8 enc = pRec->enc; 257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 260 pRec->u.i = iValue; 261 pRec->flags |= MEM_Int; 262 }else{ 263 pRec->u.r = rValue; 264 pRec->flags |= MEM_Real; 265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 266 } 267 } 268 269 /* 270 ** Processing is determine by the affinity parameter: 271 ** 272 ** SQLITE_AFF_INTEGER: 273 ** SQLITE_AFF_REAL: 274 ** SQLITE_AFF_NUMERIC: 275 ** Try to convert pRec to an integer representation or a 276 ** floating-point representation if an integer representation 277 ** is not possible. Note that the integer representation is 278 ** always preferred, even if the affinity is REAL, because 279 ** an integer representation is more space efficient on disk. 280 ** 281 ** SQLITE_AFF_TEXT: 282 ** Convert pRec to a text representation. 283 ** 284 ** SQLITE_AFF_BLOB: 285 ** No-op. pRec is unchanged. 286 */ 287 static void applyAffinity( 288 Mem *pRec, /* The value to apply affinity to */ 289 char affinity, /* The affinity to be applied */ 290 u8 enc /* Use this text encoding */ 291 ){ 292 if( affinity>=SQLITE_AFF_NUMERIC ){ 293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 294 || affinity==SQLITE_AFF_NUMERIC ); 295 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 296 if( (pRec->flags & MEM_Real)==0 ){ 297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 298 }else{ 299 sqlite3VdbeIntegerAffinity(pRec); 300 } 301 } 302 }else if( affinity==SQLITE_AFF_TEXT ){ 303 /* Only attempt the conversion to TEXT if there is an integer or real 304 ** representation (blob and NULL do not get converted) but no string 305 ** representation. It would be harmless to repeat the conversion if 306 ** there is already a string rep, but it is pointless to waste those 307 ** CPU cycles. */ 308 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 309 if( (pRec->flags&(MEM_Real|MEM_Int)) ){ 310 sqlite3VdbeMemStringify(pRec, enc, 1); 311 } 312 } 313 pRec->flags &= ~(MEM_Real|MEM_Int); 314 } 315 } 316 317 /* 318 ** Try to convert the type of a function argument or a result column 319 ** into a numeric representation. Use either INTEGER or REAL whichever 320 ** is appropriate. But only do the conversion if it is possible without 321 ** loss of information and return the revised type of the argument. 322 */ 323 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 324 int eType = sqlite3_value_type(pVal); 325 if( eType==SQLITE_TEXT ){ 326 Mem *pMem = (Mem*)pVal; 327 applyNumericAffinity(pMem, 0); 328 eType = sqlite3_value_type(pVal); 329 } 330 return eType; 331 } 332 333 /* 334 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 335 ** not the internal Mem* type. 336 */ 337 void sqlite3ValueApplyAffinity( 338 sqlite3_value *pVal, 339 u8 affinity, 340 u8 enc 341 ){ 342 applyAffinity((Mem *)pVal, affinity, enc); 343 } 344 345 /* 346 ** pMem currently only holds a string type (or maybe a BLOB that we can 347 ** interpret as a string if we want to). Compute its corresponding 348 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 349 ** accordingly. 350 */ 351 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 352 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 353 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 354 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 355 return 0; 356 } 357 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ 358 return MEM_Int; 359 } 360 return MEM_Real; 361 } 362 363 /* 364 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 365 ** none. 366 ** 367 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 368 ** But it does set pMem->u.r and pMem->u.i appropriately. 369 */ 370 static u16 numericType(Mem *pMem){ 371 if( pMem->flags & (MEM_Int|MEM_Real) ){ 372 return pMem->flags & (MEM_Int|MEM_Real); 373 } 374 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 375 return computeNumericType(pMem); 376 } 377 return 0; 378 } 379 380 #ifdef SQLITE_DEBUG 381 /* 382 ** Write a nice string representation of the contents of cell pMem 383 ** into buffer zBuf, length nBuf. 384 */ 385 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 386 char *zCsr = zBuf; 387 int f = pMem->flags; 388 389 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 390 391 if( f&MEM_Blob ){ 392 int i; 393 char c; 394 if( f & MEM_Dyn ){ 395 c = 'z'; 396 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 397 }else if( f & MEM_Static ){ 398 c = 't'; 399 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 400 }else if( f & MEM_Ephem ){ 401 c = 'e'; 402 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 403 }else{ 404 c = 's'; 405 } 406 *(zCsr++) = c; 407 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 408 zCsr += sqlite3Strlen30(zCsr); 409 for(i=0; i<16 && i<pMem->n; i++){ 410 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 411 zCsr += sqlite3Strlen30(zCsr); 412 } 413 for(i=0; i<16 && i<pMem->n; i++){ 414 char z = pMem->z[i]; 415 if( z<32 || z>126 ) *zCsr++ = '.'; 416 else *zCsr++ = z; 417 } 418 *(zCsr++) = ']'; 419 if( f & MEM_Zero ){ 420 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 421 zCsr += sqlite3Strlen30(zCsr); 422 } 423 *zCsr = '\0'; 424 }else if( f & MEM_Str ){ 425 int j, k; 426 zBuf[0] = ' '; 427 if( f & MEM_Dyn ){ 428 zBuf[1] = 'z'; 429 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 430 }else if( f & MEM_Static ){ 431 zBuf[1] = 't'; 432 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 433 }else if( f & MEM_Ephem ){ 434 zBuf[1] = 'e'; 435 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 436 }else{ 437 zBuf[1] = 's'; 438 } 439 k = 2; 440 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 441 k += sqlite3Strlen30(&zBuf[k]); 442 zBuf[k++] = '['; 443 for(j=0; j<15 && j<pMem->n; j++){ 444 u8 c = pMem->z[j]; 445 if( c>=0x20 && c<0x7f ){ 446 zBuf[k++] = c; 447 }else{ 448 zBuf[k++] = '.'; 449 } 450 } 451 zBuf[k++] = ']'; 452 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 453 k += sqlite3Strlen30(&zBuf[k]); 454 zBuf[k++] = 0; 455 } 456 } 457 #endif 458 459 #ifdef SQLITE_DEBUG 460 /* 461 ** Print the value of a register for tracing purposes: 462 */ 463 static void memTracePrint(Mem *p){ 464 if( p->flags & MEM_Undefined ){ 465 printf(" undefined"); 466 }else if( p->flags & MEM_Null ){ 467 printf(" NULL"); 468 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 469 printf(" si:%lld", p->u.i); 470 }else if( p->flags & MEM_Int ){ 471 printf(" i:%lld", p->u.i); 472 #ifndef SQLITE_OMIT_FLOATING_POINT 473 }else if( p->flags & MEM_Real ){ 474 printf(" r:%g", p->u.r); 475 #endif 476 }else if( p->flags & MEM_RowSet ){ 477 printf(" (rowset)"); 478 }else{ 479 char zBuf[200]; 480 sqlite3VdbeMemPrettyPrint(p, zBuf); 481 printf(" %s", zBuf); 482 } 483 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 484 } 485 static void registerTrace(int iReg, Mem *p){ 486 printf("REG[%d] = ", iReg); 487 memTracePrint(p); 488 printf("\n"); 489 sqlite3VdbeCheckMemInvariants(p); 490 } 491 #endif 492 493 #ifdef SQLITE_DEBUG 494 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 495 #else 496 # define REGISTER_TRACE(R,M) 497 #endif 498 499 500 #ifdef VDBE_PROFILE 501 502 /* 503 ** hwtime.h contains inline assembler code for implementing 504 ** high-performance timing routines. 505 */ 506 #include "hwtime.h" 507 508 #endif 509 510 #ifndef NDEBUG 511 /* 512 ** This function is only called from within an assert() expression. It 513 ** checks that the sqlite3.nTransaction variable is correctly set to 514 ** the number of non-transaction savepoints currently in the 515 ** linked list starting at sqlite3.pSavepoint. 516 ** 517 ** Usage: 518 ** 519 ** assert( checkSavepointCount(db) ); 520 */ 521 static int checkSavepointCount(sqlite3 *db){ 522 int n = 0; 523 Savepoint *p; 524 for(p=db->pSavepoint; p; p=p->pNext) n++; 525 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 526 return 1; 527 } 528 #endif 529 530 /* 531 ** Return the register of pOp->p2 after first preparing it to be 532 ** overwritten with an integer value. 533 */ 534 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 535 sqlite3VdbeMemSetNull(pOut); 536 pOut->flags = MEM_Int; 537 return pOut; 538 } 539 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 540 Mem *pOut; 541 assert( pOp->p2>0 ); 542 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 543 pOut = &p->aMem[pOp->p2]; 544 memAboutToChange(p, pOut); 545 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 546 return out2PrereleaseWithClear(pOut); 547 }else{ 548 pOut->flags = MEM_Int; 549 return pOut; 550 } 551 } 552 553 554 /* 555 ** Execute as much of a VDBE program as we can. 556 ** This is the core of sqlite3_step(). 557 */ 558 int sqlite3VdbeExec( 559 Vdbe *p /* The VDBE */ 560 ){ 561 Op *aOp = p->aOp; /* Copy of p->aOp */ 562 Op *pOp = aOp; /* Current operation */ 563 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 564 Op *pOrigOp; /* Value of pOp at the top of the loop */ 565 #endif 566 #ifdef SQLITE_DEBUG 567 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 568 #endif 569 int rc = SQLITE_OK; /* Value to return */ 570 sqlite3 *db = p->db; /* The database */ 571 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 572 u8 encoding = ENC(db); /* The database encoding */ 573 int iCompare = 0; /* Result of last comparison */ 574 unsigned nVmStep = 0; /* Number of virtual machine steps */ 575 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 576 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 577 #endif 578 Mem *aMem = p->aMem; /* Copy of p->aMem */ 579 Mem *pIn1 = 0; /* 1st input operand */ 580 Mem *pIn2 = 0; /* 2nd input operand */ 581 Mem *pIn3 = 0; /* 3rd input operand */ 582 Mem *pOut = 0; /* Output operand */ 583 #ifdef VDBE_PROFILE 584 u64 start; /* CPU clock count at start of opcode */ 585 #endif 586 /*** INSERT STACK UNION HERE ***/ 587 588 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 589 sqlite3VdbeEnter(p); 590 if( p->rc==SQLITE_NOMEM ){ 591 /* This happens if a malloc() inside a call to sqlite3_column_text() or 592 ** sqlite3_column_text16() failed. */ 593 goto no_mem; 594 } 595 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 596 assert( p->bIsReader || p->readOnly!=0 ); 597 p->iCurrentTime = 0; 598 assert( p->explain==0 ); 599 p->pResultSet = 0; 600 db->busyHandler.nBusy = 0; 601 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 602 sqlite3VdbeIOTraceSql(p); 603 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 604 if( db->xProgress ){ 605 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 606 assert( 0 < db->nProgressOps ); 607 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 608 }else{ 609 nProgressLimit = 0xffffffff; 610 } 611 #endif 612 #ifdef SQLITE_DEBUG 613 sqlite3BeginBenignMalloc(); 614 if( p->pc==0 615 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 616 ){ 617 int i; 618 int once = 1; 619 sqlite3VdbePrintSql(p); 620 if( p->db->flags & SQLITE_VdbeListing ){ 621 printf("VDBE Program Listing:\n"); 622 for(i=0; i<p->nOp; i++){ 623 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 624 } 625 } 626 if( p->db->flags & SQLITE_VdbeEQP ){ 627 for(i=0; i<p->nOp; i++){ 628 if( aOp[i].opcode==OP_Explain ){ 629 if( once ) printf("VDBE Query Plan:\n"); 630 printf("%s\n", aOp[i].p4.z); 631 once = 0; 632 } 633 } 634 } 635 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 636 } 637 sqlite3EndBenignMalloc(); 638 #endif 639 for(pOp=&aOp[p->pc]; 1; pOp++){ 640 /* Errors are detected by individual opcodes, with an immediate 641 ** jumps to abort_due_to_error. */ 642 assert( rc==SQLITE_OK ); 643 644 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 645 #ifdef VDBE_PROFILE 646 start = sqlite3Hwtime(); 647 #endif 648 nVmStep++; 649 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 650 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 651 #endif 652 653 /* Only allow tracing if SQLITE_DEBUG is defined. 654 */ 655 #ifdef SQLITE_DEBUG 656 if( db->flags & SQLITE_VdbeTrace ){ 657 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 658 } 659 #endif 660 661 662 /* Check to see if we need to simulate an interrupt. This only happens 663 ** if we have a special test build. 664 */ 665 #ifdef SQLITE_TEST 666 if( sqlite3_interrupt_count>0 ){ 667 sqlite3_interrupt_count--; 668 if( sqlite3_interrupt_count==0 ){ 669 sqlite3_interrupt(db); 670 } 671 } 672 #endif 673 674 /* Sanity checking on other operands */ 675 #ifdef SQLITE_DEBUG 676 { 677 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 678 if( (opProperty & OPFLG_IN1)!=0 ){ 679 assert( pOp->p1>0 ); 680 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 681 assert( memIsValid(&aMem[pOp->p1]) ); 682 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 683 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 684 } 685 if( (opProperty & OPFLG_IN2)!=0 ){ 686 assert( pOp->p2>0 ); 687 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 688 assert( memIsValid(&aMem[pOp->p2]) ); 689 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 690 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 691 } 692 if( (opProperty & OPFLG_IN3)!=0 ){ 693 assert( pOp->p3>0 ); 694 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 695 assert( memIsValid(&aMem[pOp->p3]) ); 696 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 697 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 698 } 699 if( (opProperty & OPFLG_OUT2)!=0 ){ 700 assert( pOp->p2>0 ); 701 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 702 memAboutToChange(p, &aMem[pOp->p2]); 703 } 704 if( (opProperty & OPFLG_OUT3)!=0 ){ 705 assert( pOp->p3>0 ); 706 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 707 memAboutToChange(p, &aMem[pOp->p3]); 708 } 709 } 710 #endif 711 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 712 pOrigOp = pOp; 713 #endif 714 715 switch( pOp->opcode ){ 716 717 /***************************************************************************** 718 ** What follows is a massive switch statement where each case implements a 719 ** separate instruction in the virtual machine. If we follow the usual 720 ** indentation conventions, each case should be indented by 6 spaces. But 721 ** that is a lot of wasted space on the left margin. So the code within 722 ** the switch statement will break with convention and be flush-left. Another 723 ** big comment (similar to this one) will mark the point in the code where 724 ** we transition back to normal indentation. 725 ** 726 ** The formatting of each case is important. The makefile for SQLite 727 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 728 ** file looking for lines that begin with "case OP_". The opcodes.h files 729 ** will be filled with #defines that give unique integer values to each 730 ** opcode and the opcodes.c file is filled with an array of strings where 731 ** each string is the symbolic name for the corresponding opcode. If the 732 ** case statement is followed by a comment of the form "/# same as ... #/" 733 ** that comment is used to determine the particular value of the opcode. 734 ** 735 ** Other keywords in the comment that follows each case are used to 736 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 737 ** Keywords include: in1, in2, in3, out2, out3. See 738 ** the mkopcodeh.awk script for additional information. 739 ** 740 ** Documentation about VDBE opcodes is generated by scanning this file 741 ** for lines of that contain "Opcode:". That line and all subsequent 742 ** comment lines are used in the generation of the opcode.html documentation 743 ** file. 744 ** 745 ** SUMMARY: 746 ** 747 ** Formatting is important to scripts that scan this file. 748 ** Do not deviate from the formatting style currently in use. 749 ** 750 *****************************************************************************/ 751 752 /* Opcode: Goto * P2 * * * 753 ** 754 ** An unconditional jump to address P2. 755 ** The next instruction executed will be 756 ** the one at index P2 from the beginning of 757 ** the program. 758 ** 759 ** The P1 parameter is not actually used by this opcode. However, it 760 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 761 ** that this Goto is the bottom of a loop and that the lines from P2 down 762 ** to the current line should be indented for EXPLAIN output. 763 */ 764 case OP_Goto: { /* jump */ 765 jump_to_p2_and_check_for_interrupt: 766 pOp = &aOp[pOp->p2 - 1]; 767 768 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 769 ** OP_VNext, or OP_SorterNext) all jump here upon 770 ** completion. Check to see if sqlite3_interrupt() has been called 771 ** or if the progress callback needs to be invoked. 772 ** 773 ** This code uses unstructured "goto" statements and does not look clean. 774 ** But that is not due to sloppy coding habits. The code is written this 775 ** way for performance, to avoid having to run the interrupt and progress 776 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 777 ** faster according to "valgrind --tool=cachegrind" */ 778 check_for_interrupt: 779 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 780 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 781 /* Call the progress callback if it is configured and the required number 782 ** of VDBE ops have been executed (either since this invocation of 783 ** sqlite3VdbeExec() or since last time the progress callback was called). 784 ** If the progress callback returns non-zero, exit the virtual machine with 785 ** a return code SQLITE_ABORT. 786 */ 787 if( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 788 assert( db->nProgressOps!=0 ); 789 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 790 if( db->xProgress(db->pProgressArg) ){ 791 rc = SQLITE_INTERRUPT; 792 goto abort_due_to_error; 793 } 794 } 795 #endif 796 797 break; 798 } 799 800 /* Opcode: Gosub P1 P2 * * * 801 ** 802 ** Write the current address onto register P1 803 ** and then jump to address P2. 804 */ 805 case OP_Gosub: { /* jump */ 806 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 807 pIn1 = &aMem[pOp->p1]; 808 assert( VdbeMemDynamic(pIn1)==0 ); 809 memAboutToChange(p, pIn1); 810 pIn1->flags = MEM_Int; 811 pIn1->u.i = (int)(pOp-aOp); 812 REGISTER_TRACE(pOp->p1, pIn1); 813 814 /* Most jump operations do a goto to this spot in order to update 815 ** the pOp pointer. */ 816 jump_to_p2: 817 pOp = &aOp[pOp->p2 - 1]; 818 break; 819 } 820 821 /* Opcode: Return P1 * * * * 822 ** 823 ** Jump to the next instruction after the address in register P1. After 824 ** the jump, register P1 becomes undefined. 825 */ 826 case OP_Return: { /* in1 */ 827 pIn1 = &aMem[pOp->p1]; 828 assert( pIn1->flags==MEM_Int ); 829 pOp = &aOp[pIn1->u.i]; 830 pIn1->flags = MEM_Undefined; 831 break; 832 } 833 834 /* Opcode: InitCoroutine P1 P2 P3 * * 835 ** 836 ** Set up register P1 so that it will Yield to the coroutine 837 ** located at address P3. 838 ** 839 ** If P2!=0 then the coroutine implementation immediately follows 840 ** this opcode. So jump over the coroutine implementation to 841 ** address P2. 842 ** 843 ** See also: EndCoroutine 844 */ 845 case OP_InitCoroutine: { /* jump */ 846 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 847 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 848 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 849 pOut = &aMem[pOp->p1]; 850 assert( !VdbeMemDynamic(pOut) ); 851 pOut->u.i = pOp->p3 - 1; 852 pOut->flags = MEM_Int; 853 if( pOp->p2 ) goto jump_to_p2; 854 break; 855 } 856 857 /* Opcode: EndCoroutine P1 * * * * 858 ** 859 ** The instruction at the address in register P1 is a Yield. 860 ** Jump to the P2 parameter of that Yield. 861 ** After the jump, register P1 becomes undefined. 862 ** 863 ** See also: InitCoroutine 864 */ 865 case OP_EndCoroutine: { /* in1 */ 866 VdbeOp *pCaller; 867 pIn1 = &aMem[pOp->p1]; 868 assert( pIn1->flags==MEM_Int ); 869 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 870 pCaller = &aOp[pIn1->u.i]; 871 assert( pCaller->opcode==OP_Yield ); 872 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 873 pOp = &aOp[pCaller->p2 - 1]; 874 pIn1->flags = MEM_Undefined; 875 break; 876 } 877 878 /* Opcode: Yield P1 P2 * * * 879 ** 880 ** Swap the program counter with the value in register P1. This 881 ** has the effect of yielding to a coroutine. 882 ** 883 ** If the coroutine that is launched by this instruction ends with 884 ** Yield or Return then continue to the next instruction. But if 885 ** the coroutine launched by this instruction ends with 886 ** EndCoroutine, then jump to P2 rather than continuing with the 887 ** next instruction. 888 ** 889 ** See also: InitCoroutine 890 */ 891 case OP_Yield: { /* in1, jump */ 892 int pcDest; 893 pIn1 = &aMem[pOp->p1]; 894 assert( VdbeMemDynamic(pIn1)==0 ); 895 pIn1->flags = MEM_Int; 896 pcDest = (int)pIn1->u.i; 897 pIn1->u.i = (int)(pOp - aOp); 898 REGISTER_TRACE(pOp->p1, pIn1); 899 pOp = &aOp[pcDest]; 900 break; 901 } 902 903 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 904 ** Synopsis: if r[P3]=null halt 905 ** 906 ** Check the value in register P3. If it is NULL then Halt using 907 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 908 ** value in register P3 is not NULL, then this routine is a no-op. 909 ** The P5 parameter should be 1. 910 */ 911 case OP_HaltIfNull: { /* in3 */ 912 pIn3 = &aMem[pOp->p3]; 913 if( (pIn3->flags & MEM_Null)==0 ) break; 914 /* Fall through into OP_Halt */ 915 } 916 917 /* Opcode: Halt P1 P2 * P4 P5 918 ** 919 ** Exit immediately. All open cursors, etc are closed 920 ** automatically. 921 ** 922 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 923 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 924 ** For errors, it can be some other value. If P1!=0 then P2 will determine 925 ** whether or not to rollback the current transaction. Do not rollback 926 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 927 ** then back out all changes that have occurred during this execution of the 928 ** VDBE, but do not rollback the transaction. 929 ** 930 ** If P4 is not null then it is an error message string. 931 ** 932 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 933 ** 934 ** 0: (no change) 935 ** 1: NOT NULL contraint failed: P4 936 ** 2: UNIQUE constraint failed: P4 937 ** 3: CHECK constraint failed: P4 938 ** 4: FOREIGN KEY constraint failed: P4 939 ** 940 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 941 ** omitted. 942 ** 943 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 944 ** every program. So a jump past the last instruction of the program 945 ** is the same as executing Halt. 946 */ 947 case OP_Halt: { 948 VdbeFrame *pFrame; 949 int pcx; 950 951 pcx = (int)(pOp - aOp); 952 if( pOp->p1==SQLITE_OK && p->pFrame ){ 953 /* Halt the sub-program. Return control to the parent frame. */ 954 pFrame = p->pFrame; 955 p->pFrame = pFrame->pParent; 956 p->nFrame--; 957 sqlite3VdbeSetChanges(db, p->nChange); 958 pcx = sqlite3VdbeFrameRestore(pFrame); 959 if( pOp->p2==OE_Ignore ){ 960 /* Instruction pcx is the OP_Program that invoked the sub-program 961 ** currently being halted. If the p2 instruction of this OP_Halt 962 ** instruction is set to OE_Ignore, then the sub-program is throwing 963 ** an IGNORE exception. In this case jump to the address specified 964 ** as the p2 of the calling OP_Program. */ 965 pcx = p->aOp[pcx].p2-1; 966 } 967 aOp = p->aOp; 968 aMem = p->aMem; 969 pOp = &aOp[pcx]; 970 break; 971 } 972 p->rc = pOp->p1; 973 p->errorAction = (u8)pOp->p2; 974 p->pc = pcx; 975 assert( pOp->p5<=4 ); 976 if( p->rc ){ 977 if( pOp->p5 ){ 978 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 979 "FOREIGN KEY" }; 980 testcase( pOp->p5==1 ); 981 testcase( pOp->p5==2 ); 982 testcase( pOp->p5==3 ); 983 testcase( pOp->p5==4 ); 984 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 985 if( pOp->p4.z ){ 986 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 987 } 988 }else{ 989 sqlite3VdbeError(p, "%s", pOp->p4.z); 990 } 991 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 992 } 993 rc = sqlite3VdbeHalt(p); 994 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 995 if( rc==SQLITE_BUSY ){ 996 p->rc = SQLITE_BUSY; 997 }else{ 998 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 999 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1000 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1001 } 1002 goto vdbe_return; 1003 } 1004 1005 /* Opcode: Integer P1 P2 * * * 1006 ** Synopsis: r[P2]=P1 1007 ** 1008 ** The 32-bit integer value P1 is written into register P2. 1009 */ 1010 case OP_Integer: { /* out2 */ 1011 pOut = out2Prerelease(p, pOp); 1012 pOut->u.i = pOp->p1; 1013 break; 1014 } 1015 1016 /* Opcode: Int64 * P2 * P4 * 1017 ** Synopsis: r[P2]=P4 1018 ** 1019 ** P4 is a pointer to a 64-bit integer value. 1020 ** Write that value into register P2. 1021 */ 1022 case OP_Int64: { /* out2 */ 1023 pOut = out2Prerelease(p, pOp); 1024 assert( pOp->p4.pI64!=0 ); 1025 pOut->u.i = *pOp->p4.pI64; 1026 break; 1027 } 1028 1029 #ifndef SQLITE_OMIT_FLOATING_POINT 1030 /* Opcode: Real * P2 * P4 * 1031 ** Synopsis: r[P2]=P4 1032 ** 1033 ** P4 is a pointer to a 64-bit floating point value. 1034 ** Write that value into register P2. 1035 */ 1036 case OP_Real: { /* same as TK_FLOAT, out2 */ 1037 pOut = out2Prerelease(p, pOp); 1038 pOut->flags = MEM_Real; 1039 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1040 pOut->u.r = *pOp->p4.pReal; 1041 break; 1042 } 1043 #endif 1044 1045 /* Opcode: String8 * P2 * P4 * 1046 ** Synopsis: r[P2]='P4' 1047 ** 1048 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1049 ** into a String opcode before it is executed for the first time. During 1050 ** this transformation, the length of string P4 is computed and stored 1051 ** as the P1 parameter. 1052 */ 1053 case OP_String8: { /* same as TK_STRING, out2 */ 1054 assert( pOp->p4.z!=0 ); 1055 pOut = out2Prerelease(p, pOp); 1056 pOp->opcode = OP_String; 1057 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1058 1059 #ifndef SQLITE_OMIT_UTF16 1060 if( encoding!=SQLITE_UTF8 ){ 1061 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1062 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1063 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1064 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1065 assert( VdbeMemDynamic(pOut)==0 ); 1066 pOut->szMalloc = 0; 1067 pOut->flags |= MEM_Static; 1068 if( pOp->p4type==P4_DYNAMIC ){ 1069 sqlite3DbFree(db, pOp->p4.z); 1070 } 1071 pOp->p4type = P4_DYNAMIC; 1072 pOp->p4.z = pOut->z; 1073 pOp->p1 = pOut->n; 1074 } 1075 testcase( rc==SQLITE_TOOBIG ); 1076 #endif 1077 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1078 goto too_big; 1079 } 1080 assert( rc==SQLITE_OK ); 1081 /* Fall through to the next case, OP_String */ 1082 } 1083 1084 /* Opcode: String P1 P2 P3 P4 P5 1085 ** Synopsis: r[P2]='P4' (len=P1) 1086 ** 1087 ** The string value P4 of length P1 (bytes) is stored in register P2. 1088 ** 1089 ** If P3 is not zero and the content of register P3 is equal to P5, then 1090 ** the datatype of the register P2 is converted to BLOB. The content is 1091 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1092 ** of a string, as if it had been CAST. In other words: 1093 ** 1094 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1095 */ 1096 case OP_String: { /* out2 */ 1097 assert( pOp->p4.z!=0 ); 1098 pOut = out2Prerelease(p, pOp); 1099 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1100 pOut->z = pOp->p4.z; 1101 pOut->n = pOp->p1; 1102 pOut->enc = encoding; 1103 UPDATE_MAX_BLOBSIZE(pOut); 1104 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1105 if( pOp->p3>0 ){ 1106 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1107 pIn3 = &aMem[pOp->p3]; 1108 assert( pIn3->flags & MEM_Int ); 1109 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1110 } 1111 #endif 1112 break; 1113 } 1114 1115 /* Opcode: Null P1 P2 P3 * * 1116 ** Synopsis: r[P2..P3]=NULL 1117 ** 1118 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1119 ** NULL into register P3 and every register in between P2 and P3. If P3 1120 ** is less than P2 (typically P3 is zero) then only register P2 is 1121 ** set to NULL. 1122 ** 1123 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1124 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1125 ** OP_Ne or OP_Eq. 1126 */ 1127 case OP_Null: { /* out2 */ 1128 int cnt; 1129 u16 nullFlag; 1130 pOut = out2Prerelease(p, pOp); 1131 cnt = pOp->p3-pOp->p2; 1132 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1133 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1134 pOut->n = 0; 1135 while( cnt>0 ){ 1136 pOut++; 1137 memAboutToChange(p, pOut); 1138 sqlite3VdbeMemSetNull(pOut); 1139 pOut->flags = nullFlag; 1140 pOut->n = 0; 1141 cnt--; 1142 } 1143 break; 1144 } 1145 1146 /* Opcode: SoftNull P1 * * * * 1147 ** Synopsis: r[P1]=NULL 1148 ** 1149 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1150 ** instruction, but do not free any string or blob memory associated with 1151 ** the register, so that if the value was a string or blob that was 1152 ** previously copied using OP_SCopy, the copies will continue to be valid. 1153 */ 1154 case OP_SoftNull: { 1155 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1156 pOut = &aMem[pOp->p1]; 1157 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1158 break; 1159 } 1160 1161 /* Opcode: Blob P1 P2 * P4 * 1162 ** Synopsis: r[P2]=P4 (len=P1) 1163 ** 1164 ** P4 points to a blob of data P1 bytes long. Store this 1165 ** blob in register P2. 1166 */ 1167 case OP_Blob: { /* out2 */ 1168 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1169 pOut = out2Prerelease(p, pOp); 1170 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1171 pOut->enc = encoding; 1172 UPDATE_MAX_BLOBSIZE(pOut); 1173 break; 1174 } 1175 1176 /* Opcode: Variable P1 P2 * P4 * 1177 ** Synopsis: r[P2]=parameter(P1,P4) 1178 ** 1179 ** Transfer the values of bound parameter P1 into register P2 1180 ** 1181 ** If the parameter is named, then its name appears in P4. 1182 ** The P4 value is used by sqlite3_bind_parameter_name(). 1183 */ 1184 case OP_Variable: { /* out2 */ 1185 Mem *pVar; /* Value being transferred */ 1186 1187 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1188 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1189 pVar = &p->aVar[pOp->p1 - 1]; 1190 if( sqlite3VdbeMemTooBig(pVar) ){ 1191 goto too_big; 1192 } 1193 pOut = &aMem[pOp->p2]; 1194 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1195 UPDATE_MAX_BLOBSIZE(pOut); 1196 break; 1197 } 1198 1199 /* Opcode: Move P1 P2 P3 * * 1200 ** Synopsis: r[P2@P3]=r[P1@P3] 1201 ** 1202 ** Move the P3 values in register P1..P1+P3-1 over into 1203 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1204 ** left holding a NULL. It is an error for register ranges 1205 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1206 ** for P3 to be less than 1. 1207 */ 1208 case OP_Move: { 1209 int n; /* Number of registers left to copy */ 1210 int p1; /* Register to copy from */ 1211 int p2; /* Register to copy to */ 1212 1213 n = pOp->p3; 1214 p1 = pOp->p1; 1215 p2 = pOp->p2; 1216 assert( n>0 && p1>0 && p2>0 ); 1217 assert( p1+n<=p2 || p2+n<=p1 ); 1218 1219 pIn1 = &aMem[p1]; 1220 pOut = &aMem[p2]; 1221 do{ 1222 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1223 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1224 assert( memIsValid(pIn1) ); 1225 memAboutToChange(p, pOut); 1226 sqlite3VdbeMemMove(pOut, pIn1); 1227 #ifdef SQLITE_DEBUG 1228 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1229 pOut->pScopyFrom += pOp->p2 - p1; 1230 } 1231 #endif 1232 Deephemeralize(pOut); 1233 REGISTER_TRACE(p2++, pOut); 1234 pIn1++; 1235 pOut++; 1236 }while( --n ); 1237 break; 1238 } 1239 1240 /* Opcode: Copy P1 P2 P3 * * 1241 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1242 ** 1243 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1244 ** 1245 ** This instruction makes a deep copy of the value. A duplicate 1246 ** is made of any string or blob constant. See also OP_SCopy. 1247 */ 1248 case OP_Copy: { 1249 int n; 1250 1251 n = pOp->p3; 1252 pIn1 = &aMem[pOp->p1]; 1253 pOut = &aMem[pOp->p2]; 1254 assert( pOut!=pIn1 ); 1255 while( 1 ){ 1256 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1257 Deephemeralize(pOut); 1258 #ifdef SQLITE_DEBUG 1259 pOut->pScopyFrom = 0; 1260 #endif 1261 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1262 if( (n--)==0 ) break; 1263 pOut++; 1264 pIn1++; 1265 } 1266 break; 1267 } 1268 1269 /* Opcode: SCopy P1 P2 * * * 1270 ** Synopsis: r[P2]=r[P1] 1271 ** 1272 ** Make a shallow copy of register P1 into register P2. 1273 ** 1274 ** This instruction makes a shallow copy of the value. If the value 1275 ** is a string or blob, then the copy is only a pointer to the 1276 ** original and hence if the original changes so will the copy. 1277 ** Worse, if the original is deallocated, the copy becomes invalid. 1278 ** Thus the program must guarantee that the original will not change 1279 ** during the lifetime of the copy. Use OP_Copy to make a complete 1280 ** copy. 1281 */ 1282 case OP_SCopy: { /* out2 */ 1283 pIn1 = &aMem[pOp->p1]; 1284 pOut = &aMem[pOp->p2]; 1285 assert( pOut!=pIn1 ); 1286 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1287 #ifdef SQLITE_DEBUG 1288 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1289 #endif 1290 break; 1291 } 1292 1293 /* Opcode: IntCopy P1 P2 * * * 1294 ** Synopsis: r[P2]=r[P1] 1295 ** 1296 ** Transfer the integer value held in register P1 into register P2. 1297 ** 1298 ** This is an optimized version of SCopy that works only for integer 1299 ** values. 1300 */ 1301 case OP_IntCopy: { /* out2 */ 1302 pIn1 = &aMem[pOp->p1]; 1303 assert( (pIn1->flags & MEM_Int)!=0 ); 1304 pOut = &aMem[pOp->p2]; 1305 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1306 break; 1307 } 1308 1309 /* Opcode: ResultRow P1 P2 * * * 1310 ** Synopsis: output=r[P1@P2] 1311 ** 1312 ** The registers P1 through P1+P2-1 contain a single row of 1313 ** results. This opcode causes the sqlite3_step() call to terminate 1314 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1315 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1316 ** the result row. 1317 */ 1318 case OP_ResultRow: { 1319 Mem *pMem; 1320 int i; 1321 assert( p->nResColumn==pOp->p2 ); 1322 assert( pOp->p1>0 ); 1323 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1324 1325 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1326 /* Run the progress counter just before returning. 1327 */ 1328 if( db->xProgress!=0 1329 && nVmStep>=nProgressLimit 1330 && db->xProgress(db->pProgressArg)!=0 1331 ){ 1332 rc = SQLITE_INTERRUPT; 1333 goto abort_due_to_error; 1334 } 1335 #endif 1336 1337 /* If this statement has violated immediate foreign key constraints, do 1338 ** not return the number of rows modified. And do not RELEASE the statement 1339 ** transaction. It needs to be rolled back. */ 1340 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1341 assert( db->flags&SQLITE_CountRows ); 1342 assert( p->usesStmtJournal ); 1343 goto abort_due_to_error; 1344 } 1345 1346 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1347 ** DML statements invoke this opcode to return the number of rows 1348 ** modified to the user. This is the only way that a VM that 1349 ** opens a statement transaction may invoke this opcode. 1350 ** 1351 ** In case this is such a statement, close any statement transaction 1352 ** opened by this VM before returning control to the user. This is to 1353 ** ensure that statement-transactions are always nested, not overlapping. 1354 ** If the open statement-transaction is not closed here, then the user 1355 ** may step another VM that opens its own statement transaction. This 1356 ** may lead to overlapping statement transactions. 1357 ** 1358 ** The statement transaction is never a top-level transaction. Hence 1359 ** the RELEASE call below can never fail. 1360 */ 1361 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1362 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1363 assert( rc==SQLITE_OK ); 1364 1365 /* Invalidate all ephemeral cursor row caches */ 1366 p->cacheCtr = (p->cacheCtr + 2)|1; 1367 1368 /* Make sure the results of the current row are \000 terminated 1369 ** and have an assigned type. The results are de-ephemeralized as 1370 ** a side effect. 1371 */ 1372 pMem = p->pResultSet = &aMem[pOp->p1]; 1373 for(i=0; i<pOp->p2; i++){ 1374 assert( memIsValid(&pMem[i]) ); 1375 Deephemeralize(&pMem[i]); 1376 assert( (pMem[i].flags & MEM_Ephem)==0 1377 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1378 sqlite3VdbeMemNulTerminate(&pMem[i]); 1379 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1380 } 1381 if( db->mallocFailed ) goto no_mem; 1382 1383 if( db->mTrace & SQLITE_TRACE_ROW ){ 1384 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1385 } 1386 1387 /* Return SQLITE_ROW 1388 */ 1389 p->pc = (int)(pOp - aOp) + 1; 1390 rc = SQLITE_ROW; 1391 goto vdbe_return; 1392 } 1393 1394 /* Opcode: Concat P1 P2 P3 * * 1395 ** Synopsis: r[P3]=r[P2]+r[P1] 1396 ** 1397 ** Add the text in register P1 onto the end of the text in 1398 ** register P2 and store the result in register P3. 1399 ** If either the P1 or P2 text are NULL then store NULL in P3. 1400 ** 1401 ** P3 = P2 || P1 1402 ** 1403 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1404 ** if P3 is the same register as P2, the implementation is able 1405 ** to avoid a memcpy(). 1406 */ 1407 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1408 i64 nByte; 1409 1410 pIn1 = &aMem[pOp->p1]; 1411 pIn2 = &aMem[pOp->p2]; 1412 pOut = &aMem[pOp->p3]; 1413 assert( pIn1!=pOut ); 1414 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1415 sqlite3VdbeMemSetNull(pOut); 1416 break; 1417 } 1418 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1419 Stringify(pIn1, encoding); 1420 Stringify(pIn2, encoding); 1421 nByte = pIn1->n + pIn2->n; 1422 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1423 goto too_big; 1424 } 1425 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1426 goto no_mem; 1427 } 1428 MemSetTypeFlag(pOut, MEM_Str); 1429 if( pOut!=pIn2 ){ 1430 memcpy(pOut->z, pIn2->z, pIn2->n); 1431 } 1432 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1433 pOut->z[nByte]=0; 1434 pOut->z[nByte+1] = 0; 1435 pOut->flags |= MEM_Term; 1436 pOut->n = (int)nByte; 1437 pOut->enc = encoding; 1438 UPDATE_MAX_BLOBSIZE(pOut); 1439 break; 1440 } 1441 1442 /* Opcode: Add P1 P2 P3 * * 1443 ** Synopsis: r[P3]=r[P1]+r[P2] 1444 ** 1445 ** Add the value in register P1 to the value in register P2 1446 ** and store the result in register P3. 1447 ** If either input is NULL, the result is NULL. 1448 */ 1449 /* Opcode: Multiply P1 P2 P3 * * 1450 ** Synopsis: r[P3]=r[P1]*r[P2] 1451 ** 1452 ** 1453 ** Multiply the value in register P1 by the value in register P2 1454 ** and store the result in register P3. 1455 ** If either input is NULL, the result is NULL. 1456 */ 1457 /* Opcode: Subtract P1 P2 P3 * * 1458 ** Synopsis: r[P3]=r[P2]-r[P1] 1459 ** 1460 ** Subtract the value in register P1 from the value in register P2 1461 ** and store the result in register P3. 1462 ** If either input is NULL, the result is NULL. 1463 */ 1464 /* Opcode: Divide P1 P2 P3 * * 1465 ** Synopsis: r[P3]=r[P2]/r[P1] 1466 ** 1467 ** Divide the value in register P1 by the value in register P2 1468 ** and store the result in register P3 (P3=P2/P1). If the value in 1469 ** register P1 is zero, then the result is NULL. If either input is 1470 ** NULL, the result is NULL. 1471 */ 1472 /* Opcode: Remainder P1 P2 P3 * * 1473 ** Synopsis: r[P3]=r[P2]%r[P1] 1474 ** 1475 ** Compute the remainder after integer register P2 is divided by 1476 ** register P1 and store the result in register P3. 1477 ** If the value in register P1 is zero the result is NULL. 1478 ** If either operand is NULL, the result is NULL. 1479 */ 1480 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1481 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1482 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1483 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1484 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1485 char bIntint; /* Started out as two integer operands */ 1486 u16 flags; /* Combined MEM_* flags from both inputs */ 1487 u16 type1; /* Numeric type of left operand */ 1488 u16 type2; /* Numeric type of right operand */ 1489 i64 iA; /* Integer value of left operand */ 1490 i64 iB; /* Integer value of right operand */ 1491 double rA; /* Real value of left operand */ 1492 double rB; /* Real value of right operand */ 1493 1494 pIn1 = &aMem[pOp->p1]; 1495 type1 = numericType(pIn1); 1496 pIn2 = &aMem[pOp->p2]; 1497 type2 = numericType(pIn2); 1498 pOut = &aMem[pOp->p3]; 1499 flags = pIn1->flags | pIn2->flags; 1500 if( (type1 & type2 & MEM_Int)!=0 ){ 1501 iA = pIn1->u.i; 1502 iB = pIn2->u.i; 1503 bIntint = 1; 1504 switch( pOp->opcode ){ 1505 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1506 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1507 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1508 case OP_Divide: { 1509 if( iA==0 ) goto arithmetic_result_is_null; 1510 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1511 iB /= iA; 1512 break; 1513 } 1514 default: { 1515 if( iA==0 ) goto arithmetic_result_is_null; 1516 if( iA==-1 ) iA = 1; 1517 iB %= iA; 1518 break; 1519 } 1520 } 1521 pOut->u.i = iB; 1522 MemSetTypeFlag(pOut, MEM_Int); 1523 }else if( (flags & MEM_Null)!=0 ){ 1524 goto arithmetic_result_is_null; 1525 }else{ 1526 bIntint = 0; 1527 fp_math: 1528 rA = sqlite3VdbeRealValue(pIn1); 1529 rB = sqlite3VdbeRealValue(pIn2); 1530 switch( pOp->opcode ){ 1531 case OP_Add: rB += rA; break; 1532 case OP_Subtract: rB -= rA; break; 1533 case OP_Multiply: rB *= rA; break; 1534 case OP_Divide: { 1535 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1536 if( rA==(double)0 ) goto arithmetic_result_is_null; 1537 rB /= rA; 1538 break; 1539 } 1540 default: { 1541 iA = (i64)rA; 1542 iB = (i64)rB; 1543 if( iA==0 ) goto arithmetic_result_is_null; 1544 if( iA==-1 ) iA = 1; 1545 rB = (double)(iB % iA); 1546 break; 1547 } 1548 } 1549 #ifdef SQLITE_OMIT_FLOATING_POINT 1550 pOut->u.i = rB; 1551 MemSetTypeFlag(pOut, MEM_Int); 1552 #else 1553 if( sqlite3IsNaN(rB) ){ 1554 goto arithmetic_result_is_null; 1555 } 1556 pOut->u.r = rB; 1557 MemSetTypeFlag(pOut, MEM_Real); 1558 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1559 sqlite3VdbeIntegerAffinity(pOut); 1560 } 1561 #endif 1562 } 1563 break; 1564 1565 arithmetic_result_is_null: 1566 sqlite3VdbeMemSetNull(pOut); 1567 break; 1568 } 1569 1570 /* Opcode: CollSeq P1 * * P4 1571 ** 1572 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1573 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1574 ** be returned. This is used by the built-in min(), max() and nullif() 1575 ** functions. 1576 ** 1577 ** If P1 is not zero, then it is a register that a subsequent min() or 1578 ** max() aggregate will set to 1 if the current row is not the minimum or 1579 ** maximum. The P1 register is initialized to 0 by this instruction. 1580 ** 1581 ** The interface used by the implementation of the aforementioned functions 1582 ** to retrieve the collation sequence set by this opcode is not available 1583 ** publicly. Only built-in functions have access to this feature. 1584 */ 1585 case OP_CollSeq: { 1586 assert( pOp->p4type==P4_COLLSEQ ); 1587 if( pOp->p1 ){ 1588 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1589 } 1590 break; 1591 } 1592 1593 /* Opcode: BitAnd P1 P2 P3 * * 1594 ** Synopsis: r[P3]=r[P1]&r[P2] 1595 ** 1596 ** Take the bit-wise AND of the values in register P1 and P2 and 1597 ** store the result in register P3. 1598 ** If either input is NULL, the result is NULL. 1599 */ 1600 /* Opcode: BitOr P1 P2 P3 * * 1601 ** Synopsis: r[P3]=r[P1]|r[P2] 1602 ** 1603 ** Take the bit-wise OR of the values in register P1 and P2 and 1604 ** store the result in register P3. 1605 ** If either input is NULL, the result is NULL. 1606 */ 1607 /* Opcode: ShiftLeft P1 P2 P3 * * 1608 ** Synopsis: r[P3]=r[P2]<<r[P1] 1609 ** 1610 ** Shift the integer value in register P2 to the left by the 1611 ** number of bits specified by the integer in register P1. 1612 ** Store the result in register P3. 1613 ** If either input is NULL, the result is NULL. 1614 */ 1615 /* Opcode: ShiftRight P1 P2 P3 * * 1616 ** Synopsis: r[P3]=r[P2]>>r[P1] 1617 ** 1618 ** Shift the integer value in register P2 to the right by the 1619 ** number of bits specified by the integer in register P1. 1620 ** Store the result in register P3. 1621 ** If either input is NULL, the result is NULL. 1622 */ 1623 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1624 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1625 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1626 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1627 i64 iA; 1628 u64 uA; 1629 i64 iB; 1630 u8 op; 1631 1632 pIn1 = &aMem[pOp->p1]; 1633 pIn2 = &aMem[pOp->p2]; 1634 pOut = &aMem[pOp->p3]; 1635 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1636 sqlite3VdbeMemSetNull(pOut); 1637 break; 1638 } 1639 iA = sqlite3VdbeIntValue(pIn2); 1640 iB = sqlite3VdbeIntValue(pIn1); 1641 op = pOp->opcode; 1642 if( op==OP_BitAnd ){ 1643 iA &= iB; 1644 }else if( op==OP_BitOr ){ 1645 iA |= iB; 1646 }else if( iB!=0 ){ 1647 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1648 1649 /* If shifting by a negative amount, shift in the other direction */ 1650 if( iB<0 ){ 1651 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1652 op = 2*OP_ShiftLeft + 1 - op; 1653 iB = iB>(-64) ? -iB : 64; 1654 } 1655 1656 if( iB>=64 ){ 1657 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1658 }else{ 1659 memcpy(&uA, &iA, sizeof(uA)); 1660 if( op==OP_ShiftLeft ){ 1661 uA <<= iB; 1662 }else{ 1663 uA >>= iB; 1664 /* Sign-extend on a right shift of a negative number */ 1665 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1666 } 1667 memcpy(&iA, &uA, sizeof(iA)); 1668 } 1669 } 1670 pOut->u.i = iA; 1671 MemSetTypeFlag(pOut, MEM_Int); 1672 break; 1673 } 1674 1675 /* Opcode: AddImm P1 P2 * * * 1676 ** Synopsis: r[P1]=r[P1]+P2 1677 ** 1678 ** Add the constant P2 to the value in register P1. 1679 ** The result is always an integer. 1680 ** 1681 ** To force any register to be an integer, just add 0. 1682 */ 1683 case OP_AddImm: { /* in1 */ 1684 pIn1 = &aMem[pOp->p1]; 1685 memAboutToChange(p, pIn1); 1686 sqlite3VdbeMemIntegerify(pIn1); 1687 pIn1->u.i += pOp->p2; 1688 break; 1689 } 1690 1691 /* Opcode: MustBeInt P1 P2 * * * 1692 ** 1693 ** Force the value in register P1 to be an integer. If the value 1694 ** in P1 is not an integer and cannot be converted into an integer 1695 ** without data loss, then jump immediately to P2, or if P2==0 1696 ** raise an SQLITE_MISMATCH exception. 1697 */ 1698 case OP_MustBeInt: { /* jump, in1 */ 1699 pIn1 = &aMem[pOp->p1]; 1700 if( (pIn1->flags & MEM_Int)==0 ){ 1701 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1702 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1703 if( (pIn1->flags & MEM_Int)==0 ){ 1704 if( pOp->p2==0 ){ 1705 rc = SQLITE_MISMATCH; 1706 goto abort_due_to_error; 1707 }else{ 1708 goto jump_to_p2; 1709 } 1710 } 1711 } 1712 MemSetTypeFlag(pIn1, MEM_Int); 1713 break; 1714 } 1715 1716 #ifndef SQLITE_OMIT_FLOATING_POINT 1717 /* Opcode: RealAffinity P1 * * * * 1718 ** 1719 ** If register P1 holds an integer convert it to a real value. 1720 ** 1721 ** This opcode is used when extracting information from a column that 1722 ** has REAL affinity. Such column values may still be stored as 1723 ** integers, for space efficiency, but after extraction we want them 1724 ** to have only a real value. 1725 */ 1726 case OP_RealAffinity: { /* in1 */ 1727 pIn1 = &aMem[pOp->p1]; 1728 if( pIn1->flags & MEM_Int ){ 1729 sqlite3VdbeMemRealify(pIn1); 1730 } 1731 break; 1732 } 1733 #endif 1734 1735 #ifndef SQLITE_OMIT_CAST 1736 /* Opcode: Cast P1 P2 * * * 1737 ** Synopsis: affinity(r[P1]) 1738 ** 1739 ** Force the value in register P1 to be the type defined by P2. 1740 ** 1741 ** <ul> 1742 ** <li> P2=='A' → BLOB 1743 ** <li> P2=='B' → TEXT 1744 ** <li> P2=='C' → NUMERIC 1745 ** <li> P2=='D' → INTEGER 1746 ** <li> P2=='E' → REAL 1747 ** </ul> 1748 ** 1749 ** A NULL value is not changed by this routine. It remains NULL. 1750 */ 1751 case OP_Cast: { /* in1 */ 1752 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1753 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1754 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1755 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1756 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1757 testcase( pOp->p2==SQLITE_AFF_REAL ); 1758 pIn1 = &aMem[pOp->p1]; 1759 memAboutToChange(p, pIn1); 1760 rc = ExpandBlob(pIn1); 1761 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1762 UPDATE_MAX_BLOBSIZE(pIn1); 1763 if( rc ) goto abort_due_to_error; 1764 break; 1765 } 1766 #endif /* SQLITE_OMIT_CAST */ 1767 1768 /* Opcode: Eq P1 P2 P3 P4 P5 1769 ** Synopsis: IF r[P3]==r[P1] 1770 ** 1771 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1772 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1773 ** store the result of comparison in register P2. 1774 ** 1775 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1776 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1777 ** to coerce both inputs according to this affinity before the 1778 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1779 ** affinity is used. Note that the affinity conversions are stored 1780 ** back into the input registers P1 and P3. So this opcode can cause 1781 ** persistent changes to registers P1 and P3. 1782 ** 1783 ** Once any conversions have taken place, and neither value is NULL, 1784 ** the values are compared. If both values are blobs then memcmp() is 1785 ** used to determine the results of the comparison. If both values 1786 ** are text, then the appropriate collating function specified in 1787 ** P4 is used to do the comparison. If P4 is not specified then 1788 ** memcmp() is used to compare text string. If both values are 1789 ** numeric, then a numeric comparison is used. If the two values 1790 ** are of different types, then numbers are considered less than 1791 ** strings and strings are considered less than blobs. 1792 ** 1793 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1794 ** true or false and is never NULL. If both operands are NULL then the result 1795 ** of comparison is true. If either operand is NULL then the result is false. 1796 ** If neither operand is NULL the result is the same as it would be if 1797 ** the SQLITE_NULLEQ flag were omitted from P5. 1798 ** 1799 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1800 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1801 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1802 */ 1803 /* Opcode: Ne P1 P2 P3 P4 P5 1804 ** Synopsis: IF r[P3]!=r[P1] 1805 ** 1806 ** This works just like the Eq opcode except that the jump is taken if 1807 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1808 ** additional information. 1809 ** 1810 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1811 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1812 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1813 */ 1814 /* Opcode: Lt P1 P2 P3 P4 P5 1815 ** Synopsis: IF r[P3]<r[P1] 1816 ** 1817 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1818 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1819 ** the result of comparison (0 or 1 or NULL) into register P2. 1820 ** 1821 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1822 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1823 ** bit is clear then fall through if either operand is NULL. 1824 ** 1825 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1826 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1827 ** to coerce both inputs according to this affinity before the 1828 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1829 ** affinity is used. Note that the affinity conversions are stored 1830 ** back into the input registers P1 and P3. So this opcode can cause 1831 ** persistent changes to registers P1 and P3. 1832 ** 1833 ** Once any conversions have taken place, and neither value is NULL, 1834 ** the values are compared. If both values are blobs then memcmp() is 1835 ** used to determine the results of the comparison. If both values 1836 ** are text, then the appropriate collating function specified in 1837 ** P4 is used to do the comparison. If P4 is not specified then 1838 ** memcmp() is used to compare text string. If both values are 1839 ** numeric, then a numeric comparison is used. If the two values 1840 ** are of different types, then numbers are considered less than 1841 ** strings and strings are considered less than blobs. 1842 */ 1843 /* Opcode: Le P1 P2 P3 P4 P5 1844 ** Synopsis: IF r[P3]<=r[P1] 1845 ** 1846 ** This works just like the Lt opcode except that the jump is taken if 1847 ** the content of register P3 is less than or equal to the content of 1848 ** register P1. See the Lt opcode for additional information. 1849 */ 1850 /* Opcode: Gt P1 P2 P3 P4 P5 1851 ** Synopsis: IF r[P3]>r[P1] 1852 ** 1853 ** This works just like the Lt opcode except that the jump is taken if 1854 ** the content of register P3 is greater than the content of 1855 ** register P1. See the Lt opcode for additional information. 1856 */ 1857 /* Opcode: Ge P1 P2 P3 P4 P5 1858 ** Synopsis: IF r[P3]>=r[P1] 1859 ** 1860 ** This works just like the Lt opcode except that the jump is taken if 1861 ** the content of register P3 is greater than or equal to the content of 1862 ** register P1. See the Lt opcode for additional information. 1863 */ 1864 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1865 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1866 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1867 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1868 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1869 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1870 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 1871 char affinity; /* Affinity to use for comparison */ 1872 u16 flags1; /* Copy of initial value of pIn1->flags */ 1873 u16 flags3; /* Copy of initial value of pIn3->flags */ 1874 1875 pIn1 = &aMem[pOp->p1]; 1876 pIn3 = &aMem[pOp->p3]; 1877 flags1 = pIn1->flags; 1878 flags3 = pIn3->flags; 1879 if( (flags1 | flags3)&MEM_Null ){ 1880 /* One or both operands are NULL */ 1881 if( pOp->p5 & SQLITE_NULLEQ ){ 1882 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1883 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1884 ** or not both operands are null. 1885 */ 1886 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1887 assert( (flags1 & MEM_Cleared)==0 ); 1888 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1889 if( (flags1&flags3&MEM_Null)!=0 1890 && (flags3&MEM_Cleared)==0 1891 ){ 1892 res = 0; /* Operands are equal */ 1893 }else{ 1894 res = 1; /* Operands are not equal */ 1895 } 1896 }else{ 1897 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1898 ** then the result is always NULL. 1899 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1900 */ 1901 if( pOp->p5 & SQLITE_STOREP2 ){ 1902 pOut = &aMem[pOp->p2]; 1903 iCompare = 1; /* Operands are not equal */ 1904 memAboutToChange(p, pOut); 1905 MemSetTypeFlag(pOut, MEM_Null); 1906 REGISTER_TRACE(pOp->p2, pOut); 1907 }else{ 1908 VdbeBranchTaken(2,3); 1909 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1910 goto jump_to_p2; 1911 } 1912 } 1913 break; 1914 } 1915 }else{ 1916 /* Neither operand is NULL. Do a comparison. */ 1917 affinity = pOp->p5 & SQLITE_AFF_MASK; 1918 if( affinity>=SQLITE_AFF_NUMERIC ){ 1919 if( (flags1 | flags3)&MEM_Str ){ 1920 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1921 applyNumericAffinity(pIn1,0); 1922 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */ 1923 flags3 = pIn3->flags; 1924 } 1925 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1926 applyNumericAffinity(pIn3,0); 1927 } 1928 } 1929 /* Handle the common case of integer comparison here, as an 1930 ** optimization, to avoid a call to sqlite3MemCompare() */ 1931 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 1932 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 1933 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 1934 res = 0; 1935 goto compare_op; 1936 } 1937 }else if( affinity==SQLITE_AFF_TEXT ){ 1938 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ 1939 testcase( pIn1->flags & MEM_Int ); 1940 testcase( pIn1->flags & MEM_Real ); 1941 sqlite3VdbeMemStringify(pIn1, encoding, 1); 1942 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 1943 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 1944 assert( pIn1!=pIn3 ); 1945 } 1946 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ 1947 testcase( pIn3->flags & MEM_Int ); 1948 testcase( pIn3->flags & MEM_Real ); 1949 sqlite3VdbeMemStringify(pIn3, encoding, 1); 1950 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 1951 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 1952 } 1953 } 1954 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1955 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1956 } 1957 compare_op: 1958 /* At this point, res is negative, zero, or positive if reg[P1] is 1959 ** less than, equal to, or greater than reg[P3], respectively. Compute 1960 ** the answer to this operator in res2, depending on what the comparison 1961 ** operator actually is. The next block of code depends on the fact 1962 ** that the 6 comparison operators are consecutive integers in this 1963 ** order: NE, EQ, GT, LE, LT, GE */ 1964 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 1965 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 1966 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 1967 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 1968 res2 = aLTb[pOp->opcode - OP_Ne]; 1969 }else if( res==0 ){ 1970 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 1971 res2 = aEQb[pOp->opcode - OP_Ne]; 1972 }else{ 1973 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 1974 res2 = aGTb[pOp->opcode - OP_Ne]; 1975 } 1976 1977 /* Undo any changes made by applyAffinity() to the input registers. */ 1978 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1979 pIn1->flags = flags1; 1980 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 1981 pIn3->flags = flags3; 1982 1983 if( pOp->p5 & SQLITE_STOREP2 ){ 1984 pOut = &aMem[pOp->p2]; 1985 iCompare = res; 1986 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 1987 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 1988 ** and prevents OP_Ne from overwriting NULL with 0. This flag 1989 ** is only used in contexts where either: 1990 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 1991 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 1992 ** Therefore it is not necessary to check the content of r[P2] for 1993 ** NULL. */ 1994 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 1995 assert( res2==0 || res2==1 ); 1996 testcase( res2==0 && pOp->opcode==OP_Eq ); 1997 testcase( res2==1 && pOp->opcode==OP_Eq ); 1998 testcase( res2==0 && pOp->opcode==OP_Ne ); 1999 testcase( res2==1 && pOp->opcode==OP_Ne ); 2000 if( (pOp->opcode==OP_Eq)==res2 ) break; 2001 } 2002 memAboutToChange(p, pOut); 2003 MemSetTypeFlag(pOut, MEM_Int); 2004 pOut->u.i = res2; 2005 REGISTER_TRACE(pOp->p2, pOut); 2006 }else{ 2007 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2008 if( res2 ){ 2009 goto jump_to_p2; 2010 } 2011 } 2012 break; 2013 } 2014 2015 /* Opcode: ElseNotEq * P2 * * * 2016 ** 2017 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. 2018 ** If result of an OP_Eq comparison on the same two operands 2019 ** would have be NULL or false (0), then then jump to P2. 2020 ** If the result of an OP_Eq comparison on the two previous operands 2021 ** would have been true (1), then fall through. 2022 */ 2023 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2024 assert( pOp>aOp ); 2025 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); 2026 assert( pOp[-1].p5 & SQLITE_STOREP2 ); 2027 VdbeBranchTaken(iCompare!=0, 2); 2028 if( iCompare!=0 ) goto jump_to_p2; 2029 break; 2030 } 2031 2032 2033 /* Opcode: Permutation * * * P4 * 2034 ** 2035 ** Set the permutation used by the OP_Compare operator in the next 2036 ** instruction. The permutation is stored in the P4 operand. 2037 ** 2038 ** The permutation is only valid until the next OP_Compare that has 2039 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2040 ** occur immediately prior to the OP_Compare. 2041 ** 2042 ** The first integer in the P4 integer array is the length of the array 2043 ** and does not become part of the permutation. 2044 */ 2045 case OP_Permutation: { 2046 assert( pOp->p4type==P4_INTARRAY ); 2047 assert( pOp->p4.ai ); 2048 assert( pOp[1].opcode==OP_Compare ); 2049 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2050 break; 2051 } 2052 2053 /* Opcode: Compare P1 P2 P3 P4 P5 2054 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2055 ** 2056 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2057 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2058 ** the comparison for use by the next OP_Jump instruct. 2059 ** 2060 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2061 ** determined by the most recent OP_Permutation operator. If the 2062 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2063 ** order. 2064 ** 2065 ** P4 is a KeyInfo structure that defines collating sequences and sort 2066 ** orders for the comparison. The permutation applies to registers 2067 ** only. The KeyInfo elements are used sequentially. 2068 ** 2069 ** The comparison is a sort comparison, so NULLs compare equal, 2070 ** NULLs are less than numbers, numbers are less than strings, 2071 ** and strings are less than blobs. 2072 */ 2073 case OP_Compare: { 2074 int n; 2075 int i; 2076 int p1; 2077 int p2; 2078 const KeyInfo *pKeyInfo; 2079 int idx; 2080 CollSeq *pColl; /* Collating sequence to use on this term */ 2081 int bRev; /* True for DESCENDING sort order */ 2082 int *aPermute; /* The permutation */ 2083 2084 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2085 aPermute = 0; 2086 }else{ 2087 assert( pOp>aOp ); 2088 assert( pOp[-1].opcode==OP_Permutation ); 2089 assert( pOp[-1].p4type==P4_INTARRAY ); 2090 aPermute = pOp[-1].p4.ai + 1; 2091 assert( aPermute!=0 ); 2092 } 2093 n = pOp->p3; 2094 pKeyInfo = pOp->p4.pKeyInfo; 2095 assert( n>0 ); 2096 assert( pKeyInfo!=0 ); 2097 p1 = pOp->p1; 2098 p2 = pOp->p2; 2099 #ifdef SQLITE_DEBUG 2100 if( aPermute ){ 2101 int k, mx = 0; 2102 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2103 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2104 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2105 }else{ 2106 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2107 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2108 } 2109 #endif /* SQLITE_DEBUG */ 2110 for(i=0; i<n; i++){ 2111 idx = aPermute ? aPermute[i] : i; 2112 assert( memIsValid(&aMem[p1+idx]) ); 2113 assert( memIsValid(&aMem[p2+idx]) ); 2114 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2115 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2116 assert( i<pKeyInfo->nKeyField ); 2117 pColl = pKeyInfo->aColl[i]; 2118 bRev = pKeyInfo->aSortOrder[i]; 2119 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2120 if( iCompare ){ 2121 if( bRev ) iCompare = -iCompare; 2122 break; 2123 } 2124 } 2125 break; 2126 } 2127 2128 /* Opcode: Jump P1 P2 P3 * * 2129 ** 2130 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2131 ** in the most recent OP_Compare instruction the P1 vector was less than 2132 ** equal to, or greater than the P2 vector, respectively. 2133 */ 2134 case OP_Jump: { /* jump */ 2135 if( iCompare<0 ){ 2136 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; 2137 }else if( iCompare==0 ){ 2138 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; 2139 }else{ 2140 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; 2141 } 2142 break; 2143 } 2144 2145 /* Opcode: And P1 P2 P3 * * 2146 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2147 ** 2148 ** Take the logical AND of the values in registers P1 and P2 and 2149 ** write the result into register P3. 2150 ** 2151 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2152 ** the other input is NULL. A NULL and true or two NULLs give 2153 ** a NULL output. 2154 */ 2155 /* Opcode: Or P1 P2 P3 * * 2156 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2157 ** 2158 ** Take the logical OR of the values in register P1 and P2 and 2159 ** store the answer in register P3. 2160 ** 2161 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2162 ** even if the other input is NULL. A NULL and false or two NULLs 2163 ** give a NULL output. 2164 */ 2165 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2166 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2167 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2168 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2169 2170 pIn1 = &aMem[pOp->p1]; 2171 if( pIn1->flags & MEM_Null ){ 2172 v1 = 2; 2173 }else{ 2174 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2175 } 2176 pIn2 = &aMem[pOp->p2]; 2177 if( pIn2->flags & MEM_Null ){ 2178 v2 = 2; 2179 }else{ 2180 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2181 } 2182 if( pOp->opcode==OP_And ){ 2183 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2184 v1 = and_logic[v1*3+v2]; 2185 }else{ 2186 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2187 v1 = or_logic[v1*3+v2]; 2188 } 2189 pOut = &aMem[pOp->p3]; 2190 if( v1==2 ){ 2191 MemSetTypeFlag(pOut, MEM_Null); 2192 }else{ 2193 pOut->u.i = v1; 2194 MemSetTypeFlag(pOut, MEM_Int); 2195 } 2196 break; 2197 } 2198 2199 /* Opcode: Not P1 P2 * * * 2200 ** Synopsis: r[P2]= !r[P1] 2201 ** 2202 ** Interpret the value in register P1 as a boolean value. Store the 2203 ** boolean complement in register P2. If the value in register P1 is 2204 ** NULL, then a NULL is stored in P2. 2205 */ 2206 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2207 pIn1 = &aMem[pOp->p1]; 2208 pOut = &aMem[pOp->p2]; 2209 sqlite3VdbeMemSetNull(pOut); 2210 if( (pIn1->flags & MEM_Null)==0 ){ 2211 pOut->flags = MEM_Int; 2212 pOut->u.i = !sqlite3VdbeIntValue(pIn1); 2213 } 2214 break; 2215 } 2216 2217 /* Opcode: BitNot P1 P2 * * * 2218 ** Synopsis: r[P1]= ~r[P1] 2219 ** 2220 ** Interpret the content of register P1 as an integer. Store the 2221 ** ones-complement of the P1 value into register P2. If P1 holds 2222 ** a NULL then store a NULL in P2. 2223 */ 2224 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2225 pIn1 = &aMem[pOp->p1]; 2226 pOut = &aMem[pOp->p2]; 2227 sqlite3VdbeMemSetNull(pOut); 2228 if( (pIn1->flags & MEM_Null)==0 ){ 2229 pOut->flags = MEM_Int; 2230 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2231 } 2232 break; 2233 } 2234 2235 /* Opcode: Once P1 P2 * * * 2236 ** 2237 ** Fall through to the next instruction the first time this opcode is 2238 ** encountered on each invocation of the byte-code program. Jump to P2 2239 ** on the second and all subsequent encounters during the same invocation. 2240 ** 2241 ** Top-level programs determine first invocation by comparing the P1 2242 ** operand against the P1 operand on the OP_Init opcode at the beginning 2243 ** of the program. If the P1 values differ, then fall through and make 2244 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2245 ** the same then take the jump. 2246 ** 2247 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2248 ** whether or not the jump should be taken. The bitmask is necessary 2249 ** because the self-altering code trick does not work for recursive 2250 ** triggers. 2251 */ 2252 case OP_Once: { /* jump */ 2253 u32 iAddr; /* Address of this instruction */ 2254 assert( p->aOp[0].opcode==OP_Init ); 2255 if( p->pFrame ){ 2256 iAddr = (int)(pOp - p->aOp); 2257 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2258 VdbeBranchTaken(1, 2); 2259 goto jump_to_p2; 2260 } 2261 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2262 }else{ 2263 if( p->aOp[0].p1==pOp->p1 ){ 2264 VdbeBranchTaken(1, 2); 2265 goto jump_to_p2; 2266 } 2267 } 2268 VdbeBranchTaken(0, 2); 2269 pOp->p1 = p->aOp[0].p1; 2270 break; 2271 } 2272 2273 /* Opcode: If P1 P2 P3 * * 2274 ** 2275 ** Jump to P2 if the value in register P1 is true. The value 2276 ** is considered true if it is numeric and non-zero. If the value 2277 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2278 */ 2279 /* Opcode: IfNot P1 P2 P3 * * 2280 ** 2281 ** Jump to P2 if the value in register P1 is False. The value 2282 ** is considered false if it has a numeric value of zero. If the value 2283 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2284 */ 2285 case OP_If: /* jump, in1 */ 2286 case OP_IfNot: { /* jump, in1 */ 2287 int c; 2288 pIn1 = &aMem[pOp->p1]; 2289 if( pIn1->flags & MEM_Null ){ 2290 c = pOp->p3; 2291 }else{ 2292 #ifdef SQLITE_OMIT_FLOATING_POINT 2293 c = sqlite3VdbeIntValue(pIn1)!=0; 2294 #else 2295 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2296 #endif 2297 if( pOp->opcode==OP_IfNot ) c = !c; 2298 } 2299 VdbeBranchTaken(c!=0, 2); 2300 if( c ){ 2301 goto jump_to_p2; 2302 } 2303 break; 2304 } 2305 2306 /* Opcode: IsNull P1 P2 * * * 2307 ** Synopsis: if r[P1]==NULL goto P2 2308 ** 2309 ** Jump to P2 if the value in register P1 is NULL. 2310 */ 2311 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2312 pIn1 = &aMem[pOp->p1]; 2313 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2314 if( (pIn1->flags & MEM_Null)!=0 ){ 2315 goto jump_to_p2; 2316 } 2317 break; 2318 } 2319 2320 /* Opcode: NotNull P1 P2 * * * 2321 ** Synopsis: if r[P1]!=NULL goto P2 2322 ** 2323 ** Jump to P2 if the value in register P1 is not NULL. 2324 */ 2325 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2326 pIn1 = &aMem[pOp->p1]; 2327 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2328 if( (pIn1->flags & MEM_Null)==0 ){ 2329 goto jump_to_p2; 2330 } 2331 break; 2332 } 2333 2334 /* Opcode: IfNullRow P1 P2 P3 * * 2335 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2336 ** 2337 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2338 ** If it is, then set register P3 to NULL and jump immediately to P2. 2339 ** If P1 is not on a NULL row, then fall through without making any 2340 ** changes. 2341 */ 2342 case OP_IfNullRow: { /* jump */ 2343 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2344 assert( p->apCsr[pOp->p1]!=0 ); 2345 if( p->apCsr[pOp->p1]->nullRow ){ 2346 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2347 goto jump_to_p2; 2348 } 2349 break; 2350 } 2351 2352 /* Opcode: Column P1 P2 P3 P4 P5 2353 ** Synopsis: r[P3]=PX 2354 ** 2355 ** Interpret the data that cursor P1 points to as a structure built using 2356 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2357 ** information about the format of the data.) Extract the P2-th column 2358 ** from this record. If there are less that (P2+1) 2359 ** values in the record, extract a NULL. 2360 ** 2361 ** The value extracted is stored in register P3. 2362 ** 2363 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2364 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2365 ** the result. 2366 ** 2367 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2368 ** then the cache of the cursor is reset prior to extracting the column. 2369 ** The first OP_Column against a pseudo-table after the value of the content 2370 ** register has changed should have this bit set. 2371 ** 2372 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2373 ** the result is guaranteed to only be used as the argument of a length() 2374 ** or typeof() function, respectively. The loading of large blobs can be 2375 ** skipped for length() and all content loading can be skipped for typeof(). 2376 */ 2377 case OP_Column: { 2378 int p2; /* column number to retrieve */ 2379 VdbeCursor *pC; /* The VDBE cursor */ 2380 BtCursor *pCrsr; /* The BTree cursor */ 2381 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2382 int len; /* The length of the serialized data for the column */ 2383 int i; /* Loop counter */ 2384 Mem *pDest; /* Where to write the extracted value */ 2385 Mem sMem; /* For storing the record being decoded */ 2386 const u8 *zData; /* Part of the record being decoded */ 2387 const u8 *zHdr; /* Next unparsed byte of the header */ 2388 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2389 u32 offset; /* Offset into the data */ 2390 u64 offset64; /* 64-bit offset */ 2391 u32 avail; /* Number of bytes of available data */ 2392 u32 t; /* A type code from the record header */ 2393 Mem *pReg; /* PseudoTable input register */ 2394 2395 pC = p->apCsr[pOp->p1]; 2396 p2 = pOp->p2; 2397 2398 /* If the cursor cache is stale (meaning it is not currently point at 2399 ** the correct row) then bring it up-to-date by doing the necessary 2400 ** B-Tree seek. */ 2401 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2402 if( rc ) goto abort_due_to_error; 2403 2404 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2405 pDest = &aMem[pOp->p3]; 2406 memAboutToChange(p, pDest); 2407 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2408 assert( pC!=0 ); 2409 assert( p2<pC->nField ); 2410 aOffset = pC->aOffset; 2411 assert( pC->eCurType!=CURTYPE_VTAB ); 2412 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2413 assert( pC->eCurType!=CURTYPE_SORTER ); 2414 2415 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2416 if( pC->nullRow ){ 2417 if( pC->eCurType==CURTYPE_PSEUDO ){ 2418 assert( pC->uc.pseudoTableReg>0 ); 2419 pReg = &aMem[pC->uc.pseudoTableReg]; 2420 assert( pReg->flags & MEM_Blob ); 2421 assert( memIsValid(pReg) ); 2422 pC->payloadSize = pC->szRow = avail = pReg->n; 2423 pC->aRow = (u8*)pReg->z; 2424 }else{ 2425 sqlite3VdbeMemSetNull(pDest); 2426 goto op_column_out; 2427 } 2428 }else{ 2429 pCrsr = pC->uc.pCursor; 2430 assert( pC->eCurType==CURTYPE_BTREE ); 2431 assert( pCrsr ); 2432 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2433 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2434 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail); 2435 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2436 if( pC->payloadSize <= (u32)avail ){ 2437 pC->szRow = pC->payloadSize; 2438 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2439 goto too_big; 2440 }else{ 2441 pC->szRow = avail; 2442 } 2443 } 2444 pC->cacheStatus = p->cacheCtr; 2445 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2446 pC->nHdrParsed = 0; 2447 aOffset[0] = offset; 2448 2449 2450 if( avail<offset ){ /*OPTIMIZATION-IF-FALSE*/ 2451 /* pC->aRow does not have to hold the entire row, but it does at least 2452 ** need to cover the header of the record. If pC->aRow does not contain 2453 ** the complete header, then set it to zero, forcing the header to be 2454 ** dynamically allocated. */ 2455 pC->aRow = 0; 2456 pC->szRow = 0; 2457 2458 /* Make sure a corrupt database has not given us an oversize header. 2459 ** Do this now to avoid an oversize memory allocation. 2460 ** 2461 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2462 ** types use so much data space that there can only be 4096 and 32 of 2463 ** them, respectively. So the maximum header length results from a 2464 ** 3-byte type for each of the maximum of 32768 columns plus three 2465 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2466 */ 2467 if( offset > 98307 || offset > pC->payloadSize ){ 2468 rc = SQLITE_CORRUPT_BKPT; 2469 goto abort_due_to_error; 2470 } 2471 }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/ 2472 /* The following goto is an optimization. It can be omitted and 2473 ** everything will still work. But OP_Column is measurably faster 2474 ** by skipping the subsequent conditional, which is always true. 2475 */ 2476 zData = pC->aRow; 2477 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2478 goto op_column_read_header; 2479 } 2480 } 2481 2482 /* Make sure at least the first p2+1 entries of the header have been 2483 ** parsed and valid information is in aOffset[] and pC->aType[]. 2484 */ 2485 if( pC->nHdrParsed<=p2 ){ 2486 /* If there is more header available for parsing in the record, try 2487 ** to extract additional fields up through the p2+1-th field 2488 */ 2489 if( pC->iHdrOffset<aOffset[0] ){ 2490 /* Make sure zData points to enough of the record to cover the header. */ 2491 if( pC->aRow==0 ){ 2492 memset(&sMem, 0, sizeof(sMem)); 2493 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); 2494 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2495 zData = (u8*)sMem.z; 2496 }else{ 2497 zData = pC->aRow; 2498 } 2499 2500 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2501 op_column_read_header: 2502 i = pC->nHdrParsed; 2503 offset64 = aOffset[i]; 2504 zHdr = zData + pC->iHdrOffset; 2505 zEndHdr = zData + aOffset[0]; 2506 do{ 2507 if( (t = zHdr[0])<0x80 ){ 2508 zHdr++; 2509 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2510 }else{ 2511 zHdr += sqlite3GetVarint32(zHdr, &t); 2512 offset64 += sqlite3VdbeSerialTypeLen(t); 2513 } 2514 pC->aType[i++] = t; 2515 aOffset[i] = (u32)(offset64 & 0xffffffff); 2516 }while( i<=p2 && zHdr<zEndHdr ); 2517 2518 /* The record is corrupt if any of the following are true: 2519 ** (1) the bytes of the header extend past the declared header size 2520 ** (2) the entire header was used but not all data was used 2521 ** (3) the end of the data extends beyond the end of the record. 2522 */ 2523 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2524 || (offset64 > pC->payloadSize) 2525 ){ 2526 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2527 rc = SQLITE_CORRUPT_BKPT; 2528 goto abort_due_to_error; 2529 } 2530 2531 pC->nHdrParsed = i; 2532 pC->iHdrOffset = (u32)(zHdr - zData); 2533 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2534 }else{ 2535 t = 0; 2536 } 2537 2538 /* If after trying to extract new entries from the header, nHdrParsed is 2539 ** still not up to p2, that means that the record has fewer than p2 2540 ** columns. So the result will be either the default value or a NULL. 2541 */ 2542 if( pC->nHdrParsed<=p2 ){ 2543 if( pOp->p4type==P4_MEM ){ 2544 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2545 }else{ 2546 sqlite3VdbeMemSetNull(pDest); 2547 } 2548 goto op_column_out; 2549 } 2550 }else{ 2551 t = pC->aType[p2]; 2552 } 2553 2554 /* Extract the content for the p2+1-th column. Control can only 2555 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2556 ** all valid. 2557 */ 2558 assert( p2<pC->nHdrParsed ); 2559 assert( rc==SQLITE_OK ); 2560 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2561 if( VdbeMemDynamic(pDest) ){ 2562 sqlite3VdbeMemSetNull(pDest); 2563 } 2564 assert( t==pC->aType[p2] ); 2565 if( pC->szRow>=aOffset[p2+1] ){ 2566 /* This is the common case where the desired content fits on the original 2567 ** page - where the content is not on an overflow page */ 2568 zData = pC->aRow + aOffset[p2]; 2569 if( t<12 ){ 2570 sqlite3VdbeSerialGet(zData, t, pDest); 2571 }else{ 2572 /* If the column value is a string, we need a persistent value, not 2573 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2574 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2575 */ 2576 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2577 pDest->n = len = (t-12)/2; 2578 pDest->enc = encoding; 2579 if( pDest->szMalloc < len+2 ){ 2580 pDest->flags = MEM_Null; 2581 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2582 }else{ 2583 pDest->z = pDest->zMalloc; 2584 } 2585 memcpy(pDest->z, zData, len); 2586 pDest->z[len] = 0; 2587 pDest->z[len+1] = 0; 2588 pDest->flags = aFlag[t&1]; 2589 } 2590 }else{ 2591 pDest->enc = encoding; 2592 /* This branch happens only when content is on overflow pages */ 2593 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2594 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2595 || (len = sqlite3VdbeSerialTypeLen(t))==0 2596 ){ 2597 /* Content is irrelevant for 2598 ** 1. the typeof() function, 2599 ** 2. the length(X) function if X is a blob, and 2600 ** 3. if the content length is zero. 2601 ** So we might as well use bogus content rather than reading 2602 ** content from disk. 2603 ** 2604 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2605 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2606 ** read up to 16. So 16 bytes of bogus content is supplied. 2607 */ 2608 static u8 aZero[16]; /* This is the bogus content */ 2609 sqlite3VdbeSerialGet(aZero, t, pDest); 2610 }else{ 2611 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2612 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2613 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2614 pDest->flags &= ~MEM_Ephem; 2615 } 2616 } 2617 2618 op_column_out: 2619 UPDATE_MAX_BLOBSIZE(pDest); 2620 REGISTER_TRACE(pOp->p3, pDest); 2621 break; 2622 } 2623 2624 /* Opcode: Affinity P1 P2 * P4 * 2625 ** Synopsis: affinity(r[P1@P2]) 2626 ** 2627 ** Apply affinities to a range of P2 registers starting with P1. 2628 ** 2629 ** P4 is a string that is P2 characters long. The N-th character of the 2630 ** string indicates the column affinity that should be used for the N-th 2631 ** memory cell in the range. 2632 */ 2633 case OP_Affinity: { 2634 const char *zAffinity; /* The affinity to be applied */ 2635 2636 zAffinity = pOp->p4.z; 2637 assert( zAffinity!=0 ); 2638 assert( pOp->p2>0 ); 2639 assert( zAffinity[pOp->p2]==0 ); 2640 pIn1 = &aMem[pOp->p1]; 2641 do{ 2642 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2643 assert( memIsValid(pIn1) ); 2644 applyAffinity(pIn1, *(zAffinity++), encoding); 2645 pIn1++; 2646 }while( zAffinity[0] ); 2647 break; 2648 } 2649 2650 /* Opcode: MakeRecord P1 P2 P3 P4 * 2651 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2652 ** 2653 ** Convert P2 registers beginning with P1 into the [record format] 2654 ** use as a data record in a database table or as a key 2655 ** in an index. The OP_Column opcode can decode the record later. 2656 ** 2657 ** P4 may be a string that is P2 characters long. The N-th character of the 2658 ** string indicates the column affinity that should be used for the N-th 2659 ** field of the index key. 2660 ** 2661 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2662 ** macros defined in sqliteInt.h. 2663 ** 2664 ** If P4 is NULL then all index fields have the affinity BLOB. 2665 */ 2666 case OP_MakeRecord: { 2667 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2668 Mem *pRec; /* The new record */ 2669 u64 nData; /* Number of bytes of data space */ 2670 int nHdr; /* Number of bytes of header space */ 2671 i64 nByte; /* Data space required for this record */ 2672 i64 nZero; /* Number of zero bytes at the end of the record */ 2673 int nVarint; /* Number of bytes in a varint */ 2674 u32 serial_type; /* Type field */ 2675 Mem *pData0; /* First field to be combined into the record */ 2676 Mem *pLast; /* Last field of the record */ 2677 int nField; /* Number of fields in the record */ 2678 char *zAffinity; /* The affinity string for the record */ 2679 int file_format; /* File format to use for encoding */ 2680 int i; /* Space used in zNewRecord[] header */ 2681 int j; /* Space used in zNewRecord[] content */ 2682 u32 len; /* Length of a field */ 2683 2684 /* Assuming the record contains N fields, the record format looks 2685 ** like this: 2686 ** 2687 ** ------------------------------------------------------------------------ 2688 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2689 ** ------------------------------------------------------------------------ 2690 ** 2691 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2692 ** and so forth. 2693 ** 2694 ** Each type field is a varint representing the serial type of the 2695 ** corresponding data element (see sqlite3VdbeSerialType()). The 2696 ** hdr-size field is also a varint which is the offset from the beginning 2697 ** of the record to data0. 2698 */ 2699 nData = 0; /* Number of bytes of data space */ 2700 nHdr = 0; /* Number of bytes of header space */ 2701 nZero = 0; /* Number of zero bytes at the end of the record */ 2702 nField = pOp->p1; 2703 zAffinity = pOp->p4.z; 2704 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2705 pData0 = &aMem[nField]; 2706 nField = pOp->p2; 2707 pLast = &pData0[nField-1]; 2708 file_format = p->minWriteFileFormat; 2709 2710 /* Identify the output register */ 2711 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2712 pOut = &aMem[pOp->p3]; 2713 memAboutToChange(p, pOut); 2714 2715 /* Apply the requested affinity to all inputs 2716 */ 2717 assert( pData0<=pLast ); 2718 if( zAffinity ){ 2719 pRec = pData0; 2720 do{ 2721 applyAffinity(pRec++, *(zAffinity++), encoding); 2722 assert( zAffinity[0]==0 || pRec<=pLast ); 2723 }while( zAffinity[0] ); 2724 } 2725 2726 #ifdef SQLITE_ENABLE_NULL_TRIM 2727 /* NULLs can be safely trimmed from the end of the record, as long as 2728 ** as the schema format is 2 or more and none of the omitted columns 2729 ** have a non-NULL default value. Also, the record must be left with 2730 ** at least one field. If P5>0 then it will be one more than the 2731 ** index of the right-most column with a non-NULL default value */ 2732 if( pOp->p5 ){ 2733 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2734 pLast--; 2735 nField--; 2736 } 2737 } 2738 #endif 2739 2740 /* Loop through the elements that will make up the record to figure 2741 ** out how much space is required for the new record. 2742 */ 2743 pRec = pLast; 2744 do{ 2745 assert( memIsValid(pRec) ); 2746 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); 2747 if( pRec->flags & MEM_Zero ){ 2748 if( nData ){ 2749 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 2750 }else{ 2751 nZero += pRec->u.nZero; 2752 len -= pRec->u.nZero; 2753 } 2754 } 2755 nData += len; 2756 testcase( serial_type==127 ); 2757 testcase( serial_type==128 ); 2758 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2759 if( pRec==pData0 ) break; 2760 pRec--; 2761 }while(1); 2762 2763 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2764 ** which determines the total number of bytes in the header. The varint 2765 ** value is the size of the header in bytes including the size varint 2766 ** itself. */ 2767 testcase( nHdr==126 ); 2768 testcase( nHdr==127 ); 2769 if( nHdr<=126 ){ 2770 /* The common case */ 2771 nHdr += 1; 2772 }else{ 2773 /* Rare case of a really large header */ 2774 nVarint = sqlite3VarintLen(nHdr); 2775 nHdr += nVarint; 2776 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2777 } 2778 nByte = nHdr+nData; 2779 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2780 goto too_big; 2781 } 2782 2783 /* Make sure the output register has a buffer large enough to store 2784 ** the new record. The output register (pOp->p3) is not allowed to 2785 ** be one of the input registers (because the following call to 2786 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2787 */ 2788 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2789 goto no_mem; 2790 } 2791 zNewRecord = (u8 *)pOut->z; 2792 2793 /* Write the record */ 2794 i = putVarint32(zNewRecord, nHdr); 2795 j = nHdr; 2796 assert( pData0<=pLast ); 2797 pRec = pData0; 2798 do{ 2799 serial_type = pRec->uTemp; 2800 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2801 ** additional varints, one per column. */ 2802 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2803 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2804 ** immediately follow the header. */ 2805 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2806 }while( (++pRec)<=pLast ); 2807 assert( i==nHdr ); 2808 assert( j==nByte ); 2809 2810 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2811 pOut->n = (int)nByte; 2812 pOut->flags = MEM_Blob; 2813 if( nZero ){ 2814 pOut->u.nZero = nZero; 2815 pOut->flags |= MEM_Zero; 2816 } 2817 REGISTER_TRACE(pOp->p3, pOut); 2818 UPDATE_MAX_BLOBSIZE(pOut); 2819 break; 2820 } 2821 2822 /* Opcode: Count P1 P2 * * * 2823 ** Synopsis: r[P2]=count() 2824 ** 2825 ** Store the number of entries (an integer value) in the table or index 2826 ** opened by cursor P1 in register P2 2827 */ 2828 #ifndef SQLITE_OMIT_BTREECOUNT 2829 case OP_Count: { /* out2 */ 2830 i64 nEntry; 2831 BtCursor *pCrsr; 2832 2833 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 2834 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 2835 assert( pCrsr ); 2836 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2837 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2838 if( rc ) goto abort_due_to_error; 2839 pOut = out2Prerelease(p, pOp); 2840 pOut->u.i = nEntry; 2841 break; 2842 } 2843 #endif 2844 2845 /* Opcode: Savepoint P1 * * P4 * 2846 ** 2847 ** Open, release or rollback the savepoint named by parameter P4, depending 2848 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2849 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2850 */ 2851 case OP_Savepoint: { 2852 int p1; /* Value of P1 operand */ 2853 char *zName; /* Name of savepoint */ 2854 int nName; 2855 Savepoint *pNew; 2856 Savepoint *pSavepoint; 2857 Savepoint *pTmp; 2858 int iSavepoint; 2859 int ii; 2860 2861 p1 = pOp->p1; 2862 zName = pOp->p4.z; 2863 2864 /* Assert that the p1 parameter is valid. Also that if there is no open 2865 ** transaction, then there cannot be any savepoints. 2866 */ 2867 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2868 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2869 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2870 assert( checkSavepointCount(db) ); 2871 assert( p->bIsReader ); 2872 2873 if( p1==SAVEPOINT_BEGIN ){ 2874 if( db->nVdbeWrite>0 ){ 2875 /* A new savepoint cannot be created if there are active write 2876 ** statements (i.e. open read/write incremental blob handles). 2877 */ 2878 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 2879 rc = SQLITE_BUSY; 2880 }else{ 2881 nName = sqlite3Strlen30(zName); 2882 2883 #ifndef SQLITE_OMIT_VIRTUALTABLE 2884 /* This call is Ok even if this savepoint is actually a transaction 2885 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2886 ** If this is a transaction savepoint being opened, it is guaranteed 2887 ** that the db->aVTrans[] array is empty. */ 2888 assert( db->autoCommit==0 || db->nVTrans==0 ); 2889 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2890 db->nStatement+db->nSavepoint); 2891 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2892 #endif 2893 2894 /* Create a new savepoint structure. */ 2895 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 2896 if( pNew ){ 2897 pNew->zName = (char *)&pNew[1]; 2898 memcpy(pNew->zName, zName, nName+1); 2899 2900 /* If there is no open transaction, then mark this as a special 2901 ** "transaction savepoint". */ 2902 if( db->autoCommit ){ 2903 db->autoCommit = 0; 2904 db->isTransactionSavepoint = 1; 2905 }else{ 2906 db->nSavepoint++; 2907 } 2908 2909 /* Link the new savepoint into the database handle's list. */ 2910 pNew->pNext = db->pSavepoint; 2911 db->pSavepoint = pNew; 2912 pNew->nDeferredCons = db->nDeferredCons; 2913 pNew->nDeferredImmCons = db->nDeferredImmCons; 2914 } 2915 } 2916 }else{ 2917 iSavepoint = 0; 2918 2919 /* Find the named savepoint. If there is no such savepoint, then an 2920 ** an error is returned to the user. */ 2921 for( 2922 pSavepoint = db->pSavepoint; 2923 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2924 pSavepoint = pSavepoint->pNext 2925 ){ 2926 iSavepoint++; 2927 } 2928 if( !pSavepoint ){ 2929 sqlite3VdbeError(p, "no such savepoint: %s", zName); 2930 rc = SQLITE_ERROR; 2931 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2932 /* It is not possible to release (commit) a savepoint if there are 2933 ** active write statements. 2934 */ 2935 sqlite3VdbeError(p, "cannot release savepoint - " 2936 "SQL statements in progress"); 2937 rc = SQLITE_BUSY; 2938 }else{ 2939 2940 /* Determine whether or not this is a transaction savepoint. If so, 2941 ** and this is a RELEASE command, then the current transaction 2942 ** is committed. 2943 */ 2944 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2945 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2946 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2947 goto vdbe_return; 2948 } 2949 db->autoCommit = 1; 2950 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2951 p->pc = (int)(pOp - aOp); 2952 db->autoCommit = 0; 2953 p->rc = rc = SQLITE_BUSY; 2954 goto vdbe_return; 2955 } 2956 db->isTransactionSavepoint = 0; 2957 rc = p->rc; 2958 }else{ 2959 int isSchemaChange; 2960 iSavepoint = db->nSavepoint - iSavepoint - 1; 2961 if( p1==SAVEPOINT_ROLLBACK ){ 2962 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 2963 for(ii=0; ii<db->nDb; ii++){ 2964 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 2965 SQLITE_ABORT_ROLLBACK, 2966 isSchemaChange==0); 2967 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2968 } 2969 }else{ 2970 isSchemaChange = 0; 2971 } 2972 for(ii=0; ii<db->nDb; ii++){ 2973 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2974 if( rc!=SQLITE_OK ){ 2975 goto abort_due_to_error; 2976 } 2977 } 2978 if( isSchemaChange ){ 2979 sqlite3ExpirePreparedStatements(db); 2980 sqlite3ResetAllSchemasOfConnection(db); 2981 db->mDbFlags |= DBFLAG_SchemaChange; 2982 } 2983 } 2984 2985 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2986 ** savepoints nested inside of the savepoint being operated on. */ 2987 while( db->pSavepoint!=pSavepoint ){ 2988 pTmp = db->pSavepoint; 2989 db->pSavepoint = pTmp->pNext; 2990 sqlite3DbFree(db, pTmp); 2991 db->nSavepoint--; 2992 } 2993 2994 /* If it is a RELEASE, then destroy the savepoint being operated on 2995 ** too. If it is a ROLLBACK TO, then set the number of deferred 2996 ** constraint violations present in the database to the value stored 2997 ** when the savepoint was created. */ 2998 if( p1==SAVEPOINT_RELEASE ){ 2999 assert( pSavepoint==db->pSavepoint ); 3000 db->pSavepoint = pSavepoint->pNext; 3001 sqlite3DbFree(db, pSavepoint); 3002 if( !isTransaction ){ 3003 db->nSavepoint--; 3004 } 3005 }else{ 3006 db->nDeferredCons = pSavepoint->nDeferredCons; 3007 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3008 } 3009 3010 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3011 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3012 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3013 } 3014 } 3015 } 3016 if( rc ) goto abort_due_to_error; 3017 3018 break; 3019 } 3020 3021 /* Opcode: AutoCommit P1 P2 * * * 3022 ** 3023 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3024 ** back any currently active btree transactions. If there are any active 3025 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3026 ** there are active writing VMs or active VMs that use shared cache. 3027 ** 3028 ** This instruction causes the VM to halt. 3029 */ 3030 case OP_AutoCommit: { 3031 int desiredAutoCommit; 3032 int iRollback; 3033 3034 desiredAutoCommit = pOp->p1; 3035 iRollback = pOp->p2; 3036 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3037 assert( desiredAutoCommit==1 || iRollback==0 ); 3038 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3039 assert( p->bIsReader ); 3040 3041 if( desiredAutoCommit!=db->autoCommit ){ 3042 if( iRollback ){ 3043 assert( desiredAutoCommit==1 ); 3044 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3045 db->autoCommit = 1; 3046 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3047 /* If this instruction implements a COMMIT and other VMs are writing 3048 ** return an error indicating that the other VMs must complete first. 3049 */ 3050 sqlite3VdbeError(p, "cannot commit transaction - " 3051 "SQL statements in progress"); 3052 rc = SQLITE_BUSY; 3053 goto abort_due_to_error; 3054 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3055 goto vdbe_return; 3056 }else{ 3057 db->autoCommit = (u8)desiredAutoCommit; 3058 } 3059 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3060 p->pc = (int)(pOp - aOp); 3061 db->autoCommit = (u8)(1-desiredAutoCommit); 3062 p->rc = rc = SQLITE_BUSY; 3063 goto vdbe_return; 3064 } 3065 assert( db->nStatement==0 ); 3066 sqlite3CloseSavepoints(db); 3067 if( p->rc==SQLITE_OK ){ 3068 rc = SQLITE_DONE; 3069 }else{ 3070 rc = SQLITE_ERROR; 3071 } 3072 goto vdbe_return; 3073 }else{ 3074 sqlite3VdbeError(p, 3075 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3076 (iRollback)?"cannot rollback - no transaction is active": 3077 "cannot commit - no transaction is active")); 3078 3079 rc = SQLITE_ERROR; 3080 goto abort_due_to_error; 3081 } 3082 break; 3083 } 3084 3085 /* Opcode: Transaction P1 P2 P3 P4 P5 3086 ** 3087 ** Begin a transaction on database P1 if a transaction is not already 3088 ** active. 3089 ** If P2 is non-zero, then a write-transaction is started, or if a 3090 ** read-transaction is already active, it is upgraded to a write-transaction. 3091 ** If P2 is zero, then a read-transaction is started. 3092 ** 3093 ** P1 is the index of the database file on which the transaction is 3094 ** started. Index 0 is the main database file and index 1 is the 3095 ** file used for temporary tables. Indices of 2 or more are used for 3096 ** attached databases. 3097 ** 3098 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3099 ** true (this flag is set if the Vdbe may modify more than one row and may 3100 ** throw an ABORT exception), a statement transaction may also be opened. 3101 ** More specifically, a statement transaction is opened iff the database 3102 ** connection is currently not in autocommit mode, or if there are other 3103 ** active statements. A statement transaction allows the changes made by this 3104 ** VDBE to be rolled back after an error without having to roll back the 3105 ** entire transaction. If no error is encountered, the statement transaction 3106 ** will automatically commit when the VDBE halts. 3107 ** 3108 ** If P5!=0 then this opcode also checks the schema cookie against P3 3109 ** and the schema generation counter against P4. 3110 ** The cookie changes its value whenever the database schema changes. 3111 ** This operation is used to detect when that the cookie has changed 3112 ** and that the current process needs to reread the schema. If the schema 3113 ** cookie in P3 differs from the schema cookie in the database header or 3114 ** if the schema generation counter in P4 differs from the current 3115 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3116 ** halts. The sqlite3_step() wrapper function might then reprepare the 3117 ** statement and rerun it from the beginning. 3118 */ 3119 case OP_Transaction: { 3120 Btree *pBt; 3121 int iMeta; 3122 int iGen; 3123 3124 assert( p->bIsReader ); 3125 assert( p->readOnly==0 || pOp->p2==0 ); 3126 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3127 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3128 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3129 rc = SQLITE_READONLY; 3130 goto abort_due_to_error; 3131 } 3132 pBt = db->aDb[pOp->p1].pBt; 3133 3134 if( pBt ){ 3135 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3136 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3137 testcase( rc==SQLITE_BUSY_RECOVERY ); 3138 if( rc!=SQLITE_OK ){ 3139 if( (rc&0xff)==SQLITE_BUSY ){ 3140 p->pc = (int)(pOp - aOp); 3141 p->rc = rc; 3142 goto vdbe_return; 3143 } 3144 goto abort_due_to_error; 3145 } 3146 3147 if( pOp->p2 && p->usesStmtJournal 3148 && (db->autoCommit==0 || db->nVdbeRead>1) 3149 ){ 3150 assert( sqlite3BtreeIsInTrans(pBt) ); 3151 if( p->iStatement==0 ){ 3152 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3153 db->nStatement++; 3154 p->iStatement = db->nSavepoint + db->nStatement; 3155 } 3156 3157 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3158 if( rc==SQLITE_OK ){ 3159 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3160 } 3161 3162 /* Store the current value of the database handles deferred constraint 3163 ** counter. If the statement transaction needs to be rolled back, 3164 ** the value of this counter needs to be restored too. */ 3165 p->nStmtDefCons = db->nDeferredCons; 3166 p->nStmtDefImmCons = db->nDeferredImmCons; 3167 } 3168 3169 /* Gather the schema version number for checking: 3170 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3171 ** version is checked to ensure that the schema has not changed since the 3172 ** SQL statement was prepared. 3173 */ 3174 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3175 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3176 }else{ 3177 iGen = iMeta = 0; 3178 } 3179 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3180 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3181 sqlite3DbFree(db, p->zErrMsg); 3182 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3183 /* If the schema-cookie from the database file matches the cookie 3184 ** stored with the in-memory representation of the schema, do 3185 ** not reload the schema from the database file. 3186 ** 3187 ** If virtual-tables are in use, this is not just an optimization. 3188 ** Often, v-tables store their data in other SQLite tables, which 3189 ** are queried from within xNext() and other v-table methods using 3190 ** prepared queries. If such a query is out-of-date, we do not want to 3191 ** discard the database schema, as the user code implementing the 3192 ** v-table would have to be ready for the sqlite3_vtab structure itself 3193 ** to be invalidated whenever sqlite3_step() is called from within 3194 ** a v-table method. 3195 */ 3196 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3197 sqlite3ResetOneSchema(db, pOp->p1); 3198 } 3199 p->expired = 1; 3200 rc = SQLITE_SCHEMA; 3201 } 3202 if( rc ) goto abort_due_to_error; 3203 break; 3204 } 3205 3206 /* Opcode: ReadCookie P1 P2 P3 * * 3207 ** 3208 ** Read cookie number P3 from database P1 and write it into register P2. 3209 ** P3==1 is the schema version. P3==2 is the database format. 3210 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3211 ** the main database file and P1==1 is the database file used to store 3212 ** temporary tables. 3213 ** 3214 ** There must be a read-lock on the database (either a transaction 3215 ** must be started or there must be an open cursor) before 3216 ** executing this instruction. 3217 */ 3218 case OP_ReadCookie: { /* out2 */ 3219 int iMeta; 3220 int iDb; 3221 int iCookie; 3222 3223 assert( p->bIsReader ); 3224 iDb = pOp->p1; 3225 iCookie = pOp->p3; 3226 assert( pOp->p3<SQLITE_N_BTREE_META ); 3227 assert( iDb>=0 && iDb<db->nDb ); 3228 assert( db->aDb[iDb].pBt!=0 ); 3229 assert( DbMaskTest(p->btreeMask, iDb) ); 3230 3231 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3232 pOut = out2Prerelease(p, pOp); 3233 pOut->u.i = iMeta; 3234 break; 3235 } 3236 3237 /* Opcode: SetCookie P1 P2 P3 * * 3238 ** 3239 ** Write the integer value P3 into cookie number P2 of database P1. 3240 ** P2==1 is the schema version. P2==2 is the database format. 3241 ** P2==3 is the recommended pager cache 3242 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3243 ** database file used to store temporary tables. 3244 ** 3245 ** A transaction must be started before executing this opcode. 3246 */ 3247 case OP_SetCookie: { 3248 Db *pDb; 3249 assert( pOp->p2<SQLITE_N_BTREE_META ); 3250 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3251 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3252 assert( p->readOnly==0 ); 3253 pDb = &db->aDb[pOp->p1]; 3254 assert( pDb->pBt!=0 ); 3255 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3256 /* See note about index shifting on OP_ReadCookie */ 3257 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3258 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3259 /* When the schema cookie changes, record the new cookie internally */ 3260 pDb->pSchema->schema_cookie = pOp->p3; 3261 db->mDbFlags |= DBFLAG_SchemaChange; 3262 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3263 /* Record changes in the file format */ 3264 pDb->pSchema->file_format = pOp->p3; 3265 } 3266 if( pOp->p1==1 ){ 3267 /* Invalidate all prepared statements whenever the TEMP database 3268 ** schema is changed. Ticket #1644 */ 3269 sqlite3ExpirePreparedStatements(db); 3270 p->expired = 0; 3271 } 3272 if( rc ) goto abort_due_to_error; 3273 break; 3274 } 3275 3276 /* Opcode: OpenRead P1 P2 P3 P4 P5 3277 ** Synopsis: root=P2 iDb=P3 3278 ** 3279 ** Open a read-only cursor for the database table whose root page is 3280 ** P2 in a database file. The database file is determined by P3. 3281 ** P3==0 means the main database, P3==1 means the database used for 3282 ** temporary tables, and P3>1 means used the corresponding attached 3283 ** database. Give the new cursor an identifier of P1. The P1 3284 ** values need not be contiguous but all P1 values should be small integers. 3285 ** It is an error for P1 to be negative. 3286 ** 3287 ** If P5!=0 then use the content of register P2 as the root page, not 3288 ** the value of P2 itself. 3289 ** 3290 ** There will be a read lock on the database whenever there is an 3291 ** open cursor. If the database was unlocked prior to this instruction 3292 ** then a read lock is acquired as part of this instruction. A read 3293 ** lock allows other processes to read the database but prohibits 3294 ** any other process from modifying the database. The read lock is 3295 ** released when all cursors are closed. If this instruction attempts 3296 ** to get a read lock but fails, the script terminates with an 3297 ** SQLITE_BUSY error code. 3298 ** 3299 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3300 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3301 ** structure, then said structure defines the content and collating 3302 ** sequence of the index being opened. Otherwise, if P4 is an integer 3303 ** value, it is set to the number of columns in the table. 3304 ** 3305 ** See also: OpenWrite, ReopenIdx 3306 */ 3307 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3308 ** Synopsis: root=P2 iDb=P3 3309 ** 3310 ** The ReopenIdx opcode works exactly like ReadOpen except that it first 3311 ** checks to see if the cursor on P1 is already open with a root page 3312 ** number of P2 and if it is this opcode becomes a no-op. In other words, 3313 ** if the cursor is already open, do not reopen it. 3314 ** 3315 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being 3316 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as 3317 ** every other ReopenIdx or OpenRead for the same cursor number. 3318 ** 3319 ** See the OpenRead opcode documentation for additional information. 3320 */ 3321 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3322 ** Synopsis: root=P2 iDb=P3 3323 ** 3324 ** Open a read/write cursor named P1 on the table or index whose root 3325 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3326 ** root page. 3327 ** 3328 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3329 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3330 ** structure, then said structure defines the content and collating 3331 ** sequence of the index being opened. Otherwise, if P4 is an integer 3332 ** value, it is set to the number of columns in the table, or to the 3333 ** largest index of any column of the table that is actually used. 3334 ** 3335 ** This instruction works just like OpenRead except that it opens the cursor 3336 ** in read/write mode. For a given table, there can be one or more read-only 3337 ** cursors or a single read/write cursor but not both. 3338 ** 3339 ** See also OpenRead. 3340 */ 3341 case OP_ReopenIdx: { 3342 int nField; 3343 KeyInfo *pKeyInfo; 3344 int p2; 3345 int iDb; 3346 int wrFlag; 3347 Btree *pX; 3348 VdbeCursor *pCur; 3349 Db *pDb; 3350 3351 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3352 assert( pOp->p4type==P4_KEYINFO ); 3353 pCur = p->apCsr[pOp->p1]; 3354 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3355 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3356 goto open_cursor_set_hints; 3357 } 3358 /* If the cursor is not currently open or is open on a different 3359 ** index, then fall through into OP_OpenRead to force a reopen */ 3360 case OP_OpenRead: 3361 case OP_OpenWrite: 3362 3363 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3364 assert( p->bIsReader ); 3365 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3366 || p->readOnly==0 ); 3367 3368 if( p->expired ){ 3369 rc = SQLITE_ABORT_ROLLBACK; 3370 goto abort_due_to_error; 3371 } 3372 3373 nField = 0; 3374 pKeyInfo = 0; 3375 p2 = pOp->p2; 3376 iDb = pOp->p3; 3377 assert( iDb>=0 && iDb<db->nDb ); 3378 assert( DbMaskTest(p->btreeMask, iDb) ); 3379 pDb = &db->aDb[iDb]; 3380 pX = pDb->pBt; 3381 assert( pX!=0 ); 3382 if( pOp->opcode==OP_OpenWrite ){ 3383 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3384 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3385 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3386 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3387 p->minWriteFileFormat = pDb->pSchema->file_format; 3388 } 3389 }else{ 3390 wrFlag = 0; 3391 } 3392 if( pOp->p5 & OPFLAG_P2ISREG ){ 3393 assert( p2>0 ); 3394 assert( p2<=(p->nMem+1 - p->nCursor) ); 3395 pIn2 = &aMem[p2]; 3396 assert( memIsValid(pIn2) ); 3397 assert( (pIn2->flags & MEM_Int)!=0 ); 3398 sqlite3VdbeMemIntegerify(pIn2); 3399 p2 = (int)pIn2->u.i; 3400 /* The p2 value always comes from a prior OP_CreateTable opcode and 3401 ** that opcode will always set the p2 value to 2 or more or else fail. 3402 ** If there were a failure, the prepared statement would have halted 3403 ** before reaching this instruction. */ 3404 assert( p2>=2 ); 3405 } 3406 if( pOp->p4type==P4_KEYINFO ){ 3407 pKeyInfo = pOp->p4.pKeyInfo; 3408 assert( pKeyInfo->enc==ENC(db) ); 3409 assert( pKeyInfo->db==db ); 3410 nField = pKeyInfo->nAllField; 3411 }else if( pOp->p4type==P4_INT32 ){ 3412 nField = pOp->p4.i; 3413 } 3414 assert( pOp->p1>=0 ); 3415 assert( nField>=0 ); 3416 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3417 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3418 if( pCur==0 ) goto no_mem; 3419 pCur->nullRow = 1; 3420 pCur->isOrdered = 1; 3421 pCur->pgnoRoot = p2; 3422 #ifdef SQLITE_DEBUG 3423 pCur->wrFlag = wrFlag; 3424 #endif 3425 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3426 pCur->pKeyInfo = pKeyInfo; 3427 /* Set the VdbeCursor.isTable variable. Previous versions of 3428 ** SQLite used to check if the root-page flags were sane at this point 3429 ** and report database corruption if they were not, but this check has 3430 ** since moved into the btree layer. */ 3431 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3432 3433 open_cursor_set_hints: 3434 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3435 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3436 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3437 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3438 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3439 #endif 3440 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3441 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3442 if( rc ) goto abort_due_to_error; 3443 break; 3444 } 3445 3446 /* Opcode: OpenDup P1 P2 * * * 3447 ** 3448 ** Open a new cursor P1 that points to the same ephemeral table as 3449 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3450 ** opcode. Only ephemeral cursors may be duplicated. 3451 ** 3452 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3453 */ 3454 case OP_OpenDup: { 3455 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3456 VdbeCursor *pCx; /* The new cursor */ 3457 3458 pOrig = p->apCsr[pOp->p2]; 3459 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3460 3461 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3462 if( pCx==0 ) goto no_mem; 3463 pCx->nullRow = 1; 3464 pCx->isEphemeral = 1; 3465 pCx->pKeyInfo = pOrig->pKeyInfo; 3466 pCx->isTable = pOrig->isTable; 3467 rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR, 3468 pCx->pKeyInfo, pCx->uc.pCursor); 3469 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3470 ** opened for a database. Since there is already an open cursor when this 3471 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3472 assert( rc==SQLITE_OK ); 3473 break; 3474 } 3475 3476 3477 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3478 ** Synopsis: nColumn=P2 3479 ** 3480 ** Open a new cursor P1 to a transient table. 3481 ** The cursor is always opened read/write even if 3482 ** the main database is read-only. The ephemeral 3483 ** table is deleted automatically when the cursor is closed. 3484 ** 3485 ** P2 is the number of columns in the ephemeral table. 3486 ** The cursor points to a BTree table if P4==0 and to a BTree index 3487 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3488 ** that defines the format of keys in the index. 3489 ** 3490 ** The P5 parameter can be a mask of the BTREE_* flags defined 3491 ** in btree.h. These flags control aspects of the operation of 3492 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3493 ** added automatically. 3494 */ 3495 /* Opcode: OpenAutoindex P1 P2 * P4 * 3496 ** Synopsis: nColumn=P2 3497 ** 3498 ** This opcode works the same as OP_OpenEphemeral. It has a 3499 ** different name to distinguish its use. Tables created using 3500 ** by this opcode will be used for automatically created transient 3501 ** indices in joins. 3502 */ 3503 case OP_OpenAutoindex: 3504 case OP_OpenEphemeral: { 3505 VdbeCursor *pCx; 3506 KeyInfo *pKeyInfo; 3507 3508 static const int vfsFlags = 3509 SQLITE_OPEN_READWRITE | 3510 SQLITE_OPEN_CREATE | 3511 SQLITE_OPEN_EXCLUSIVE | 3512 SQLITE_OPEN_DELETEONCLOSE | 3513 SQLITE_OPEN_TRANSIENT_DB; 3514 assert( pOp->p1>=0 ); 3515 assert( pOp->p2>=0 ); 3516 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3517 if( pCx==0 ) goto no_mem; 3518 pCx->nullRow = 1; 3519 pCx->isEphemeral = 1; 3520 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3521 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3522 if( rc==SQLITE_OK ){ 3523 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1); 3524 } 3525 if( rc==SQLITE_OK ){ 3526 /* If a transient index is required, create it by calling 3527 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3528 ** opening it. If a transient table is required, just use the 3529 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3530 */ 3531 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3532 int pgno; 3533 assert( pOp->p4type==P4_KEYINFO ); 3534 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); 3535 if( rc==SQLITE_OK ){ 3536 assert( pgno==MASTER_ROOT+1 ); 3537 assert( pKeyInfo->db==db ); 3538 assert( pKeyInfo->enc==ENC(db) ); 3539 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR, 3540 pKeyInfo, pCx->uc.pCursor); 3541 } 3542 pCx->isTable = 0; 3543 }else{ 3544 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3545 0, pCx->uc.pCursor); 3546 pCx->isTable = 1; 3547 } 3548 } 3549 if( rc ) goto abort_due_to_error; 3550 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3551 break; 3552 } 3553 3554 /* Opcode: SorterOpen P1 P2 P3 P4 * 3555 ** 3556 ** This opcode works like OP_OpenEphemeral except that it opens 3557 ** a transient index that is specifically designed to sort large 3558 ** tables using an external merge-sort algorithm. 3559 ** 3560 ** If argument P3 is non-zero, then it indicates that the sorter may 3561 ** assume that a stable sort considering the first P3 fields of each 3562 ** key is sufficient to produce the required results. 3563 */ 3564 case OP_SorterOpen: { 3565 VdbeCursor *pCx; 3566 3567 assert( pOp->p1>=0 ); 3568 assert( pOp->p2>=0 ); 3569 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3570 if( pCx==0 ) goto no_mem; 3571 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3572 assert( pCx->pKeyInfo->db==db ); 3573 assert( pCx->pKeyInfo->enc==ENC(db) ); 3574 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3575 if( rc ) goto abort_due_to_error; 3576 break; 3577 } 3578 3579 /* Opcode: SequenceTest P1 P2 * * * 3580 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3581 ** 3582 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3583 ** to P2. Regardless of whether or not the jump is taken, increment the 3584 ** the sequence value. 3585 */ 3586 case OP_SequenceTest: { 3587 VdbeCursor *pC; 3588 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3589 pC = p->apCsr[pOp->p1]; 3590 assert( isSorter(pC) ); 3591 if( (pC->seqCount++)==0 ){ 3592 goto jump_to_p2; 3593 } 3594 break; 3595 } 3596 3597 /* Opcode: OpenPseudo P1 P2 P3 * * 3598 ** Synopsis: P3 columns in r[P2] 3599 ** 3600 ** Open a new cursor that points to a fake table that contains a single 3601 ** row of data. The content of that one row is the content of memory 3602 ** register P2. In other words, cursor P1 becomes an alias for the 3603 ** MEM_Blob content contained in register P2. 3604 ** 3605 ** A pseudo-table created by this opcode is used to hold a single 3606 ** row output from the sorter so that the row can be decomposed into 3607 ** individual columns using the OP_Column opcode. The OP_Column opcode 3608 ** is the only cursor opcode that works with a pseudo-table. 3609 ** 3610 ** P3 is the number of fields in the records that will be stored by 3611 ** the pseudo-table. 3612 */ 3613 case OP_OpenPseudo: { 3614 VdbeCursor *pCx; 3615 3616 assert( pOp->p1>=0 ); 3617 assert( pOp->p3>=0 ); 3618 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3619 if( pCx==0 ) goto no_mem; 3620 pCx->nullRow = 1; 3621 pCx->uc.pseudoTableReg = pOp->p2; 3622 pCx->isTable = 1; 3623 assert( pOp->p5==0 ); 3624 break; 3625 } 3626 3627 /* Opcode: Close P1 * * * * 3628 ** 3629 ** Close a cursor previously opened as P1. If P1 is not 3630 ** currently open, this instruction is a no-op. 3631 */ 3632 case OP_Close: { 3633 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3634 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3635 p->apCsr[pOp->p1] = 0; 3636 break; 3637 } 3638 3639 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3640 /* Opcode: ColumnsUsed P1 * * P4 * 3641 ** 3642 ** This opcode (which only exists if SQLite was compiled with 3643 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3644 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3645 ** (P4_INT64) in which the first 63 bits are one for each of the 3646 ** first 63 columns of the table or index that are actually used 3647 ** by the cursor. The high-order bit is set if any column after 3648 ** the 64th is used. 3649 */ 3650 case OP_ColumnsUsed: { 3651 VdbeCursor *pC; 3652 pC = p->apCsr[pOp->p1]; 3653 assert( pC->eCurType==CURTYPE_BTREE ); 3654 pC->maskUsed = *(u64*)pOp->p4.pI64; 3655 break; 3656 } 3657 #endif 3658 3659 /* Opcode: SeekGE P1 P2 P3 P4 * 3660 ** Synopsis: key=r[P3@P4] 3661 ** 3662 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3663 ** use the value in register P3 as the key. If cursor P1 refers 3664 ** to an SQL index, then P3 is the first in an array of P4 registers 3665 ** that are used as an unpacked index key. 3666 ** 3667 ** Reposition cursor P1 so that it points to the smallest entry that 3668 ** is greater than or equal to the key value. If there are no records 3669 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3670 ** 3671 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3672 ** opcode will always land on a record that equally equals the key, or 3673 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3674 ** opcode must be followed by an IdxLE opcode with the same arguments. 3675 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 3676 ** IdxLE opcode will be used on subsequent loop iterations. 3677 ** 3678 ** This opcode leaves the cursor configured to move in forward order, 3679 ** from the beginning toward the end. In other words, the cursor is 3680 ** configured to use Next, not Prev. 3681 ** 3682 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3683 */ 3684 /* Opcode: SeekGT P1 P2 P3 P4 * 3685 ** Synopsis: key=r[P3@P4] 3686 ** 3687 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3688 ** use the value in register P3 as a key. If cursor P1 refers 3689 ** to an SQL index, then P3 is the first in an array of P4 registers 3690 ** that are used as an unpacked index key. 3691 ** 3692 ** Reposition cursor P1 so that it points to the smallest entry that 3693 ** is greater than the key value. If there are no records greater than 3694 ** the key and P2 is not zero, then jump to P2. 3695 ** 3696 ** This opcode leaves the cursor configured to move in forward order, 3697 ** from the beginning toward the end. In other words, the cursor is 3698 ** configured to use Next, not Prev. 3699 ** 3700 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3701 */ 3702 /* Opcode: SeekLT P1 P2 P3 P4 * 3703 ** Synopsis: key=r[P3@P4] 3704 ** 3705 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3706 ** use the value in register P3 as a key. If cursor P1 refers 3707 ** to an SQL index, then P3 is the first in an array of P4 registers 3708 ** that are used as an unpacked index key. 3709 ** 3710 ** Reposition cursor P1 so that it points to the largest entry that 3711 ** is less than the key value. If there are no records less than 3712 ** the key and P2 is not zero, then jump to P2. 3713 ** 3714 ** This opcode leaves the cursor configured to move in reverse order, 3715 ** from the end toward the beginning. In other words, the cursor is 3716 ** configured to use Prev, not Next. 3717 ** 3718 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3719 */ 3720 /* Opcode: SeekLE P1 P2 P3 P4 * 3721 ** Synopsis: key=r[P3@P4] 3722 ** 3723 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3724 ** use the value in register P3 as a key. If cursor P1 refers 3725 ** to an SQL index, then P3 is the first in an array of P4 registers 3726 ** that are used as an unpacked index key. 3727 ** 3728 ** Reposition cursor P1 so that it points to the largest entry that 3729 ** is less than or equal to the key value. If there are no records 3730 ** less than or equal to the key and P2 is not zero, then jump to P2. 3731 ** 3732 ** This opcode leaves the cursor configured to move in reverse order, 3733 ** from the end toward the beginning. In other words, the cursor is 3734 ** configured to use Prev, not Next. 3735 ** 3736 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3737 ** opcode will always land on a record that equally equals the key, or 3738 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3739 ** opcode must be followed by an IdxGE opcode with the same arguments. 3740 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 3741 ** IdxGE opcode will be used on subsequent loop iterations. 3742 ** 3743 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3744 */ 3745 case OP_SeekLT: /* jump, in3 */ 3746 case OP_SeekLE: /* jump, in3 */ 3747 case OP_SeekGE: /* jump, in3 */ 3748 case OP_SeekGT: { /* jump, in3 */ 3749 int res; /* Comparison result */ 3750 int oc; /* Opcode */ 3751 VdbeCursor *pC; /* The cursor to seek */ 3752 UnpackedRecord r; /* The key to seek for */ 3753 int nField; /* Number of columns or fields in the key */ 3754 i64 iKey; /* The rowid we are to seek to */ 3755 int eqOnly; /* Only interested in == results */ 3756 3757 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3758 assert( pOp->p2!=0 ); 3759 pC = p->apCsr[pOp->p1]; 3760 assert( pC!=0 ); 3761 assert( pC->eCurType==CURTYPE_BTREE ); 3762 assert( OP_SeekLE == OP_SeekLT+1 ); 3763 assert( OP_SeekGE == OP_SeekLT+2 ); 3764 assert( OP_SeekGT == OP_SeekLT+3 ); 3765 assert( pC->isOrdered ); 3766 assert( pC->uc.pCursor!=0 ); 3767 oc = pOp->opcode; 3768 eqOnly = 0; 3769 pC->nullRow = 0; 3770 #ifdef SQLITE_DEBUG 3771 pC->seekOp = pOp->opcode; 3772 #endif 3773 3774 if( pC->isTable ){ 3775 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 3776 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 3777 || CORRUPT_DB ); 3778 3779 /* The input value in P3 might be of any type: integer, real, string, 3780 ** blob, or NULL. But it needs to be an integer before we can do 3781 ** the seek, so convert it. */ 3782 pIn3 = &aMem[pOp->p3]; 3783 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3784 applyNumericAffinity(pIn3, 0); 3785 } 3786 iKey = sqlite3VdbeIntValue(pIn3); 3787 3788 /* If the P3 value could not be converted into an integer without 3789 ** loss of information, then special processing is required... */ 3790 if( (pIn3->flags & MEM_Int)==0 ){ 3791 if( (pIn3->flags & MEM_Real)==0 ){ 3792 /* If the P3 value cannot be converted into any kind of a number, 3793 ** then the seek is not possible, so jump to P2 */ 3794 VdbeBranchTaken(1,2); goto jump_to_p2; 3795 break; 3796 } 3797 3798 /* If the approximation iKey is larger than the actual real search 3799 ** term, substitute >= for > and < for <=. e.g. if the search term 3800 ** is 4.9 and the integer approximation 5: 3801 ** 3802 ** (x > 4.9) -> (x >= 5) 3803 ** (x <= 4.9) -> (x < 5) 3804 */ 3805 if( pIn3->u.r<(double)iKey ){ 3806 assert( OP_SeekGE==(OP_SeekGT-1) ); 3807 assert( OP_SeekLT==(OP_SeekLE-1) ); 3808 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3809 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3810 } 3811 3812 /* If the approximation iKey is smaller than the actual real search 3813 ** term, substitute <= for < and > for >=. */ 3814 else if( pIn3->u.r>(double)iKey ){ 3815 assert( OP_SeekLE==(OP_SeekLT+1) ); 3816 assert( OP_SeekGT==(OP_SeekGE+1) ); 3817 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3818 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3819 } 3820 } 3821 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 3822 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3823 if( rc!=SQLITE_OK ){ 3824 goto abort_due_to_error; 3825 } 3826 }else{ 3827 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 3828 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 3829 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 3830 */ 3831 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 3832 eqOnly = 1; 3833 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 3834 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3835 assert( pOp[1].p1==pOp[0].p1 ); 3836 assert( pOp[1].p2==pOp[0].p2 ); 3837 assert( pOp[1].p3==pOp[0].p3 ); 3838 assert( pOp[1].p4.i==pOp[0].p4.i ); 3839 } 3840 3841 nField = pOp->p4.i; 3842 assert( pOp->p4type==P4_INT32 ); 3843 assert( nField>0 ); 3844 r.pKeyInfo = pC->pKeyInfo; 3845 r.nField = (u16)nField; 3846 3847 /* The next line of code computes as follows, only faster: 3848 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3849 ** r.default_rc = -1; 3850 ** }else{ 3851 ** r.default_rc = +1; 3852 ** } 3853 */ 3854 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3855 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3856 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3857 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3858 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3859 3860 r.aMem = &aMem[pOp->p3]; 3861 #ifdef SQLITE_DEBUG 3862 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3863 #endif 3864 r.eqSeen = 0; 3865 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 3866 if( rc!=SQLITE_OK ){ 3867 goto abort_due_to_error; 3868 } 3869 if( eqOnly && r.eqSeen==0 ){ 3870 assert( res!=0 ); 3871 goto seek_not_found; 3872 } 3873 } 3874 pC->deferredMoveto = 0; 3875 pC->cacheStatus = CACHE_STALE; 3876 #ifdef SQLITE_TEST 3877 sqlite3_search_count++; 3878 #endif 3879 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3880 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3881 res = 0; 3882 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 3883 if( rc!=SQLITE_OK ){ 3884 if( rc==SQLITE_DONE ){ 3885 rc = SQLITE_OK; 3886 res = 1; 3887 }else{ 3888 goto abort_due_to_error; 3889 } 3890 } 3891 }else{ 3892 res = 0; 3893 } 3894 }else{ 3895 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3896 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3897 res = 0; 3898 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 3899 if( rc!=SQLITE_OK ){ 3900 if( rc==SQLITE_DONE ){ 3901 rc = SQLITE_OK; 3902 res = 1; 3903 }else{ 3904 goto abort_due_to_error; 3905 } 3906 } 3907 }else{ 3908 /* res might be negative because the table is empty. Check to 3909 ** see if this is the case. 3910 */ 3911 res = sqlite3BtreeEof(pC->uc.pCursor); 3912 } 3913 } 3914 seek_not_found: 3915 assert( pOp->p2>0 ); 3916 VdbeBranchTaken(res!=0,2); 3917 if( res ){ 3918 goto jump_to_p2; 3919 }else if( eqOnly ){ 3920 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3921 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 3922 } 3923 break; 3924 } 3925 3926 /* Opcode: Found P1 P2 P3 P4 * 3927 ** Synopsis: key=r[P3@P4] 3928 ** 3929 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3930 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3931 ** record. 3932 ** 3933 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3934 ** is a prefix of any entry in P1 then a jump is made to P2 and 3935 ** P1 is left pointing at the matching entry. 3936 ** 3937 ** This operation leaves the cursor in a state where it can be 3938 ** advanced in the forward direction. The Next instruction will work, 3939 ** but not the Prev instruction. 3940 ** 3941 ** See also: NotFound, NoConflict, NotExists. SeekGe 3942 */ 3943 /* Opcode: NotFound P1 P2 P3 P4 * 3944 ** Synopsis: key=r[P3@P4] 3945 ** 3946 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3947 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3948 ** record. 3949 ** 3950 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3951 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3952 ** does contain an entry whose prefix matches the P3/P4 record then control 3953 ** falls through to the next instruction and P1 is left pointing at the 3954 ** matching entry. 3955 ** 3956 ** This operation leaves the cursor in a state where it cannot be 3957 ** advanced in either direction. In other words, the Next and Prev 3958 ** opcodes do not work after this operation. 3959 ** 3960 ** See also: Found, NotExists, NoConflict 3961 */ 3962 /* Opcode: NoConflict P1 P2 P3 P4 * 3963 ** Synopsis: key=r[P3@P4] 3964 ** 3965 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3966 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3967 ** record. 3968 ** 3969 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3970 ** contains any NULL value, jump immediately to P2. If all terms of the 3971 ** record are not-NULL then a check is done to determine if any row in the 3972 ** P1 index btree has a matching key prefix. If there are no matches, jump 3973 ** immediately to P2. If there is a match, fall through and leave the P1 3974 ** cursor pointing to the matching row. 3975 ** 3976 ** This opcode is similar to OP_NotFound with the exceptions that the 3977 ** branch is always taken if any part of the search key input is NULL. 3978 ** 3979 ** This operation leaves the cursor in a state where it cannot be 3980 ** advanced in either direction. In other words, the Next and Prev 3981 ** opcodes do not work after this operation. 3982 ** 3983 ** See also: NotFound, Found, NotExists 3984 */ 3985 case OP_NoConflict: /* jump, in3 */ 3986 case OP_NotFound: /* jump, in3 */ 3987 case OP_Found: { /* jump, in3 */ 3988 int alreadyExists; 3989 int takeJump; 3990 int ii; 3991 VdbeCursor *pC; 3992 int res; 3993 UnpackedRecord *pFree; 3994 UnpackedRecord *pIdxKey; 3995 UnpackedRecord r; 3996 3997 #ifdef SQLITE_TEST 3998 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3999 #endif 4000 4001 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4002 assert( pOp->p4type==P4_INT32 ); 4003 pC = p->apCsr[pOp->p1]; 4004 assert( pC!=0 ); 4005 #ifdef SQLITE_DEBUG 4006 pC->seekOp = pOp->opcode; 4007 #endif 4008 pIn3 = &aMem[pOp->p3]; 4009 assert( pC->eCurType==CURTYPE_BTREE ); 4010 assert( pC->uc.pCursor!=0 ); 4011 assert( pC->isTable==0 ); 4012 if( pOp->p4.i>0 ){ 4013 r.pKeyInfo = pC->pKeyInfo; 4014 r.nField = (u16)pOp->p4.i; 4015 r.aMem = pIn3; 4016 #ifdef SQLITE_DEBUG 4017 for(ii=0; ii<r.nField; ii++){ 4018 assert( memIsValid(&r.aMem[ii]) ); 4019 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4020 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4021 } 4022 #endif 4023 pIdxKey = &r; 4024 pFree = 0; 4025 }else{ 4026 assert( pIn3->flags & MEM_Blob ); 4027 rc = ExpandBlob(pIn3); 4028 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4029 if( rc ) goto no_mem; 4030 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4031 if( pIdxKey==0 ) goto no_mem; 4032 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4033 } 4034 pIdxKey->default_rc = 0; 4035 takeJump = 0; 4036 if( pOp->opcode==OP_NoConflict ){ 4037 /* For the OP_NoConflict opcode, take the jump if any of the 4038 ** input fields are NULL, since any key with a NULL will not 4039 ** conflict */ 4040 for(ii=0; ii<pIdxKey->nField; ii++){ 4041 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4042 takeJump = 1; 4043 break; 4044 } 4045 } 4046 } 4047 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4048 if( pFree ) sqlite3DbFreeNN(db, pFree); 4049 if( rc!=SQLITE_OK ){ 4050 goto abort_due_to_error; 4051 } 4052 pC->seekResult = res; 4053 alreadyExists = (res==0); 4054 pC->nullRow = 1-alreadyExists; 4055 pC->deferredMoveto = 0; 4056 pC->cacheStatus = CACHE_STALE; 4057 if( pOp->opcode==OP_Found ){ 4058 VdbeBranchTaken(alreadyExists!=0,2); 4059 if( alreadyExists ) goto jump_to_p2; 4060 }else{ 4061 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4062 if( takeJump || !alreadyExists ) goto jump_to_p2; 4063 } 4064 break; 4065 } 4066 4067 /* Opcode: SeekRowid P1 P2 P3 * * 4068 ** Synopsis: intkey=r[P3] 4069 ** 4070 ** P1 is the index of a cursor open on an SQL table btree (with integer 4071 ** keys). If register P3 does not contain an integer or if P1 does not 4072 ** contain a record with rowid P3 then jump immediately to P2. 4073 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4074 ** a record with rowid P3 then 4075 ** leave the cursor pointing at that record and fall through to the next 4076 ** instruction. 4077 ** 4078 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4079 ** the P3 register must be guaranteed to contain an integer value. With this 4080 ** opcode, register P3 might not contain an integer. 4081 ** 4082 ** The OP_NotFound opcode performs the same operation on index btrees 4083 ** (with arbitrary multi-value keys). 4084 ** 4085 ** This opcode leaves the cursor in a state where it cannot be advanced 4086 ** in either direction. In other words, the Next and Prev opcodes will 4087 ** not work following this opcode. 4088 ** 4089 ** See also: Found, NotFound, NoConflict, SeekRowid 4090 */ 4091 /* Opcode: NotExists P1 P2 P3 * * 4092 ** Synopsis: intkey=r[P3] 4093 ** 4094 ** P1 is the index of a cursor open on an SQL table btree (with integer 4095 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4096 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4097 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4098 ** leave the cursor pointing at that record and fall through to the next 4099 ** instruction. 4100 ** 4101 ** The OP_SeekRowid opcode performs the same operation but also allows the 4102 ** P3 register to contain a non-integer value, in which case the jump is 4103 ** always taken. This opcode requires that P3 always contain an integer. 4104 ** 4105 ** The OP_NotFound opcode performs the same operation on index btrees 4106 ** (with arbitrary multi-value keys). 4107 ** 4108 ** This opcode leaves the cursor in a state where it cannot be advanced 4109 ** in either direction. In other words, the Next and Prev opcodes will 4110 ** not work following this opcode. 4111 ** 4112 ** See also: Found, NotFound, NoConflict, SeekRowid 4113 */ 4114 case OP_SeekRowid: { /* jump, in3 */ 4115 VdbeCursor *pC; 4116 BtCursor *pCrsr; 4117 int res; 4118 u64 iKey; 4119 4120 pIn3 = &aMem[pOp->p3]; 4121 if( (pIn3->flags & MEM_Int)==0 ){ 4122 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); 4123 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2; 4124 } 4125 /* Fall through into OP_NotExists */ 4126 case OP_NotExists: /* jump, in3 */ 4127 pIn3 = &aMem[pOp->p3]; 4128 assert( pIn3->flags & MEM_Int ); 4129 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4130 pC = p->apCsr[pOp->p1]; 4131 assert( pC!=0 ); 4132 #ifdef SQLITE_DEBUG 4133 pC->seekOp = 0; 4134 #endif 4135 assert( pC->isTable ); 4136 assert( pC->eCurType==CURTYPE_BTREE ); 4137 pCrsr = pC->uc.pCursor; 4138 assert( pCrsr!=0 ); 4139 res = 0; 4140 iKey = pIn3->u.i; 4141 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4142 assert( rc==SQLITE_OK || res==0 ); 4143 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4144 pC->nullRow = 0; 4145 pC->cacheStatus = CACHE_STALE; 4146 pC->deferredMoveto = 0; 4147 VdbeBranchTaken(res!=0,2); 4148 pC->seekResult = res; 4149 if( res!=0 ){ 4150 assert( rc==SQLITE_OK ); 4151 if( pOp->p2==0 ){ 4152 rc = SQLITE_CORRUPT_BKPT; 4153 }else{ 4154 goto jump_to_p2; 4155 } 4156 } 4157 if( rc ) goto abort_due_to_error; 4158 break; 4159 } 4160 4161 /* Opcode: Sequence P1 P2 * * * 4162 ** Synopsis: r[P2]=cursor[P1].ctr++ 4163 ** 4164 ** Find the next available sequence number for cursor P1. 4165 ** Write the sequence number into register P2. 4166 ** The sequence number on the cursor is incremented after this 4167 ** instruction. 4168 */ 4169 case OP_Sequence: { /* out2 */ 4170 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4171 assert( p->apCsr[pOp->p1]!=0 ); 4172 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4173 pOut = out2Prerelease(p, pOp); 4174 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4175 break; 4176 } 4177 4178 4179 /* Opcode: NewRowid P1 P2 P3 * * 4180 ** Synopsis: r[P2]=rowid 4181 ** 4182 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4183 ** The record number is not previously used as a key in the database 4184 ** table that cursor P1 points to. The new record number is written 4185 ** written to register P2. 4186 ** 4187 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4188 ** the largest previously generated record number. No new record numbers are 4189 ** allowed to be less than this value. When this value reaches its maximum, 4190 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4191 ** generated record number. This P3 mechanism is used to help implement the 4192 ** AUTOINCREMENT feature. 4193 */ 4194 case OP_NewRowid: { /* out2 */ 4195 i64 v; /* The new rowid */ 4196 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4197 int res; /* Result of an sqlite3BtreeLast() */ 4198 int cnt; /* Counter to limit the number of searches */ 4199 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4200 VdbeFrame *pFrame; /* Root frame of VDBE */ 4201 4202 v = 0; 4203 res = 0; 4204 pOut = out2Prerelease(p, pOp); 4205 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4206 pC = p->apCsr[pOp->p1]; 4207 assert( pC!=0 ); 4208 assert( pC->eCurType==CURTYPE_BTREE ); 4209 assert( pC->uc.pCursor!=0 ); 4210 { 4211 /* The next rowid or record number (different terms for the same 4212 ** thing) is obtained in a two-step algorithm. 4213 ** 4214 ** First we attempt to find the largest existing rowid and add one 4215 ** to that. But if the largest existing rowid is already the maximum 4216 ** positive integer, we have to fall through to the second 4217 ** probabilistic algorithm 4218 ** 4219 ** The second algorithm is to select a rowid at random and see if 4220 ** it already exists in the table. If it does not exist, we have 4221 ** succeeded. If the random rowid does exist, we select a new one 4222 ** and try again, up to 100 times. 4223 */ 4224 assert( pC->isTable ); 4225 4226 #ifdef SQLITE_32BIT_ROWID 4227 # define MAX_ROWID 0x7fffffff 4228 #else 4229 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4230 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4231 ** to provide the constant while making all compilers happy. 4232 */ 4233 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4234 #endif 4235 4236 if( !pC->useRandomRowid ){ 4237 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4238 if( rc!=SQLITE_OK ){ 4239 goto abort_due_to_error; 4240 } 4241 if( res ){ 4242 v = 1; /* IMP: R-61914-48074 */ 4243 }else{ 4244 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4245 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4246 if( v>=MAX_ROWID ){ 4247 pC->useRandomRowid = 1; 4248 }else{ 4249 v++; /* IMP: R-29538-34987 */ 4250 } 4251 } 4252 } 4253 4254 #ifndef SQLITE_OMIT_AUTOINCREMENT 4255 if( pOp->p3 ){ 4256 /* Assert that P3 is a valid memory cell. */ 4257 assert( pOp->p3>0 ); 4258 if( p->pFrame ){ 4259 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4260 /* Assert that P3 is a valid memory cell. */ 4261 assert( pOp->p3<=pFrame->nMem ); 4262 pMem = &pFrame->aMem[pOp->p3]; 4263 }else{ 4264 /* Assert that P3 is a valid memory cell. */ 4265 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4266 pMem = &aMem[pOp->p3]; 4267 memAboutToChange(p, pMem); 4268 } 4269 assert( memIsValid(pMem) ); 4270 4271 REGISTER_TRACE(pOp->p3, pMem); 4272 sqlite3VdbeMemIntegerify(pMem); 4273 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4274 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4275 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4276 goto abort_due_to_error; 4277 } 4278 if( v<pMem->u.i+1 ){ 4279 v = pMem->u.i + 1; 4280 } 4281 pMem->u.i = v; 4282 } 4283 #endif 4284 if( pC->useRandomRowid ){ 4285 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4286 ** largest possible integer (9223372036854775807) then the database 4287 ** engine starts picking positive candidate ROWIDs at random until 4288 ** it finds one that is not previously used. */ 4289 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4290 ** an AUTOINCREMENT table. */ 4291 cnt = 0; 4292 do{ 4293 sqlite3_randomness(sizeof(v), &v); 4294 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4295 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4296 0, &res))==SQLITE_OK) 4297 && (res==0) 4298 && (++cnt<100)); 4299 if( rc ) goto abort_due_to_error; 4300 if( res==0 ){ 4301 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4302 goto abort_due_to_error; 4303 } 4304 assert( v>0 ); /* EV: R-40812-03570 */ 4305 } 4306 pC->deferredMoveto = 0; 4307 pC->cacheStatus = CACHE_STALE; 4308 } 4309 pOut->u.i = v; 4310 break; 4311 } 4312 4313 /* Opcode: Insert P1 P2 P3 P4 P5 4314 ** Synopsis: intkey=r[P3] data=r[P2] 4315 ** 4316 ** Write an entry into the table of cursor P1. A new entry is 4317 ** created if it doesn't already exist or the data for an existing 4318 ** entry is overwritten. The data is the value MEM_Blob stored in register 4319 ** number P2. The key is stored in register P3. The key must 4320 ** be a MEM_Int. 4321 ** 4322 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4323 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4324 ** then rowid is stored for subsequent return by the 4325 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4326 ** 4327 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4328 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4329 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4330 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4331 ** 4332 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4333 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4334 ** is part of an INSERT operation. The difference is only important to 4335 ** the update hook. 4336 ** 4337 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4338 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4339 ** following a successful insert. 4340 ** 4341 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4342 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4343 ** and register P2 becomes ephemeral. If the cursor is changed, the 4344 ** value of register P2 will then change. Make sure this does not 4345 ** cause any problems.) 4346 ** 4347 ** This instruction only works on tables. The equivalent instruction 4348 ** for indices is OP_IdxInsert. 4349 */ 4350 /* Opcode: InsertInt P1 P2 P3 P4 P5 4351 ** Synopsis: intkey=P3 data=r[P2] 4352 ** 4353 ** This works exactly like OP_Insert except that the key is the 4354 ** integer value P3, not the value of the integer stored in register P3. 4355 */ 4356 case OP_Insert: 4357 case OP_InsertInt: { 4358 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4359 Mem *pKey; /* MEM cell holding key for the record */ 4360 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4361 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4362 const char *zDb; /* database name - used by the update hook */ 4363 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4364 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4365 BtreePayload x; /* Payload to be inserted */ 4366 4367 op = 0; 4368 pData = &aMem[pOp->p2]; 4369 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4370 assert( memIsValid(pData) ); 4371 pC = p->apCsr[pOp->p1]; 4372 assert( pC!=0 ); 4373 assert( pC->eCurType==CURTYPE_BTREE ); 4374 assert( pC->uc.pCursor!=0 ); 4375 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4376 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4377 REGISTER_TRACE(pOp->p2, pData); 4378 4379 if( pOp->opcode==OP_Insert ){ 4380 pKey = &aMem[pOp->p3]; 4381 assert( pKey->flags & MEM_Int ); 4382 assert( memIsValid(pKey) ); 4383 REGISTER_TRACE(pOp->p3, pKey); 4384 x.nKey = pKey->u.i; 4385 }else{ 4386 assert( pOp->opcode==OP_InsertInt ); 4387 x.nKey = pOp->p3; 4388 } 4389 4390 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4391 assert( pC->iDb>=0 ); 4392 zDb = db->aDb[pC->iDb].zDbSName; 4393 pTab = pOp->p4.pTab; 4394 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4395 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4396 }else{ 4397 pTab = 0; /* Not needed. Silence a compiler warning. */ 4398 zDb = 0; /* Not needed. Silence a compiler warning. */ 4399 } 4400 4401 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4402 /* Invoke the pre-update hook, if any */ 4403 if( db->xPreUpdateCallback 4404 && pOp->p4type==P4_TABLE 4405 && !(pOp->p5 & OPFLAG_ISUPDATE) 4406 ){ 4407 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2); 4408 } 4409 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4410 #endif 4411 4412 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4413 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4414 if( pData->flags & MEM_Null ){ 4415 x.pData = 0; 4416 x.nData = 0; 4417 }else{ 4418 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4419 x.pData = pData->z; 4420 x.nData = pData->n; 4421 } 4422 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4423 if( pData->flags & MEM_Zero ){ 4424 x.nZero = pData->u.nZero; 4425 }else{ 4426 x.nZero = 0; 4427 } 4428 x.pKey = 0; 4429 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4430 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4431 ); 4432 pC->deferredMoveto = 0; 4433 pC->cacheStatus = CACHE_STALE; 4434 4435 /* Invoke the update-hook if required. */ 4436 if( rc ) goto abort_due_to_error; 4437 if( db->xUpdateCallback && op ){ 4438 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey); 4439 } 4440 break; 4441 } 4442 4443 /* Opcode: Delete P1 P2 P3 P4 P5 4444 ** 4445 ** Delete the record at which the P1 cursor is currently pointing. 4446 ** 4447 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4448 ** the cursor will be left pointing at either the next or the previous 4449 ** record in the table. If it is left pointing at the next record, then 4450 ** the next Next instruction will be a no-op. As a result, in this case 4451 ** it is ok to delete a record from within a Next loop. If 4452 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4453 ** left in an undefined state. 4454 ** 4455 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4456 ** delete one of several associated with deleting a table row and all its 4457 ** associated index entries. Exactly one of those deletes is the "primary" 4458 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4459 ** marked with the AUXDELETE flag. 4460 ** 4461 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4462 ** change count is incremented (otherwise not). 4463 ** 4464 ** P1 must not be pseudo-table. It has to be a real table with 4465 ** multiple rows. 4466 ** 4467 ** If P4 is not NULL then it points to a Table object. In this case either 4468 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4469 ** have been positioned using OP_NotFound prior to invoking this opcode in 4470 ** this case. Specifically, if one is configured, the pre-update hook is 4471 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4472 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4473 ** 4474 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4475 ** of the memory cell that contains the value that the rowid of the row will 4476 ** be set to by the update. 4477 */ 4478 case OP_Delete: { 4479 VdbeCursor *pC; 4480 const char *zDb; 4481 Table *pTab; 4482 int opflags; 4483 4484 opflags = pOp->p2; 4485 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4486 pC = p->apCsr[pOp->p1]; 4487 assert( pC!=0 ); 4488 assert( pC->eCurType==CURTYPE_BTREE ); 4489 assert( pC->uc.pCursor!=0 ); 4490 assert( pC->deferredMoveto==0 ); 4491 4492 #ifdef SQLITE_DEBUG 4493 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ 4494 /* If p5 is zero, the seek operation that positioned the cursor prior to 4495 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 4496 ** the row that is being deleted */ 4497 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4498 assert( pC->movetoTarget==iKey ); 4499 } 4500 #endif 4501 4502 /* If the update-hook or pre-update-hook will be invoked, set zDb to 4503 ** the name of the db to pass as to it. Also set local pTab to a copy 4504 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 4505 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 4506 ** VdbeCursor.movetoTarget to the current rowid. */ 4507 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4508 assert( pC->iDb>=0 ); 4509 assert( pOp->p4.pTab!=0 ); 4510 zDb = db->aDb[pC->iDb].zDbSName; 4511 pTab = pOp->p4.pTab; 4512 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 4513 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4514 } 4515 }else{ 4516 zDb = 0; /* Not needed. Silence a compiler warning. */ 4517 pTab = 0; /* Not needed. Silence a compiler warning. */ 4518 } 4519 4520 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4521 /* Invoke the pre-update-hook if required. */ 4522 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 4523 assert( !(opflags & OPFLAG_ISUPDATE) 4524 || HasRowid(pTab)==0 4525 || (aMem[pOp->p3].flags & MEM_Int) 4526 ); 4527 sqlite3VdbePreUpdateHook(p, pC, 4528 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 4529 zDb, pTab, pC->movetoTarget, 4530 pOp->p3 4531 ); 4532 } 4533 if( opflags & OPFLAG_ISNOOP ) break; 4534 #endif 4535 4536 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4537 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4538 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4539 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4540 4541 #ifdef SQLITE_DEBUG 4542 if( p->pFrame==0 ){ 4543 if( pC->isEphemeral==0 4544 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4545 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4546 ){ 4547 nExtraDelete++; 4548 } 4549 if( pOp->p2 & OPFLAG_NCHANGE ){ 4550 nExtraDelete--; 4551 } 4552 } 4553 #endif 4554 4555 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4556 pC->cacheStatus = CACHE_STALE; 4557 pC->seekResult = 0; 4558 if( rc ) goto abort_due_to_error; 4559 4560 /* Invoke the update-hook if required. */ 4561 if( opflags & OPFLAG_NCHANGE ){ 4562 p->nChange++; 4563 if( db->xUpdateCallback && HasRowid(pTab) ){ 4564 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 4565 pC->movetoTarget); 4566 assert( pC->iDb>=0 ); 4567 } 4568 } 4569 4570 break; 4571 } 4572 /* Opcode: ResetCount * * * * * 4573 ** 4574 ** The value of the change counter is copied to the database handle 4575 ** change counter (returned by subsequent calls to sqlite3_changes()). 4576 ** Then the VMs internal change counter resets to 0. 4577 ** This is used by trigger programs. 4578 */ 4579 case OP_ResetCount: { 4580 sqlite3VdbeSetChanges(db, p->nChange); 4581 p->nChange = 0; 4582 break; 4583 } 4584 4585 /* Opcode: SorterCompare P1 P2 P3 P4 4586 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4587 ** 4588 ** P1 is a sorter cursor. This instruction compares a prefix of the 4589 ** record blob in register P3 against a prefix of the entry that 4590 ** the sorter cursor currently points to. Only the first P4 fields 4591 ** of r[P3] and the sorter record are compared. 4592 ** 4593 ** If either P3 or the sorter contains a NULL in one of their significant 4594 ** fields (not counting the P4 fields at the end which are ignored) then 4595 ** the comparison is assumed to be equal. 4596 ** 4597 ** Fall through to next instruction if the two records compare equal to 4598 ** each other. Jump to P2 if they are different. 4599 */ 4600 case OP_SorterCompare: { 4601 VdbeCursor *pC; 4602 int res; 4603 int nKeyCol; 4604 4605 pC = p->apCsr[pOp->p1]; 4606 assert( isSorter(pC) ); 4607 assert( pOp->p4type==P4_INT32 ); 4608 pIn3 = &aMem[pOp->p3]; 4609 nKeyCol = pOp->p4.i; 4610 res = 0; 4611 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4612 VdbeBranchTaken(res!=0,2); 4613 if( rc ) goto abort_due_to_error; 4614 if( res ) goto jump_to_p2; 4615 break; 4616 }; 4617 4618 /* Opcode: SorterData P1 P2 P3 * * 4619 ** Synopsis: r[P2]=data 4620 ** 4621 ** Write into register P2 the current sorter data for sorter cursor P1. 4622 ** Then clear the column header cache on cursor P3. 4623 ** 4624 ** This opcode is normally use to move a record out of the sorter and into 4625 ** a register that is the source for a pseudo-table cursor created using 4626 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4627 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4628 ** us from having to issue a separate NullRow instruction to clear that cache. 4629 */ 4630 case OP_SorterData: { 4631 VdbeCursor *pC; 4632 4633 pOut = &aMem[pOp->p2]; 4634 pC = p->apCsr[pOp->p1]; 4635 assert( isSorter(pC) ); 4636 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4637 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4638 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4639 if( rc ) goto abort_due_to_error; 4640 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4641 break; 4642 } 4643 4644 /* Opcode: RowData P1 P2 P3 * * 4645 ** Synopsis: r[P2]=data 4646 ** 4647 ** Write into register P2 the complete row content for the row at 4648 ** which cursor P1 is currently pointing. 4649 ** There is no interpretation of the data. 4650 ** It is just copied onto the P2 register exactly as 4651 ** it is found in the database file. 4652 ** 4653 ** If cursor P1 is an index, then the content is the key of the row. 4654 ** If cursor P2 is a table, then the content extracted is the data. 4655 ** 4656 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4657 ** of a real table, not a pseudo-table. 4658 ** 4659 ** If P3!=0 then this opcode is allowed to make an ephermeral pointer 4660 ** into the database page. That means that the content of the output 4661 ** register will be invalidated as soon as the cursor moves - including 4662 ** moves caused by other cursors that "save" the the current cursors 4663 ** position in order that they can write to the same table. If P3==0 4664 ** then a copy of the data is made into memory. P3!=0 is faster, but 4665 ** P3==0 is safer. 4666 ** 4667 ** If P3!=0 then the content of the P2 register is unsuitable for use 4668 ** in OP_Result and any OP_Result will invalidate the P2 register content. 4669 ** The P2 register content is invalidated by opcodes like OP_Function or 4670 ** by any use of another cursor pointing to the same table. 4671 */ 4672 case OP_RowData: { 4673 VdbeCursor *pC; 4674 BtCursor *pCrsr; 4675 u32 n; 4676 4677 pOut = out2Prerelease(p, pOp); 4678 4679 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4680 pC = p->apCsr[pOp->p1]; 4681 assert( pC!=0 ); 4682 assert( pC->eCurType==CURTYPE_BTREE ); 4683 assert( isSorter(pC)==0 ); 4684 assert( pC->nullRow==0 ); 4685 assert( pC->uc.pCursor!=0 ); 4686 pCrsr = pC->uc.pCursor; 4687 4688 /* The OP_RowData opcodes always follow OP_NotExists or 4689 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 4690 ** that might invalidate the cursor. 4691 ** If this where not the case, on of the following assert()s 4692 ** would fail. Should this ever change (because of changes in the code 4693 ** generator) then the fix would be to insert a call to 4694 ** sqlite3VdbeCursorMoveto(). 4695 */ 4696 assert( pC->deferredMoveto==0 ); 4697 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4698 #if 0 /* Not required due to the previous to assert() statements */ 4699 rc = sqlite3VdbeCursorMoveto(pC); 4700 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4701 #endif 4702 4703 n = sqlite3BtreePayloadSize(pCrsr); 4704 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4705 goto too_big; 4706 } 4707 testcase( n==0 ); 4708 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); 4709 if( rc ) goto abort_due_to_error; 4710 if( !pOp->p3 ) Deephemeralize(pOut); 4711 UPDATE_MAX_BLOBSIZE(pOut); 4712 REGISTER_TRACE(pOp->p2, pOut); 4713 break; 4714 } 4715 4716 /* Opcode: Rowid P1 P2 * * * 4717 ** Synopsis: r[P2]=rowid 4718 ** 4719 ** Store in register P2 an integer which is the key of the table entry that 4720 ** P1 is currently point to. 4721 ** 4722 ** P1 can be either an ordinary table or a virtual table. There used to 4723 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4724 ** one opcode now works for both table types. 4725 */ 4726 case OP_Rowid: { /* out2 */ 4727 VdbeCursor *pC; 4728 i64 v; 4729 sqlite3_vtab *pVtab; 4730 const sqlite3_module *pModule; 4731 4732 pOut = out2Prerelease(p, pOp); 4733 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4734 pC = p->apCsr[pOp->p1]; 4735 assert( pC!=0 ); 4736 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 4737 if( pC->nullRow ){ 4738 pOut->flags = MEM_Null; 4739 break; 4740 }else if( pC->deferredMoveto ){ 4741 v = pC->movetoTarget; 4742 #ifndef SQLITE_OMIT_VIRTUALTABLE 4743 }else if( pC->eCurType==CURTYPE_VTAB ){ 4744 assert( pC->uc.pVCur!=0 ); 4745 pVtab = pC->uc.pVCur->pVtab; 4746 pModule = pVtab->pModule; 4747 assert( pModule->xRowid ); 4748 rc = pModule->xRowid(pC->uc.pVCur, &v); 4749 sqlite3VtabImportErrmsg(p, pVtab); 4750 if( rc ) goto abort_due_to_error; 4751 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4752 }else{ 4753 assert( pC->eCurType==CURTYPE_BTREE ); 4754 assert( pC->uc.pCursor!=0 ); 4755 rc = sqlite3VdbeCursorRestore(pC); 4756 if( rc ) goto abort_due_to_error; 4757 if( pC->nullRow ){ 4758 pOut->flags = MEM_Null; 4759 break; 4760 } 4761 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4762 } 4763 pOut->u.i = v; 4764 break; 4765 } 4766 4767 /* Opcode: NullRow P1 * * * * 4768 ** 4769 ** Move the cursor P1 to a null row. Any OP_Column operations 4770 ** that occur while the cursor is on the null row will always 4771 ** write a NULL. 4772 */ 4773 case OP_NullRow: { 4774 VdbeCursor *pC; 4775 4776 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4777 pC = p->apCsr[pOp->p1]; 4778 assert( pC!=0 ); 4779 pC->nullRow = 1; 4780 pC->cacheStatus = CACHE_STALE; 4781 if( pC->eCurType==CURTYPE_BTREE ){ 4782 assert( pC->uc.pCursor!=0 ); 4783 sqlite3BtreeClearCursor(pC->uc.pCursor); 4784 } 4785 break; 4786 } 4787 4788 /* Opcode: SeekEnd P1 * * * * 4789 ** 4790 ** Position cursor P1 at the end of the btree for the purpose of 4791 ** appending a new entry onto the btree. 4792 ** 4793 ** It is assumed that the cursor is used only for appending and so 4794 ** if the cursor is valid, then the cursor must already be pointing 4795 ** at the end of the btree and so no changes are made to 4796 ** the cursor. 4797 */ 4798 /* Opcode: Last P1 P2 * * * 4799 ** 4800 ** The next use of the Rowid or Column or Prev instruction for P1 4801 ** will refer to the last entry in the database table or index. 4802 ** If the table or index is empty and P2>0, then jump immediately to P2. 4803 ** If P2 is 0 or if the table or index is not empty, fall through 4804 ** to the following instruction. 4805 ** 4806 ** This opcode leaves the cursor configured to move in reverse order, 4807 ** from the end toward the beginning. In other words, the cursor is 4808 ** configured to use Prev, not Next. 4809 */ 4810 case OP_SeekEnd: 4811 case OP_Last: { /* jump */ 4812 VdbeCursor *pC; 4813 BtCursor *pCrsr; 4814 int res; 4815 4816 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4817 pC = p->apCsr[pOp->p1]; 4818 assert( pC!=0 ); 4819 assert( pC->eCurType==CURTYPE_BTREE ); 4820 pCrsr = pC->uc.pCursor; 4821 res = 0; 4822 assert( pCrsr!=0 ); 4823 #ifdef SQLITE_DEBUG 4824 pC->seekOp = pOp->opcode; 4825 #endif 4826 if( pOp->opcode==OP_SeekEnd ){ 4827 assert( pOp->p2==0 ); 4828 pC->seekResult = -1; 4829 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 4830 break; 4831 } 4832 } 4833 rc = sqlite3BtreeLast(pCrsr, &res); 4834 pC->nullRow = (u8)res; 4835 pC->deferredMoveto = 0; 4836 pC->cacheStatus = CACHE_STALE; 4837 if( rc ) goto abort_due_to_error; 4838 if( pOp->p2>0 ){ 4839 VdbeBranchTaken(res!=0,2); 4840 if( res ) goto jump_to_p2; 4841 } 4842 break; 4843 } 4844 4845 /* Opcode: IfSmaller P1 P2 P3 * * 4846 ** 4847 ** Estimate the number of rows in the table P1. Jump to P2 if that 4848 ** estimate is less than approximately 2**(0.1*P3). 4849 */ 4850 case OP_IfSmaller: { /* jump */ 4851 VdbeCursor *pC; 4852 BtCursor *pCrsr; 4853 int res; 4854 i64 sz; 4855 4856 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4857 pC = p->apCsr[pOp->p1]; 4858 assert( pC!=0 ); 4859 pCrsr = pC->uc.pCursor; 4860 assert( pCrsr ); 4861 rc = sqlite3BtreeFirst(pCrsr, &res); 4862 if( rc ) goto abort_due_to_error; 4863 if( res==0 ){ 4864 sz = sqlite3BtreeRowCountEst(pCrsr); 4865 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 4866 } 4867 VdbeBranchTaken(res!=0,2); 4868 if( res ) goto jump_to_p2; 4869 break; 4870 } 4871 4872 4873 /* Opcode: SorterSort P1 P2 * * * 4874 ** 4875 ** After all records have been inserted into the Sorter object 4876 ** identified by P1, invoke this opcode to actually do the sorting. 4877 ** Jump to P2 if there are no records to be sorted. 4878 ** 4879 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 4880 ** for Sorter objects. 4881 */ 4882 /* Opcode: Sort P1 P2 * * * 4883 ** 4884 ** This opcode does exactly the same thing as OP_Rewind except that 4885 ** it increments an undocumented global variable used for testing. 4886 ** 4887 ** Sorting is accomplished by writing records into a sorting index, 4888 ** then rewinding that index and playing it back from beginning to 4889 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4890 ** rewinding so that the global variable will be incremented and 4891 ** regression tests can determine whether or not the optimizer is 4892 ** correctly optimizing out sorts. 4893 */ 4894 case OP_SorterSort: /* jump */ 4895 case OP_Sort: { /* jump */ 4896 #ifdef SQLITE_TEST 4897 sqlite3_sort_count++; 4898 sqlite3_search_count--; 4899 #endif 4900 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4901 /* Fall through into OP_Rewind */ 4902 } 4903 /* Opcode: Rewind P1 P2 * * * 4904 ** 4905 ** The next use of the Rowid or Column or Next instruction for P1 4906 ** will refer to the first entry in the database table or index. 4907 ** If the table or index is empty, jump immediately to P2. 4908 ** If the table or index is not empty, fall through to the following 4909 ** instruction. 4910 ** 4911 ** This opcode leaves the cursor configured to move in forward order, 4912 ** from the beginning toward the end. In other words, the cursor is 4913 ** configured to use Next, not Prev. 4914 */ 4915 case OP_Rewind: { /* jump */ 4916 VdbeCursor *pC; 4917 BtCursor *pCrsr; 4918 int res; 4919 4920 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4921 pC = p->apCsr[pOp->p1]; 4922 assert( pC!=0 ); 4923 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4924 res = 1; 4925 #ifdef SQLITE_DEBUG 4926 pC->seekOp = OP_Rewind; 4927 #endif 4928 if( isSorter(pC) ){ 4929 rc = sqlite3VdbeSorterRewind(pC, &res); 4930 }else{ 4931 assert( pC->eCurType==CURTYPE_BTREE ); 4932 pCrsr = pC->uc.pCursor; 4933 assert( pCrsr ); 4934 rc = sqlite3BtreeFirst(pCrsr, &res); 4935 pC->deferredMoveto = 0; 4936 pC->cacheStatus = CACHE_STALE; 4937 } 4938 if( rc ) goto abort_due_to_error; 4939 pC->nullRow = (u8)res; 4940 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4941 VdbeBranchTaken(res!=0,2); 4942 if( res ) goto jump_to_p2; 4943 break; 4944 } 4945 4946 /* Opcode: Next P1 P2 P3 P4 P5 4947 ** 4948 ** Advance cursor P1 so that it points to the next key/data pair in its 4949 ** table or index. If there are no more key/value pairs then fall through 4950 ** to the following instruction. But if the cursor advance was successful, 4951 ** jump immediately to P2. 4952 ** 4953 ** The Next opcode is only valid following an SeekGT, SeekGE, or 4954 ** OP_Rewind opcode used to position the cursor. Next is not allowed 4955 ** to follow SeekLT, SeekLE, or OP_Last. 4956 ** 4957 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4958 ** been opened prior to this opcode or the program will segfault. 4959 ** 4960 ** The P3 value is a hint to the btree implementation. If P3==1, that 4961 ** means P1 is an SQL index and that this instruction could have been 4962 ** omitted if that index had been unique. P3 is usually 0. P3 is 4963 ** always either 0 or 1. 4964 ** 4965 ** P4 is always of type P4_ADVANCE. The function pointer points to 4966 ** sqlite3BtreeNext(). 4967 ** 4968 ** If P5 is positive and the jump is taken, then event counter 4969 ** number P5-1 in the prepared statement is incremented. 4970 ** 4971 ** See also: Prev, NextIfOpen 4972 */ 4973 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 4974 ** 4975 ** This opcode works just like Next except that if cursor P1 is not 4976 ** open it behaves a no-op. 4977 */ 4978 /* Opcode: Prev P1 P2 P3 P4 P5 4979 ** 4980 ** Back up cursor P1 so that it points to the previous key/data pair in its 4981 ** table or index. If there is no previous key/value pairs then fall through 4982 ** to the following instruction. But if the cursor backup was successful, 4983 ** jump immediately to P2. 4984 ** 4985 ** 4986 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 4987 ** OP_Last opcode used to position the cursor. Prev is not allowed 4988 ** to follow SeekGT, SeekGE, or OP_Rewind. 4989 ** 4990 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4991 ** not open then the behavior is undefined. 4992 ** 4993 ** The P3 value is a hint to the btree implementation. If P3==1, that 4994 ** means P1 is an SQL index and that this instruction could have been 4995 ** omitted if that index had been unique. P3 is usually 0. P3 is 4996 ** always either 0 or 1. 4997 ** 4998 ** P4 is always of type P4_ADVANCE. The function pointer points to 4999 ** sqlite3BtreePrevious(). 5000 ** 5001 ** If P5 is positive and the jump is taken, then event counter 5002 ** number P5-1 in the prepared statement is incremented. 5003 */ 5004 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 5005 ** 5006 ** This opcode works just like Prev except that if cursor P1 is not 5007 ** open it behaves a no-op. 5008 */ 5009 /* Opcode: SorterNext P1 P2 * * P5 5010 ** 5011 ** This opcode works just like OP_Next except that P1 must be a 5012 ** sorter object for which the OP_SorterSort opcode has been 5013 ** invoked. This opcode advances the cursor to the next sorted 5014 ** record, or jumps to P2 if there are no more sorted records. 5015 */ 5016 case OP_SorterNext: { /* jump */ 5017 VdbeCursor *pC; 5018 5019 pC = p->apCsr[pOp->p1]; 5020 assert( isSorter(pC) ); 5021 rc = sqlite3VdbeSorterNext(db, pC); 5022 goto next_tail; 5023 case OP_PrevIfOpen: /* jump */ 5024 case OP_NextIfOpen: /* jump */ 5025 if( p->apCsr[pOp->p1]==0 ) break; 5026 /* Fall through */ 5027 case OP_Prev: /* jump */ 5028 case OP_Next: /* jump */ 5029 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5030 assert( pOp->p5<ArraySize(p->aCounter) ); 5031 pC = p->apCsr[pOp->p1]; 5032 assert( pC!=0 ); 5033 assert( pC->deferredMoveto==0 ); 5034 assert( pC->eCurType==CURTYPE_BTREE ); 5035 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5036 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5037 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 5038 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 5039 5040 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 5041 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5042 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 5043 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5044 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 5045 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 5046 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5047 || pC->seekOp==OP_Last ); 5048 5049 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5050 next_tail: 5051 pC->cacheStatus = CACHE_STALE; 5052 VdbeBranchTaken(rc==SQLITE_OK,2); 5053 if( rc==SQLITE_OK ){ 5054 pC->nullRow = 0; 5055 p->aCounter[pOp->p5]++; 5056 #ifdef SQLITE_TEST 5057 sqlite3_search_count++; 5058 #endif 5059 goto jump_to_p2_and_check_for_interrupt; 5060 } 5061 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5062 rc = SQLITE_OK; 5063 pC->nullRow = 1; 5064 goto check_for_interrupt; 5065 } 5066 5067 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5068 ** Synopsis: key=r[P2] 5069 ** 5070 ** Register P2 holds an SQL index key made using the 5071 ** MakeRecord instructions. This opcode writes that key 5072 ** into the index P1. Data for the entry is nil. 5073 ** 5074 ** If P4 is not zero, then it is the number of values in the unpacked 5075 ** key of reg(P2). In that case, P3 is the index of the first register 5076 ** for the unpacked key. The availability of the unpacked key can sometimes 5077 ** be an optimization. 5078 ** 5079 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5080 ** that this insert is likely to be an append. 5081 ** 5082 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5083 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5084 ** then the change counter is unchanged. 5085 ** 5086 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5087 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5088 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5089 ** seeks on the cursor or if the most recent seek used a key equivalent 5090 ** to P2. 5091 ** 5092 ** This instruction only works for indices. The equivalent instruction 5093 ** for tables is OP_Insert. 5094 */ 5095 /* Opcode: SorterInsert P1 P2 * * * 5096 ** Synopsis: key=r[P2] 5097 ** 5098 ** Register P2 holds an SQL index key made using the 5099 ** MakeRecord instructions. This opcode writes that key 5100 ** into the sorter P1. Data for the entry is nil. 5101 */ 5102 case OP_SorterInsert: /* in2 */ 5103 case OP_IdxInsert: { /* in2 */ 5104 VdbeCursor *pC; 5105 BtreePayload x; 5106 5107 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5108 pC = p->apCsr[pOp->p1]; 5109 assert( pC!=0 ); 5110 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 5111 pIn2 = &aMem[pOp->p2]; 5112 assert( pIn2->flags & MEM_Blob ); 5113 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5114 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 5115 assert( pC->isTable==0 ); 5116 rc = ExpandBlob(pIn2); 5117 if( rc ) goto abort_due_to_error; 5118 if( pOp->opcode==OP_SorterInsert ){ 5119 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5120 }else{ 5121 x.nKey = pIn2->n; 5122 x.pKey = pIn2->z; 5123 x.aMem = aMem + pOp->p3; 5124 x.nMem = (u16)pOp->p4.i; 5125 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5126 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5127 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5128 ); 5129 assert( pC->deferredMoveto==0 ); 5130 pC->cacheStatus = CACHE_STALE; 5131 } 5132 if( rc) goto abort_due_to_error; 5133 break; 5134 } 5135 5136 /* Opcode: IdxDelete P1 P2 P3 * * 5137 ** Synopsis: key=r[P2@P3] 5138 ** 5139 ** The content of P3 registers starting at register P2 form 5140 ** an unpacked index key. This opcode removes that entry from the 5141 ** index opened by cursor P1. 5142 */ 5143 case OP_IdxDelete: { 5144 VdbeCursor *pC; 5145 BtCursor *pCrsr; 5146 int res; 5147 UnpackedRecord r; 5148 5149 assert( pOp->p3>0 ); 5150 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5151 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5152 pC = p->apCsr[pOp->p1]; 5153 assert( pC!=0 ); 5154 assert( pC->eCurType==CURTYPE_BTREE ); 5155 pCrsr = pC->uc.pCursor; 5156 assert( pCrsr!=0 ); 5157 assert( pOp->p5==0 ); 5158 r.pKeyInfo = pC->pKeyInfo; 5159 r.nField = (u16)pOp->p3; 5160 r.default_rc = 0; 5161 r.aMem = &aMem[pOp->p2]; 5162 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5163 if( rc ) goto abort_due_to_error; 5164 if( res==0 ){ 5165 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5166 if( rc ) goto abort_due_to_error; 5167 } 5168 assert( pC->deferredMoveto==0 ); 5169 pC->cacheStatus = CACHE_STALE; 5170 pC->seekResult = 0; 5171 break; 5172 } 5173 5174 /* Opcode: DeferredSeek P1 * P3 P4 * 5175 ** Synopsis: Move P3 to P1.rowid if needed 5176 ** 5177 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5178 ** table. This opcode does a deferred seek of the P3 table cursor 5179 ** to the row that corresponds to the current row of P1. 5180 ** 5181 ** This is a deferred seek. Nothing actually happens until 5182 ** the cursor is used to read a record. That way, if no reads 5183 ** occur, no unnecessary I/O happens. 5184 ** 5185 ** P4 may be an array of integers (type P4_INTARRAY) containing 5186 ** one entry for each column in the P3 table. If array entry a(i) 5187 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5188 ** equivalent to performing the deferred seek and then reading column i 5189 ** from P1. This information is stored in P3 and used to redirect 5190 ** reads against P3 over to P1, thus possibly avoiding the need to 5191 ** seek and read cursor P3. 5192 */ 5193 /* Opcode: IdxRowid P1 P2 * * * 5194 ** Synopsis: r[P2]=rowid 5195 ** 5196 ** Write into register P2 an integer which is the last entry in the record at 5197 ** the end of the index key pointed to by cursor P1. This integer should be 5198 ** the rowid of the table entry to which this index entry points. 5199 ** 5200 ** See also: Rowid, MakeRecord. 5201 */ 5202 case OP_DeferredSeek: 5203 case OP_IdxRowid: { /* out2 */ 5204 VdbeCursor *pC; /* The P1 index cursor */ 5205 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5206 i64 rowid; /* Rowid that P1 current points to */ 5207 5208 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5209 pC = p->apCsr[pOp->p1]; 5210 assert( pC!=0 ); 5211 assert( pC->eCurType==CURTYPE_BTREE ); 5212 assert( pC->uc.pCursor!=0 ); 5213 assert( pC->isTable==0 ); 5214 assert( pC->deferredMoveto==0 ); 5215 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5216 5217 /* The IdxRowid and Seek opcodes are combined because of the commonality 5218 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5219 rc = sqlite3VdbeCursorRestore(pC); 5220 5221 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5222 ** out from under the cursor. That will never happens for an IdxRowid 5223 ** or Seek opcode */ 5224 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5225 5226 if( !pC->nullRow ){ 5227 rowid = 0; /* Not needed. Only used to silence a warning. */ 5228 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5229 if( rc!=SQLITE_OK ){ 5230 goto abort_due_to_error; 5231 } 5232 if( pOp->opcode==OP_DeferredSeek ){ 5233 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5234 pTabCur = p->apCsr[pOp->p3]; 5235 assert( pTabCur!=0 ); 5236 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5237 assert( pTabCur->uc.pCursor!=0 ); 5238 assert( pTabCur->isTable ); 5239 pTabCur->nullRow = 0; 5240 pTabCur->movetoTarget = rowid; 5241 pTabCur->deferredMoveto = 1; 5242 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5243 pTabCur->aAltMap = pOp->p4.ai; 5244 pTabCur->pAltCursor = pC; 5245 }else{ 5246 pOut = out2Prerelease(p, pOp); 5247 pOut->u.i = rowid; 5248 } 5249 }else{ 5250 assert( pOp->opcode==OP_IdxRowid ); 5251 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5252 } 5253 break; 5254 } 5255 5256 /* Opcode: IdxGE P1 P2 P3 P4 P5 5257 ** Synopsis: key=r[P3@P4] 5258 ** 5259 ** The P4 register values beginning with P3 form an unpacked index 5260 ** key that omits the PRIMARY KEY. Compare this key value against the index 5261 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5262 ** fields at the end. 5263 ** 5264 ** If the P1 index entry is greater than or equal to the key value 5265 ** then jump to P2. Otherwise fall through to the next instruction. 5266 */ 5267 /* Opcode: IdxGT P1 P2 P3 P4 P5 5268 ** Synopsis: key=r[P3@P4] 5269 ** 5270 ** The P4 register values beginning with P3 form an unpacked index 5271 ** key that omits the PRIMARY KEY. Compare this key value against the index 5272 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5273 ** fields at the end. 5274 ** 5275 ** If the P1 index entry is greater than the key value 5276 ** then jump to P2. Otherwise fall through to the next instruction. 5277 */ 5278 /* Opcode: IdxLT P1 P2 P3 P4 P5 5279 ** Synopsis: key=r[P3@P4] 5280 ** 5281 ** The P4 register values beginning with P3 form an unpacked index 5282 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5283 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5284 ** ROWID on the P1 index. 5285 ** 5286 ** If the P1 index entry is less than the key value then jump to P2. 5287 ** Otherwise fall through to the next instruction. 5288 */ 5289 /* Opcode: IdxLE P1 P2 P3 P4 P5 5290 ** Synopsis: key=r[P3@P4] 5291 ** 5292 ** The P4 register values beginning with P3 form an unpacked index 5293 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5294 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5295 ** ROWID on the P1 index. 5296 ** 5297 ** If the P1 index entry is less than or equal to the key value then jump 5298 ** to P2. Otherwise fall through to the next instruction. 5299 */ 5300 case OP_IdxLE: /* jump */ 5301 case OP_IdxGT: /* jump */ 5302 case OP_IdxLT: /* jump */ 5303 case OP_IdxGE: { /* jump */ 5304 VdbeCursor *pC; 5305 int res; 5306 UnpackedRecord r; 5307 5308 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5309 pC = p->apCsr[pOp->p1]; 5310 assert( pC!=0 ); 5311 assert( pC->isOrdered ); 5312 assert( pC->eCurType==CURTYPE_BTREE ); 5313 assert( pC->uc.pCursor!=0); 5314 assert( pC->deferredMoveto==0 ); 5315 assert( pOp->p5==0 || pOp->p5==1 ); 5316 assert( pOp->p4type==P4_INT32 ); 5317 r.pKeyInfo = pC->pKeyInfo; 5318 r.nField = (u16)pOp->p4.i; 5319 if( pOp->opcode<OP_IdxLT ){ 5320 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5321 r.default_rc = -1; 5322 }else{ 5323 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5324 r.default_rc = 0; 5325 } 5326 r.aMem = &aMem[pOp->p3]; 5327 #ifdef SQLITE_DEBUG 5328 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 5329 #endif 5330 res = 0; /* Not needed. Only used to silence a warning. */ 5331 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5332 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5333 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5334 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5335 res = -res; 5336 }else{ 5337 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5338 res++; 5339 } 5340 VdbeBranchTaken(res>0,2); 5341 if( rc ) goto abort_due_to_error; 5342 if( res>0 ) goto jump_to_p2; 5343 break; 5344 } 5345 5346 /* Opcode: Destroy P1 P2 P3 * * 5347 ** 5348 ** Delete an entire database table or index whose root page in the database 5349 ** file is given by P1. 5350 ** 5351 ** The table being destroyed is in the main database file if P3==0. If 5352 ** P3==1 then the table to be clear is in the auxiliary database file 5353 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5354 ** 5355 ** If AUTOVACUUM is enabled then it is possible that another root page 5356 ** might be moved into the newly deleted root page in order to keep all 5357 ** root pages contiguous at the beginning of the database. The former 5358 ** value of the root page that moved - its value before the move occurred - 5359 ** is stored in register P2. If no page movement was required (because the 5360 ** table being dropped was already the last one in the database) then a 5361 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5362 ** is stored in register P2. 5363 ** 5364 ** This opcode throws an error if there are any active reader VMs when 5365 ** it is invoked. This is done to avoid the difficulty associated with 5366 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5367 ** database. This error is thrown even if the database is not an AUTOVACUUM 5368 ** db in order to avoid introducing an incompatibility between autovacuum 5369 ** and non-autovacuum modes. 5370 ** 5371 ** See also: Clear 5372 */ 5373 case OP_Destroy: { /* out2 */ 5374 int iMoved; 5375 int iDb; 5376 5377 assert( p->readOnly==0 ); 5378 assert( pOp->p1>1 ); 5379 pOut = out2Prerelease(p, pOp); 5380 pOut->flags = MEM_Null; 5381 if( db->nVdbeRead > db->nVDestroy+1 ){ 5382 rc = SQLITE_LOCKED; 5383 p->errorAction = OE_Abort; 5384 goto abort_due_to_error; 5385 }else{ 5386 iDb = pOp->p3; 5387 assert( DbMaskTest(p->btreeMask, iDb) ); 5388 iMoved = 0; /* Not needed. Only to silence a warning. */ 5389 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5390 pOut->flags = MEM_Int; 5391 pOut->u.i = iMoved; 5392 if( rc ) goto abort_due_to_error; 5393 #ifndef SQLITE_OMIT_AUTOVACUUM 5394 if( iMoved!=0 ){ 5395 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5396 /* All OP_Destroy operations occur on the same btree */ 5397 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5398 resetSchemaOnFault = iDb+1; 5399 } 5400 #endif 5401 } 5402 break; 5403 } 5404 5405 /* Opcode: Clear P1 P2 P3 5406 ** 5407 ** Delete all contents of the database table or index whose root page 5408 ** in the database file is given by P1. But, unlike Destroy, do not 5409 ** remove the table or index from the database file. 5410 ** 5411 ** The table being clear is in the main database file if P2==0. If 5412 ** P2==1 then the table to be clear is in the auxiliary database file 5413 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5414 ** 5415 ** If the P3 value is non-zero, then the table referred to must be an 5416 ** intkey table (an SQL table, not an index). In this case the row change 5417 ** count is incremented by the number of rows in the table being cleared. 5418 ** If P3 is greater than zero, then the value stored in register P3 is 5419 ** also incremented by the number of rows in the table being cleared. 5420 ** 5421 ** See also: Destroy 5422 */ 5423 case OP_Clear: { 5424 int nChange; 5425 5426 nChange = 0; 5427 assert( p->readOnly==0 ); 5428 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5429 rc = sqlite3BtreeClearTable( 5430 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5431 ); 5432 if( pOp->p3 ){ 5433 p->nChange += nChange; 5434 if( pOp->p3>0 ){ 5435 assert( memIsValid(&aMem[pOp->p3]) ); 5436 memAboutToChange(p, &aMem[pOp->p3]); 5437 aMem[pOp->p3].u.i += nChange; 5438 } 5439 } 5440 if( rc ) goto abort_due_to_error; 5441 break; 5442 } 5443 5444 /* Opcode: ResetSorter P1 * * * * 5445 ** 5446 ** Delete all contents from the ephemeral table or sorter 5447 ** that is open on cursor P1. 5448 ** 5449 ** This opcode only works for cursors used for sorting and 5450 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5451 */ 5452 case OP_ResetSorter: { 5453 VdbeCursor *pC; 5454 5455 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5456 pC = p->apCsr[pOp->p1]; 5457 assert( pC!=0 ); 5458 if( isSorter(pC) ){ 5459 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5460 }else{ 5461 assert( pC->eCurType==CURTYPE_BTREE ); 5462 assert( pC->isEphemeral ); 5463 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5464 if( rc ) goto abort_due_to_error; 5465 } 5466 break; 5467 } 5468 5469 /* Opcode: CreateTable P1 P2 * * * 5470 ** Synopsis: r[P2]=root iDb=P1 5471 ** 5472 ** Allocate a new table in the main database file if P1==0 or in the 5473 ** auxiliary database file if P1==1 or in an attached database if 5474 ** P1>1. Write the root page number of the new table into 5475 ** register P2 5476 ** 5477 ** The difference between a table and an index is this: A table must 5478 ** have a 4-byte integer key and can have arbitrary data. An index 5479 ** has an arbitrary key but no data. 5480 ** 5481 ** See also: CreateIndex 5482 */ 5483 /* Opcode: CreateIndex P1 P2 * * * 5484 ** Synopsis: r[P2]=root iDb=P1 5485 ** 5486 ** Allocate a new index in the main database file if P1==0 or in the 5487 ** auxiliary database file if P1==1 or in an attached database if 5488 ** P1>1. Write the root page number of the new table into 5489 ** register P2. 5490 ** 5491 ** See documentation on OP_CreateTable for additional information. 5492 */ 5493 case OP_CreateIndex: /* out2 */ 5494 case OP_CreateTable: { /* out2 */ 5495 int pgno; 5496 int flags; 5497 Db *pDb; 5498 5499 pOut = out2Prerelease(p, pOp); 5500 pgno = 0; 5501 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5502 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5503 assert( p->readOnly==0 ); 5504 pDb = &db->aDb[pOp->p1]; 5505 assert( pDb->pBt!=0 ); 5506 if( pOp->opcode==OP_CreateTable ){ 5507 /* flags = BTREE_INTKEY; */ 5508 flags = BTREE_INTKEY; 5509 }else{ 5510 flags = BTREE_BLOBKEY; 5511 } 5512 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 5513 if( rc ) goto abort_due_to_error; 5514 pOut->u.i = pgno; 5515 break; 5516 } 5517 5518 /* Opcode: SqlExec * * * P4 * 5519 ** 5520 ** Run the SQL statement or statements specified in the P4 string. 5521 */ 5522 case OP_SqlExec: { 5523 db->nSqlExec++; 5524 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 5525 db->nSqlExec--; 5526 if( rc ) goto abort_due_to_error; 5527 break; 5528 } 5529 5530 /* Opcode: ParseSchema P1 * * P4 * 5531 ** 5532 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5533 ** that match the WHERE clause P4. 5534 ** 5535 ** This opcode invokes the parser to create a new virtual machine, 5536 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5537 */ 5538 case OP_ParseSchema: { 5539 int iDb; 5540 const char *zMaster; 5541 char *zSql; 5542 InitData initData; 5543 5544 /* Any prepared statement that invokes this opcode will hold mutexes 5545 ** on every btree. This is a prerequisite for invoking 5546 ** sqlite3InitCallback(). 5547 */ 5548 #ifdef SQLITE_DEBUG 5549 for(iDb=0; iDb<db->nDb; iDb++){ 5550 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5551 } 5552 #endif 5553 5554 iDb = pOp->p1; 5555 assert( iDb>=0 && iDb<db->nDb ); 5556 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5557 /* Used to be a conditional */ { 5558 zMaster = MASTER_NAME; 5559 initData.db = db; 5560 initData.iDb = pOp->p1; 5561 initData.pzErrMsg = &p->zErrMsg; 5562 zSql = sqlite3MPrintf(db, 5563 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5564 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 5565 if( zSql==0 ){ 5566 rc = SQLITE_NOMEM_BKPT; 5567 }else{ 5568 assert( db->init.busy==0 ); 5569 db->init.busy = 1; 5570 initData.rc = SQLITE_OK; 5571 assert( !db->mallocFailed ); 5572 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5573 if( rc==SQLITE_OK ) rc = initData.rc; 5574 sqlite3DbFreeNN(db, zSql); 5575 db->init.busy = 0; 5576 } 5577 } 5578 if( rc ){ 5579 sqlite3ResetAllSchemasOfConnection(db); 5580 if( rc==SQLITE_NOMEM ){ 5581 goto no_mem; 5582 } 5583 goto abort_due_to_error; 5584 } 5585 break; 5586 } 5587 5588 #if !defined(SQLITE_OMIT_ANALYZE) 5589 /* Opcode: LoadAnalysis P1 * * * * 5590 ** 5591 ** Read the sqlite_stat1 table for database P1 and load the content 5592 ** of that table into the internal index hash table. This will cause 5593 ** the analysis to be used when preparing all subsequent queries. 5594 */ 5595 case OP_LoadAnalysis: { 5596 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5597 rc = sqlite3AnalysisLoad(db, pOp->p1); 5598 if( rc ) goto abort_due_to_error; 5599 break; 5600 } 5601 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5602 5603 /* Opcode: DropTable P1 * * P4 * 5604 ** 5605 ** Remove the internal (in-memory) data structures that describe 5606 ** the table named P4 in database P1. This is called after a table 5607 ** is dropped from disk (using the Destroy opcode) in order to keep 5608 ** the internal representation of the 5609 ** schema consistent with what is on disk. 5610 */ 5611 case OP_DropTable: { 5612 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5613 break; 5614 } 5615 5616 /* Opcode: DropIndex P1 * * P4 * 5617 ** 5618 ** Remove the internal (in-memory) data structures that describe 5619 ** the index named P4 in database P1. This is called after an index 5620 ** is dropped from disk (using the Destroy opcode) 5621 ** in order to keep the internal representation of the 5622 ** schema consistent with what is on disk. 5623 */ 5624 case OP_DropIndex: { 5625 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5626 break; 5627 } 5628 5629 /* Opcode: DropTrigger P1 * * P4 * 5630 ** 5631 ** Remove the internal (in-memory) data structures that describe 5632 ** the trigger named P4 in database P1. This is called after a trigger 5633 ** is dropped from disk (using the Destroy opcode) in order to keep 5634 ** the internal representation of the 5635 ** schema consistent with what is on disk. 5636 */ 5637 case OP_DropTrigger: { 5638 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5639 break; 5640 } 5641 5642 5643 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5644 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 5645 ** 5646 ** Do an analysis of the currently open database. Store in 5647 ** register P1 the text of an error message describing any problems. 5648 ** If no problems are found, store a NULL in register P1. 5649 ** 5650 ** The register P3 contains one less than the maximum number of allowed errors. 5651 ** At most reg(P3) errors will be reported. 5652 ** In other words, the analysis stops as soon as reg(P1) errors are 5653 ** seen. Reg(P1) is updated with the number of errors remaining. 5654 ** 5655 ** The root page numbers of all tables in the database are integers 5656 ** stored in P4_INTARRAY argument. 5657 ** 5658 ** If P5 is not zero, the check is done on the auxiliary database 5659 ** file, not the main database file. 5660 ** 5661 ** This opcode is used to implement the integrity_check pragma. 5662 */ 5663 case OP_IntegrityCk: { 5664 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5665 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5666 int nErr; /* Number of errors reported */ 5667 char *z; /* Text of the error report */ 5668 Mem *pnErr; /* Register keeping track of errors remaining */ 5669 5670 assert( p->bIsReader ); 5671 nRoot = pOp->p2; 5672 aRoot = pOp->p4.ai; 5673 assert( nRoot>0 ); 5674 assert( aRoot[nRoot]==0 ); 5675 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 5676 pnErr = &aMem[pOp->p3]; 5677 assert( (pnErr->flags & MEM_Int)!=0 ); 5678 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5679 pIn1 = &aMem[pOp->p1]; 5680 assert( pOp->p5<db->nDb ); 5681 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5682 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5683 (int)pnErr->u.i+1, &nErr); 5684 sqlite3VdbeMemSetNull(pIn1); 5685 if( nErr==0 ){ 5686 assert( z==0 ); 5687 }else if( z==0 ){ 5688 goto no_mem; 5689 }else{ 5690 pnErr->u.i -= nErr-1; 5691 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5692 } 5693 UPDATE_MAX_BLOBSIZE(pIn1); 5694 sqlite3VdbeChangeEncoding(pIn1, encoding); 5695 break; 5696 } 5697 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5698 5699 /* Opcode: RowSetAdd P1 P2 * * * 5700 ** Synopsis: rowset(P1)=r[P2] 5701 ** 5702 ** Insert the integer value held by register P2 into a RowSet object 5703 ** held in register P1. 5704 ** 5705 ** An assertion fails if P2 is not an integer. 5706 */ 5707 case OP_RowSetAdd: { /* in1, in2 */ 5708 pIn1 = &aMem[pOp->p1]; 5709 pIn2 = &aMem[pOp->p2]; 5710 assert( (pIn2->flags & MEM_Int)!=0 ); 5711 if( (pIn1->flags & MEM_RowSet)==0 ){ 5712 sqlite3VdbeMemSetRowSet(pIn1); 5713 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5714 } 5715 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5716 break; 5717 } 5718 5719 /* Opcode: RowSetRead P1 P2 P3 * * 5720 ** Synopsis: r[P3]=rowset(P1) 5721 ** 5722 ** Extract the smallest value from the RowSet object in P1 5723 ** and put that value into register P3. 5724 ** Or, if RowSet object P1 is initially empty, leave P3 5725 ** unchanged and jump to instruction P2. 5726 */ 5727 case OP_RowSetRead: { /* jump, in1, out3 */ 5728 i64 val; 5729 5730 pIn1 = &aMem[pOp->p1]; 5731 if( (pIn1->flags & MEM_RowSet)==0 5732 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5733 ){ 5734 /* The boolean index is empty */ 5735 sqlite3VdbeMemSetNull(pIn1); 5736 VdbeBranchTaken(1,2); 5737 goto jump_to_p2_and_check_for_interrupt; 5738 }else{ 5739 /* A value was pulled from the index */ 5740 VdbeBranchTaken(0,2); 5741 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5742 } 5743 goto check_for_interrupt; 5744 } 5745 5746 /* Opcode: RowSetTest P1 P2 P3 P4 5747 ** Synopsis: if r[P3] in rowset(P1) goto P2 5748 ** 5749 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5750 ** contains a RowSet object and that RowSet object contains 5751 ** the value held in P3, jump to register P2. Otherwise, insert the 5752 ** integer in P3 into the RowSet and continue on to the 5753 ** next opcode. 5754 ** 5755 ** The RowSet object is optimized for the case where sets of integers 5756 ** are inserted in distinct phases, which each set contains no duplicates. 5757 ** Each set is identified by a unique P4 value. The first set 5758 ** must have P4==0, the final set must have P4==-1, and for all other sets 5759 ** must have P4>0. 5760 ** 5761 ** This allows optimizations: (a) when P4==0 there is no need to test 5762 ** the RowSet object for P3, as it is guaranteed not to contain it, 5763 ** (b) when P4==-1 there is no need to insert the value, as it will 5764 ** never be tested for, and (c) when a value that is part of set X is 5765 ** inserted, there is no need to search to see if the same value was 5766 ** previously inserted as part of set X (only if it was previously 5767 ** inserted as part of some other set). 5768 */ 5769 case OP_RowSetTest: { /* jump, in1, in3 */ 5770 int iSet; 5771 int exists; 5772 5773 pIn1 = &aMem[pOp->p1]; 5774 pIn3 = &aMem[pOp->p3]; 5775 iSet = pOp->p4.i; 5776 assert( pIn3->flags&MEM_Int ); 5777 5778 /* If there is anything other than a rowset object in memory cell P1, 5779 ** delete it now and initialize P1 with an empty rowset 5780 */ 5781 if( (pIn1->flags & MEM_RowSet)==0 ){ 5782 sqlite3VdbeMemSetRowSet(pIn1); 5783 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5784 } 5785 5786 assert( pOp->p4type==P4_INT32 ); 5787 assert( iSet==-1 || iSet>=0 ); 5788 if( iSet ){ 5789 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5790 VdbeBranchTaken(exists!=0,2); 5791 if( exists ) goto jump_to_p2; 5792 } 5793 if( iSet>=0 ){ 5794 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5795 } 5796 break; 5797 } 5798 5799 5800 #ifndef SQLITE_OMIT_TRIGGER 5801 5802 /* Opcode: Program P1 P2 P3 P4 P5 5803 ** 5804 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5805 ** 5806 ** P1 contains the address of the memory cell that contains the first memory 5807 ** cell in an array of values used as arguments to the sub-program. P2 5808 ** contains the address to jump to if the sub-program throws an IGNORE 5809 ** exception using the RAISE() function. Register P3 contains the address 5810 ** of a memory cell in this (the parent) VM that is used to allocate the 5811 ** memory required by the sub-vdbe at runtime. 5812 ** 5813 ** P4 is a pointer to the VM containing the trigger program. 5814 ** 5815 ** If P5 is non-zero, then recursive program invocation is enabled. 5816 */ 5817 case OP_Program: { /* jump */ 5818 int nMem; /* Number of memory registers for sub-program */ 5819 int nByte; /* Bytes of runtime space required for sub-program */ 5820 Mem *pRt; /* Register to allocate runtime space */ 5821 Mem *pMem; /* Used to iterate through memory cells */ 5822 Mem *pEnd; /* Last memory cell in new array */ 5823 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5824 SubProgram *pProgram; /* Sub-program to execute */ 5825 void *t; /* Token identifying trigger */ 5826 5827 pProgram = pOp->p4.pProgram; 5828 pRt = &aMem[pOp->p3]; 5829 assert( pProgram->nOp>0 ); 5830 5831 /* If the p5 flag is clear, then recursive invocation of triggers is 5832 ** disabled for backwards compatibility (p5 is set if this sub-program 5833 ** is really a trigger, not a foreign key action, and the flag set 5834 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5835 ** 5836 ** It is recursive invocation of triggers, at the SQL level, that is 5837 ** disabled. In some cases a single trigger may generate more than one 5838 ** SubProgram (if the trigger may be executed with more than one different 5839 ** ON CONFLICT algorithm). SubProgram structures associated with a 5840 ** single trigger all have the same value for the SubProgram.token 5841 ** variable. */ 5842 if( pOp->p5 ){ 5843 t = pProgram->token; 5844 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5845 if( pFrame ) break; 5846 } 5847 5848 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5849 rc = SQLITE_ERROR; 5850 sqlite3VdbeError(p, "too many levels of trigger recursion"); 5851 goto abort_due_to_error; 5852 } 5853 5854 /* Register pRt is used to store the memory required to save the state 5855 ** of the current program, and the memory required at runtime to execute 5856 ** the trigger program. If this trigger has been fired before, then pRt 5857 ** is already allocated. Otherwise, it must be initialized. */ 5858 if( (pRt->flags&MEM_Frame)==0 ){ 5859 /* SubProgram.nMem is set to the number of memory cells used by the 5860 ** program stored in SubProgram.aOp. As well as these, one memory 5861 ** cell is required for each cursor used by the program. Set local 5862 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5863 */ 5864 nMem = pProgram->nMem + pProgram->nCsr; 5865 assert( nMem>0 ); 5866 if( pProgram->nCsr==0 ) nMem++; 5867 nByte = ROUND8(sizeof(VdbeFrame)) 5868 + nMem * sizeof(Mem) 5869 + pProgram->nCsr * sizeof(VdbeCursor*) 5870 + (pProgram->nOp + 7)/8; 5871 pFrame = sqlite3DbMallocZero(db, nByte); 5872 if( !pFrame ){ 5873 goto no_mem; 5874 } 5875 sqlite3VdbeMemRelease(pRt); 5876 pRt->flags = MEM_Frame; 5877 pRt->u.pFrame = pFrame; 5878 5879 pFrame->v = p; 5880 pFrame->nChildMem = nMem; 5881 pFrame->nChildCsr = pProgram->nCsr; 5882 pFrame->pc = (int)(pOp - aOp); 5883 pFrame->aMem = p->aMem; 5884 pFrame->nMem = p->nMem; 5885 pFrame->apCsr = p->apCsr; 5886 pFrame->nCursor = p->nCursor; 5887 pFrame->aOp = p->aOp; 5888 pFrame->nOp = p->nOp; 5889 pFrame->token = pProgram->token; 5890 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5891 pFrame->anExec = p->anExec; 5892 #endif 5893 5894 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5895 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5896 pMem->flags = MEM_Undefined; 5897 pMem->db = db; 5898 } 5899 }else{ 5900 pFrame = pRt->u.pFrame; 5901 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 5902 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 5903 assert( pProgram->nCsr==pFrame->nChildCsr ); 5904 assert( (int)(pOp - aOp)==pFrame->pc ); 5905 } 5906 5907 p->nFrame++; 5908 pFrame->pParent = p->pFrame; 5909 pFrame->lastRowid = db->lastRowid; 5910 pFrame->nChange = p->nChange; 5911 pFrame->nDbChange = p->db->nChange; 5912 assert( pFrame->pAuxData==0 ); 5913 pFrame->pAuxData = p->pAuxData; 5914 p->pAuxData = 0; 5915 p->nChange = 0; 5916 p->pFrame = pFrame; 5917 p->aMem = aMem = VdbeFrameMem(pFrame); 5918 p->nMem = pFrame->nChildMem; 5919 p->nCursor = (u16)pFrame->nChildCsr; 5920 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 5921 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 5922 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 5923 p->aOp = aOp = pProgram->aOp; 5924 p->nOp = pProgram->nOp; 5925 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5926 p->anExec = 0; 5927 #endif 5928 pOp = &aOp[-1]; 5929 5930 break; 5931 } 5932 5933 /* Opcode: Param P1 P2 * * * 5934 ** 5935 ** This opcode is only ever present in sub-programs called via the 5936 ** OP_Program instruction. Copy a value currently stored in a memory 5937 ** cell of the calling (parent) frame to cell P2 in the current frames 5938 ** address space. This is used by trigger programs to access the new.* 5939 ** and old.* values. 5940 ** 5941 ** The address of the cell in the parent frame is determined by adding 5942 ** the value of the P1 argument to the value of the P1 argument to the 5943 ** calling OP_Program instruction. 5944 */ 5945 case OP_Param: { /* out2 */ 5946 VdbeFrame *pFrame; 5947 Mem *pIn; 5948 pOut = out2Prerelease(p, pOp); 5949 pFrame = p->pFrame; 5950 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5951 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5952 break; 5953 } 5954 5955 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5956 5957 #ifndef SQLITE_OMIT_FOREIGN_KEY 5958 /* Opcode: FkCounter P1 P2 * * * 5959 ** Synopsis: fkctr[P1]+=P2 5960 ** 5961 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5962 ** If P1 is non-zero, the database constraint counter is incremented 5963 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5964 ** statement counter is incremented (immediate foreign key constraints). 5965 */ 5966 case OP_FkCounter: { 5967 if( db->flags & SQLITE_DeferFKs ){ 5968 db->nDeferredImmCons += pOp->p2; 5969 }else if( pOp->p1 ){ 5970 db->nDeferredCons += pOp->p2; 5971 }else{ 5972 p->nFkConstraint += pOp->p2; 5973 } 5974 break; 5975 } 5976 5977 /* Opcode: FkIfZero P1 P2 * * * 5978 ** Synopsis: if fkctr[P1]==0 goto P2 5979 ** 5980 ** This opcode tests if a foreign key constraint-counter is currently zero. 5981 ** If so, jump to instruction P2. Otherwise, fall through to the next 5982 ** instruction. 5983 ** 5984 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5985 ** is zero (the one that counts deferred constraint violations). If P1 is 5986 ** zero, the jump is taken if the statement constraint-counter is zero 5987 ** (immediate foreign key constraint violations). 5988 */ 5989 case OP_FkIfZero: { /* jump */ 5990 if( pOp->p1 ){ 5991 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5992 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 5993 }else{ 5994 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5995 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 5996 } 5997 break; 5998 } 5999 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6000 6001 #ifndef SQLITE_OMIT_AUTOINCREMENT 6002 /* Opcode: MemMax P1 P2 * * * 6003 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6004 ** 6005 ** P1 is a register in the root frame of this VM (the root frame is 6006 ** different from the current frame if this instruction is being executed 6007 ** within a sub-program). Set the value of register P1 to the maximum of 6008 ** its current value and the value in register P2. 6009 ** 6010 ** This instruction throws an error if the memory cell is not initially 6011 ** an integer. 6012 */ 6013 case OP_MemMax: { /* in2 */ 6014 VdbeFrame *pFrame; 6015 if( p->pFrame ){ 6016 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6017 pIn1 = &pFrame->aMem[pOp->p1]; 6018 }else{ 6019 pIn1 = &aMem[pOp->p1]; 6020 } 6021 assert( memIsValid(pIn1) ); 6022 sqlite3VdbeMemIntegerify(pIn1); 6023 pIn2 = &aMem[pOp->p2]; 6024 sqlite3VdbeMemIntegerify(pIn2); 6025 if( pIn1->u.i<pIn2->u.i){ 6026 pIn1->u.i = pIn2->u.i; 6027 } 6028 break; 6029 } 6030 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6031 6032 /* Opcode: IfPos P1 P2 P3 * * 6033 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6034 ** 6035 ** Register P1 must contain an integer. 6036 ** If the value of register P1 is 1 or greater, subtract P3 from the 6037 ** value in P1 and jump to P2. 6038 ** 6039 ** If the initial value of register P1 is less than 1, then the 6040 ** value is unchanged and control passes through to the next instruction. 6041 */ 6042 case OP_IfPos: { /* jump, in1 */ 6043 pIn1 = &aMem[pOp->p1]; 6044 assert( pIn1->flags&MEM_Int ); 6045 VdbeBranchTaken( pIn1->u.i>0, 2); 6046 if( pIn1->u.i>0 ){ 6047 pIn1->u.i -= pOp->p3; 6048 goto jump_to_p2; 6049 } 6050 break; 6051 } 6052 6053 /* Opcode: OffsetLimit P1 P2 P3 * * 6054 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6055 ** 6056 ** This opcode performs a commonly used computation associated with 6057 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6058 ** holds the offset counter. The opcode computes the combined value 6059 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6060 ** value computed is the total number of rows that will need to be 6061 ** visited in order to complete the query. 6062 ** 6063 ** If r[P3] is zero or negative, that means there is no OFFSET 6064 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6065 ** 6066 ** if r[P1] is zero or negative, that means there is no LIMIT 6067 ** and r[P2] is set to -1. 6068 ** 6069 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6070 */ 6071 case OP_OffsetLimit: { /* in1, out2, in3 */ 6072 i64 x; 6073 pIn1 = &aMem[pOp->p1]; 6074 pIn3 = &aMem[pOp->p3]; 6075 pOut = out2Prerelease(p, pOp); 6076 assert( pIn1->flags & MEM_Int ); 6077 assert( pIn3->flags & MEM_Int ); 6078 x = pIn1->u.i; 6079 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6080 /* If the LIMIT is less than or equal to zero, loop forever. This 6081 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6082 ** also loop forever. This is undocumented. In fact, one could argue 6083 ** that the loop should terminate. But assuming 1 billion iterations 6084 ** per second (far exceeding the capabilities of any current hardware) 6085 ** it would take nearly 300 years to actually reach the limit. So 6086 ** looping forever is a reasonable approximation. */ 6087 pOut->u.i = -1; 6088 }else{ 6089 pOut->u.i = x; 6090 } 6091 break; 6092 } 6093 6094 /* Opcode: IfNotZero P1 P2 * * * 6095 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6096 ** 6097 ** Register P1 must contain an integer. If the content of register P1 is 6098 ** initially greater than zero, then decrement the value in register P1. 6099 ** If it is non-zero (negative or positive) and then also jump to P2. 6100 ** If register P1 is initially zero, leave it unchanged and fall through. 6101 */ 6102 case OP_IfNotZero: { /* jump, in1 */ 6103 pIn1 = &aMem[pOp->p1]; 6104 assert( pIn1->flags&MEM_Int ); 6105 VdbeBranchTaken(pIn1->u.i<0, 2); 6106 if( pIn1->u.i ){ 6107 if( pIn1->u.i>0 ) pIn1->u.i--; 6108 goto jump_to_p2; 6109 } 6110 break; 6111 } 6112 6113 /* Opcode: DecrJumpZero P1 P2 * * * 6114 ** Synopsis: if (--r[P1])==0 goto P2 6115 ** 6116 ** Register P1 must hold an integer. Decrement the value in P1 6117 ** and jump to P2 if the new value is exactly zero. 6118 */ 6119 case OP_DecrJumpZero: { /* jump, in1 */ 6120 pIn1 = &aMem[pOp->p1]; 6121 assert( pIn1->flags&MEM_Int ); 6122 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6123 VdbeBranchTaken(pIn1->u.i==0, 2); 6124 if( pIn1->u.i==0 ) goto jump_to_p2; 6125 break; 6126 } 6127 6128 6129 /* Opcode: AggStep0 * P2 P3 P4 P5 6130 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6131 ** 6132 ** Execute the step function for an aggregate. The 6133 ** function has P5 arguments. P4 is a pointer to the FuncDef 6134 ** structure that specifies the function. Register P3 is the 6135 ** accumulator. 6136 ** 6137 ** The P5 arguments are taken from register P2 and its 6138 ** successors. 6139 */ 6140 /* Opcode: AggStep * P2 P3 P4 P5 6141 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6142 ** 6143 ** Execute the step function for an aggregate. The 6144 ** function has P5 arguments. P4 is a pointer to an sqlite3_context 6145 ** object that is used to run the function. Register P3 is 6146 ** as the accumulator. 6147 ** 6148 ** The P5 arguments are taken from register P2 and its 6149 ** successors. 6150 ** 6151 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6152 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6153 ** the opcode is changed. In this way, the initialization of the 6154 ** sqlite3_context only happens once, instead of on each call to the 6155 ** step function. 6156 */ 6157 case OP_AggStep0: { 6158 int n; 6159 sqlite3_context *pCtx; 6160 6161 assert( pOp->p4type==P4_FUNCDEF ); 6162 n = pOp->p5; 6163 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6164 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6165 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6166 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 6167 if( pCtx==0 ) goto no_mem; 6168 pCtx->pMem = 0; 6169 pCtx->pFunc = pOp->p4.pFunc; 6170 pCtx->iOp = (int)(pOp - aOp); 6171 pCtx->pVdbe = p; 6172 pCtx->argc = n; 6173 pOp->p4type = P4_FUNCCTX; 6174 pOp->p4.pCtx = pCtx; 6175 pOp->opcode = OP_AggStep; 6176 /* Fall through into OP_AggStep */ 6177 } 6178 case OP_AggStep: { 6179 int i; 6180 sqlite3_context *pCtx; 6181 Mem *pMem; 6182 Mem t; 6183 6184 assert( pOp->p4type==P4_FUNCCTX ); 6185 pCtx = pOp->p4.pCtx; 6186 pMem = &aMem[pOp->p3]; 6187 6188 /* If this function is inside of a trigger, the register array in aMem[] 6189 ** might change from one evaluation to the next. The next block of code 6190 ** checks to see if the register array has changed, and if so it 6191 ** reinitializes the relavant parts of the sqlite3_context object */ 6192 if( pCtx->pMem != pMem ){ 6193 pCtx->pMem = pMem; 6194 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6195 } 6196 6197 #ifdef SQLITE_DEBUG 6198 for(i=0; i<pCtx->argc; i++){ 6199 assert( memIsValid(pCtx->argv[i]) ); 6200 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6201 } 6202 #endif 6203 6204 pMem->n++; 6205 sqlite3VdbeMemInit(&t, db, MEM_Null); 6206 pCtx->pOut = &t; 6207 pCtx->fErrorOrAux = 0; 6208 pCtx->skipFlag = 0; 6209 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6210 if( pCtx->fErrorOrAux ){ 6211 if( pCtx->isError ){ 6212 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); 6213 rc = pCtx->isError; 6214 } 6215 sqlite3VdbeMemRelease(&t); 6216 if( rc ) goto abort_due_to_error; 6217 }else{ 6218 assert( t.flags==MEM_Null ); 6219 } 6220 if( pCtx->skipFlag ){ 6221 assert( pOp[-1].opcode==OP_CollSeq ); 6222 i = pOp[-1].p1; 6223 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6224 } 6225 break; 6226 } 6227 6228 /* Opcode: AggFinal P1 P2 * P4 * 6229 ** Synopsis: accum=r[P1] N=P2 6230 ** 6231 ** Execute the finalizer function for an aggregate. P1 is 6232 ** the memory location that is the accumulator for the aggregate. 6233 ** 6234 ** P2 is the number of arguments that the step function takes and 6235 ** P4 is a pointer to the FuncDef for this function. The P2 6236 ** argument is not used by this opcode. It is only there to disambiguate 6237 ** functions that can take varying numbers of arguments. The 6238 ** P4 argument is only needed for the degenerate case where 6239 ** the step function was not previously called. 6240 */ 6241 case OP_AggFinal: { 6242 Mem *pMem; 6243 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6244 pMem = &aMem[pOp->p1]; 6245 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6246 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6247 if( rc ){ 6248 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6249 goto abort_due_to_error; 6250 } 6251 sqlite3VdbeChangeEncoding(pMem, encoding); 6252 UPDATE_MAX_BLOBSIZE(pMem); 6253 if( sqlite3VdbeMemTooBig(pMem) ){ 6254 goto too_big; 6255 } 6256 break; 6257 } 6258 6259 #ifndef SQLITE_OMIT_WAL 6260 /* Opcode: Checkpoint P1 P2 P3 * * 6261 ** 6262 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6263 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6264 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6265 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6266 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6267 ** in the WAL that have been checkpointed after the checkpoint 6268 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6269 ** mem[P3+2] are initialized to -1. 6270 */ 6271 case OP_Checkpoint: { 6272 int i; /* Loop counter */ 6273 int aRes[3]; /* Results */ 6274 Mem *pMem; /* Write results here */ 6275 6276 assert( p->readOnly==0 ); 6277 aRes[0] = 0; 6278 aRes[1] = aRes[2] = -1; 6279 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6280 || pOp->p2==SQLITE_CHECKPOINT_FULL 6281 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6282 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6283 ); 6284 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6285 if( rc ){ 6286 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6287 rc = SQLITE_OK; 6288 aRes[0] = 1; 6289 } 6290 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6291 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6292 } 6293 break; 6294 }; 6295 #endif 6296 6297 #ifndef SQLITE_OMIT_PRAGMA 6298 /* Opcode: JournalMode P1 P2 P3 * * 6299 ** 6300 ** Change the journal mode of database P1 to P3. P3 must be one of the 6301 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6302 ** modes (delete, truncate, persist, off and memory), this is a simple 6303 ** operation. No IO is required. 6304 ** 6305 ** If changing into or out of WAL mode the procedure is more complicated. 6306 ** 6307 ** Write a string containing the final journal-mode to register P2. 6308 */ 6309 case OP_JournalMode: { /* out2 */ 6310 Btree *pBt; /* Btree to change journal mode of */ 6311 Pager *pPager; /* Pager associated with pBt */ 6312 int eNew; /* New journal mode */ 6313 int eOld; /* The old journal mode */ 6314 #ifndef SQLITE_OMIT_WAL 6315 const char *zFilename; /* Name of database file for pPager */ 6316 #endif 6317 6318 pOut = out2Prerelease(p, pOp); 6319 eNew = pOp->p3; 6320 assert( eNew==PAGER_JOURNALMODE_DELETE 6321 || eNew==PAGER_JOURNALMODE_TRUNCATE 6322 || eNew==PAGER_JOURNALMODE_PERSIST 6323 || eNew==PAGER_JOURNALMODE_OFF 6324 || eNew==PAGER_JOURNALMODE_MEMORY 6325 || eNew==PAGER_JOURNALMODE_WAL 6326 || eNew==PAGER_JOURNALMODE_QUERY 6327 ); 6328 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6329 assert( p->readOnly==0 ); 6330 6331 pBt = db->aDb[pOp->p1].pBt; 6332 pPager = sqlite3BtreePager(pBt); 6333 eOld = sqlite3PagerGetJournalMode(pPager); 6334 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6335 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6336 6337 #ifndef SQLITE_OMIT_WAL 6338 zFilename = sqlite3PagerFilename(pPager, 1); 6339 6340 /* Do not allow a transition to journal_mode=WAL for a database 6341 ** in temporary storage or if the VFS does not support shared memory 6342 */ 6343 if( eNew==PAGER_JOURNALMODE_WAL 6344 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6345 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6346 ){ 6347 eNew = eOld; 6348 } 6349 6350 if( (eNew!=eOld) 6351 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6352 ){ 6353 if( !db->autoCommit || db->nVdbeRead>1 ){ 6354 rc = SQLITE_ERROR; 6355 sqlite3VdbeError(p, 6356 "cannot change %s wal mode from within a transaction", 6357 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6358 ); 6359 goto abort_due_to_error; 6360 }else{ 6361 6362 if( eOld==PAGER_JOURNALMODE_WAL ){ 6363 /* If leaving WAL mode, close the log file. If successful, the call 6364 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6365 ** file. An EXCLUSIVE lock may still be held on the database file 6366 ** after a successful return. 6367 */ 6368 rc = sqlite3PagerCloseWal(pPager, db); 6369 if( rc==SQLITE_OK ){ 6370 sqlite3PagerSetJournalMode(pPager, eNew); 6371 } 6372 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6373 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6374 ** as an intermediate */ 6375 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6376 } 6377 6378 /* Open a transaction on the database file. Regardless of the journal 6379 ** mode, this transaction always uses a rollback journal. 6380 */ 6381 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6382 if( rc==SQLITE_OK ){ 6383 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6384 } 6385 } 6386 } 6387 #endif /* ifndef SQLITE_OMIT_WAL */ 6388 6389 if( rc ) eNew = eOld; 6390 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6391 6392 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6393 pOut->z = (char *)sqlite3JournalModename(eNew); 6394 pOut->n = sqlite3Strlen30(pOut->z); 6395 pOut->enc = SQLITE_UTF8; 6396 sqlite3VdbeChangeEncoding(pOut, encoding); 6397 if( rc ) goto abort_due_to_error; 6398 break; 6399 }; 6400 #endif /* SQLITE_OMIT_PRAGMA */ 6401 6402 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6403 /* Opcode: Vacuum P1 * * * * 6404 ** 6405 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 6406 ** for an attached database. The "temp" database may not be vacuumed. 6407 */ 6408 case OP_Vacuum: { 6409 assert( p->readOnly==0 ); 6410 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1); 6411 if( rc ) goto abort_due_to_error; 6412 break; 6413 } 6414 #endif 6415 6416 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6417 /* Opcode: IncrVacuum P1 P2 * * * 6418 ** 6419 ** Perform a single step of the incremental vacuum procedure on 6420 ** the P1 database. If the vacuum has finished, jump to instruction 6421 ** P2. Otherwise, fall through to the next instruction. 6422 */ 6423 case OP_IncrVacuum: { /* jump */ 6424 Btree *pBt; 6425 6426 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6427 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6428 assert( p->readOnly==0 ); 6429 pBt = db->aDb[pOp->p1].pBt; 6430 rc = sqlite3BtreeIncrVacuum(pBt); 6431 VdbeBranchTaken(rc==SQLITE_DONE,2); 6432 if( rc ){ 6433 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6434 rc = SQLITE_OK; 6435 goto jump_to_p2; 6436 } 6437 break; 6438 } 6439 #endif 6440 6441 /* Opcode: Expire P1 * * * * 6442 ** 6443 ** Cause precompiled statements to expire. When an expired statement 6444 ** is executed using sqlite3_step() it will either automatically 6445 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6446 ** or it will fail with SQLITE_SCHEMA. 6447 ** 6448 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6449 ** then only the currently executing statement is expired. 6450 */ 6451 case OP_Expire: { 6452 if( !pOp->p1 ){ 6453 sqlite3ExpirePreparedStatements(db); 6454 }else{ 6455 p->expired = 1; 6456 } 6457 break; 6458 } 6459 6460 #ifndef SQLITE_OMIT_SHARED_CACHE 6461 /* Opcode: TableLock P1 P2 P3 P4 * 6462 ** Synopsis: iDb=P1 root=P2 write=P3 6463 ** 6464 ** Obtain a lock on a particular table. This instruction is only used when 6465 ** the shared-cache feature is enabled. 6466 ** 6467 ** P1 is the index of the database in sqlite3.aDb[] of the database 6468 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6469 ** a write lock if P3==1. 6470 ** 6471 ** P2 contains the root-page of the table to lock. 6472 ** 6473 ** P4 contains a pointer to the name of the table being locked. This is only 6474 ** used to generate an error message if the lock cannot be obtained. 6475 */ 6476 case OP_TableLock: { 6477 u8 isWriteLock = (u8)pOp->p3; 6478 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 6479 int p1 = pOp->p1; 6480 assert( p1>=0 && p1<db->nDb ); 6481 assert( DbMaskTest(p->btreeMask, p1) ); 6482 assert( isWriteLock==0 || isWriteLock==1 ); 6483 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6484 if( rc ){ 6485 if( (rc&0xFF)==SQLITE_LOCKED ){ 6486 const char *z = pOp->p4.z; 6487 sqlite3VdbeError(p, "database table is locked: %s", z); 6488 } 6489 goto abort_due_to_error; 6490 } 6491 } 6492 break; 6493 } 6494 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6495 6496 #ifndef SQLITE_OMIT_VIRTUALTABLE 6497 /* Opcode: VBegin * * * P4 * 6498 ** 6499 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6500 ** xBegin method for that table. 6501 ** 6502 ** Also, whether or not P4 is set, check that this is not being called from 6503 ** within a callback to a virtual table xSync() method. If it is, the error 6504 ** code will be set to SQLITE_LOCKED. 6505 */ 6506 case OP_VBegin: { 6507 VTable *pVTab; 6508 pVTab = pOp->p4.pVtab; 6509 rc = sqlite3VtabBegin(db, pVTab); 6510 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6511 if( rc ) goto abort_due_to_error; 6512 break; 6513 } 6514 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6515 6516 #ifndef SQLITE_OMIT_VIRTUALTABLE 6517 /* Opcode: VCreate P1 P2 * * * 6518 ** 6519 ** P2 is a register that holds the name of a virtual table in database 6520 ** P1. Call the xCreate method for that table. 6521 */ 6522 case OP_VCreate: { 6523 Mem sMem; /* For storing the record being decoded */ 6524 const char *zTab; /* Name of the virtual table */ 6525 6526 memset(&sMem, 0, sizeof(sMem)); 6527 sMem.db = db; 6528 /* Because P2 is always a static string, it is impossible for the 6529 ** sqlite3VdbeMemCopy() to fail */ 6530 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 6531 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 6532 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 6533 assert( rc==SQLITE_OK ); 6534 zTab = (const char*)sqlite3_value_text(&sMem); 6535 assert( zTab || db->mallocFailed ); 6536 if( zTab ){ 6537 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 6538 } 6539 sqlite3VdbeMemRelease(&sMem); 6540 if( rc ) goto abort_due_to_error; 6541 break; 6542 } 6543 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6544 6545 #ifndef SQLITE_OMIT_VIRTUALTABLE 6546 /* Opcode: VDestroy P1 * * P4 * 6547 ** 6548 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6549 ** of that table. 6550 */ 6551 case OP_VDestroy: { 6552 db->nVDestroy++; 6553 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6554 db->nVDestroy--; 6555 if( rc ) goto abort_due_to_error; 6556 break; 6557 } 6558 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6559 6560 #ifndef SQLITE_OMIT_VIRTUALTABLE 6561 /* Opcode: VOpen P1 * * P4 * 6562 ** 6563 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6564 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6565 ** table and stores that cursor in P1. 6566 */ 6567 case OP_VOpen: { 6568 VdbeCursor *pCur; 6569 sqlite3_vtab_cursor *pVCur; 6570 sqlite3_vtab *pVtab; 6571 const sqlite3_module *pModule; 6572 6573 assert( p->bIsReader ); 6574 pCur = 0; 6575 pVCur = 0; 6576 pVtab = pOp->p4.pVtab->pVtab; 6577 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6578 rc = SQLITE_LOCKED; 6579 goto abort_due_to_error; 6580 } 6581 pModule = pVtab->pModule; 6582 rc = pModule->xOpen(pVtab, &pVCur); 6583 sqlite3VtabImportErrmsg(p, pVtab); 6584 if( rc ) goto abort_due_to_error; 6585 6586 /* Initialize sqlite3_vtab_cursor base class */ 6587 pVCur->pVtab = pVtab; 6588 6589 /* Initialize vdbe cursor object */ 6590 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 6591 if( pCur ){ 6592 pCur->uc.pVCur = pVCur; 6593 pVtab->nRef++; 6594 }else{ 6595 assert( db->mallocFailed ); 6596 pModule->xClose(pVCur); 6597 goto no_mem; 6598 } 6599 break; 6600 } 6601 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6602 6603 #ifndef SQLITE_OMIT_VIRTUALTABLE 6604 /* Opcode: VFilter P1 P2 P3 P4 * 6605 ** Synopsis: iplan=r[P3] zplan='P4' 6606 ** 6607 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6608 ** the filtered result set is empty. 6609 ** 6610 ** P4 is either NULL or a string that was generated by the xBestIndex 6611 ** method of the module. The interpretation of the P4 string is left 6612 ** to the module implementation. 6613 ** 6614 ** This opcode invokes the xFilter method on the virtual table specified 6615 ** by P1. The integer query plan parameter to xFilter is stored in register 6616 ** P3. Register P3+1 stores the argc parameter to be passed to the 6617 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6618 ** additional parameters which are passed to 6619 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6620 ** 6621 ** A jump is made to P2 if the result set after filtering would be empty. 6622 */ 6623 case OP_VFilter: { /* jump */ 6624 int nArg; 6625 int iQuery; 6626 const sqlite3_module *pModule; 6627 Mem *pQuery; 6628 Mem *pArgc; 6629 sqlite3_vtab_cursor *pVCur; 6630 sqlite3_vtab *pVtab; 6631 VdbeCursor *pCur; 6632 int res; 6633 int i; 6634 Mem **apArg; 6635 6636 pQuery = &aMem[pOp->p3]; 6637 pArgc = &pQuery[1]; 6638 pCur = p->apCsr[pOp->p1]; 6639 assert( memIsValid(pQuery) ); 6640 REGISTER_TRACE(pOp->p3, pQuery); 6641 assert( pCur->eCurType==CURTYPE_VTAB ); 6642 pVCur = pCur->uc.pVCur; 6643 pVtab = pVCur->pVtab; 6644 pModule = pVtab->pModule; 6645 6646 /* Grab the index number and argc parameters */ 6647 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6648 nArg = (int)pArgc->u.i; 6649 iQuery = (int)pQuery->u.i; 6650 6651 /* Invoke the xFilter method */ 6652 res = 0; 6653 apArg = p->apArg; 6654 for(i = 0; i<nArg; i++){ 6655 apArg[i] = &pArgc[i+1]; 6656 } 6657 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 6658 sqlite3VtabImportErrmsg(p, pVtab); 6659 if( rc ) goto abort_due_to_error; 6660 res = pModule->xEof(pVCur); 6661 pCur->nullRow = 0; 6662 VdbeBranchTaken(res!=0,2); 6663 if( res ) goto jump_to_p2; 6664 break; 6665 } 6666 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6667 6668 #ifndef SQLITE_OMIT_VIRTUALTABLE 6669 /* Opcode: VColumn P1 P2 P3 * * 6670 ** Synopsis: r[P3]=vcolumn(P2) 6671 ** 6672 ** Store the value of the P2-th column of 6673 ** the row of the virtual-table that the 6674 ** P1 cursor is pointing to into register P3. 6675 */ 6676 case OP_VColumn: { 6677 sqlite3_vtab *pVtab; 6678 const sqlite3_module *pModule; 6679 Mem *pDest; 6680 sqlite3_context sContext; 6681 6682 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6683 assert( pCur->eCurType==CURTYPE_VTAB ); 6684 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6685 pDest = &aMem[pOp->p3]; 6686 memAboutToChange(p, pDest); 6687 if( pCur->nullRow ){ 6688 sqlite3VdbeMemSetNull(pDest); 6689 break; 6690 } 6691 pVtab = pCur->uc.pVCur->pVtab; 6692 pModule = pVtab->pModule; 6693 assert( pModule->xColumn ); 6694 memset(&sContext, 0, sizeof(sContext)); 6695 sContext.pOut = pDest; 6696 MemSetTypeFlag(pDest, MEM_Null); 6697 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 6698 sqlite3VtabImportErrmsg(p, pVtab); 6699 if( sContext.isError ){ 6700 rc = sContext.isError; 6701 } 6702 sqlite3VdbeChangeEncoding(pDest, encoding); 6703 REGISTER_TRACE(pOp->p3, pDest); 6704 UPDATE_MAX_BLOBSIZE(pDest); 6705 6706 if( sqlite3VdbeMemTooBig(pDest) ){ 6707 goto too_big; 6708 } 6709 if( rc ) goto abort_due_to_error; 6710 break; 6711 } 6712 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6713 6714 #ifndef SQLITE_OMIT_VIRTUALTABLE 6715 /* Opcode: VNext P1 P2 * * * 6716 ** 6717 ** Advance virtual table P1 to the next row in its result set and 6718 ** jump to instruction P2. Or, if the virtual table has reached 6719 ** the end of its result set, then fall through to the next instruction. 6720 */ 6721 case OP_VNext: { /* jump */ 6722 sqlite3_vtab *pVtab; 6723 const sqlite3_module *pModule; 6724 int res; 6725 VdbeCursor *pCur; 6726 6727 res = 0; 6728 pCur = p->apCsr[pOp->p1]; 6729 assert( pCur->eCurType==CURTYPE_VTAB ); 6730 if( pCur->nullRow ){ 6731 break; 6732 } 6733 pVtab = pCur->uc.pVCur->pVtab; 6734 pModule = pVtab->pModule; 6735 assert( pModule->xNext ); 6736 6737 /* Invoke the xNext() method of the module. There is no way for the 6738 ** underlying implementation to return an error if one occurs during 6739 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6740 ** data is available) and the error code returned when xColumn or 6741 ** some other method is next invoked on the save virtual table cursor. 6742 */ 6743 rc = pModule->xNext(pCur->uc.pVCur); 6744 sqlite3VtabImportErrmsg(p, pVtab); 6745 if( rc ) goto abort_due_to_error; 6746 res = pModule->xEof(pCur->uc.pVCur); 6747 VdbeBranchTaken(!res,2); 6748 if( !res ){ 6749 /* If there is data, jump to P2 */ 6750 goto jump_to_p2_and_check_for_interrupt; 6751 } 6752 goto check_for_interrupt; 6753 } 6754 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6755 6756 #ifndef SQLITE_OMIT_VIRTUALTABLE 6757 /* Opcode: VRename P1 * * P4 * 6758 ** 6759 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6760 ** This opcode invokes the corresponding xRename method. The value 6761 ** in register P1 is passed as the zName argument to the xRename method. 6762 */ 6763 case OP_VRename: { 6764 sqlite3_vtab *pVtab; 6765 Mem *pName; 6766 6767 pVtab = pOp->p4.pVtab->pVtab; 6768 pName = &aMem[pOp->p1]; 6769 assert( pVtab->pModule->xRename ); 6770 assert( memIsValid(pName) ); 6771 assert( p->readOnly==0 ); 6772 REGISTER_TRACE(pOp->p1, pName); 6773 assert( pName->flags & MEM_Str ); 6774 testcase( pName->enc==SQLITE_UTF8 ); 6775 testcase( pName->enc==SQLITE_UTF16BE ); 6776 testcase( pName->enc==SQLITE_UTF16LE ); 6777 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6778 if( rc ) goto abort_due_to_error; 6779 rc = pVtab->pModule->xRename(pVtab, pName->z); 6780 sqlite3VtabImportErrmsg(p, pVtab); 6781 p->expired = 0; 6782 if( rc ) goto abort_due_to_error; 6783 break; 6784 } 6785 #endif 6786 6787 #ifndef SQLITE_OMIT_VIRTUALTABLE 6788 /* Opcode: VUpdate P1 P2 P3 P4 P5 6789 ** Synopsis: data=r[P3@P2] 6790 ** 6791 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6792 ** This opcode invokes the corresponding xUpdate method. P2 values 6793 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6794 ** invocation. The value in register (P3+P2-1) corresponds to the 6795 ** p2th element of the argv array passed to xUpdate. 6796 ** 6797 ** The xUpdate method will do a DELETE or an INSERT or both. 6798 ** The argv[0] element (which corresponds to memory cell P3) 6799 ** is the rowid of a row to delete. If argv[0] is NULL then no 6800 ** deletion occurs. The argv[1] element is the rowid of the new 6801 ** row. This can be NULL to have the virtual table select the new 6802 ** rowid for itself. The subsequent elements in the array are 6803 ** the values of columns in the new row. 6804 ** 6805 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6806 ** a row to delete. 6807 ** 6808 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6809 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6810 ** is set to the value of the rowid for the row just inserted. 6811 ** 6812 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6813 ** apply in the case of a constraint failure on an insert or update. 6814 */ 6815 case OP_VUpdate: { 6816 sqlite3_vtab *pVtab; 6817 const sqlite3_module *pModule; 6818 int nArg; 6819 int i; 6820 sqlite_int64 rowid; 6821 Mem **apArg; 6822 Mem *pX; 6823 6824 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6825 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6826 ); 6827 assert( p->readOnly==0 ); 6828 pVtab = pOp->p4.pVtab->pVtab; 6829 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6830 rc = SQLITE_LOCKED; 6831 goto abort_due_to_error; 6832 } 6833 pModule = pVtab->pModule; 6834 nArg = pOp->p2; 6835 assert( pOp->p4type==P4_VTAB ); 6836 if( ALWAYS(pModule->xUpdate) ){ 6837 u8 vtabOnConflict = db->vtabOnConflict; 6838 apArg = p->apArg; 6839 pX = &aMem[pOp->p3]; 6840 for(i=0; i<nArg; i++){ 6841 assert( memIsValid(pX) ); 6842 memAboutToChange(p, pX); 6843 apArg[i] = pX; 6844 pX++; 6845 } 6846 db->vtabOnConflict = pOp->p5; 6847 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6848 db->vtabOnConflict = vtabOnConflict; 6849 sqlite3VtabImportErrmsg(p, pVtab); 6850 if( rc==SQLITE_OK && pOp->p1 ){ 6851 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6852 db->lastRowid = rowid; 6853 } 6854 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6855 if( pOp->p5==OE_Ignore ){ 6856 rc = SQLITE_OK; 6857 }else{ 6858 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6859 } 6860 }else{ 6861 p->nChange++; 6862 } 6863 if( rc ) goto abort_due_to_error; 6864 } 6865 break; 6866 } 6867 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6868 6869 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6870 /* Opcode: Pagecount P1 P2 * * * 6871 ** 6872 ** Write the current number of pages in database P1 to memory cell P2. 6873 */ 6874 case OP_Pagecount: { /* out2 */ 6875 pOut = out2Prerelease(p, pOp); 6876 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6877 break; 6878 } 6879 #endif 6880 6881 6882 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6883 /* Opcode: MaxPgcnt P1 P2 P3 * * 6884 ** 6885 ** Try to set the maximum page count for database P1 to the value in P3. 6886 ** Do not let the maximum page count fall below the current page count and 6887 ** do not change the maximum page count value if P3==0. 6888 ** 6889 ** Store the maximum page count after the change in register P2. 6890 */ 6891 case OP_MaxPgcnt: { /* out2 */ 6892 unsigned int newMax; 6893 Btree *pBt; 6894 6895 pOut = out2Prerelease(p, pOp); 6896 pBt = db->aDb[pOp->p1].pBt; 6897 newMax = 0; 6898 if( pOp->p3 ){ 6899 newMax = sqlite3BtreeLastPage(pBt); 6900 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6901 } 6902 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6903 break; 6904 } 6905 #endif 6906 6907 /* Opcode: Function0 P1 P2 P3 P4 P5 6908 ** Synopsis: r[P3]=func(r[P2@P5]) 6909 ** 6910 ** Invoke a user function (P4 is a pointer to a FuncDef object that 6911 ** defines the function) with P5 arguments taken from register P2 and 6912 ** successors. The result of the function is stored in register P3. 6913 ** Register P3 must not be one of the function inputs. 6914 ** 6915 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 6916 ** function was determined to be constant at compile time. If the first 6917 ** argument was constant then bit 0 of P1 is set. This is used to determine 6918 ** whether meta data associated with a user function argument using the 6919 ** sqlite3_set_auxdata() API may be safely retained until the next 6920 ** invocation of this opcode. 6921 ** 6922 ** See also: Function, AggStep, AggFinal 6923 */ 6924 /* Opcode: Function P1 P2 P3 P4 P5 6925 ** Synopsis: r[P3]=func(r[P2@P5]) 6926 ** 6927 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 6928 ** contains a pointer to the function to be run) with P5 arguments taken 6929 ** from register P2 and successors. The result of the function is stored 6930 ** in register P3. Register P3 must not be one of the function inputs. 6931 ** 6932 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 6933 ** function was determined to be constant at compile time. If the first 6934 ** argument was constant then bit 0 of P1 is set. This is used to determine 6935 ** whether meta data associated with a user function argument using the 6936 ** sqlite3_set_auxdata() API may be safely retained until the next 6937 ** invocation of this opcode. 6938 ** 6939 ** SQL functions are initially coded as OP_Function0 with P4 pointing 6940 ** to a FuncDef object. But on first evaluation, the P4 operand is 6941 ** automatically converted into an sqlite3_context object and the operation 6942 ** changed to this OP_Function opcode. In this way, the initialization of 6943 ** the sqlite3_context object occurs only once, rather than once for each 6944 ** evaluation of the function. 6945 ** 6946 ** See also: Function0, AggStep, AggFinal 6947 */ 6948 case OP_PureFunc0: 6949 case OP_Function0: { 6950 int n; 6951 sqlite3_context *pCtx; 6952 6953 assert( pOp->p4type==P4_FUNCDEF ); 6954 n = pOp->p5; 6955 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6956 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6957 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6958 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 6959 if( pCtx==0 ) goto no_mem; 6960 pCtx->pOut = 0; 6961 pCtx->pFunc = pOp->p4.pFunc; 6962 pCtx->iOp = (int)(pOp - aOp); 6963 pCtx->pVdbe = p; 6964 pCtx->argc = n; 6965 pOp->p4type = P4_FUNCCTX; 6966 pOp->p4.pCtx = pCtx; 6967 assert( OP_PureFunc == OP_PureFunc0+2 ); 6968 assert( OP_Function == OP_Function0+2 ); 6969 pOp->opcode += 2; 6970 /* Fall through into OP_Function */ 6971 } 6972 case OP_PureFunc: 6973 case OP_Function: { 6974 int i; 6975 sqlite3_context *pCtx; 6976 6977 assert( pOp->p4type==P4_FUNCCTX ); 6978 pCtx = pOp->p4.pCtx; 6979 6980 /* If this function is inside of a trigger, the register array in aMem[] 6981 ** might change from one evaluation to the next. The next block of code 6982 ** checks to see if the register array has changed, and if so it 6983 ** reinitializes the relavant parts of the sqlite3_context object */ 6984 pOut = &aMem[pOp->p3]; 6985 if( pCtx->pOut != pOut ){ 6986 pCtx->pOut = pOut; 6987 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6988 } 6989 6990 memAboutToChange(p, pOut); 6991 #ifdef SQLITE_DEBUG 6992 for(i=0; i<pCtx->argc; i++){ 6993 assert( memIsValid(pCtx->argv[i]) ); 6994 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6995 } 6996 #endif 6997 MemSetTypeFlag(pOut, MEM_Null); 6998 pCtx->fErrorOrAux = 0; 6999 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7000 7001 /* If the function returned an error, throw an exception */ 7002 if( pCtx->fErrorOrAux ){ 7003 if( pCtx->isError ){ 7004 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7005 rc = pCtx->isError; 7006 } 7007 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7008 if( rc ) goto abort_due_to_error; 7009 } 7010 7011 /* Copy the result of the function into register P3 */ 7012 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7013 sqlite3VdbeChangeEncoding(pOut, encoding); 7014 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7015 } 7016 7017 REGISTER_TRACE(pOp->p3, pOut); 7018 UPDATE_MAX_BLOBSIZE(pOut); 7019 break; 7020 } 7021 7022 7023 /* Opcode: Init P1 P2 * P4 * 7024 ** Synopsis: Start at P2 7025 ** 7026 ** Programs contain a single instance of this opcode as the very first 7027 ** opcode. 7028 ** 7029 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7030 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7031 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7032 ** 7033 ** If P2 is not zero, jump to instruction P2. 7034 ** 7035 ** Increment the value of P1 so that OP_Once opcodes will jump the 7036 ** first time they are evaluated for this run. 7037 */ 7038 case OP_Init: { /* jump */ 7039 char *zTrace; 7040 int i; 7041 7042 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7043 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7044 ** 7045 ** This assert() provides evidence for: 7046 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7047 ** would have been returned by the legacy sqlite3_trace() interface by 7048 ** using the X argument when X begins with "--" and invoking 7049 ** sqlite3_expanded_sql(P) otherwise. 7050 */ 7051 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7052 assert( pOp==p->aOp ); /* Always instruction 0 */ 7053 7054 #ifndef SQLITE_OMIT_TRACE 7055 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7056 && !p->doingRerun 7057 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7058 ){ 7059 #ifndef SQLITE_OMIT_DEPRECATED 7060 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7061 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7062 char *z = sqlite3VdbeExpandSql(p, zTrace); 7063 x(db->pTraceArg, z); 7064 sqlite3_free(z); 7065 }else 7066 #endif 7067 if( db->nVdbeExec>1 ){ 7068 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7069 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7070 sqlite3DbFree(db, z); 7071 }else{ 7072 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7073 } 7074 } 7075 #ifdef SQLITE_USE_FCNTL_TRACE 7076 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7077 if( zTrace ){ 7078 int j; 7079 for(j=0; j<db->nDb; j++){ 7080 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7081 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7082 } 7083 } 7084 #endif /* SQLITE_USE_FCNTL_TRACE */ 7085 #ifdef SQLITE_DEBUG 7086 if( (db->flags & SQLITE_SqlTrace)!=0 7087 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7088 ){ 7089 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7090 } 7091 #endif /* SQLITE_DEBUG */ 7092 #endif /* SQLITE_OMIT_TRACE */ 7093 assert( pOp->p2>0 ); 7094 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7095 for(i=1; i<p->nOp; i++){ 7096 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7097 } 7098 pOp->p1 = 0; 7099 } 7100 pOp->p1++; 7101 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7102 goto jump_to_p2; 7103 } 7104 7105 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7106 /* Opcode: CursorHint P1 * * P4 * 7107 ** 7108 ** Provide a hint to cursor P1 that it only needs to return rows that 7109 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7110 ** to values currently held in registers. TK_COLUMN terms in the P4 7111 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7112 */ 7113 case OP_CursorHint: { 7114 VdbeCursor *pC; 7115 7116 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7117 assert( pOp->p4type==P4_EXPR ); 7118 pC = p->apCsr[pOp->p1]; 7119 if( pC ){ 7120 assert( pC->eCurType==CURTYPE_BTREE ); 7121 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7122 pOp->p4.pExpr, aMem); 7123 } 7124 break; 7125 } 7126 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7127 7128 /* Opcode: Noop * * * * * 7129 ** 7130 ** Do nothing. This instruction is often useful as a jump 7131 ** destination. 7132 */ 7133 /* 7134 ** The magic Explain opcode are only inserted when explain==2 (which 7135 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7136 ** This opcode records information from the optimizer. It is the 7137 ** the same as a no-op. This opcodesnever appears in a real VM program. 7138 */ 7139 default: { /* This is really OP_Noop and OP_Explain */ 7140 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7141 break; 7142 } 7143 7144 /***************************************************************************** 7145 ** The cases of the switch statement above this line should all be indented 7146 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7147 ** readability. From this point on down, the normal indentation rules are 7148 ** restored. 7149 *****************************************************************************/ 7150 } 7151 7152 #ifdef VDBE_PROFILE 7153 { 7154 u64 endTime = sqlite3Hwtime(); 7155 if( endTime>start ) pOrigOp->cycles += endTime - start; 7156 pOrigOp->cnt++; 7157 } 7158 #endif 7159 7160 /* The following code adds nothing to the actual functionality 7161 ** of the program. It is only here for testing and debugging. 7162 ** On the other hand, it does burn CPU cycles every time through 7163 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7164 */ 7165 #ifndef NDEBUG 7166 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7167 7168 #ifdef SQLITE_DEBUG 7169 if( db->flags & SQLITE_VdbeTrace ){ 7170 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7171 if( rc!=0 ) printf("rc=%d\n",rc); 7172 if( opProperty & (OPFLG_OUT2) ){ 7173 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7174 } 7175 if( opProperty & OPFLG_OUT3 ){ 7176 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7177 } 7178 } 7179 #endif /* SQLITE_DEBUG */ 7180 #endif /* NDEBUG */ 7181 } /* The end of the for(;;) loop the loops through opcodes */ 7182 7183 /* If we reach this point, it means that execution is finished with 7184 ** an error of some kind. 7185 */ 7186 abort_due_to_error: 7187 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7188 assert( rc ); 7189 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7190 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7191 } 7192 p->rc = rc; 7193 sqlite3SystemError(db, rc); 7194 testcase( sqlite3GlobalConfig.xLog!=0 ); 7195 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7196 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7197 sqlite3VdbeHalt(p); 7198 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7199 rc = SQLITE_ERROR; 7200 if( resetSchemaOnFault>0 ){ 7201 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7202 } 7203 7204 /* This is the only way out of this procedure. We have to 7205 ** release the mutexes on btrees that were acquired at the 7206 ** top. */ 7207 vdbe_return: 7208 testcase( nVmStep>0 ); 7209 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7210 sqlite3VdbeLeave(p); 7211 assert( rc!=SQLITE_OK || nExtraDelete==0 7212 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7213 ); 7214 return rc; 7215 7216 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7217 ** is encountered. 7218 */ 7219 too_big: 7220 sqlite3VdbeError(p, "string or blob too big"); 7221 rc = SQLITE_TOOBIG; 7222 goto abort_due_to_error; 7223 7224 /* Jump to here if a malloc() fails. 7225 */ 7226 no_mem: 7227 sqlite3OomFault(db); 7228 sqlite3VdbeError(p, "out of memory"); 7229 rc = SQLITE_NOMEM_BKPT; 7230 goto abort_due_to_error; 7231 7232 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 7233 ** flag. 7234 */ 7235 abort_due_to_interrupt: 7236 assert( db->u1.isInterrupted ); 7237 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 7238 p->rc = rc; 7239 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7240 goto abort_due_to_error; 7241 } 7242