xref: /sqlite-3.40.0/src/vdbe.c (revision 2e27d28f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 /*
121 ** Invoke the VDBE coverage callback, if that callback is defined.  This
122 ** feature is used for test suite validation only and does not appear an
123 ** production builds.
124 **
125 ** M is an integer, 2 or 3, that indices how many different ways the
126 ** branch can go.  It is usually 2.  "I" is the direction the branch
127 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
128 ** second alternative branch is taken.
129 **
130 ** iSrcLine is the source code line (from the __LINE__ macro) that
131 ** generated the VDBE instruction.  This instrumentation assumes that all
132 ** source code is in a single file (the amalgamation).  Special values 1
133 ** and 2 for the iSrcLine parameter mean that this particular branch is
134 ** always taken or never taken, respectively.
135 */
136 #if !defined(SQLITE_VDBE_COVERAGE)
137 # define VdbeBranchTaken(I,M)
138 #else
139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142       M = iSrcLine;
143       /* Assert the truth of VdbeCoverageAlwaysTaken() and
144       ** VdbeCoverageNeverTaken() */
145       assert( (M & I)==I );
146     }else{
147       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
148       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149                                       iSrcLine,I,M);
150     }
151   }
152 #endif
153 
154 /*
155 ** Convert the given register into a string if it isn't one
156 ** already. Return non-zero if a malloc() fails.
157 */
158 #define Stringify(P, enc) \
159    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
160      { goto no_mem; }
161 
162 /*
163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
164 ** a pointer to a dynamically allocated string where some other entity
165 ** is responsible for deallocating that string.  Because the register
166 ** does not control the string, it might be deleted without the register
167 ** knowing it.
168 **
169 ** This routine converts an ephemeral string into a dynamically allocated
170 ** string that the register itself controls.  In other words, it
171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
172 */
173 #define Deephemeralize(P) \
174    if( ((P)->flags&MEM_Ephem)!=0 \
175        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
176 
177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
179 
180 /*
181 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
182 ** if we run out of memory.
183 */
184 static VdbeCursor *allocateCursor(
185   Vdbe *p,              /* The virtual machine */
186   int iCur,             /* Index of the new VdbeCursor */
187   int nField,           /* Number of fields in the table or index */
188   int iDb,              /* Database the cursor belongs to, or -1 */
189   u8 eCurType           /* Type of the new cursor */
190 ){
191   /* Find the memory cell that will be used to store the blob of memory
192   ** required for this VdbeCursor structure. It is convenient to use a
193   ** vdbe memory cell to manage the memory allocation required for a
194   ** VdbeCursor structure for the following reasons:
195   **
196   **   * Sometimes cursor numbers are used for a couple of different
197   **     purposes in a vdbe program. The different uses might require
198   **     different sized allocations. Memory cells provide growable
199   **     allocations.
200   **
201   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202   **     be freed lazily via the sqlite3_release_memory() API. This
203   **     minimizes the number of malloc calls made by the system.
204   **
205   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
206   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
207   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
208   */
209   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
210 
211   int nByte;
212   VdbeCursor *pCx = 0;
213   nByte =
214       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
215       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
216 
217   assert( iCur>=0 && iCur<p->nCursor );
218   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
219     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
220     p->apCsr[iCur] = 0;
221   }
222   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
223     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
224     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
225     pCx->eCurType = eCurType;
226     pCx->iDb = iDb;
227     pCx->nField = nField;
228     pCx->aOffset = &pCx->aType[nField];
229     if( eCurType==CURTYPE_BTREE ){
230       pCx->uc.pCursor = (BtCursor*)
231           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
232       sqlite3BtreeCursorZero(pCx->uc.pCursor);
233     }
234   }
235   return pCx;
236 }
237 
238 /*
239 ** Try to convert a value into a numeric representation if we can
240 ** do so without loss of information.  In other words, if the string
241 ** looks like a number, convert it into a number.  If it does not
242 ** look like a number, leave it alone.
243 **
244 ** If the bTryForInt flag is true, then extra effort is made to give
245 ** an integer representation.  Strings that look like floating point
246 ** values but which have no fractional component (example: '48.00')
247 ** will have a MEM_Int representation when bTryForInt is true.
248 **
249 ** If bTryForInt is false, then if the input string contains a decimal
250 ** point or exponential notation, the result is only MEM_Real, even
251 ** if there is an exact integer representation of the quantity.
252 */
253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
254   double rValue;
255   i64 iValue;
256   u8 enc = pRec->enc;
257   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
258   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260     pRec->u.i = iValue;
261     pRec->flags |= MEM_Int;
262   }else{
263     pRec->u.r = rValue;
264     pRec->flags |= MEM_Real;
265     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
266   }
267 }
268 
269 /*
270 ** Processing is determine by the affinity parameter:
271 **
272 ** SQLITE_AFF_INTEGER:
273 ** SQLITE_AFF_REAL:
274 ** SQLITE_AFF_NUMERIC:
275 **    Try to convert pRec to an integer representation or a
276 **    floating-point representation if an integer representation
277 **    is not possible.  Note that the integer representation is
278 **    always preferred, even if the affinity is REAL, because
279 **    an integer representation is more space efficient on disk.
280 **
281 ** SQLITE_AFF_TEXT:
282 **    Convert pRec to a text representation.
283 **
284 ** SQLITE_AFF_BLOB:
285 **    No-op.  pRec is unchanged.
286 */
287 static void applyAffinity(
288   Mem *pRec,          /* The value to apply affinity to */
289   char affinity,      /* The affinity to be applied */
290   u8 enc              /* Use this text encoding */
291 ){
292   if( affinity>=SQLITE_AFF_NUMERIC ){
293     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294              || affinity==SQLITE_AFF_NUMERIC );
295     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
296       if( (pRec->flags & MEM_Real)==0 ){
297         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
298       }else{
299         sqlite3VdbeIntegerAffinity(pRec);
300       }
301     }
302   }else if( affinity==SQLITE_AFF_TEXT ){
303     /* Only attempt the conversion to TEXT if there is an integer or real
304     ** representation (blob and NULL do not get converted) but no string
305     ** representation.  It would be harmless to repeat the conversion if
306     ** there is already a string rep, but it is pointless to waste those
307     ** CPU cycles. */
308     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
309       if( (pRec->flags&(MEM_Real|MEM_Int)) ){
310         sqlite3VdbeMemStringify(pRec, enc, 1);
311       }
312     }
313     pRec->flags &= ~(MEM_Real|MEM_Int);
314   }
315 }
316 
317 /*
318 ** Try to convert the type of a function argument or a result column
319 ** into a numeric representation.  Use either INTEGER or REAL whichever
320 ** is appropriate.  But only do the conversion if it is possible without
321 ** loss of information and return the revised type of the argument.
322 */
323 int sqlite3_value_numeric_type(sqlite3_value *pVal){
324   int eType = sqlite3_value_type(pVal);
325   if( eType==SQLITE_TEXT ){
326     Mem *pMem = (Mem*)pVal;
327     applyNumericAffinity(pMem, 0);
328     eType = sqlite3_value_type(pVal);
329   }
330   return eType;
331 }
332 
333 /*
334 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
335 ** not the internal Mem* type.
336 */
337 void sqlite3ValueApplyAffinity(
338   sqlite3_value *pVal,
339   u8 affinity,
340   u8 enc
341 ){
342   applyAffinity((Mem *)pVal, affinity, enc);
343 }
344 
345 /*
346 ** pMem currently only holds a string type (or maybe a BLOB that we can
347 ** interpret as a string if we want to).  Compute its corresponding
348 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
349 ** accordingly.
350 */
351 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
352   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
353   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
354   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
355     return 0;
356   }
357   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
358     return MEM_Int;
359   }
360   return MEM_Real;
361 }
362 
363 /*
364 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
365 ** none.
366 **
367 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
368 ** But it does set pMem->u.r and pMem->u.i appropriately.
369 */
370 static u16 numericType(Mem *pMem){
371   if( pMem->flags & (MEM_Int|MEM_Real) ){
372     return pMem->flags & (MEM_Int|MEM_Real);
373   }
374   if( pMem->flags & (MEM_Str|MEM_Blob) ){
375     return computeNumericType(pMem);
376   }
377   return 0;
378 }
379 
380 #ifdef SQLITE_DEBUG
381 /*
382 ** Write a nice string representation of the contents of cell pMem
383 ** into buffer zBuf, length nBuf.
384 */
385 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
386   char *zCsr = zBuf;
387   int f = pMem->flags;
388 
389   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
390 
391   if( f&MEM_Blob ){
392     int i;
393     char c;
394     if( f & MEM_Dyn ){
395       c = 'z';
396       assert( (f & (MEM_Static|MEM_Ephem))==0 );
397     }else if( f & MEM_Static ){
398       c = 't';
399       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
400     }else if( f & MEM_Ephem ){
401       c = 'e';
402       assert( (f & (MEM_Static|MEM_Dyn))==0 );
403     }else{
404       c = 's';
405     }
406     *(zCsr++) = c;
407     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
408     zCsr += sqlite3Strlen30(zCsr);
409     for(i=0; i<16 && i<pMem->n; i++){
410       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
411       zCsr += sqlite3Strlen30(zCsr);
412     }
413     for(i=0; i<16 && i<pMem->n; i++){
414       char z = pMem->z[i];
415       if( z<32 || z>126 ) *zCsr++ = '.';
416       else *zCsr++ = z;
417     }
418     *(zCsr++) = ']';
419     if( f & MEM_Zero ){
420       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
421       zCsr += sqlite3Strlen30(zCsr);
422     }
423     *zCsr = '\0';
424   }else if( f & MEM_Str ){
425     int j, k;
426     zBuf[0] = ' ';
427     if( f & MEM_Dyn ){
428       zBuf[1] = 'z';
429       assert( (f & (MEM_Static|MEM_Ephem))==0 );
430     }else if( f & MEM_Static ){
431       zBuf[1] = 't';
432       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
433     }else if( f & MEM_Ephem ){
434       zBuf[1] = 'e';
435       assert( (f & (MEM_Static|MEM_Dyn))==0 );
436     }else{
437       zBuf[1] = 's';
438     }
439     k = 2;
440     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
441     k += sqlite3Strlen30(&zBuf[k]);
442     zBuf[k++] = '[';
443     for(j=0; j<15 && j<pMem->n; j++){
444       u8 c = pMem->z[j];
445       if( c>=0x20 && c<0x7f ){
446         zBuf[k++] = c;
447       }else{
448         zBuf[k++] = '.';
449       }
450     }
451     zBuf[k++] = ']';
452     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
453     k += sqlite3Strlen30(&zBuf[k]);
454     zBuf[k++] = 0;
455   }
456 }
457 #endif
458 
459 #ifdef SQLITE_DEBUG
460 /*
461 ** Print the value of a register for tracing purposes:
462 */
463 static void memTracePrint(Mem *p){
464   if( p->flags & MEM_Undefined ){
465     printf(" undefined");
466   }else if( p->flags & MEM_Null ){
467     printf(" NULL");
468   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
469     printf(" si:%lld", p->u.i);
470   }else if( p->flags & MEM_Int ){
471     printf(" i:%lld", p->u.i);
472 #ifndef SQLITE_OMIT_FLOATING_POINT
473   }else if( p->flags & MEM_Real ){
474     printf(" r:%g", p->u.r);
475 #endif
476   }else if( p->flags & MEM_RowSet ){
477     printf(" (rowset)");
478   }else{
479     char zBuf[200];
480     sqlite3VdbeMemPrettyPrint(p, zBuf);
481     printf(" %s", zBuf);
482   }
483   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
484 }
485 static void registerTrace(int iReg, Mem *p){
486   printf("REG[%d] = ", iReg);
487   memTracePrint(p);
488   printf("\n");
489   sqlite3VdbeCheckMemInvariants(p);
490 }
491 #endif
492 
493 #ifdef SQLITE_DEBUG
494 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
495 #else
496 #  define REGISTER_TRACE(R,M)
497 #endif
498 
499 
500 #ifdef VDBE_PROFILE
501 
502 /*
503 ** hwtime.h contains inline assembler code for implementing
504 ** high-performance timing routines.
505 */
506 #include "hwtime.h"
507 
508 #endif
509 
510 #ifndef NDEBUG
511 /*
512 ** This function is only called from within an assert() expression. It
513 ** checks that the sqlite3.nTransaction variable is correctly set to
514 ** the number of non-transaction savepoints currently in the
515 ** linked list starting at sqlite3.pSavepoint.
516 **
517 ** Usage:
518 **
519 **     assert( checkSavepointCount(db) );
520 */
521 static int checkSavepointCount(sqlite3 *db){
522   int n = 0;
523   Savepoint *p;
524   for(p=db->pSavepoint; p; p=p->pNext) n++;
525   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
526   return 1;
527 }
528 #endif
529 
530 /*
531 ** Return the register of pOp->p2 after first preparing it to be
532 ** overwritten with an integer value.
533 */
534 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
535   sqlite3VdbeMemSetNull(pOut);
536   pOut->flags = MEM_Int;
537   return pOut;
538 }
539 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
540   Mem *pOut;
541   assert( pOp->p2>0 );
542   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
543   pOut = &p->aMem[pOp->p2];
544   memAboutToChange(p, pOut);
545   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
546     return out2PrereleaseWithClear(pOut);
547   }else{
548     pOut->flags = MEM_Int;
549     return pOut;
550   }
551 }
552 
553 
554 /*
555 ** Execute as much of a VDBE program as we can.
556 ** This is the core of sqlite3_step().
557 */
558 int sqlite3VdbeExec(
559   Vdbe *p                    /* The VDBE */
560 ){
561   Op *aOp = p->aOp;          /* Copy of p->aOp */
562   Op *pOp = aOp;             /* Current operation */
563 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
564   Op *pOrigOp;               /* Value of pOp at the top of the loop */
565 #endif
566 #ifdef SQLITE_DEBUG
567   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
568 #endif
569   int rc = SQLITE_OK;        /* Value to return */
570   sqlite3 *db = p->db;       /* The database */
571   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
572   u8 encoding = ENC(db);     /* The database encoding */
573   int iCompare = 0;          /* Result of last comparison */
574   unsigned nVmStep = 0;      /* Number of virtual machine steps */
575 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
576   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
577 #endif
578   Mem *aMem = p->aMem;       /* Copy of p->aMem */
579   Mem *pIn1 = 0;             /* 1st input operand */
580   Mem *pIn2 = 0;             /* 2nd input operand */
581   Mem *pIn3 = 0;             /* 3rd input operand */
582   Mem *pOut = 0;             /* Output operand */
583 #ifdef VDBE_PROFILE
584   u64 start;                 /* CPU clock count at start of opcode */
585 #endif
586   /*** INSERT STACK UNION HERE ***/
587 
588   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
589   sqlite3VdbeEnter(p);
590   if( p->rc==SQLITE_NOMEM ){
591     /* This happens if a malloc() inside a call to sqlite3_column_text() or
592     ** sqlite3_column_text16() failed.  */
593     goto no_mem;
594   }
595   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
596   assert( p->bIsReader || p->readOnly!=0 );
597   p->iCurrentTime = 0;
598   assert( p->explain==0 );
599   p->pResultSet = 0;
600   db->busyHandler.nBusy = 0;
601   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
602   sqlite3VdbeIOTraceSql(p);
603 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
604   if( db->xProgress ){
605     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
606     assert( 0 < db->nProgressOps );
607     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
608   }else{
609     nProgressLimit = 0xffffffff;
610   }
611 #endif
612 #ifdef SQLITE_DEBUG
613   sqlite3BeginBenignMalloc();
614   if( p->pc==0
615    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
616   ){
617     int i;
618     int once = 1;
619     sqlite3VdbePrintSql(p);
620     if( p->db->flags & SQLITE_VdbeListing ){
621       printf("VDBE Program Listing:\n");
622       for(i=0; i<p->nOp; i++){
623         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
624       }
625     }
626     if( p->db->flags & SQLITE_VdbeEQP ){
627       for(i=0; i<p->nOp; i++){
628         if( aOp[i].opcode==OP_Explain ){
629           if( once ) printf("VDBE Query Plan:\n");
630           printf("%s\n", aOp[i].p4.z);
631           once = 0;
632         }
633       }
634     }
635     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
636   }
637   sqlite3EndBenignMalloc();
638 #endif
639   for(pOp=&aOp[p->pc]; 1; pOp++){
640     /* Errors are detected by individual opcodes, with an immediate
641     ** jumps to abort_due_to_error. */
642     assert( rc==SQLITE_OK );
643 
644     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
645 #ifdef VDBE_PROFILE
646     start = sqlite3Hwtime();
647 #endif
648     nVmStep++;
649 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
650     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
651 #endif
652 
653     /* Only allow tracing if SQLITE_DEBUG is defined.
654     */
655 #ifdef SQLITE_DEBUG
656     if( db->flags & SQLITE_VdbeTrace ){
657       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
658     }
659 #endif
660 
661 
662     /* Check to see if we need to simulate an interrupt.  This only happens
663     ** if we have a special test build.
664     */
665 #ifdef SQLITE_TEST
666     if( sqlite3_interrupt_count>0 ){
667       sqlite3_interrupt_count--;
668       if( sqlite3_interrupt_count==0 ){
669         sqlite3_interrupt(db);
670       }
671     }
672 #endif
673 
674     /* Sanity checking on other operands */
675 #ifdef SQLITE_DEBUG
676     {
677       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
678       if( (opProperty & OPFLG_IN1)!=0 ){
679         assert( pOp->p1>0 );
680         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
681         assert( memIsValid(&aMem[pOp->p1]) );
682         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
683         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
684       }
685       if( (opProperty & OPFLG_IN2)!=0 ){
686         assert( pOp->p2>0 );
687         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
688         assert( memIsValid(&aMem[pOp->p2]) );
689         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
690         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
691       }
692       if( (opProperty & OPFLG_IN3)!=0 ){
693         assert( pOp->p3>0 );
694         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
695         assert( memIsValid(&aMem[pOp->p3]) );
696         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
697         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
698       }
699       if( (opProperty & OPFLG_OUT2)!=0 ){
700         assert( pOp->p2>0 );
701         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
702         memAboutToChange(p, &aMem[pOp->p2]);
703       }
704       if( (opProperty & OPFLG_OUT3)!=0 ){
705         assert( pOp->p3>0 );
706         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
707         memAboutToChange(p, &aMem[pOp->p3]);
708       }
709     }
710 #endif
711 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
712     pOrigOp = pOp;
713 #endif
714 
715     switch( pOp->opcode ){
716 
717 /*****************************************************************************
718 ** What follows is a massive switch statement where each case implements a
719 ** separate instruction in the virtual machine.  If we follow the usual
720 ** indentation conventions, each case should be indented by 6 spaces.  But
721 ** that is a lot of wasted space on the left margin.  So the code within
722 ** the switch statement will break with convention and be flush-left. Another
723 ** big comment (similar to this one) will mark the point in the code where
724 ** we transition back to normal indentation.
725 **
726 ** The formatting of each case is important.  The makefile for SQLite
727 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
728 ** file looking for lines that begin with "case OP_".  The opcodes.h files
729 ** will be filled with #defines that give unique integer values to each
730 ** opcode and the opcodes.c file is filled with an array of strings where
731 ** each string is the symbolic name for the corresponding opcode.  If the
732 ** case statement is followed by a comment of the form "/# same as ... #/"
733 ** that comment is used to determine the particular value of the opcode.
734 **
735 ** Other keywords in the comment that follows each case are used to
736 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
737 ** Keywords include: in1, in2, in3, out2, out3.  See
738 ** the mkopcodeh.awk script for additional information.
739 **
740 ** Documentation about VDBE opcodes is generated by scanning this file
741 ** for lines of that contain "Opcode:".  That line and all subsequent
742 ** comment lines are used in the generation of the opcode.html documentation
743 ** file.
744 **
745 ** SUMMARY:
746 **
747 **     Formatting is important to scripts that scan this file.
748 **     Do not deviate from the formatting style currently in use.
749 **
750 *****************************************************************************/
751 
752 /* Opcode:  Goto * P2 * * *
753 **
754 ** An unconditional jump to address P2.
755 ** The next instruction executed will be
756 ** the one at index P2 from the beginning of
757 ** the program.
758 **
759 ** The P1 parameter is not actually used by this opcode.  However, it
760 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
761 ** that this Goto is the bottom of a loop and that the lines from P2 down
762 ** to the current line should be indented for EXPLAIN output.
763 */
764 case OP_Goto: {             /* jump */
765 jump_to_p2_and_check_for_interrupt:
766   pOp = &aOp[pOp->p2 - 1];
767 
768   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
769   ** OP_VNext, or OP_SorterNext) all jump here upon
770   ** completion.  Check to see if sqlite3_interrupt() has been called
771   ** or if the progress callback needs to be invoked.
772   **
773   ** This code uses unstructured "goto" statements and does not look clean.
774   ** But that is not due to sloppy coding habits. The code is written this
775   ** way for performance, to avoid having to run the interrupt and progress
776   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
777   ** faster according to "valgrind --tool=cachegrind" */
778 check_for_interrupt:
779   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
780 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
781   /* Call the progress callback if it is configured and the required number
782   ** of VDBE ops have been executed (either since this invocation of
783   ** sqlite3VdbeExec() or since last time the progress callback was called).
784   ** If the progress callback returns non-zero, exit the virtual machine with
785   ** a return code SQLITE_ABORT.
786   */
787   if( nVmStep>=nProgressLimit && db->xProgress!=0 ){
788     assert( db->nProgressOps!=0 );
789     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
790     if( db->xProgress(db->pProgressArg) ){
791       rc = SQLITE_INTERRUPT;
792       goto abort_due_to_error;
793     }
794   }
795 #endif
796 
797   break;
798 }
799 
800 /* Opcode:  Gosub P1 P2 * * *
801 **
802 ** Write the current address onto register P1
803 ** and then jump to address P2.
804 */
805 case OP_Gosub: {            /* jump */
806   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
807   pIn1 = &aMem[pOp->p1];
808   assert( VdbeMemDynamic(pIn1)==0 );
809   memAboutToChange(p, pIn1);
810   pIn1->flags = MEM_Int;
811   pIn1->u.i = (int)(pOp-aOp);
812   REGISTER_TRACE(pOp->p1, pIn1);
813 
814   /* Most jump operations do a goto to this spot in order to update
815   ** the pOp pointer. */
816 jump_to_p2:
817   pOp = &aOp[pOp->p2 - 1];
818   break;
819 }
820 
821 /* Opcode:  Return P1 * * * *
822 **
823 ** Jump to the next instruction after the address in register P1.  After
824 ** the jump, register P1 becomes undefined.
825 */
826 case OP_Return: {           /* in1 */
827   pIn1 = &aMem[pOp->p1];
828   assert( pIn1->flags==MEM_Int );
829   pOp = &aOp[pIn1->u.i];
830   pIn1->flags = MEM_Undefined;
831   break;
832 }
833 
834 /* Opcode: InitCoroutine P1 P2 P3 * *
835 **
836 ** Set up register P1 so that it will Yield to the coroutine
837 ** located at address P3.
838 **
839 ** If P2!=0 then the coroutine implementation immediately follows
840 ** this opcode.  So jump over the coroutine implementation to
841 ** address P2.
842 **
843 ** See also: EndCoroutine
844 */
845 case OP_InitCoroutine: {     /* jump */
846   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
847   assert( pOp->p2>=0 && pOp->p2<p->nOp );
848   assert( pOp->p3>=0 && pOp->p3<p->nOp );
849   pOut = &aMem[pOp->p1];
850   assert( !VdbeMemDynamic(pOut) );
851   pOut->u.i = pOp->p3 - 1;
852   pOut->flags = MEM_Int;
853   if( pOp->p2 ) goto jump_to_p2;
854   break;
855 }
856 
857 /* Opcode:  EndCoroutine P1 * * * *
858 **
859 ** The instruction at the address in register P1 is a Yield.
860 ** Jump to the P2 parameter of that Yield.
861 ** After the jump, register P1 becomes undefined.
862 **
863 ** See also: InitCoroutine
864 */
865 case OP_EndCoroutine: {           /* in1 */
866   VdbeOp *pCaller;
867   pIn1 = &aMem[pOp->p1];
868   assert( pIn1->flags==MEM_Int );
869   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
870   pCaller = &aOp[pIn1->u.i];
871   assert( pCaller->opcode==OP_Yield );
872   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
873   pOp = &aOp[pCaller->p2 - 1];
874   pIn1->flags = MEM_Undefined;
875   break;
876 }
877 
878 /* Opcode:  Yield P1 P2 * * *
879 **
880 ** Swap the program counter with the value in register P1.  This
881 ** has the effect of yielding to a coroutine.
882 **
883 ** If the coroutine that is launched by this instruction ends with
884 ** Yield or Return then continue to the next instruction.  But if
885 ** the coroutine launched by this instruction ends with
886 ** EndCoroutine, then jump to P2 rather than continuing with the
887 ** next instruction.
888 **
889 ** See also: InitCoroutine
890 */
891 case OP_Yield: {            /* in1, jump */
892   int pcDest;
893   pIn1 = &aMem[pOp->p1];
894   assert( VdbeMemDynamic(pIn1)==0 );
895   pIn1->flags = MEM_Int;
896   pcDest = (int)pIn1->u.i;
897   pIn1->u.i = (int)(pOp - aOp);
898   REGISTER_TRACE(pOp->p1, pIn1);
899   pOp = &aOp[pcDest];
900   break;
901 }
902 
903 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
904 ** Synopsis: if r[P3]=null halt
905 **
906 ** Check the value in register P3.  If it is NULL then Halt using
907 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
908 ** value in register P3 is not NULL, then this routine is a no-op.
909 ** The P5 parameter should be 1.
910 */
911 case OP_HaltIfNull: {      /* in3 */
912   pIn3 = &aMem[pOp->p3];
913   if( (pIn3->flags & MEM_Null)==0 ) break;
914   /* Fall through into OP_Halt */
915 }
916 
917 /* Opcode:  Halt P1 P2 * P4 P5
918 **
919 ** Exit immediately.  All open cursors, etc are closed
920 ** automatically.
921 **
922 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
923 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
924 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
925 ** whether or not to rollback the current transaction.  Do not rollback
926 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
927 ** then back out all changes that have occurred during this execution of the
928 ** VDBE, but do not rollback the transaction.
929 **
930 ** If P4 is not null then it is an error message string.
931 **
932 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
933 **
934 **    0:  (no change)
935 **    1:  NOT NULL contraint failed: P4
936 **    2:  UNIQUE constraint failed: P4
937 **    3:  CHECK constraint failed: P4
938 **    4:  FOREIGN KEY constraint failed: P4
939 **
940 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
941 ** omitted.
942 **
943 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
944 ** every program.  So a jump past the last instruction of the program
945 ** is the same as executing Halt.
946 */
947 case OP_Halt: {
948   VdbeFrame *pFrame;
949   int pcx;
950 
951   pcx = (int)(pOp - aOp);
952   if( pOp->p1==SQLITE_OK && p->pFrame ){
953     /* Halt the sub-program. Return control to the parent frame. */
954     pFrame = p->pFrame;
955     p->pFrame = pFrame->pParent;
956     p->nFrame--;
957     sqlite3VdbeSetChanges(db, p->nChange);
958     pcx = sqlite3VdbeFrameRestore(pFrame);
959     if( pOp->p2==OE_Ignore ){
960       /* Instruction pcx is the OP_Program that invoked the sub-program
961       ** currently being halted. If the p2 instruction of this OP_Halt
962       ** instruction is set to OE_Ignore, then the sub-program is throwing
963       ** an IGNORE exception. In this case jump to the address specified
964       ** as the p2 of the calling OP_Program.  */
965       pcx = p->aOp[pcx].p2-1;
966     }
967     aOp = p->aOp;
968     aMem = p->aMem;
969     pOp = &aOp[pcx];
970     break;
971   }
972   p->rc = pOp->p1;
973   p->errorAction = (u8)pOp->p2;
974   p->pc = pcx;
975   assert( pOp->p5<=4 );
976   if( p->rc ){
977     if( pOp->p5 ){
978       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
979                                              "FOREIGN KEY" };
980       testcase( pOp->p5==1 );
981       testcase( pOp->p5==2 );
982       testcase( pOp->p5==3 );
983       testcase( pOp->p5==4 );
984       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
985       if( pOp->p4.z ){
986         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
987       }
988     }else{
989       sqlite3VdbeError(p, "%s", pOp->p4.z);
990     }
991     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
992   }
993   rc = sqlite3VdbeHalt(p);
994   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
995   if( rc==SQLITE_BUSY ){
996     p->rc = SQLITE_BUSY;
997   }else{
998     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
999     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1000     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1001   }
1002   goto vdbe_return;
1003 }
1004 
1005 /* Opcode: Integer P1 P2 * * *
1006 ** Synopsis: r[P2]=P1
1007 **
1008 ** The 32-bit integer value P1 is written into register P2.
1009 */
1010 case OP_Integer: {         /* out2 */
1011   pOut = out2Prerelease(p, pOp);
1012   pOut->u.i = pOp->p1;
1013   break;
1014 }
1015 
1016 /* Opcode: Int64 * P2 * P4 *
1017 ** Synopsis: r[P2]=P4
1018 **
1019 ** P4 is a pointer to a 64-bit integer value.
1020 ** Write that value into register P2.
1021 */
1022 case OP_Int64: {           /* out2 */
1023   pOut = out2Prerelease(p, pOp);
1024   assert( pOp->p4.pI64!=0 );
1025   pOut->u.i = *pOp->p4.pI64;
1026   break;
1027 }
1028 
1029 #ifndef SQLITE_OMIT_FLOATING_POINT
1030 /* Opcode: Real * P2 * P4 *
1031 ** Synopsis: r[P2]=P4
1032 **
1033 ** P4 is a pointer to a 64-bit floating point value.
1034 ** Write that value into register P2.
1035 */
1036 case OP_Real: {            /* same as TK_FLOAT, out2 */
1037   pOut = out2Prerelease(p, pOp);
1038   pOut->flags = MEM_Real;
1039   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1040   pOut->u.r = *pOp->p4.pReal;
1041   break;
1042 }
1043 #endif
1044 
1045 /* Opcode: String8 * P2 * P4 *
1046 ** Synopsis: r[P2]='P4'
1047 **
1048 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1049 ** into a String opcode before it is executed for the first time.  During
1050 ** this transformation, the length of string P4 is computed and stored
1051 ** as the P1 parameter.
1052 */
1053 case OP_String8: {         /* same as TK_STRING, out2 */
1054   assert( pOp->p4.z!=0 );
1055   pOut = out2Prerelease(p, pOp);
1056   pOp->opcode = OP_String;
1057   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1058 
1059 #ifndef SQLITE_OMIT_UTF16
1060   if( encoding!=SQLITE_UTF8 ){
1061     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1062     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1063     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1064     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1065     assert( VdbeMemDynamic(pOut)==0 );
1066     pOut->szMalloc = 0;
1067     pOut->flags |= MEM_Static;
1068     if( pOp->p4type==P4_DYNAMIC ){
1069       sqlite3DbFree(db, pOp->p4.z);
1070     }
1071     pOp->p4type = P4_DYNAMIC;
1072     pOp->p4.z = pOut->z;
1073     pOp->p1 = pOut->n;
1074   }
1075   testcase( rc==SQLITE_TOOBIG );
1076 #endif
1077   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1078     goto too_big;
1079   }
1080   assert( rc==SQLITE_OK );
1081   /* Fall through to the next case, OP_String */
1082 }
1083 
1084 /* Opcode: String P1 P2 P3 P4 P5
1085 ** Synopsis: r[P2]='P4' (len=P1)
1086 **
1087 ** The string value P4 of length P1 (bytes) is stored in register P2.
1088 **
1089 ** If P3 is not zero and the content of register P3 is equal to P5, then
1090 ** the datatype of the register P2 is converted to BLOB.  The content is
1091 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1092 ** of a string, as if it had been CAST.  In other words:
1093 **
1094 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1095 */
1096 case OP_String: {          /* out2 */
1097   assert( pOp->p4.z!=0 );
1098   pOut = out2Prerelease(p, pOp);
1099   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1100   pOut->z = pOp->p4.z;
1101   pOut->n = pOp->p1;
1102   pOut->enc = encoding;
1103   UPDATE_MAX_BLOBSIZE(pOut);
1104 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1105   if( pOp->p3>0 ){
1106     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1107     pIn3 = &aMem[pOp->p3];
1108     assert( pIn3->flags & MEM_Int );
1109     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1110   }
1111 #endif
1112   break;
1113 }
1114 
1115 /* Opcode: Null P1 P2 P3 * *
1116 ** Synopsis: r[P2..P3]=NULL
1117 **
1118 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1119 ** NULL into register P3 and every register in between P2 and P3.  If P3
1120 ** is less than P2 (typically P3 is zero) then only register P2 is
1121 ** set to NULL.
1122 **
1123 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1124 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1125 ** OP_Ne or OP_Eq.
1126 */
1127 case OP_Null: {           /* out2 */
1128   int cnt;
1129   u16 nullFlag;
1130   pOut = out2Prerelease(p, pOp);
1131   cnt = pOp->p3-pOp->p2;
1132   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1133   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1134   pOut->n = 0;
1135   while( cnt>0 ){
1136     pOut++;
1137     memAboutToChange(p, pOut);
1138     sqlite3VdbeMemSetNull(pOut);
1139     pOut->flags = nullFlag;
1140     pOut->n = 0;
1141     cnt--;
1142   }
1143   break;
1144 }
1145 
1146 /* Opcode: SoftNull P1 * * * *
1147 ** Synopsis: r[P1]=NULL
1148 **
1149 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1150 ** instruction, but do not free any string or blob memory associated with
1151 ** the register, so that if the value was a string or blob that was
1152 ** previously copied using OP_SCopy, the copies will continue to be valid.
1153 */
1154 case OP_SoftNull: {
1155   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1156   pOut = &aMem[pOp->p1];
1157   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1158   break;
1159 }
1160 
1161 /* Opcode: Blob P1 P2 * P4 *
1162 ** Synopsis: r[P2]=P4 (len=P1)
1163 **
1164 ** P4 points to a blob of data P1 bytes long.  Store this
1165 ** blob in register P2.
1166 */
1167 case OP_Blob: {                /* out2 */
1168   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1169   pOut = out2Prerelease(p, pOp);
1170   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1171   pOut->enc = encoding;
1172   UPDATE_MAX_BLOBSIZE(pOut);
1173   break;
1174 }
1175 
1176 /* Opcode: Variable P1 P2 * P4 *
1177 ** Synopsis: r[P2]=parameter(P1,P4)
1178 **
1179 ** Transfer the values of bound parameter P1 into register P2
1180 **
1181 ** If the parameter is named, then its name appears in P4.
1182 ** The P4 value is used by sqlite3_bind_parameter_name().
1183 */
1184 case OP_Variable: {            /* out2 */
1185   Mem *pVar;       /* Value being transferred */
1186 
1187   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1188   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1189   pVar = &p->aVar[pOp->p1 - 1];
1190   if( sqlite3VdbeMemTooBig(pVar) ){
1191     goto too_big;
1192   }
1193   pOut = &aMem[pOp->p2];
1194   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1195   UPDATE_MAX_BLOBSIZE(pOut);
1196   break;
1197 }
1198 
1199 /* Opcode: Move P1 P2 P3 * *
1200 ** Synopsis: r[P2@P3]=r[P1@P3]
1201 **
1202 ** Move the P3 values in register P1..P1+P3-1 over into
1203 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1204 ** left holding a NULL.  It is an error for register ranges
1205 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1206 ** for P3 to be less than 1.
1207 */
1208 case OP_Move: {
1209   int n;           /* Number of registers left to copy */
1210   int p1;          /* Register to copy from */
1211   int p2;          /* Register to copy to */
1212 
1213   n = pOp->p3;
1214   p1 = pOp->p1;
1215   p2 = pOp->p2;
1216   assert( n>0 && p1>0 && p2>0 );
1217   assert( p1+n<=p2 || p2+n<=p1 );
1218 
1219   pIn1 = &aMem[p1];
1220   pOut = &aMem[p2];
1221   do{
1222     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1223     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1224     assert( memIsValid(pIn1) );
1225     memAboutToChange(p, pOut);
1226     sqlite3VdbeMemMove(pOut, pIn1);
1227 #ifdef SQLITE_DEBUG
1228     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1229       pOut->pScopyFrom += pOp->p2 - p1;
1230     }
1231 #endif
1232     Deephemeralize(pOut);
1233     REGISTER_TRACE(p2++, pOut);
1234     pIn1++;
1235     pOut++;
1236   }while( --n );
1237   break;
1238 }
1239 
1240 /* Opcode: Copy P1 P2 P3 * *
1241 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1242 **
1243 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1244 **
1245 ** This instruction makes a deep copy of the value.  A duplicate
1246 ** is made of any string or blob constant.  See also OP_SCopy.
1247 */
1248 case OP_Copy: {
1249   int n;
1250 
1251   n = pOp->p3;
1252   pIn1 = &aMem[pOp->p1];
1253   pOut = &aMem[pOp->p2];
1254   assert( pOut!=pIn1 );
1255   while( 1 ){
1256     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1257     Deephemeralize(pOut);
1258 #ifdef SQLITE_DEBUG
1259     pOut->pScopyFrom = 0;
1260 #endif
1261     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1262     if( (n--)==0 ) break;
1263     pOut++;
1264     pIn1++;
1265   }
1266   break;
1267 }
1268 
1269 /* Opcode: SCopy P1 P2 * * *
1270 ** Synopsis: r[P2]=r[P1]
1271 **
1272 ** Make a shallow copy of register P1 into register P2.
1273 **
1274 ** This instruction makes a shallow copy of the value.  If the value
1275 ** is a string or blob, then the copy is only a pointer to the
1276 ** original and hence if the original changes so will the copy.
1277 ** Worse, if the original is deallocated, the copy becomes invalid.
1278 ** Thus the program must guarantee that the original will not change
1279 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1280 ** copy.
1281 */
1282 case OP_SCopy: {            /* out2 */
1283   pIn1 = &aMem[pOp->p1];
1284   pOut = &aMem[pOp->p2];
1285   assert( pOut!=pIn1 );
1286   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1287 #ifdef SQLITE_DEBUG
1288   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1289 #endif
1290   break;
1291 }
1292 
1293 /* Opcode: IntCopy P1 P2 * * *
1294 ** Synopsis: r[P2]=r[P1]
1295 **
1296 ** Transfer the integer value held in register P1 into register P2.
1297 **
1298 ** This is an optimized version of SCopy that works only for integer
1299 ** values.
1300 */
1301 case OP_IntCopy: {            /* out2 */
1302   pIn1 = &aMem[pOp->p1];
1303   assert( (pIn1->flags & MEM_Int)!=0 );
1304   pOut = &aMem[pOp->p2];
1305   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1306   break;
1307 }
1308 
1309 /* Opcode: ResultRow P1 P2 * * *
1310 ** Synopsis: output=r[P1@P2]
1311 **
1312 ** The registers P1 through P1+P2-1 contain a single row of
1313 ** results. This opcode causes the sqlite3_step() call to terminate
1314 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1315 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1316 ** the result row.
1317 */
1318 case OP_ResultRow: {
1319   Mem *pMem;
1320   int i;
1321   assert( p->nResColumn==pOp->p2 );
1322   assert( pOp->p1>0 );
1323   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1324 
1325 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1326   /* Run the progress counter just before returning.
1327   */
1328   if( db->xProgress!=0
1329    && nVmStep>=nProgressLimit
1330    && db->xProgress(db->pProgressArg)!=0
1331   ){
1332     rc = SQLITE_INTERRUPT;
1333     goto abort_due_to_error;
1334   }
1335 #endif
1336 
1337   /* If this statement has violated immediate foreign key constraints, do
1338   ** not return the number of rows modified. And do not RELEASE the statement
1339   ** transaction. It needs to be rolled back.  */
1340   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1341     assert( db->flags&SQLITE_CountRows );
1342     assert( p->usesStmtJournal );
1343     goto abort_due_to_error;
1344   }
1345 
1346   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1347   ** DML statements invoke this opcode to return the number of rows
1348   ** modified to the user. This is the only way that a VM that
1349   ** opens a statement transaction may invoke this opcode.
1350   **
1351   ** In case this is such a statement, close any statement transaction
1352   ** opened by this VM before returning control to the user. This is to
1353   ** ensure that statement-transactions are always nested, not overlapping.
1354   ** If the open statement-transaction is not closed here, then the user
1355   ** may step another VM that opens its own statement transaction. This
1356   ** may lead to overlapping statement transactions.
1357   **
1358   ** The statement transaction is never a top-level transaction.  Hence
1359   ** the RELEASE call below can never fail.
1360   */
1361   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1362   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1363   assert( rc==SQLITE_OK );
1364 
1365   /* Invalidate all ephemeral cursor row caches */
1366   p->cacheCtr = (p->cacheCtr + 2)|1;
1367 
1368   /* Make sure the results of the current row are \000 terminated
1369   ** and have an assigned type.  The results are de-ephemeralized as
1370   ** a side effect.
1371   */
1372   pMem = p->pResultSet = &aMem[pOp->p1];
1373   for(i=0; i<pOp->p2; i++){
1374     assert( memIsValid(&pMem[i]) );
1375     Deephemeralize(&pMem[i]);
1376     assert( (pMem[i].flags & MEM_Ephem)==0
1377             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1378     sqlite3VdbeMemNulTerminate(&pMem[i]);
1379     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1380   }
1381   if( db->mallocFailed ) goto no_mem;
1382 
1383   if( db->mTrace & SQLITE_TRACE_ROW ){
1384     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1385   }
1386 
1387   /* Return SQLITE_ROW
1388   */
1389   p->pc = (int)(pOp - aOp) + 1;
1390   rc = SQLITE_ROW;
1391   goto vdbe_return;
1392 }
1393 
1394 /* Opcode: Concat P1 P2 P3 * *
1395 ** Synopsis: r[P3]=r[P2]+r[P1]
1396 **
1397 ** Add the text in register P1 onto the end of the text in
1398 ** register P2 and store the result in register P3.
1399 ** If either the P1 or P2 text are NULL then store NULL in P3.
1400 **
1401 **   P3 = P2 || P1
1402 **
1403 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1404 ** if P3 is the same register as P2, the implementation is able
1405 ** to avoid a memcpy().
1406 */
1407 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1408   i64 nByte;
1409 
1410   pIn1 = &aMem[pOp->p1];
1411   pIn2 = &aMem[pOp->p2];
1412   pOut = &aMem[pOp->p3];
1413   assert( pIn1!=pOut );
1414   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1415     sqlite3VdbeMemSetNull(pOut);
1416     break;
1417   }
1418   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1419   Stringify(pIn1, encoding);
1420   Stringify(pIn2, encoding);
1421   nByte = pIn1->n + pIn2->n;
1422   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1423     goto too_big;
1424   }
1425   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1426     goto no_mem;
1427   }
1428   MemSetTypeFlag(pOut, MEM_Str);
1429   if( pOut!=pIn2 ){
1430     memcpy(pOut->z, pIn2->z, pIn2->n);
1431   }
1432   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1433   pOut->z[nByte]=0;
1434   pOut->z[nByte+1] = 0;
1435   pOut->flags |= MEM_Term;
1436   pOut->n = (int)nByte;
1437   pOut->enc = encoding;
1438   UPDATE_MAX_BLOBSIZE(pOut);
1439   break;
1440 }
1441 
1442 /* Opcode: Add P1 P2 P3 * *
1443 ** Synopsis: r[P3]=r[P1]+r[P2]
1444 **
1445 ** Add the value in register P1 to the value in register P2
1446 ** and store the result in register P3.
1447 ** If either input is NULL, the result is NULL.
1448 */
1449 /* Opcode: Multiply P1 P2 P3 * *
1450 ** Synopsis: r[P3]=r[P1]*r[P2]
1451 **
1452 **
1453 ** Multiply the value in register P1 by the value in register P2
1454 ** and store the result in register P3.
1455 ** If either input is NULL, the result is NULL.
1456 */
1457 /* Opcode: Subtract P1 P2 P3 * *
1458 ** Synopsis: r[P3]=r[P2]-r[P1]
1459 **
1460 ** Subtract the value in register P1 from the value in register P2
1461 ** and store the result in register P3.
1462 ** If either input is NULL, the result is NULL.
1463 */
1464 /* Opcode: Divide P1 P2 P3 * *
1465 ** Synopsis: r[P3]=r[P2]/r[P1]
1466 **
1467 ** Divide the value in register P1 by the value in register P2
1468 ** and store the result in register P3 (P3=P2/P1). If the value in
1469 ** register P1 is zero, then the result is NULL. If either input is
1470 ** NULL, the result is NULL.
1471 */
1472 /* Opcode: Remainder P1 P2 P3 * *
1473 ** Synopsis: r[P3]=r[P2]%r[P1]
1474 **
1475 ** Compute the remainder after integer register P2 is divided by
1476 ** register P1 and store the result in register P3.
1477 ** If the value in register P1 is zero the result is NULL.
1478 ** If either operand is NULL, the result is NULL.
1479 */
1480 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1481 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1482 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1483 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1484 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1485   char bIntint;   /* Started out as two integer operands */
1486   u16 flags;      /* Combined MEM_* flags from both inputs */
1487   u16 type1;      /* Numeric type of left operand */
1488   u16 type2;      /* Numeric type of right operand */
1489   i64 iA;         /* Integer value of left operand */
1490   i64 iB;         /* Integer value of right operand */
1491   double rA;      /* Real value of left operand */
1492   double rB;      /* Real value of right operand */
1493 
1494   pIn1 = &aMem[pOp->p1];
1495   type1 = numericType(pIn1);
1496   pIn2 = &aMem[pOp->p2];
1497   type2 = numericType(pIn2);
1498   pOut = &aMem[pOp->p3];
1499   flags = pIn1->flags | pIn2->flags;
1500   if( (type1 & type2 & MEM_Int)!=0 ){
1501     iA = pIn1->u.i;
1502     iB = pIn2->u.i;
1503     bIntint = 1;
1504     switch( pOp->opcode ){
1505       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1506       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1507       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1508       case OP_Divide: {
1509         if( iA==0 ) goto arithmetic_result_is_null;
1510         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1511         iB /= iA;
1512         break;
1513       }
1514       default: {
1515         if( iA==0 ) goto arithmetic_result_is_null;
1516         if( iA==-1 ) iA = 1;
1517         iB %= iA;
1518         break;
1519       }
1520     }
1521     pOut->u.i = iB;
1522     MemSetTypeFlag(pOut, MEM_Int);
1523   }else if( (flags & MEM_Null)!=0 ){
1524     goto arithmetic_result_is_null;
1525   }else{
1526     bIntint = 0;
1527 fp_math:
1528     rA = sqlite3VdbeRealValue(pIn1);
1529     rB = sqlite3VdbeRealValue(pIn2);
1530     switch( pOp->opcode ){
1531       case OP_Add:         rB += rA;       break;
1532       case OP_Subtract:    rB -= rA;       break;
1533       case OP_Multiply:    rB *= rA;       break;
1534       case OP_Divide: {
1535         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1536         if( rA==(double)0 ) goto arithmetic_result_is_null;
1537         rB /= rA;
1538         break;
1539       }
1540       default: {
1541         iA = (i64)rA;
1542         iB = (i64)rB;
1543         if( iA==0 ) goto arithmetic_result_is_null;
1544         if( iA==-1 ) iA = 1;
1545         rB = (double)(iB % iA);
1546         break;
1547       }
1548     }
1549 #ifdef SQLITE_OMIT_FLOATING_POINT
1550     pOut->u.i = rB;
1551     MemSetTypeFlag(pOut, MEM_Int);
1552 #else
1553     if( sqlite3IsNaN(rB) ){
1554       goto arithmetic_result_is_null;
1555     }
1556     pOut->u.r = rB;
1557     MemSetTypeFlag(pOut, MEM_Real);
1558     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1559       sqlite3VdbeIntegerAffinity(pOut);
1560     }
1561 #endif
1562   }
1563   break;
1564 
1565 arithmetic_result_is_null:
1566   sqlite3VdbeMemSetNull(pOut);
1567   break;
1568 }
1569 
1570 /* Opcode: CollSeq P1 * * P4
1571 **
1572 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1573 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1574 ** be returned. This is used by the built-in min(), max() and nullif()
1575 ** functions.
1576 **
1577 ** If P1 is not zero, then it is a register that a subsequent min() or
1578 ** max() aggregate will set to 1 if the current row is not the minimum or
1579 ** maximum.  The P1 register is initialized to 0 by this instruction.
1580 **
1581 ** The interface used by the implementation of the aforementioned functions
1582 ** to retrieve the collation sequence set by this opcode is not available
1583 ** publicly.  Only built-in functions have access to this feature.
1584 */
1585 case OP_CollSeq: {
1586   assert( pOp->p4type==P4_COLLSEQ );
1587   if( pOp->p1 ){
1588     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1589   }
1590   break;
1591 }
1592 
1593 /* Opcode: BitAnd P1 P2 P3 * *
1594 ** Synopsis: r[P3]=r[P1]&r[P2]
1595 **
1596 ** Take the bit-wise AND of the values in register P1 and P2 and
1597 ** store the result in register P3.
1598 ** If either input is NULL, the result is NULL.
1599 */
1600 /* Opcode: BitOr P1 P2 P3 * *
1601 ** Synopsis: r[P3]=r[P1]|r[P2]
1602 **
1603 ** Take the bit-wise OR of the values in register P1 and P2 and
1604 ** store the result in register P3.
1605 ** If either input is NULL, the result is NULL.
1606 */
1607 /* Opcode: ShiftLeft P1 P2 P3 * *
1608 ** Synopsis: r[P3]=r[P2]<<r[P1]
1609 **
1610 ** Shift the integer value in register P2 to the left by the
1611 ** number of bits specified by the integer in register P1.
1612 ** Store the result in register P3.
1613 ** If either input is NULL, the result is NULL.
1614 */
1615 /* Opcode: ShiftRight P1 P2 P3 * *
1616 ** Synopsis: r[P3]=r[P2]>>r[P1]
1617 **
1618 ** Shift the integer value in register P2 to the right by the
1619 ** number of bits specified by the integer in register P1.
1620 ** Store the result in register P3.
1621 ** If either input is NULL, the result is NULL.
1622 */
1623 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1624 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1625 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1626 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1627   i64 iA;
1628   u64 uA;
1629   i64 iB;
1630   u8 op;
1631 
1632   pIn1 = &aMem[pOp->p1];
1633   pIn2 = &aMem[pOp->p2];
1634   pOut = &aMem[pOp->p3];
1635   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1636     sqlite3VdbeMemSetNull(pOut);
1637     break;
1638   }
1639   iA = sqlite3VdbeIntValue(pIn2);
1640   iB = sqlite3VdbeIntValue(pIn1);
1641   op = pOp->opcode;
1642   if( op==OP_BitAnd ){
1643     iA &= iB;
1644   }else if( op==OP_BitOr ){
1645     iA |= iB;
1646   }else if( iB!=0 ){
1647     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1648 
1649     /* If shifting by a negative amount, shift in the other direction */
1650     if( iB<0 ){
1651       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1652       op = 2*OP_ShiftLeft + 1 - op;
1653       iB = iB>(-64) ? -iB : 64;
1654     }
1655 
1656     if( iB>=64 ){
1657       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1658     }else{
1659       memcpy(&uA, &iA, sizeof(uA));
1660       if( op==OP_ShiftLeft ){
1661         uA <<= iB;
1662       }else{
1663         uA >>= iB;
1664         /* Sign-extend on a right shift of a negative number */
1665         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1666       }
1667       memcpy(&iA, &uA, sizeof(iA));
1668     }
1669   }
1670   pOut->u.i = iA;
1671   MemSetTypeFlag(pOut, MEM_Int);
1672   break;
1673 }
1674 
1675 /* Opcode: AddImm  P1 P2 * * *
1676 ** Synopsis: r[P1]=r[P1]+P2
1677 **
1678 ** Add the constant P2 to the value in register P1.
1679 ** The result is always an integer.
1680 **
1681 ** To force any register to be an integer, just add 0.
1682 */
1683 case OP_AddImm: {            /* in1 */
1684   pIn1 = &aMem[pOp->p1];
1685   memAboutToChange(p, pIn1);
1686   sqlite3VdbeMemIntegerify(pIn1);
1687   pIn1->u.i += pOp->p2;
1688   break;
1689 }
1690 
1691 /* Opcode: MustBeInt P1 P2 * * *
1692 **
1693 ** Force the value in register P1 to be an integer.  If the value
1694 ** in P1 is not an integer and cannot be converted into an integer
1695 ** without data loss, then jump immediately to P2, or if P2==0
1696 ** raise an SQLITE_MISMATCH exception.
1697 */
1698 case OP_MustBeInt: {            /* jump, in1 */
1699   pIn1 = &aMem[pOp->p1];
1700   if( (pIn1->flags & MEM_Int)==0 ){
1701     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1702     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1703     if( (pIn1->flags & MEM_Int)==0 ){
1704       if( pOp->p2==0 ){
1705         rc = SQLITE_MISMATCH;
1706         goto abort_due_to_error;
1707       }else{
1708         goto jump_to_p2;
1709       }
1710     }
1711   }
1712   MemSetTypeFlag(pIn1, MEM_Int);
1713   break;
1714 }
1715 
1716 #ifndef SQLITE_OMIT_FLOATING_POINT
1717 /* Opcode: RealAffinity P1 * * * *
1718 **
1719 ** If register P1 holds an integer convert it to a real value.
1720 **
1721 ** This opcode is used when extracting information from a column that
1722 ** has REAL affinity.  Such column values may still be stored as
1723 ** integers, for space efficiency, but after extraction we want them
1724 ** to have only a real value.
1725 */
1726 case OP_RealAffinity: {                  /* in1 */
1727   pIn1 = &aMem[pOp->p1];
1728   if( pIn1->flags & MEM_Int ){
1729     sqlite3VdbeMemRealify(pIn1);
1730   }
1731   break;
1732 }
1733 #endif
1734 
1735 #ifndef SQLITE_OMIT_CAST
1736 /* Opcode: Cast P1 P2 * * *
1737 ** Synopsis: affinity(r[P1])
1738 **
1739 ** Force the value in register P1 to be the type defined by P2.
1740 **
1741 ** <ul>
1742 ** <li> P2=='A' &rarr; BLOB
1743 ** <li> P2=='B' &rarr; TEXT
1744 ** <li> P2=='C' &rarr; NUMERIC
1745 ** <li> P2=='D' &rarr; INTEGER
1746 ** <li> P2=='E' &rarr; REAL
1747 ** </ul>
1748 **
1749 ** A NULL value is not changed by this routine.  It remains NULL.
1750 */
1751 case OP_Cast: {                  /* in1 */
1752   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1753   testcase( pOp->p2==SQLITE_AFF_TEXT );
1754   testcase( pOp->p2==SQLITE_AFF_BLOB );
1755   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1756   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1757   testcase( pOp->p2==SQLITE_AFF_REAL );
1758   pIn1 = &aMem[pOp->p1];
1759   memAboutToChange(p, pIn1);
1760   rc = ExpandBlob(pIn1);
1761   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1762   UPDATE_MAX_BLOBSIZE(pIn1);
1763   if( rc ) goto abort_due_to_error;
1764   break;
1765 }
1766 #endif /* SQLITE_OMIT_CAST */
1767 
1768 /* Opcode: Eq P1 P2 P3 P4 P5
1769 ** Synopsis: IF r[P3]==r[P1]
1770 **
1771 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1772 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1773 ** store the result of comparison in register P2.
1774 **
1775 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1776 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1777 ** to coerce both inputs according to this affinity before the
1778 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1779 ** affinity is used. Note that the affinity conversions are stored
1780 ** back into the input registers P1 and P3.  So this opcode can cause
1781 ** persistent changes to registers P1 and P3.
1782 **
1783 ** Once any conversions have taken place, and neither value is NULL,
1784 ** the values are compared. If both values are blobs then memcmp() is
1785 ** used to determine the results of the comparison.  If both values
1786 ** are text, then the appropriate collating function specified in
1787 ** P4 is used to do the comparison.  If P4 is not specified then
1788 ** memcmp() is used to compare text string.  If both values are
1789 ** numeric, then a numeric comparison is used. If the two values
1790 ** are of different types, then numbers are considered less than
1791 ** strings and strings are considered less than blobs.
1792 **
1793 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1794 ** true or false and is never NULL.  If both operands are NULL then the result
1795 ** of comparison is true.  If either operand is NULL then the result is false.
1796 ** If neither operand is NULL the result is the same as it would be if
1797 ** the SQLITE_NULLEQ flag were omitted from P5.
1798 **
1799 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1800 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1801 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1802 */
1803 /* Opcode: Ne P1 P2 P3 P4 P5
1804 ** Synopsis: IF r[P3]!=r[P1]
1805 **
1806 ** This works just like the Eq opcode except that the jump is taken if
1807 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1808 ** additional information.
1809 **
1810 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1811 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1812 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1813 */
1814 /* Opcode: Lt P1 P2 P3 P4 P5
1815 ** Synopsis: IF r[P3]<r[P1]
1816 **
1817 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1818 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1819 ** the result of comparison (0 or 1 or NULL) into register P2.
1820 **
1821 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1822 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1823 ** bit is clear then fall through if either operand is NULL.
1824 **
1825 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1826 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1827 ** to coerce both inputs according to this affinity before the
1828 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1829 ** affinity is used. Note that the affinity conversions are stored
1830 ** back into the input registers P1 and P3.  So this opcode can cause
1831 ** persistent changes to registers P1 and P3.
1832 **
1833 ** Once any conversions have taken place, and neither value is NULL,
1834 ** the values are compared. If both values are blobs then memcmp() is
1835 ** used to determine the results of the comparison.  If both values
1836 ** are text, then the appropriate collating function specified in
1837 ** P4 is  used to do the comparison.  If P4 is not specified then
1838 ** memcmp() is used to compare text string.  If both values are
1839 ** numeric, then a numeric comparison is used. If the two values
1840 ** are of different types, then numbers are considered less than
1841 ** strings and strings are considered less than blobs.
1842 */
1843 /* Opcode: Le P1 P2 P3 P4 P5
1844 ** Synopsis: IF r[P3]<=r[P1]
1845 **
1846 ** This works just like the Lt opcode except that the jump is taken if
1847 ** the content of register P3 is less than or equal to the content of
1848 ** register P1.  See the Lt opcode for additional information.
1849 */
1850 /* Opcode: Gt P1 P2 P3 P4 P5
1851 ** Synopsis: IF r[P3]>r[P1]
1852 **
1853 ** This works just like the Lt opcode except that the jump is taken if
1854 ** the content of register P3 is greater than the content of
1855 ** register P1.  See the Lt opcode for additional information.
1856 */
1857 /* Opcode: Ge P1 P2 P3 P4 P5
1858 ** Synopsis: IF r[P3]>=r[P1]
1859 **
1860 ** This works just like the Lt opcode except that the jump is taken if
1861 ** the content of register P3 is greater than or equal to the content of
1862 ** register P1.  See the Lt opcode for additional information.
1863 */
1864 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1865 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1866 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1867 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1868 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1869 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1870   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
1871   char affinity;      /* Affinity to use for comparison */
1872   u16 flags1;         /* Copy of initial value of pIn1->flags */
1873   u16 flags3;         /* Copy of initial value of pIn3->flags */
1874 
1875   pIn1 = &aMem[pOp->p1];
1876   pIn3 = &aMem[pOp->p3];
1877   flags1 = pIn1->flags;
1878   flags3 = pIn3->flags;
1879   if( (flags1 | flags3)&MEM_Null ){
1880     /* One or both operands are NULL */
1881     if( pOp->p5 & SQLITE_NULLEQ ){
1882       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1883       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1884       ** or not both operands are null.
1885       */
1886       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1887       assert( (flags1 & MEM_Cleared)==0 );
1888       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1889       if( (flags1&flags3&MEM_Null)!=0
1890        && (flags3&MEM_Cleared)==0
1891       ){
1892         res = 0;  /* Operands are equal */
1893       }else{
1894         res = 1;  /* Operands are not equal */
1895       }
1896     }else{
1897       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1898       ** then the result is always NULL.
1899       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1900       */
1901       if( pOp->p5 & SQLITE_STOREP2 ){
1902         pOut = &aMem[pOp->p2];
1903         iCompare = 1;    /* Operands are not equal */
1904         memAboutToChange(p, pOut);
1905         MemSetTypeFlag(pOut, MEM_Null);
1906         REGISTER_TRACE(pOp->p2, pOut);
1907       }else{
1908         VdbeBranchTaken(2,3);
1909         if( pOp->p5 & SQLITE_JUMPIFNULL ){
1910           goto jump_to_p2;
1911         }
1912       }
1913       break;
1914     }
1915   }else{
1916     /* Neither operand is NULL.  Do a comparison. */
1917     affinity = pOp->p5 & SQLITE_AFF_MASK;
1918     if( affinity>=SQLITE_AFF_NUMERIC ){
1919       if( (flags1 | flags3)&MEM_Str ){
1920         if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1921           applyNumericAffinity(pIn1,0);
1922           testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
1923           flags3 = pIn3->flags;
1924         }
1925         if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1926           applyNumericAffinity(pIn3,0);
1927         }
1928       }
1929       /* Handle the common case of integer comparison here, as an
1930       ** optimization, to avoid a call to sqlite3MemCompare() */
1931       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
1932         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
1933         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
1934         res = 0;
1935         goto compare_op;
1936       }
1937     }else if( affinity==SQLITE_AFF_TEXT ){
1938       if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
1939         testcase( pIn1->flags & MEM_Int );
1940         testcase( pIn1->flags & MEM_Real );
1941         sqlite3VdbeMemStringify(pIn1, encoding, 1);
1942         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1943         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
1944         assert( pIn1!=pIn3 );
1945       }
1946       if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
1947         testcase( pIn3->flags & MEM_Int );
1948         testcase( pIn3->flags & MEM_Real );
1949         sqlite3VdbeMemStringify(pIn3, encoding, 1);
1950         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1951         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
1952       }
1953     }
1954     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1955     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1956   }
1957 compare_op:
1958   /* At this point, res is negative, zero, or positive if reg[P1] is
1959   ** less than, equal to, or greater than reg[P3], respectively.  Compute
1960   ** the answer to this operator in res2, depending on what the comparison
1961   ** operator actually is.  The next block of code depends on the fact
1962   ** that the 6 comparison operators are consecutive integers in this
1963   ** order:  NE, EQ, GT, LE, LT, GE */
1964   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
1965   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
1966   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
1967     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
1968     res2 = aLTb[pOp->opcode - OP_Ne];
1969   }else if( res==0 ){
1970     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
1971     res2 = aEQb[pOp->opcode - OP_Ne];
1972   }else{
1973     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
1974     res2 = aGTb[pOp->opcode - OP_Ne];
1975   }
1976 
1977   /* Undo any changes made by applyAffinity() to the input registers. */
1978   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1979   pIn1->flags = flags1;
1980   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
1981   pIn3->flags = flags3;
1982 
1983   if( pOp->p5 & SQLITE_STOREP2 ){
1984     pOut = &aMem[pOp->p2];
1985     iCompare = res;
1986     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
1987       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
1988       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
1989       ** is only used in contexts where either:
1990       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
1991       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
1992       ** Therefore it is not necessary to check the content of r[P2] for
1993       ** NULL. */
1994       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
1995       assert( res2==0 || res2==1 );
1996       testcase( res2==0 && pOp->opcode==OP_Eq );
1997       testcase( res2==1 && pOp->opcode==OP_Eq );
1998       testcase( res2==0 && pOp->opcode==OP_Ne );
1999       testcase( res2==1 && pOp->opcode==OP_Ne );
2000       if( (pOp->opcode==OP_Eq)==res2 ) break;
2001     }
2002     memAboutToChange(p, pOut);
2003     MemSetTypeFlag(pOut, MEM_Int);
2004     pOut->u.i = res2;
2005     REGISTER_TRACE(pOp->p2, pOut);
2006   }else{
2007     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2008     if( res2 ){
2009       goto jump_to_p2;
2010     }
2011   }
2012   break;
2013 }
2014 
2015 /* Opcode: ElseNotEq * P2 * * *
2016 **
2017 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2018 ** If result of an OP_Eq comparison on the same two operands
2019 ** would have be NULL or false (0), then then jump to P2.
2020 ** If the result of an OP_Eq comparison on the two previous operands
2021 ** would have been true (1), then fall through.
2022 */
2023 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2024   assert( pOp>aOp );
2025   assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
2026   assert( pOp[-1].p5 & SQLITE_STOREP2 );
2027   VdbeBranchTaken(iCompare!=0, 2);
2028   if( iCompare!=0 ) goto jump_to_p2;
2029   break;
2030 }
2031 
2032 
2033 /* Opcode: Permutation * * * P4 *
2034 **
2035 ** Set the permutation used by the OP_Compare operator in the next
2036 ** instruction.  The permutation is stored in the P4 operand.
2037 **
2038 ** The permutation is only valid until the next OP_Compare that has
2039 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2040 ** occur immediately prior to the OP_Compare.
2041 **
2042 ** The first integer in the P4 integer array is the length of the array
2043 ** and does not become part of the permutation.
2044 */
2045 case OP_Permutation: {
2046   assert( pOp->p4type==P4_INTARRAY );
2047   assert( pOp->p4.ai );
2048   assert( pOp[1].opcode==OP_Compare );
2049   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2050   break;
2051 }
2052 
2053 /* Opcode: Compare P1 P2 P3 P4 P5
2054 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2055 **
2056 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2057 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2058 ** the comparison for use by the next OP_Jump instruct.
2059 **
2060 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2061 ** determined by the most recent OP_Permutation operator.  If the
2062 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2063 ** order.
2064 **
2065 ** P4 is a KeyInfo structure that defines collating sequences and sort
2066 ** orders for the comparison.  The permutation applies to registers
2067 ** only.  The KeyInfo elements are used sequentially.
2068 **
2069 ** The comparison is a sort comparison, so NULLs compare equal,
2070 ** NULLs are less than numbers, numbers are less than strings,
2071 ** and strings are less than blobs.
2072 */
2073 case OP_Compare: {
2074   int n;
2075   int i;
2076   int p1;
2077   int p2;
2078   const KeyInfo *pKeyInfo;
2079   int idx;
2080   CollSeq *pColl;    /* Collating sequence to use on this term */
2081   int bRev;          /* True for DESCENDING sort order */
2082   int *aPermute;     /* The permutation */
2083 
2084   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2085     aPermute = 0;
2086   }else{
2087     assert( pOp>aOp );
2088     assert( pOp[-1].opcode==OP_Permutation );
2089     assert( pOp[-1].p4type==P4_INTARRAY );
2090     aPermute = pOp[-1].p4.ai + 1;
2091     assert( aPermute!=0 );
2092   }
2093   n = pOp->p3;
2094   pKeyInfo = pOp->p4.pKeyInfo;
2095   assert( n>0 );
2096   assert( pKeyInfo!=0 );
2097   p1 = pOp->p1;
2098   p2 = pOp->p2;
2099 #ifdef SQLITE_DEBUG
2100   if( aPermute ){
2101     int k, mx = 0;
2102     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2103     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2104     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2105   }else{
2106     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2107     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2108   }
2109 #endif /* SQLITE_DEBUG */
2110   for(i=0; i<n; i++){
2111     idx = aPermute ? aPermute[i] : i;
2112     assert( memIsValid(&aMem[p1+idx]) );
2113     assert( memIsValid(&aMem[p2+idx]) );
2114     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2115     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2116     assert( i<pKeyInfo->nKeyField );
2117     pColl = pKeyInfo->aColl[i];
2118     bRev = pKeyInfo->aSortOrder[i];
2119     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2120     if( iCompare ){
2121       if( bRev ) iCompare = -iCompare;
2122       break;
2123     }
2124   }
2125   break;
2126 }
2127 
2128 /* Opcode: Jump P1 P2 P3 * *
2129 **
2130 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2131 ** in the most recent OP_Compare instruction the P1 vector was less than
2132 ** equal to, or greater than the P2 vector, respectively.
2133 */
2134 case OP_Jump: {             /* jump */
2135   if( iCompare<0 ){
2136     VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2137   }else if( iCompare==0 ){
2138     VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2139   }else{
2140     VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2141   }
2142   break;
2143 }
2144 
2145 /* Opcode: And P1 P2 P3 * *
2146 ** Synopsis: r[P3]=(r[P1] && r[P2])
2147 **
2148 ** Take the logical AND of the values in registers P1 and P2 and
2149 ** write the result into register P3.
2150 **
2151 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2152 ** the other input is NULL.  A NULL and true or two NULLs give
2153 ** a NULL output.
2154 */
2155 /* Opcode: Or P1 P2 P3 * *
2156 ** Synopsis: r[P3]=(r[P1] || r[P2])
2157 **
2158 ** Take the logical OR of the values in register P1 and P2 and
2159 ** store the answer in register P3.
2160 **
2161 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2162 ** even if the other input is NULL.  A NULL and false or two NULLs
2163 ** give a NULL output.
2164 */
2165 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2166 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2167   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2168   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2169 
2170   pIn1 = &aMem[pOp->p1];
2171   if( pIn1->flags & MEM_Null ){
2172     v1 = 2;
2173   }else{
2174     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2175   }
2176   pIn2 = &aMem[pOp->p2];
2177   if( pIn2->flags & MEM_Null ){
2178     v2 = 2;
2179   }else{
2180     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2181   }
2182   if( pOp->opcode==OP_And ){
2183     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2184     v1 = and_logic[v1*3+v2];
2185   }else{
2186     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2187     v1 = or_logic[v1*3+v2];
2188   }
2189   pOut = &aMem[pOp->p3];
2190   if( v1==2 ){
2191     MemSetTypeFlag(pOut, MEM_Null);
2192   }else{
2193     pOut->u.i = v1;
2194     MemSetTypeFlag(pOut, MEM_Int);
2195   }
2196   break;
2197 }
2198 
2199 /* Opcode: Not P1 P2 * * *
2200 ** Synopsis: r[P2]= !r[P1]
2201 **
2202 ** Interpret the value in register P1 as a boolean value.  Store the
2203 ** boolean complement in register P2.  If the value in register P1 is
2204 ** NULL, then a NULL is stored in P2.
2205 */
2206 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2207   pIn1 = &aMem[pOp->p1];
2208   pOut = &aMem[pOp->p2];
2209   sqlite3VdbeMemSetNull(pOut);
2210   if( (pIn1->flags & MEM_Null)==0 ){
2211     pOut->flags = MEM_Int;
2212     pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2213   }
2214   break;
2215 }
2216 
2217 /* Opcode: BitNot P1 P2 * * *
2218 ** Synopsis: r[P1]= ~r[P1]
2219 **
2220 ** Interpret the content of register P1 as an integer.  Store the
2221 ** ones-complement of the P1 value into register P2.  If P1 holds
2222 ** a NULL then store a NULL in P2.
2223 */
2224 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2225   pIn1 = &aMem[pOp->p1];
2226   pOut = &aMem[pOp->p2];
2227   sqlite3VdbeMemSetNull(pOut);
2228   if( (pIn1->flags & MEM_Null)==0 ){
2229     pOut->flags = MEM_Int;
2230     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2231   }
2232   break;
2233 }
2234 
2235 /* Opcode: Once P1 P2 * * *
2236 **
2237 ** Fall through to the next instruction the first time this opcode is
2238 ** encountered on each invocation of the byte-code program.  Jump to P2
2239 ** on the second and all subsequent encounters during the same invocation.
2240 **
2241 ** Top-level programs determine first invocation by comparing the P1
2242 ** operand against the P1 operand on the OP_Init opcode at the beginning
2243 ** of the program.  If the P1 values differ, then fall through and make
2244 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2245 ** the same then take the jump.
2246 **
2247 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2248 ** whether or not the jump should be taken.  The bitmask is necessary
2249 ** because the self-altering code trick does not work for recursive
2250 ** triggers.
2251 */
2252 case OP_Once: {             /* jump */
2253   u32 iAddr;                /* Address of this instruction */
2254   assert( p->aOp[0].opcode==OP_Init );
2255   if( p->pFrame ){
2256     iAddr = (int)(pOp - p->aOp);
2257     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2258       VdbeBranchTaken(1, 2);
2259       goto jump_to_p2;
2260     }
2261     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2262   }else{
2263     if( p->aOp[0].p1==pOp->p1 ){
2264       VdbeBranchTaken(1, 2);
2265       goto jump_to_p2;
2266     }
2267   }
2268   VdbeBranchTaken(0, 2);
2269   pOp->p1 = p->aOp[0].p1;
2270   break;
2271 }
2272 
2273 /* Opcode: If P1 P2 P3 * *
2274 **
2275 ** Jump to P2 if the value in register P1 is true.  The value
2276 ** is considered true if it is numeric and non-zero.  If the value
2277 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2278 */
2279 /* Opcode: IfNot P1 P2 P3 * *
2280 **
2281 ** Jump to P2 if the value in register P1 is False.  The value
2282 ** is considered false if it has a numeric value of zero.  If the value
2283 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2284 */
2285 case OP_If:                 /* jump, in1 */
2286 case OP_IfNot: {            /* jump, in1 */
2287   int c;
2288   pIn1 = &aMem[pOp->p1];
2289   if( pIn1->flags & MEM_Null ){
2290     c = pOp->p3;
2291   }else{
2292 #ifdef SQLITE_OMIT_FLOATING_POINT
2293     c = sqlite3VdbeIntValue(pIn1)!=0;
2294 #else
2295     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2296 #endif
2297     if( pOp->opcode==OP_IfNot ) c = !c;
2298   }
2299   VdbeBranchTaken(c!=0, 2);
2300   if( c ){
2301     goto jump_to_p2;
2302   }
2303   break;
2304 }
2305 
2306 /* Opcode: IsNull P1 P2 * * *
2307 ** Synopsis: if r[P1]==NULL goto P2
2308 **
2309 ** Jump to P2 if the value in register P1 is NULL.
2310 */
2311 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2312   pIn1 = &aMem[pOp->p1];
2313   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2314   if( (pIn1->flags & MEM_Null)!=0 ){
2315     goto jump_to_p2;
2316   }
2317   break;
2318 }
2319 
2320 /* Opcode: NotNull P1 P2 * * *
2321 ** Synopsis: if r[P1]!=NULL goto P2
2322 **
2323 ** Jump to P2 if the value in register P1 is not NULL.
2324 */
2325 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2326   pIn1 = &aMem[pOp->p1];
2327   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2328   if( (pIn1->flags & MEM_Null)==0 ){
2329     goto jump_to_p2;
2330   }
2331   break;
2332 }
2333 
2334 /* Opcode: IfNullRow P1 P2 P3 * *
2335 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2336 **
2337 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2338 ** If it is, then set register P3 to NULL and jump immediately to P2.
2339 ** If P1 is not on a NULL row, then fall through without making any
2340 ** changes.
2341 */
2342 case OP_IfNullRow: {         /* jump */
2343   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2344   assert( p->apCsr[pOp->p1]!=0 );
2345   if( p->apCsr[pOp->p1]->nullRow ){
2346     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2347     goto jump_to_p2;
2348   }
2349   break;
2350 }
2351 
2352 /* Opcode: Column P1 P2 P3 P4 P5
2353 ** Synopsis: r[P3]=PX
2354 **
2355 ** Interpret the data that cursor P1 points to as a structure built using
2356 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2357 ** information about the format of the data.)  Extract the P2-th column
2358 ** from this record.  If there are less that (P2+1)
2359 ** values in the record, extract a NULL.
2360 **
2361 ** The value extracted is stored in register P3.
2362 **
2363 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2364 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2365 ** the result.
2366 **
2367 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2368 ** then the cache of the cursor is reset prior to extracting the column.
2369 ** The first OP_Column against a pseudo-table after the value of the content
2370 ** register has changed should have this bit set.
2371 **
2372 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2373 ** the result is guaranteed to only be used as the argument of a length()
2374 ** or typeof() function, respectively.  The loading of large blobs can be
2375 ** skipped for length() and all content loading can be skipped for typeof().
2376 */
2377 case OP_Column: {
2378   int p2;            /* column number to retrieve */
2379   VdbeCursor *pC;    /* The VDBE cursor */
2380   BtCursor *pCrsr;   /* The BTree cursor */
2381   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2382   int len;           /* The length of the serialized data for the column */
2383   int i;             /* Loop counter */
2384   Mem *pDest;        /* Where to write the extracted value */
2385   Mem sMem;          /* For storing the record being decoded */
2386   const u8 *zData;   /* Part of the record being decoded */
2387   const u8 *zHdr;    /* Next unparsed byte of the header */
2388   const u8 *zEndHdr; /* Pointer to first byte after the header */
2389   u32 offset;        /* Offset into the data */
2390   u64 offset64;      /* 64-bit offset */
2391   u32 avail;         /* Number of bytes of available data */
2392   u32 t;             /* A type code from the record header */
2393   Mem *pReg;         /* PseudoTable input register */
2394 
2395   pC = p->apCsr[pOp->p1];
2396   p2 = pOp->p2;
2397 
2398   /* If the cursor cache is stale (meaning it is not currently point at
2399   ** the correct row) then bring it up-to-date by doing the necessary
2400   ** B-Tree seek. */
2401   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2402   if( rc ) goto abort_due_to_error;
2403 
2404   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2405   pDest = &aMem[pOp->p3];
2406   memAboutToChange(p, pDest);
2407   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2408   assert( pC!=0 );
2409   assert( p2<pC->nField );
2410   aOffset = pC->aOffset;
2411   assert( pC->eCurType!=CURTYPE_VTAB );
2412   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2413   assert( pC->eCurType!=CURTYPE_SORTER );
2414 
2415   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2416     if( pC->nullRow ){
2417       if( pC->eCurType==CURTYPE_PSEUDO ){
2418         assert( pC->uc.pseudoTableReg>0 );
2419         pReg = &aMem[pC->uc.pseudoTableReg];
2420         assert( pReg->flags & MEM_Blob );
2421         assert( memIsValid(pReg) );
2422         pC->payloadSize = pC->szRow = avail = pReg->n;
2423         pC->aRow = (u8*)pReg->z;
2424       }else{
2425         sqlite3VdbeMemSetNull(pDest);
2426         goto op_column_out;
2427       }
2428     }else{
2429       pCrsr = pC->uc.pCursor;
2430       assert( pC->eCurType==CURTYPE_BTREE );
2431       assert( pCrsr );
2432       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2433       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2434       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail);
2435       assert( avail<=65536 );  /* Maximum page size is 64KiB */
2436       if( pC->payloadSize <= (u32)avail ){
2437         pC->szRow = pC->payloadSize;
2438       }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2439         goto too_big;
2440       }else{
2441         pC->szRow = avail;
2442       }
2443     }
2444     pC->cacheStatus = p->cacheCtr;
2445     pC->iHdrOffset = getVarint32(pC->aRow, offset);
2446     pC->nHdrParsed = 0;
2447     aOffset[0] = offset;
2448 
2449 
2450     if( avail<offset ){      /*OPTIMIZATION-IF-FALSE*/
2451       /* pC->aRow does not have to hold the entire row, but it does at least
2452       ** need to cover the header of the record.  If pC->aRow does not contain
2453       ** the complete header, then set it to zero, forcing the header to be
2454       ** dynamically allocated. */
2455       pC->aRow = 0;
2456       pC->szRow = 0;
2457 
2458       /* Make sure a corrupt database has not given us an oversize header.
2459       ** Do this now to avoid an oversize memory allocation.
2460       **
2461       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2462       ** types use so much data space that there can only be 4096 and 32 of
2463       ** them, respectively.  So the maximum header length results from a
2464       ** 3-byte type for each of the maximum of 32768 columns plus three
2465       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2466       */
2467       if( offset > 98307 || offset > pC->payloadSize ){
2468         rc = SQLITE_CORRUPT_BKPT;
2469         goto abort_due_to_error;
2470       }
2471     }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/
2472       /* The following goto is an optimization.  It can be omitted and
2473       ** everything will still work.  But OP_Column is measurably faster
2474       ** by skipping the subsequent conditional, which is always true.
2475       */
2476       zData = pC->aRow;
2477       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2478       goto op_column_read_header;
2479     }
2480   }
2481 
2482   /* Make sure at least the first p2+1 entries of the header have been
2483   ** parsed and valid information is in aOffset[] and pC->aType[].
2484   */
2485   if( pC->nHdrParsed<=p2 ){
2486     /* If there is more header available for parsing in the record, try
2487     ** to extract additional fields up through the p2+1-th field
2488     */
2489     if( pC->iHdrOffset<aOffset[0] ){
2490       /* Make sure zData points to enough of the record to cover the header. */
2491       if( pC->aRow==0 ){
2492         memset(&sMem, 0, sizeof(sMem));
2493         rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2494         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2495         zData = (u8*)sMem.z;
2496       }else{
2497         zData = pC->aRow;
2498       }
2499 
2500       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2501     op_column_read_header:
2502       i = pC->nHdrParsed;
2503       offset64 = aOffset[i];
2504       zHdr = zData + pC->iHdrOffset;
2505       zEndHdr = zData + aOffset[0];
2506       do{
2507         if( (t = zHdr[0])<0x80 ){
2508           zHdr++;
2509           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2510         }else{
2511           zHdr += sqlite3GetVarint32(zHdr, &t);
2512           offset64 += sqlite3VdbeSerialTypeLen(t);
2513         }
2514         pC->aType[i++] = t;
2515         aOffset[i] = (u32)(offset64 & 0xffffffff);
2516       }while( i<=p2 && zHdr<zEndHdr );
2517 
2518       /* The record is corrupt if any of the following are true:
2519       ** (1) the bytes of the header extend past the declared header size
2520       ** (2) the entire header was used but not all data was used
2521       ** (3) the end of the data extends beyond the end of the record.
2522       */
2523       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2524        || (offset64 > pC->payloadSize)
2525       ){
2526         if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2527         rc = SQLITE_CORRUPT_BKPT;
2528         goto abort_due_to_error;
2529       }
2530 
2531       pC->nHdrParsed = i;
2532       pC->iHdrOffset = (u32)(zHdr - zData);
2533       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2534     }else{
2535       t = 0;
2536     }
2537 
2538     /* If after trying to extract new entries from the header, nHdrParsed is
2539     ** still not up to p2, that means that the record has fewer than p2
2540     ** columns.  So the result will be either the default value or a NULL.
2541     */
2542     if( pC->nHdrParsed<=p2 ){
2543       if( pOp->p4type==P4_MEM ){
2544         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2545       }else{
2546         sqlite3VdbeMemSetNull(pDest);
2547       }
2548       goto op_column_out;
2549     }
2550   }else{
2551     t = pC->aType[p2];
2552   }
2553 
2554   /* Extract the content for the p2+1-th column.  Control can only
2555   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2556   ** all valid.
2557   */
2558   assert( p2<pC->nHdrParsed );
2559   assert( rc==SQLITE_OK );
2560   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2561   if( VdbeMemDynamic(pDest) ){
2562     sqlite3VdbeMemSetNull(pDest);
2563   }
2564   assert( t==pC->aType[p2] );
2565   if( pC->szRow>=aOffset[p2+1] ){
2566     /* This is the common case where the desired content fits on the original
2567     ** page - where the content is not on an overflow page */
2568     zData = pC->aRow + aOffset[p2];
2569     if( t<12 ){
2570       sqlite3VdbeSerialGet(zData, t, pDest);
2571     }else{
2572       /* If the column value is a string, we need a persistent value, not
2573       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2574       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2575       */
2576       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2577       pDest->n = len = (t-12)/2;
2578       pDest->enc = encoding;
2579       if( pDest->szMalloc < len+2 ){
2580         pDest->flags = MEM_Null;
2581         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2582       }else{
2583         pDest->z = pDest->zMalloc;
2584       }
2585       memcpy(pDest->z, zData, len);
2586       pDest->z[len] = 0;
2587       pDest->z[len+1] = 0;
2588       pDest->flags = aFlag[t&1];
2589     }
2590   }else{
2591     pDest->enc = encoding;
2592     /* This branch happens only when content is on overflow pages */
2593     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2594           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2595      || (len = sqlite3VdbeSerialTypeLen(t))==0
2596     ){
2597       /* Content is irrelevant for
2598       **    1. the typeof() function,
2599       **    2. the length(X) function if X is a blob, and
2600       **    3. if the content length is zero.
2601       ** So we might as well use bogus content rather than reading
2602       ** content from disk.
2603       **
2604       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2605       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2606       ** read up to 16. So 16 bytes of bogus content is supplied.
2607       */
2608       static u8 aZero[16];  /* This is the bogus content */
2609       sqlite3VdbeSerialGet(aZero, t, pDest);
2610     }else{
2611       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2612       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2613       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2614       pDest->flags &= ~MEM_Ephem;
2615     }
2616   }
2617 
2618 op_column_out:
2619   UPDATE_MAX_BLOBSIZE(pDest);
2620   REGISTER_TRACE(pOp->p3, pDest);
2621   break;
2622 }
2623 
2624 /* Opcode: Affinity P1 P2 * P4 *
2625 ** Synopsis: affinity(r[P1@P2])
2626 **
2627 ** Apply affinities to a range of P2 registers starting with P1.
2628 **
2629 ** P4 is a string that is P2 characters long. The N-th character of the
2630 ** string indicates the column affinity that should be used for the N-th
2631 ** memory cell in the range.
2632 */
2633 case OP_Affinity: {
2634   const char *zAffinity;   /* The affinity to be applied */
2635 
2636   zAffinity = pOp->p4.z;
2637   assert( zAffinity!=0 );
2638   assert( pOp->p2>0 );
2639   assert( zAffinity[pOp->p2]==0 );
2640   pIn1 = &aMem[pOp->p1];
2641   do{
2642     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2643     assert( memIsValid(pIn1) );
2644     applyAffinity(pIn1, *(zAffinity++), encoding);
2645     pIn1++;
2646   }while( zAffinity[0] );
2647   break;
2648 }
2649 
2650 /* Opcode: MakeRecord P1 P2 P3 P4 *
2651 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2652 **
2653 ** Convert P2 registers beginning with P1 into the [record format]
2654 ** use as a data record in a database table or as a key
2655 ** in an index.  The OP_Column opcode can decode the record later.
2656 **
2657 ** P4 may be a string that is P2 characters long.  The N-th character of the
2658 ** string indicates the column affinity that should be used for the N-th
2659 ** field of the index key.
2660 **
2661 ** The mapping from character to affinity is given by the SQLITE_AFF_
2662 ** macros defined in sqliteInt.h.
2663 **
2664 ** If P4 is NULL then all index fields have the affinity BLOB.
2665 */
2666 case OP_MakeRecord: {
2667   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2668   Mem *pRec;             /* The new record */
2669   u64 nData;             /* Number of bytes of data space */
2670   int nHdr;              /* Number of bytes of header space */
2671   i64 nByte;             /* Data space required for this record */
2672   i64 nZero;             /* Number of zero bytes at the end of the record */
2673   int nVarint;           /* Number of bytes in a varint */
2674   u32 serial_type;       /* Type field */
2675   Mem *pData0;           /* First field to be combined into the record */
2676   Mem *pLast;            /* Last field of the record */
2677   int nField;            /* Number of fields in the record */
2678   char *zAffinity;       /* The affinity string for the record */
2679   int file_format;       /* File format to use for encoding */
2680   int i;                 /* Space used in zNewRecord[] header */
2681   int j;                 /* Space used in zNewRecord[] content */
2682   u32 len;               /* Length of a field */
2683 
2684   /* Assuming the record contains N fields, the record format looks
2685   ** like this:
2686   **
2687   ** ------------------------------------------------------------------------
2688   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2689   ** ------------------------------------------------------------------------
2690   **
2691   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2692   ** and so forth.
2693   **
2694   ** Each type field is a varint representing the serial type of the
2695   ** corresponding data element (see sqlite3VdbeSerialType()). The
2696   ** hdr-size field is also a varint which is the offset from the beginning
2697   ** of the record to data0.
2698   */
2699   nData = 0;         /* Number of bytes of data space */
2700   nHdr = 0;          /* Number of bytes of header space */
2701   nZero = 0;         /* Number of zero bytes at the end of the record */
2702   nField = pOp->p1;
2703   zAffinity = pOp->p4.z;
2704   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2705   pData0 = &aMem[nField];
2706   nField = pOp->p2;
2707   pLast = &pData0[nField-1];
2708   file_format = p->minWriteFileFormat;
2709 
2710   /* Identify the output register */
2711   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2712   pOut = &aMem[pOp->p3];
2713   memAboutToChange(p, pOut);
2714 
2715   /* Apply the requested affinity to all inputs
2716   */
2717   assert( pData0<=pLast );
2718   if( zAffinity ){
2719     pRec = pData0;
2720     do{
2721       applyAffinity(pRec++, *(zAffinity++), encoding);
2722       assert( zAffinity[0]==0 || pRec<=pLast );
2723     }while( zAffinity[0] );
2724   }
2725 
2726 #ifdef SQLITE_ENABLE_NULL_TRIM
2727   /* NULLs can be safely trimmed from the end of the record, as long as
2728   ** as the schema format is 2 or more and none of the omitted columns
2729   ** have a non-NULL default value.  Also, the record must be left with
2730   ** at least one field.  If P5>0 then it will be one more than the
2731   ** index of the right-most column with a non-NULL default value */
2732   if( pOp->p5 ){
2733     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2734       pLast--;
2735       nField--;
2736     }
2737   }
2738 #endif
2739 
2740   /* Loop through the elements that will make up the record to figure
2741   ** out how much space is required for the new record.
2742   */
2743   pRec = pLast;
2744   do{
2745     assert( memIsValid(pRec) );
2746     pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2747     if( pRec->flags & MEM_Zero ){
2748       if( nData ){
2749         if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2750       }else{
2751         nZero += pRec->u.nZero;
2752         len -= pRec->u.nZero;
2753       }
2754     }
2755     nData += len;
2756     testcase( serial_type==127 );
2757     testcase( serial_type==128 );
2758     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2759     if( pRec==pData0 ) break;
2760     pRec--;
2761   }while(1);
2762 
2763   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2764   ** which determines the total number of bytes in the header. The varint
2765   ** value is the size of the header in bytes including the size varint
2766   ** itself. */
2767   testcase( nHdr==126 );
2768   testcase( nHdr==127 );
2769   if( nHdr<=126 ){
2770     /* The common case */
2771     nHdr += 1;
2772   }else{
2773     /* Rare case of a really large header */
2774     nVarint = sqlite3VarintLen(nHdr);
2775     nHdr += nVarint;
2776     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2777   }
2778   nByte = nHdr+nData;
2779   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2780     goto too_big;
2781   }
2782 
2783   /* Make sure the output register has a buffer large enough to store
2784   ** the new record. The output register (pOp->p3) is not allowed to
2785   ** be one of the input registers (because the following call to
2786   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2787   */
2788   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2789     goto no_mem;
2790   }
2791   zNewRecord = (u8 *)pOut->z;
2792 
2793   /* Write the record */
2794   i = putVarint32(zNewRecord, nHdr);
2795   j = nHdr;
2796   assert( pData0<=pLast );
2797   pRec = pData0;
2798   do{
2799     serial_type = pRec->uTemp;
2800     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2801     ** additional varints, one per column. */
2802     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2803     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2804     ** immediately follow the header. */
2805     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2806   }while( (++pRec)<=pLast );
2807   assert( i==nHdr );
2808   assert( j==nByte );
2809 
2810   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2811   pOut->n = (int)nByte;
2812   pOut->flags = MEM_Blob;
2813   if( nZero ){
2814     pOut->u.nZero = nZero;
2815     pOut->flags |= MEM_Zero;
2816   }
2817   REGISTER_TRACE(pOp->p3, pOut);
2818   UPDATE_MAX_BLOBSIZE(pOut);
2819   break;
2820 }
2821 
2822 /* Opcode: Count P1 P2 * * *
2823 ** Synopsis: r[P2]=count()
2824 **
2825 ** Store the number of entries (an integer value) in the table or index
2826 ** opened by cursor P1 in register P2
2827 */
2828 #ifndef SQLITE_OMIT_BTREECOUNT
2829 case OP_Count: {         /* out2 */
2830   i64 nEntry;
2831   BtCursor *pCrsr;
2832 
2833   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2834   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2835   assert( pCrsr );
2836   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2837   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2838   if( rc ) goto abort_due_to_error;
2839   pOut = out2Prerelease(p, pOp);
2840   pOut->u.i = nEntry;
2841   break;
2842 }
2843 #endif
2844 
2845 /* Opcode: Savepoint P1 * * P4 *
2846 **
2847 ** Open, release or rollback the savepoint named by parameter P4, depending
2848 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2849 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2850 */
2851 case OP_Savepoint: {
2852   int p1;                         /* Value of P1 operand */
2853   char *zName;                    /* Name of savepoint */
2854   int nName;
2855   Savepoint *pNew;
2856   Savepoint *pSavepoint;
2857   Savepoint *pTmp;
2858   int iSavepoint;
2859   int ii;
2860 
2861   p1 = pOp->p1;
2862   zName = pOp->p4.z;
2863 
2864   /* Assert that the p1 parameter is valid. Also that if there is no open
2865   ** transaction, then there cannot be any savepoints.
2866   */
2867   assert( db->pSavepoint==0 || db->autoCommit==0 );
2868   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2869   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2870   assert( checkSavepointCount(db) );
2871   assert( p->bIsReader );
2872 
2873   if( p1==SAVEPOINT_BEGIN ){
2874     if( db->nVdbeWrite>0 ){
2875       /* A new savepoint cannot be created if there are active write
2876       ** statements (i.e. open read/write incremental blob handles).
2877       */
2878       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2879       rc = SQLITE_BUSY;
2880     }else{
2881       nName = sqlite3Strlen30(zName);
2882 
2883 #ifndef SQLITE_OMIT_VIRTUALTABLE
2884       /* This call is Ok even if this savepoint is actually a transaction
2885       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2886       ** If this is a transaction savepoint being opened, it is guaranteed
2887       ** that the db->aVTrans[] array is empty.  */
2888       assert( db->autoCommit==0 || db->nVTrans==0 );
2889       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2890                                 db->nStatement+db->nSavepoint);
2891       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2892 #endif
2893 
2894       /* Create a new savepoint structure. */
2895       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
2896       if( pNew ){
2897         pNew->zName = (char *)&pNew[1];
2898         memcpy(pNew->zName, zName, nName+1);
2899 
2900         /* If there is no open transaction, then mark this as a special
2901         ** "transaction savepoint". */
2902         if( db->autoCommit ){
2903           db->autoCommit = 0;
2904           db->isTransactionSavepoint = 1;
2905         }else{
2906           db->nSavepoint++;
2907         }
2908 
2909         /* Link the new savepoint into the database handle's list. */
2910         pNew->pNext = db->pSavepoint;
2911         db->pSavepoint = pNew;
2912         pNew->nDeferredCons = db->nDeferredCons;
2913         pNew->nDeferredImmCons = db->nDeferredImmCons;
2914       }
2915     }
2916   }else{
2917     iSavepoint = 0;
2918 
2919     /* Find the named savepoint. If there is no such savepoint, then an
2920     ** an error is returned to the user.  */
2921     for(
2922       pSavepoint = db->pSavepoint;
2923       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2924       pSavepoint = pSavepoint->pNext
2925     ){
2926       iSavepoint++;
2927     }
2928     if( !pSavepoint ){
2929       sqlite3VdbeError(p, "no such savepoint: %s", zName);
2930       rc = SQLITE_ERROR;
2931     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2932       /* It is not possible to release (commit) a savepoint if there are
2933       ** active write statements.
2934       */
2935       sqlite3VdbeError(p, "cannot release savepoint - "
2936                           "SQL statements in progress");
2937       rc = SQLITE_BUSY;
2938     }else{
2939 
2940       /* Determine whether or not this is a transaction savepoint. If so,
2941       ** and this is a RELEASE command, then the current transaction
2942       ** is committed.
2943       */
2944       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2945       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2946         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2947           goto vdbe_return;
2948         }
2949         db->autoCommit = 1;
2950         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2951           p->pc = (int)(pOp - aOp);
2952           db->autoCommit = 0;
2953           p->rc = rc = SQLITE_BUSY;
2954           goto vdbe_return;
2955         }
2956         db->isTransactionSavepoint = 0;
2957         rc = p->rc;
2958       }else{
2959         int isSchemaChange;
2960         iSavepoint = db->nSavepoint - iSavepoint - 1;
2961         if( p1==SAVEPOINT_ROLLBACK ){
2962           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
2963           for(ii=0; ii<db->nDb; ii++){
2964             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2965                                        SQLITE_ABORT_ROLLBACK,
2966                                        isSchemaChange==0);
2967             if( rc!=SQLITE_OK ) goto abort_due_to_error;
2968           }
2969         }else{
2970           isSchemaChange = 0;
2971         }
2972         for(ii=0; ii<db->nDb; ii++){
2973           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2974           if( rc!=SQLITE_OK ){
2975             goto abort_due_to_error;
2976           }
2977         }
2978         if( isSchemaChange ){
2979           sqlite3ExpirePreparedStatements(db);
2980           sqlite3ResetAllSchemasOfConnection(db);
2981           db->mDbFlags |= DBFLAG_SchemaChange;
2982         }
2983       }
2984 
2985       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2986       ** savepoints nested inside of the savepoint being operated on. */
2987       while( db->pSavepoint!=pSavepoint ){
2988         pTmp = db->pSavepoint;
2989         db->pSavepoint = pTmp->pNext;
2990         sqlite3DbFree(db, pTmp);
2991         db->nSavepoint--;
2992       }
2993 
2994       /* If it is a RELEASE, then destroy the savepoint being operated on
2995       ** too. If it is a ROLLBACK TO, then set the number of deferred
2996       ** constraint violations present in the database to the value stored
2997       ** when the savepoint was created.  */
2998       if( p1==SAVEPOINT_RELEASE ){
2999         assert( pSavepoint==db->pSavepoint );
3000         db->pSavepoint = pSavepoint->pNext;
3001         sqlite3DbFree(db, pSavepoint);
3002         if( !isTransaction ){
3003           db->nSavepoint--;
3004         }
3005       }else{
3006         db->nDeferredCons = pSavepoint->nDeferredCons;
3007         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3008       }
3009 
3010       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3011         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3012         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3013       }
3014     }
3015   }
3016   if( rc ) goto abort_due_to_error;
3017 
3018   break;
3019 }
3020 
3021 /* Opcode: AutoCommit P1 P2 * * *
3022 **
3023 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3024 ** back any currently active btree transactions. If there are any active
3025 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3026 ** there are active writing VMs or active VMs that use shared cache.
3027 **
3028 ** This instruction causes the VM to halt.
3029 */
3030 case OP_AutoCommit: {
3031   int desiredAutoCommit;
3032   int iRollback;
3033 
3034   desiredAutoCommit = pOp->p1;
3035   iRollback = pOp->p2;
3036   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3037   assert( desiredAutoCommit==1 || iRollback==0 );
3038   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3039   assert( p->bIsReader );
3040 
3041   if( desiredAutoCommit!=db->autoCommit ){
3042     if( iRollback ){
3043       assert( desiredAutoCommit==1 );
3044       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3045       db->autoCommit = 1;
3046     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3047       /* If this instruction implements a COMMIT and other VMs are writing
3048       ** return an error indicating that the other VMs must complete first.
3049       */
3050       sqlite3VdbeError(p, "cannot commit transaction - "
3051                           "SQL statements in progress");
3052       rc = SQLITE_BUSY;
3053       goto abort_due_to_error;
3054     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3055       goto vdbe_return;
3056     }else{
3057       db->autoCommit = (u8)desiredAutoCommit;
3058     }
3059     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3060       p->pc = (int)(pOp - aOp);
3061       db->autoCommit = (u8)(1-desiredAutoCommit);
3062       p->rc = rc = SQLITE_BUSY;
3063       goto vdbe_return;
3064     }
3065     assert( db->nStatement==0 );
3066     sqlite3CloseSavepoints(db);
3067     if( p->rc==SQLITE_OK ){
3068       rc = SQLITE_DONE;
3069     }else{
3070       rc = SQLITE_ERROR;
3071     }
3072     goto vdbe_return;
3073   }else{
3074     sqlite3VdbeError(p,
3075         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3076         (iRollback)?"cannot rollback - no transaction is active":
3077                    "cannot commit - no transaction is active"));
3078 
3079     rc = SQLITE_ERROR;
3080     goto abort_due_to_error;
3081   }
3082   break;
3083 }
3084 
3085 /* Opcode: Transaction P1 P2 P3 P4 P5
3086 **
3087 ** Begin a transaction on database P1 if a transaction is not already
3088 ** active.
3089 ** If P2 is non-zero, then a write-transaction is started, or if a
3090 ** read-transaction is already active, it is upgraded to a write-transaction.
3091 ** If P2 is zero, then a read-transaction is started.
3092 **
3093 ** P1 is the index of the database file on which the transaction is
3094 ** started.  Index 0 is the main database file and index 1 is the
3095 ** file used for temporary tables.  Indices of 2 or more are used for
3096 ** attached databases.
3097 **
3098 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3099 ** true (this flag is set if the Vdbe may modify more than one row and may
3100 ** throw an ABORT exception), a statement transaction may also be opened.
3101 ** More specifically, a statement transaction is opened iff the database
3102 ** connection is currently not in autocommit mode, or if there are other
3103 ** active statements. A statement transaction allows the changes made by this
3104 ** VDBE to be rolled back after an error without having to roll back the
3105 ** entire transaction. If no error is encountered, the statement transaction
3106 ** will automatically commit when the VDBE halts.
3107 **
3108 ** If P5!=0 then this opcode also checks the schema cookie against P3
3109 ** and the schema generation counter against P4.
3110 ** The cookie changes its value whenever the database schema changes.
3111 ** This operation is used to detect when that the cookie has changed
3112 ** and that the current process needs to reread the schema.  If the schema
3113 ** cookie in P3 differs from the schema cookie in the database header or
3114 ** if the schema generation counter in P4 differs from the current
3115 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3116 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3117 ** statement and rerun it from the beginning.
3118 */
3119 case OP_Transaction: {
3120   Btree *pBt;
3121   int iMeta;
3122   int iGen;
3123 
3124   assert( p->bIsReader );
3125   assert( p->readOnly==0 || pOp->p2==0 );
3126   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3127   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3128   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3129     rc = SQLITE_READONLY;
3130     goto abort_due_to_error;
3131   }
3132   pBt = db->aDb[pOp->p1].pBt;
3133 
3134   if( pBt ){
3135     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3136     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3137     testcase( rc==SQLITE_BUSY_RECOVERY );
3138     if( rc!=SQLITE_OK ){
3139       if( (rc&0xff)==SQLITE_BUSY ){
3140         p->pc = (int)(pOp - aOp);
3141         p->rc = rc;
3142         goto vdbe_return;
3143       }
3144       goto abort_due_to_error;
3145     }
3146 
3147     if( pOp->p2 && p->usesStmtJournal
3148      && (db->autoCommit==0 || db->nVdbeRead>1)
3149     ){
3150       assert( sqlite3BtreeIsInTrans(pBt) );
3151       if( p->iStatement==0 ){
3152         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3153         db->nStatement++;
3154         p->iStatement = db->nSavepoint + db->nStatement;
3155       }
3156 
3157       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3158       if( rc==SQLITE_OK ){
3159         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3160       }
3161 
3162       /* Store the current value of the database handles deferred constraint
3163       ** counter. If the statement transaction needs to be rolled back,
3164       ** the value of this counter needs to be restored too.  */
3165       p->nStmtDefCons = db->nDeferredCons;
3166       p->nStmtDefImmCons = db->nDeferredImmCons;
3167     }
3168 
3169     /* Gather the schema version number for checking:
3170     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3171     ** version is checked to ensure that the schema has not changed since the
3172     ** SQL statement was prepared.
3173     */
3174     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3175     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3176   }else{
3177     iGen = iMeta = 0;
3178   }
3179   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3180   if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3181     sqlite3DbFree(db, p->zErrMsg);
3182     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3183     /* If the schema-cookie from the database file matches the cookie
3184     ** stored with the in-memory representation of the schema, do
3185     ** not reload the schema from the database file.
3186     **
3187     ** If virtual-tables are in use, this is not just an optimization.
3188     ** Often, v-tables store their data in other SQLite tables, which
3189     ** are queried from within xNext() and other v-table methods using
3190     ** prepared queries. If such a query is out-of-date, we do not want to
3191     ** discard the database schema, as the user code implementing the
3192     ** v-table would have to be ready for the sqlite3_vtab structure itself
3193     ** to be invalidated whenever sqlite3_step() is called from within
3194     ** a v-table method.
3195     */
3196     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3197       sqlite3ResetOneSchema(db, pOp->p1);
3198     }
3199     p->expired = 1;
3200     rc = SQLITE_SCHEMA;
3201   }
3202   if( rc ) goto abort_due_to_error;
3203   break;
3204 }
3205 
3206 /* Opcode: ReadCookie P1 P2 P3 * *
3207 **
3208 ** Read cookie number P3 from database P1 and write it into register P2.
3209 ** P3==1 is the schema version.  P3==2 is the database format.
3210 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3211 ** the main database file and P1==1 is the database file used to store
3212 ** temporary tables.
3213 **
3214 ** There must be a read-lock on the database (either a transaction
3215 ** must be started or there must be an open cursor) before
3216 ** executing this instruction.
3217 */
3218 case OP_ReadCookie: {               /* out2 */
3219   int iMeta;
3220   int iDb;
3221   int iCookie;
3222 
3223   assert( p->bIsReader );
3224   iDb = pOp->p1;
3225   iCookie = pOp->p3;
3226   assert( pOp->p3<SQLITE_N_BTREE_META );
3227   assert( iDb>=0 && iDb<db->nDb );
3228   assert( db->aDb[iDb].pBt!=0 );
3229   assert( DbMaskTest(p->btreeMask, iDb) );
3230 
3231   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3232   pOut = out2Prerelease(p, pOp);
3233   pOut->u.i = iMeta;
3234   break;
3235 }
3236 
3237 /* Opcode: SetCookie P1 P2 P3 * *
3238 **
3239 ** Write the integer value P3 into cookie number P2 of database P1.
3240 ** P2==1 is the schema version.  P2==2 is the database format.
3241 ** P2==3 is the recommended pager cache
3242 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3243 ** database file used to store temporary tables.
3244 **
3245 ** A transaction must be started before executing this opcode.
3246 */
3247 case OP_SetCookie: {
3248   Db *pDb;
3249   assert( pOp->p2<SQLITE_N_BTREE_META );
3250   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3251   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3252   assert( p->readOnly==0 );
3253   pDb = &db->aDb[pOp->p1];
3254   assert( pDb->pBt!=0 );
3255   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3256   /* See note about index shifting on OP_ReadCookie */
3257   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3258   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3259     /* When the schema cookie changes, record the new cookie internally */
3260     pDb->pSchema->schema_cookie = pOp->p3;
3261     db->mDbFlags |= DBFLAG_SchemaChange;
3262   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3263     /* Record changes in the file format */
3264     pDb->pSchema->file_format = pOp->p3;
3265   }
3266   if( pOp->p1==1 ){
3267     /* Invalidate all prepared statements whenever the TEMP database
3268     ** schema is changed.  Ticket #1644 */
3269     sqlite3ExpirePreparedStatements(db);
3270     p->expired = 0;
3271   }
3272   if( rc ) goto abort_due_to_error;
3273   break;
3274 }
3275 
3276 /* Opcode: OpenRead P1 P2 P3 P4 P5
3277 ** Synopsis: root=P2 iDb=P3
3278 **
3279 ** Open a read-only cursor for the database table whose root page is
3280 ** P2 in a database file.  The database file is determined by P3.
3281 ** P3==0 means the main database, P3==1 means the database used for
3282 ** temporary tables, and P3>1 means used the corresponding attached
3283 ** database.  Give the new cursor an identifier of P1.  The P1
3284 ** values need not be contiguous but all P1 values should be small integers.
3285 ** It is an error for P1 to be negative.
3286 **
3287 ** If P5!=0 then use the content of register P2 as the root page, not
3288 ** the value of P2 itself.
3289 **
3290 ** There will be a read lock on the database whenever there is an
3291 ** open cursor.  If the database was unlocked prior to this instruction
3292 ** then a read lock is acquired as part of this instruction.  A read
3293 ** lock allows other processes to read the database but prohibits
3294 ** any other process from modifying the database.  The read lock is
3295 ** released when all cursors are closed.  If this instruction attempts
3296 ** to get a read lock but fails, the script terminates with an
3297 ** SQLITE_BUSY error code.
3298 **
3299 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3300 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3301 ** structure, then said structure defines the content and collating
3302 ** sequence of the index being opened. Otherwise, if P4 is an integer
3303 ** value, it is set to the number of columns in the table.
3304 **
3305 ** See also: OpenWrite, ReopenIdx
3306 */
3307 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3308 ** Synopsis: root=P2 iDb=P3
3309 **
3310 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3311 ** checks to see if the cursor on P1 is already open with a root page
3312 ** number of P2 and if it is this opcode becomes a no-op.  In other words,
3313 ** if the cursor is already open, do not reopen it.
3314 **
3315 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3316 ** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
3317 ** every other ReopenIdx or OpenRead for the same cursor number.
3318 **
3319 ** See the OpenRead opcode documentation for additional information.
3320 */
3321 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3322 ** Synopsis: root=P2 iDb=P3
3323 **
3324 ** Open a read/write cursor named P1 on the table or index whose root
3325 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3326 ** root page.
3327 **
3328 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3329 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3330 ** structure, then said structure defines the content and collating
3331 ** sequence of the index being opened. Otherwise, if P4 is an integer
3332 ** value, it is set to the number of columns in the table, or to the
3333 ** largest index of any column of the table that is actually used.
3334 **
3335 ** This instruction works just like OpenRead except that it opens the cursor
3336 ** in read/write mode.  For a given table, there can be one or more read-only
3337 ** cursors or a single read/write cursor but not both.
3338 **
3339 ** See also OpenRead.
3340 */
3341 case OP_ReopenIdx: {
3342   int nField;
3343   KeyInfo *pKeyInfo;
3344   int p2;
3345   int iDb;
3346   int wrFlag;
3347   Btree *pX;
3348   VdbeCursor *pCur;
3349   Db *pDb;
3350 
3351   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3352   assert( pOp->p4type==P4_KEYINFO );
3353   pCur = p->apCsr[pOp->p1];
3354   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3355     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3356     goto open_cursor_set_hints;
3357   }
3358   /* If the cursor is not currently open or is open on a different
3359   ** index, then fall through into OP_OpenRead to force a reopen */
3360 case OP_OpenRead:
3361 case OP_OpenWrite:
3362 
3363   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3364   assert( p->bIsReader );
3365   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3366           || p->readOnly==0 );
3367 
3368   if( p->expired ){
3369     rc = SQLITE_ABORT_ROLLBACK;
3370     goto abort_due_to_error;
3371   }
3372 
3373   nField = 0;
3374   pKeyInfo = 0;
3375   p2 = pOp->p2;
3376   iDb = pOp->p3;
3377   assert( iDb>=0 && iDb<db->nDb );
3378   assert( DbMaskTest(p->btreeMask, iDb) );
3379   pDb = &db->aDb[iDb];
3380   pX = pDb->pBt;
3381   assert( pX!=0 );
3382   if( pOp->opcode==OP_OpenWrite ){
3383     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3384     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3385     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3386     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3387       p->minWriteFileFormat = pDb->pSchema->file_format;
3388     }
3389   }else{
3390     wrFlag = 0;
3391   }
3392   if( pOp->p5 & OPFLAG_P2ISREG ){
3393     assert( p2>0 );
3394     assert( p2<=(p->nMem+1 - p->nCursor) );
3395     pIn2 = &aMem[p2];
3396     assert( memIsValid(pIn2) );
3397     assert( (pIn2->flags & MEM_Int)!=0 );
3398     sqlite3VdbeMemIntegerify(pIn2);
3399     p2 = (int)pIn2->u.i;
3400     /* The p2 value always comes from a prior OP_CreateTable opcode and
3401     ** that opcode will always set the p2 value to 2 or more or else fail.
3402     ** If there were a failure, the prepared statement would have halted
3403     ** before reaching this instruction. */
3404     assert( p2>=2 );
3405   }
3406   if( pOp->p4type==P4_KEYINFO ){
3407     pKeyInfo = pOp->p4.pKeyInfo;
3408     assert( pKeyInfo->enc==ENC(db) );
3409     assert( pKeyInfo->db==db );
3410     nField = pKeyInfo->nAllField;
3411   }else if( pOp->p4type==P4_INT32 ){
3412     nField = pOp->p4.i;
3413   }
3414   assert( pOp->p1>=0 );
3415   assert( nField>=0 );
3416   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3417   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3418   if( pCur==0 ) goto no_mem;
3419   pCur->nullRow = 1;
3420   pCur->isOrdered = 1;
3421   pCur->pgnoRoot = p2;
3422 #ifdef SQLITE_DEBUG
3423   pCur->wrFlag = wrFlag;
3424 #endif
3425   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3426   pCur->pKeyInfo = pKeyInfo;
3427   /* Set the VdbeCursor.isTable variable. Previous versions of
3428   ** SQLite used to check if the root-page flags were sane at this point
3429   ** and report database corruption if they were not, but this check has
3430   ** since moved into the btree layer.  */
3431   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3432 
3433 open_cursor_set_hints:
3434   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3435   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3436   testcase( pOp->p5 & OPFLAG_BULKCSR );
3437 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3438   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3439 #endif
3440   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3441                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3442   if( rc ) goto abort_due_to_error;
3443   break;
3444 }
3445 
3446 /* Opcode: OpenDup P1 P2 * * *
3447 **
3448 ** Open a new cursor P1 that points to the same ephemeral table as
3449 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3450 ** opcode.  Only ephemeral cursors may be duplicated.
3451 **
3452 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3453 */
3454 case OP_OpenDup: {
3455   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3456   VdbeCursor *pCx;      /* The new cursor */
3457 
3458   pOrig = p->apCsr[pOp->p2];
3459   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3460 
3461   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3462   if( pCx==0 ) goto no_mem;
3463   pCx->nullRow = 1;
3464   pCx->isEphemeral = 1;
3465   pCx->pKeyInfo = pOrig->pKeyInfo;
3466   pCx->isTable = pOrig->isTable;
3467   rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
3468                           pCx->pKeyInfo, pCx->uc.pCursor);
3469   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3470   ** opened for a database.  Since there is already an open cursor when this
3471   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3472   assert( rc==SQLITE_OK );
3473   break;
3474 }
3475 
3476 
3477 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3478 ** Synopsis: nColumn=P2
3479 **
3480 ** Open a new cursor P1 to a transient table.
3481 ** The cursor is always opened read/write even if
3482 ** the main database is read-only.  The ephemeral
3483 ** table is deleted automatically when the cursor is closed.
3484 **
3485 ** P2 is the number of columns in the ephemeral table.
3486 ** The cursor points to a BTree table if P4==0 and to a BTree index
3487 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3488 ** that defines the format of keys in the index.
3489 **
3490 ** The P5 parameter can be a mask of the BTREE_* flags defined
3491 ** in btree.h.  These flags control aspects of the operation of
3492 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3493 ** added automatically.
3494 */
3495 /* Opcode: OpenAutoindex P1 P2 * P4 *
3496 ** Synopsis: nColumn=P2
3497 **
3498 ** This opcode works the same as OP_OpenEphemeral.  It has a
3499 ** different name to distinguish its use.  Tables created using
3500 ** by this opcode will be used for automatically created transient
3501 ** indices in joins.
3502 */
3503 case OP_OpenAutoindex:
3504 case OP_OpenEphemeral: {
3505   VdbeCursor *pCx;
3506   KeyInfo *pKeyInfo;
3507 
3508   static const int vfsFlags =
3509       SQLITE_OPEN_READWRITE |
3510       SQLITE_OPEN_CREATE |
3511       SQLITE_OPEN_EXCLUSIVE |
3512       SQLITE_OPEN_DELETEONCLOSE |
3513       SQLITE_OPEN_TRANSIENT_DB;
3514   assert( pOp->p1>=0 );
3515   assert( pOp->p2>=0 );
3516   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3517   if( pCx==0 ) goto no_mem;
3518   pCx->nullRow = 1;
3519   pCx->isEphemeral = 1;
3520   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3521                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3522   if( rc==SQLITE_OK ){
3523     rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1);
3524   }
3525   if( rc==SQLITE_OK ){
3526     /* If a transient index is required, create it by calling
3527     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3528     ** opening it. If a transient table is required, just use the
3529     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3530     */
3531     if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3532       int pgno;
3533       assert( pOp->p4type==P4_KEYINFO );
3534       rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
3535       if( rc==SQLITE_OK ){
3536         assert( pgno==MASTER_ROOT+1 );
3537         assert( pKeyInfo->db==db );
3538         assert( pKeyInfo->enc==ENC(db) );
3539         rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
3540                                 pKeyInfo, pCx->uc.pCursor);
3541       }
3542       pCx->isTable = 0;
3543     }else{
3544       rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3545                               0, pCx->uc.pCursor);
3546       pCx->isTable = 1;
3547     }
3548   }
3549   if( rc ) goto abort_due_to_error;
3550   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3551   break;
3552 }
3553 
3554 /* Opcode: SorterOpen P1 P2 P3 P4 *
3555 **
3556 ** This opcode works like OP_OpenEphemeral except that it opens
3557 ** a transient index that is specifically designed to sort large
3558 ** tables using an external merge-sort algorithm.
3559 **
3560 ** If argument P3 is non-zero, then it indicates that the sorter may
3561 ** assume that a stable sort considering the first P3 fields of each
3562 ** key is sufficient to produce the required results.
3563 */
3564 case OP_SorterOpen: {
3565   VdbeCursor *pCx;
3566 
3567   assert( pOp->p1>=0 );
3568   assert( pOp->p2>=0 );
3569   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3570   if( pCx==0 ) goto no_mem;
3571   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3572   assert( pCx->pKeyInfo->db==db );
3573   assert( pCx->pKeyInfo->enc==ENC(db) );
3574   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3575   if( rc ) goto abort_due_to_error;
3576   break;
3577 }
3578 
3579 /* Opcode: SequenceTest P1 P2 * * *
3580 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3581 **
3582 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3583 ** to P2. Regardless of whether or not the jump is taken, increment the
3584 ** the sequence value.
3585 */
3586 case OP_SequenceTest: {
3587   VdbeCursor *pC;
3588   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3589   pC = p->apCsr[pOp->p1];
3590   assert( isSorter(pC) );
3591   if( (pC->seqCount++)==0 ){
3592     goto jump_to_p2;
3593   }
3594   break;
3595 }
3596 
3597 /* Opcode: OpenPseudo P1 P2 P3 * *
3598 ** Synopsis: P3 columns in r[P2]
3599 **
3600 ** Open a new cursor that points to a fake table that contains a single
3601 ** row of data.  The content of that one row is the content of memory
3602 ** register P2.  In other words, cursor P1 becomes an alias for the
3603 ** MEM_Blob content contained in register P2.
3604 **
3605 ** A pseudo-table created by this opcode is used to hold a single
3606 ** row output from the sorter so that the row can be decomposed into
3607 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3608 ** is the only cursor opcode that works with a pseudo-table.
3609 **
3610 ** P3 is the number of fields in the records that will be stored by
3611 ** the pseudo-table.
3612 */
3613 case OP_OpenPseudo: {
3614   VdbeCursor *pCx;
3615 
3616   assert( pOp->p1>=0 );
3617   assert( pOp->p3>=0 );
3618   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3619   if( pCx==0 ) goto no_mem;
3620   pCx->nullRow = 1;
3621   pCx->uc.pseudoTableReg = pOp->p2;
3622   pCx->isTable = 1;
3623   assert( pOp->p5==0 );
3624   break;
3625 }
3626 
3627 /* Opcode: Close P1 * * * *
3628 **
3629 ** Close a cursor previously opened as P1.  If P1 is not
3630 ** currently open, this instruction is a no-op.
3631 */
3632 case OP_Close: {
3633   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3634   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3635   p->apCsr[pOp->p1] = 0;
3636   break;
3637 }
3638 
3639 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3640 /* Opcode: ColumnsUsed P1 * * P4 *
3641 **
3642 ** This opcode (which only exists if SQLite was compiled with
3643 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3644 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3645 ** (P4_INT64) in which the first 63 bits are one for each of the
3646 ** first 63 columns of the table or index that are actually used
3647 ** by the cursor.  The high-order bit is set if any column after
3648 ** the 64th is used.
3649 */
3650 case OP_ColumnsUsed: {
3651   VdbeCursor *pC;
3652   pC = p->apCsr[pOp->p1];
3653   assert( pC->eCurType==CURTYPE_BTREE );
3654   pC->maskUsed = *(u64*)pOp->p4.pI64;
3655   break;
3656 }
3657 #endif
3658 
3659 /* Opcode: SeekGE P1 P2 P3 P4 *
3660 ** Synopsis: key=r[P3@P4]
3661 **
3662 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3663 ** use the value in register P3 as the key.  If cursor P1 refers
3664 ** to an SQL index, then P3 is the first in an array of P4 registers
3665 ** that are used as an unpacked index key.
3666 **
3667 ** Reposition cursor P1 so that  it points to the smallest entry that
3668 ** is greater than or equal to the key value. If there are no records
3669 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3670 **
3671 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3672 ** opcode will always land on a record that equally equals the key, or
3673 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3674 ** opcode must be followed by an IdxLE opcode with the same arguments.
3675 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3676 ** IdxLE opcode will be used on subsequent loop iterations.
3677 **
3678 ** This opcode leaves the cursor configured to move in forward order,
3679 ** from the beginning toward the end.  In other words, the cursor is
3680 ** configured to use Next, not Prev.
3681 **
3682 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3683 */
3684 /* Opcode: SeekGT P1 P2 P3 P4 *
3685 ** Synopsis: key=r[P3@P4]
3686 **
3687 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3688 ** use the value in register P3 as a key. If cursor P1 refers
3689 ** to an SQL index, then P3 is the first in an array of P4 registers
3690 ** that are used as an unpacked index key.
3691 **
3692 ** Reposition cursor P1 so that  it points to the smallest entry that
3693 ** is greater than the key value. If there are no records greater than
3694 ** the key and P2 is not zero, then jump to P2.
3695 **
3696 ** This opcode leaves the cursor configured to move in forward order,
3697 ** from the beginning toward the end.  In other words, the cursor is
3698 ** configured to use Next, not Prev.
3699 **
3700 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3701 */
3702 /* Opcode: SeekLT P1 P2 P3 P4 *
3703 ** Synopsis: key=r[P3@P4]
3704 **
3705 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3706 ** use the value in register P3 as a key. If cursor P1 refers
3707 ** to an SQL index, then P3 is the first in an array of P4 registers
3708 ** that are used as an unpacked index key.
3709 **
3710 ** Reposition cursor P1 so that  it points to the largest entry that
3711 ** is less than the key value. If there are no records less than
3712 ** the key and P2 is not zero, then jump to P2.
3713 **
3714 ** This opcode leaves the cursor configured to move in reverse order,
3715 ** from the end toward the beginning.  In other words, the cursor is
3716 ** configured to use Prev, not Next.
3717 **
3718 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3719 */
3720 /* Opcode: SeekLE P1 P2 P3 P4 *
3721 ** Synopsis: key=r[P3@P4]
3722 **
3723 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3724 ** use the value in register P3 as a key. If cursor P1 refers
3725 ** to an SQL index, then P3 is the first in an array of P4 registers
3726 ** that are used as an unpacked index key.
3727 **
3728 ** Reposition cursor P1 so that it points to the largest entry that
3729 ** is less than or equal to the key value. If there are no records
3730 ** less than or equal to the key and P2 is not zero, then jump to P2.
3731 **
3732 ** This opcode leaves the cursor configured to move in reverse order,
3733 ** from the end toward the beginning.  In other words, the cursor is
3734 ** configured to use Prev, not Next.
3735 **
3736 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3737 ** opcode will always land on a record that equally equals the key, or
3738 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3739 ** opcode must be followed by an IdxGE opcode with the same arguments.
3740 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3741 ** IdxGE opcode will be used on subsequent loop iterations.
3742 **
3743 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3744 */
3745 case OP_SeekLT:         /* jump, in3 */
3746 case OP_SeekLE:         /* jump, in3 */
3747 case OP_SeekGE:         /* jump, in3 */
3748 case OP_SeekGT: {       /* jump, in3 */
3749   int res;           /* Comparison result */
3750   int oc;            /* Opcode */
3751   VdbeCursor *pC;    /* The cursor to seek */
3752   UnpackedRecord r;  /* The key to seek for */
3753   int nField;        /* Number of columns or fields in the key */
3754   i64 iKey;          /* The rowid we are to seek to */
3755   int eqOnly;        /* Only interested in == results */
3756 
3757   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3758   assert( pOp->p2!=0 );
3759   pC = p->apCsr[pOp->p1];
3760   assert( pC!=0 );
3761   assert( pC->eCurType==CURTYPE_BTREE );
3762   assert( OP_SeekLE == OP_SeekLT+1 );
3763   assert( OP_SeekGE == OP_SeekLT+2 );
3764   assert( OP_SeekGT == OP_SeekLT+3 );
3765   assert( pC->isOrdered );
3766   assert( pC->uc.pCursor!=0 );
3767   oc = pOp->opcode;
3768   eqOnly = 0;
3769   pC->nullRow = 0;
3770 #ifdef SQLITE_DEBUG
3771   pC->seekOp = pOp->opcode;
3772 #endif
3773 
3774   if( pC->isTable ){
3775     /* The BTREE_SEEK_EQ flag is only set on index cursors */
3776     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
3777               || CORRUPT_DB );
3778 
3779     /* The input value in P3 might be of any type: integer, real, string,
3780     ** blob, or NULL.  But it needs to be an integer before we can do
3781     ** the seek, so convert it. */
3782     pIn3 = &aMem[pOp->p3];
3783     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3784       applyNumericAffinity(pIn3, 0);
3785     }
3786     iKey = sqlite3VdbeIntValue(pIn3);
3787 
3788     /* If the P3 value could not be converted into an integer without
3789     ** loss of information, then special processing is required... */
3790     if( (pIn3->flags & MEM_Int)==0 ){
3791       if( (pIn3->flags & MEM_Real)==0 ){
3792         /* If the P3 value cannot be converted into any kind of a number,
3793         ** then the seek is not possible, so jump to P2 */
3794         VdbeBranchTaken(1,2); goto jump_to_p2;
3795         break;
3796       }
3797 
3798       /* If the approximation iKey is larger than the actual real search
3799       ** term, substitute >= for > and < for <=. e.g. if the search term
3800       ** is 4.9 and the integer approximation 5:
3801       **
3802       **        (x >  4.9)    ->     (x >= 5)
3803       **        (x <= 4.9)    ->     (x <  5)
3804       */
3805       if( pIn3->u.r<(double)iKey ){
3806         assert( OP_SeekGE==(OP_SeekGT-1) );
3807         assert( OP_SeekLT==(OP_SeekLE-1) );
3808         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3809         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3810       }
3811 
3812       /* If the approximation iKey is smaller than the actual real search
3813       ** term, substitute <= for < and > for >=.  */
3814       else if( pIn3->u.r>(double)iKey ){
3815         assert( OP_SeekLE==(OP_SeekLT+1) );
3816         assert( OP_SeekGT==(OP_SeekGE+1) );
3817         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3818         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3819       }
3820     }
3821     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3822     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3823     if( rc!=SQLITE_OK ){
3824       goto abort_due_to_error;
3825     }
3826   }else{
3827     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3828     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3829     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3830     */
3831     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3832       eqOnly = 1;
3833       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3834       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3835       assert( pOp[1].p1==pOp[0].p1 );
3836       assert( pOp[1].p2==pOp[0].p2 );
3837       assert( pOp[1].p3==pOp[0].p3 );
3838       assert( pOp[1].p4.i==pOp[0].p4.i );
3839     }
3840 
3841     nField = pOp->p4.i;
3842     assert( pOp->p4type==P4_INT32 );
3843     assert( nField>0 );
3844     r.pKeyInfo = pC->pKeyInfo;
3845     r.nField = (u16)nField;
3846 
3847     /* The next line of code computes as follows, only faster:
3848     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3849     **     r.default_rc = -1;
3850     **   }else{
3851     **     r.default_rc = +1;
3852     **   }
3853     */
3854     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3855     assert( oc!=OP_SeekGT || r.default_rc==-1 );
3856     assert( oc!=OP_SeekLE || r.default_rc==-1 );
3857     assert( oc!=OP_SeekGE || r.default_rc==+1 );
3858     assert( oc!=OP_SeekLT || r.default_rc==+1 );
3859 
3860     r.aMem = &aMem[pOp->p3];
3861 #ifdef SQLITE_DEBUG
3862     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3863 #endif
3864     r.eqSeen = 0;
3865     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3866     if( rc!=SQLITE_OK ){
3867       goto abort_due_to_error;
3868     }
3869     if( eqOnly && r.eqSeen==0 ){
3870       assert( res!=0 );
3871       goto seek_not_found;
3872     }
3873   }
3874   pC->deferredMoveto = 0;
3875   pC->cacheStatus = CACHE_STALE;
3876 #ifdef SQLITE_TEST
3877   sqlite3_search_count++;
3878 #endif
3879   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
3880     if( res<0 || (res==0 && oc==OP_SeekGT) ){
3881       res = 0;
3882       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
3883       if( rc!=SQLITE_OK ){
3884         if( rc==SQLITE_DONE ){
3885           rc = SQLITE_OK;
3886           res = 1;
3887         }else{
3888           goto abort_due_to_error;
3889         }
3890       }
3891     }else{
3892       res = 0;
3893     }
3894   }else{
3895     assert( oc==OP_SeekLT || oc==OP_SeekLE );
3896     if( res>0 || (res==0 && oc==OP_SeekLT) ){
3897       res = 0;
3898       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
3899       if( rc!=SQLITE_OK ){
3900         if( rc==SQLITE_DONE ){
3901           rc = SQLITE_OK;
3902           res = 1;
3903         }else{
3904           goto abort_due_to_error;
3905         }
3906       }
3907     }else{
3908       /* res might be negative because the table is empty.  Check to
3909       ** see if this is the case.
3910       */
3911       res = sqlite3BtreeEof(pC->uc.pCursor);
3912     }
3913   }
3914 seek_not_found:
3915   assert( pOp->p2>0 );
3916   VdbeBranchTaken(res!=0,2);
3917   if( res ){
3918     goto jump_to_p2;
3919   }else if( eqOnly ){
3920     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3921     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3922   }
3923   break;
3924 }
3925 
3926 /* Opcode: Found P1 P2 P3 P4 *
3927 ** Synopsis: key=r[P3@P4]
3928 **
3929 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3930 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3931 ** record.
3932 **
3933 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3934 ** is a prefix of any entry in P1 then a jump is made to P2 and
3935 ** P1 is left pointing at the matching entry.
3936 **
3937 ** This operation leaves the cursor in a state where it can be
3938 ** advanced in the forward direction.  The Next instruction will work,
3939 ** but not the Prev instruction.
3940 **
3941 ** See also: NotFound, NoConflict, NotExists. SeekGe
3942 */
3943 /* Opcode: NotFound P1 P2 P3 P4 *
3944 ** Synopsis: key=r[P3@P4]
3945 **
3946 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3947 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3948 ** record.
3949 **
3950 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3951 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3952 ** does contain an entry whose prefix matches the P3/P4 record then control
3953 ** falls through to the next instruction and P1 is left pointing at the
3954 ** matching entry.
3955 **
3956 ** This operation leaves the cursor in a state where it cannot be
3957 ** advanced in either direction.  In other words, the Next and Prev
3958 ** opcodes do not work after this operation.
3959 **
3960 ** See also: Found, NotExists, NoConflict
3961 */
3962 /* Opcode: NoConflict P1 P2 P3 P4 *
3963 ** Synopsis: key=r[P3@P4]
3964 **
3965 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3966 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3967 ** record.
3968 **
3969 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3970 ** contains any NULL value, jump immediately to P2.  If all terms of the
3971 ** record are not-NULL then a check is done to determine if any row in the
3972 ** P1 index btree has a matching key prefix.  If there are no matches, jump
3973 ** immediately to P2.  If there is a match, fall through and leave the P1
3974 ** cursor pointing to the matching row.
3975 **
3976 ** This opcode is similar to OP_NotFound with the exceptions that the
3977 ** branch is always taken if any part of the search key input is NULL.
3978 **
3979 ** This operation leaves the cursor in a state where it cannot be
3980 ** advanced in either direction.  In other words, the Next and Prev
3981 ** opcodes do not work after this operation.
3982 **
3983 ** See also: NotFound, Found, NotExists
3984 */
3985 case OP_NoConflict:     /* jump, in3 */
3986 case OP_NotFound:       /* jump, in3 */
3987 case OP_Found: {        /* jump, in3 */
3988   int alreadyExists;
3989   int takeJump;
3990   int ii;
3991   VdbeCursor *pC;
3992   int res;
3993   UnpackedRecord *pFree;
3994   UnpackedRecord *pIdxKey;
3995   UnpackedRecord r;
3996 
3997 #ifdef SQLITE_TEST
3998   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3999 #endif
4000 
4001   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4002   assert( pOp->p4type==P4_INT32 );
4003   pC = p->apCsr[pOp->p1];
4004   assert( pC!=0 );
4005 #ifdef SQLITE_DEBUG
4006   pC->seekOp = pOp->opcode;
4007 #endif
4008   pIn3 = &aMem[pOp->p3];
4009   assert( pC->eCurType==CURTYPE_BTREE );
4010   assert( pC->uc.pCursor!=0 );
4011   assert( pC->isTable==0 );
4012   if( pOp->p4.i>0 ){
4013     r.pKeyInfo = pC->pKeyInfo;
4014     r.nField = (u16)pOp->p4.i;
4015     r.aMem = pIn3;
4016 #ifdef SQLITE_DEBUG
4017     for(ii=0; ii<r.nField; ii++){
4018       assert( memIsValid(&r.aMem[ii]) );
4019       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4020       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4021     }
4022 #endif
4023     pIdxKey = &r;
4024     pFree = 0;
4025   }else{
4026     assert( pIn3->flags & MEM_Blob );
4027     rc = ExpandBlob(pIn3);
4028     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4029     if( rc ) goto no_mem;
4030     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4031     if( pIdxKey==0 ) goto no_mem;
4032     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4033   }
4034   pIdxKey->default_rc = 0;
4035   takeJump = 0;
4036   if( pOp->opcode==OP_NoConflict ){
4037     /* For the OP_NoConflict opcode, take the jump if any of the
4038     ** input fields are NULL, since any key with a NULL will not
4039     ** conflict */
4040     for(ii=0; ii<pIdxKey->nField; ii++){
4041       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4042         takeJump = 1;
4043         break;
4044       }
4045     }
4046   }
4047   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4048   if( pFree ) sqlite3DbFreeNN(db, pFree);
4049   if( rc!=SQLITE_OK ){
4050     goto abort_due_to_error;
4051   }
4052   pC->seekResult = res;
4053   alreadyExists = (res==0);
4054   pC->nullRow = 1-alreadyExists;
4055   pC->deferredMoveto = 0;
4056   pC->cacheStatus = CACHE_STALE;
4057   if( pOp->opcode==OP_Found ){
4058     VdbeBranchTaken(alreadyExists!=0,2);
4059     if( alreadyExists ) goto jump_to_p2;
4060   }else{
4061     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4062     if( takeJump || !alreadyExists ) goto jump_to_p2;
4063   }
4064   break;
4065 }
4066 
4067 /* Opcode: SeekRowid P1 P2 P3 * *
4068 ** Synopsis: intkey=r[P3]
4069 **
4070 ** P1 is the index of a cursor open on an SQL table btree (with integer
4071 ** keys).  If register P3 does not contain an integer or if P1 does not
4072 ** contain a record with rowid P3 then jump immediately to P2.
4073 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4074 ** a record with rowid P3 then
4075 ** leave the cursor pointing at that record and fall through to the next
4076 ** instruction.
4077 **
4078 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4079 ** the P3 register must be guaranteed to contain an integer value.  With this
4080 ** opcode, register P3 might not contain an integer.
4081 **
4082 ** The OP_NotFound opcode performs the same operation on index btrees
4083 ** (with arbitrary multi-value keys).
4084 **
4085 ** This opcode leaves the cursor in a state where it cannot be advanced
4086 ** in either direction.  In other words, the Next and Prev opcodes will
4087 ** not work following this opcode.
4088 **
4089 ** See also: Found, NotFound, NoConflict, SeekRowid
4090 */
4091 /* Opcode: NotExists P1 P2 P3 * *
4092 ** Synopsis: intkey=r[P3]
4093 **
4094 ** P1 is the index of a cursor open on an SQL table btree (with integer
4095 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4096 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4097 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4098 ** leave the cursor pointing at that record and fall through to the next
4099 ** instruction.
4100 **
4101 ** The OP_SeekRowid opcode performs the same operation but also allows the
4102 ** P3 register to contain a non-integer value, in which case the jump is
4103 ** always taken.  This opcode requires that P3 always contain an integer.
4104 **
4105 ** The OP_NotFound opcode performs the same operation on index btrees
4106 ** (with arbitrary multi-value keys).
4107 **
4108 ** This opcode leaves the cursor in a state where it cannot be advanced
4109 ** in either direction.  In other words, the Next and Prev opcodes will
4110 ** not work following this opcode.
4111 **
4112 ** See also: Found, NotFound, NoConflict, SeekRowid
4113 */
4114 case OP_SeekRowid: {        /* jump, in3 */
4115   VdbeCursor *pC;
4116   BtCursor *pCrsr;
4117   int res;
4118   u64 iKey;
4119 
4120   pIn3 = &aMem[pOp->p3];
4121   if( (pIn3->flags & MEM_Int)==0 ){
4122     applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4123     if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4124   }
4125   /* Fall through into OP_NotExists */
4126 case OP_NotExists:          /* jump, in3 */
4127   pIn3 = &aMem[pOp->p3];
4128   assert( pIn3->flags & MEM_Int );
4129   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4130   pC = p->apCsr[pOp->p1];
4131   assert( pC!=0 );
4132 #ifdef SQLITE_DEBUG
4133   pC->seekOp = 0;
4134 #endif
4135   assert( pC->isTable );
4136   assert( pC->eCurType==CURTYPE_BTREE );
4137   pCrsr = pC->uc.pCursor;
4138   assert( pCrsr!=0 );
4139   res = 0;
4140   iKey = pIn3->u.i;
4141   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4142   assert( rc==SQLITE_OK || res==0 );
4143   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4144   pC->nullRow = 0;
4145   pC->cacheStatus = CACHE_STALE;
4146   pC->deferredMoveto = 0;
4147   VdbeBranchTaken(res!=0,2);
4148   pC->seekResult = res;
4149   if( res!=0 ){
4150     assert( rc==SQLITE_OK );
4151     if( pOp->p2==0 ){
4152       rc = SQLITE_CORRUPT_BKPT;
4153     }else{
4154       goto jump_to_p2;
4155     }
4156   }
4157   if( rc ) goto abort_due_to_error;
4158   break;
4159 }
4160 
4161 /* Opcode: Sequence P1 P2 * * *
4162 ** Synopsis: r[P2]=cursor[P1].ctr++
4163 **
4164 ** Find the next available sequence number for cursor P1.
4165 ** Write the sequence number into register P2.
4166 ** The sequence number on the cursor is incremented after this
4167 ** instruction.
4168 */
4169 case OP_Sequence: {           /* out2 */
4170   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4171   assert( p->apCsr[pOp->p1]!=0 );
4172   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4173   pOut = out2Prerelease(p, pOp);
4174   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4175   break;
4176 }
4177 
4178 
4179 /* Opcode: NewRowid P1 P2 P3 * *
4180 ** Synopsis: r[P2]=rowid
4181 **
4182 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4183 ** The record number is not previously used as a key in the database
4184 ** table that cursor P1 points to.  The new record number is written
4185 ** written to register P2.
4186 **
4187 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4188 ** the largest previously generated record number. No new record numbers are
4189 ** allowed to be less than this value. When this value reaches its maximum,
4190 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4191 ** generated record number. This P3 mechanism is used to help implement the
4192 ** AUTOINCREMENT feature.
4193 */
4194 case OP_NewRowid: {           /* out2 */
4195   i64 v;                 /* The new rowid */
4196   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4197   int res;               /* Result of an sqlite3BtreeLast() */
4198   int cnt;               /* Counter to limit the number of searches */
4199   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4200   VdbeFrame *pFrame;     /* Root frame of VDBE */
4201 
4202   v = 0;
4203   res = 0;
4204   pOut = out2Prerelease(p, pOp);
4205   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4206   pC = p->apCsr[pOp->p1];
4207   assert( pC!=0 );
4208   assert( pC->eCurType==CURTYPE_BTREE );
4209   assert( pC->uc.pCursor!=0 );
4210   {
4211     /* The next rowid or record number (different terms for the same
4212     ** thing) is obtained in a two-step algorithm.
4213     **
4214     ** First we attempt to find the largest existing rowid and add one
4215     ** to that.  But if the largest existing rowid is already the maximum
4216     ** positive integer, we have to fall through to the second
4217     ** probabilistic algorithm
4218     **
4219     ** The second algorithm is to select a rowid at random and see if
4220     ** it already exists in the table.  If it does not exist, we have
4221     ** succeeded.  If the random rowid does exist, we select a new one
4222     ** and try again, up to 100 times.
4223     */
4224     assert( pC->isTable );
4225 
4226 #ifdef SQLITE_32BIT_ROWID
4227 #   define MAX_ROWID 0x7fffffff
4228 #else
4229     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4230     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4231     ** to provide the constant while making all compilers happy.
4232     */
4233 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4234 #endif
4235 
4236     if( !pC->useRandomRowid ){
4237       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4238       if( rc!=SQLITE_OK ){
4239         goto abort_due_to_error;
4240       }
4241       if( res ){
4242         v = 1;   /* IMP: R-61914-48074 */
4243       }else{
4244         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4245         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4246         if( v>=MAX_ROWID ){
4247           pC->useRandomRowid = 1;
4248         }else{
4249           v++;   /* IMP: R-29538-34987 */
4250         }
4251       }
4252     }
4253 
4254 #ifndef SQLITE_OMIT_AUTOINCREMENT
4255     if( pOp->p3 ){
4256       /* Assert that P3 is a valid memory cell. */
4257       assert( pOp->p3>0 );
4258       if( p->pFrame ){
4259         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4260         /* Assert that P3 is a valid memory cell. */
4261         assert( pOp->p3<=pFrame->nMem );
4262         pMem = &pFrame->aMem[pOp->p3];
4263       }else{
4264         /* Assert that P3 is a valid memory cell. */
4265         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4266         pMem = &aMem[pOp->p3];
4267         memAboutToChange(p, pMem);
4268       }
4269       assert( memIsValid(pMem) );
4270 
4271       REGISTER_TRACE(pOp->p3, pMem);
4272       sqlite3VdbeMemIntegerify(pMem);
4273       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4274       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4275         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4276         goto abort_due_to_error;
4277       }
4278       if( v<pMem->u.i+1 ){
4279         v = pMem->u.i + 1;
4280       }
4281       pMem->u.i = v;
4282     }
4283 #endif
4284     if( pC->useRandomRowid ){
4285       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4286       ** largest possible integer (9223372036854775807) then the database
4287       ** engine starts picking positive candidate ROWIDs at random until
4288       ** it finds one that is not previously used. */
4289       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4290                              ** an AUTOINCREMENT table. */
4291       cnt = 0;
4292       do{
4293         sqlite3_randomness(sizeof(v), &v);
4294         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4295       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4296                                                  0, &res))==SQLITE_OK)
4297             && (res==0)
4298             && (++cnt<100));
4299       if( rc ) goto abort_due_to_error;
4300       if( res==0 ){
4301         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4302         goto abort_due_to_error;
4303       }
4304       assert( v>0 );  /* EV: R-40812-03570 */
4305     }
4306     pC->deferredMoveto = 0;
4307     pC->cacheStatus = CACHE_STALE;
4308   }
4309   pOut->u.i = v;
4310   break;
4311 }
4312 
4313 /* Opcode: Insert P1 P2 P3 P4 P5
4314 ** Synopsis: intkey=r[P3] data=r[P2]
4315 **
4316 ** Write an entry into the table of cursor P1.  A new entry is
4317 ** created if it doesn't already exist or the data for an existing
4318 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4319 ** number P2. The key is stored in register P3. The key must
4320 ** be a MEM_Int.
4321 **
4322 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4323 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4324 ** then rowid is stored for subsequent return by the
4325 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4326 **
4327 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4328 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4329 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4330 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4331 **
4332 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4333 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4334 ** is part of an INSERT operation.  The difference is only important to
4335 ** the update hook.
4336 **
4337 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4338 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4339 ** following a successful insert.
4340 **
4341 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4342 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4343 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4344 ** value of register P2 will then change.  Make sure this does not
4345 ** cause any problems.)
4346 **
4347 ** This instruction only works on tables.  The equivalent instruction
4348 ** for indices is OP_IdxInsert.
4349 */
4350 /* Opcode: InsertInt P1 P2 P3 P4 P5
4351 ** Synopsis: intkey=P3 data=r[P2]
4352 **
4353 ** This works exactly like OP_Insert except that the key is the
4354 ** integer value P3, not the value of the integer stored in register P3.
4355 */
4356 case OP_Insert:
4357 case OP_InsertInt: {
4358   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4359   Mem *pKey;        /* MEM cell holding key  for the record */
4360   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4361   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4362   const char *zDb;  /* database name - used by the update hook */
4363   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4364   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4365   BtreePayload x;   /* Payload to be inserted */
4366 
4367   op = 0;
4368   pData = &aMem[pOp->p2];
4369   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4370   assert( memIsValid(pData) );
4371   pC = p->apCsr[pOp->p1];
4372   assert( pC!=0 );
4373   assert( pC->eCurType==CURTYPE_BTREE );
4374   assert( pC->uc.pCursor!=0 );
4375   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4376   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4377   REGISTER_TRACE(pOp->p2, pData);
4378 
4379   if( pOp->opcode==OP_Insert ){
4380     pKey = &aMem[pOp->p3];
4381     assert( pKey->flags & MEM_Int );
4382     assert( memIsValid(pKey) );
4383     REGISTER_TRACE(pOp->p3, pKey);
4384     x.nKey = pKey->u.i;
4385   }else{
4386     assert( pOp->opcode==OP_InsertInt );
4387     x.nKey = pOp->p3;
4388   }
4389 
4390   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4391     assert( pC->iDb>=0 );
4392     zDb = db->aDb[pC->iDb].zDbSName;
4393     pTab = pOp->p4.pTab;
4394     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4395     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4396   }else{
4397     pTab = 0; /* Not needed.  Silence a compiler warning. */
4398     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4399   }
4400 
4401 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4402   /* Invoke the pre-update hook, if any */
4403   if( db->xPreUpdateCallback
4404    && pOp->p4type==P4_TABLE
4405    && !(pOp->p5 & OPFLAG_ISUPDATE)
4406   ){
4407     sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
4408   }
4409   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4410 #endif
4411 
4412   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4413   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4414   if( pData->flags & MEM_Null ){
4415     x.pData = 0;
4416     x.nData = 0;
4417   }else{
4418     assert( pData->flags & (MEM_Blob|MEM_Str) );
4419     x.pData = pData->z;
4420     x.nData = pData->n;
4421   }
4422   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4423   if( pData->flags & MEM_Zero ){
4424     x.nZero = pData->u.nZero;
4425   }else{
4426     x.nZero = 0;
4427   }
4428   x.pKey = 0;
4429   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4430       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4431   );
4432   pC->deferredMoveto = 0;
4433   pC->cacheStatus = CACHE_STALE;
4434 
4435   /* Invoke the update-hook if required. */
4436   if( rc ) goto abort_due_to_error;
4437   if( db->xUpdateCallback && op ){
4438     db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
4439   }
4440   break;
4441 }
4442 
4443 /* Opcode: Delete P1 P2 P3 P4 P5
4444 **
4445 ** Delete the record at which the P1 cursor is currently pointing.
4446 **
4447 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4448 ** the cursor will be left pointing at  either the next or the previous
4449 ** record in the table. If it is left pointing at the next record, then
4450 ** the next Next instruction will be a no-op. As a result, in this case
4451 ** it is ok to delete a record from within a Next loop. If
4452 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4453 ** left in an undefined state.
4454 **
4455 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4456 ** delete one of several associated with deleting a table row and all its
4457 ** associated index entries.  Exactly one of those deletes is the "primary"
4458 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4459 ** marked with the AUXDELETE flag.
4460 **
4461 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4462 ** change count is incremented (otherwise not).
4463 **
4464 ** P1 must not be pseudo-table.  It has to be a real table with
4465 ** multiple rows.
4466 **
4467 ** If P4 is not NULL then it points to a Table object. In this case either
4468 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4469 ** have been positioned using OP_NotFound prior to invoking this opcode in
4470 ** this case. Specifically, if one is configured, the pre-update hook is
4471 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4472 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4473 **
4474 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4475 ** of the memory cell that contains the value that the rowid of the row will
4476 ** be set to by the update.
4477 */
4478 case OP_Delete: {
4479   VdbeCursor *pC;
4480   const char *zDb;
4481   Table *pTab;
4482   int opflags;
4483 
4484   opflags = pOp->p2;
4485   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4486   pC = p->apCsr[pOp->p1];
4487   assert( pC!=0 );
4488   assert( pC->eCurType==CURTYPE_BTREE );
4489   assert( pC->uc.pCursor!=0 );
4490   assert( pC->deferredMoveto==0 );
4491 
4492 #ifdef SQLITE_DEBUG
4493   if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4494     /* If p5 is zero, the seek operation that positioned the cursor prior to
4495     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4496     ** the row that is being deleted */
4497     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4498     assert( pC->movetoTarget==iKey );
4499   }
4500 #endif
4501 
4502   /* If the update-hook or pre-update-hook will be invoked, set zDb to
4503   ** the name of the db to pass as to it. Also set local pTab to a copy
4504   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4505   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4506   ** VdbeCursor.movetoTarget to the current rowid.  */
4507   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4508     assert( pC->iDb>=0 );
4509     assert( pOp->p4.pTab!=0 );
4510     zDb = db->aDb[pC->iDb].zDbSName;
4511     pTab = pOp->p4.pTab;
4512     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
4513       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4514     }
4515   }else{
4516     zDb = 0;   /* Not needed.  Silence a compiler warning. */
4517     pTab = 0;  /* Not needed.  Silence a compiler warning. */
4518   }
4519 
4520 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4521   /* Invoke the pre-update-hook if required. */
4522   if( db->xPreUpdateCallback && pOp->p4.pTab ){
4523     assert( !(opflags & OPFLAG_ISUPDATE)
4524          || HasRowid(pTab)==0
4525          || (aMem[pOp->p3].flags & MEM_Int)
4526     );
4527     sqlite3VdbePreUpdateHook(p, pC,
4528         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
4529         zDb, pTab, pC->movetoTarget,
4530         pOp->p3
4531     );
4532   }
4533   if( opflags & OPFLAG_ISNOOP ) break;
4534 #endif
4535 
4536   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4537   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4538   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4539   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4540 
4541 #ifdef SQLITE_DEBUG
4542   if( p->pFrame==0 ){
4543     if( pC->isEphemeral==0
4544         && (pOp->p5 & OPFLAG_AUXDELETE)==0
4545         && (pC->wrFlag & OPFLAG_FORDELETE)==0
4546       ){
4547       nExtraDelete++;
4548     }
4549     if( pOp->p2 & OPFLAG_NCHANGE ){
4550       nExtraDelete--;
4551     }
4552   }
4553 #endif
4554 
4555   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4556   pC->cacheStatus = CACHE_STALE;
4557   pC->seekResult = 0;
4558   if( rc ) goto abort_due_to_error;
4559 
4560   /* Invoke the update-hook if required. */
4561   if( opflags & OPFLAG_NCHANGE ){
4562     p->nChange++;
4563     if( db->xUpdateCallback && HasRowid(pTab) ){
4564       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
4565           pC->movetoTarget);
4566       assert( pC->iDb>=0 );
4567     }
4568   }
4569 
4570   break;
4571 }
4572 /* Opcode: ResetCount * * * * *
4573 **
4574 ** The value of the change counter is copied to the database handle
4575 ** change counter (returned by subsequent calls to sqlite3_changes()).
4576 ** Then the VMs internal change counter resets to 0.
4577 ** This is used by trigger programs.
4578 */
4579 case OP_ResetCount: {
4580   sqlite3VdbeSetChanges(db, p->nChange);
4581   p->nChange = 0;
4582   break;
4583 }
4584 
4585 /* Opcode: SorterCompare P1 P2 P3 P4
4586 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4587 **
4588 ** P1 is a sorter cursor. This instruction compares a prefix of the
4589 ** record blob in register P3 against a prefix of the entry that
4590 ** the sorter cursor currently points to.  Only the first P4 fields
4591 ** of r[P3] and the sorter record are compared.
4592 **
4593 ** If either P3 or the sorter contains a NULL in one of their significant
4594 ** fields (not counting the P4 fields at the end which are ignored) then
4595 ** the comparison is assumed to be equal.
4596 **
4597 ** Fall through to next instruction if the two records compare equal to
4598 ** each other.  Jump to P2 if they are different.
4599 */
4600 case OP_SorterCompare: {
4601   VdbeCursor *pC;
4602   int res;
4603   int nKeyCol;
4604 
4605   pC = p->apCsr[pOp->p1];
4606   assert( isSorter(pC) );
4607   assert( pOp->p4type==P4_INT32 );
4608   pIn3 = &aMem[pOp->p3];
4609   nKeyCol = pOp->p4.i;
4610   res = 0;
4611   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4612   VdbeBranchTaken(res!=0,2);
4613   if( rc ) goto abort_due_to_error;
4614   if( res ) goto jump_to_p2;
4615   break;
4616 };
4617 
4618 /* Opcode: SorterData P1 P2 P3 * *
4619 ** Synopsis: r[P2]=data
4620 **
4621 ** Write into register P2 the current sorter data for sorter cursor P1.
4622 ** Then clear the column header cache on cursor P3.
4623 **
4624 ** This opcode is normally use to move a record out of the sorter and into
4625 ** a register that is the source for a pseudo-table cursor created using
4626 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4627 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4628 ** us from having to issue a separate NullRow instruction to clear that cache.
4629 */
4630 case OP_SorterData: {
4631   VdbeCursor *pC;
4632 
4633   pOut = &aMem[pOp->p2];
4634   pC = p->apCsr[pOp->p1];
4635   assert( isSorter(pC) );
4636   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4637   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4638   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4639   if( rc ) goto abort_due_to_error;
4640   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4641   break;
4642 }
4643 
4644 /* Opcode: RowData P1 P2 P3 * *
4645 ** Synopsis: r[P2]=data
4646 **
4647 ** Write into register P2 the complete row content for the row at
4648 ** which cursor P1 is currently pointing.
4649 ** There is no interpretation of the data.
4650 ** It is just copied onto the P2 register exactly as
4651 ** it is found in the database file.
4652 **
4653 ** If cursor P1 is an index, then the content is the key of the row.
4654 ** If cursor P2 is a table, then the content extracted is the data.
4655 **
4656 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4657 ** of a real table, not a pseudo-table.
4658 **
4659 ** If P3!=0 then this opcode is allowed to make an ephermeral pointer
4660 ** into the database page.  That means that the content of the output
4661 ** register will be invalidated as soon as the cursor moves - including
4662 ** moves caused by other cursors that "save" the the current cursors
4663 ** position in order that they can write to the same table.  If P3==0
4664 ** then a copy of the data is made into memory.  P3!=0 is faster, but
4665 ** P3==0 is safer.
4666 **
4667 ** If P3!=0 then the content of the P2 register is unsuitable for use
4668 ** in OP_Result and any OP_Result will invalidate the P2 register content.
4669 ** The P2 register content is invalidated by opcodes like OP_Function or
4670 ** by any use of another cursor pointing to the same table.
4671 */
4672 case OP_RowData: {
4673   VdbeCursor *pC;
4674   BtCursor *pCrsr;
4675   u32 n;
4676 
4677   pOut = out2Prerelease(p, pOp);
4678 
4679   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4680   pC = p->apCsr[pOp->p1];
4681   assert( pC!=0 );
4682   assert( pC->eCurType==CURTYPE_BTREE );
4683   assert( isSorter(pC)==0 );
4684   assert( pC->nullRow==0 );
4685   assert( pC->uc.pCursor!=0 );
4686   pCrsr = pC->uc.pCursor;
4687 
4688   /* The OP_RowData opcodes always follow OP_NotExists or
4689   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4690   ** that might invalidate the cursor.
4691   ** If this where not the case, on of the following assert()s
4692   ** would fail.  Should this ever change (because of changes in the code
4693   ** generator) then the fix would be to insert a call to
4694   ** sqlite3VdbeCursorMoveto().
4695   */
4696   assert( pC->deferredMoveto==0 );
4697   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4698 #if 0  /* Not required due to the previous to assert() statements */
4699   rc = sqlite3VdbeCursorMoveto(pC);
4700   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4701 #endif
4702 
4703   n = sqlite3BtreePayloadSize(pCrsr);
4704   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4705     goto too_big;
4706   }
4707   testcase( n==0 );
4708   rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
4709   if( rc ) goto abort_due_to_error;
4710   if( !pOp->p3 ) Deephemeralize(pOut);
4711   UPDATE_MAX_BLOBSIZE(pOut);
4712   REGISTER_TRACE(pOp->p2, pOut);
4713   break;
4714 }
4715 
4716 /* Opcode: Rowid P1 P2 * * *
4717 ** Synopsis: r[P2]=rowid
4718 **
4719 ** Store in register P2 an integer which is the key of the table entry that
4720 ** P1 is currently point to.
4721 **
4722 ** P1 can be either an ordinary table or a virtual table.  There used to
4723 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4724 ** one opcode now works for both table types.
4725 */
4726 case OP_Rowid: {                 /* out2 */
4727   VdbeCursor *pC;
4728   i64 v;
4729   sqlite3_vtab *pVtab;
4730   const sqlite3_module *pModule;
4731 
4732   pOut = out2Prerelease(p, pOp);
4733   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4734   pC = p->apCsr[pOp->p1];
4735   assert( pC!=0 );
4736   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4737   if( pC->nullRow ){
4738     pOut->flags = MEM_Null;
4739     break;
4740   }else if( pC->deferredMoveto ){
4741     v = pC->movetoTarget;
4742 #ifndef SQLITE_OMIT_VIRTUALTABLE
4743   }else if( pC->eCurType==CURTYPE_VTAB ){
4744     assert( pC->uc.pVCur!=0 );
4745     pVtab = pC->uc.pVCur->pVtab;
4746     pModule = pVtab->pModule;
4747     assert( pModule->xRowid );
4748     rc = pModule->xRowid(pC->uc.pVCur, &v);
4749     sqlite3VtabImportErrmsg(p, pVtab);
4750     if( rc ) goto abort_due_to_error;
4751 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4752   }else{
4753     assert( pC->eCurType==CURTYPE_BTREE );
4754     assert( pC->uc.pCursor!=0 );
4755     rc = sqlite3VdbeCursorRestore(pC);
4756     if( rc ) goto abort_due_to_error;
4757     if( pC->nullRow ){
4758       pOut->flags = MEM_Null;
4759       break;
4760     }
4761     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4762   }
4763   pOut->u.i = v;
4764   break;
4765 }
4766 
4767 /* Opcode: NullRow P1 * * * *
4768 **
4769 ** Move the cursor P1 to a null row.  Any OP_Column operations
4770 ** that occur while the cursor is on the null row will always
4771 ** write a NULL.
4772 */
4773 case OP_NullRow: {
4774   VdbeCursor *pC;
4775 
4776   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4777   pC = p->apCsr[pOp->p1];
4778   assert( pC!=0 );
4779   pC->nullRow = 1;
4780   pC->cacheStatus = CACHE_STALE;
4781   if( pC->eCurType==CURTYPE_BTREE ){
4782     assert( pC->uc.pCursor!=0 );
4783     sqlite3BtreeClearCursor(pC->uc.pCursor);
4784   }
4785   break;
4786 }
4787 
4788 /* Opcode: SeekEnd P1 * * * *
4789 **
4790 ** Position cursor P1 at the end of the btree for the purpose of
4791 ** appending a new entry onto the btree.
4792 **
4793 ** It is assumed that the cursor is used only for appending and so
4794 ** if the cursor is valid, then the cursor must already be pointing
4795 ** at the end of the btree and so no changes are made to
4796 ** the cursor.
4797 */
4798 /* Opcode: Last P1 P2 * * *
4799 **
4800 ** The next use of the Rowid or Column or Prev instruction for P1
4801 ** will refer to the last entry in the database table or index.
4802 ** If the table or index is empty and P2>0, then jump immediately to P2.
4803 ** If P2 is 0 or if the table or index is not empty, fall through
4804 ** to the following instruction.
4805 **
4806 ** This opcode leaves the cursor configured to move in reverse order,
4807 ** from the end toward the beginning.  In other words, the cursor is
4808 ** configured to use Prev, not Next.
4809 */
4810 case OP_SeekEnd:
4811 case OP_Last: {        /* jump */
4812   VdbeCursor *pC;
4813   BtCursor *pCrsr;
4814   int res;
4815 
4816   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4817   pC = p->apCsr[pOp->p1];
4818   assert( pC!=0 );
4819   assert( pC->eCurType==CURTYPE_BTREE );
4820   pCrsr = pC->uc.pCursor;
4821   res = 0;
4822   assert( pCrsr!=0 );
4823 #ifdef SQLITE_DEBUG
4824   pC->seekOp = pOp->opcode;
4825 #endif
4826   if( pOp->opcode==OP_SeekEnd ){
4827     assert( pOp->p2==0 );
4828     pC->seekResult = -1;
4829     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
4830       break;
4831     }
4832   }
4833   rc = sqlite3BtreeLast(pCrsr, &res);
4834   pC->nullRow = (u8)res;
4835   pC->deferredMoveto = 0;
4836   pC->cacheStatus = CACHE_STALE;
4837   if( rc ) goto abort_due_to_error;
4838   if( pOp->p2>0 ){
4839     VdbeBranchTaken(res!=0,2);
4840     if( res ) goto jump_to_p2;
4841   }
4842   break;
4843 }
4844 
4845 /* Opcode: IfSmaller P1 P2 P3 * *
4846 **
4847 ** Estimate the number of rows in the table P1.  Jump to P2 if that
4848 ** estimate is less than approximately 2**(0.1*P3).
4849 */
4850 case OP_IfSmaller: {        /* jump */
4851   VdbeCursor *pC;
4852   BtCursor *pCrsr;
4853   int res;
4854   i64 sz;
4855 
4856   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4857   pC = p->apCsr[pOp->p1];
4858   assert( pC!=0 );
4859   pCrsr = pC->uc.pCursor;
4860   assert( pCrsr );
4861   rc = sqlite3BtreeFirst(pCrsr, &res);
4862   if( rc ) goto abort_due_to_error;
4863   if( res==0 ){
4864     sz = sqlite3BtreeRowCountEst(pCrsr);
4865     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
4866   }
4867   VdbeBranchTaken(res!=0,2);
4868   if( res ) goto jump_to_p2;
4869   break;
4870 }
4871 
4872 
4873 /* Opcode: SorterSort P1 P2 * * *
4874 **
4875 ** After all records have been inserted into the Sorter object
4876 ** identified by P1, invoke this opcode to actually do the sorting.
4877 ** Jump to P2 if there are no records to be sorted.
4878 **
4879 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
4880 ** for Sorter objects.
4881 */
4882 /* Opcode: Sort P1 P2 * * *
4883 **
4884 ** This opcode does exactly the same thing as OP_Rewind except that
4885 ** it increments an undocumented global variable used for testing.
4886 **
4887 ** Sorting is accomplished by writing records into a sorting index,
4888 ** then rewinding that index and playing it back from beginning to
4889 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4890 ** rewinding so that the global variable will be incremented and
4891 ** regression tests can determine whether or not the optimizer is
4892 ** correctly optimizing out sorts.
4893 */
4894 case OP_SorterSort:    /* jump */
4895 case OP_Sort: {        /* jump */
4896 #ifdef SQLITE_TEST
4897   sqlite3_sort_count++;
4898   sqlite3_search_count--;
4899 #endif
4900   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4901   /* Fall through into OP_Rewind */
4902 }
4903 /* Opcode: Rewind P1 P2 * * *
4904 **
4905 ** The next use of the Rowid or Column or Next instruction for P1
4906 ** will refer to the first entry in the database table or index.
4907 ** If the table or index is empty, jump immediately to P2.
4908 ** If the table or index is not empty, fall through to the following
4909 ** instruction.
4910 **
4911 ** This opcode leaves the cursor configured to move in forward order,
4912 ** from the beginning toward the end.  In other words, the cursor is
4913 ** configured to use Next, not Prev.
4914 */
4915 case OP_Rewind: {        /* jump */
4916   VdbeCursor *pC;
4917   BtCursor *pCrsr;
4918   int res;
4919 
4920   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4921   pC = p->apCsr[pOp->p1];
4922   assert( pC!=0 );
4923   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4924   res = 1;
4925 #ifdef SQLITE_DEBUG
4926   pC->seekOp = OP_Rewind;
4927 #endif
4928   if( isSorter(pC) ){
4929     rc = sqlite3VdbeSorterRewind(pC, &res);
4930   }else{
4931     assert( pC->eCurType==CURTYPE_BTREE );
4932     pCrsr = pC->uc.pCursor;
4933     assert( pCrsr );
4934     rc = sqlite3BtreeFirst(pCrsr, &res);
4935     pC->deferredMoveto = 0;
4936     pC->cacheStatus = CACHE_STALE;
4937   }
4938   if( rc ) goto abort_due_to_error;
4939   pC->nullRow = (u8)res;
4940   assert( pOp->p2>0 && pOp->p2<p->nOp );
4941   VdbeBranchTaken(res!=0,2);
4942   if( res ) goto jump_to_p2;
4943   break;
4944 }
4945 
4946 /* Opcode: Next P1 P2 P3 P4 P5
4947 **
4948 ** Advance cursor P1 so that it points to the next key/data pair in its
4949 ** table or index.  If there are no more key/value pairs then fall through
4950 ** to the following instruction.  But if the cursor advance was successful,
4951 ** jump immediately to P2.
4952 **
4953 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4954 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
4955 ** to follow SeekLT, SeekLE, or OP_Last.
4956 **
4957 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
4958 ** been opened prior to this opcode or the program will segfault.
4959 **
4960 ** The P3 value is a hint to the btree implementation. If P3==1, that
4961 ** means P1 is an SQL index and that this instruction could have been
4962 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4963 ** always either 0 or 1.
4964 **
4965 ** P4 is always of type P4_ADVANCE. The function pointer points to
4966 ** sqlite3BtreeNext().
4967 **
4968 ** If P5 is positive and the jump is taken, then event counter
4969 ** number P5-1 in the prepared statement is incremented.
4970 **
4971 ** See also: Prev, NextIfOpen
4972 */
4973 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4974 **
4975 ** This opcode works just like Next except that if cursor P1 is not
4976 ** open it behaves a no-op.
4977 */
4978 /* Opcode: Prev P1 P2 P3 P4 P5
4979 **
4980 ** Back up cursor P1 so that it points to the previous key/data pair in its
4981 ** table or index.  If there is no previous key/value pairs then fall through
4982 ** to the following instruction.  But if the cursor backup was successful,
4983 ** jump immediately to P2.
4984 **
4985 **
4986 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4987 ** OP_Last opcode used to position the cursor.  Prev is not allowed
4988 ** to follow SeekGT, SeekGE, or OP_Rewind.
4989 **
4990 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
4991 ** not open then the behavior is undefined.
4992 **
4993 ** The P3 value is a hint to the btree implementation. If P3==1, that
4994 ** means P1 is an SQL index and that this instruction could have been
4995 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4996 ** always either 0 or 1.
4997 **
4998 ** P4 is always of type P4_ADVANCE. The function pointer points to
4999 ** sqlite3BtreePrevious().
5000 **
5001 ** If P5 is positive and the jump is taken, then event counter
5002 ** number P5-1 in the prepared statement is incremented.
5003 */
5004 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
5005 **
5006 ** This opcode works just like Prev except that if cursor P1 is not
5007 ** open it behaves a no-op.
5008 */
5009 /* Opcode: SorterNext P1 P2 * * P5
5010 **
5011 ** This opcode works just like OP_Next except that P1 must be a
5012 ** sorter object for which the OP_SorterSort opcode has been
5013 ** invoked.  This opcode advances the cursor to the next sorted
5014 ** record, or jumps to P2 if there are no more sorted records.
5015 */
5016 case OP_SorterNext: {  /* jump */
5017   VdbeCursor *pC;
5018 
5019   pC = p->apCsr[pOp->p1];
5020   assert( isSorter(pC) );
5021   rc = sqlite3VdbeSorterNext(db, pC);
5022   goto next_tail;
5023 case OP_PrevIfOpen:    /* jump */
5024 case OP_NextIfOpen:    /* jump */
5025   if( p->apCsr[pOp->p1]==0 ) break;
5026   /* Fall through */
5027 case OP_Prev:          /* jump */
5028 case OP_Next:          /* jump */
5029   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5030   assert( pOp->p5<ArraySize(p->aCounter) );
5031   pC = p->apCsr[pOp->p1];
5032   assert( pC!=0 );
5033   assert( pC->deferredMoveto==0 );
5034   assert( pC->eCurType==CURTYPE_BTREE );
5035   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5036   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5037   assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
5038   assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
5039 
5040   /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
5041   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5042   assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
5043        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5044        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
5045   assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
5046        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5047        || pC->seekOp==OP_Last );
5048 
5049   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5050 next_tail:
5051   pC->cacheStatus = CACHE_STALE;
5052   VdbeBranchTaken(rc==SQLITE_OK,2);
5053   if( rc==SQLITE_OK ){
5054     pC->nullRow = 0;
5055     p->aCounter[pOp->p5]++;
5056 #ifdef SQLITE_TEST
5057     sqlite3_search_count++;
5058 #endif
5059     goto jump_to_p2_and_check_for_interrupt;
5060   }
5061   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5062   rc = SQLITE_OK;
5063   pC->nullRow = 1;
5064   goto check_for_interrupt;
5065 }
5066 
5067 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5068 ** Synopsis: key=r[P2]
5069 **
5070 ** Register P2 holds an SQL index key made using the
5071 ** MakeRecord instructions.  This opcode writes that key
5072 ** into the index P1.  Data for the entry is nil.
5073 **
5074 ** If P4 is not zero, then it is the number of values in the unpacked
5075 ** key of reg(P2).  In that case, P3 is the index of the first register
5076 ** for the unpacked key.  The availability of the unpacked key can sometimes
5077 ** be an optimization.
5078 **
5079 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5080 ** that this insert is likely to be an append.
5081 **
5082 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5083 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5084 ** then the change counter is unchanged.
5085 **
5086 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5087 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5088 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5089 ** seeks on the cursor or if the most recent seek used a key equivalent
5090 ** to P2.
5091 **
5092 ** This instruction only works for indices.  The equivalent instruction
5093 ** for tables is OP_Insert.
5094 */
5095 /* Opcode: SorterInsert P1 P2 * * *
5096 ** Synopsis: key=r[P2]
5097 **
5098 ** Register P2 holds an SQL index key made using the
5099 ** MakeRecord instructions.  This opcode writes that key
5100 ** into the sorter P1.  Data for the entry is nil.
5101 */
5102 case OP_SorterInsert:       /* in2 */
5103 case OP_IdxInsert: {        /* in2 */
5104   VdbeCursor *pC;
5105   BtreePayload x;
5106 
5107   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5108   pC = p->apCsr[pOp->p1];
5109   assert( pC!=0 );
5110   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5111   pIn2 = &aMem[pOp->p2];
5112   assert( pIn2->flags & MEM_Blob );
5113   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5114   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5115   assert( pC->isTable==0 );
5116   rc = ExpandBlob(pIn2);
5117   if( rc ) goto abort_due_to_error;
5118   if( pOp->opcode==OP_SorterInsert ){
5119     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5120   }else{
5121     x.nKey = pIn2->n;
5122     x.pKey = pIn2->z;
5123     x.aMem = aMem + pOp->p3;
5124     x.nMem = (u16)pOp->p4.i;
5125     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5126          (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5127         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5128         );
5129     assert( pC->deferredMoveto==0 );
5130     pC->cacheStatus = CACHE_STALE;
5131   }
5132   if( rc) goto abort_due_to_error;
5133   break;
5134 }
5135 
5136 /* Opcode: IdxDelete P1 P2 P3 * *
5137 ** Synopsis: key=r[P2@P3]
5138 **
5139 ** The content of P3 registers starting at register P2 form
5140 ** an unpacked index key. This opcode removes that entry from the
5141 ** index opened by cursor P1.
5142 */
5143 case OP_IdxDelete: {
5144   VdbeCursor *pC;
5145   BtCursor *pCrsr;
5146   int res;
5147   UnpackedRecord r;
5148 
5149   assert( pOp->p3>0 );
5150   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5151   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5152   pC = p->apCsr[pOp->p1];
5153   assert( pC!=0 );
5154   assert( pC->eCurType==CURTYPE_BTREE );
5155   pCrsr = pC->uc.pCursor;
5156   assert( pCrsr!=0 );
5157   assert( pOp->p5==0 );
5158   r.pKeyInfo = pC->pKeyInfo;
5159   r.nField = (u16)pOp->p3;
5160   r.default_rc = 0;
5161   r.aMem = &aMem[pOp->p2];
5162   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5163   if( rc ) goto abort_due_to_error;
5164   if( res==0 ){
5165     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5166     if( rc ) goto abort_due_to_error;
5167   }
5168   assert( pC->deferredMoveto==0 );
5169   pC->cacheStatus = CACHE_STALE;
5170   pC->seekResult = 0;
5171   break;
5172 }
5173 
5174 /* Opcode: DeferredSeek P1 * P3 P4 *
5175 ** Synopsis: Move P3 to P1.rowid if needed
5176 **
5177 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5178 ** table.  This opcode does a deferred seek of the P3 table cursor
5179 ** to the row that corresponds to the current row of P1.
5180 **
5181 ** This is a deferred seek.  Nothing actually happens until
5182 ** the cursor is used to read a record.  That way, if no reads
5183 ** occur, no unnecessary I/O happens.
5184 **
5185 ** P4 may be an array of integers (type P4_INTARRAY) containing
5186 ** one entry for each column in the P3 table.  If array entry a(i)
5187 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5188 ** equivalent to performing the deferred seek and then reading column i
5189 ** from P1.  This information is stored in P3 and used to redirect
5190 ** reads against P3 over to P1, thus possibly avoiding the need to
5191 ** seek and read cursor P3.
5192 */
5193 /* Opcode: IdxRowid P1 P2 * * *
5194 ** Synopsis: r[P2]=rowid
5195 **
5196 ** Write into register P2 an integer which is the last entry in the record at
5197 ** the end of the index key pointed to by cursor P1.  This integer should be
5198 ** the rowid of the table entry to which this index entry points.
5199 **
5200 ** See also: Rowid, MakeRecord.
5201 */
5202 case OP_DeferredSeek:
5203 case OP_IdxRowid: {           /* out2 */
5204   VdbeCursor *pC;             /* The P1 index cursor */
5205   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5206   i64 rowid;                  /* Rowid that P1 current points to */
5207 
5208   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5209   pC = p->apCsr[pOp->p1];
5210   assert( pC!=0 );
5211   assert( pC->eCurType==CURTYPE_BTREE );
5212   assert( pC->uc.pCursor!=0 );
5213   assert( pC->isTable==0 );
5214   assert( pC->deferredMoveto==0 );
5215   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5216 
5217   /* The IdxRowid and Seek opcodes are combined because of the commonality
5218   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5219   rc = sqlite3VdbeCursorRestore(pC);
5220 
5221   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5222   ** out from under the cursor.  That will never happens for an IdxRowid
5223   ** or Seek opcode */
5224   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5225 
5226   if( !pC->nullRow ){
5227     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5228     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5229     if( rc!=SQLITE_OK ){
5230       goto abort_due_to_error;
5231     }
5232     if( pOp->opcode==OP_DeferredSeek ){
5233       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5234       pTabCur = p->apCsr[pOp->p3];
5235       assert( pTabCur!=0 );
5236       assert( pTabCur->eCurType==CURTYPE_BTREE );
5237       assert( pTabCur->uc.pCursor!=0 );
5238       assert( pTabCur->isTable );
5239       pTabCur->nullRow = 0;
5240       pTabCur->movetoTarget = rowid;
5241       pTabCur->deferredMoveto = 1;
5242       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5243       pTabCur->aAltMap = pOp->p4.ai;
5244       pTabCur->pAltCursor = pC;
5245     }else{
5246       pOut = out2Prerelease(p, pOp);
5247       pOut->u.i = rowid;
5248     }
5249   }else{
5250     assert( pOp->opcode==OP_IdxRowid );
5251     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5252   }
5253   break;
5254 }
5255 
5256 /* Opcode: IdxGE P1 P2 P3 P4 P5
5257 ** Synopsis: key=r[P3@P4]
5258 **
5259 ** The P4 register values beginning with P3 form an unpacked index
5260 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5261 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5262 ** fields at the end.
5263 **
5264 ** If the P1 index entry is greater than or equal to the key value
5265 ** then jump to P2.  Otherwise fall through to the next instruction.
5266 */
5267 /* Opcode: IdxGT P1 P2 P3 P4 P5
5268 ** Synopsis: key=r[P3@P4]
5269 **
5270 ** The P4 register values beginning with P3 form an unpacked index
5271 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5272 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5273 ** fields at the end.
5274 **
5275 ** If the P1 index entry is greater than the key value
5276 ** then jump to P2.  Otherwise fall through to the next instruction.
5277 */
5278 /* Opcode: IdxLT P1 P2 P3 P4 P5
5279 ** Synopsis: key=r[P3@P4]
5280 **
5281 ** The P4 register values beginning with P3 form an unpacked index
5282 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5283 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5284 ** ROWID on the P1 index.
5285 **
5286 ** If the P1 index entry is less than the key value then jump to P2.
5287 ** Otherwise fall through to the next instruction.
5288 */
5289 /* Opcode: IdxLE P1 P2 P3 P4 P5
5290 ** Synopsis: key=r[P3@P4]
5291 **
5292 ** The P4 register values beginning with P3 form an unpacked index
5293 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5294 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5295 ** ROWID on the P1 index.
5296 **
5297 ** If the P1 index entry is less than or equal to the key value then jump
5298 ** to P2. Otherwise fall through to the next instruction.
5299 */
5300 case OP_IdxLE:          /* jump */
5301 case OP_IdxGT:          /* jump */
5302 case OP_IdxLT:          /* jump */
5303 case OP_IdxGE:  {       /* jump */
5304   VdbeCursor *pC;
5305   int res;
5306   UnpackedRecord r;
5307 
5308   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5309   pC = p->apCsr[pOp->p1];
5310   assert( pC!=0 );
5311   assert( pC->isOrdered );
5312   assert( pC->eCurType==CURTYPE_BTREE );
5313   assert( pC->uc.pCursor!=0);
5314   assert( pC->deferredMoveto==0 );
5315   assert( pOp->p5==0 || pOp->p5==1 );
5316   assert( pOp->p4type==P4_INT32 );
5317   r.pKeyInfo = pC->pKeyInfo;
5318   r.nField = (u16)pOp->p4.i;
5319   if( pOp->opcode<OP_IdxLT ){
5320     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5321     r.default_rc = -1;
5322   }else{
5323     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5324     r.default_rc = 0;
5325   }
5326   r.aMem = &aMem[pOp->p3];
5327 #ifdef SQLITE_DEBUG
5328   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5329 #endif
5330   res = 0;  /* Not needed.  Only used to silence a warning. */
5331   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5332   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5333   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5334     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5335     res = -res;
5336   }else{
5337     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5338     res++;
5339   }
5340   VdbeBranchTaken(res>0,2);
5341   if( rc ) goto abort_due_to_error;
5342   if( res>0 ) goto jump_to_p2;
5343   break;
5344 }
5345 
5346 /* Opcode: Destroy P1 P2 P3 * *
5347 **
5348 ** Delete an entire database table or index whose root page in the database
5349 ** file is given by P1.
5350 **
5351 ** The table being destroyed is in the main database file if P3==0.  If
5352 ** P3==1 then the table to be clear is in the auxiliary database file
5353 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5354 **
5355 ** If AUTOVACUUM is enabled then it is possible that another root page
5356 ** might be moved into the newly deleted root page in order to keep all
5357 ** root pages contiguous at the beginning of the database.  The former
5358 ** value of the root page that moved - its value before the move occurred -
5359 ** is stored in register P2. If no page movement was required (because the
5360 ** table being dropped was already the last one in the database) then a
5361 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5362 ** is stored in register P2.
5363 **
5364 ** This opcode throws an error if there are any active reader VMs when
5365 ** it is invoked. This is done to avoid the difficulty associated with
5366 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5367 ** database. This error is thrown even if the database is not an AUTOVACUUM
5368 ** db in order to avoid introducing an incompatibility between autovacuum
5369 ** and non-autovacuum modes.
5370 **
5371 ** See also: Clear
5372 */
5373 case OP_Destroy: {     /* out2 */
5374   int iMoved;
5375   int iDb;
5376 
5377   assert( p->readOnly==0 );
5378   assert( pOp->p1>1 );
5379   pOut = out2Prerelease(p, pOp);
5380   pOut->flags = MEM_Null;
5381   if( db->nVdbeRead > db->nVDestroy+1 ){
5382     rc = SQLITE_LOCKED;
5383     p->errorAction = OE_Abort;
5384     goto abort_due_to_error;
5385   }else{
5386     iDb = pOp->p3;
5387     assert( DbMaskTest(p->btreeMask, iDb) );
5388     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5389     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5390     pOut->flags = MEM_Int;
5391     pOut->u.i = iMoved;
5392     if( rc ) goto abort_due_to_error;
5393 #ifndef SQLITE_OMIT_AUTOVACUUM
5394     if( iMoved!=0 ){
5395       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5396       /* All OP_Destroy operations occur on the same btree */
5397       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5398       resetSchemaOnFault = iDb+1;
5399     }
5400 #endif
5401   }
5402   break;
5403 }
5404 
5405 /* Opcode: Clear P1 P2 P3
5406 **
5407 ** Delete all contents of the database table or index whose root page
5408 ** in the database file is given by P1.  But, unlike Destroy, do not
5409 ** remove the table or index from the database file.
5410 **
5411 ** The table being clear is in the main database file if P2==0.  If
5412 ** P2==1 then the table to be clear is in the auxiliary database file
5413 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5414 **
5415 ** If the P3 value is non-zero, then the table referred to must be an
5416 ** intkey table (an SQL table, not an index). In this case the row change
5417 ** count is incremented by the number of rows in the table being cleared.
5418 ** If P3 is greater than zero, then the value stored in register P3 is
5419 ** also incremented by the number of rows in the table being cleared.
5420 **
5421 ** See also: Destroy
5422 */
5423 case OP_Clear: {
5424   int nChange;
5425 
5426   nChange = 0;
5427   assert( p->readOnly==0 );
5428   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5429   rc = sqlite3BtreeClearTable(
5430       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5431   );
5432   if( pOp->p3 ){
5433     p->nChange += nChange;
5434     if( pOp->p3>0 ){
5435       assert( memIsValid(&aMem[pOp->p3]) );
5436       memAboutToChange(p, &aMem[pOp->p3]);
5437       aMem[pOp->p3].u.i += nChange;
5438     }
5439   }
5440   if( rc ) goto abort_due_to_error;
5441   break;
5442 }
5443 
5444 /* Opcode: ResetSorter P1 * * * *
5445 **
5446 ** Delete all contents from the ephemeral table or sorter
5447 ** that is open on cursor P1.
5448 **
5449 ** This opcode only works for cursors used for sorting and
5450 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5451 */
5452 case OP_ResetSorter: {
5453   VdbeCursor *pC;
5454 
5455   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5456   pC = p->apCsr[pOp->p1];
5457   assert( pC!=0 );
5458   if( isSorter(pC) ){
5459     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5460   }else{
5461     assert( pC->eCurType==CURTYPE_BTREE );
5462     assert( pC->isEphemeral );
5463     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5464     if( rc ) goto abort_due_to_error;
5465   }
5466   break;
5467 }
5468 
5469 /* Opcode: CreateTable P1 P2 * * *
5470 ** Synopsis: r[P2]=root iDb=P1
5471 **
5472 ** Allocate a new table in the main database file if P1==0 or in the
5473 ** auxiliary database file if P1==1 or in an attached database if
5474 ** P1>1.  Write the root page number of the new table into
5475 ** register P2
5476 **
5477 ** The difference between a table and an index is this:  A table must
5478 ** have a 4-byte integer key and can have arbitrary data.  An index
5479 ** has an arbitrary key but no data.
5480 **
5481 ** See also: CreateIndex
5482 */
5483 /* Opcode: CreateIndex P1 P2 * * *
5484 ** Synopsis: r[P2]=root iDb=P1
5485 **
5486 ** Allocate a new index in the main database file if P1==0 or in the
5487 ** auxiliary database file if P1==1 or in an attached database if
5488 ** P1>1.  Write the root page number of the new table into
5489 ** register P2.
5490 **
5491 ** See documentation on OP_CreateTable for additional information.
5492 */
5493 case OP_CreateIndex:            /* out2 */
5494 case OP_CreateTable: {          /* out2 */
5495   int pgno;
5496   int flags;
5497   Db *pDb;
5498 
5499   pOut = out2Prerelease(p, pOp);
5500   pgno = 0;
5501   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5502   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5503   assert( p->readOnly==0 );
5504   pDb = &db->aDb[pOp->p1];
5505   assert( pDb->pBt!=0 );
5506   if( pOp->opcode==OP_CreateTable ){
5507     /* flags = BTREE_INTKEY; */
5508     flags = BTREE_INTKEY;
5509   }else{
5510     flags = BTREE_BLOBKEY;
5511   }
5512   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5513   if( rc ) goto abort_due_to_error;
5514   pOut->u.i = pgno;
5515   break;
5516 }
5517 
5518 /* Opcode: SqlExec * * * P4 *
5519 **
5520 ** Run the SQL statement or statements specified in the P4 string.
5521 */
5522 case OP_SqlExec: {
5523   db->nSqlExec++;
5524   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
5525   db->nSqlExec--;
5526   if( rc ) goto abort_due_to_error;
5527   break;
5528 }
5529 
5530 /* Opcode: ParseSchema P1 * * P4 *
5531 **
5532 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5533 ** that match the WHERE clause P4.
5534 **
5535 ** This opcode invokes the parser to create a new virtual machine,
5536 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5537 */
5538 case OP_ParseSchema: {
5539   int iDb;
5540   const char *zMaster;
5541   char *zSql;
5542   InitData initData;
5543 
5544   /* Any prepared statement that invokes this opcode will hold mutexes
5545   ** on every btree.  This is a prerequisite for invoking
5546   ** sqlite3InitCallback().
5547   */
5548 #ifdef SQLITE_DEBUG
5549   for(iDb=0; iDb<db->nDb; iDb++){
5550     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5551   }
5552 #endif
5553 
5554   iDb = pOp->p1;
5555   assert( iDb>=0 && iDb<db->nDb );
5556   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5557   /* Used to be a conditional */ {
5558     zMaster = MASTER_NAME;
5559     initData.db = db;
5560     initData.iDb = pOp->p1;
5561     initData.pzErrMsg = &p->zErrMsg;
5562     zSql = sqlite3MPrintf(db,
5563        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5564        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
5565     if( zSql==0 ){
5566       rc = SQLITE_NOMEM_BKPT;
5567     }else{
5568       assert( db->init.busy==0 );
5569       db->init.busy = 1;
5570       initData.rc = SQLITE_OK;
5571       assert( !db->mallocFailed );
5572       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5573       if( rc==SQLITE_OK ) rc = initData.rc;
5574       sqlite3DbFreeNN(db, zSql);
5575       db->init.busy = 0;
5576     }
5577   }
5578   if( rc ){
5579     sqlite3ResetAllSchemasOfConnection(db);
5580     if( rc==SQLITE_NOMEM ){
5581       goto no_mem;
5582     }
5583     goto abort_due_to_error;
5584   }
5585   break;
5586 }
5587 
5588 #if !defined(SQLITE_OMIT_ANALYZE)
5589 /* Opcode: LoadAnalysis P1 * * * *
5590 **
5591 ** Read the sqlite_stat1 table for database P1 and load the content
5592 ** of that table into the internal index hash table.  This will cause
5593 ** the analysis to be used when preparing all subsequent queries.
5594 */
5595 case OP_LoadAnalysis: {
5596   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5597   rc = sqlite3AnalysisLoad(db, pOp->p1);
5598   if( rc ) goto abort_due_to_error;
5599   break;
5600 }
5601 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5602 
5603 /* Opcode: DropTable P1 * * P4 *
5604 **
5605 ** Remove the internal (in-memory) data structures that describe
5606 ** the table named P4 in database P1.  This is called after a table
5607 ** is dropped from disk (using the Destroy opcode) in order to keep
5608 ** the internal representation of the
5609 ** schema consistent with what is on disk.
5610 */
5611 case OP_DropTable: {
5612   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5613   break;
5614 }
5615 
5616 /* Opcode: DropIndex P1 * * P4 *
5617 **
5618 ** Remove the internal (in-memory) data structures that describe
5619 ** the index named P4 in database P1.  This is called after an index
5620 ** is dropped from disk (using the Destroy opcode)
5621 ** in order to keep the internal representation of the
5622 ** schema consistent with what is on disk.
5623 */
5624 case OP_DropIndex: {
5625   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5626   break;
5627 }
5628 
5629 /* Opcode: DropTrigger P1 * * P4 *
5630 **
5631 ** Remove the internal (in-memory) data structures that describe
5632 ** the trigger named P4 in database P1.  This is called after a trigger
5633 ** is dropped from disk (using the Destroy opcode) in order to keep
5634 ** the internal representation of the
5635 ** schema consistent with what is on disk.
5636 */
5637 case OP_DropTrigger: {
5638   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5639   break;
5640 }
5641 
5642 
5643 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5644 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
5645 **
5646 ** Do an analysis of the currently open database.  Store in
5647 ** register P1 the text of an error message describing any problems.
5648 ** If no problems are found, store a NULL in register P1.
5649 **
5650 ** The register P3 contains one less than the maximum number of allowed errors.
5651 ** At most reg(P3) errors will be reported.
5652 ** In other words, the analysis stops as soon as reg(P1) errors are
5653 ** seen.  Reg(P1) is updated with the number of errors remaining.
5654 **
5655 ** The root page numbers of all tables in the database are integers
5656 ** stored in P4_INTARRAY argument.
5657 **
5658 ** If P5 is not zero, the check is done on the auxiliary database
5659 ** file, not the main database file.
5660 **
5661 ** This opcode is used to implement the integrity_check pragma.
5662 */
5663 case OP_IntegrityCk: {
5664   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5665   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5666   int nErr;       /* Number of errors reported */
5667   char *z;        /* Text of the error report */
5668   Mem *pnErr;     /* Register keeping track of errors remaining */
5669 
5670   assert( p->bIsReader );
5671   nRoot = pOp->p2;
5672   aRoot = pOp->p4.ai;
5673   assert( nRoot>0 );
5674   assert( aRoot[nRoot]==0 );
5675   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
5676   pnErr = &aMem[pOp->p3];
5677   assert( (pnErr->flags & MEM_Int)!=0 );
5678   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5679   pIn1 = &aMem[pOp->p1];
5680   assert( pOp->p5<db->nDb );
5681   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5682   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5683                                  (int)pnErr->u.i+1, &nErr);
5684   sqlite3VdbeMemSetNull(pIn1);
5685   if( nErr==0 ){
5686     assert( z==0 );
5687   }else if( z==0 ){
5688     goto no_mem;
5689   }else{
5690     pnErr->u.i -= nErr-1;
5691     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5692   }
5693   UPDATE_MAX_BLOBSIZE(pIn1);
5694   sqlite3VdbeChangeEncoding(pIn1, encoding);
5695   break;
5696 }
5697 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5698 
5699 /* Opcode: RowSetAdd P1 P2 * * *
5700 ** Synopsis: rowset(P1)=r[P2]
5701 **
5702 ** Insert the integer value held by register P2 into a RowSet object
5703 ** held in register P1.
5704 **
5705 ** An assertion fails if P2 is not an integer.
5706 */
5707 case OP_RowSetAdd: {       /* in1, in2 */
5708   pIn1 = &aMem[pOp->p1];
5709   pIn2 = &aMem[pOp->p2];
5710   assert( (pIn2->flags & MEM_Int)!=0 );
5711   if( (pIn1->flags & MEM_RowSet)==0 ){
5712     sqlite3VdbeMemSetRowSet(pIn1);
5713     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5714   }
5715   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5716   break;
5717 }
5718 
5719 /* Opcode: RowSetRead P1 P2 P3 * *
5720 ** Synopsis: r[P3]=rowset(P1)
5721 **
5722 ** Extract the smallest value from the RowSet object in P1
5723 ** and put that value into register P3.
5724 ** Or, if RowSet object P1 is initially empty, leave P3
5725 ** unchanged and jump to instruction P2.
5726 */
5727 case OP_RowSetRead: {       /* jump, in1, out3 */
5728   i64 val;
5729 
5730   pIn1 = &aMem[pOp->p1];
5731   if( (pIn1->flags & MEM_RowSet)==0
5732    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5733   ){
5734     /* The boolean index is empty */
5735     sqlite3VdbeMemSetNull(pIn1);
5736     VdbeBranchTaken(1,2);
5737     goto jump_to_p2_and_check_for_interrupt;
5738   }else{
5739     /* A value was pulled from the index */
5740     VdbeBranchTaken(0,2);
5741     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5742   }
5743   goto check_for_interrupt;
5744 }
5745 
5746 /* Opcode: RowSetTest P1 P2 P3 P4
5747 ** Synopsis: if r[P3] in rowset(P1) goto P2
5748 **
5749 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5750 ** contains a RowSet object and that RowSet object contains
5751 ** the value held in P3, jump to register P2. Otherwise, insert the
5752 ** integer in P3 into the RowSet and continue on to the
5753 ** next opcode.
5754 **
5755 ** The RowSet object is optimized for the case where sets of integers
5756 ** are inserted in distinct phases, which each set contains no duplicates.
5757 ** Each set is identified by a unique P4 value. The first set
5758 ** must have P4==0, the final set must have P4==-1, and for all other sets
5759 ** must have P4>0.
5760 **
5761 ** This allows optimizations: (a) when P4==0 there is no need to test
5762 ** the RowSet object for P3, as it is guaranteed not to contain it,
5763 ** (b) when P4==-1 there is no need to insert the value, as it will
5764 ** never be tested for, and (c) when a value that is part of set X is
5765 ** inserted, there is no need to search to see if the same value was
5766 ** previously inserted as part of set X (only if it was previously
5767 ** inserted as part of some other set).
5768 */
5769 case OP_RowSetTest: {                     /* jump, in1, in3 */
5770   int iSet;
5771   int exists;
5772 
5773   pIn1 = &aMem[pOp->p1];
5774   pIn3 = &aMem[pOp->p3];
5775   iSet = pOp->p4.i;
5776   assert( pIn3->flags&MEM_Int );
5777 
5778   /* If there is anything other than a rowset object in memory cell P1,
5779   ** delete it now and initialize P1 with an empty rowset
5780   */
5781   if( (pIn1->flags & MEM_RowSet)==0 ){
5782     sqlite3VdbeMemSetRowSet(pIn1);
5783     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5784   }
5785 
5786   assert( pOp->p4type==P4_INT32 );
5787   assert( iSet==-1 || iSet>=0 );
5788   if( iSet ){
5789     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5790     VdbeBranchTaken(exists!=0,2);
5791     if( exists ) goto jump_to_p2;
5792   }
5793   if( iSet>=0 ){
5794     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5795   }
5796   break;
5797 }
5798 
5799 
5800 #ifndef SQLITE_OMIT_TRIGGER
5801 
5802 /* Opcode: Program P1 P2 P3 P4 P5
5803 **
5804 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5805 **
5806 ** P1 contains the address of the memory cell that contains the first memory
5807 ** cell in an array of values used as arguments to the sub-program. P2
5808 ** contains the address to jump to if the sub-program throws an IGNORE
5809 ** exception using the RAISE() function. Register P3 contains the address
5810 ** of a memory cell in this (the parent) VM that is used to allocate the
5811 ** memory required by the sub-vdbe at runtime.
5812 **
5813 ** P4 is a pointer to the VM containing the trigger program.
5814 **
5815 ** If P5 is non-zero, then recursive program invocation is enabled.
5816 */
5817 case OP_Program: {        /* jump */
5818   int nMem;               /* Number of memory registers for sub-program */
5819   int nByte;              /* Bytes of runtime space required for sub-program */
5820   Mem *pRt;               /* Register to allocate runtime space */
5821   Mem *pMem;              /* Used to iterate through memory cells */
5822   Mem *pEnd;              /* Last memory cell in new array */
5823   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5824   SubProgram *pProgram;   /* Sub-program to execute */
5825   void *t;                /* Token identifying trigger */
5826 
5827   pProgram = pOp->p4.pProgram;
5828   pRt = &aMem[pOp->p3];
5829   assert( pProgram->nOp>0 );
5830 
5831   /* If the p5 flag is clear, then recursive invocation of triggers is
5832   ** disabled for backwards compatibility (p5 is set if this sub-program
5833   ** is really a trigger, not a foreign key action, and the flag set
5834   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5835   **
5836   ** It is recursive invocation of triggers, at the SQL level, that is
5837   ** disabled. In some cases a single trigger may generate more than one
5838   ** SubProgram (if the trigger may be executed with more than one different
5839   ** ON CONFLICT algorithm). SubProgram structures associated with a
5840   ** single trigger all have the same value for the SubProgram.token
5841   ** variable.  */
5842   if( pOp->p5 ){
5843     t = pProgram->token;
5844     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5845     if( pFrame ) break;
5846   }
5847 
5848   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5849     rc = SQLITE_ERROR;
5850     sqlite3VdbeError(p, "too many levels of trigger recursion");
5851     goto abort_due_to_error;
5852   }
5853 
5854   /* Register pRt is used to store the memory required to save the state
5855   ** of the current program, and the memory required at runtime to execute
5856   ** the trigger program. If this trigger has been fired before, then pRt
5857   ** is already allocated. Otherwise, it must be initialized.  */
5858   if( (pRt->flags&MEM_Frame)==0 ){
5859     /* SubProgram.nMem is set to the number of memory cells used by the
5860     ** program stored in SubProgram.aOp. As well as these, one memory
5861     ** cell is required for each cursor used by the program. Set local
5862     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5863     */
5864     nMem = pProgram->nMem + pProgram->nCsr;
5865     assert( nMem>0 );
5866     if( pProgram->nCsr==0 ) nMem++;
5867     nByte = ROUND8(sizeof(VdbeFrame))
5868               + nMem * sizeof(Mem)
5869               + pProgram->nCsr * sizeof(VdbeCursor*)
5870               + (pProgram->nOp + 7)/8;
5871     pFrame = sqlite3DbMallocZero(db, nByte);
5872     if( !pFrame ){
5873       goto no_mem;
5874     }
5875     sqlite3VdbeMemRelease(pRt);
5876     pRt->flags = MEM_Frame;
5877     pRt->u.pFrame = pFrame;
5878 
5879     pFrame->v = p;
5880     pFrame->nChildMem = nMem;
5881     pFrame->nChildCsr = pProgram->nCsr;
5882     pFrame->pc = (int)(pOp - aOp);
5883     pFrame->aMem = p->aMem;
5884     pFrame->nMem = p->nMem;
5885     pFrame->apCsr = p->apCsr;
5886     pFrame->nCursor = p->nCursor;
5887     pFrame->aOp = p->aOp;
5888     pFrame->nOp = p->nOp;
5889     pFrame->token = pProgram->token;
5890 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5891     pFrame->anExec = p->anExec;
5892 #endif
5893 
5894     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5895     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5896       pMem->flags = MEM_Undefined;
5897       pMem->db = db;
5898     }
5899   }else{
5900     pFrame = pRt->u.pFrame;
5901     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5902         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
5903     assert( pProgram->nCsr==pFrame->nChildCsr );
5904     assert( (int)(pOp - aOp)==pFrame->pc );
5905   }
5906 
5907   p->nFrame++;
5908   pFrame->pParent = p->pFrame;
5909   pFrame->lastRowid = db->lastRowid;
5910   pFrame->nChange = p->nChange;
5911   pFrame->nDbChange = p->db->nChange;
5912   assert( pFrame->pAuxData==0 );
5913   pFrame->pAuxData = p->pAuxData;
5914   p->pAuxData = 0;
5915   p->nChange = 0;
5916   p->pFrame = pFrame;
5917   p->aMem = aMem = VdbeFrameMem(pFrame);
5918   p->nMem = pFrame->nChildMem;
5919   p->nCursor = (u16)pFrame->nChildCsr;
5920   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
5921   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
5922   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
5923   p->aOp = aOp = pProgram->aOp;
5924   p->nOp = pProgram->nOp;
5925 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5926   p->anExec = 0;
5927 #endif
5928   pOp = &aOp[-1];
5929 
5930   break;
5931 }
5932 
5933 /* Opcode: Param P1 P2 * * *
5934 **
5935 ** This opcode is only ever present in sub-programs called via the
5936 ** OP_Program instruction. Copy a value currently stored in a memory
5937 ** cell of the calling (parent) frame to cell P2 in the current frames
5938 ** address space. This is used by trigger programs to access the new.*
5939 ** and old.* values.
5940 **
5941 ** The address of the cell in the parent frame is determined by adding
5942 ** the value of the P1 argument to the value of the P1 argument to the
5943 ** calling OP_Program instruction.
5944 */
5945 case OP_Param: {           /* out2 */
5946   VdbeFrame *pFrame;
5947   Mem *pIn;
5948   pOut = out2Prerelease(p, pOp);
5949   pFrame = p->pFrame;
5950   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5951   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5952   break;
5953 }
5954 
5955 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5956 
5957 #ifndef SQLITE_OMIT_FOREIGN_KEY
5958 /* Opcode: FkCounter P1 P2 * * *
5959 ** Synopsis: fkctr[P1]+=P2
5960 **
5961 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5962 ** If P1 is non-zero, the database constraint counter is incremented
5963 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5964 ** statement counter is incremented (immediate foreign key constraints).
5965 */
5966 case OP_FkCounter: {
5967   if( db->flags & SQLITE_DeferFKs ){
5968     db->nDeferredImmCons += pOp->p2;
5969   }else if( pOp->p1 ){
5970     db->nDeferredCons += pOp->p2;
5971   }else{
5972     p->nFkConstraint += pOp->p2;
5973   }
5974   break;
5975 }
5976 
5977 /* Opcode: FkIfZero P1 P2 * * *
5978 ** Synopsis: if fkctr[P1]==0 goto P2
5979 **
5980 ** This opcode tests if a foreign key constraint-counter is currently zero.
5981 ** If so, jump to instruction P2. Otherwise, fall through to the next
5982 ** instruction.
5983 **
5984 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5985 ** is zero (the one that counts deferred constraint violations). If P1 is
5986 ** zero, the jump is taken if the statement constraint-counter is zero
5987 ** (immediate foreign key constraint violations).
5988 */
5989 case OP_FkIfZero: {         /* jump */
5990   if( pOp->p1 ){
5991     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5992     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5993   }else{
5994     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5995     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5996   }
5997   break;
5998 }
5999 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6000 
6001 #ifndef SQLITE_OMIT_AUTOINCREMENT
6002 /* Opcode: MemMax P1 P2 * * *
6003 ** Synopsis: r[P1]=max(r[P1],r[P2])
6004 **
6005 ** P1 is a register in the root frame of this VM (the root frame is
6006 ** different from the current frame if this instruction is being executed
6007 ** within a sub-program). Set the value of register P1 to the maximum of
6008 ** its current value and the value in register P2.
6009 **
6010 ** This instruction throws an error if the memory cell is not initially
6011 ** an integer.
6012 */
6013 case OP_MemMax: {        /* in2 */
6014   VdbeFrame *pFrame;
6015   if( p->pFrame ){
6016     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6017     pIn1 = &pFrame->aMem[pOp->p1];
6018   }else{
6019     pIn1 = &aMem[pOp->p1];
6020   }
6021   assert( memIsValid(pIn1) );
6022   sqlite3VdbeMemIntegerify(pIn1);
6023   pIn2 = &aMem[pOp->p2];
6024   sqlite3VdbeMemIntegerify(pIn2);
6025   if( pIn1->u.i<pIn2->u.i){
6026     pIn1->u.i = pIn2->u.i;
6027   }
6028   break;
6029 }
6030 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6031 
6032 /* Opcode: IfPos P1 P2 P3 * *
6033 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6034 **
6035 ** Register P1 must contain an integer.
6036 ** If the value of register P1 is 1 or greater, subtract P3 from the
6037 ** value in P1 and jump to P2.
6038 **
6039 ** If the initial value of register P1 is less than 1, then the
6040 ** value is unchanged and control passes through to the next instruction.
6041 */
6042 case OP_IfPos: {        /* jump, in1 */
6043   pIn1 = &aMem[pOp->p1];
6044   assert( pIn1->flags&MEM_Int );
6045   VdbeBranchTaken( pIn1->u.i>0, 2);
6046   if( pIn1->u.i>0 ){
6047     pIn1->u.i -= pOp->p3;
6048     goto jump_to_p2;
6049   }
6050   break;
6051 }
6052 
6053 /* Opcode: OffsetLimit P1 P2 P3 * *
6054 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6055 **
6056 ** This opcode performs a commonly used computation associated with
6057 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6058 ** holds the offset counter.  The opcode computes the combined value
6059 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6060 ** value computed is the total number of rows that will need to be
6061 ** visited in order to complete the query.
6062 **
6063 ** If r[P3] is zero or negative, that means there is no OFFSET
6064 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6065 **
6066 ** if r[P1] is zero or negative, that means there is no LIMIT
6067 ** and r[P2] is set to -1.
6068 **
6069 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6070 */
6071 case OP_OffsetLimit: {    /* in1, out2, in3 */
6072   i64 x;
6073   pIn1 = &aMem[pOp->p1];
6074   pIn3 = &aMem[pOp->p3];
6075   pOut = out2Prerelease(p, pOp);
6076   assert( pIn1->flags & MEM_Int );
6077   assert( pIn3->flags & MEM_Int );
6078   x = pIn1->u.i;
6079   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6080     /* If the LIMIT is less than or equal to zero, loop forever.  This
6081     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6082     ** also loop forever.  This is undocumented.  In fact, one could argue
6083     ** that the loop should terminate.  But assuming 1 billion iterations
6084     ** per second (far exceeding the capabilities of any current hardware)
6085     ** it would take nearly 300 years to actually reach the limit.  So
6086     ** looping forever is a reasonable approximation. */
6087     pOut->u.i = -1;
6088   }else{
6089     pOut->u.i = x;
6090   }
6091   break;
6092 }
6093 
6094 /* Opcode: IfNotZero P1 P2 * * *
6095 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6096 **
6097 ** Register P1 must contain an integer.  If the content of register P1 is
6098 ** initially greater than zero, then decrement the value in register P1.
6099 ** If it is non-zero (negative or positive) and then also jump to P2.
6100 ** If register P1 is initially zero, leave it unchanged and fall through.
6101 */
6102 case OP_IfNotZero: {        /* jump, in1 */
6103   pIn1 = &aMem[pOp->p1];
6104   assert( pIn1->flags&MEM_Int );
6105   VdbeBranchTaken(pIn1->u.i<0, 2);
6106   if( pIn1->u.i ){
6107      if( pIn1->u.i>0 ) pIn1->u.i--;
6108      goto jump_to_p2;
6109   }
6110   break;
6111 }
6112 
6113 /* Opcode: DecrJumpZero P1 P2 * * *
6114 ** Synopsis: if (--r[P1])==0 goto P2
6115 **
6116 ** Register P1 must hold an integer.  Decrement the value in P1
6117 ** and jump to P2 if the new value is exactly zero.
6118 */
6119 case OP_DecrJumpZero: {      /* jump, in1 */
6120   pIn1 = &aMem[pOp->p1];
6121   assert( pIn1->flags&MEM_Int );
6122   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6123   VdbeBranchTaken(pIn1->u.i==0, 2);
6124   if( pIn1->u.i==0 ) goto jump_to_p2;
6125   break;
6126 }
6127 
6128 
6129 /* Opcode: AggStep0 * P2 P3 P4 P5
6130 ** Synopsis: accum=r[P3] step(r[P2@P5])
6131 **
6132 ** Execute the step function for an aggregate.  The
6133 ** function has P5 arguments.   P4 is a pointer to the FuncDef
6134 ** structure that specifies the function.  Register P3 is the
6135 ** accumulator.
6136 **
6137 ** The P5 arguments are taken from register P2 and its
6138 ** successors.
6139 */
6140 /* Opcode: AggStep * P2 P3 P4 P5
6141 ** Synopsis: accum=r[P3] step(r[P2@P5])
6142 **
6143 ** Execute the step function for an aggregate.  The
6144 ** function has P5 arguments.   P4 is a pointer to an sqlite3_context
6145 ** object that is used to run the function.  Register P3 is
6146 ** as the accumulator.
6147 **
6148 ** The P5 arguments are taken from register P2 and its
6149 ** successors.
6150 **
6151 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6152 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6153 ** the opcode is changed.  In this way, the initialization of the
6154 ** sqlite3_context only happens once, instead of on each call to the
6155 ** step function.
6156 */
6157 case OP_AggStep0: {
6158   int n;
6159   sqlite3_context *pCtx;
6160 
6161   assert( pOp->p4type==P4_FUNCDEF );
6162   n = pOp->p5;
6163   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6164   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6165   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6166   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
6167   if( pCtx==0 ) goto no_mem;
6168   pCtx->pMem = 0;
6169   pCtx->pFunc = pOp->p4.pFunc;
6170   pCtx->iOp = (int)(pOp - aOp);
6171   pCtx->pVdbe = p;
6172   pCtx->argc = n;
6173   pOp->p4type = P4_FUNCCTX;
6174   pOp->p4.pCtx = pCtx;
6175   pOp->opcode = OP_AggStep;
6176   /* Fall through into OP_AggStep */
6177 }
6178 case OP_AggStep: {
6179   int i;
6180   sqlite3_context *pCtx;
6181   Mem *pMem;
6182   Mem t;
6183 
6184   assert( pOp->p4type==P4_FUNCCTX );
6185   pCtx = pOp->p4.pCtx;
6186   pMem = &aMem[pOp->p3];
6187 
6188   /* If this function is inside of a trigger, the register array in aMem[]
6189   ** might change from one evaluation to the next.  The next block of code
6190   ** checks to see if the register array has changed, and if so it
6191   ** reinitializes the relavant parts of the sqlite3_context object */
6192   if( pCtx->pMem != pMem ){
6193     pCtx->pMem = pMem;
6194     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6195   }
6196 
6197 #ifdef SQLITE_DEBUG
6198   for(i=0; i<pCtx->argc; i++){
6199     assert( memIsValid(pCtx->argv[i]) );
6200     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6201   }
6202 #endif
6203 
6204   pMem->n++;
6205   sqlite3VdbeMemInit(&t, db, MEM_Null);
6206   pCtx->pOut = &t;
6207   pCtx->fErrorOrAux = 0;
6208   pCtx->skipFlag = 0;
6209   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6210   if( pCtx->fErrorOrAux ){
6211     if( pCtx->isError ){
6212       sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6213       rc = pCtx->isError;
6214     }
6215     sqlite3VdbeMemRelease(&t);
6216     if( rc ) goto abort_due_to_error;
6217   }else{
6218     assert( t.flags==MEM_Null );
6219   }
6220   if( pCtx->skipFlag ){
6221     assert( pOp[-1].opcode==OP_CollSeq );
6222     i = pOp[-1].p1;
6223     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6224   }
6225   break;
6226 }
6227 
6228 /* Opcode: AggFinal P1 P2 * P4 *
6229 ** Synopsis: accum=r[P1] N=P2
6230 **
6231 ** Execute the finalizer function for an aggregate.  P1 is
6232 ** the memory location that is the accumulator for the aggregate.
6233 **
6234 ** P2 is the number of arguments that the step function takes and
6235 ** P4 is a pointer to the FuncDef for this function.  The P2
6236 ** argument is not used by this opcode.  It is only there to disambiguate
6237 ** functions that can take varying numbers of arguments.  The
6238 ** P4 argument is only needed for the degenerate case where
6239 ** the step function was not previously called.
6240 */
6241 case OP_AggFinal: {
6242   Mem *pMem;
6243   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6244   pMem = &aMem[pOp->p1];
6245   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6246   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6247   if( rc ){
6248     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6249     goto abort_due_to_error;
6250   }
6251   sqlite3VdbeChangeEncoding(pMem, encoding);
6252   UPDATE_MAX_BLOBSIZE(pMem);
6253   if( sqlite3VdbeMemTooBig(pMem) ){
6254     goto too_big;
6255   }
6256   break;
6257 }
6258 
6259 #ifndef SQLITE_OMIT_WAL
6260 /* Opcode: Checkpoint P1 P2 P3 * *
6261 **
6262 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6263 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6264 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6265 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6266 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6267 ** in the WAL that have been checkpointed after the checkpoint
6268 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6269 ** mem[P3+2] are initialized to -1.
6270 */
6271 case OP_Checkpoint: {
6272   int i;                          /* Loop counter */
6273   int aRes[3];                    /* Results */
6274   Mem *pMem;                      /* Write results here */
6275 
6276   assert( p->readOnly==0 );
6277   aRes[0] = 0;
6278   aRes[1] = aRes[2] = -1;
6279   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6280        || pOp->p2==SQLITE_CHECKPOINT_FULL
6281        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6282        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6283   );
6284   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6285   if( rc ){
6286     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6287     rc = SQLITE_OK;
6288     aRes[0] = 1;
6289   }
6290   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6291     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6292   }
6293   break;
6294 };
6295 #endif
6296 
6297 #ifndef SQLITE_OMIT_PRAGMA
6298 /* Opcode: JournalMode P1 P2 P3 * *
6299 **
6300 ** Change the journal mode of database P1 to P3. P3 must be one of the
6301 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6302 ** modes (delete, truncate, persist, off and memory), this is a simple
6303 ** operation. No IO is required.
6304 **
6305 ** If changing into or out of WAL mode the procedure is more complicated.
6306 **
6307 ** Write a string containing the final journal-mode to register P2.
6308 */
6309 case OP_JournalMode: {    /* out2 */
6310   Btree *pBt;                     /* Btree to change journal mode of */
6311   Pager *pPager;                  /* Pager associated with pBt */
6312   int eNew;                       /* New journal mode */
6313   int eOld;                       /* The old journal mode */
6314 #ifndef SQLITE_OMIT_WAL
6315   const char *zFilename;          /* Name of database file for pPager */
6316 #endif
6317 
6318   pOut = out2Prerelease(p, pOp);
6319   eNew = pOp->p3;
6320   assert( eNew==PAGER_JOURNALMODE_DELETE
6321        || eNew==PAGER_JOURNALMODE_TRUNCATE
6322        || eNew==PAGER_JOURNALMODE_PERSIST
6323        || eNew==PAGER_JOURNALMODE_OFF
6324        || eNew==PAGER_JOURNALMODE_MEMORY
6325        || eNew==PAGER_JOURNALMODE_WAL
6326        || eNew==PAGER_JOURNALMODE_QUERY
6327   );
6328   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6329   assert( p->readOnly==0 );
6330 
6331   pBt = db->aDb[pOp->p1].pBt;
6332   pPager = sqlite3BtreePager(pBt);
6333   eOld = sqlite3PagerGetJournalMode(pPager);
6334   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6335   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6336 
6337 #ifndef SQLITE_OMIT_WAL
6338   zFilename = sqlite3PagerFilename(pPager, 1);
6339 
6340   /* Do not allow a transition to journal_mode=WAL for a database
6341   ** in temporary storage or if the VFS does not support shared memory
6342   */
6343   if( eNew==PAGER_JOURNALMODE_WAL
6344    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6345        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6346   ){
6347     eNew = eOld;
6348   }
6349 
6350   if( (eNew!=eOld)
6351    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6352   ){
6353     if( !db->autoCommit || db->nVdbeRead>1 ){
6354       rc = SQLITE_ERROR;
6355       sqlite3VdbeError(p,
6356           "cannot change %s wal mode from within a transaction",
6357           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6358       );
6359       goto abort_due_to_error;
6360     }else{
6361 
6362       if( eOld==PAGER_JOURNALMODE_WAL ){
6363         /* If leaving WAL mode, close the log file. If successful, the call
6364         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6365         ** file. An EXCLUSIVE lock may still be held on the database file
6366         ** after a successful return.
6367         */
6368         rc = sqlite3PagerCloseWal(pPager, db);
6369         if( rc==SQLITE_OK ){
6370           sqlite3PagerSetJournalMode(pPager, eNew);
6371         }
6372       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6373         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6374         ** as an intermediate */
6375         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6376       }
6377 
6378       /* Open a transaction on the database file. Regardless of the journal
6379       ** mode, this transaction always uses a rollback journal.
6380       */
6381       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6382       if( rc==SQLITE_OK ){
6383         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6384       }
6385     }
6386   }
6387 #endif /* ifndef SQLITE_OMIT_WAL */
6388 
6389   if( rc ) eNew = eOld;
6390   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6391 
6392   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6393   pOut->z = (char *)sqlite3JournalModename(eNew);
6394   pOut->n = sqlite3Strlen30(pOut->z);
6395   pOut->enc = SQLITE_UTF8;
6396   sqlite3VdbeChangeEncoding(pOut, encoding);
6397   if( rc ) goto abort_due_to_error;
6398   break;
6399 };
6400 #endif /* SQLITE_OMIT_PRAGMA */
6401 
6402 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6403 /* Opcode: Vacuum P1 * * * *
6404 **
6405 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
6406 ** for an attached database.  The "temp" database may not be vacuumed.
6407 */
6408 case OP_Vacuum: {
6409   assert( p->readOnly==0 );
6410   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
6411   if( rc ) goto abort_due_to_error;
6412   break;
6413 }
6414 #endif
6415 
6416 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6417 /* Opcode: IncrVacuum P1 P2 * * *
6418 **
6419 ** Perform a single step of the incremental vacuum procedure on
6420 ** the P1 database. If the vacuum has finished, jump to instruction
6421 ** P2. Otherwise, fall through to the next instruction.
6422 */
6423 case OP_IncrVacuum: {        /* jump */
6424   Btree *pBt;
6425 
6426   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6427   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6428   assert( p->readOnly==0 );
6429   pBt = db->aDb[pOp->p1].pBt;
6430   rc = sqlite3BtreeIncrVacuum(pBt);
6431   VdbeBranchTaken(rc==SQLITE_DONE,2);
6432   if( rc ){
6433     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6434     rc = SQLITE_OK;
6435     goto jump_to_p2;
6436   }
6437   break;
6438 }
6439 #endif
6440 
6441 /* Opcode: Expire P1 * * * *
6442 **
6443 ** Cause precompiled statements to expire.  When an expired statement
6444 ** is executed using sqlite3_step() it will either automatically
6445 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6446 ** or it will fail with SQLITE_SCHEMA.
6447 **
6448 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6449 ** then only the currently executing statement is expired.
6450 */
6451 case OP_Expire: {
6452   if( !pOp->p1 ){
6453     sqlite3ExpirePreparedStatements(db);
6454   }else{
6455     p->expired = 1;
6456   }
6457   break;
6458 }
6459 
6460 #ifndef SQLITE_OMIT_SHARED_CACHE
6461 /* Opcode: TableLock P1 P2 P3 P4 *
6462 ** Synopsis: iDb=P1 root=P2 write=P3
6463 **
6464 ** Obtain a lock on a particular table. This instruction is only used when
6465 ** the shared-cache feature is enabled.
6466 **
6467 ** P1 is the index of the database in sqlite3.aDb[] of the database
6468 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6469 ** a write lock if P3==1.
6470 **
6471 ** P2 contains the root-page of the table to lock.
6472 **
6473 ** P4 contains a pointer to the name of the table being locked. This is only
6474 ** used to generate an error message if the lock cannot be obtained.
6475 */
6476 case OP_TableLock: {
6477   u8 isWriteLock = (u8)pOp->p3;
6478   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
6479     int p1 = pOp->p1;
6480     assert( p1>=0 && p1<db->nDb );
6481     assert( DbMaskTest(p->btreeMask, p1) );
6482     assert( isWriteLock==0 || isWriteLock==1 );
6483     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6484     if( rc ){
6485       if( (rc&0xFF)==SQLITE_LOCKED ){
6486         const char *z = pOp->p4.z;
6487         sqlite3VdbeError(p, "database table is locked: %s", z);
6488       }
6489       goto abort_due_to_error;
6490     }
6491   }
6492   break;
6493 }
6494 #endif /* SQLITE_OMIT_SHARED_CACHE */
6495 
6496 #ifndef SQLITE_OMIT_VIRTUALTABLE
6497 /* Opcode: VBegin * * * P4 *
6498 **
6499 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6500 ** xBegin method for that table.
6501 **
6502 ** Also, whether or not P4 is set, check that this is not being called from
6503 ** within a callback to a virtual table xSync() method. If it is, the error
6504 ** code will be set to SQLITE_LOCKED.
6505 */
6506 case OP_VBegin: {
6507   VTable *pVTab;
6508   pVTab = pOp->p4.pVtab;
6509   rc = sqlite3VtabBegin(db, pVTab);
6510   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6511   if( rc ) goto abort_due_to_error;
6512   break;
6513 }
6514 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6515 
6516 #ifndef SQLITE_OMIT_VIRTUALTABLE
6517 /* Opcode: VCreate P1 P2 * * *
6518 **
6519 ** P2 is a register that holds the name of a virtual table in database
6520 ** P1. Call the xCreate method for that table.
6521 */
6522 case OP_VCreate: {
6523   Mem sMem;          /* For storing the record being decoded */
6524   const char *zTab;  /* Name of the virtual table */
6525 
6526   memset(&sMem, 0, sizeof(sMem));
6527   sMem.db = db;
6528   /* Because P2 is always a static string, it is impossible for the
6529   ** sqlite3VdbeMemCopy() to fail */
6530   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6531   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6532   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6533   assert( rc==SQLITE_OK );
6534   zTab = (const char*)sqlite3_value_text(&sMem);
6535   assert( zTab || db->mallocFailed );
6536   if( zTab ){
6537     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6538   }
6539   sqlite3VdbeMemRelease(&sMem);
6540   if( rc ) goto abort_due_to_error;
6541   break;
6542 }
6543 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6544 
6545 #ifndef SQLITE_OMIT_VIRTUALTABLE
6546 /* Opcode: VDestroy P1 * * P4 *
6547 **
6548 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6549 ** of that table.
6550 */
6551 case OP_VDestroy: {
6552   db->nVDestroy++;
6553   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6554   db->nVDestroy--;
6555   if( rc ) goto abort_due_to_error;
6556   break;
6557 }
6558 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6559 
6560 #ifndef SQLITE_OMIT_VIRTUALTABLE
6561 /* Opcode: VOpen P1 * * P4 *
6562 **
6563 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6564 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6565 ** table and stores that cursor in P1.
6566 */
6567 case OP_VOpen: {
6568   VdbeCursor *pCur;
6569   sqlite3_vtab_cursor *pVCur;
6570   sqlite3_vtab *pVtab;
6571   const sqlite3_module *pModule;
6572 
6573   assert( p->bIsReader );
6574   pCur = 0;
6575   pVCur = 0;
6576   pVtab = pOp->p4.pVtab->pVtab;
6577   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6578     rc = SQLITE_LOCKED;
6579     goto abort_due_to_error;
6580   }
6581   pModule = pVtab->pModule;
6582   rc = pModule->xOpen(pVtab, &pVCur);
6583   sqlite3VtabImportErrmsg(p, pVtab);
6584   if( rc ) goto abort_due_to_error;
6585 
6586   /* Initialize sqlite3_vtab_cursor base class */
6587   pVCur->pVtab = pVtab;
6588 
6589   /* Initialize vdbe cursor object */
6590   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6591   if( pCur ){
6592     pCur->uc.pVCur = pVCur;
6593     pVtab->nRef++;
6594   }else{
6595     assert( db->mallocFailed );
6596     pModule->xClose(pVCur);
6597     goto no_mem;
6598   }
6599   break;
6600 }
6601 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6602 
6603 #ifndef SQLITE_OMIT_VIRTUALTABLE
6604 /* Opcode: VFilter P1 P2 P3 P4 *
6605 ** Synopsis: iplan=r[P3] zplan='P4'
6606 **
6607 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6608 ** the filtered result set is empty.
6609 **
6610 ** P4 is either NULL or a string that was generated by the xBestIndex
6611 ** method of the module.  The interpretation of the P4 string is left
6612 ** to the module implementation.
6613 **
6614 ** This opcode invokes the xFilter method on the virtual table specified
6615 ** by P1.  The integer query plan parameter to xFilter is stored in register
6616 ** P3. Register P3+1 stores the argc parameter to be passed to the
6617 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6618 ** additional parameters which are passed to
6619 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6620 **
6621 ** A jump is made to P2 if the result set after filtering would be empty.
6622 */
6623 case OP_VFilter: {   /* jump */
6624   int nArg;
6625   int iQuery;
6626   const sqlite3_module *pModule;
6627   Mem *pQuery;
6628   Mem *pArgc;
6629   sqlite3_vtab_cursor *pVCur;
6630   sqlite3_vtab *pVtab;
6631   VdbeCursor *pCur;
6632   int res;
6633   int i;
6634   Mem **apArg;
6635 
6636   pQuery = &aMem[pOp->p3];
6637   pArgc = &pQuery[1];
6638   pCur = p->apCsr[pOp->p1];
6639   assert( memIsValid(pQuery) );
6640   REGISTER_TRACE(pOp->p3, pQuery);
6641   assert( pCur->eCurType==CURTYPE_VTAB );
6642   pVCur = pCur->uc.pVCur;
6643   pVtab = pVCur->pVtab;
6644   pModule = pVtab->pModule;
6645 
6646   /* Grab the index number and argc parameters */
6647   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6648   nArg = (int)pArgc->u.i;
6649   iQuery = (int)pQuery->u.i;
6650 
6651   /* Invoke the xFilter method */
6652   res = 0;
6653   apArg = p->apArg;
6654   for(i = 0; i<nArg; i++){
6655     apArg[i] = &pArgc[i+1];
6656   }
6657   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6658   sqlite3VtabImportErrmsg(p, pVtab);
6659   if( rc ) goto abort_due_to_error;
6660   res = pModule->xEof(pVCur);
6661   pCur->nullRow = 0;
6662   VdbeBranchTaken(res!=0,2);
6663   if( res ) goto jump_to_p2;
6664   break;
6665 }
6666 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6667 
6668 #ifndef SQLITE_OMIT_VIRTUALTABLE
6669 /* Opcode: VColumn P1 P2 P3 * *
6670 ** Synopsis: r[P3]=vcolumn(P2)
6671 **
6672 ** Store the value of the P2-th column of
6673 ** the row of the virtual-table that the
6674 ** P1 cursor is pointing to into register P3.
6675 */
6676 case OP_VColumn: {
6677   sqlite3_vtab *pVtab;
6678   const sqlite3_module *pModule;
6679   Mem *pDest;
6680   sqlite3_context sContext;
6681 
6682   VdbeCursor *pCur = p->apCsr[pOp->p1];
6683   assert( pCur->eCurType==CURTYPE_VTAB );
6684   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6685   pDest = &aMem[pOp->p3];
6686   memAboutToChange(p, pDest);
6687   if( pCur->nullRow ){
6688     sqlite3VdbeMemSetNull(pDest);
6689     break;
6690   }
6691   pVtab = pCur->uc.pVCur->pVtab;
6692   pModule = pVtab->pModule;
6693   assert( pModule->xColumn );
6694   memset(&sContext, 0, sizeof(sContext));
6695   sContext.pOut = pDest;
6696   MemSetTypeFlag(pDest, MEM_Null);
6697   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6698   sqlite3VtabImportErrmsg(p, pVtab);
6699   if( sContext.isError ){
6700     rc = sContext.isError;
6701   }
6702   sqlite3VdbeChangeEncoding(pDest, encoding);
6703   REGISTER_TRACE(pOp->p3, pDest);
6704   UPDATE_MAX_BLOBSIZE(pDest);
6705 
6706   if( sqlite3VdbeMemTooBig(pDest) ){
6707     goto too_big;
6708   }
6709   if( rc ) goto abort_due_to_error;
6710   break;
6711 }
6712 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6713 
6714 #ifndef SQLITE_OMIT_VIRTUALTABLE
6715 /* Opcode: VNext P1 P2 * * *
6716 **
6717 ** Advance virtual table P1 to the next row in its result set and
6718 ** jump to instruction P2.  Or, if the virtual table has reached
6719 ** the end of its result set, then fall through to the next instruction.
6720 */
6721 case OP_VNext: {   /* jump */
6722   sqlite3_vtab *pVtab;
6723   const sqlite3_module *pModule;
6724   int res;
6725   VdbeCursor *pCur;
6726 
6727   res = 0;
6728   pCur = p->apCsr[pOp->p1];
6729   assert( pCur->eCurType==CURTYPE_VTAB );
6730   if( pCur->nullRow ){
6731     break;
6732   }
6733   pVtab = pCur->uc.pVCur->pVtab;
6734   pModule = pVtab->pModule;
6735   assert( pModule->xNext );
6736 
6737   /* Invoke the xNext() method of the module. There is no way for the
6738   ** underlying implementation to return an error if one occurs during
6739   ** xNext(). Instead, if an error occurs, true is returned (indicating that
6740   ** data is available) and the error code returned when xColumn or
6741   ** some other method is next invoked on the save virtual table cursor.
6742   */
6743   rc = pModule->xNext(pCur->uc.pVCur);
6744   sqlite3VtabImportErrmsg(p, pVtab);
6745   if( rc ) goto abort_due_to_error;
6746   res = pModule->xEof(pCur->uc.pVCur);
6747   VdbeBranchTaken(!res,2);
6748   if( !res ){
6749     /* If there is data, jump to P2 */
6750     goto jump_to_p2_and_check_for_interrupt;
6751   }
6752   goto check_for_interrupt;
6753 }
6754 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6755 
6756 #ifndef SQLITE_OMIT_VIRTUALTABLE
6757 /* Opcode: VRename P1 * * P4 *
6758 **
6759 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6760 ** This opcode invokes the corresponding xRename method. The value
6761 ** in register P1 is passed as the zName argument to the xRename method.
6762 */
6763 case OP_VRename: {
6764   sqlite3_vtab *pVtab;
6765   Mem *pName;
6766 
6767   pVtab = pOp->p4.pVtab->pVtab;
6768   pName = &aMem[pOp->p1];
6769   assert( pVtab->pModule->xRename );
6770   assert( memIsValid(pName) );
6771   assert( p->readOnly==0 );
6772   REGISTER_TRACE(pOp->p1, pName);
6773   assert( pName->flags & MEM_Str );
6774   testcase( pName->enc==SQLITE_UTF8 );
6775   testcase( pName->enc==SQLITE_UTF16BE );
6776   testcase( pName->enc==SQLITE_UTF16LE );
6777   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6778   if( rc ) goto abort_due_to_error;
6779   rc = pVtab->pModule->xRename(pVtab, pName->z);
6780   sqlite3VtabImportErrmsg(p, pVtab);
6781   p->expired = 0;
6782   if( rc ) goto abort_due_to_error;
6783   break;
6784 }
6785 #endif
6786 
6787 #ifndef SQLITE_OMIT_VIRTUALTABLE
6788 /* Opcode: VUpdate P1 P2 P3 P4 P5
6789 ** Synopsis: data=r[P3@P2]
6790 **
6791 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6792 ** This opcode invokes the corresponding xUpdate method. P2 values
6793 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6794 ** invocation. The value in register (P3+P2-1) corresponds to the
6795 ** p2th element of the argv array passed to xUpdate.
6796 **
6797 ** The xUpdate method will do a DELETE or an INSERT or both.
6798 ** The argv[0] element (which corresponds to memory cell P3)
6799 ** is the rowid of a row to delete.  If argv[0] is NULL then no
6800 ** deletion occurs.  The argv[1] element is the rowid of the new
6801 ** row.  This can be NULL to have the virtual table select the new
6802 ** rowid for itself.  The subsequent elements in the array are
6803 ** the values of columns in the new row.
6804 **
6805 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6806 ** a row to delete.
6807 **
6808 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6809 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6810 ** is set to the value of the rowid for the row just inserted.
6811 **
6812 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6813 ** apply in the case of a constraint failure on an insert or update.
6814 */
6815 case OP_VUpdate: {
6816   sqlite3_vtab *pVtab;
6817   const sqlite3_module *pModule;
6818   int nArg;
6819   int i;
6820   sqlite_int64 rowid;
6821   Mem **apArg;
6822   Mem *pX;
6823 
6824   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6825        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6826   );
6827   assert( p->readOnly==0 );
6828   pVtab = pOp->p4.pVtab->pVtab;
6829   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6830     rc = SQLITE_LOCKED;
6831     goto abort_due_to_error;
6832   }
6833   pModule = pVtab->pModule;
6834   nArg = pOp->p2;
6835   assert( pOp->p4type==P4_VTAB );
6836   if( ALWAYS(pModule->xUpdate) ){
6837     u8 vtabOnConflict = db->vtabOnConflict;
6838     apArg = p->apArg;
6839     pX = &aMem[pOp->p3];
6840     for(i=0; i<nArg; i++){
6841       assert( memIsValid(pX) );
6842       memAboutToChange(p, pX);
6843       apArg[i] = pX;
6844       pX++;
6845     }
6846     db->vtabOnConflict = pOp->p5;
6847     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6848     db->vtabOnConflict = vtabOnConflict;
6849     sqlite3VtabImportErrmsg(p, pVtab);
6850     if( rc==SQLITE_OK && pOp->p1 ){
6851       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6852       db->lastRowid = rowid;
6853     }
6854     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6855       if( pOp->p5==OE_Ignore ){
6856         rc = SQLITE_OK;
6857       }else{
6858         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6859       }
6860     }else{
6861       p->nChange++;
6862     }
6863     if( rc ) goto abort_due_to_error;
6864   }
6865   break;
6866 }
6867 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6868 
6869 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6870 /* Opcode: Pagecount P1 P2 * * *
6871 **
6872 ** Write the current number of pages in database P1 to memory cell P2.
6873 */
6874 case OP_Pagecount: {            /* out2 */
6875   pOut = out2Prerelease(p, pOp);
6876   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6877   break;
6878 }
6879 #endif
6880 
6881 
6882 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6883 /* Opcode: MaxPgcnt P1 P2 P3 * *
6884 **
6885 ** Try to set the maximum page count for database P1 to the value in P3.
6886 ** Do not let the maximum page count fall below the current page count and
6887 ** do not change the maximum page count value if P3==0.
6888 **
6889 ** Store the maximum page count after the change in register P2.
6890 */
6891 case OP_MaxPgcnt: {            /* out2 */
6892   unsigned int newMax;
6893   Btree *pBt;
6894 
6895   pOut = out2Prerelease(p, pOp);
6896   pBt = db->aDb[pOp->p1].pBt;
6897   newMax = 0;
6898   if( pOp->p3 ){
6899     newMax = sqlite3BtreeLastPage(pBt);
6900     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6901   }
6902   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6903   break;
6904 }
6905 #endif
6906 
6907 /* Opcode: Function0 P1 P2 P3 P4 P5
6908 ** Synopsis: r[P3]=func(r[P2@P5])
6909 **
6910 ** Invoke a user function (P4 is a pointer to a FuncDef object that
6911 ** defines the function) with P5 arguments taken from register P2 and
6912 ** successors.  The result of the function is stored in register P3.
6913 ** Register P3 must not be one of the function inputs.
6914 **
6915 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
6916 ** function was determined to be constant at compile time. If the first
6917 ** argument was constant then bit 0 of P1 is set. This is used to determine
6918 ** whether meta data associated with a user function argument using the
6919 ** sqlite3_set_auxdata() API may be safely retained until the next
6920 ** invocation of this opcode.
6921 **
6922 ** See also: Function, AggStep, AggFinal
6923 */
6924 /* Opcode: Function P1 P2 P3 P4 P5
6925 ** Synopsis: r[P3]=func(r[P2@P5])
6926 **
6927 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
6928 ** contains a pointer to the function to be run) with P5 arguments taken
6929 ** from register P2 and successors.  The result of the function is stored
6930 ** in register P3.  Register P3 must not be one of the function inputs.
6931 **
6932 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
6933 ** function was determined to be constant at compile time. If the first
6934 ** argument was constant then bit 0 of P1 is set. This is used to determine
6935 ** whether meta data associated with a user function argument using the
6936 ** sqlite3_set_auxdata() API may be safely retained until the next
6937 ** invocation of this opcode.
6938 **
6939 ** SQL functions are initially coded as OP_Function0 with P4 pointing
6940 ** to a FuncDef object.  But on first evaluation, the P4 operand is
6941 ** automatically converted into an sqlite3_context object and the operation
6942 ** changed to this OP_Function opcode.  In this way, the initialization of
6943 ** the sqlite3_context object occurs only once, rather than once for each
6944 ** evaluation of the function.
6945 **
6946 ** See also: Function0, AggStep, AggFinal
6947 */
6948 case OP_PureFunc0:
6949 case OP_Function0: {
6950   int n;
6951   sqlite3_context *pCtx;
6952 
6953   assert( pOp->p4type==P4_FUNCDEF );
6954   n = pOp->p5;
6955   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6956   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6957   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6958   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
6959   if( pCtx==0 ) goto no_mem;
6960   pCtx->pOut = 0;
6961   pCtx->pFunc = pOp->p4.pFunc;
6962   pCtx->iOp = (int)(pOp - aOp);
6963   pCtx->pVdbe = p;
6964   pCtx->argc = n;
6965   pOp->p4type = P4_FUNCCTX;
6966   pOp->p4.pCtx = pCtx;
6967   assert( OP_PureFunc == OP_PureFunc0+2 );
6968   assert( OP_Function == OP_Function0+2 );
6969   pOp->opcode += 2;
6970   /* Fall through into OP_Function */
6971 }
6972 case OP_PureFunc:
6973 case OP_Function: {
6974   int i;
6975   sqlite3_context *pCtx;
6976 
6977   assert( pOp->p4type==P4_FUNCCTX );
6978   pCtx = pOp->p4.pCtx;
6979 
6980   /* If this function is inside of a trigger, the register array in aMem[]
6981   ** might change from one evaluation to the next.  The next block of code
6982   ** checks to see if the register array has changed, and if so it
6983   ** reinitializes the relavant parts of the sqlite3_context object */
6984   pOut = &aMem[pOp->p3];
6985   if( pCtx->pOut != pOut ){
6986     pCtx->pOut = pOut;
6987     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6988   }
6989 
6990   memAboutToChange(p, pOut);
6991 #ifdef SQLITE_DEBUG
6992   for(i=0; i<pCtx->argc; i++){
6993     assert( memIsValid(pCtx->argv[i]) );
6994     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6995   }
6996 #endif
6997   MemSetTypeFlag(pOut, MEM_Null);
6998   pCtx->fErrorOrAux = 0;
6999   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7000 
7001   /* If the function returned an error, throw an exception */
7002   if( pCtx->fErrorOrAux ){
7003     if( pCtx->isError ){
7004       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7005       rc = pCtx->isError;
7006     }
7007     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7008     if( rc ) goto abort_due_to_error;
7009   }
7010 
7011   /* Copy the result of the function into register P3 */
7012   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7013     sqlite3VdbeChangeEncoding(pOut, encoding);
7014     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7015   }
7016 
7017   REGISTER_TRACE(pOp->p3, pOut);
7018   UPDATE_MAX_BLOBSIZE(pOut);
7019   break;
7020 }
7021 
7022 
7023 /* Opcode: Init P1 P2 * P4 *
7024 ** Synopsis: Start at P2
7025 **
7026 ** Programs contain a single instance of this opcode as the very first
7027 ** opcode.
7028 **
7029 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7030 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7031 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7032 **
7033 ** If P2 is not zero, jump to instruction P2.
7034 **
7035 ** Increment the value of P1 so that OP_Once opcodes will jump the
7036 ** first time they are evaluated for this run.
7037 */
7038 case OP_Init: {          /* jump */
7039   char *zTrace;
7040   int i;
7041 
7042   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7043   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7044   **
7045   ** This assert() provides evidence for:
7046   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7047   ** would have been returned by the legacy sqlite3_trace() interface by
7048   ** using the X argument when X begins with "--" and invoking
7049   ** sqlite3_expanded_sql(P) otherwise.
7050   */
7051   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7052   assert( pOp==p->aOp );  /* Always instruction 0 */
7053 
7054 #ifndef SQLITE_OMIT_TRACE
7055   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7056    && !p->doingRerun
7057    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7058   ){
7059 #ifndef SQLITE_OMIT_DEPRECATED
7060     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7061       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7062       char *z = sqlite3VdbeExpandSql(p, zTrace);
7063       x(db->pTraceArg, z);
7064       sqlite3_free(z);
7065     }else
7066 #endif
7067     if( db->nVdbeExec>1 ){
7068       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7069       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7070       sqlite3DbFree(db, z);
7071     }else{
7072       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7073     }
7074   }
7075 #ifdef SQLITE_USE_FCNTL_TRACE
7076   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7077   if( zTrace ){
7078     int j;
7079     for(j=0; j<db->nDb; j++){
7080       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7081       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7082     }
7083   }
7084 #endif /* SQLITE_USE_FCNTL_TRACE */
7085 #ifdef SQLITE_DEBUG
7086   if( (db->flags & SQLITE_SqlTrace)!=0
7087    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7088   ){
7089     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7090   }
7091 #endif /* SQLITE_DEBUG */
7092 #endif /* SQLITE_OMIT_TRACE */
7093   assert( pOp->p2>0 );
7094   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7095     for(i=1; i<p->nOp; i++){
7096       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7097     }
7098     pOp->p1 = 0;
7099   }
7100   pOp->p1++;
7101   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7102   goto jump_to_p2;
7103 }
7104 
7105 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7106 /* Opcode: CursorHint P1 * * P4 *
7107 **
7108 ** Provide a hint to cursor P1 that it only needs to return rows that
7109 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7110 ** to values currently held in registers.  TK_COLUMN terms in the P4
7111 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7112 */
7113 case OP_CursorHint: {
7114   VdbeCursor *pC;
7115 
7116   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7117   assert( pOp->p4type==P4_EXPR );
7118   pC = p->apCsr[pOp->p1];
7119   if( pC ){
7120     assert( pC->eCurType==CURTYPE_BTREE );
7121     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7122                            pOp->p4.pExpr, aMem);
7123   }
7124   break;
7125 }
7126 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7127 
7128 /* Opcode: Noop * * * * *
7129 **
7130 ** Do nothing.  This instruction is often useful as a jump
7131 ** destination.
7132 */
7133 /*
7134 ** The magic Explain opcode are only inserted when explain==2 (which
7135 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7136 ** This opcode records information from the optimizer.  It is the
7137 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7138 */
7139 default: {          /* This is really OP_Noop and OP_Explain */
7140   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7141   break;
7142 }
7143 
7144 /*****************************************************************************
7145 ** The cases of the switch statement above this line should all be indented
7146 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7147 ** readability.  From this point on down, the normal indentation rules are
7148 ** restored.
7149 *****************************************************************************/
7150     }
7151 
7152 #ifdef VDBE_PROFILE
7153     {
7154       u64 endTime = sqlite3Hwtime();
7155       if( endTime>start ) pOrigOp->cycles += endTime - start;
7156       pOrigOp->cnt++;
7157     }
7158 #endif
7159 
7160     /* The following code adds nothing to the actual functionality
7161     ** of the program.  It is only here for testing and debugging.
7162     ** On the other hand, it does burn CPU cycles every time through
7163     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7164     */
7165 #ifndef NDEBUG
7166     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7167 
7168 #ifdef SQLITE_DEBUG
7169     if( db->flags & SQLITE_VdbeTrace ){
7170       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7171       if( rc!=0 ) printf("rc=%d\n",rc);
7172       if( opProperty & (OPFLG_OUT2) ){
7173         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7174       }
7175       if( opProperty & OPFLG_OUT3 ){
7176         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7177       }
7178     }
7179 #endif  /* SQLITE_DEBUG */
7180 #endif  /* NDEBUG */
7181   }  /* The end of the for(;;) loop the loops through opcodes */
7182 
7183   /* If we reach this point, it means that execution is finished with
7184   ** an error of some kind.
7185   */
7186 abort_due_to_error:
7187   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7188   assert( rc );
7189   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7190     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7191   }
7192   p->rc = rc;
7193   sqlite3SystemError(db, rc);
7194   testcase( sqlite3GlobalConfig.xLog!=0 );
7195   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7196                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7197   sqlite3VdbeHalt(p);
7198   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7199   rc = SQLITE_ERROR;
7200   if( resetSchemaOnFault>0 ){
7201     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7202   }
7203 
7204   /* This is the only way out of this procedure.  We have to
7205   ** release the mutexes on btrees that were acquired at the
7206   ** top. */
7207 vdbe_return:
7208   testcase( nVmStep>0 );
7209   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7210   sqlite3VdbeLeave(p);
7211   assert( rc!=SQLITE_OK || nExtraDelete==0
7212        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7213   );
7214   return rc;
7215 
7216   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7217   ** is encountered.
7218   */
7219 too_big:
7220   sqlite3VdbeError(p, "string or blob too big");
7221   rc = SQLITE_TOOBIG;
7222   goto abort_due_to_error;
7223 
7224   /* Jump to here if a malloc() fails.
7225   */
7226 no_mem:
7227   sqlite3OomFault(db);
7228   sqlite3VdbeError(p, "out of memory");
7229   rc = SQLITE_NOMEM_BKPT;
7230   goto abort_due_to_error;
7231 
7232   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7233   ** flag.
7234   */
7235 abort_due_to_interrupt:
7236   assert( db->u1.isInterrupted );
7237   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7238   p->rc = rc;
7239   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7240   goto abort_due_to_error;
7241 }
7242