1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 int iDb, /* Database the cursor belongs to, or -1 */ 245 u8 eCurType /* Type of the new cursor */ 246 ){ 247 /* Find the memory cell that will be used to store the blob of memory 248 ** required for this VdbeCursor structure. It is convenient to use a 249 ** vdbe memory cell to manage the memory allocation required for a 250 ** VdbeCursor structure for the following reasons: 251 ** 252 ** * Sometimes cursor numbers are used for a couple of different 253 ** purposes in a vdbe program. The different uses might require 254 ** different sized allocations. Memory cells provide growable 255 ** allocations. 256 ** 257 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 258 ** be freed lazily via the sqlite3_release_memory() API. This 259 ** minimizes the number of malloc calls made by the system. 260 ** 261 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 262 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 263 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 264 */ 265 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 266 267 int nByte; 268 VdbeCursor *pCx = 0; 269 nByte = 270 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 271 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 272 273 assert( iCur>=0 && iCur<p->nCursor ); 274 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 275 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 276 p->apCsr[iCur] = 0; 277 } 278 279 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 280 ** the pMem used to hold space for the cursor has enough storage available 281 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 282 ** to hold cursors, it is faster to in-line the logic. */ 283 assert( pMem->flags==MEM_Undefined ); 284 assert( (pMem->flags & MEM_Dyn)==0 ); 285 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 286 if( pMem->szMalloc<nByte ){ 287 if( pMem->szMalloc>0 ){ 288 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 289 } 290 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 291 if( pMem->zMalloc==0 ){ 292 pMem->szMalloc = 0; 293 return 0; 294 } 295 pMem->szMalloc = nByte; 296 } 297 298 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 299 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 300 pCx->eCurType = eCurType; 301 pCx->iDb = iDb; 302 pCx->nField = nField; 303 pCx->aOffset = &pCx->aType[nField]; 304 if( eCurType==CURTYPE_BTREE ){ 305 pCx->uc.pCursor = (BtCursor*) 306 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 307 sqlite3BtreeCursorZero(pCx->uc.pCursor); 308 } 309 return pCx; 310 } 311 312 /* 313 ** The string in pRec is known to look like an integer and to have a 314 ** floating point value of rValue. Return true and set *piValue to the 315 ** integer value if the string is in range to be an integer. Otherwise, 316 ** return false. 317 */ 318 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 319 i64 iValue = (double)rValue; 320 if( sqlite3RealSameAsInt(rValue,iValue) ){ 321 *piValue = iValue; 322 return 1; 323 } 324 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 325 } 326 327 /* 328 ** Try to convert a value into a numeric representation if we can 329 ** do so without loss of information. In other words, if the string 330 ** looks like a number, convert it into a number. If it does not 331 ** look like a number, leave it alone. 332 ** 333 ** If the bTryForInt flag is true, then extra effort is made to give 334 ** an integer representation. Strings that look like floating point 335 ** values but which have no fractional component (example: '48.00') 336 ** will have a MEM_Int representation when bTryForInt is true. 337 ** 338 ** If bTryForInt is false, then if the input string contains a decimal 339 ** point or exponential notation, the result is only MEM_Real, even 340 ** if there is an exact integer representation of the quantity. 341 */ 342 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 343 double rValue; 344 u8 enc = pRec->enc; 345 int rc; 346 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 347 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 348 if( rc<=0 ) return; 349 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 350 pRec->flags |= MEM_Int; 351 }else{ 352 pRec->u.r = rValue; 353 pRec->flags |= MEM_Real; 354 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 355 } 356 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 357 ** string representation after computing a numeric equivalent, because the 358 ** string representation might not be the canonical representation for the 359 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 360 pRec->flags &= ~MEM_Str; 361 } 362 363 /* 364 ** Processing is determine by the affinity parameter: 365 ** 366 ** SQLITE_AFF_INTEGER: 367 ** SQLITE_AFF_REAL: 368 ** SQLITE_AFF_NUMERIC: 369 ** Try to convert pRec to an integer representation or a 370 ** floating-point representation if an integer representation 371 ** is not possible. Note that the integer representation is 372 ** always preferred, even if the affinity is REAL, because 373 ** an integer representation is more space efficient on disk. 374 ** 375 ** SQLITE_AFF_TEXT: 376 ** Convert pRec to a text representation. 377 ** 378 ** SQLITE_AFF_BLOB: 379 ** SQLITE_AFF_NONE: 380 ** No-op. pRec is unchanged. 381 */ 382 static void applyAffinity( 383 Mem *pRec, /* The value to apply affinity to */ 384 char affinity, /* The affinity to be applied */ 385 u8 enc /* Use this text encoding */ 386 ){ 387 if( affinity>=SQLITE_AFF_NUMERIC ){ 388 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 389 || affinity==SQLITE_AFF_NUMERIC ); 390 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 391 if( (pRec->flags & MEM_Real)==0 ){ 392 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 393 }else{ 394 sqlite3VdbeIntegerAffinity(pRec); 395 } 396 } 397 }else if( affinity==SQLITE_AFF_TEXT ){ 398 /* Only attempt the conversion to TEXT if there is an integer or real 399 ** representation (blob and NULL do not get converted) but no string 400 ** representation. It would be harmless to repeat the conversion if 401 ** there is already a string rep, but it is pointless to waste those 402 ** CPU cycles. */ 403 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 404 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 405 testcase( pRec->flags & MEM_Int ); 406 testcase( pRec->flags & MEM_Real ); 407 testcase( pRec->flags & MEM_IntReal ); 408 sqlite3VdbeMemStringify(pRec, enc, 1); 409 } 410 } 411 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 412 } 413 } 414 415 /* 416 ** Try to convert the type of a function argument or a result column 417 ** into a numeric representation. Use either INTEGER or REAL whichever 418 ** is appropriate. But only do the conversion if it is possible without 419 ** loss of information and return the revised type of the argument. 420 */ 421 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 422 int eType = sqlite3_value_type(pVal); 423 if( eType==SQLITE_TEXT ){ 424 Mem *pMem = (Mem*)pVal; 425 applyNumericAffinity(pMem, 0); 426 eType = sqlite3_value_type(pVal); 427 } 428 return eType; 429 } 430 431 /* 432 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 433 ** not the internal Mem* type. 434 */ 435 void sqlite3ValueApplyAffinity( 436 sqlite3_value *pVal, 437 u8 affinity, 438 u8 enc 439 ){ 440 applyAffinity((Mem *)pVal, affinity, enc); 441 } 442 443 /* 444 ** pMem currently only holds a string type (or maybe a BLOB that we can 445 ** interpret as a string if we want to). Compute its corresponding 446 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 447 ** accordingly. 448 */ 449 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 450 int rc; 451 sqlite3_int64 ix; 452 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 453 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 454 if( ExpandBlob(pMem) ){ 455 pMem->u.i = 0; 456 return MEM_Int; 457 } 458 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 459 if( rc<=0 ){ 460 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 461 pMem->u.i = ix; 462 return MEM_Int; 463 }else{ 464 return MEM_Real; 465 } 466 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 467 pMem->u.i = ix; 468 return MEM_Int; 469 } 470 return MEM_Real; 471 } 472 473 /* 474 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 475 ** none. 476 ** 477 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 478 ** But it does set pMem->u.r and pMem->u.i appropriately. 479 */ 480 static u16 numericType(Mem *pMem){ 481 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 482 testcase( pMem->flags & MEM_Int ); 483 testcase( pMem->flags & MEM_Real ); 484 testcase( pMem->flags & MEM_IntReal ); 485 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 486 } 487 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 488 testcase( pMem->flags & MEM_Str ); 489 testcase( pMem->flags & MEM_Blob ); 490 return computeNumericType(pMem); 491 } 492 return 0; 493 } 494 495 #ifdef SQLITE_DEBUG 496 /* 497 ** Write a nice string representation of the contents of cell pMem 498 ** into buffer zBuf, length nBuf. 499 */ 500 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 501 int f = pMem->flags; 502 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 503 if( f&MEM_Blob ){ 504 int i; 505 char c; 506 if( f & MEM_Dyn ){ 507 c = 'z'; 508 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 509 }else if( f & MEM_Static ){ 510 c = 't'; 511 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 512 }else if( f & MEM_Ephem ){ 513 c = 'e'; 514 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 515 }else{ 516 c = 's'; 517 } 518 sqlite3_str_appendf(pStr, "%cx[", c); 519 for(i=0; i<25 && i<pMem->n; i++){ 520 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 521 } 522 sqlite3_str_appendf(pStr, "|"); 523 for(i=0; i<25 && i<pMem->n; i++){ 524 char z = pMem->z[i]; 525 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 526 } 527 sqlite3_str_appendf(pStr,"]"); 528 if( f & MEM_Zero ){ 529 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 530 } 531 }else if( f & MEM_Str ){ 532 int j; 533 u8 c; 534 if( f & MEM_Dyn ){ 535 c = 'z'; 536 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 537 }else if( f & MEM_Static ){ 538 c = 't'; 539 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 540 }else if( f & MEM_Ephem ){ 541 c = 'e'; 542 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 543 }else{ 544 c = 's'; 545 } 546 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 547 for(j=0; j<25 && j<pMem->n; j++){ 548 c = pMem->z[j]; 549 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 550 } 551 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 552 } 553 } 554 #endif 555 556 #ifdef SQLITE_DEBUG 557 /* 558 ** Print the value of a register for tracing purposes: 559 */ 560 static void memTracePrint(Mem *p){ 561 if( p->flags & MEM_Undefined ){ 562 printf(" undefined"); 563 }else if( p->flags & MEM_Null ){ 564 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 565 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 566 printf(" si:%lld", p->u.i); 567 }else if( (p->flags & (MEM_IntReal))!=0 ){ 568 printf(" ir:%lld", p->u.i); 569 }else if( p->flags & MEM_Int ){ 570 printf(" i:%lld", p->u.i); 571 #ifndef SQLITE_OMIT_FLOATING_POINT 572 }else if( p->flags & MEM_Real ){ 573 printf(" r:%.17g", p->u.r); 574 #endif 575 }else if( sqlite3VdbeMemIsRowSet(p) ){ 576 printf(" (rowset)"); 577 }else{ 578 StrAccum acc; 579 char zBuf[1000]; 580 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 581 sqlite3VdbeMemPrettyPrint(p, &acc); 582 printf(" %s", sqlite3StrAccumFinish(&acc)); 583 } 584 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 585 } 586 static void registerTrace(int iReg, Mem *p){ 587 printf("R[%d] = ", iReg); 588 memTracePrint(p); 589 if( p->pScopyFrom ){ 590 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 591 } 592 printf("\n"); 593 sqlite3VdbeCheckMemInvariants(p); 594 } 595 /**/ void sqlite3PrintMem(Mem *pMem){ 596 memTracePrint(pMem); 597 printf("\n"); 598 fflush(stdout); 599 } 600 #endif 601 602 #ifdef SQLITE_DEBUG 603 /* 604 ** Show the values of all registers in the virtual machine. Used for 605 ** interactive debugging. 606 */ 607 void sqlite3VdbeRegisterDump(Vdbe *v){ 608 int i; 609 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 610 } 611 #endif /* SQLITE_DEBUG */ 612 613 614 #ifdef SQLITE_DEBUG 615 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 616 #else 617 # define REGISTER_TRACE(R,M) 618 #endif 619 620 621 #ifdef VDBE_PROFILE 622 623 /* 624 ** hwtime.h contains inline assembler code for implementing 625 ** high-performance timing routines. 626 */ 627 #include "hwtime.h" 628 629 #endif 630 631 #ifndef NDEBUG 632 /* 633 ** This function is only called from within an assert() expression. It 634 ** checks that the sqlite3.nTransaction variable is correctly set to 635 ** the number of non-transaction savepoints currently in the 636 ** linked list starting at sqlite3.pSavepoint. 637 ** 638 ** Usage: 639 ** 640 ** assert( checkSavepointCount(db) ); 641 */ 642 static int checkSavepointCount(sqlite3 *db){ 643 int n = 0; 644 Savepoint *p; 645 for(p=db->pSavepoint; p; p=p->pNext) n++; 646 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 647 return 1; 648 } 649 #endif 650 651 /* 652 ** Return the register of pOp->p2 after first preparing it to be 653 ** overwritten with an integer value. 654 */ 655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 656 sqlite3VdbeMemSetNull(pOut); 657 pOut->flags = MEM_Int; 658 return pOut; 659 } 660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 661 Mem *pOut; 662 assert( pOp->p2>0 ); 663 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 664 pOut = &p->aMem[pOp->p2]; 665 memAboutToChange(p, pOut); 666 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 667 return out2PrereleaseWithClear(pOut); 668 }else{ 669 pOut->flags = MEM_Int; 670 return pOut; 671 } 672 } 673 674 /* 675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 676 ** with pOp->p3. Return the hash. 677 */ 678 static u64 filterHash(const Mem *aMem, const Op *pOp){ 679 int i, mx; 680 u64 h = 0; 681 682 i = pOp->p3; 683 assert( pOp->p4type==P4_INT32 ); 684 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 685 const Mem *p = &aMem[i]; 686 if( p->flags & (MEM_Int|MEM_IntReal) ){ 687 h += p->u.i; 688 }else if( p->flags & MEM_Real ){ 689 h += sqlite3VdbeIntValue(p); 690 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 691 h += p->n; 692 if( p->flags & MEM_Zero ) h += p->u.nZero; 693 } 694 } 695 return h; 696 } 697 698 /* 699 ** Return the symbolic name for the data type of a pMem 700 */ 701 static const char *vdbeMemTypeName(Mem *pMem){ 702 static const char *azTypes[] = { 703 /* SQLITE_INTEGER */ "INT", 704 /* SQLITE_FLOAT */ "REAL", 705 /* SQLITE_TEXT */ "TEXT", 706 /* SQLITE_BLOB */ "BLOB", 707 /* SQLITE_NULL */ "NULL" 708 }; 709 return azTypes[sqlite3_value_type(pMem)-1]; 710 } 711 712 /* 713 ** Execute as much of a VDBE program as we can. 714 ** This is the core of sqlite3_step(). 715 */ 716 int sqlite3VdbeExec( 717 Vdbe *p /* The VDBE */ 718 ){ 719 Op *aOp = p->aOp; /* Copy of p->aOp */ 720 Op *pOp = aOp; /* Current operation */ 721 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 722 Op *pOrigOp; /* Value of pOp at the top of the loop */ 723 #endif 724 #ifdef SQLITE_DEBUG 725 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 726 #endif 727 int rc = SQLITE_OK; /* Value to return */ 728 sqlite3 *db = p->db; /* The database */ 729 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 730 u8 encoding = ENC(db); /* The database encoding */ 731 int iCompare = 0; /* Result of last comparison */ 732 u64 nVmStep = 0; /* Number of virtual machine steps */ 733 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 734 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 735 #endif 736 Mem *aMem = p->aMem; /* Copy of p->aMem */ 737 Mem *pIn1 = 0; /* 1st input operand */ 738 Mem *pIn2 = 0; /* 2nd input operand */ 739 Mem *pIn3 = 0; /* 3rd input operand */ 740 Mem *pOut = 0; /* Output operand */ 741 #ifdef VDBE_PROFILE 742 u64 start; /* CPU clock count at start of opcode */ 743 #endif 744 /*** INSERT STACK UNION HERE ***/ 745 746 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 747 sqlite3VdbeEnter(p); 748 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 749 if( db->xProgress ){ 750 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 751 assert( 0 < db->nProgressOps ); 752 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 753 }else{ 754 nProgressLimit = LARGEST_UINT64; 755 } 756 #endif 757 if( p->rc==SQLITE_NOMEM ){ 758 /* This happens if a malloc() inside a call to sqlite3_column_text() or 759 ** sqlite3_column_text16() failed. */ 760 goto no_mem; 761 } 762 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 763 testcase( p->rc!=SQLITE_OK ); 764 p->rc = SQLITE_OK; 765 assert( p->bIsReader || p->readOnly!=0 ); 766 p->iCurrentTime = 0; 767 assert( p->explain==0 ); 768 p->pResultSet = 0; 769 db->busyHandler.nBusy = 0; 770 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 771 sqlite3VdbeIOTraceSql(p); 772 #ifdef SQLITE_DEBUG 773 sqlite3BeginBenignMalloc(); 774 if( p->pc==0 775 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 776 ){ 777 int i; 778 int once = 1; 779 sqlite3VdbePrintSql(p); 780 if( p->db->flags & SQLITE_VdbeListing ){ 781 printf("VDBE Program Listing:\n"); 782 for(i=0; i<p->nOp; i++){ 783 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 784 } 785 } 786 if( p->db->flags & SQLITE_VdbeEQP ){ 787 for(i=0; i<p->nOp; i++){ 788 if( aOp[i].opcode==OP_Explain ){ 789 if( once ) printf("VDBE Query Plan:\n"); 790 printf("%s\n", aOp[i].p4.z); 791 once = 0; 792 } 793 } 794 } 795 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 796 } 797 sqlite3EndBenignMalloc(); 798 #endif 799 for(pOp=&aOp[p->pc]; 1; pOp++){ 800 /* Errors are detected by individual opcodes, with an immediate 801 ** jumps to abort_due_to_error. */ 802 assert( rc==SQLITE_OK ); 803 804 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 805 #ifdef VDBE_PROFILE 806 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 807 #endif 808 nVmStep++; 809 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 810 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 811 #endif 812 813 /* Only allow tracing if SQLITE_DEBUG is defined. 814 */ 815 #ifdef SQLITE_DEBUG 816 if( db->flags & SQLITE_VdbeTrace ){ 817 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 818 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 819 } 820 #endif 821 822 823 /* Check to see if we need to simulate an interrupt. This only happens 824 ** if we have a special test build. 825 */ 826 #ifdef SQLITE_TEST 827 if( sqlite3_interrupt_count>0 ){ 828 sqlite3_interrupt_count--; 829 if( sqlite3_interrupt_count==0 ){ 830 sqlite3_interrupt(db); 831 } 832 } 833 #endif 834 835 /* Sanity checking on other operands */ 836 #ifdef SQLITE_DEBUG 837 { 838 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 839 if( (opProperty & OPFLG_IN1)!=0 ){ 840 assert( pOp->p1>0 ); 841 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 842 assert( memIsValid(&aMem[pOp->p1]) ); 843 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 844 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 845 } 846 if( (opProperty & OPFLG_IN2)!=0 ){ 847 assert( pOp->p2>0 ); 848 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 849 assert( memIsValid(&aMem[pOp->p2]) ); 850 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 851 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 852 } 853 if( (opProperty & OPFLG_IN3)!=0 ){ 854 assert( pOp->p3>0 ); 855 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 856 assert( memIsValid(&aMem[pOp->p3]) ); 857 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 858 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 859 } 860 if( (opProperty & OPFLG_OUT2)!=0 ){ 861 assert( pOp->p2>0 ); 862 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 863 memAboutToChange(p, &aMem[pOp->p2]); 864 } 865 if( (opProperty & OPFLG_OUT3)!=0 ){ 866 assert( pOp->p3>0 ); 867 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 868 memAboutToChange(p, &aMem[pOp->p3]); 869 } 870 } 871 #endif 872 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 873 pOrigOp = pOp; 874 #endif 875 876 switch( pOp->opcode ){ 877 878 /***************************************************************************** 879 ** What follows is a massive switch statement where each case implements a 880 ** separate instruction in the virtual machine. If we follow the usual 881 ** indentation conventions, each case should be indented by 6 spaces. But 882 ** that is a lot of wasted space on the left margin. So the code within 883 ** the switch statement will break with convention and be flush-left. Another 884 ** big comment (similar to this one) will mark the point in the code where 885 ** we transition back to normal indentation. 886 ** 887 ** The formatting of each case is important. The makefile for SQLite 888 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 889 ** file looking for lines that begin with "case OP_". The opcodes.h files 890 ** will be filled with #defines that give unique integer values to each 891 ** opcode and the opcodes.c file is filled with an array of strings where 892 ** each string is the symbolic name for the corresponding opcode. If the 893 ** case statement is followed by a comment of the form "/# same as ... #/" 894 ** that comment is used to determine the particular value of the opcode. 895 ** 896 ** Other keywords in the comment that follows each case are used to 897 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 898 ** Keywords include: in1, in2, in3, out2, out3. See 899 ** the mkopcodeh.awk script for additional information. 900 ** 901 ** Documentation about VDBE opcodes is generated by scanning this file 902 ** for lines of that contain "Opcode:". That line and all subsequent 903 ** comment lines are used in the generation of the opcode.html documentation 904 ** file. 905 ** 906 ** SUMMARY: 907 ** 908 ** Formatting is important to scripts that scan this file. 909 ** Do not deviate from the formatting style currently in use. 910 ** 911 *****************************************************************************/ 912 913 /* Opcode: Goto * P2 * * * 914 ** 915 ** An unconditional jump to address P2. 916 ** The next instruction executed will be 917 ** the one at index P2 from the beginning of 918 ** the program. 919 ** 920 ** The P1 parameter is not actually used by this opcode. However, it 921 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 922 ** that this Goto is the bottom of a loop and that the lines from P2 down 923 ** to the current line should be indented for EXPLAIN output. 924 */ 925 case OP_Goto: { /* jump */ 926 927 #ifdef SQLITE_DEBUG 928 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 929 ** means we should really jump back to the preceeding OP_ReleaseReg 930 ** instruction. */ 931 if( pOp->p5 ){ 932 assert( pOp->p2 < (int)(pOp - aOp) ); 933 assert( pOp->p2 > 1 ); 934 pOp = &aOp[pOp->p2 - 2]; 935 assert( pOp[1].opcode==OP_ReleaseReg ); 936 goto check_for_interrupt; 937 } 938 #endif 939 940 jump_to_p2_and_check_for_interrupt: 941 pOp = &aOp[pOp->p2 - 1]; 942 943 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 944 ** OP_VNext, or OP_SorterNext) all jump here upon 945 ** completion. Check to see if sqlite3_interrupt() has been called 946 ** or if the progress callback needs to be invoked. 947 ** 948 ** This code uses unstructured "goto" statements and does not look clean. 949 ** But that is not due to sloppy coding habits. The code is written this 950 ** way for performance, to avoid having to run the interrupt and progress 951 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 952 ** faster according to "valgrind --tool=cachegrind" */ 953 check_for_interrupt: 954 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 955 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 956 /* Call the progress callback if it is configured and the required number 957 ** of VDBE ops have been executed (either since this invocation of 958 ** sqlite3VdbeExec() or since last time the progress callback was called). 959 ** If the progress callback returns non-zero, exit the virtual machine with 960 ** a return code SQLITE_ABORT. 961 */ 962 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 963 assert( db->nProgressOps!=0 ); 964 nProgressLimit += db->nProgressOps; 965 if( db->xProgress(db->pProgressArg) ){ 966 nProgressLimit = LARGEST_UINT64; 967 rc = SQLITE_INTERRUPT; 968 goto abort_due_to_error; 969 } 970 } 971 #endif 972 973 break; 974 } 975 976 /* Opcode: Gosub P1 P2 * * * 977 ** 978 ** Write the current address onto register P1 979 ** and then jump to address P2. 980 */ 981 case OP_Gosub: { /* jump */ 982 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 983 pIn1 = &aMem[pOp->p1]; 984 assert( VdbeMemDynamic(pIn1)==0 ); 985 memAboutToChange(p, pIn1); 986 pIn1->flags = MEM_Int; 987 pIn1->u.i = (int)(pOp-aOp); 988 REGISTER_TRACE(pOp->p1, pIn1); 989 990 /* Most jump operations do a goto to this spot in order to update 991 ** the pOp pointer. */ 992 jump_to_p2: 993 pOp = &aOp[pOp->p2 - 1]; 994 break; 995 } 996 997 /* Opcode: Return P1 * * * * 998 ** 999 ** Jump to the next instruction after the address in register P1. After 1000 ** the jump, register P1 becomes undefined. 1001 */ 1002 case OP_Return: { /* in1 */ 1003 pIn1 = &aMem[pOp->p1]; 1004 assert( pIn1->flags==MEM_Int ); 1005 pOp = &aOp[pIn1->u.i]; 1006 pIn1->flags = MEM_Undefined; 1007 break; 1008 } 1009 1010 /* Opcode: InitCoroutine P1 P2 P3 * * 1011 ** 1012 ** Set up register P1 so that it will Yield to the coroutine 1013 ** located at address P3. 1014 ** 1015 ** If P2!=0 then the coroutine implementation immediately follows 1016 ** this opcode. So jump over the coroutine implementation to 1017 ** address P2. 1018 ** 1019 ** See also: EndCoroutine 1020 */ 1021 case OP_InitCoroutine: { /* jump */ 1022 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1023 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1024 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1025 pOut = &aMem[pOp->p1]; 1026 assert( !VdbeMemDynamic(pOut) ); 1027 pOut->u.i = pOp->p3 - 1; 1028 pOut->flags = MEM_Int; 1029 if( pOp->p2 ) goto jump_to_p2; 1030 break; 1031 } 1032 1033 /* Opcode: EndCoroutine P1 * * * * 1034 ** 1035 ** The instruction at the address in register P1 is a Yield. 1036 ** Jump to the P2 parameter of that Yield. 1037 ** After the jump, register P1 becomes undefined. 1038 ** 1039 ** See also: InitCoroutine 1040 */ 1041 case OP_EndCoroutine: { /* in1 */ 1042 VdbeOp *pCaller; 1043 pIn1 = &aMem[pOp->p1]; 1044 assert( pIn1->flags==MEM_Int ); 1045 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1046 pCaller = &aOp[pIn1->u.i]; 1047 assert( pCaller->opcode==OP_Yield ); 1048 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1049 pOp = &aOp[pCaller->p2 - 1]; 1050 pIn1->flags = MEM_Undefined; 1051 break; 1052 } 1053 1054 /* Opcode: Yield P1 P2 * * * 1055 ** 1056 ** Swap the program counter with the value in register P1. This 1057 ** has the effect of yielding to a coroutine. 1058 ** 1059 ** If the coroutine that is launched by this instruction ends with 1060 ** Yield or Return then continue to the next instruction. But if 1061 ** the coroutine launched by this instruction ends with 1062 ** EndCoroutine, then jump to P2 rather than continuing with the 1063 ** next instruction. 1064 ** 1065 ** See also: InitCoroutine 1066 */ 1067 case OP_Yield: { /* in1, jump */ 1068 int pcDest; 1069 pIn1 = &aMem[pOp->p1]; 1070 assert( VdbeMemDynamic(pIn1)==0 ); 1071 pIn1->flags = MEM_Int; 1072 pcDest = (int)pIn1->u.i; 1073 pIn1->u.i = (int)(pOp - aOp); 1074 REGISTER_TRACE(pOp->p1, pIn1); 1075 pOp = &aOp[pcDest]; 1076 break; 1077 } 1078 1079 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1080 ** Synopsis: if r[P3]=null halt 1081 ** 1082 ** Check the value in register P3. If it is NULL then Halt using 1083 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1084 ** value in register P3 is not NULL, then this routine is a no-op. 1085 ** The P5 parameter should be 1. 1086 */ 1087 case OP_HaltIfNull: { /* in3 */ 1088 pIn3 = &aMem[pOp->p3]; 1089 #ifdef SQLITE_DEBUG 1090 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1091 #endif 1092 if( (pIn3->flags & MEM_Null)==0 ) break; 1093 /* Fall through into OP_Halt */ 1094 /* no break */ deliberate_fall_through 1095 } 1096 1097 /* Opcode: Halt P1 P2 * P4 P5 1098 ** 1099 ** Exit immediately. All open cursors, etc are closed 1100 ** automatically. 1101 ** 1102 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1103 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1104 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1105 ** whether or not to rollback the current transaction. Do not rollback 1106 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1107 ** then back out all changes that have occurred during this execution of the 1108 ** VDBE, but do not rollback the transaction. 1109 ** 1110 ** If P4 is not null then it is an error message string. 1111 ** 1112 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1113 ** 1114 ** 0: (no change) 1115 ** 1: NOT NULL contraint failed: P4 1116 ** 2: UNIQUE constraint failed: P4 1117 ** 3: CHECK constraint failed: P4 1118 ** 4: FOREIGN KEY constraint failed: P4 1119 ** 1120 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1121 ** omitted. 1122 ** 1123 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1124 ** every program. So a jump past the last instruction of the program 1125 ** is the same as executing Halt. 1126 */ 1127 case OP_Halt: { 1128 VdbeFrame *pFrame; 1129 int pcx; 1130 1131 pcx = (int)(pOp - aOp); 1132 #ifdef SQLITE_DEBUG 1133 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1134 #endif 1135 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1136 /* Halt the sub-program. Return control to the parent frame. */ 1137 pFrame = p->pFrame; 1138 p->pFrame = pFrame->pParent; 1139 p->nFrame--; 1140 sqlite3VdbeSetChanges(db, p->nChange); 1141 pcx = sqlite3VdbeFrameRestore(pFrame); 1142 if( pOp->p2==OE_Ignore ){ 1143 /* Instruction pcx is the OP_Program that invoked the sub-program 1144 ** currently being halted. If the p2 instruction of this OP_Halt 1145 ** instruction is set to OE_Ignore, then the sub-program is throwing 1146 ** an IGNORE exception. In this case jump to the address specified 1147 ** as the p2 of the calling OP_Program. */ 1148 pcx = p->aOp[pcx].p2-1; 1149 } 1150 aOp = p->aOp; 1151 aMem = p->aMem; 1152 pOp = &aOp[pcx]; 1153 break; 1154 } 1155 p->rc = pOp->p1; 1156 p->errorAction = (u8)pOp->p2; 1157 p->pc = pcx; 1158 assert( pOp->p5<=4 ); 1159 if( p->rc ){ 1160 if( pOp->p5 ){ 1161 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1162 "FOREIGN KEY" }; 1163 testcase( pOp->p5==1 ); 1164 testcase( pOp->p5==2 ); 1165 testcase( pOp->p5==3 ); 1166 testcase( pOp->p5==4 ); 1167 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1168 if( pOp->p4.z ){ 1169 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1170 } 1171 }else{ 1172 sqlite3VdbeError(p, "%s", pOp->p4.z); 1173 } 1174 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1175 } 1176 rc = sqlite3VdbeHalt(p); 1177 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1178 if( rc==SQLITE_BUSY ){ 1179 p->rc = SQLITE_BUSY; 1180 }else{ 1181 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1182 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1183 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1184 } 1185 goto vdbe_return; 1186 } 1187 1188 /* Opcode: Integer P1 P2 * * * 1189 ** Synopsis: r[P2]=P1 1190 ** 1191 ** The 32-bit integer value P1 is written into register P2. 1192 */ 1193 case OP_Integer: { /* out2 */ 1194 pOut = out2Prerelease(p, pOp); 1195 pOut->u.i = pOp->p1; 1196 break; 1197 } 1198 1199 /* Opcode: Int64 * P2 * P4 * 1200 ** Synopsis: r[P2]=P4 1201 ** 1202 ** P4 is a pointer to a 64-bit integer value. 1203 ** Write that value into register P2. 1204 */ 1205 case OP_Int64: { /* out2 */ 1206 pOut = out2Prerelease(p, pOp); 1207 assert( pOp->p4.pI64!=0 ); 1208 pOut->u.i = *pOp->p4.pI64; 1209 break; 1210 } 1211 1212 #ifndef SQLITE_OMIT_FLOATING_POINT 1213 /* Opcode: Real * P2 * P4 * 1214 ** Synopsis: r[P2]=P4 1215 ** 1216 ** P4 is a pointer to a 64-bit floating point value. 1217 ** Write that value into register P2. 1218 */ 1219 case OP_Real: { /* same as TK_FLOAT, out2 */ 1220 pOut = out2Prerelease(p, pOp); 1221 pOut->flags = MEM_Real; 1222 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1223 pOut->u.r = *pOp->p4.pReal; 1224 break; 1225 } 1226 #endif 1227 1228 /* Opcode: String8 * P2 * P4 * 1229 ** Synopsis: r[P2]='P4' 1230 ** 1231 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1232 ** into a String opcode before it is executed for the first time. During 1233 ** this transformation, the length of string P4 is computed and stored 1234 ** as the P1 parameter. 1235 */ 1236 case OP_String8: { /* same as TK_STRING, out2 */ 1237 assert( pOp->p4.z!=0 ); 1238 pOut = out2Prerelease(p, pOp); 1239 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1240 1241 #ifndef SQLITE_OMIT_UTF16 1242 if( encoding!=SQLITE_UTF8 ){ 1243 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1244 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1245 if( rc ) goto too_big; 1246 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1247 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1248 assert( VdbeMemDynamic(pOut)==0 ); 1249 pOut->szMalloc = 0; 1250 pOut->flags |= MEM_Static; 1251 if( pOp->p4type==P4_DYNAMIC ){ 1252 sqlite3DbFree(db, pOp->p4.z); 1253 } 1254 pOp->p4type = P4_DYNAMIC; 1255 pOp->p4.z = pOut->z; 1256 pOp->p1 = pOut->n; 1257 } 1258 #endif 1259 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1260 goto too_big; 1261 } 1262 pOp->opcode = OP_String; 1263 assert( rc==SQLITE_OK ); 1264 /* Fall through to the next case, OP_String */ 1265 /* no break */ deliberate_fall_through 1266 } 1267 1268 /* Opcode: String P1 P2 P3 P4 P5 1269 ** Synopsis: r[P2]='P4' (len=P1) 1270 ** 1271 ** The string value P4 of length P1 (bytes) is stored in register P2. 1272 ** 1273 ** If P3 is not zero and the content of register P3 is equal to P5, then 1274 ** the datatype of the register P2 is converted to BLOB. The content is 1275 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1276 ** of a string, as if it had been CAST. In other words: 1277 ** 1278 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1279 */ 1280 case OP_String: { /* out2 */ 1281 assert( pOp->p4.z!=0 ); 1282 pOut = out2Prerelease(p, pOp); 1283 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1284 pOut->z = pOp->p4.z; 1285 pOut->n = pOp->p1; 1286 pOut->enc = encoding; 1287 UPDATE_MAX_BLOBSIZE(pOut); 1288 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1289 if( pOp->p3>0 ){ 1290 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1291 pIn3 = &aMem[pOp->p3]; 1292 assert( pIn3->flags & MEM_Int ); 1293 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1294 } 1295 #endif 1296 break; 1297 } 1298 1299 /* Opcode: Null P1 P2 P3 * * 1300 ** Synopsis: r[P2..P3]=NULL 1301 ** 1302 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1303 ** NULL into register P3 and every register in between P2 and P3. If P3 1304 ** is less than P2 (typically P3 is zero) then only register P2 is 1305 ** set to NULL. 1306 ** 1307 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1308 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1309 ** OP_Ne or OP_Eq. 1310 */ 1311 case OP_Null: { /* out2 */ 1312 int cnt; 1313 u16 nullFlag; 1314 pOut = out2Prerelease(p, pOp); 1315 cnt = pOp->p3-pOp->p2; 1316 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1317 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1318 pOut->n = 0; 1319 #ifdef SQLITE_DEBUG 1320 pOut->uTemp = 0; 1321 #endif 1322 while( cnt>0 ){ 1323 pOut++; 1324 memAboutToChange(p, pOut); 1325 sqlite3VdbeMemSetNull(pOut); 1326 pOut->flags = nullFlag; 1327 pOut->n = 0; 1328 cnt--; 1329 } 1330 break; 1331 } 1332 1333 /* Opcode: SoftNull P1 * * * * 1334 ** Synopsis: r[P1]=NULL 1335 ** 1336 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1337 ** instruction, but do not free any string or blob memory associated with 1338 ** the register, so that if the value was a string or blob that was 1339 ** previously copied using OP_SCopy, the copies will continue to be valid. 1340 */ 1341 case OP_SoftNull: { 1342 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1343 pOut = &aMem[pOp->p1]; 1344 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1345 break; 1346 } 1347 1348 /* Opcode: Blob P1 P2 * P4 * 1349 ** Synopsis: r[P2]=P4 (len=P1) 1350 ** 1351 ** P4 points to a blob of data P1 bytes long. Store this 1352 ** blob in register P2. If P4 is a NULL pointer, then construct 1353 ** a zero-filled blob that is P1 bytes long in P2. 1354 */ 1355 case OP_Blob: { /* out2 */ 1356 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1357 pOut = out2Prerelease(p, pOp); 1358 if( pOp->p4.z==0 ){ 1359 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 1360 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 1361 }else{ 1362 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1363 } 1364 pOut->enc = encoding; 1365 UPDATE_MAX_BLOBSIZE(pOut); 1366 break; 1367 } 1368 1369 /* Opcode: Variable P1 P2 * P4 * 1370 ** Synopsis: r[P2]=parameter(P1,P4) 1371 ** 1372 ** Transfer the values of bound parameter P1 into register P2 1373 ** 1374 ** If the parameter is named, then its name appears in P4. 1375 ** The P4 value is used by sqlite3_bind_parameter_name(). 1376 */ 1377 case OP_Variable: { /* out2 */ 1378 Mem *pVar; /* Value being transferred */ 1379 1380 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1381 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1382 pVar = &p->aVar[pOp->p1 - 1]; 1383 if( sqlite3VdbeMemTooBig(pVar) ){ 1384 goto too_big; 1385 } 1386 pOut = &aMem[pOp->p2]; 1387 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1388 memcpy(pOut, pVar, MEMCELLSIZE); 1389 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1390 pOut->flags |= MEM_Static|MEM_FromBind; 1391 UPDATE_MAX_BLOBSIZE(pOut); 1392 break; 1393 } 1394 1395 /* Opcode: Move P1 P2 P3 * * 1396 ** Synopsis: r[P2@P3]=r[P1@P3] 1397 ** 1398 ** Move the P3 values in register P1..P1+P3-1 over into 1399 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1400 ** left holding a NULL. It is an error for register ranges 1401 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1402 ** for P3 to be less than 1. 1403 */ 1404 case OP_Move: { 1405 int n; /* Number of registers left to copy */ 1406 int p1; /* Register to copy from */ 1407 int p2; /* Register to copy to */ 1408 1409 n = pOp->p3; 1410 p1 = pOp->p1; 1411 p2 = pOp->p2; 1412 assert( n>0 && p1>0 && p2>0 ); 1413 assert( p1+n<=p2 || p2+n<=p1 ); 1414 1415 pIn1 = &aMem[p1]; 1416 pOut = &aMem[p2]; 1417 do{ 1418 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1419 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1420 assert( memIsValid(pIn1) ); 1421 memAboutToChange(p, pOut); 1422 sqlite3VdbeMemMove(pOut, pIn1); 1423 #ifdef SQLITE_DEBUG 1424 pIn1->pScopyFrom = 0; 1425 { int i; 1426 for(i=1; i<p->nMem; i++){ 1427 if( aMem[i].pScopyFrom==pIn1 ){ 1428 aMem[i].pScopyFrom = pOut; 1429 } 1430 } 1431 } 1432 #endif 1433 Deephemeralize(pOut); 1434 REGISTER_TRACE(p2++, pOut); 1435 pIn1++; 1436 pOut++; 1437 }while( --n ); 1438 break; 1439 } 1440 1441 /* Opcode: Copy P1 P2 P3 * * 1442 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1443 ** 1444 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1445 ** 1446 ** This instruction makes a deep copy of the value. A duplicate 1447 ** is made of any string or blob constant. See also OP_SCopy. 1448 */ 1449 case OP_Copy: { 1450 int n; 1451 1452 n = pOp->p3; 1453 pIn1 = &aMem[pOp->p1]; 1454 pOut = &aMem[pOp->p2]; 1455 assert( pOut!=pIn1 ); 1456 while( 1 ){ 1457 memAboutToChange(p, pOut); 1458 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1459 Deephemeralize(pOut); 1460 #ifdef SQLITE_DEBUG 1461 pOut->pScopyFrom = 0; 1462 #endif 1463 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1464 if( (n--)==0 ) break; 1465 pOut++; 1466 pIn1++; 1467 } 1468 break; 1469 } 1470 1471 /* Opcode: SCopy P1 P2 * * * 1472 ** Synopsis: r[P2]=r[P1] 1473 ** 1474 ** Make a shallow copy of register P1 into register P2. 1475 ** 1476 ** This instruction makes a shallow copy of the value. If the value 1477 ** is a string or blob, then the copy is only a pointer to the 1478 ** original and hence if the original changes so will the copy. 1479 ** Worse, if the original is deallocated, the copy becomes invalid. 1480 ** Thus the program must guarantee that the original will not change 1481 ** during the lifetime of the copy. Use OP_Copy to make a complete 1482 ** copy. 1483 */ 1484 case OP_SCopy: { /* out2 */ 1485 pIn1 = &aMem[pOp->p1]; 1486 pOut = &aMem[pOp->p2]; 1487 assert( pOut!=pIn1 ); 1488 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1489 #ifdef SQLITE_DEBUG 1490 pOut->pScopyFrom = pIn1; 1491 pOut->mScopyFlags = pIn1->flags; 1492 #endif 1493 break; 1494 } 1495 1496 /* Opcode: IntCopy P1 P2 * * * 1497 ** Synopsis: r[P2]=r[P1] 1498 ** 1499 ** Transfer the integer value held in register P1 into register P2. 1500 ** 1501 ** This is an optimized version of SCopy that works only for integer 1502 ** values. 1503 */ 1504 case OP_IntCopy: { /* out2 */ 1505 pIn1 = &aMem[pOp->p1]; 1506 assert( (pIn1->flags & MEM_Int)!=0 ); 1507 pOut = &aMem[pOp->p2]; 1508 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1509 break; 1510 } 1511 1512 /* Opcode: FkCheck * * * * * 1513 ** 1514 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 1515 ** foreign key constraint violations. If there are no foreign key 1516 ** constraint violations, this is a no-op. 1517 ** 1518 ** FK constraint violations are also checked when the prepared statement 1519 ** exits. This opcode is used to raise foreign key constraint errors prior 1520 ** to returning results such as a row change count or the result of a 1521 ** RETURNING clause. 1522 */ 1523 case OP_FkCheck: { 1524 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1525 goto abort_due_to_error; 1526 } 1527 break; 1528 } 1529 1530 /* Opcode: ResultRow P1 P2 * * * 1531 ** Synopsis: output=r[P1@P2] 1532 ** 1533 ** The registers P1 through P1+P2-1 contain a single row of 1534 ** results. This opcode causes the sqlite3_step() call to terminate 1535 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1536 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1537 ** the result row. 1538 */ 1539 case OP_ResultRow: { 1540 Mem *pMem; 1541 int i; 1542 assert( p->nResColumn==pOp->p2 ); 1543 assert( pOp->p1>0 || CORRUPT_DB ); 1544 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1545 1546 /* Invalidate all ephemeral cursor row caches */ 1547 p->cacheCtr = (p->cacheCtr + 2)|1; 1548 1549 /* Make sure the results of the current row are \000 terminated 1550 ** and have an assigned type. The results are de-ephemeralized as 1551 ** a side effect. 1552 */ 1553 pMem = p->pResultSet = &aMem[pOp->p1]; 1554 for(i=0; i<pOp->p2; i++){ 1555 assert( memIsValid(&pMem[i]) ); 1556 Deephemeralize(&pMem[i]); 1557 assert( (pMem[i].flags & MEM_Ephem)==0 1558 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1559 sqlite3VdbeMemNulTerminate(&pMem[i]); 1560 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1561 #ifdef SQLITE_DEBUG 1562 /* The registers in the result will not be used again when the 1563 ** prepared statement restarts. This is because sqlite3_column() 1564 ** APIs might have caused type conversions of made other changes to 1565 ** the register values. Therefore, we can go ahead and break any 1566 ** OP_SCopy dependencies. */ 1567 pMem[i].pScopyFrom = 0; 1568 #endif 1569 } 1570 if( db->mallocFailed ) goto no_mem; 1571 1572 if( db->mTrace & SQLITE_TRACE_ROW ){ 1573 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1574 } 1575 1576 1577 /* Return SQLITE_ROW 1578 */ 1579 p->pc = (int)(pOp - aOp) + 1; 1580 rc = SQLITE_ROW; 1581 goto vdbe_return; 1582 } 1583 1584 /* Opcode: Concat P1 P2 P3 * * 1585 ** Synopsis: r[P3]=r[P2]+r[P1] 1586 ** 1587 ** Add the text in register P1 onto the end of the text in 1588 ** register P2 and store the result in register P3. 1589 ** If either the P1 or P2 text are NULL then store NULL in P3. 1590 ** 1591 ** P3 = P2 || P1 1592 ** 1593 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1594 ** if P3 is the same register as P2, the implementation is able 1595 ** to avoid a memcpy(). 1596 */ 1597 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1598 i64 nByte; /* Total size of the output string or blob */ 1599 u16 flags1; /* Initial flags for P1 */ 1600 u16 flags2; /* Initial flags for P2 */ 1601 1602 pIn1 = &aMem[pOp->p1]; 1603 pIn2 = &aMem[pOp->p2]; 1604 pOut = &aMem[pOp->p3]; 1605 testcase( pOut==pIn2 ); 1606 assert( pIn1!=pOut ); 1607 flags1 = pIn1->flags; 1608 testcase( flags1 & MEM_Null ); 1609 testcase( pIn2->flags & MEM_Null ); 1610 if( (flags1 | pIn2->flags) & MEM_Null ){ 1611 sqlite3VdbeMemSetNull(pOut); 1612 break; 1613 } 1614 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1615 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1616 flags1 = pIn1->flags & ~MEM_Str; 1617 }else if( (flags1 & MEM_Zero)!=0 ){ 1618 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1619 flags1 = pIn1->flags & ~MEM_Str; 1620 } 1621 flags2 = pIn2->flags; 1622 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1623 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1624 flags2 = pIn2->flags & ~MEM_Str; 1625 }else if( (flags2 & MEM_Zero)!=0 ){ 1626 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1627 flags2 = pIn2->flags & ~MEM_Str; 1628 } 1629 nByte = pIn1->n + pIn2->n; 1630 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1631 goto too_big; 1632 } 1633 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1634 goto no_mem; 1635 } 1636 MemSetTypeFlag(pOut, MEM_Str); 1637 if( pOut!=pIn2 ){ 1638 memcpy(pOut->z, pIn2->z, pIn2->n); 1639 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1640 pIn2->flags = flags2; 1641 } 1642 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1643 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1644 pIn1->flags = flags1; 1645 pOut->z[nByte]=0; 1646 pOut->z[nByte+1] = 0; 1647 pOut->z[nByte+2] = 0; 1648 pOut->flags |= MEM_Term; 1649 pOut->n = (int)nByte; 1650 pOut->enc = encoding; 1651 UPDATE_MAX_BLOBSIZE(pOut); 1652 break; 1653 } 1654 1655 /* Opcode: Add P1 P2 P3 * * 1656 ** Synopsis: r[P3]=r[P1]+r[P2] 1657 ** 1658 ** Add the value in register P1 to the value in register P2 1659 ** and store the result in register P3. 1660 ** If either input is NULL, the result is NULL. 1661 */ 1662 /* Opcode: Multiply P1 P2 P3 * * 1663 ** Synopsis: r[P3]=r[P1]*r[P2] 1664 ** 1665 ** 1666 ** Multiply the value in register P1 by the value in register P2 1667 ** and store the result in register P3. 1668 ** If either input is NULL, the result is NULL. 1669 */ 1670 /* Opcode: Subtract P1 P2 P3 * * 1671 ** Synopsis: r[P3]=r[P2]-r[P1] 1672 ** 1673 ** Subtract the value in register P1 from the value in register P2 1674 ** and store the result in register P3. 1675 ** If either input is NULL, the result is NULL. 1676 */ 1677 /* Opcode: Divide P1 P2 P3 * * 1678 ** Synopsis: r[P3]=r[P2]/r[P1] 1679 ** 1680 ** Divide the value in register P1 by the value in register P2 1681 ** and store the result in register P3 (P3=P2/P1). If the value in 1682 ** register P1 is zero, then the result is NULL. If either input is 1683 ** NULL, the result is NULL. 1684 */ 1685 /* Opcode: Remainder P1 P2 P3 * * 1686 ** Synopsis: r[P3]=r[P2]%r[P1] 1687 ** 1688 ** Compute the remainder after integer register P2 is divided by 1689 ** register P1 and store the result in register P3. 1690 ** If the value in register P1 is zero the result is NULL. 1691 ** If either operand is NULL, the result is NULL. 1692 */ 1693 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1694 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1695 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1696 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1697 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1698 u16 flags; /* Combined MEM_* flags from both inputs */ 1699 u16 type1; /* Numeric type of left operand */ 1700 u16 type2; /* Numeric type of right operand */ 1701 i64 iA; /* Integer value of left operand */ 1702 i64 iB; /* Integer value of right operand */ 1703 double rA; /* Real value of left operand */ 1704 double rB; /* Real value of right operand */ 1705 1706 pIn1 = &aMem[pOp->p1]; 1707 type1 = numericType(pIn1); 1708 pIn2 = &aMem[pOp->p2]; 1709 type2 = numericType(pIn2); 1710 pOut = &aMem[pOp->p3]; 1711 flags = pIn1->flags | pIn2->flags; 1712 if( (type1 & type2 & MEM_Int)!=0 ){ 1713 iA = pIn1->u.i; 1714 iB = pIn2->u.i; 1715 switch( pOp->opcode ){ 1716 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1717 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1718 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1719 case OP_Divide: { 1720 if( iA==0 ) goto arithmetic_result_is_null; 1721 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1722 iB /= iA; 1723 break; 1724 } 1725 default: { 1726 if( iA==0 ) goto arithmetic_result_is_null; 1727 if( iA==-1 ) iA = 1; 1728 iB %= iA; 1729 break; 1730 } 1731 } 1732 pOut->u.i = iB; 1733 MemSetTypeFlag(pOut, MEM_Int); 1734 }else if( (flags & MEM_Null)!=0 ){ 1735 goto arithmetic_result_is_null; 1736 }else{ 1737 fp_math: 1738 rA = sqlite3VdbeRealValue(pIn1); 1739 rB = sqlite3VdbeRealValue(pIn2); 1740 switch( pOp->opcode ){ 1741 case OP_Add: rB += rA; break; 1742 case OP_Subtract: rB -= rA; break; 1743 case OP_Multiply: rB *= rA; break; 1744 case OP_Divide: { 1745 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1746 if( rA==(double)0 ) goto arithmetic_result_is_null; 1747 rB /= rA; 1748 break; 1749 } 1750 default: { 1751 iA = sqlite3VdbeIntValue(pIn1); 1752 iB = sqlite3VdbeIntValue(pIn2); 1753 if( iA==0 ) goto arithmetic_result_is_null; 1754 if( iA==-1 ) iA = 1; 1755 rB = (double)(iB % iA); 1756 break; 1757 } 1758 } 1759 #ifdef SQLITE_OMIT_FLOATING_POINT 1760 pOut->u.i = rB; 1761 MemSetTypeFlag(pOut, MEM_Int); 1762 #else 1763 if( sqlite3IsNaN(rB) ){ 1764 goto arithmetic_result_is_null; 1765 } 1766 pOut->u.r = rB; 1767 MemSetTypeFlag(pOut, MEM_Real); 1768 #endif 1769 } 1770 break; 1771 1772 arithmetic_result_is_null: 1773 sqlite3VdbeMemSetNull(pOut); 1774 break; 1775 } 1776 1777 /* Opcode: CollSeq P1 * * P4 1778 ** 1779 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1780 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1781 ** be returned. This is used by the built-in min(), max() and nullif() 1782 ** functions. 1783 ** 1784 ** If P1 is not zero, then it is a register that a subsequent min() or 1785 ** max() aggregate will set to 1 if the current row is not the minimum or 1786 ** maximum. The P1 register is initialized to 0 by this instruction. 1787 ** 1788 ** The interface used by the implementation of the aforementioned functions 1789 ** to retrieve the collation sequence set by this opcode is not available 1790 ** publicly. Only built-in functions have access to this feature. 1791 */ 1792 case OP_CollSeq: { 1793 assert( pOp->p4type==P4_COLLSEQ ); 1794 if( pOp->p1 ){ 1795 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1796 } 1797 break; 1798 } 1799 1800 /* Opcode: BitAnd P1 P2 P3 * * 1801 ** Synopsis: r[P3]=r[P1]&r[P2] 1802 ** 1803 ** Take the bit-wise AND of the values in register P1 and P2 and 1804 ** store the result in register P3. 1805 ** If either input is NULL, the result is NULL. 1806 */ 1807 /* Opcode: BitOr P1 P2 P3 * * 1808 ** Synopsis: r[P3]=r[P1]|r[P2] 1809 ** 1810 ** Take the bit-wise OR of the values in register P1 and P2 and 1811 ** store the result in register P3. 1812 ** If either input is NULL, the result is NULL. 1813 */ 1814 /* Opcode: ShiftLeft P1 P2 P3 * * 1815 ** Synopsis: r[P3]=r[P2]<<r[P1] 1816 ** 1817 ** Shift the integer value in register P2 to the left by the 1818 ** number of bits specified by the integer in register P1. 1819 ** Store the result in register P3. 1820 ** If either input is NULL, the result is NULL. 1821 */ 1822 /* Opcode: ShiftRight P1 P2 P3 * * 1823 ** Synopsis: r[P3]=r[P2]>>r[P1] 1824 ** 1825 ** Shift the integer value in register P2 to the right by the 1826 ** number of bits specified by the integer in register P1. 1827 ** Store the result in register P3. 1828 ** If either input is NULL, the result is NULL. 1829 */ 1830 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1831 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1832 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1833 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1834 i64 iA; 1835 u64 uA; 1836 i64 iB; 1837 u8 op; 1838 1839 pIn1 = &aMem[pOp->p1]; 1840 pIn2 = &aMem[pOp->p2]; 1841 pOut = &aMem[pOp->p3]; 1842 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1843 sqlite3VdbeMemSetNull(pOut); 1844 break; 1845 } 1846 iA = sqlite3VdbeIntValue(pIn2); 1847 iB = sqlite3VdbeIntValue(pIn1); 1848 op = pOp->opcode; 1849 if( op==OP_BitAnd ){ 1850 iA &= iB; 1851 }else if( op==OP_BitOr ){ 1852 iA |= iB; 1853 }else if( iB!=0 ){ 1854 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1855 1856 /* If shifting by a negative amount, shift in the other direction */ 1857 if( iB<0 ){ 1858 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1859 op = 2*OP_ShiftLeft + 1 - op; 1860 iB = iB>(-64) ? -iB : 64; 1861 } 1862 1863 if( iB>=64 ){ 1864 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1865 }else{ 1866 memcpy(&uA, &iA, sizeof(uA)); 1867 if( op==OP_ShiftLeft ){ 1868 uA <<= iB; 1869 }else{ 1870 uA >>= iB; 1871 /* Sign-extend on a right shift of a negative number */ 1872 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1873 } 1874 memcpy(&iA, &uA, sizeof(iA)); 1875 } 1876 } 1877 pOut->u.i = iA; 1878 MemSetTypeFlag(pOut, MEM_Int); 1879 break; 1880 } 1881 1882 /* Opcode: AddImm P1 P2 * * * 1883 ** Synopsis: r[P1]=r[P1]+P2 1884 ** 1885 ** Add the constant P2 to the value in register P1. 1886 ** The result is always an integer. 1887 ** 1888 ** To force any register to be an integer, just add 0. 1889 */ 1890 case OP_AddImm: { /* in1 */ 1891 pIn1 = &aMem[pOp->p1]; 1892 memAboutToChange(p, pIn1); 1893 sqlite3VdbeMemIntegerify(pIn1); 1894 pIn1->u.i += pOp->p2; 1895 break; 1896 } 1897 1898 /* Opcode: MustBeInt P1 P2 * * * 1899 ** 1900 ** Force the value in register P1 to be an integer. If the value 1901 ** in P1 is not an integer and cannot be converted into an integer 1902 ** without data loss, then jump immediately to P2, or if P2==0 1903 ** raise an SQLITE_MISMATCH exception. 1904 */ 1905 case OP_MustBeInt: { /* jump, in1 */ 1906 pIn1 = &aMem[pOp->p1]; 1907 if( (pIn1->flags & MEM_Int)==0 ){ 1908 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1909 if( (pIn1->flags & MEM_Int)==0 ){ 1910 VdbeBranchTaken(1, 2); 1911 if( pOp->p2==0 ){ 1912 rc = SQLITE_MISMATCH; 1913 goto abort_due_to_error; 1914 }else{ 1915 goto jump_to_p2; 1916 } 1917 } 1918 } 1919 VdbeBranchTaken(0, 2); 1920 MemSetTypeFlag(pIn1, MEM_Int); 1921 break; 1922 } 1923 1924 #ifndef SQLITE_OMIT_FLOATING_POINT 1925 /* Opcode: RealAffinity P1 * * * * 1926 ** 1927 ** If register P1 holds an integer convert it to a real value. 1928 ** 1929 ** This opcode is used when extracting information from a column that 1930 ** has REAL affinity. Such column values may still be stored as 1931 ** integers, for space efficiency, but after extraction we want them 1932 ** to have only a real value. 1933 */ 1934 case OP_RealAffinity: { /* in1 */ 1935 pIn1 = &aMem[pOp->p1]; 1936 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1937 testcase( pIn1->flags & MEM_Int ); 1938 testcase( pIn1->flags & MEM_IntReal ); 1939 sqlite3VdbeMemRealify(pIn1); 1940 REGISTER_TRACE(pOp->p1, pIn1); 1941 } 1942 break; 1943 } 1944 #endif 1945 1946 #ifndef SQLITE_OMIT_CAST 1947 /* Opcode: Cast P1 P2 * * * 1948 ** Synopsis: affinity(r[P1]) 1949 ** 1950 ** Force the value in register P1 to be the type defined by P2. 1951 ** 1952 ** <ul> 1953 ** <li> P2=='A' → BLOB 1954 ** <li> P2=='B' → TEXT 1955 ** <li> P2=='C' → NUMERIC 1956 ** <li> P2=='D' → INTEGER 1957 ** <li> P2=='E' → REAL 1958 ** </ul> 1959 ** 1960 ** A NULL value is not changed by this routine. It remains NULL. 1961 */ 1962 case OP_Cast: { /* in1 */ 1963 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1964 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1965 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1966 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1967 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1968 testcase( pOp->p2==SQLITE_AFF_REAL ); 1969 pIn1 = &aMem[pOp->p1]; 1970 memAboutToChange(p, pIn1); 1971 rc = ExpandBlob(pIn1); 1972 if( rc ) goto abort_due_to_error; 1973 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1974 if( rc ) goto abort_due_to_error; 1975 UPDATE_MAX_BLOBSIZE(pIn1); 1976 REGISTER_TRACE(pOp->p1, pIn1); 1977 break; 1978 } 1979 #endif /* SQLITE_OMIT_CAST */ 1980 1981 /* Opcode: Eq P1 P2 P3 P4 P5 1982 ** Synopsis: IF r[P3]==r[P1] 1983 ** 1984 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1985 ** jump to address P2. 1986 ** 1987 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1988 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1989 ** to coerce both inputs according to this affinity before the 1990 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1991 ** affinity is used. Note that the affinity conversions are stored 1992 ** back into the input registers P1 and P3. So this opcode can cause 1993 ** persistent changes to registers P1 and P3. 1994 ** 1995 ** Once any conversions have taken place, and neither value is NULL, 1996 ** the values are compared. If both values are blobs then memcmp() is 1997 ** used to determine the results of the comparison. If both values 1998 ** are text, then the appropriate collating function specified in 1999 ** P4 is used to do the comparison. If P4 is not specified then 2000 ** memcmp() is used to compare text string. If both values are 2001 ** numeric, then a numeric comparison is used. If the two values 2002 ** are of different types, then numbers are considered less than 2003 ** strings and strings are considered less than blobs. 2004 ** 2005 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 2006 ** true or false and is never NULL. If both operands are NULL then the result 2007 ** of comparison is true. If either operand is NULL then the result is false. 2008 ** If neither operand is NULL the result is the same as it would be if 2009 ** the SQLITE_NULLEQ flag were omitted from P5. 2010 ** 2011 ** This opcode saves the result of comparison for use by the new 2012 ** OP_Jump opcode. 2013 */ 2014 /* Opcode: Ne P1 P2 P3 P4 P5 2015 ** Synopsis: IF r[P3]!=r[P1] 2016 ** 2017 ** This works just like the Eq opcode except that the jump is taken if 2018 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 2019 ** additional information. 2020 */ 2021 /* Opcode: Lt P1 P2 P3 P4 P5 2022 ** Synopsis: IF r[P3]<r[P1] 2023 ** 2024 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 2025 ** jump to address P2. 2026 ** 2027 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2028 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2029 ** bit is clear then fall through if either operand is NULL. 2030 ** 2031 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2032 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2033 ** to coerce both inputs according to this affinity before the 2034 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2035 ** affinity is used. Note that the affinity conversions are stored 2036 ** back into the input registers P1 and P3. So this opcode can cause 2037 ** persistent changes to registers P1 and P3. 2038 ** 2039 ** Once any conversions have taken place, and neither value is NULL, 2040 ** the values are compared. If both values are blobs then memcmp() is 2041 ** used to determine the results of the comparison. If both values 2042 ** are text, then the appropriate collating function specified in 2043 ** P4 is used to do the comparison. If P4 is not specified then 2044 ** memcmp() is used to compare text string. If both values are 2045 ** numeric, then a numeric comparison is used. If the two values 2046 ** are of different types, then numbers are considered less than 2047 ** strings and strings are considered less than blobs. 2048 ** 2049 ** This opcode saves the result of comparison for use by the new 2050 ** OP_Jump opcode. 2051 */ 2052 /* Opcode: Le P1 P2 P3 P4 P5 2053 ** Synopsis: IF r[P3]<=r[P1] 2054 ** 2055 ** This works just like the Lt opcode except that the jump is taken if 2056 ** the content of register P3 is less than or equal to the content of 2057 ** register P1. See the Lt opcode for additional information. 2058 */ 2059 /* Opcode: Gt P1 P2 P3 P4 P5 2060 ** Synopsis: IF r[P3]>r[P1] 2061 ** 2062 ** This works just like the Lt opcode except that the jump is taken if 2063 ** the content of register P3 is greater than the content of 2064 ** register P1. See the Lt opcode for additional information. 2065 */ 2066 /* Opcode: Ge P1 P2 P3 P4 P5 2067 ** Synopsis: IF r[P3]>=r[P1] 2068 ** 2069 ** This works just like the Lt opcode except that the jump is taken if 2070 ** the content of register P3 is greater than or equal to the content of 2071 ** register P1. See the Lt opcode for additional information. 2072 */ 2073 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2074 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2075 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2076 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2077 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2078 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2079 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2080 char affinity; /* Affinity to use for comparison */ 2081 u16 flags1; /* Copy of initial value of pIn1->flags */ 2082 u16 flags3; /* Copy of initial value of pIn3->flags */ 2083 2084 pIn1 = &aMem[pOp->p1]; 2085 pIn3 = &aMem[pOp->p3]; 2086 flags1 = pIn1->flags; 2087 flags3 = pIn3->flags; 2088 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2089 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2090 /* Common case of comparison of two integers */ 2091 if( pIn3->u.i > pIn1->u.i ){ 2092 iCompare = +1; 2093 if( sqlite3aGTb[pOp->opcode] ){ 2094 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2095 goto jump_to_p2; 2096 } 2097 }else if( pIn3->u.i < pIn1->u.i ){ 2098 iCompare = -1; 2099 if( sqlite3aLTb[pOp->opcode] ){ 2100 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2101 goto jump_to_p2; 2102 } 2103 }else{ 2104 iCompare = 0; 2105 if( sqlite3aEQb[pOp->opcode] ){ 2106 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2107 goto jump_to_p2; 2108 } 2109 } 2110 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2111 break; 2112 } 2113 if( (flags1 | flags3)&MEM_Null ){ 2114 /* One or both operands are NULL */ 2115 if( pOp->p5 & SQLITE_NULLEQ ){ 2116 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2117 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2118 ** or not both operands are null. 2119 */ 2120 assert( (flags1 & MEM_Cleared)==0 ); 2121 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2122 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2123 if( (flags1&flags3&MEM_Null)!=0 2124 && (flags3&MEM_Cleared)==0 2125 ){ 2126 res = 0; /* Operands are equal */ 2127 }else{ 2128 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2129 } 2130 }else{ 2131 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2132 ** then the result is always NULL. 2133 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2134 */ 2135 iCompare = 1; /* Operands are not equal */ 2136 VdbeBranchTaken(2,3); 2137 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2138 goto jump_to_p2; 2139 } 2140 break; 2141 } 2142 }else{ 2143 /* Neither operand is NULL and we couldn't do the special high-speed 2144 ** integer comparison case. So do a general-case comparison. */ 2145 affinity = pOp->p5 & SQLITE_AFF_MASK; 2146 if( affinity>=SQLITE_AFF_NUMERIC ){ 2147 if( (flags1 | flags3)&MEM_Str ){ 2148 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2149 applyNumericAffinity(pIn1,0); 2150 testcase( flags3==pIn3->flags ); 2151 flags3 = pIn3->flags; 2152 } 2153 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2154 applyNumericAffinity(pIn3,0); 2155 } 2156 } 2157 }else if( affinity==SQLITE_AFF_TEXT ){ 2158 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2159 testcase( pIn1->flags & MEM_Int ); 2160 testcase( pIn1->flags & MEM_Real ); 2161 testcase( pIn1->flags & MEM_IntReal ); 2162 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2163 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2164 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2165 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 2166 } 2167 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2168 testcase( pIn3->flags & MEM_Int ); 2169 testcase( pIn3->flags & MEM_Real ); 2170 testcase( pIn3->flags & MEM_IntReal ); 2171 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2172 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2173 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2174 } 2175 } 2176 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2177 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2178 } 2179 2180 /* At this point, res is negative, zero, or positive if reg[P1] is 2181 ** less than, equal to, or greater than reg[P3], respectively. Compute 2182 ** the answer to this operator in res2, depending on what the comparison 2183 ** operator actually is. The next block of code depends on the fact 2184 ** that the 6 comparison operators are consecutive integers in this 2185 ** order: NE, EQ, GT, LE, LT, GE */ 2186 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2187 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2188 if( res<0 ){ 2189 res2 = sqlite3aLTb[pOp->opcode]; 2190 }else if( res==0 ){ 2191 res2 = sqlite3aEQb[pOp->opcode]; 2192 }else{ 2193 res2 = sqlite3aGTb[pOp->opcode]; 2194 } 2195 iCompare = res; 2196 2197 /* Undo any changes made by applyAffinity() to the input registers. */ 2198 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2199 pIn3->flags = flags3; 2200 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2201 pIn1->flags = flags1; 2202 2203 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2204 if( res2 ){ 2205 goto jump_to_p2; 2206 } 2207 break; 2208 } 2209 2210 /* Opcode: ElseEq * P2 * * * 2211 ** 2212 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2213 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2214 ** opcodes are allowed to occur between this instruction and the previous 2215 ** OP_Lt or OP_Gt. 2216 ** 2217 ** If result of an OP_Eq comparison on the same two operands as the 2218 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2219 ** If the result of an OP_Eq comparison on the two previous 2220 ** operands would have been false or NULL, then fall through. 2221 */ 2222 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2223 2224 #ifdef SQLITE_DEBUG 2225 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2226 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2227 int iAddr; 2228 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2229 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2230 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2231 break; 2232 } 2233 #endif /* SQLITE_DEBUG */ 2234 VdbeBranchTaken(iCompare==0, 2); 2235 if( iCompare==0 ) goto jump_to_p2; 2236 break; 2237 } 2238 2239 2240 /* Opcode: Permutation * * * P4 * 2241 ** 2242 ** Set the permutation used by the OP_Compare operator in the next 2243 ** instruction. The permutation is stored in the P4 operand. 2244 ** 2245 ** The permutation is only valid until the next OP_Compare that has 2246 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2247 ** occur immediately prior to the OP_Compare. 2248 ** 2249 ** The first integer in the P4 integer array is the length of the array 2250 ** and does not become part of the permutation. 2251 */ 2252 case OP_Permutation: { 2253 assert( pOp->p4type==P4_INTARRAY ); 2254 assert( pOp->p4.ai ); 2255 assert( pOp[1].opcode==OP_Compare ); 2256 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2257 break; 2258 } 2259 2260 /* Opcode: Compare P1 P2 P3 P4 P5 2261 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2262 ** 2263 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2264 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2265 ** the comparison for use by the next OP_Jump instruct. 2266 ** 2267 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2268 ** determined by the most recent OP_Permutation operator. If the 2269 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2270 ** order. 2271 ** 2272 ** P4 is a KeyInfo structure that defines collating sequences and sort 2273 ** orders for the comparison. The permutation applies to registers 2274 ** only. The KeyInfo elements are used sequentially. 2275 ** 2276 ** The comparison is a sort comparison, so NULLs compare equal, 2277 ** NULLs are less than numbers, numbers are less than strings, 2278 ** and strings are less than blobs. 2279 */ 2280 case OP_Compare: { 2281 int n; 2282 int i; 2283 int p1; 2284 int p2; 2285 const KeyInfo *pKeyInfo; 2286 u32 idx; 2287 CollSeq *pColl; /* Collating sequence to use on this term */ 2288 int bRev; /* True for DESCENDING sort order */ 2289 u32 *aPermute; /* The permutation */ 2290 2291 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2292 aPermute = 0; 2293 }else{ 2294 assert( pOp>aOp ); 2295 assert( pOp[-1].opcode==OP_Permutation ); 2296 assert( pOp[-1].p4type==P4_INTARRAY ); 2297 aPermute = pOp[-1].p4.ai + 1; 2298 assert( aPermute!=0 ); 2299 } 2300 n = pOp->p3; 2301 pKeyInfo = pOp->p4.pKeyInfo; 2302 assert( n>0 ); 2303 assert( pKeyInfo!=0 ); 2304 p1 = pOp->p1; 2305 p2 = pOp->p2; 2306 #ifdef SQLITE_DEBUG 2307 if( aPermute ){ 2308 int k, mx = 0; 2309 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2310 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2311 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2312 }else{ 2313 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2314 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2315 } 2316 #endif /* SQLITE_DEBUG */ 2317 for(i=0; i<n; i++){ 2318 idx = aPermute ? aPermute[i] : (u32)i; 2319 assert( memIsValid(&aMem[p1+idx]) ); 2320 assert( memIsValid(&aMem[p2+idx]) ); 2321 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2322 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2323 assert( i<pKeyInfo->nKeyField ); 2324 pColl = pKeyInfo->aColl[i]; 2325 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2326 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2327 if( iCompare ){ 2328 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2329 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2330 ){ 2331 iCompare = -iCompare; 2332 } 2333 if( bRev ) iCompare = -iCompare; 2334 break; 2335 } 2336 } 2337 break; 2338 } 2339 2340 /* Opcode: Jump P1 P2 P3 * * 2341 ** 2342 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2343 ** in the most recent OP_Compare instruction the P1 vector was less than 2344 ** equal to, or greater than the P2 vector, respectively. 2345 */ 2346 case OP_Jump: { /* jump */ 2347 if( iCompare<0 ){ 2348 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2349 }else if( iCompare==0 ){ 2350 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2351 }else{ 2352 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2353 } 2354 break; 2355 } 2356 2357 /* Opcode: And P1 P2 P3 * * 2358 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2359 ** 2360 ** Take the logical AND of the values in registers P1 and P2 and 2361 ** write the result into register P3. 2362 ** 2363 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2364 ** the other input is NULL. A NULL and true or two NULLs give 2365 ** a NULL output. 2366 */ 2367 /* Opcode: Or P1 P2 P3 * * 2368 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2369 ** 2370 ** Take the logical OR of the values in register P1 and P2 and 2371 ** store the answer in register P3. 2372 ** 2373 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2374 ** even if the other input is NULL. A NULL and false or two NULLs 2375 ** give a NULL output. 2376 */ 2377 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2378 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2379 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2380 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2381 2382 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2383 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2384 if( pOp->opcode==OP_And ){ 2385 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2386 v1 = and_logic[v1*3+v2]; 2387 }else{ 2388 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2389 v1 = or_logic[v1*3+v2]; 2390 } 2391 pOut = &aMem[pOp->p3]; 2392 if( v1==2 ){ 2393 MemSetTypeFlag(pOut, MEM_Null); 2394 }else{ 2395 pOut->u.i = v1; 2396 MemSetTypeFlag(pOut, MEM_Int); 2397 } 2398 break; 2399 } 2400 2401 /* Opcode: IsTrue P1 P2 P3 P4 * 2402 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2403 ** 2404 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2405 ** IS NOT FALSE operators. 2406 ** 2407 ** Interpret the value in register P1 as a boolean value. Store that 2408 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2409 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2410 ** is 1. 2411 ** 2412 ** The logic is summarized like this: 2413 ** 2414 ** <ul> 2415 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2416 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2417 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2418 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2419 ** </ul> 2420 */ 2421 case OP_IsTrue: { /* in1, out2 */ 2422 assert( pOp->p4type==P4_INT32 ); 2423 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2424 assert( pOp->p3==0 || pOp->p3==1 ); 2425 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2426 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2427 break; 2428 } 2429 2430 /* Opcode: Not P1 P2 * * * 2431 ** Synopsis: r[P2]= !r[P1] 2432 ** 2433 ** Interpret the value in register P1 as a boolean value. Store the 2434 ** boolean complement in register P2. If the value in register P1 is 2435 ** NULL, then a NULL is stored in P2. 2436 */ 2437 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2438 pIn1 = &aMem[pOp->p1]; 2439 pOut = &aMem[pOp->p2]; 2440 if( (pIn1->flags & MEM_Null)==0 ){ 2441 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2442 }else{ 2443 sqlite3VdbeMemSetNull(pOut); 2444 } 2445 break; 2446 } 2447 2448 /* Opcode: BitNot P1 P2 * * * 2449 ** Synopsis: r[P2]= ~r[P1] 2450 ** 2451 ** Interpret the content of register P1 as an integer. Store the 2452 ** ones-complement of the P1 value into register P2. If P1 holds 2453 ** a NULL then store a NULL in P2. 2454 */ 2455 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2456 pIn1 = &aMem[pOp->p1]; 2457 pOut = &aMem[pOp->p2]; 2458 sqlite3VdbeMemSetNull(pOut); 2459 if( (pIn1->flags & MEM_Null)==0 ){ 2460 pOut->flags = MEM_Int; 2461 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2462 } 2463 break; 2464 } 2465 2466 /* Opcode: Once P1 P2 * * * 2467 ** 2468 ** Fall through to the next instruction the first time this opcode is 2469 ** encountered on each invocation of the byte-code program. Jump to P2 2470 ** on the second and all subsequent encounters during the same invocation. 2471 ** 2472 ** Top-level programs determine first invocation by comparing the P1 2473 ** operand against the P1 operand on the OP_Init opcode at the beginning 2474 ** of the program. If the P1 values differ, then fall through and make 2475 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2476 ** the same then take the jump. 2477 ** 2478 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2479 ** whether or not the jump should be taken. The bitmask is necessary 2480 ** because the self-altering code trick does not work for recursive 2481 ** triggers. 2482 */ 2483 case OP_Once: { /* jump */ 2484 u32 iAddr; /* Address of this instruction */ 2485 assert( p->aOp[0].opcode==OP_Init ); 2486 if( p->pFrame ){ 2487 iAddr = (int)(pOp - p->aOp); 2488 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2489 VdbeBranchTaken(1, 2); 2490 goto jump_to_p2; 2491 } 2492 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2493 }else{ 2494 if( p->aOp[0].p1==pOp->p1 ){ 2495 VdbeBranchTaken(1, 2); 2496 goto jump_to_p2; 2497 } 2498 } 2499 VdbeBranchTaken(0, 2); 2500 pOp->p1 = p->aOp[0].p1; 2501 break; 2502 } 2503 2504 /* Opcode: If P1 P2 P3 * * 2505 ** 2506 ** Jump to P2 if the value in register P1 is true. The value 2507 ** is considered true if it is numeric and non-zero. If the value 2508 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2509 */ 2510 case OP_If: { /* jump, in1 */ 2511 int c; 2512 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2513 VdbeBranchTaken(c!=0, 2); 2514 if( c ) goto jump_to_p2; 2515 break; 2516 } 2517 2518 /* Opcode: IfNot P1 P2 P3 * * 2519 ** 2520 ** Jump to P2 if the value in register P1 is False. The value 2521 ** is considered false if it has a numeric value of zero. If the value 2522 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2523 */ 2524 case OP_IfNot: { /* jump, in1 */ 2525 int c; 2526 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2527 VdbeBranchTaken(c!=0, 2); 2528 if( c ) goto jump_to_p2; 2529 break; 2530 } 2531 2532 /* Opcode: IsNull P1 P2 * * * 2533 ** Synopsis: if r[P1]==NULL goto P2 2534 ** 2535 ** Jump to P2 if the value in register P1 is NULL. 2536 */ 2537 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2538 pIn1 = &aMem[pOp->p1]; 2539 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2540 if( (pIn1->flags & MEM_Null)!=0 ){ 2541 goto jump_to_p2; 2542 } 2543 break; 2544 } 2545 2546 /* Opcode: IsNullOrType P1 P2 P3 * * 2547 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2 2548 ** 2549 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3. 2550 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT, 2551 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT. 2552 */ 2553 case OP_IsNullOrType: { /* jump, in1 */ 2554 int doTheJump; 2555 pIn1 = &aMem[pOp->p1]; 2556 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3; 2557 VdbeBranchTaken( doTheJump, 2); 2558 if( doTheJump ) goto jump_to_p2; 2559 break; 2560 } 2561 2562 /* Opcode: ZeroOrNull P1 P2 P3 * * 2563 ** Synopsis: r[P2] = 0 OR NULL 2564 ** 2565 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2566 ** register P2. If either registers P1 or P3 are NULL then put 2567 ** a NULL in register P2. 2568 */ 2569 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2570 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2571 || (aMem[pOp->p3].flags & MEM_Null)!=0 2572 ){ 2573 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2574 }else{ 2575 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2576 } 2577 break; 2578 } 2579 2580 /* Opcode: NotNull P1 P2 * * * 2581 ** Synopsis: if r[P1]!=NULL goto P2 2582 ** 2583 ** Jump to P2 if the value in register P1 is not NULL. 2584 */ 2585 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2586 pIn1 = &aMem[pOp->p1]; 2587 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2588 if( (pIn1->flags & MEM_Null)==0 ){ 2589 goto jump_to_p2; 2590 } 2591 break; 2592 } 2593 2594 /* Opcode: IfNullRow P1 P2 P3 * * 2595 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2596 ** 2597 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2598 ** If it is, then set register P3 to NULL and jump immediately to P2. 2599 ** If P1 is not on a NULL row, then fall through without making any 2600 ** changes. 2601 */ 2602 case OP_IfNullRow: { /* jump */ 2603 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2604 assert( p->apCsr[pOp->p1]!=0 ); 2605 if( p->apCsr[pOp->p1]->nullRow ){ 2606 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2607 goto jump_to_p2; 2608 } 2609 break; 2610 } 2611 2612 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2613 /* Opcode: Offset P1 P2 P3 * * 2614 ** Synopsis: r[P3] = sqlite_offset(P1) 2615 ** 2616 ** Store in register r[P3] the byte offset into the database file that is the 2617 ** start of the payload for the record at which that cursor P1 is currently 2618 ** pointing. 2619 ** 2620 ** P2 is the column number for the argument to the sqlite_offset() function. 2621 ** This opcode does not use P2 itself, but the P2 value is used by the 2622 ** code generator. The P1, P2, and P3 operands to this opcode are the 2623 ** same as for OP_Column. 2624 ** 2625 ** This opcode is only available if SQLite is compiled with the 2626 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2627 */ 2628 case OP_Offset: { /* out3 */ 2629 VdbeCursor *pC; /* The VDBE cursor */ 2630 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2631 pC = p->apCsr[pOp->p1]; 2632 pOut = &p->aMem[pOp->p3]; 2633 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2634 sqlite3VdbeMemSetNull(pOut); 2635 }else{ 2636 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2637 } 2638 break; 2639 } 2640 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2641 2642 /* Opcode: Column P1 P2 P3 P4 P5 2643 ** Synopsis: r[P3]=PX 2644 ** 2645 ** Interpret the data that cursor P1 points to as a structure built using 2646 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2647 ** information about the format of the data.) Extract the P2-th column 2648 ** from this record. If there are less that (P2+1) 2649 ** values in the record, extract a NULL. 2650 ** 2651 ** The value extracted is stored in register P3. 2652 ** 2653 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2654 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2655 ** the result. 2656 ** 2657 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2658 ** the result is guaranteed to only be used as the argument of a length() 2659 ** or typeof() function, respectively. The loading of large blobs can be 2660 ** skipped for length() and all content loading can be skipped for typeof(). 2661 */ 2662 case OP_Column: { 2663 u32 p2; /* column number to retrieve */ 2664 VdbeCursor *pC; /* The VDBE cursor */ 2665 BtCursor *pCrsr; /* The BTree cursor */ 2666 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2667 int len; /* The length of the serialized data for the column */ 2668 int i; /* Loop counter */ 2669 Mem *pDest; /* Where to write the extracted value */ 2670 Mem sMem; /* For storing the record being decoded */ 2671 const u8 *zData; /* Part of the record being decoded */ 2672 const u8 *zHdr; /* Next unparsed byte of the header */ 2673 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2674 u64 offset64; /* 64-bit offset */ 2675 u32 t; /* A type code from the record header */ 2676 Mem *pReg; /* PseudoTable input register */ 2677 2678 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2679 pC = p->apCsr[pOp->p1]; 2680 assert( pC!=0 ); 2681 p2 = (u32)pOp->p2; 2682 2683 /* If the cursor cache is stale (meaning it is not currently point at 2684 ** the correct row) then bring it up-to-date by doing the necessary 2685 ** B-Tree seek. */ 2686 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2687 if( rc ) goto abort_due_to_error; 2688 2689 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2690 pDest = &aMem[pOp->p3]; 2691 memAboutToChange(p, pDest); 2692 assert( pC!=0 ); 2693 assert( p2<(u32)pC->nField ); 2694 aOffset = pC->aOffset; 2695 assert( pC->eCurType!=CURTYPE_VTAB ); 2696 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2697 assert( pC->eCurType!=CURTYPE_SORTER ); 2698 2699 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2700 if( pC->nullRow ){ 2701 if( pC->eCurType==CURTYPE_PSEUDO ){ 2702 /* For the special case of as pseudo-cursor, the seekResult field 2703 ** identifies the register that holds the record */ 2704 assert( pC->seekResult>0 ); 2705 pReg = &aMem[pC->seekResult]; 2706 assert( pReg->flags & MEM_Blob ); 2707 assert( memIsValid(pReg) ); 2708 pC->payloadSize = pC->szRow = pReg->n; 2709 pC->aRow = (u8*)pReg->z; 2710 }else{ 2711 sqlite3VdbeMemSetNull(pDest); 2712 goto op_column_out; 2713 } 2714 }else{ 2715 pCrsr = pC->uc.pCursor; 2716 assert( pC->eCurType==CURTYPE_BTREE ); 2717 assert( pCrsr ); 2718 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2719 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2720 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2721 assert( pC->szRow<=pC->payloadSize ); 2722 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2723 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2724 goto too_big; 2725 } 2726 } 2727 pC->cacheStatus = p->cacheCtr; 2728 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2729 pC->nHdrParsed = 0; 2730 2731 2732 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2733 /* pC->aRow does not have to hold the entire row, but it does at least 2734 ** need to cover the header of the record. If pC->aRow does not contain 2735 ** the complete header, then set it to zero, forcing the header to be 2736 ** dynamically allocated. */ 2737 pC->aRow = 0; 2738 pC->szRow = 0; 2739 2740 /* Make sure a corrupt database has not given us an oversize header. 2741 ** Do this now to avoid an oversize memory allocation. 2742 ** 2743 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2744 ** types use so much data space that there can only be 4096 and 32 of 2745 ** them, respectively. So the maximum header length results from a 2746 ** 3-byte type for each of the maximum of 32768 columns plus three 2747 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2748 */ 2749 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2750 goto op_column_corrupt; 2751 } 2752 }else{ 2753 /* This is an optimization. By skipping over the first few tests 2754 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2755 ** measurable performance gain. 2756 ** 2757 ** This branch is taken even if aOffset[0]==0. Such a record is never 2758 ** generated by SQLite, and could be considered corruption, but we 2759 ** accept it for historical reasons. When aOffset[0]==0, the code this 2760 ** branch jumps to reads past the end of the record, but never more 2761 ** than a few bytes. Even if the record occurs at the end of the page 2762 ** content area, the "page header" comes after the page content and so 2763 ** this overread is harmless. Similar overreads can occur for a corrupt 2764 ** database file. 2765 */ 2766 zData = pC->aRow; 2767 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2768 testcase( aOffset[0]==0 ); 2769 goto op_column_read_header; 2770 } 2771 } 2772 2773 /* Make sure at least the first p2+1 entries of the header have been 2774 ** parsed and valid information is in aOffset[] and pC->aType[]. 2775 */ 2776 if( pC->nHdrParsed<=p2 ){ 2777 /* If there is more header available for parsing in the record, try 2778 ** to extract additional fields up through the p2+1-th field 2779 */ 2780 if( pC->iHdrOffset<aOffset[0] ){ 2781 /* Make sure zData points to enough of the record to cover the header. */ 2782 if( pC->aRow==0 ){ 2783 memset(&sMem, 0, sizeof(sMem)); 2784 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2785 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2786 zData = (u8*)sMem.z; 2787 }else{ 2788 zData = pC->aRow; 2789 } 2790 2791 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2792 op_column_read_header: 2793 i = pC->nHdrParsed; 2794 offset64 = aOffset[i]; 2795 zHdr = zData + pC->iHdrOffset; 2796 zEndHdr = zData + aOffset[0]; 2797 testcase( zHdr>=zEndHdr ); 2798 do{ 2799 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2800 zHdr++; 2801 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2802 }else{ 2803 zHdr += sqlite3GetVarint32(zHdr, &t); 2804 pC->aType[i] = t; 2805 offset64 += sqlite3VdbeSerialTypeLen(t); 2806 } 2807 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2808 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2809 2810 /* The record is corrupt if any of the following are true: 2811 ** (1) the bytes of the header extend past the declared header size 2812 ** (2) the entire header was used but not all data was used 2813 ** (3) the end of the data extends beyond the end of the record. 2814 */ 2815 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2816 || (offset64 > pC->payloadSize) 2817 ){ 2818 if( aOffset[0]==0 ){ 2819 i = 0; 2820 zHdr = zEndHdr; 2821 }else{ 2822 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2823 goto op_column_corrupt; 2824 } 2825 } 2826 2827 pC->nHdrParsed = i; 2828 pC->iHdrOffset = (u32)(zHdr - zData); 2829 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2830 }else{ 2831 t = 0; 2832 } 2833 2834 /* If after trying to extract new entries from the header, nHdrParsed is 2835 ** still not up to p2, that means that the record has fewer than p2 2836 ** columns. So the result will be either the default value or a NULL. 2837 */ 2838 if( pC->nHdrParsed<=p2 ){ 2839 if( pOp->p4type==P4_MEM ){ 2840 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2841 }else{ 2842 sqlite3VdbeMemSetNull(pDest); 2843 } 2844 goto op_column_out; 2845 } 2846 }else{ 2847 t = pC->aType[p2]; 2848 } 2849 2850 /* Extract the content for the p2+1-th column. Control can only 2851 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2852 ** all valid. 2853 */ 2854 assert( p2<pC->nHdrParsed ); 2855 assert( rc==SQLITE_OK ); 2856 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2857 if( VdbeMemDynamic(pDest) ){ 2858 sqlite3VdbeMemSetNull(pDest); 2859 } 2860 assert( t==pC->aType[p2] ); 2861 if( pC->szRow>=aOffset[p2+1] ){ 2862 /* This is the common case where the desired content fits on the original 2863 ** page - where the content is not on an overflow page */ 2864 zData = pC->aRow + aOffset[p2]; 2865 if( t<12 ){ 2866 sqlite3VdbeSerialGet(zData, t, pDest); 2867 }else{ 2868 /* If the column value is a string, we need a persistent value, not 2869 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2870 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2871 */ 2872 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2873 pDest->n = len = (t-12)/2; 2874 pDest->enc = encoding; 2875 if( pDest->szMalloc < len+2 ){ 2876 pDest->flags = MEM_Null; 2877 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2878 }else{ 2879 pDest->z = pDest->zMalloc; 2880 } 2881 memcpy(pDest->z, zData, len); 2882 pDest->z[len] = 0; 2883 pDest->z[len+1] = 0; 2884 pDest->flags = aFlag[t&1]; 2885 } 2886 }else{ 2887 pDest->enc = encoding; 2888 /* This branch happens only when content is on overflow pages */ 2889 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2890 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2891 || (len = sqlite3VdbeSerialTypeLen(t))==0 2892 ){ 2893 /* Content is irrelevant for 2894 ** 1. the typeof() function, 2895 ** 2. the length(X) function if X is a blob, and 2896 ** 3. if the content length is zero. 2897 ** So we might as well use bogus content rather than reading 2898 ** content from disk. 2899 ** 2900 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2901 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2902 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2903 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2904 ** and it begins with a bunch of zeros. 2905 */ 2906 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2907 }else{ 2908 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2909 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2910 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2911 pDest->flags &= ~MEM_Ephem; 2912 } 2913 } 2914 2915 op_column_out: 2916 UPDATE_MAX_BLOBSIZE(pDest); 2917 REGISTER_TRACE(pOp->p3, pDest); 2918 break; 2919 2920 op_column_corrupt: 2921 if( aOp[0].p3>0 ){ 2922 pOp = &aOp[aOp[0].p3-1]; 2923 break; 2924 }else{ 2925 rc = SQLITE_CORRUPT_BKPT; 2926 goto abort_due_to_error; 2927 } 2928 } 2929 2930 /* Opcode: TypeCheck P1 P2 P3 P4 * 2931 ** Synopsis: typecheck(r[P1@P2]) 2932 ** 2933 ** Apply affinities to the range of P2 registers beginning with P1. 2934 ** Take the affinities from the Table object in P4. If any value 2935 ** cannot be coerced into the correct type, then raise an error. 2936 ** 2937 ** This opcode is similar to OP_Affinity except that this opcode 2938 ** forces the register type to the Table column type. This is used 2939 ** to implement "strict affinity". 2940 ** 2941 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 2942 ** is zero. When P3 is non-zero, no type checking occurs for 2943 ** static generated columns. Virtual columns are computed at query time 2944 ** and so they are never checked. 2945 ** 2946 ** Preconditions: 2947 ** 2948 ** <ul> 2949 ** <li> P2 should be the number of non-virtual columns in the 2950 ** table of P4. 2951 ** <li> Table P4 should be a STRICT table. 2952 ** </ul> 2953 ** 2954 ** If any precondition is false, an assertion fault occurs. 2955 */ 2956 case OP_TypeCheck: { 2957 Table *pTab; 2958 Column *aCol; 2959 int i; 2960 2961 assert( pOp->p4type==P4_TABLE ); 2962 pTab = pOp->p4.pTab; 2963 assert( pTab->tabFlags & TF_Strict ); 2964 assert( pTab->nNVCol==pOp->p2 ); 2965 aCol = pTab->aCol; 2966 pIn1 = &aMem[pOp->p1]; 2967 for(i=0; i<pTab->nCol; i++){ 2968 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 2969 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 2970 if( pOp->p3 ){ pIn1++; continue; } 2971 } 2972 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 2973 applyAffinity(pIn1, aCol[i].affinity, encoding); 2974 if( (pIn1->flags & MEM_Null)==0 ){ 2975 switch( aCol[i].eCType ){ 2976 case COLTYPE_BLOB: { 2977 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 2978 break; 2979 } 2980 case COLTYPE_INTEGER: 2981 case COLTYPE_INT: { 2982 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 2983 break; 2984 } 2985 case COLTYPE_TEXT: { 2986 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 2987 break; 2988 } 2989 case COLTYPE_REAL: { 2990 if( pIn1->flags & MEM_Int ){ 2991 /* When applying REAL affinity, if the result is still an MEM_Int 2992 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2993 ** so that we keep the high-resolution integer value but know that 2994 ** the type really wants to be REAL. */ 2995 testcase( pIn1->u.i==140737488355328LL ); 2996 testcase( pIn1->u.i==140737488355327LL ); 2997 testcase( pIn1->u.i==-140737488355328LL ); 2998 testcase( pIn1->u.i==-140737488355329LL ); 2999 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 3000 pIn1->flags |= MEM_IntReal; 3001 pIn1->flags &= ~MEM_Int; 3002 }else{ 3003 pIn1->u.r = (double)pIn1->u.i; 3004 pIn1->flags |= MEM_Real; 3005 pIn1->flags &= ~MEM_Int; 3006 } 3007 }else if( (pIn1->flags & MEM_Real)==0 ){ 3008 goto vdbe_type_error; 3009 } 3010 break; 3011 } 3012 default: { 3013 /* COLTYPE_ANY. Accept anything. */ 3014 break; 3015 } 3016 } 3017 } 3018 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3019 pIn1++; 3020 } 3021 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 3022 break; 3023 3024 vdbe_type_error: 3025 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 3026 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 3027 pTab->zName, aCol[i].zCnName); 3028 rc = SQLITE_CONSTRAINT_DATATYPE; 3029 goto abort_due_to_error; 3030 } 3031 3032 /* Opcode: Affinity P1 P2 * P4 * 3033 ** Synopsis: affinity(r[P1@P2]) 3034 ** 3035 ** Apply affinities to a range of P2 registers starting with P1. 3036 ** 3037 ** P4 is a string that is P2 characters long. The N-th character of the 3038 ** string indicates the column affinity that should be used for the N-th 3039 ** memory cell in the range. 3040 */ 3041 case OP_Affinity: { 3042 const char *zAffinity; /* The affinity to be applied */ 3043 3044 zAffinity = pOp->p4.z; 3045 assert( zAffinity!=0 ); 3046 assert( pOp->p2>0 ); 3047 assert( zAffinity[pOp->p2]==0 ); 3048 pIn1 = &aMem[pOp->p1]; 3049 while( 1 /*exit-by-break*/ ){ 3050 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3051 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3052 applyAffinity(pIn1, zAffinity[0], encoding); 3053 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3054 /* When applying REAL affinity, if the result is still an MEM_Int 3055 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3056 ** so that we keep the high-resolution integer value but know that 3057 ** the type really wants to be REAL. */ 3058 testcase( pIn1->u.i==140737488355328LL ); 3059 testcase( pIn1->u.i==140737488355327LL ); 3060 testcase( pIn1->u.i==-140737488355328LL ); 3061 testcase( pIn1->u.i==-140737488355329LL ); 3062 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3063 pIn1->flags |= MEM_IntReal; 3064 pIn1->flags &= ~MEM_Int; 3065 }else{ 3066 pIn1->u.r = (double)pIn1->u.i; 3067 pIn1->flags |= MEM_Real; 3068 pIn1->flags &= ~MEM_Int; 3069 } 3070 } 3071 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3072 zAffinity++; 3073 if( zAffinity[0]==0 ) break; 3074 pIn1++; 3075 } 3076 break; 3077 } 3078 3079 /* Opcode: MakeRecord P1 P2 P3 P4 * 3080 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3081 ** 3082 ** Convert P2 registers beginning with P1 into the [record format] 3083 ** use as a data record in a database table or as a key 3084 ** in an index. The OP_Column opcode can decode the record later. 3085 ** 3086 ** P4 may be a string that is P2 characters long. The N-th character of the 3087 ** string indicates the column affinity that should be used for the N-th 3088 ** field of the index key. 3089 ** 3090 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3091 ** macros defined in sqliteInt.h. 3092 ** 3093 ** If P4 is NULL then all index fields have the affinity BLOB. 3094 ** 3095 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3096 ** compile-time option is enabled: 3097 ** 3098 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3099 ** of the right-most table that can be null-trimmed. 3100 ** 3101 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3102 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3103 ** accept no-change records with serial_type 10. This value is 3104 ** only used inside an assert() and does not affect the end result. 3105 */ 3106 case OP_MakeRecord: { 3107 Mem *pRec; /* The new record */ 3108 u64 nData; /* Number of bytes of data space */ 3109 int nHdr; /* Number of bytes of header space */ 3110 i64 nByte; /* Data space required for this record */ 3111 i64 nZero; /* Number of zero bytes at the end of the record */ 3112 int nVarint; /* Number of bytes in a varint */ 3113 u32 serial_type; /* Type field */ 3114 Mem *pData0; /* First field to be combined into the record */ 3115 Mem *pLast; /* Last field of the record */ 3116 int nField; /* Number of fields in the record */ 3117 char *zAffinity; /* The affinity string for the record */ 3118 int file_format; /* File format to use for encoding */ 3119 u32 len; /* Length of a field */ 3120 u8 *zHdr; /* Where to write next byte of the header */ 3121 u8 *zPayload; /* Where to write next byte of the payload */ 3122 3123 /* Assuming the record contains N fields, the record format looks 3124 ** like this: 3125 ** 3126 ** ------------------------------------------------------------------------ 3127 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3128 ** ------------------------------------------------------------------------ 3129 ** 3130 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3131 ** and so forth. 3132 ** 3133 ** Each type field is a varint representing the serial type of the 3134 ** corresponding data element (see sqlite3VdbeSerialType()). The 3135 ** hdr-size field is also a varint which is the offset from the beginning 3136 ** of the record to data0. 3137 */ 3138 nData = 0; /* Number of bytes of data space */ 3139 nHdr = 0; /* Number of bytes of header space */ 3140 nZero = 0; /* Number of zero bytes at the end of the record */ 3141 nField = pOp->p1; 3142 zAffinity = pOp->p4.z; 3143 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3144 pData0 = &aMem[nField]; 3145 nField = pOp->p2; 3146 pLast = &pData0[nField-1]; 3147 file_format = p->minWriteFileFormat; 3148 3149 /* Identify the output register */ 3150 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3151 pOut = &aMem[pOp->p3]; 3152 memAboutToChange(p, pOut); 3153 3154 /* Apply the requested affinity to all inputs 3155 */ 3156 assert( pData0<=pLast ); 3157 if( zAffinity ){ 3158 pRec = pData0; 3159 do{ 3160 applyAffinity(pRec, zAffinity[0], encoding); 3161 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3162 pRec->flags |= MEM_IntReal; 3163 pRec->flags &= ~(MEM_Int); 3164 } 3165 REGISTER_TRACE((int)(pRec-aMem), pRec); 3166 zAffinity++; 3167 pRec++; 3168 assert( zAffinity[0]==0 || pRec<=pLast ); 3169 }while( zAffinity[0] ); 3170 } 3171 3172 #ifdef SQLITE_ENABLE_NULL_TRIM 3173 /* NULLs can be safely trimmed from the end of the record, as long as 3174 ** as the schema format is 2 or more and none of the omitted columns 3175 ** have a non-NULL default value. Also, the record must be left with 3176 ** at least one field. If P5>0 then it will be one more than the 3177 ** index of the right-most column with a non-NULL default value */ 3178 if( pOp->p5 ){ 3179 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3180 pLast--; 3181 nField--; 3182 } 3183 } 3184 #endif 3185 3186 /* Loop through the elements that will make up the record to figure 3187 ** out how much space is required for the new record. After this loop, 3188 ** the Mem.uTemp field of each term should hold the serial-type that will 3189 ** be used for that term in the generated record: 3190 ** 3191 ** Mem.uTemp value type 3192 ** --------------- --------------- 3193 ** 0 NULL 3194 ** 1 1-byte signed integer 3195 ** 2 2-byte signed integer 3196 ** 3 3-byte signed integer 3197 ** 4 4-byte signed integer 3198 ** 5 6-byte signed integer 3199 ** 6 8-byte signed integer 3200 ** 7 IEEE float 3201 ** 8 Integer constant 0 3202 ** 9 Integer constant 1 3203 ** 10,11 reserved for expansion 3204 ** N>=12 and even BLOB 3205 ** N>=13 and odd text 3206 ** 3207 ** The following additional values are computed: 3208 ** nHdr Number of bytes needed for the record header 3209 ** nData Number of bytes of data space needed for the record 3210 ** nZero Zero bytes at the end of the record 3211 */ 3212 pRec = pLast; 3213 do{ 3214 assert( memIsValid(pRec) ); 3215 if( pRec->flags & MEM_Null ){ 3216 if( pRec->flags & MEM_Zero ){ 3217 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3218 ** table methods that never invoke sqlite3_result_xxxxx() while 3219 ** computing an unchanging column value in an UPDATE statement. 3220 ** Give such values a special internal-use-only serial-type of 10 3221 ** so that they can be passed through to xUpdate and have 3222 ** a true sqlite3_value_nochange(). */ 3223 #ifndef SQLITE_ENABLE_NULL_TRIM 3224 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3225 #endif 3226 pRec->uTemp = 10; 3227 }else{ 3228 pRec->uTemp = 0; 3229 } 3230 nHdr++; 3231 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3232 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3233 i64 i = pRec->u.i; 3234 u64 uu; 3235 testcase( pRec->flags & MEM_Int ); 3236 testcase( pRec->flags & MEM_IntReal ); 3237 if( i<0 ){ 3238 uu = ~i; 3239 }else{ 3240 uu = i; 3241 } 3242 nHdr++; 3243 testcase( uu==127 ); testcase( uu==128 ); 3244 testcase( uu==32767 ); testcase( uu==32768 ); 3245 testcase( uu==8388607 ); testcase( uu==8388608 ); 3246 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3247 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3248 if( uu<=127 ){ 3249 if( (i&1)==i && file_format>=4 ){ 3250 pRec->uTemp = 8+(u32)uu; 3251 }else{ 3252 nData++; 3253 pRec->uTemp = 1; 3254 } 3255 }else if( uu<=32767 ){ 3256 nData += 2; 3257 pRec->uTemp = 2; 3258 }else if( uu<=8388607 ){ 3259 nData += 3; 3260 pRec->uTemp = 3; 3261 }else if( uu<=2147483647 ){ 3262 nData += 4; 3263 pRec->uTemp = 4; 3264 }else if( uu<=140737488355327LL ){ 3265 nData += 6; 3266 pRec->uTemp = 5; 3267 }else{ 3268 nData += 8; 3269 if( pRec->flags & MEM_IntReal ){ 3270 /* If the value is IntReal and is going to take up 8 bytes to store 3271 ** as an integer, then we might as well make it an 8-byte floating 3272 ** point value */ 3273 pRec->u.r = (double)pRec->u.i; 3274 pRec->flags &= ~MEM_IntReal; 3275 pRec->flags |= MEM_Real; 3276 pRec->uTemp = 7; 3277 }else{ 3278 pRec->uTemp = 6; 3279 } 3280 } 3281 }else if( pRec->flags & MEM_Real ){ 3282 nHdr++; 3283 nData += 8; 3284 pRec->uTemp = 7; 3285 }else{ 3286 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3287 assert( pRec->n>=0 ); 3288 len = (u32)pRec->n; 3289 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3290 if( pRec->flags & MEM_Zero ){ 3291 serial_type += pRec->u.nZero*2; 3292 if( nData ){ 3293 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3294 len += pRec->u.nZero; 3295 }else{ 3296 nZero += pRec->u.nZero; 3297 } 3298 } 3299 nData += len; 3300 nHdr += sqlite3VarintLen(serial_type); 3301 pRec->uTemp = serial_type; 3302 } 3303 if( pRec==pData0 ) break; 3304 pRec--; 3305 }while(1); 3306 3307 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3308 ** which determines the total number of bytes in the header. The varint 3309 ** value is the size of the header in bytes including the size varint 3310 ** itself. */ 3311 testcase( nHdr==126 ); 3312 testcase( nHdr==127 ); 3313 if( nHdr<=126 ){ 3314 /* The common case */ 3315 nHdr += 1; 3316 }else{ 3317 /* Rare case of a really large header */ 3318 nVarint = sqlite3VarintLen(nHdr); 3319 nHdr += nVarint; 3320 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3321 } 3322 nByte = nHdr+nData; 3323 3324 /* Make sure the output register has a buffer large enough to store 3325 ** the new record. The output register (pOp->p3) is not allowed to 3326 ** be one of the input registers (because the following call to 3327 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3328 */ 3329 if( nByte+nZero<=pOut->szMalloc ){ 3330 /* The output register is already large enough to hold the record. 3331 ** No error checks or buffer enlargement is required */ 3332 pOut->z = pOut->zMalloc; 3333 }else{ 3334 /* Need to make sure that the output is not too big and then enlarge 3335 ** the output register to hold the full result */ 3336 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3337 goto too_big; 3338 } 3339 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3340 goto no_mem; 3341 } 3342 } 3343 pOut->n = (int)nByte; 3344 pOut->flags = MEM_Blob; 3345 if( nZero ){ 3346 pOut->u.nZero = nZero; 3347 pOut->flags |= MEM_Zero; 3348 } 3349 UPDATE_MAX_BLOBSIZE(pOut); 3350 zHdr = (u8 *)pOut->z; 3351 zPayload = zHdr + nHdr; 3352 3353 /* Write the record */ 3354 zHdr += putVarint32(zHdr, nHdr); 3355 assert( pData0<=pLast ); 3356 pRec = pData0; 3357 do{ 3358 serial_type = pRec->uTemp; 3359 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3360 ** additional varints, one per column. */ 3361 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3362 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3363 ** immediately follow the header. */ 3364 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3365 }while( (++pRec)<=pLast ); 3366 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3367 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3368 3369 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3370 REGISTER_TRACE(pOp->p3, pOut); 3371 break; 3372 } 3373 3374 /* Opcode: Count P1 P2 P3 * * 3375 ** Synopsis: r[P2]=count() 3376 ** 3377 ** Store the number of entries (an integer value) in the table or index 3378 ** opened by cursor P1 in register P2. 3379 ** 3380 ** If P3==0, then an exact count is obtained, which involves visiting 3381 ** every btree page of the table. But if P3 is non-zero, an estimate 3382 ** is returned based on the current cursor position. 3383 */ 3384 case OP_Count: { /* out2 */ 3385 i64 nEntry; 3386 BtCursor *pCrsr; 3387 3388 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3389 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3390 assert( pCrsr ); 3391 if( pOp->p3 ){ 3392 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3393 }else{ 3394 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3395 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3396 if( rc ) goto abort_due_to_error; 3397 } 3398 pOut = out2Prerelease(p, pOp); 3399 pOut->u.i = nEntry; 3400 goto check_for_interrupt; 3401 } 3402 3403 /* Opcode: Savepoint P1 * * P4 * 3404 ** 3405 ** Open, release or rollback the savepoint named by parameter P4, depending 3406 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3407 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3408 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3409 */ 3410 case OP_Savepoint: { 3411 int p1; /* Value of P1 operand */ 3412 char *zName; /* Name of savepoint */ 3413 int nName; 3414 Savepoint *pNew; 3415 Savepoint *pSavepoint; 3416 Savepoint *pTmp; 3417 int iSavepoint; 3418 int ii; 3419 3420 p1 = pOp->p1; 3421 zName = pOp->p4.z; 3422 3423 /* Assert that the p1 parameter is valid. Also that if there is no open 3424 ** transaction, then there cannot be any savepoints. 3425 */ 3426 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3427 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3428 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3429 assert( checkSavepointCount(db) ); 3430 assert( p->bIsReader ); 3431 3432 if( p1==SAVEPOINT_BEGIN ){ 3433 if( db->nVdbeWrite>0 ){ 3434 /* A new savepoint cannot be created if there are active write 3435 ** statements (i.e. open read/write incremental blob handles). 3436 */ 3437 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3438 rc = SQLITE_BUSY; 3439 }else{ 3440 nName = sqlite3Strlen30(zName); 3441 3442 #ifndef SQLITE_OMIT_VIRTUALTABLE 3443 /* This call is Ok even if this savepoint is actually a transaction 3444 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3445 ** If this is a transaction savepoint being opened, it is guaranteed 3446 ** that the db->aVTrans[] array is empty. */ 3447 assert( db->autoCommit==0 || db->nVTrans==0 ); 3448 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3449 db->nStatement+db->nSavepoint); 3450 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3451 #endif 3452 3453 /* Create a new savepoint structure. */ 3454 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3455 if( pNew ){ 3456 pNew->zName = (char *)&pNew[1]; 3457 memcpy(pNew->zName, zName, nName+1); 3458 3459 /* If there is no open transaction, then mark this as a special 3460 ** "transaction savepoint". */ 3461 if( db->autoCommit ){ 3462 db->autoCommit = 0; 3463 db->isTransactionSavepoint = 1; 3464 }else{ 3465 db->nSavepoint++; 3466 } 3467 3468 /* Link the new savepoint into the database handle's list. */ 3469 pNew->pNext = db->pSavepoint; 3470 db->pSavepoint = pNew; 3471 pNew->nDeferredCons = db->nDeferredCons; 3472 pNew->nDeferredImmCons = db->nDeferredImmCons; 3473 } 3474 } 3475 }else{ 3476 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3477 iSavepoint = 0; 3478 3479 /* Find the named savepoint. If there is no such savepoint, then an 3480 ** an error is returned to the user. */ 3481 for( 3482 pSavepoint = db->pSavepoint; 3483 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3484 pSavepoint = pSavepoint->pNext 3485 ){ 3486 iSavepoint++; 3487 } 3488 if( !pSavepoint ){ 3489 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3490 rc = SQLITE_ERROR; 3491 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3492 /* It is not possible to release (commit) a savepoint if there are 3493 ** active write statements. 3494 */ 3495 sqlite3VdbeError(p, "cannot release savepoint - " 3496 "SQL statements in progress"); 3497 rc = SQLITE_BUSY; 3498 }else{ 3499 3500 /* Determine whether or not this is a transaction savepoint. If so, 3501 ** and this is a RELEASE command, then the current transaction 3502 ** is committed. 3503 */ 3504 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3505 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3506 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3507 goto vdbe_return; 3508 } 3509 db->autoCommit = 1; 3510 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3511 p->pc = (int)(pOp - aOp); 3512 db->autoCommit = 0; 3513 p->rc = rc = SQLITE_BUSY; 3514 goto vdbe_return; 3515 } 3516 rc = p->rc; 3517 if( rc ){ 3518 db->autoCommit = 0; 3519 }else{ 3520 db->isTransactionSavepoint = 0; 3521 } 3522 }else{ 3523 int isSchemaChange; 3524 iSavepoint = db->nSavepoint - iSavepoint - 1; 3525 if( p1==SAVEPOINT_ROLLBACK ){ 3526 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3527 for(ii=0; ii<db->nDb; ii++){ 3528 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3529 SQLITE_ABORT_ROLLBACK, 3530 isSchemaChange==0); 3531 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3532 } 3533 }else{ 3534 assert( p1==SAVEPOINT_RELEASE ); 3535 isSchemaChange = 0; 3536 } 3537 for(ii=0; ii<db->nDb; ii++){ 3538 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3539 if( rc!=SQLITE_OK ){ 3540 goto abort_due_to_error; 3541 } 3542 } 3543 if( isSchemaChange ){ 3544 sqlite3ExpirePreparedStatements(db, 0); 3545 sqlite3ResetAllSchemasOfConnection(db); 3546 db->mDbFlags |= DBFLAG_SchemaChange; 3547 } 3548 } 3549 if( rc ) goto abort_due_to_error; 3550 3551 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3552 ** savepoints nested inside of the savepoint being operated on. */ 3553 while( db->pSavepoint!=pSavepoint ){ 3554 pTmp = db->pSavepoint; 3555 db->pSavepoint = pTmp->pNext; 3556 sqlite3DbFree(db, pTmp); 3557 db->nSavepoint--; 3558 } 3559 3560 /* If it is a RELEASE, then destroy the savepoint being operated on 3561 ** too. If it is a ROLLBACK TO, then set the number of deferred 3562 ** constraint violations present in the database to the value stored 3563 ** when the savepoint was created. */ 3564 if( p1==SAVEPOINT_RELEASE ){ 3565 assert( pSavepoint==db->pSavepoint ); 3566 db->pSavepoint = pSavepoint->pNext; 3567 sqlite3DbFree(db, pSavepoint); 3568 if( !isTransaction ){ 3569 db->nSavepoint--; 3570 } 3571 }else{ 3572 assert( p1==SAVEPOINT_ROLLBACK ); 3573 db->nDeferredCons = pSavepoint->nDeferredCons; 3574 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3575 } 3576 3577 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3578 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3579 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3580 } 3581 } 3582 } 3583 if( rc ) goto abort_due_to_error; 3584 3585 break; 3586 } 3587 3588 /* Opcode: AutoCommit P1 P2 * * * 3589 ** 3590 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3591 ** back any currently active btree transactions. If there are any active 3592 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3593 ** there are active writing VMs or active VMs that use shared cache. 3594 ** 3595 ** This instruction causes the VM to halt. 3596 */ 3597 case OP_AutoCommit: { 3598 int desiredAutoCommit; 3599 int iRollback; 3600 3601 desiredAutoCommit = pOp->p1; 3602 iRollback = pOp->p2; 3603 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3604 assert( desiredAutoCommit==1 || iRollback==0 ); 3605 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3606 assert( p->bIsReader ); 3607 3608 if( desiredAutoCommit!=db->autoCommit ){ 3609 if( iRollback ){ 3610 assert( desiredAutoCommit==1 ); 3611 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3612 db->autoCommit = 1; 3613 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3614 /* If this instruction implements a COMMIT and other VMs are writing 3615 ** return an error indicating that the other VMs must complete first. 3616 */ 3617 sqlite3VdbeError(p, "cannot commit transaction - " 3618 "SQL statements in progress"); 3619 rc = SQLITE_BUSY; 3620 goto abort_due_to_error; 3621 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3622 goto vdbe_return; 3623 }else{ 3624 db->autoCommit = (u8)desiredAutoCommit; 3625 } 3626 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3627 p->pc = (int)(pOp - aOp); 3628 db->autoCommit = (u8)(1-desiredAutoCommit); 3629 p->rc = rc = SQLITE_BUSY; 3630 goto vdbe_return; 3631 } 3632 sqlite3CloseSavepoints(db); 3633 if( p->rc==SQLITE_OK ){ 3634 rc = SQLITE_DONE; 3635 }else{ 3636 rc = SQLITE_ERROR; 3637 } 3638 goto vdbe_return; 3639 }else{ 3640 sqlite3VdbeError(p, 3641 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3642 (iRollback)?"cannot rollback - no transaction is active": 3643 "cannot commit - no transaction is active")); 3644 3645 rc = SQLITE_ERROR; 3646 goto abort_due_to_error; 3647 } 3648 /*NOTREACHED*/ assert(0); 3649 } 3650 3651 /* Opcode: Transaction P1 P2 P3 P4 P5 3652 ** 3653 ** Begin a transaction on database P1 if a transaction is not already 3654 ** active. 3655 ** If P2 is non-zero, then a write-transaction is started, or if a 3656 ** read-transaction is already active, it is upgraded to a write-transaction. 3657 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3658 ** then an exclusive transaction is started. 3659 ** 3660 ** P1 is the index of the database file on which the transaction is 3661 ** started. Index 0 is the main database file and index 1 is the 3662 ** file used for temporary tables. Indices of 2 or more are used for 3663 ** attached databases. 3664 ** 3665 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3666 ** true (this flag is set if the Vdbe may modify more than one row and may 3667 ** throw an ABORT exception), a statement transaction may also be opened. 3668 ** More specifically, a statement transaction is opened iff the database 3669 ** connection is currently not in autocommit mode, or if there are other 3670 ** active statements. A statement transaction allows the changes made by this 3671 ** VDBE to be rolled back after an error without having to roll back the 3672 ** entire transaction. If no error is encountered, the statement transaction 3673 ** will automatically commit when the VDBE halts. 3674 ** 3675 ** If P5!=0 then this opcode also checks the schema cookie against P3 3676 ** and the schema generation counter against P4. 3677 ** The cookie changes its value whenever the database schema changes. 3678 ** This operation is used to detect when that the cookie has changed 3679 ** and that the current process needs to reread the schema. If the schema 3680 ** cookie in P3 differs from the schema cookie in the database header or 3681 ** if the schema generation counter in P4 differs from the current 3682 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3683 ** halts. The sqlite3_step() wrapper function might then reprepare the 3684 ** statement and rerun it from the beginning. 3685 */ 3686 case OP_Transaction: { 3687 Btree *pBt; 3688 int iMeta = 0; 3689 3690 assert( p->bIsReader ); 3691 assert( p->readOnly==0 || pOp->p2==0 ); 3692 assert( pOp->p2>=0 && pOp->p2<=2 ); 3693 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3694 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3695 assert( rc==SQLITE_OK ); 3696 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3697 if( db->flags & SQLITE_QueryOnly ){ 3698 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3699 rc = SQLITE_READONLY; 3700 }else{ 3701 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3702 ** transaction */ 3703 rc = SQLITE_CORRUPT; 3704 } 3705 goto abort_due_to_error; 3706 } 3707 pBt = db->aDb[pOp->p1].pBt; 3708 3709 if( pBt ){ 3710 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3711 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3712 testcase( rc==SQLITE_BUSY_RECOVERY ); 3713 if( rc!=SQLITE_OK ){ 3714 if( (rc&0xff)==SQLITE_BUSY ){ 3715 p->pc = (int)(pOp - aOp); 3716 p->rc = rc; 3717 goto vdbe_return; 3718 } 3719 goto abort_due_to_error; 3720 } 3721 3722 if( p->usesStmtJournal 3723 && pOp->p2 3724 && (db->autoCommit==0 || db->nVdbeRead>1) 3725 ){ 3726 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3727 if( p->iStatement==0 ){ 3728 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3729 db->nStatement++; 3730 p->iStatement = db->nSavepoint + db->nStatement; 3731 } 3732 3733 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3734 if( rc==SQLITE_OK ){ 3735 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3736 } 3737 3738 /* Store the current value of the database handles deferred constraint 3739 ** counter. If the statement transaction needs to be rolled back, 3740 ** the value of this counter needs to be restored too. */ 3741 p->nStmtDefCons = db->nDeferredCons; 3742 p->nStmtDefImmCons = db->nDeferredImmCons; 3743 } 3744 } 3745 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3746 if( rc==SQLITE_OK 3747 && pOp->p5 3748 && (iMeta!=pOp->p3 3749 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3750 ){ 3751 /* 3752 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3753 ** version is checked to ensure that the schema has not changed since the 3754 ** SQL statement was prepared. 3755 */ 3756 sqlite3DbFree(db, p->zErrMsg); 3757 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3758 /* If the schema-cookie from the database file matches the cookie 3759 ** stored with the in-memory representation of the schema, do 3760 ** not reload the schema from the database file. 3761 ** 3762 ** If virtual-tables are in use, this is not just an optimization. 3763 ** Often, v-tables store their data in other SQLite tables, which 3764 ** are queried from within xNext() and other v-table methods using 3765 ** prepared queries. If such a query is out-of-date, we do not want to 3766 ** discard the database schema, as the user code implementing the 3767 ** v-table would have to be ready for the sqlite3_vtab structure itself 3768 ** to be invalidated whenever sqlite3_step() is called from within 3769 ** a v-table method. 3770 */ 3771 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3772 sqlite3ResetOneSchema(db, pOp->p1); 3773 } 3774 p->expired = 1; 3775 rc = SQLITE_SCHEMA; 3776 } 3777 if( rc ) goto abort_due_to_error; 3778 break; 3779 } 3780 3781 /* Opcode: ReadCookie P1 P2 P3 * * 3782 ** 3783 ** Read cookie number P3 from database P1 and write it into register P2. 3784 ** P3==1 is the schema version. P3==2 is the database format. 3785 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3786 ** the main database file and P1==1 is the database file used to store 3787 ** temporary tables. 3788 ** 3789 ** There must be a read-lock on the database (either a transaction 3790 ** must be started or there must be an open cursor) before 3791 ** executing this instruction. 3792 */ 3793 case OP_ReadCookie: { /* out2 */ 3794 int iMeta; 3795 int iDb; 3796 int iCookie; 3797 3798 assert( p->bIsReader ); 3799 iDb = pOp->p1; 3800 iCookie = pOp->p3; 3801 assert( pOp->p3<SQLITE_N_BTREE_META ); 3802 assert( iDb>=0 && iDb<db->nDb ); 3803 assert( db->aDb[iDb].pBt!=0 ); 3804 assert( DbMaskTest(p->btreeMask, iDb) ); 3805 3806 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3807 pOut = out2Prerelease(p, pOp); 3808 pOut->u.i = iMeta; 3809 break; 3810 } 3811 3812 /* Opcode: SetCookie P1 P2 P3 * P5 3813 ** 3814 ** Write the integer value P3 into cookie number P2 of database P1. 3815 ** P2==1 is the schema version. P2==2 is the database format. 3816 ** P2==3 is the recommended pager cache 3817 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3818 ** database file used to store temporary tables. 3819 ** 3820 ** A transaction must be started before executing this opcode. 3821 ** 3822 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3823 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3824 ** has P5 set to 1, so that the internal schema version will be different 3825 ** from the database schema version, resulting in a schema reset. 3826 */ 3827 case OP_SetCookie: { 3828 Db *pDb; 3829 3830 sqlite3VdbeIncrWriteCounter(p, 0); 3831 assert( pOp->p2<SQLITE_N_BTREE_META ); 3832 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3833 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3834 assert( p->readOnly==0 ); 3835 pDb = &db->aDb[pOp->p1]; 3836 assert( pDb->pBt!=0 ); 3837 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3838 /* See note about index shifting on OP_ReadCookie */ 3839 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3840 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3841 /* When the schema cookie changes, record the new cookie internally */ 3842 pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5; 3843 db->mDbFlags |= DBFLAG_SchemaChange; 3844 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3845 /* Record changes in the file format */ 3846 pDb->pSchema->file_format = pOp->p3; 3847 } 3848 if( pOp->p1==1 ){ 3849 /* Invalidate all prepared statements whenever the TEMP database 3850 ** schema is changed. Ticket #1644 */ 3851 sqlite3ExpirePreparedStatements(db, 0); 3852 p->expired = 0; 3853 } 3854 if( rc ) goto abort_due_to_error; 3855 break; 3856 } 3857 3858 /* Opcode: OpenRead P1 P2 P3 P4 P5 3859 ** Synopsis: root=P2 iDb=P3 3860 ** 3861 ** Open a read-only cursor for the database table whose root page is 3862 ** P2 in a database file. The database file is determined by P3. 3863 ** P3==0 means the main database, P3==1 means the database used for 3864 ** temporary tables, and P3>1 means used the corresponding attached 3865 ** database. Give the new cursor an identifier of P1. The P1 3866 ** values need not be contiguous but all P1 values should be small integers. 3867 ** It is an error for P1 to be negative. 3868 ** 3869 ** Allowed P5 bits: 3870 ** <ul> 3871 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3872 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3873 ** of OP_SeekLE/OP_IdxLT) 3874 ** </ul> 3875 ** 3876 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3877 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3878 ** object, then table being opened must be an [index b-tree] where the 3879 ** KeyInfo object defines the content and collating 3880 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3881 ** value, then the table being opened must be a [table b-tree] with a 3882 ** number of columns no less than the value of P4. 3883 ** 3884 ** See also: OpenWrite, ReopenIdx 3885 */ 3886 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3887 ** Synopsis: root=P2 iDb=P3 3888 ** 3889 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3890 ** checks to see if the cursor on P1 is already open on the same 3891 ** b-tree and if it is this opcode becomes a no-op. In other words, 3892 ** if the cursor is already open, do not reopen it. 3893 ** 3894 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3895 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3896 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3897 ** number. 3898 ** 3899 ** Allowed P5 bits: 3900 ** <ul> 3901 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3902 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3903 ** of OP_SeekLE/OP_IdxLT) 3904 ** </ul> 3905 ** 3906 ** See also: OP_OpenRead, OP_OpenWrite 3907 */ 3908 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3909 ** Synopsis: root=P2 iDb=P3 3910 ** 3911 ** Open a read/write cursor named P1 on the table or index whose root 3912 ** page is P2 (or whose root page is held in register P2 if the 3913 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3914 ** 3915 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3916 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3917 ** object, then table being opened must be an [index b-tree] where the 3918 ** KeyInfo object defines the content and collating 3919 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3920 ** value, then the table being opened must be a [table b-tree] with a 3921 ** number of columns no less than the value of P4. 3922 ** 3923 ** Allowed P5 bits: 3924 ** <ul> 3925 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3926 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3927 ** of OP_SeekLE/OP_IdxLT) 3928 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3929 ** and subsequently delete entries in an index btree. This is a 3930 ** hint to the storage engine that the storage engine is allowed to 3931 ** ignore. The hint is not used by the official SQLite b*tree storage 3932 ** engine, but is used by COMDB2. 3933 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3934 ** as the root page, not the value of P2 itself. 3935 ** </ul> 3936 ** 3937 ** This instruction works like OpenRead except that it opens the cursor 3938 ** in read/write mode. 3939 ** 3940 ** See also: OP_OpenRead, OP_ReopenIdx 3941 */ 3942 case OP_ReopenIdx: { 3943 int nField; 3944 KeyInfo *pKeyInfo; 3945 u32 p2; 3946 int iDb; 3947 int wrFlag; 3948 Btree *pX; 3949 VdbeCursor *pCur; 3950 Db *pDb; 3951 3952 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3953 assert( pOp->p4type==P4_KEYINFO ); 3954 pCur = p->apCsr[pOp->p1]; 3955 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3956 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3957 assert( pCur->eCurType==CURTYPE_BTREE ); 3958 sqlite3BtreeClearCursor(pCur->uc.pCursor); 3959 goto open_cursor_set_hints; 3960 } 3961 /* If the cursor is not currently open or is open on a different 3962 ** index, then fall through into OP_OpenRead to force a reopen */ 3963 case OP_OpenRead: 3964 case OP_OpenWrite: 3965 3966 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3967 assert( p->bIsReader ); 3968 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3969 || p->readOnly==0 ); 3970 3971 if( p->expired==1 ){ 3972 rc = SQLITE_ABORT_ROLLBACK; 3973 goto abort_due_to_error; 3974 } 3975 3976 nField = 0; 3977 pKeyInfo = 0; 3978 p2 = (u32)pOp->p2; 3979 iDb = pOp->p3; 3980 assert( iDb>=0 && iDb<db->nDb ); 3981 assert( DbMaskTest(p->btreeMask, iDb) ); 3982 pDb = &db->aDb[iDb]; 3983 pX = pDb->pBt; 3984 assert( pX!=0 ); 3985 if( pOp->opcode==OP_OpenWrite ){ 3986 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3987 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3988 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3989 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3990 p->minWriteFileFormat = pDb->pSchema->file_format; 3991 } 3992 }else{ 3993 wrFlag = 0; 3994 } 3995 if( pOp->p5 & OPFLAG_P2ISREG ){ 3996 assert( p2>0 ); 3997 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 3998 assert( pOp->opcode==OP_OpenWrite ); 3999 pIn2 = &aMem[p2]; 4000 assert( memIsValid(pIn2) ); 4001 assert( (pIn2->flags & MEM_Int)!=0 ); 4002 sqlite3VdbeMemIntegerify(pIn2); 4003 p2 = (int)pIn2->u.i; 4004 /* The p2 value always comes from a prior OP_CreateBtree opcode and 4005 ** that opcode will always set the p2 value to 2 or more or else fail. 4006 ** If there were a failure, the prepared statement would have halted 4007 ** before reaching this instruction. */ 4008 assert( p2>=2 ); 4009 } 4010 if( pOp->p4type==P4_KEYINFO ){ 4011 pKeyInfo = pOp->p4.pKeyInfo; 4012 assert( pKeyInfo->enc==ENC(db) ); 4013 assert( pKeyInfo->db==db ); 4014 nField = pKeyInfo->nAllField; 4015 }else if( pOp->p4type==P4_INT32 ){ 4016 nField = pOp->p4.i; 4017 } 4018 assert( pOp->p1>=0 ); 4019 assert( nField>=0 ); 4020 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 4021 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 4022 if( pCur==0 ) goto no_mem; 4023 pCur->nullRow = 1; 4024 pCur->isOrdered = 1; 4025 pCur->pgnoRoot = p2; 4026 #ifdef SQLITE_DEBUG 4027 pCur->wrFlag = wrFlag; 4028 #endif 4029 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4030 pCur->pKeyInfo = pKeyInfo; 4031 /* Set the VdbeCursor.isTable variable. Previous versions of 4032 ** SQLite used to check if the root-page flags were sane at this point 4033 ** and report database corruption if they were not, but this check has 4034 ** since moved into the btree layer. */ 4035 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4036 4037 open_cursor_set_hints: 4038 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4039 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4040 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4041 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4042 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4043 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4044 if( rc ) goto abort_due_to_error; 4045 break; 4046 } 4047 4048 /* Opcode: OpenDup P1 P2 * * * 4049 ** 4050 ** Open a new cursor P1 that points to the same ephemeral table as 4051 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4052 ** opcode. Only ephemeral cursors may be duplicated. 4053 ** 4054 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4055 */ 4056 case OP_OpenDup: { 4057 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4058 VdbeCursor *pCx; /* The new cursor */ 4059 4060 pOrig = p->apCsr[pOp->p2]; 4061 assert( pOrig ); 4062 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4063 4064 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 4065 if( pCx==0 ) goto no_mem; 4066 pCx->nullRow = 1; 4067 pCx->isEphemeral = 1; 4068 pCx->pKeyInfo = pOrig->pKeyInfo; 4069 pCx->isTable = pOrig->isTable; 4070 pCx->pgnoRoot = pOrig->pgnoRoot; 4071 pCx->isOrdered = pOrig->isOrdered; 4072 pCx->pBtx = pOrig->pBtx; 4073 pCx->hasBeenDuped = 1; 4074 pOrig->hasBeenDuped = 1; 4075 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4076 pCx->pKeyInfo, pCx->uc.pCursor); 4077 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4078 ** opened for a database. Since there is already an open cursor when this 4079 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4080 assert( rc==SQLITE_OK ); 4081 break; 4082 } 4083 4084 4085 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4086 ** Synopsis: nColumn=P2 4087 ** 4088 ** Open a new cursor P1 to a transient table. 4089 ** The cursor is always opened read/write even if 4090 ** the main database is read-only. The ephemeral 4091 ** table is deleted automatically when the cursor is closed. 4092 ** 4093 ** If the cursor P1 is already opened on an ephemeral table, the table 4094 ** is cleared (all content is erased). 4095 ** 4096 ** P2 is the number of columns in the ephemeral table. 4097 ** The cursor points to a BTree table if P4==0 and to a BTree index 4098 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4099 ** that defines the format of keys in the index. 4100 ** 4101 ** The P5 parameter can be a mask of the BTREE_* flags defined 4102 ** in btree.h. These flags control aspects of the operation of 4103 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4104 ** added automatically. 4105 ** 4106 ** If P3 is positive, then reg[P3] is modified slightly so that it 4107 ** can be used as zero-length data for OP_Insert. This is an optimization 4108 ** that avoids an extra OP_Blob opcode to initialize that register. 4109 */ 4110 /* Opcode: OpenAutoindex P1 P2 * P4 * 4111 ** Synopsis: nColumn=P2 4112 ** 4113 ** This opcode works the same as OP_OpenEphemeral. It has a 4114 ** different name to distinguish its use. Tables created using 4115 ** by this opcode will be used for automatically created transient 4116 ** indices in joins. 4117 */ 4118 case OP_OpenAutoindex: 4119 case OP_OpenEphemeral: { 4120 VdbeCursor *pCx; 4121 KeyInfo *pKeyInfo; 4122 4123 static const int vfsFlags = 4124 SQLITE_OPEN_READWRITE | 4125 SQLITE_OPEN_CREATE | 4126 SQLITE_OPEN_EXCLUSIVE | 4127 SQLITE_OPEN_DELETEONCLOSE | 4128 SQLITE_OPEN_TRANSIENT_DB; 4129 assert( pOp->p1>=0 ); 4130 assert( pOp->p2>=0 ); 4131 if( pOp->p3>0 ){ 4132 /* Make register reg[P3] into a value that can be used as the data 4133 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4134 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4135 assert( pOp->opcode==OP_OpenEphemeral ); 4136 assert( aMem[pOp->p3].flags & MEM_Null ); 4137 aMem[pOp->p3].n = 0; 4138 aMem[pOp->p3].z = ""; 4139 } 4140 pCx = p->apCsr[pOp->p1]; 4141 if( pCx && !pCx->hasBeenDuped && ALWAYS(pOp->p2<=pCx->nField) ){ 4142 /* If the ephermeral table is already open and has no duplicates from 4143 ** OP_OpenDup, then erase all existing content so that the table is 4144 ** empty again, rather than creating a new table. */ 4145 assert( pCx->isEphemeral ); 4146 pCx->seqCount = 0; 4147 pCx->cacheStatus = CACHE_STALE; 4148 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 4149 }else{ 4150 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 4151 if( pCx==0 ) goto no_mem; 4152 pCx->isEphemeral = 1; 4153 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 4154 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4155 vfsFlags); 4156 if( rc==SQLITE_OK ){ 4157 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 4158 if( rc==SQLITE_OK ){ 4159 /* If a transient index is required, create it by calling 4160 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4161 ** opening it. If a transient table is required, just use the 4162 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4163 */ 4164 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4165 assert( pOp->p4type==P4_KEYINFO ); 4166 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pCx->pgnoRoot, 4167 BTREE_BLOBKEY | pOp->p5); 4168 if( rc==SQLITE_OK ){ 4169 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4170 assert( pKeyInfo->db==db ); 4171 assert( pKeyInfo->enc==ENC(db) ); 4172 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4173 pKeyInfo, pCx->uc.pCursor); 4174 } 4175 pCx->isTable = 0; 4176 }else{ 4177 pCx->pgnoRoot = SCHEMA_ROOT; 4178 rc = sqlite3BtreeCursor(pCx->pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4179 0, pCx->uc.pCursor); 4180 pCx->isTable = 1; 4181 } 4182 } 4183 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4184 if( rc ){ 4185 sqlite3BtreeClose(pCx->pBtx); 4186 } 4187 } 4188 } 4189 if( rc ) goto abort_due_to_error; 4190 pCx->nullRow = 1; 4191 break; 4192 } 4193 4194 /* Opcode: SorterOpen P1 P2 P3 P4 * 4195 ** 4196 ** This opcode works like OP_OpenEphemeral except that it opens 4197 ** a transient index that is specifically designed to sort large 4198 ** tables using an external merge-sort algorithm. 4199 ** 4200 ** If argument P3 is non-zero, then it indicates that the sorter may 4201 ** assume that a stable sort considering the first P3 fields of each 4202 ** key is sufficient to produce the required results. 4203 */ 4204 case OP_SorterOpen: { 4205 VdbeCursor *pCx; 4206 4207 assert( pOp->p1>=0 ); 4208 assert( pOp->p2>=0 ); 4209 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 4210 if( pCx==0 ) goto no_mem; 4211 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4212 assert( pCx->pKeyInfo->db==db ); 4213 assert( pCx->pKeyInfo->enc==ENC(db) ); 4214 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4215 if( rc ) goto abort_due_to_error; 4216 break; 4217 } 4218 4219 /* Opcode: SequenceTest P1 P2 * * * 4220 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4221 ** 4222 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4223 ** to P2. Regardless of whether or not the jump is taken, increment the 4224 ** the sequence value. 4225 */ 4226 case OP_SequenceTest: { 4227 VdbeCursor *pC; 4228 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4229 pC = p->apCsr[pOp->p1]; 4230 assert( isSorter(pC) ); 4231 if( (pC->seqCount++)==0 ){ 4232 goto jump_to_p2; 4233 } 4234 break; 4235 } 4236 4237 /* Opcode: OpenPseudo P1 P2 P3 * * 4238 ** Synopsis: P3 columns in r[P2] 4239 ** 4240 ** Open a new cursor that points to a fake table that contains a single 4241 ** row of data. The content of that one row is the content of memory 4242 ** register P2. In other words, cursor P1 becomes an alias for the 4243 ** MEM_Blob content contained in register P2. 4244 ** 4245 ** A pseudo-table created by this opcode is used to hold a single 4246 ** row output from the sorter so that the row can be decomposed into 4247 ** individual columns using the OP_Column opcode. The OP_Column opcode 4248 ** is the only cursor opcode that works with a pseudo-table. 4249 ** 4250 ** P3 is the number of fields in the records that will be stored by 4251 ** the pseudo-table. 4252 */ 4253 case OP_OpenPseudo: { 4254 VdbeCursor *pCx; 4255 4256 assert( pOp->p1>=0 ); 4257 assert( pOp->p3>=0 ); 4258 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 4259 if( pCx==0 ) goto no_mem; 4260 pCx->nullRow = 1; 4261 pCx->seekResult = pOp->p2; 4262 pCx->isTable = 1; 4263 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4264 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4265 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4266 ** which is a performance optimization */ 4267 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4268 assert( pOp->p5==0 ); 4269 break; 4270 } 4271 4272 /* Opcode: Close P1 * * * * 4273 ** 4274 ** Close a cursor previously opened as P1. If P1 is not 4275 ** currently open, this instruction is a no-op. 4276 */ 4277 case OP_Close: { 4278 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4279 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4280 p->apCsr[pOp->p1] = 0; 4281 break; 4282 } 4283 4284 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4285 /* Opcode: ColumnsUsed P1 * * P4 * 4286 ** 4287 ** This opcode (which only exists if SQLite was compiled with 4288 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4289 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4290 ** (P4_INT64) in which the first 63 bits are one for each of the 4291 ** first 63 columns of the table or index that are actually used 4292 ** by the cursor. The high-order bit is set if any column after 4293 ** the 64th is used. 4294 */ 4295 case OP_ColumnsUsed: { 4296 VdbeCursor *pC; 4297 pC = p->apCsr[pOp->p1]; 4298 assert( pC->eCurType==CURTYPE_BTREE ); 4299 pC->maskUsed = *(u64*)pOp->p4.pI64; 4300 break; 4301 } 4302 #endif 4303 4304 /* Opcode: SeekGE P1 P2 P3 P4 * 4305 ** Synopsis: key=r[P3@P4] 4306 ** 4307 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4308 ** use the value in register P3 as the key. If cursor P1 refers 4309 ** to an SQL index, then P3 is the first in an array of P4 registers 4310 ** that are used as an unpacked index key. 4311 ** 4312 ** Reposition cursor P1 so that it points to the smallest entry that 4313 ** is greater than or equal to the key value. If there are no records 4314 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4315 ** 4316 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4317 ** opcode will either land on a record that exactly matches the key, or 4318 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4319 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4320 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4321 ** IdxGT opcode will be used on subsequent loop iterations. The 4322 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4323 ** is an equality search. 4324 ** 4325 ** This opcode leaves the cursor configured to move in forward order, 4326 ** from the beginning toward the end. In other words, the cursor is 4327 ** configured to use Next, not Prev. 4328 ** 4329 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4330 */ 4331 /* Opcode: SeekGT P1 P2 P3 P4 * 4332 ** Synopsis: key=r[P3@P4] 4333 ** 4334 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4335 ** use the value in register P3 as a key. If cursor P1 refers 4336 ** to an SQL index, then P3 is the first in an array of P4 registers 4337 ** that are used as an unpacked index key. 4338 ** 4339 ** Reposition cursor P1 so that it points to the smallest entry that 4340 ** is greater than the key value. If there are no records greater than 4341 ** the key and P2 is not zero, then jump to P2. 4342 ** 4343 ** This opcode leaves the cursor configured to move in forward order, 4344 ** from the beginning toward the end. In other words, the cursor is 4345 ** configured to use Next, not Prev. 4346 ** 4347 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4348 */ 4349 /* Opcode: SeekLT P1 P2 P3 P4 * 4350 ** Synopsis: key=r[P3@P4] 4351 ** 4352 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4353 ** use the value in register P3 as a key. If cursor P1 refers 4354 ** to an SQL index, then P3 is the first in an array of P4 registers 4355 ** that are used as an unpacked index key. 4356 ** 4357 ** Reposition cursor P1 so that it points to the largest entry that 4358 ** is less than the key value. If there are no records less than 4359 ** the key and P2 is not zero, then jump to P2. 4360 ** 4361 ** This opcode leaves the cursor configured to move in reverse order, 4362 ** from the end toward the beginning. In other words, the cursor is 4363 ** configured to use Prev, not Next. 4364 ** 4365 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4366 */ 4367 /* Opcode: SeekLE P1 P2 P3 P4 * 4368 ** Synopsis: key=r[P3@P4] 4369 ** 4370 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4371 ** use the value in register P3 as a key. If cursor P1 refers 4372 ** to an SQL index, then P3 is the first in an array of P4 registers 4373 ** that are used as an unpacked index key. 4374 ** 4375 ** Reposition cursor P1 so that it points to the largest entry that 4376 ** is less than or equal to the key value. If there are no records 4377 ** less than or equal to the key and P2 is not zero, then jump to P2. 4378 ** 4379 ** This opcode leaves the cursor configured to move in reverse order, 4380 ** from the end toward the beginning. In other words, the cursor is 4381 ** configured to use Prev, not Next. 4382 ** 4383 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4384 ** opcode will either land on a record that exactly matches the key, or 4385 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4386 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4387 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4388 ** IdxGE opcode will be used on subsequent loop iterations. The 4389 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4390 ** is an equality search. 4391 ** 4392 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4393 */ 4394 case OP_SeekLT: /* jump, in3, group */ 4395 case OP_SeekLE: /* jump, in3, group */ 4396 case OP_SeekGE: /* jump, in3, group */ 4397 case OP_SeekGT: { /* jump, in3, group */ 4398 int res; /* Comparison result */ 4399 int oc; /* Opcode */ 4400 VdbeCursor *pC; /* The cursor to seek */ 4401 UnpackedRecord r; /* The key to seek for */ 4402 int nField; /* Number of columns or fields in the key */ 4403 i64 iKey; /* The rowid we are to seek to */ 4404 int eqOnly; /* Only interested in == results */ 4405 4406 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4407 assert( pOp->p2!=0 ); 4408 pC = p->apCsr[pOp->p1]; 4409 assert( pC!=0 ); 4410 assert( pC->eCurType==CURTYPE_BTREE ); 4411 assert( OP_SeekLE == OP_SeekLT+1 ); 4412 assert( OP_SeekGE == OP_SeekLT+2 ); 4413 assert( OP_SeekGT == OP_SeekLT+3 ); 4414 assert( pC->isOrdered ); 4415 assert( pC->uc.pCursor!=0 ); 4416 oc = pOp->opcode; 4417 eqOnly = 0; 4418 pC->nullRow = 0; 4419 #ifdef SQLITE_DEBUG 4420 pC->seekOp = pOp->opcode; 4421 #endif 4422 4423 pC->deferredMoveto = 0; 4424 pC->cacheStatus = CACHE_STALE; 4425 if( pC->isTable ){ 4426 u16 flags3, newType; 4427 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4428 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4429 || CORRUPT_DB ); 4430 4431 /* The input value in P3 might be of any type: integer, real, string, 4432 ** blob, or NULL. But it needs to be an integer before we can do 4433 ** the seek, so convert it. */ 4434 pIn3 = &aMem[pOp->p3]; 4435 flags3 = pIn3->flags; 4436 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4437 applyNumericAffinity(pIn3, 0); 4438 } 4439 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4440 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4441 pIn3->flags = flags3; /* But convert the type back to its original */ 4442 4443 /* If the P3 value could not be converted into an integer without 4444 ** loss of information, then special processing is required... */ 4445 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4446 int c; 4447 if( (newType & MEM_Real)==0 ){ 4448 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4449 VdbeBranchTaken(1,2); 4450 goto jump_to_p2; 4451 }else{ 4452 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4453 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4454 goto seek_not_found; 4455 } 4456 } 4457 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4458 4459 /* If the approximation iKey is larger than the actual real search 4460 ** term, substitute >= for > and < for <=. e.g. if the search term 4461 ** is 4.9 and the integer approximation 5: 4462 ** 4463 ** (x > 4.9) -> (x >= 5) 4464 ** (x <= 4.9) -> (x < 5) 4465 */ 4466 if( c>0 ){ 4467 assert( OP_SeekGE==(OP_SeekGT-1) ); 4468 assert( OP_SeekLT==(OP_SeekLE-1) ); 4469 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4470 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4471 } 4472 4473 /* If the approximation iKey is smaller than the actual real search 4474 ** term, substitute <= for < and > for >=. */ 4475 else if( c<0 ){ 4476 assert( OP_SeekLE==(OP_SeekLT+1) ); 4477 assert( OP_SeekGT==(OP_SeekGE+1) ); 4478 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4479 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4480 } 4481 } 4482 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4483 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4484 if( rc!=SQLITE_OK ){ 4485 goto abort_due_to_error; 4486 } 4487 }else{ 4488 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4489 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4490 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4491 ** with the same key. 4492 */ 4493 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4494 eqOnly = 1; 4495 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4496 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4497 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4498 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4499 assert( pOp[1].p1==pOp[0].p1 ); 4500 assert( pOp[1].p2==pOp[0].p2 ); 4501 assert( pOp[1].p3==pOp[0].p3 ); 4502 assert( pOp[1].p4.i==pOp[0].p4.i ); 4503 } 4504 4505 nField = pOp->p4.i; 4506 assert( pOp->p4type==P4_INT32 ); 4507 assert( nField>0 ); 4508 r.pKeyInfo = pC->pKeyInfo; 4509 r.nField = (u16)nField; 4510 4511 /* The next line of code computes as follows, only faster: 4512 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4513 ** r.default_rc = -1; 4514 ** }else{ 4515 ** r.default_rc = +1; 4516 ** } 4517 */ 4518 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4519 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4520 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4521 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4522 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4523 4524 r.aMem = &aMem[pOp->p3]; 4525 #ifdef SQLITE_DEBUG 4526 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4527 #endif 4528 r.eqSeen = 0; 4529 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4530 if( rc!=SQLITE_OK ){ 4531 goto abort_due_to_error; 4532 } 4533 if( eqOnly && r.eqSeen==0 ){ 4534 assert( res!=0 ); 4535 goto seek_not_found; 4536 } 4537 } 4538 #ifdef SQLITE_TEST 4539 sqlite3_search_count++; 4540 #endif 4541 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4542 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4543 res = 0; 4544 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4545 if( rc!=SQLITE_OK ){ 4546 if( rc==SQLITE_DONE ){ 4547 rc = SQLITE_OK; 4548 res = 1; 4549 }else{ 4550 goto abort_due_to_error; 4551 } 4552 } 4553 }else{ 4554 res = 0; 4555 } 4556 }else{ 4557 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4558 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4559 res = 0; 4560 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4561 if( rc!=SQLITE_OK ){ 4562 if( rc==SQLITE_DONE ){ 4563 rc = SQLITE_OK; 4564 res = 1; 4565 }else{ 4566 goto abort_due_to_error; 4567 } 4568 } 4569 }else{ 4570 /* res might be negative because the table is empty. Check to 4571 ** see if this is the case. 4572 */ 4573 res = sqlite3BtreeEof(pC->uc.pCursor); 4574 } 4575 } 4576 seek_not_found: 4577 assert( pOp->p2>0 ); 4578 VdbeBranchTaken(res!=0,2); 4579 if( res ){ 4580 goto jump_to_p2; 4581 }else if( eqOnly ){ 4582 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4583 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4584 } 4585 break; 4586 } 4587 4588 4589 /* Opcode: SeekScan P1 P2 * * * 4590 ** Synopsis: Scan-ahead up to P1 rows 4591 ** 4592 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4593 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4594 ** checked by assert() statements. 4595 ** 4596 ** This opcode uses the P1 through P4 operands of the subsequent 4597 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4598 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4599 ** the P1 and P2 operands of this opcode are also used, and are called 4600 ** This.P1 and This.P2. 4601 ** 4602 ** This opcode helps to optimize IN operators on a multi-column index 4603 ** where the IN operator is on the later terms of the index by avoiding 4604 ** unnecessary seeks on the btree, substituting steps to the next row 4605 ** of the b-tree instead. A correct answer is obtained if this opcode 4606 ** is omitted or is a no-op. 4607 ** 4608 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4609 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4610 ** to. Call this SeekGE.P4/P5 row the "target". 4611 ** 4612 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4613 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4614 ** 4615 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4616 ** might be the target row, or it might be near and slightly before the 4617 ** target row. This opcode attempts to position the cursor on the target 4618 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4619 ** between 0 and This.P1 times. 4620 ** 4621 ** There are three possible outcomes from this opcode:<ol> 4622 ** 4623 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4624 ** is earlier in the btree than the target row, then fall through 4625 ** into the subsquence OP_SeekGE opcode. 4626 ** 4627 ** <li> If the cursor is successfully moved to the target row by 0 or more 4628 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4629 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4630 ** 4631 ** <li> If the cursor ends up past the target row (indicating the the target 4632 ** row does not exist in the btree) then jump to SeekOP.P2. 4633 ** </ol> 4634 */ 4635 case OP_SeekScan: { 4636 VdbeCursor *pC; 4637 int res; 4638 int nStep; 4639 UnpackedRecord r; 4640 4641 assert( pOp[1].opcode==OP_SeekGE ); 4642 4643 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4644 ** follows the OP_SeekGE. */ 4645 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4646 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4647 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4648 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4649 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4650 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4651 4652 assert( pOp->p1>0 ); 4653 pC = p->apCsr[pOp[1].p1]; 4654 assert( pC!=0 ); 4655 assert( pC->eCurType==CURTYPE_BTREE ); 4656 assert( !pC->isTable ); 4657 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4658 #ifdef SQLITE_DEBUG 4659 if( db->flags&SQLITE_VdbeTrace ){ 4660 printf("... cursor not valid - fall through\n"); 4661 } 4662 #endif 4663 break; 4664 } 4665 nStep = pOp->p1; 4666 assert( nStep>=1 ); 4667 r.pKeyInfo = pC->pKeyInfo; 4668 r.nField = (u16)pOp[1].p4.i; 4669 r.default_rc = 0; 4670 r.aMem = &aMem[pOp[1].p3]; 4671 #ifdef SQLITE_DEBUG 4672 { 4673 int i; 4674 for(i=0; i<r.nField; i++){ 4675 assert( memIsValid(&r.aMem[i]) ); 4676 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4677 } 4678 } 4679 #endif 4680 res = 0; /* Not needed. Only used to silence a warning. */ 4681 while(1){ 4682 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4683 if( rc ) goto abort_due_to_error; 4684 if( res>0 ){ 4685 seekscan_search_fail: 4686 #ifdef SQLITE_DEBUG 4687 if( db->flags&SQLITE_VdbeTrace ){ 4688 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4689 } 4690 #endif 4691 VdbeBranchTaken(1,3); 4692 pOp++; 4693 goto jump_to_p2; 4694 } 4695 if( res==0 ){ 4696 #ifdef SQLITE_DEBUG 4697 if( db->flags&SQLITE_VdbeTrace ){ 4698 printf("... %d steps and then success\n", pOp->p1 - nStep); 4699 } 4700 #endif 4701 VdbeBranchTaken(2,3); 4702 goto jump_to_p2; 4703 break; 4704 } 4705 if( nStep<=0 ){ 4706 #ifdef SQLITE_DEBUG 4707 if( db->flags&SQLITE_VdbeTrace ){ 4708 printf("... fall through after %d steps\n", pOp->p1); 4709 } 4710 #endif 4711 VdbeBranchTaken(0,3); 4712 break; 4713 } 4714 nStep--; 4715 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4716 if( rc ){ 4717 if( rc==SQLITE_DONE ){ 4718 rc = SQLITE_OK; 4719 goto seekscan_search_fail; 4720 }else{ 4721 goto abort_due_to_error; 4722 } 4723 } 4724 } 4725 4726 break; 4727 } 4728 4729 4730 /* Opcode: SeekHit P1 P2 P3 * * 4731 ** Synopsis: set P2<=seekHit<=P3 4732 ** 4733 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4734 ** so that it is no less than P2 and no greater than P3. 4735 ** 4736 ** The seekHit integer represents the maximum of terms in an index for which 4737 ** there is known to be at least one match. If the seekHit value is smaller 4738 ** than the total number of equality terms in an index lookup, then the 4739 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4740 ** early, thus saving work. This is part of the IN-early-out optimization. 4741 ** 4742 ** P1 must be a valid b-tree cursor. 4743 */ 4744 case OP_SeekHit: { 4745 VdbeCursor *pC; 4746 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4747 pC = p->apCsr[pOp->p1]; 4748 assert( pC!=0 ); 4749 assert( pOp->p3>=pOp->p2 ); 4750 if( pC->seekHit<pOp->p2 ){ 4751 #ifdef SQLITE_DEBUG 4752 if( db->flags&SQLITE_VdbeTrace ){ 4753 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4754 } 4755 #endif 4756 pC->seekHit = pOp->p2; 4757 }else if( pC->seekHit>pOp->p3 ){ 4758 #ifdef SQLITE_DEBUG 4759 if( db->flags&SQLITE_VdbeTrace ){ 4760 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4761 } 4762 #endif 4763 pC->seekHit = pOp->p3; 4764 } 4765 break; 4766 } 4767 4768 /* Opcode: IfNotOpen P1 P2 * * * 4769 ** Synopsis: if( !csr[P1] ) goto P2 4770 ** 4771 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4772 */ 4773 case OP_IfNotOpen: { /* jump */ 4774 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4775 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4776 if( !p->apCsr[pOp->p1] ){ 4777 goto jump_to_p2_and_check_for_interrupt; 4778 } 4779 break; 4780 } 4781 4782 /* Opcode: Found P1 P2 P3 P4 * 4783 ** Synopsis: key=r[P3@P4] 4784 ** 4785 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4786 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4787 ** record. 4788 ** 4789 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4790 ** is a prefix of any entry in P1 then a jump is made to P2 and 4791 ** P1 is left pointing at the matching entry. 4792 ** 4793 ** This operation leaves the cursor in a state where it can be 4794 ** advanced in the forward direction. The Next instruction will work, 4795 ** but not the Prev instruction. 4796 ** 4797 ** See also: NotFound, NoConflict, NotExists. SeekGe 4798 */ 4799 /* Opcode: NotFound P1 P2 P3 P4 * 4800 ** Synopsis: key=r[P3@P4] 4801 ** 4802 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4803 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4804 ** record. 4805 ** 4806 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4807 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4808 ** does contain an entry whose prefix matches the P3/P4 record then control 4809 ** falls through to the next instruction and P1 is left pointing at the 4810 ** matching entry. 4811 ** 4812 ** This operation leaves the cursor in a state where it cannot be 4813 ** advanced in either direction. In other words, the Next and Prev 4814 ** opcodes do not work after this operation. 4815 ** 4816 ** See also: Found, NotExists, NoConflict, IfNoHope 4817 */ 4818 /* Opcode: IfNoHope P1 P2 P3 P4 * 4819 ** Synopsis: key=r[P3@P4] 4820 ** 4821 ** Register P3 is the first of P4 registers that form an unpacked 4822 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4823 ** In other words, the operands to this opcode are the same as the 4824 ** operands to OP_NotFound and OP_IdxGT. 4825 ** 4826 ** This opcode is an optimization attempt only. If this opcode always 4827 ** falls through, the correct answer is still obtained, but extra works 4828 ** is performed. 4829 ** 4830 ** A value of N in the seekHit flag of cursor P1 means that there exists 4831 ** a key P3:N that will match some record in the index. We want to know 4832 ** if it is possible for a record P3:P4 to match some record in the 4833 ** index. If it is not possible, we can skips some work. So if seekHit 4834 ** is less than P4, attempt to find out if a match is possible by running 4835 ** OP_NotFound. 4836 ** 4837 ** This opcode is used in IN clause processing for a multi-column key. 4838 ** If an IN clause is attached to an element of the key other than the 4839 ** left-most element, and if there are no matches on the most recent 4840 ** seek over the whole key, then it might be that one of the key element 4841 ** to the left is prohibiting a match, and hence there is "no hope" of 4842 ** any match regardless of how many IN clause elements are checked. 4843 ** In such a case, we abandon the IN clause search early, using this 4844 ** opcode. The opcode name comes from the fact that the 4845 ** jump is taken if there is "no hope" of achieving a match. 4846 ** 4847 ** See also: NotFound, SeekHit 4848 */ 4849 /* Opcode: NoConflict P1 P2 P3 P4 * 4850 ** Synopsis: key=r[P3@P4] 4851 ** 4852 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4853 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4854 ** record. 4855 ** 4856 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4857 ** contains any NULL value, jump immediately to P2. If all terms of the 4858 ** record are not-NULL then a check is done to determine if any row in the 4859 ** P1 index btree has a matching key prefix. If there are no matches, jump 4860 ** immediately to P2. If there is a match, fall through and leave the P1 4861 ** cursor pointing to the matching row. 4862 ** 4863 ** This opcode is similar to OP_NotFound with the exceptions that the 4864 ** branch is always taken if any part of the search key input is NULL. 4865 ** 4866 ** This operation leaves the cursor in a state where it cannot be 4867 ** advanced in either direction. In other words, the Next and Prev 4868 ** opcodes do not work after this operation. 4869 ** 4870 ** See also: NotFound, Found, NotExists 4871 */ 4872 case OP_IfNoHope: { /* jump, in3 */ 4873 VdbeCursor *pC; 4874 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4875 pC = p->apCsr[pOp->p1]; 4876 assert( pC!=0 ); 4877 #ifdef SQLITE_DEBUG 4878 if( db->flags&SQLITE_VdbeTrace ){ 4879 printf("seekHit is %d\n", pC->seekHit); 4880 } 4881 #endif 4882 if( pC->seekHit>=pOp->p4.i ) break; 4883 /* Fall through into OP_NotFound */ 4884 /* no break */ deliberate_fall_through 4885 } 4886 case OP_NoConflict: /* jump, in3 */ 4887 case OP_NotFound: /* jump, in3 */ 4888 case OP_Found: { /* jump, in3 */ 4889 int alreadyExists; 4890 int takeJump; 4891 int ii; 4892 VdbeCursor *pC; 4893 int res; 4894 UnpackedRecord *pFree; 4895 UnpackedRecord *pIdxKey; 4896 UnpackedRecord r; 4897 4898 #ifdef SQLITE_TEST 4899 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4900 #endif 4901 4902 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4903 assert( pOp->p4type==P4_INT32 ); 4904 pC = p->apCsr[pOp->p1]; 4905 assert( pC!=0 ); 4906 #ifdef SQLITE_DEBUG 4907 pC->seekOp = pOp->opcode; 4908 #endif 4909 pIn3 = &aMem[pOp->p3]; 4910 assert( pC->eCurType==CURTYPE_BTREE ); 4911 assert( pC->uc.pCursor!=0 ); 4912 assert( pC->isTable==0 ); 4913 if( pOp->p4.i>0 ){ 4914 r.pKeyInfo = pC->pKeyInfo; 4915 r.nField = (u16)pOp->p4.i; 4916 r.aMem = pIn3; 4917 #ifdef SQLITE_DEBUG 4918 for(ii=0; ii<r.nField; ii++){ 4919 assert( memIsValid(&r.aMem[ii]) ); 4920 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4921 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4922 } 4923 #endif 4924 pIdxKey = &r; 4925 pFree = 0; 4926 }else{ 4927 assert( pIn3->flags & MEM_Blob ); 4928 rc = ExpandBlob(pIn3); 4929 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4930 if( rc ) goto no_mem; 4931 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4932 if( pIdxKey==0 ) goto no_mem; 4933 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4934 } 4935 pIdxKey->default_rc = 0; 4936 takeJump = 0; 4937 if( pOp->opcode==OP_NoConflict ){ 4938 /* For the OP_NoConflict opcode, take the jump if any of the 4939 ** input fields are NULL, since any key with a NULL will not 4940 ** conflict */ 4941 for(ii=0; ii<pIdxKey->nField; ii++){ 4942 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4943 takeJump = 1; 4944 break; 4945 } 4946 } 4947 } 4948 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &res); 4949 if( pFree ) sqlite3DbFreeNN(db, pFree); 4950 if( rc!=SQLITE_OK ){ 4951 goto abort_due_to_error; 4952 } 4953 pC->seekResult = res; 4954 alreadyExists = (res==0); 4955 pC->nullRow = 1-alreadyExists; 4956 pC->deferredMoveto = 0; 4957 pC->cacheStatus = CACHE_STALE; 4958 if( pOp->opcode==OP_Found ){ 4959 VdbeBranchTaken(alreadyExists!=0,2); 4960 if( alreadyExists ) goto jump_to_p2; 4961 }else{ 4962 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4963 if( takeJump || !alreadyExists ) goto jump_to_p2; 4964 if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i; 4965 } 4966 break; 4967 } 4968 4969 /* Opcode: SeekRowid P1 P2 P3 * * 4970 ** Synopsis: intkey=r[P3] 4971 ** 4972 ** P1 is the index of a cursor open on an SQL table btree (with integer 4973 ** keys). If register P3 does not contain an integer or if P1 does not 4974 ** contain a record with rowid P3 then jump immediately to P2. 4975 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4976 ** a record with rowid P3 then 4977 ** leave the cursor pointing at that record and fall through to the next 4978 ** instruction. 4979 ** 4980 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4981 ** the P3 register must be guaranteed to contain an integer value. With this 4982 ** opcode, register P3 might not contain an integer. 4983 ** 4984 ** The OP_NotFound opcode performs the same operation on index btrees 4985 ** (with arbitrary multi-value keys). 4986 ** 4987 ** This opcode leaves the cursor in a state where it cannot be advanced 4988 ** in either direction. In other words, the Next and Prev opcodes will 4989 ** not work following this opcode. 4990 ** 4991 ** See also: Found, NotFound, NoConflict, SeekRowid 4992 */ 4993 /* Opcode: NotExists P1 P2 P3 * * 4994 ** Synopsis: intkey=r[P3] 4995 ** 4996 ** P1 is the index of a cursor open on an SQL table btree (with integer 4997 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4998 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4999 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 5000 ** leave the cursor pointing at that record and fall through to the next 5001 ** instruction. 5002 ** 5003 ** The OP_SeekRowid opcode performs the same operation but also allows the 5004 ** P3 register to contain a non-integer value, in which case the jump is 5005 ** always taken. This opcode requires that P3 always contain an integer. 5006 ** 5007 ** The OP_NotFound opcode performs the same operation on index btrees 5008 ** (with arbitrary multi-value keys). 5009 ** 5010 ** This opcode leaves the cursor in a state where it cannot be advanced 5011 ** in either direction. In other words, the Next and Prev opcodes will 5012 ** not work following this opcode. 5013 ** 5014 ** See also: Found, NotFound, NoConflict, SeekRowid 5015 */ 5016 case OP_SeekRowid: { /* jump, in3 */ 5017 VdbeCursor *pC; 5018 BtCursor *pCrsr; 5019 int res; 5020 u64 iKey; 5021 5022 pIn3 = &aMem[pOp->p3]; 5023 testcase( pIn3->flags & MEM_Int ); 5024 testcase( pIn3->flags & MEM_IntReal ); 5025 testcase( pIn3->flags & MEM_Real ); 5026 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 5027 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5028 /* If pIn3->u.i does not contain an integer, compute iKey as the 5029 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5030 ** into an integer without loss of information. Take care to avoid 5031 ** changing the datatype of pIn3, however, as it is used by other 5032 ** parts of the prepared statement. */ 5033 Mem x = pIn3[0]; 5034 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5035 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5036 iKey = x.u.i; 5037 goto notExistsWithKey; 5038 } 5039 /* Fall through into OP_NotExists */ 5040 /* no break */ deliberate_fall_through 5041 case OP_NotExists: /* jump, in3 */ 5042 pIn3 = &aMem[pOp->p3]; 5043 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5044 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5045 iKey = pIn3->u.i; 5046 notExistsWithKey: 5047 pC = p->apCsr[pOp->p1]; 5048 assert( pC!=0 ); 5049 #ifdef SQLITE_DEBUG 5050 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5051 #endif 5052 assert( pC->isTable ); 5053 assert( pC->eCurType==CURTYPE_BTREE ); 5054 pCrsr = pC->uc.pCursor; 5055 assert( pCrsr!=0 ); 5056 res = 0; 5057 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5058 assert( rc==SQLITE_OK || res==0 ); 5059 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5060 pC->nullRow = 0; 5061 pC->cacheStatus = CACHE_STALE; 5062 pC->deferredMoveto = 0; 5063 VdbeBranchTaken(res!=0,2); 5064 pC->seekResult = res; 5065 if( res!=0 ){ 5066 assert( rc==SQLITE_OK ); 5067 if( pOp->p2==0 ){ 5068 rc = SQLITE_CORRUPT_BKPT; 5069 }else{ 5070 goto jump_to_p2; 5071 } 5072 } 5073 if( rc ) goto abort_due_to_error; 5074 break; 5075 } 5076 5077 /* Opcode: Sequence P1 P2 * * * 5078 ** Synopsis: r[P2]=cursor[P1].ctr++ 5079 ** 5080 ** Find the next available sequence number for cursor P1. 5081 ** Write the sequence number into register P2. 5082 ** The sequence number on the cursor is incremented after this 5083 ** instruction. 5084 */ 5085 case OP_Sequence: { /* out2 */ 5086 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5087 assert( p->apCsr[pOp->p1]!=0 ); 5088 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5089 pOut = out2Prerelease(p, pOp); 5090 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5091 break; 5092 } 5093 5094 5095 /* Opcode: NewRowid P1 P2 P3 * * 5096 ** Synopsis: r[P2]=rowid 5097 ** 5098 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5099 ** The record number is not previously used as a key in the database 5100 ** table that cursor P1 points to. The new record number is written 5101 ** written to register P2. 5102 ** 5103 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5104 ** the largest previously generated record number. No new record numbers are 5105 ** allowed to be less than this value. When this value reaches its maximum, 5106 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5107 ** generated record number. This P3 mechanism is used to help implement the 5108 ** AUTOINCREMENT feature. 5109 */ 5110 case OP_NewRowid: { /* out2 */ 5111 i64 v; /* The new rowid */ 5112 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5113 int res; /* Result of an sqlite3BtreeLast() */ 5114 int cnt; /* Counter to limit the number of searches */ 5115 #ifndef SQLITE_OMIT_AUTOINCREMENT 5116 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5117 VdbeFrame *pFrame; /* Root frame of VDBE */ 5118 #endif 5119 5120 v = 0; 5121 res = 0; 5122 pOut = out2Prerelease(p, pOp); 5123 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5124 pC = p->apCsr[pOp->p1]; 5125 assert( pC!=0 ); 5126 assert( pC->isTable ); 5127 assert( pC->eCurType==CURTYPE_BTREE ); 5128 assert( pC->uc.pCursor!=0 ); 5129 { 5130 /* The next rowid or record number (different terms for the same 5131 ** thing) is obtained in a two-step algorithm. 5132 ** 5133 ** First we attempt to find the largest existing rowid and add one 5134 ** to that. But if the largest existing rowid is already the maximum 5135 ** positive integer, we have to fall through to the second 5136 ** probabilistic algorithm 5137 ** 5138 ** The second algorithm is to select a rowid at random and see if 5139 ** it already exists in the table. If it does not exist, we have 5140 ** succeeded. If the random rowid does exist, we select a new one 5141 ** and try again, up to 100 times. 5142 */ 5143 assert( pC->isTable ); 5144 5145 #ifdef SQLITE_32BIT_ROWID 5146 # define MAX_ROWID 0x7fffffff 5147 #else 5148 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5149 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5150 ** to provide the constant while making all compilers happy. 5151 */ 5152 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5153 #endif 5154 5155 if( !pC->useRandomRowid ){ 5156 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5157 if( rc!=SQLITE_OK ){ 5158 goto abort_due_to_error; 5159 } 5160 if( res ){ 5161 v = 1; /* IMP: R-61914-48074 */ 5162 }else{ 5163 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5164 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5165 if( v>=MAX_ROWID ){ 5166 pC->useRandomRowid = 1; 5167 }else{ 5168 v++; /* IMP: R-29538-34987 */ 5169 } 5170 } 5171 } 5172 5173 #ifndef SQLITE_OMIT_AUTOINCREMENT 5174 if( pOp->p3 ){ 5175 /* Assert that P3 is a valid memory cell. */ 5176 assert( pOp->p3>0 ); 5177 if( p->pFrame ){ 5178 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5179 /* Assert that P3 is a valid memory cell. */ 5180 assert( pOp->p3<=pFrame->nMem ); 5181 pMem = &pFrame->aMem[pOp->p3]; 5182 }else{ 5183 /* Assert that P3 is a valid memory cell. */ 5184 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5185 pMem = &aMem[pOp->p3]; 5186 memAboutToChange(p, pMem); 5187 } 5188 assert( memIsValid(pMem) ); 5189 5190 REGISTER_TRACE(pOp->p3, pMem); 5191 sqlite3VdbeMemIntegerify(pMem); 5192 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5193 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5194 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5195 goto abort_due_to_error; 5196 } 5197 if( v<pMem->u.i+1 ){ 5198 v = pMem->u.i + 1; 5199 } 5200 pMem->u.i = v; 5201 } 5202 #endif 5203 if( pC->useRandomRowid ){ 5204 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5205 ** largest possible integer (9223372036854775807) then the database 5206 ** engine starts picking positive candidate ROWIDs at random until 5207 ** it finds one that is not previously used. */ 5208 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5209 ** an AUTOINCREMENT table. */ 5210 cnt = 0; 5211 do{ 5212 sqlite3_randomness(sizeof(v), &v); 5213 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5214 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5215 0, &res))==SQLITE_OK) 5216 && (res==0) 5217 && (++cnt<100)); 5218 if( rc ) goto abort_due_to_error; 5219 if( res==0 ){ 5220 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5221 goto abort_due_to_error; 5222 } 5223 assert( v>0 ); /* EV: R-40812-03570 */ 5224 } 5225 pC->deferredMoveto = 0; 5226 pC->cacheStatus = CACHE_STALE; 5227 } 5228 pOut->u.i = v; 5229 break; 5230 } 5231 5232 /* Opcode: Insert P1 P2 P3 P4 P5 5233 ** Synopsis: intkey=r[P3] data=r[P2] 5234 ** 5235 ** Write an entry into the table of cursor P1. A new entry is 5236 ** created if it doesn't already exist or the data for an existing 5237 ** entry is overwritten. The data is the value MEM_Blob stored in register 5238 ** number P2. The key is stored in register P3. The key must 5239 ** be a MEM_Int. 5240 ** 5241 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5242 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5243 ** then rowid is stored for subsequent return by the 5244 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5245 ** 5246 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5247 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5248 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5249 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5250 ** 5251 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5252 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5253 ** is part of an INSERT operation. The difference is only important to 5254 ** the update hook. 5255 ** 5256 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5257 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5258 ** following a successful insert. 5259 ** 5260 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5261 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5262 ** and register P2 becomes ephemeral. If the cursor is changed, the 5263 ** value of register P2 will then change. Make sure this does not 5264 ** cause any problems.) 5265 ** 5266 ** This instruction only works on tables. The equivalent instruction 5267 ** for indices is OP_IdxInsert. 5268 */ 5269 case OP_Insert: { 5270 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5271 Mem *pKey; /* MEM cell holding key for the record */ 5272 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5273 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5274 const char *zDb; /* database name - used by the update hook */ 5275 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5276 BtreePayload x; /* Payload to be inserted */ 5277 5278 pData = &aMem[pOp->p2]; 5279 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5280 assert( memIsValid(pData) ); 5281 pC = p->apCsr[pOp->p1]; 5282 assert( pC!=0 ); 5283 assert( pC->eCurType==CURTYPE_BTREE ); 5284 assert( pC->deferredMoveto==0 ); 5285 assert( pC->uc.pCursor!=0 ); 5286 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5287 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5288 REGISTER_TRACE(pOp->p2, pData); 5289 sqlite3VdbeIncrWriteCounter(p, pC); 5290 5291 pKey = &aMem[pOp->p3]; 5292 assert( pKey->flags & MEM_Int ); 5293 assert( memIsValid(pKey) ); 5294 REGISTER_TRACE(pOp->p3, pKey); 5295 x.nKey = pKey->u.i; 5296 5297 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5298 assert( pC->iDb>=0 ); 5299 zDb = db->aDb[pC->iDb].zDbSName; 5300 pTab = pOp->p4.pTab; 5301 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5302 }else{ 5303 pTab = 0; 5304 zDb = 0; 5305 } 5306 5307 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5308 /* Invoke the pre-update hook, if any */ 5309 if( pTab ){ 5310 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5311 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5312 } 5313 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5314 /* Prevent post-update hook from running in cases when it should not */ 5315 pTab = 0; 5316 } 5317 } 5318 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5319 #endif 5320 5321 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5322 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5323 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5324 x.pData = pData->z; 5325 x.nData = pData->n; 5326 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5327 if( pData->flags & MEM_Zero ){ 5328 x.nZero = pData->u.nZero; 5329 }else{ 5330 x.nZero = 0; 5331 } 5332 x.pKey = 0; 5333 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5334 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5335 seekResult 5336 ); 5337 pC->deferredMoveto = 0; 5338 pC->cacheStatus = CACHE_STALE; 5339 5340 /* Invoke the update-hook if required. */ 5341 if( rc ) goto abort_due_to_error; 5342 if( pTab ){ 5343 assert( db->xUpdateCallback!=0 ); 5344 assert( pTab->aCol!=0 ); 5345 db->xUpdateCallback(db->pUpdateArg, 5346 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5347 zDb, pTab->zName, x.nKey); 5348 } 5349 break; 5350 } 5351 5352 /* Opcode: RowCell P1 P2 P3 * * 5353 ** 5354 ** P1 and P2 are both open cursors. Both must be opened on the same type 5355 ** of table - intkey or index. This opcode is used as part of copying 5356 ** the current row from P2 into P1. If the cursors are opened on intkey 5357 ** tables, register P3 contains the rowid to use with the new record in 5358 ** P1. If they are opened on index tables, P3 is not used. 5359 ** 5360 ** This opcode must be followed by either an Insert or InsertIdx opcode 5361 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5362 */ 5363 case OP_RowCell: { 5364 VdbeCursor *pDest; /* Cursor to write to */ 5365 VdbeCursor *pSrc; /* Cursor to read from */ 5366 i64 iKey; /* Rowid value to insert with */ 5367 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5368 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5369 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5370 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5371 pDest = p->apCsr[pOp->p1]; 5372 pSrc = p->apCsr[pOp->p2]; 5373 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5374 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5375 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5376 break; 5377 }; 5378 5379 /* Opcode: Delete P1 P2 P3 P4 P5 5380 ** 5381 ** Delete the record at which the P1 cursor is currently pointing. 5382 ** 5383 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5384 ** the cursor will be left pointing at either the next or the previous 5385 ** record in the table. If it is left pointing at the next record, then 5386 ** the next Next instruction will be a no-op. As a result, in this case 5387 ** it is ok to delete a record from within a Next loop. If 5388 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5389 ** left in an undefined state. 5390 ** 5391 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5392 ** delete one of several associated with deleting a table row and all its 5393 ** associated index entries. Exactly one of those deletes is the "primary" 5394 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5395 ** marked with the AUXDELETE flag. 5396 ** 5397 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5398 ** change count is incremented (otherwise not). 5399 ** 5400 ** P1 must not be pseudo-table. It has to be a real table with 5401 ** multiple rows. 5402 ** 5403 ** If P4 is not NULL then it points to a Table object. In this case either 5404 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5405 ** have been positioned using OP_NotFound prior to invoking this opcode in 5406 ** this case. Specifically, if one is configured, the pre-update hook is 5407 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5408 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5409 ** 5410 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5411 ** of the memory cell that contains the value that the rowid of the row will 5412 ** be set to by the update. 5413 */ 5414 case OP_Delete: { 5415 VdbeCursor *pC; 5416 const char *zDb; 5417 Table *pTab; 5418 int opflags; 5419 5420 opflags = pOp->p2; 5421 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5422 pC = p->apCsr[pOp->p1]; 5423 assert( pC!=0 ); 5424 assert( pC->eCurType==CURTYPE_BTREE ); 5425 assert( pC->uc.pCursor!=0 ); 5426 assert( pC->deferredMoveto==0 ); 5427 sqlite3VdbeIncrWriteCounter(p, pC); 5428 5429 #ifdef SQLITE_DEBUG 5430 if( pOp->p4type==P4_TABLE 5431 && HasRowid(pOp->p4.pTab) 5432 && pOp->p5==0 5433 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5434 ){ 5435 /* If p5 is zero, the seek operation that positioned the cursor prior to 5436 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5437 ** the row that is being deleted */ 5438 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5439 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5440 } 5441 #endif 5442 5443 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5444 ** the name of the db to pass as to it. Also set local pTab to a copy 5445 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5446 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5447 ** VdbeCursor.movetoTarget to the current rowid. */ 5448 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5449 assert( pC->iDb>=0 ); 5450 assert( pOp->p4.pTab!=0 ); 5451 zDb = db->aDb[pC->iDb].zDbSName; 5452 pTab = pOp->p4.pTab; 5453 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5454 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5455 } 5456 }else{ 5457 zDb = 0; 5458 pTab = 0; 5459 } 5460 5461 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5462 /* Invoke the pre-update-hook if required. */ 5463 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5464 if( db->xPreUpdateCallback && pTab ){ 5465 assert( !(opflags & OPFLAG_ISUPDATE) 5466 || HasRowid(pTab)==0 5467 || (aMem[pOp->p3].flags & MEM_Int) 5468 ); 5469 sqlite3VdbePreUpdateHook(p, pC, 5470 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5471 zDb, pTab, pC->movetoTarget, 5472 pOp->p3, -1 5473 ); 5474 } 5475 if( opflags & OPFLAG_ISNOOP ) break; 5476 #endif 5477 5478 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5479 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5480 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5481 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5482 5483 #ifdef SQLITE_DEBUG 5484 if( p->pFrame==0 ){ 5485 if( pC->isEphemeral==0 5486 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5487 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5488 ){ 5489 nExtraDelete++; 5490 } 5491 if( pOp->p2 & OPFLAG_NCHANGE ){ 5492 nExtraDelete--; 5493 } 5494 } 5495 #endif 5496 5497 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5498 pC->cacheStatus = CACHE_STALE; 5499 pC->seekResult = 0; 5500 if( rc ) goto abort_due_to_error; 5501 5502 /* Invoke the update-hook if required. */ 5503 if( opflags & OPFLAG_NCHANGE ){ 5504 p->nChange++; 5505 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5506 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5507 pC->movetoTarget); 5508 assert( pC->iDb>=0 ); 5509 } 5510 } 5511 5512 break; 5513 } 5514 /* Opcode: ResetCount * * * * * 5515 ** 5516 ** The value of the change counter is copied to the database handle 5517 ** change counter (returned by subsequent calls to sqlite3_changes()). 5518 ** Then the VMs internal change counter resets to 0. 5519 ** This is used by trigger programs. 5520 */ 5521 case OP_ResetCount: { 5522 sqlite3VdbeSetChanges(db, p->nChange); 5523 p->nChange = 0; 5524 break; 5525 } 5526 5527 /* Opcode: SorterCompare P1 P2 P3 P4 5528 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5529 ** 5530 ** P1 is a sorter cursor. This instruction compares a prefix of the 5531 ** record blob in register P3 against a prefix of the entry that 5532 ** the sorter cursor currently points to. Only the first P4 fields 5533 ** of r[P3] and the sorter record are compared. 5534 ** 5535 ** If either P3 or the sorter contains a NULL in one of their significant 5536 ** fields (not counting the P4 fields at the end which are ignored) then 5537 ** the comparison is assumed to be equal. 5538 ** 5539 ** Fall through to next instruction if the two records compare equal to 5540 ** each other. Jump to P2 if they are different. 5541 */ 5542 case OP_SorterCompare: { 5543 VdbeCursor *pC; 5544 int res; 5545 int nKeyCol; 5546 5547 pC = p->apCsr[pOp->p1]; 5548 assert( isSorter(pC) ); 5549 assert( pOp->p4type==P4_INT32 ); 5550 pIn3 = &aMem[pOp->p3]; 5551 nKeyCol = pOp->p4.i; 5552 res = 0; 5553 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5554 VdbeBranchTaken(res!=0,2); 5555 if( rc ) goto abort_due_to_error; 5556 if( res ) goto jump_to_p2; 5557 break; 5558 }; 5559 5560 /* Opcode: SorterData P1 P2 P3 * * 5561 ** Synopsis: r[P2]=data 5562 ** 5563 ** Write into register P2 the current sorter data for sorter cursor P1. 5564 ** Then clear the column header cache on cursor P3. 5565 ** 5566 ** This opcode is normally use to move a record out of the sorter and into 5567 ** a register that is the source for a pseudo-table cursor created using 5568 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5569 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5570 ** us from having to issue a separate NullRow instruction to clear that cache. 5571 */ 5572 case OP_SorterData: { 5573 VdbeCursor *pC; 5574 5575 pOut = &aMem[pOp->p2]; 5576 pC = p->apCsr[pOp->p1]; 5577 assert( isSorter(pC) ); 5578 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5579 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5580 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5581 if( rc ) goto abort_due_to_error; 5582 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5583 break; 5584 } 5585 5586 /* Opcode: RowData P1 P2 P3 * * 5587 ** Synopsis: r[P2]=data 5588 ** 5589 ** Write into register P2 the complete row content for the row at 5590 ** which cursor P1 is currently pointing. 5591 ** There is no interpretation of the data. 5592 ** It is just copied onto the P2 register exactly as 5593 ** it is found in the database file. 5594 ** 5595 ** If cursor P1 is an index, then the content is the key of the row. 5596 ** If cursor P2 is a table, then the content extracted is the data. 5597 ** 5598 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5599 ** of a real table, not a pseudo-table. 5600 ** 5601 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5602 ** into the database page. That means that the content of the output 5603 ** register will be invalidated as soon as the cursor moves - including 5604 ** moves caused by other cursors that "save" the current cursors 5605 ** position in order that they can write to the same table. If P3==0 5606 ** then a copy of the data is made into memory. P3!=0 is faster, but 5607 ** P3==0 is safer. 5608 ** 5609 ** If P3!=0 then the content of the P2 register is unsuitable for use 5610 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5611 ** The P2 register content is invalidated by opcodes like OP_Function or 5612 ** by any use of another cursor pointing to the same table. 5613 */ 5614 case OP_RowData: { 5615 VdbeCursor *pC; 5616 BtCursor *pCrsr; 5617 u32 n; 5618 5619 pOut = out2Prerelease(p, pOp); 5620 5621 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5622 pC = p->apCsr[pOp->p1]; 5623 assert( pC!=0 ); 5624 assert( pC->eCurType==CURTYPE_BTREE ); 5625 assert( isSorter(pC)==0 ); 5626 assert( pC->nullRow==0 ); 5627 assert( pC->uc.pCursor!=0 ); 5628 pCrsr = pC->uc.pCursor; 5629 5630 /* The OP_RowData opcodes always follow OP_NotExists or 5631 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5632 ** that might invalidate the cursor. 5633 ** If this where not the case, on of the following assert()s 5634 ** would fail. Should this ever change (because of changes in the code 5635 ** generator) then the fix would be to insert a call to 5636 ** sqlite3VdbeCursorMoveto(). 5637 */ 5638 assert( pC->deferredMoveto==0 ); 5639 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5640 5641 n = sqlite3BtreePayloadSize(pCrsr); 5642 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5643 goto too_big; 5644 } 5645 testcase( n==0 ); 5646 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5647 if( rc ) goto abort_due_to_error; 5648 if( !pOp->p3 ) Deephemeralize(pOut); 5649 UPDATE_MAX_BLOBSIZE(pOut); 5650 REGISTER_TRACE(pOp->p2, pOut); 5651 break; 5652 } 5653 5654 /* Opcode: Rowid P1 P2 * * * 5655 ** Synopsis: r[P2]=rowid 5656 ** 5657 ** Store in register P2 an integer which is the key of the table entry that 5658 ** P1 is currently point to. 5659 ** 5660 ** P1 can be either an ordinary table or a virtual table. There used to 5661 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5662 ** one opcode now works for both table types. 5663 */ 5664 case OP_Rowid: { /* out2 */ 5665 VdbeCursor *pC; 5666 i64 v; 5667 sqlite3_vtab *pVtab; 5668 const sqlite3_module *pModule; 5669 5670 pOut = out2Prerelease(p, pOp); 5671 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5672 pC = p->apCsr[pOp->p1]; 5673 assert( pC!=0 ); 5674 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5675 if( pC->nullRow ){ 5676 pOut->flags = MEM_Null; 5677 break; 5678 }else if( pC->deferredMoveto ){ 5679 v = pC->movetoTarget; 5680 #ifndef SQLITE_OMIT_VIRTUALTABLE 5681 }else if( pC->eCurType==CURTYPE_VTAB ){ 5682 assert( pC->uc.pVCur!=0 ); 5683 pVtab = pC->uc.pVCur->pVtab; 5684 pModule = pVtab->pModule; 5685 assert( pModule->xRowid ); 5686 rc = pModule->xRowid(pC->uc.pVCur, &v); 5687 sqlite3VtabImportErrmsg(p, pVtab); 5688 if( rc ) goto abort_due_to_error; 5689 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5690 }else{ 5691 assert( pC->eCurType==CURTYPE_BTREE ); 5692 assert( pC->uc.pCursor!=0 ); 5693 rc = sqlite3VdbeCursorRestore(pC); 5694 if( rc ) goto abort_due_to_error; 5695 if( pC->nullRow ){ 5696 pOut->flags = MEM_Null; 5697 break; 5698 } 5699 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5700 } 5701 pOut->u.i = v; 5702 break; 5703 } 5704 5705 /* Opcode: NullRow P1 * * * * 5706 ** 5707 ** Move the cursor P1 to a null row. Any OP_Column operations 5708 ** that occur while the cursor is on the null row will always 5709 ** write a NULL. 5710 */ 5711 case OP_NullRow: { 5712 VdbeCursor *pC; 5713 5714 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5715 pC = p->apCsr[pOp->p1]; 5716 assert( pC!=0 ); 5717 pC->nullRow = 1; 5718 pC->cacheStatus = CACHE_STALE; 5719 if( pC->eCurType==CURTYPE_BTREE ){ 5720 assert( pC->uc.pCursor!=0 ); 5721 sqlite3BtreeClearCursor(pC->uc.pCursor); 5722 } 5723 #ifdef SQLITE_DEBUG 5724 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5725 #endif 5726 break; 5727 } 5728 5729 /* Opcode: SeekEnd P1 * * * * 5730 ** 5731 ** Position cursor P1 at the end of the btree for the purpose of 5732 ** appending a new entry onto the btree. 5733 ** 5734 ** It is assumed that the cursor is used only for appending and so 5735 ** if the cursor is valid, then the cursor must already be pointing 5736 ** at the end of the btree and so no changes are made to 5737 ** the cursor. 5738 */ 5739 /* Opcode: Last P1 P2 * * * 5740 ** 5741 ** The next use of the Rowid or Column or Prev instruction for P1 5742 ** will refer to the last entry in the database table or index. 5743 ** If the table or index is empty and P2>0, then jump immediately to P2. 5744 ** If P2 is 0 or if the table or index is not empty, fall through 5745 ** to the following instruction. 5746 ** 5747 ** This opcode leaves the cursor configured to move in reverse order, 5748 ** from the end toward the beginning. In other words, the cursor is 5749 ** configured to use Prev, not Next. 5750 */ 5751 case OP_SeekEnd: 5752 case OP_Last: { /* jump */ 5753 VdbeCursor *pC; 5754 BtCursor *pCrsr; 5755 int res; 5756 5757 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5758 pC = p->apCsr[pOp->p1]; 5759 assert( pC!=0 ); 5760 assert( pC->eCurType==CURTYPE_BTREE ); 5761 pCrsr = pC->uc.pCursor; 5762 res = 0; 5763 assert( pCrsr!=0 ); 5764 #ifdef SQLITE_DEBUG 5765 pC->seekOp = pOp->opcode; 5766 #endif 5767 if( pOp->opcode==OP_SeekEnd ){ 5768 assert( pOp->p2==0 ); 5769 pC->seekResult = -1; 5770 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5771 break; 5772 } 5773 } 5774 rc = sqlite3BtreeLast(pCrsr, &res); 5775 pC->nullRow = (u8)res; 5776 pC->deferredMoveto = 0; 5777 pC->cacheStatus = CACHE_STALE; 5778 if( rc ) goto abort_due_to_error; 5779 if( pOp->p2>0 ){ 5780 VdbeBranchTaken(res!=0,2); 5781 if( res ) goto jump_to_p2; 5782 } 5783 break; 5784 } 5785 5786 /* Opcode: IfSmaller P1 P2 P3 * * 5787 ** 5788 ** Estimate the number of rows in the table P1. Jump to P2 if that 5789 ** estimate is less than approximately 2**(0.1*P3). 5790 */ 5791 case OP_IfSmaller: { /* jump */ 5792 VdbeCursor *pC; 5793 BtCursor *pCrsr; 5794 int res; 5795 i64 sz; 5796 5797 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5798 pC = p->apCsr[pOp->p1]; 5799 assert( pC!=0 ); 5800 pCrsr = pC->uc.pCursor; 5801 assert( pCrsr ); 5802 rc = sqlite3BtreeFirst(pCrsr, &res); 5803 if( rc ) goto abort_due_to_error; 5804 if( res==0 ){ 5805 sz = sqlite3BtreeRowCountEst(pCrsr); 5806 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5807 } 5808 VdbeBranchTaken(res!=0,2); 5809 if( res ) goto jump_to_p2; 5810 break; 5811 } 5812 5813 5814 /* Opcode: SorterSort P1 P2 * * * 5815 ** 5816 ** After all records have been inserted into the Sorter object 5817 ** identified by P1, invoke this opcode to actually do the sorting. 5818 ** Jump to P2 if there are no records to be sorted. 5819 ** 5820 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5821 ** for Sorter objects. 5822 */ 5823 /* Opcode: Sort P1 P2 * * * 5824 ** 5825 ** This opcode does exactly the same thing as OP_Rewind except that 5826 ** it increments an undocumented global variable used for testing. 5827 ** 5828 ** Sorting is accomplished by writing records into a sorting index, 5829 ** then rewinding that index and playing it back from beginning to 5830 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5831 ** rewinding so that the global variable will be incremented and 5832 ** regression tests can determine whether or not the optimizer is 5833 ** correctly optimizing out sorts. 5834 */ 5835 case OP_SorterSort: /* jump */ 5836 case OP_Sort: { /* jump */ 5837 #ifdef SQLITE_TEST 5838 sqlite3_sort_count++; 5839 sqlite3_search_count--; 5840 #endif 5841 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5842 /* Fall through into OP_Rewind */ 5843 /* no break */ deliberate_fall_through 5844 } 5845 /* Opcode: Rewind P1 P2 * * * 5846 ** 5847 ** The next use of the Rowid or Column or Next instruction for P1 5848 ** will refer to the first entry in the database table or index. 5849 ** If the table or index is empty, jump immediately to P2. 5850 ** If the table or index is not empty, fall through to the following 5851 ** instruction. 5852 ** 5853 ** This opcode leaves the cursor configured to move in forward order, 5854 ** from the beginning toward the end. In other words, the cursor is 5855 ** configured to use Next, not Prev. 5856 */ 5857 case OP_Rewind: { /* jump */ 5858 VdbeCursor *pC; 5859 BtCursor *pCrsr; 5860 int res; 5861 5862 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5863 assert( pOp->p5==0 ); 5864 pC = p->apCsr[pOp->p1]; 5865 assert( pC!=0 ); 5866 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5867 res = 1; 5868 #ifdef SQLITE_DEBUG 5869 pC->seekOp = OP_Rewind; 5870 #endif 5871 if( isSorter(pC) ){ 5872 rc = sqlite3VdbeSorterRewind(pC, &res); 5873 }else{ 5874 assert( pC->eCurType==CURTYPE_BTREE ); 5875 pCrsr = pC->uc.pCursor; 5876 assert( pCrsr ); 5877 rc = sqlite3BtreeFirst(pCrsr, &res); 5878 pC->deferredMoveto = 0; 5879 pC->cacheStatus = CACHE_STALE; 5880 } 5881 if( rc ) goto abort_due_to_error; 5882 pC->nullRow = (u8)res; 5883 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5884 VdbeBranchTaken(res!=0,2); 5885 if( res ) goto jump_to_p2; 5886 break; 5887 } 5888 5889 /* Opcode: Next P1 P2 P3 P4 P5 5890 ** 5891 ** Advance cursor P1 so that it points to the next key/data pair in its 5892 ** table or index. If there are no more key/value pairs then fall through 5893 ** to the following instruction. But if the cursor advance was successful, 5894 ** jump immediately to P2. 5895 ** 5896 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5897 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5898 ** to follow SeekLT, SeekLE, or OP_Last. 5899 ** 5900 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5901 ** been opened prior to this opcode or the program will segfault. 5902 ** 5903 ** The P3 value is a hint to the btree implementation. If P3==1, that 5904 ** means P1 is an SQL index and that this instruction could have been 5905 ** omitted if that index had been unique. P3 is usually 0. P3 is 5906 ** always either 0 or 1. 5907 ** 5908 ** P4 is always of type P4_ADVANCE. The function pointer points to 5909 ** sqlite3BtreeNext(). 5910 ** 5911 ** If P5 is positive and the jump is taken, then event counter 5912 ** number P5-1 in the prepared statement is incremented. 5913 ** 5914 ** See also: Prev 5915 */ 5916 /* Opcode: Prev P1 P2 P3 P4 P5 5917 ** 5918 ** Back up cursor P1 so that it points to the previous key/data pair in its 5919 ** table or index. If there is no previous key/value pairs then fall through 5920 ** to the following instruction. But if the cursor backup was successful, 5921 ** jump immediately to P2. 5922 ** 5923 ** 5924 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5925 ** OP_Last opcode used to position the cursor. Prev is not allowed 5926 ** to follow SeekGT, SeekGE, or OP_Rewind. 5927 ** 5928 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5929 ** not open then the behavior is undefined. 5930 ** 5931 ** The P3 value is a hint to the btree implementation. If P3==1, that 5932 ** means P1 is an SQL index and that this instruction could have been 5933 ** omitted if that index had been unique. P3 is usually 0. P3 is 5934 ** always either 0 or 1. 5935 ** 5936 ** P4 is always of type P4_ADVANCE. The function pointer points to 5937 ** sqlite3BtreePrevious(). 5938 ** 5939 ** If P5 is positive and the jump is taken, then event counter 5940 ** number P5-1 in the prepared statement is incremented. 5941 */ 5942 /* Opcode: SorterNext P1 P2 * * P5 5943 ** 5944 ** This opcode works just like OP_Next except that P1 must be a 5945 ** sorter object for which the OP_SorterSort opcode has been 5946 ** invoked. This opcode advances the cursor to the next sorted 5947 ** record, or jumps to P2 if there are no more sorted records. 5948 */ 5949 case OP_SorterNext: { /* jump */ 5950 VdbeCursor *pC; 5951 5952 pC = p->apCsr[pOp->p1]; 5953 assert( isSorter(pC) ); 5954 rc = sqlite3VdbeSorterNext(db, pC); 5955 goto next_tail; 5956 case OP_Prev: /* jump */ 5957 case OP_Next: /* jump */ 5958 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5959 assert( pOp->p5<ArraySize(p->aCounter) ); 5960 pC = p->apCsr[pOp->p1]; 5961 assert( pC!=0 ); 5962 assert( pC->deferredMoveto==0 ); 5963 assert( pC->eCurType==CURTYPE_BTREE ); 5964 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5965 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5966 5967 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5968 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5969 assert( pOp->opcode!=OP_Next 5970 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5971 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5972 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5973 || pC->seekOp==OP_IfNoHope); 5974 assert( pOp->opcode!=OP_Prev 5975 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5976 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5977 || pC->seekOp==OP_NullRow); 5978 5979 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5980 next_tail: 5981 pC->cacheStatus = CACHE_STALE; 5982 VdbeBranchTaken(rc==SQLITE_OK,2); 5983 if( rc==SQLITE_OK ){ 5984 pC->nullRow = 0; 5985 p->aCounter[pOp->p5]++; 5986 #ifdef SQLITE_TEST 5987 sqlite3_search_count++; 5988 #endif 5989 goto jump_to_p2_and_check_for_interrupt; 5990 } 5991 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5992 rc = SQLITE_OK; 5993 pC->nullRow = 1; 5994 goto check_for_interrupt; 5995 } 5996 5997 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5998 ** Synopsis: key=r[P2] 5999 ** 6000 ** Register P2 holds an SQL index key made using the 6001 ** MakeRecord instructions. This opcode writes that key 6002 ** into the index P1. Data for the entry is nil. 6003 ** 6004 ** If P4 is not zero, then it is the number of values in the unpacked 6005 ** key of reg(P2). In that case, P3 is the index of the first register 6006 ** for the unpacked key. The availability of the unpacked key can sometimes 6007 ** be an optimization. 6008 ** 6009 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 6010 ** that this insert is likely to be an append. 6011 ** 6012 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 6013 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 6014 ** then the change counter is unchanged. 6015 ** 6016 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 6017 ** run faster by avoiding an unnecessary seek on cursor P1. However, 6018 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 6019 ** seeks on the cursor or if the most recent seek used a key equivalent 6020 ** to P2. 6021 ** 6022 ** This instruction only works for indices. The equivalent instruction 6023 ** for tables is OP_Insert. 6024 */ 6025 case OP_IdxInsert: { /* in2 */ 6026 VdbeCursor *pC; 6027 BtreePayload x; 6028 6029 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6030 pC = p->apCsr[pOp->p1]; 6031 sqlite3VdbeIncrWriteCounter(p, pC); 6032 assert( pC!=0 ); 6033 assert( !isSorter(pC) ); 6034 pIn2 = &aMem[pOp->p2]; 6035 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6036 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6037 assert( pC->eCurType==CURTYPE_BTREE ); 6038 assert( pC->isTable==0 ); 6039 rc = ExpandBlob(pIn2); 6040 if( rc ) goto abort_due_to_error; 6041 x.nKey = pIn2->n; 6042 x.pKey = pIn2->z; 6043 x.aMem = aMem + pOp->p3; 6044 x.nMem = (u16)pOp->p4.i; 6045 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6046 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6047 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6048 ); 6049 assert( pC->deferredMoveto==0 ); 6050 pC->cacheStatus = CACHE_STALE; 6051 if( rc) goto abort_due_to_error; 6052 break; 6053 } 6054 6055 /* Opcode: SorterInsert P1 P2 * * * 6056 ** Synopsis: key=r[P2] 6057 ** 6058 ** Register P2 holds an SQL index key made using the 6059 ** MakeRecord instructions. This opcode writes that key 6060 ** into the sorter P1. Data for the entry is nil. 6061 */ 6062 case OP_SorterInsert: { /* in2 */ 6063 VdbeCursor *pC; 6064 6065 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6066 pC = p->apCsr[pOp->p1]; 6067 sqlite3VdbeIncrWriteCounter(p, pC); 6068 assert( pC!=0 ); 6069 assert( isSorter(pC) ); 6070 pIn2 = &aMem[pOp->p2]; 6071 assert( pIn2->flags & MEM_Blob ); 6072 assert( pC->isTable==0 ); 6073 rc = ExpandBlob(pIn2); 6074 if( rc ) goto abort_due_to_error; 6075 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6076 if( rc) goto abort_due_to_error; 6077 break; 6078 } 6079 6080 /* Opcode: IdxDelete P1 P2 P3 * P5 6081 ** Synopsis: key=r[P2@P3] 6082 ** 6083 ** The content of P3 registers starting at register P2 form 6084 ** an unpacked index key. This opcode removes that entry from the 6085 ** index opened by cursor P1. 6086 ** 6087 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6088 ** if no matching index entry is found. This happens when running 6089 ** an UPDATE or DELETE statement and the index entry to be updated 6090 ** or deleted is not found. For some uses of IdxDelete 6091 ** (example: the EXCEPT operator) it does not matter that no matching 6092 ** entry is found. For those cases, P5 is zero. Also, do not raise 6093 ** this (self-correcting and non-critical) error if in writable_schema mode. 6094 */ 6095 case OP_IdxDelete: { 6096 VdbeCursor *pC; 6097 BtCursor *pCrsr; 6098 int res; 6099 UnpackedRecord r; 6100 6101 assert( pOp->p3>0 ); 6102 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6103 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6104 pC = p->apCsr[pOp->p1]; 6105 assert( pC!=0 ); 6106 assert( pC->eCurType==CURTYPE_BTREE ); 6107 sqlite3VdbeIncrWriteCounter(p, pC); 6108 pCrsr = pC->uc.pCursor; 6109 assert( pCrsr!=0 ); 6110 r.pKeyInfo = pC->pKeyInfo; 6111 r.nField = (u16)pOp->p3; 6112 r.default_rc = 0; 6113 r.aMem = &aMem[pOp->p2]; 6114 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6115 if( rc ) goto abort_due_to_error; 6116 if( res==0 ){ 6117 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6118 if( rc ) goto abort_due_to_error; 6119 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6120 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6121 goto abort_due_to_error; 6122 } 6123 assert( pC->deferredMoveto==0 ); 6124 pC->cacheStatus = CACHE_STALE; 6125 pC->seekResult = 0; 6126 break; 6127 } 6128 6129 /* Opcode: DeferredSeek P1 * P3 P4 * 6130 ** Synopsis: Move P3 to P1.rowid if needed 6131 ** 6132 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6133 ** table. This opcode does a deferred seek of the P3 table cursor 6134 ** to the row that corresponds to the current row of P1. 6135 ** 6136 ** This is a deferred seek. Nothing actually happens until 6137 ** the cursor is used to read a record. That way, if no reads 6138 ** occur, no unnecessary I/O happens. 6139 ** 6140 ** P4 may be an array of integers (type P4_INTARRAY) containing 6141 ** one entry for each column in the P3 table. If array entry a(i) 6142 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6143 ** equivalent to performing the deferred seek and then reading column i 6144 ** from P1. This information is stored in P3 and used to redirect 6145 ** reads against P3 over to P1, thus possibly avoiding the need to 6146 ** seek and read cursor P3. 6147 */ 6148 /* Opcode: IdxRowid P1 P2 * * * 6149 ** Synopsis: r[P2]=rowid 6150 ** 6151 ** Write into register P2 an integer which is the last entry in the record at 6152 ** the end of the index key pointed to by cursor P1. This integer should be 6153 ** the rowid of the table entry to which this index entry points. 6154 ** 6155 ** See also: Rowid, MakeRecord. 6156 */ 6157 case OP_DeferredSeek: 6158 case OP_IdxRowid: { /* out2 */ 6159 VdbeCursor *pC; /* The P1 index cursor */ 6160 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6161 i64 rowid; /* Rowid that P1 current points to */ 6162 6163 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6164 pC = p->apCsr[pOp->p1]; 6165 assert( pC!=0 ); 6166 assert( pC->eCurType==CURTYPE_BTREE ); 6167 assert( pC->uc.pCursor!=0 ); 6168 assert( pC->isTable==0 ); 6169 assert( pC->deferredMoveto==0 ); 6170 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6171 6172 /* The IdxRowid and Seek opcodes are combined because of the commonality 6173 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6174 rc = sqlite3VdbeCursorRestore(pC); 6175 6176 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 6177 ** out from under the cursor. That will never happens for an IdxRowid 6178 ** or Seek opcode */ 6179 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 6180 6181 if( !pC->nullRow ){ 6182 rowid = 0; /* Not needed. Only used to silence a warning. */ 6183 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6184 if( rc!=SQLITE_OK ){ 6185 goto abort_due_to_error; 6186 } 6187 if( pOp->opcode==OP_DeferredSeek ){ 6188 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6189 pTabCur = p->apCsr[pOp->p3]; 6190 assert( pTabCur!=0 ); 6191 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6192 assert( pTabCur->uc.pCursor!=0 ); 6193 assert( pTabCur->isTable ); 6194 pTabCur->nullRow = 0; 6195 pTabCur->movetoTarget = rowid; 6196 pTabCur->deferredMoveto = 1; 6197 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6198 pTabCur->aAltMap = pOp->p4.ai; 6199 assert( !pC->isEphemeral ); 6200 assert( !pTabCur->isEphemeral ); 6201 pTabCur->pAltCursor = pC; 6202 }else{ 6203 pOut = out2Prerelease(p, pOp); 6204 pOut->u.i = rowid; 6205 } 6206 }else{ 6207 assert( pOp->opcode==OP_IdxRowid ); 6208 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6209 } 6210 break; 6211 } 6212 6213 /* Opcode: FinishSeek P1 * * * * 6214 ** 6215 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6216 ** seek operation now, without further delay. If the cursor seek has 6217 ** already occurred, this instruction is a no-op. 6218 */ 6219 case OP_FinishSeek: { 6220 VdbeCursor *pC; /* The P1 index cursor */ 6221 6222 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6223 pC = p->apCsr[pOp->p1]; 6224 if( pC->deferredMoveto ){ 6225 rc = sqlite3VdbeFinishMoveto(pC); 6226 if( rc ) goto abort_due_to_error; 6227 } 6228 break; 6229 } 6230 6231 /* Opcode: IdxGE P1 P2 P3 P4 * 6232 ** Synopsis: key=r[P3@P4] 6233 ** 6234 ** The P4 register values beginning with P3 form an unpacked index 6235 ** key that omits the PRIMARY KEY. Compare this key value against the index 6236 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6237 ** fields at the end. 6238 ** 6239 ** If the P1 index entry is greater than or equal to the key value 6240 ** then jump to P2. Otherwise fall through to the next instruction. 6241 */ 6242 /* Opcode: IdxGT P1 P2 P3 P4 * 6243 ** Synopsis: key=r[P3@P4] 6244 ** 6245 ** The P4 register values beginning with P3 form an unpacked index 6246 ** key that omits the PRIMARY KEY. Compare this key value against the index 6247 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6248 ** fields at the end. 6249 ** 6250 ** If the P1 index entry is greater than the key value 6251 ** then jump to P2. Otherwise fall through to the next instruction. 6252 */ 6253 /* Opcode: IdxLT P1 P2 P3 P4 * 6254 ** Synopsis: key=r[P3@P4] 6255 ** 6256 ** The P4 register values beginning with P3 form an unpacked index 6257 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6258 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6259 ** ROWID on the P1 index. 6260 ** 6261 ** If the P1 index entry is less than the key value then jump to P2. 6262 ** Otherwise fall through to the next instruction. 6263 */ 6264 /* Opcode: IdxLE P1 P2 P3 P4 * 6265 ** Synopsis: key=r[P3@P4] 6266 ** 6267 ** The P4 register values beginning with P3 form an unpacked index 6268 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6269 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6270 ** ROWID on the P1 index. 6271 ** 6272 ** If the P1 index entry is less than or equal to the key value then jump 6273 ** to P2. Otherwise fall through to the next instruction. 6274 */ 6275 case OP_IdxLE: /* jump */ 6276 case OP_IdxGT: /* jump */ 6277 case OP_IdxLT: /* jump */ 6278 case OP_IdxGE: { /* jump */ 6279 VdbeCursor *pC; 6280 int res; 6281 UnpackedRecord r; 6282 6283 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6284 pC = p->apCsr[pOp->p1]; 6285 assert( pC!=0 ); 6286 assert( pC->isOrdered ); 6287 assert( pC->eCurType==CURTYPE_BTREE ); 6288 assert( pC->uc.pCursor!=0); 6289 assert( pC->deferredMoveto==0 ); 6290 assert( pOp->p4type==P4_INT32 ); 6291 r.pKeyInfo = pC->pKeyInfo; 6292 r.nField = (u16)pOp->p4.i; 6293 if( pOp->opcode<OP_IdxLT ){ 6294 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6295 r.default_rc = -1; 6296 }else{ 6297 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6298 r.default_rc = 0; 6299 } 6300 r.aMem = &aMem[pOp->p3]; 6301 #ifdef SQLITE_DEBUG 6302 { 6303 int i; 6304 for(i=0; i<r.nField; i++){ 6305 assert( memIsValid(&r.aMem[i]) ); 6306 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6307 } 6308 } 6309 #endif 6310 6311 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6312 { 6313 i64 nCellKey = 0; 6314 BtCursor *pCur; 6315 Mem m; 6316 6317 assert( pC->eCurType==CURTYPE_BTREE ); 6318 pCur = pC->uc.pCursor; 6319 assert( sqlite3BtreeCursorIsValid(pCur) ); 6320 nCellKey = sqlite3BtreePayloadSize(pCur); 6321 /* nCellKey will always be between 0 and 0xffffffff because of the way 6322 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6323 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6324 rc = SQLITE_CORRUPT_BKPT; 6325 goto abort_due_to_error; 6326 } 6327 sqlite3VdbeMemInit(&m, db, 0); 6328 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6329 if( rc ) goto abort_due_to_error; 6330 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6331 sqlite3VdbeMemRelease(&m); 6332 } 6333 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6334 6335 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6336 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6337 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6338 res = -res; 6339 }else{ 6340 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6341 res++; 6342 } 6343 VdbeBranchTaken(res>0,2); 6344 assert( rc==SQLITE_OK ); 6345 if( res>0 ) goto jump_to_p2; 6346 break; 6347 } 6348 6349 /* Opcode: Destroy P1 P2 P3 * * 6350 ** 6351 ** Delete an entire database table or index whose root page in the database 6352 ** file is given by P1. 6353 ** 6354 ** The table being destroyed is in the main database file if P3==0. If 6355 ** P3==1 then the table to be clear is in the auxiliary database file 6356 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6357 ** 6358 ** If AUTOVACUUM is enabled then it is possible that another root page 6359 ** might be moved into the newly deleted root page in order to keep all 6360 ** root pages contiguous at the beginning of the database. The former 6361 ** value of the root page that moved - its value before the move occurred - 6362 ** is stored in register P2. If no page movement was required (because the 6363 ** table being dropped was already the last one in the database) then a 6364 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6365 ** is stored in register P2. 6366 ** 6367 ** This opcode throws an error if there are any active reader VMs when 6368 ** it is invoked. This is done to avoid the difficulty associated with 6369 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6370 ** database. This error is thrown even if the database is not an AUTOVACUUM 6371 ** db in order to avoid introducing an incompatibility between autovacuum 6372 ** and non-autovacuum modes. 6373 ** 6374 ** See also: Clear 6375 */ 6376 case OP_Destroy: { /* out2 */ 6377 int iMoved; 6378 int iDb; 6379 6380 sqlite3VdbeIncrWriteCounter(p, 0); 6381 assert( p->readOnly==0 ); 6382 assert( pOp->p1>1 ); 6383 pOut = out2Prerelease(p, pOp); 6384 pOut->flags = MEM_Null; 6385 if( db->nVdbeRead > db->nVDestroy+1 ){ 6386 rc = SQLITE_LOCKED; 6387 p->errorAction = OE_Abort; 6388 goto abort_due_to_error; 6389 }else{ 6390 iDb = pOp->p3; 6391 assert( DbMaskTest(p->btreeMask, iDb) ); 6392 iMoved = 0; /* Not needed. Only to silence a warning. */ 6393 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6394 pOut->flags = MEM_Int; 6395 pOut->u.i = iMoved; 6396 if( rc ) goto abort_due_to_error; 6397 #ifndef SQLITE_OMIT_AUTOVACUUM 6398 if( iMoved!=0 ){ 6399 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6400 /* All OP_Destroy operations occur on the same btree */ 6401 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6402 resetSchemaOnFault = iDb+1; 6403 } 6404 #endif 6405 } 6406 break; 6407 } 6408 6409 /* Opcode: Clear P1 P2 P3 6410 ** 6411 ** Delete all contents of the database table or index whose root page 6412 ** in the database file is given by P1. But, unlike Destroy, do not 6413 ** remove the table or index from the database file. 6414 ** 6415 ** The table being clear is in the main database file if P2==0. If 6416 ** P2==1 then the table to be clear is in the auxiliary database file 6417 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6418 ** 6419 ** If the P3 value is non-zero, then the row change count is incremented 6420 ** by the number of rows in the table being cleared. If P3 is greater 6421 ** than zero, then the value stored in register P3 is also incremented 6422 ** by the number of rows in the table being cleared. 6423 ** 6424 ** See also: Destroy 6425 */ 6426 case OP_Clear: { 6427 i64 nChange; 6428 6429 sqlite3VdbeIncrWriteCounter(p, 0); 6430 nChange = 0; 6431 assert( p->readOnly==0 ); 6432 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6433 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6434 if( pOp->p3 ){ 6435 p->nChange += nChange; 6436 if( pOp->p3>0 ){ 6437 assert( memIsValid(&aMem[pOp->p3]) ); 6438 memAboutToChange(p, &aMem[pOp->p3]); 6439 aMem[pOp->p3].u.i += nChange; 6440 } 6441 } 6442 if( rc ) goto abort_due_to_error; 6443 break; 6444 } 6445 6446 /* Opcode: ResetSorter P1 * * * * 6447 ** 6448 ** Delete all contents from the ephemeral table or sorter 6449 ** that is open on cursor P1. 6450 ** 6451 ** This opcode only works for cursors used for sorting and 6452 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6453 */ 6454 case OP_ResetSorter: { 6455 VdbeCursor *pC; 6456 6457 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6458 pC = p->apCsr[pOp->p1]; 6459 assert( pC!=0 ); 6460 if( isSorter(pC) ){ 6461 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6462 }else{ 6463 assert( pC->eCurType==CURTYPE_BTREE ); 6464 assert( pC->isEphemeral ); 6465 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6466 if( rc ) goto abort_due_to_error; 6467 } 6468 break; 6469 } 6470 6471 /* Opcode: CreateBtree P1 P2 P3 * * 6472 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6473 ** 6474 ** Allocate a new b-tree in the main database file if P1==0 or in the 6475 ** TEMP database file if P1==1 or in an attached database if 6476 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6477 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6478 ** The root page number of the new b-tree is stored in register P2. 6479 */ 6480 case OP_CreateBtree: { /* out2 */ 6481 Pgno pgno; 6482 Db *pDb; 6483 6484 sqlite3VdbeIncrWriteCounter(p, 0); 6485 pOut = out2Prerelease(p, pOp); 6486 pgno = 0; 6487 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6488 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6489 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6490 assert( p->readOnly==0 ); 6491 pDb = &db->aDb[pOp->p1]; 6492 assert( pDb->pBt!=0 ); 6493 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6494 if( rc ) goto abort_due_to_error; 6495 pOut->u.i = pgno; 6496 break; 6497 } 6498 6499 /* Opcode: SqlExec * * * P4 * 6500 ** 6501 ** Run the SQL statement or statements specified in the P4 string. 6502 */ 6503 case OP_SqlExec: { 6504 sqlite3VdbeIncrWriteCounter(p, 0); 6505 db->nSqlExec++; 6506 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6507 db->nSqlExec--; 6508 if( rc ) goto abort_due_to_error; 6509 break; 6510 } 6511 6512 /* Opcode: ParseSchema P1 * * P4 * 6513 ** 6514 ** Read and parse all entries from the schema table of database P1 6515 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6516 ** entire schema for P1 is reparsed. 6517 ** 6518 ** This opcode invokes the parser to create a new virtual machine, 6519 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6520 */ 6521 case OP_ParseSchema: { 6522 int iDb; 6523 const char *zSchema; 6524 char *zSql; 6525 InitData initData; 6526 6527 /* Any prepared statement that invokes this opcode will hold mutexes 6528 ** on every btree. This is a prerequisite for invoking 6529 ** sqlite3InitCallback(). 6530 */ 6531 #ifdef SQLITE_DEBUG 6532 for(iDb=0; iDb<db->nDb; iDb++){ 6533 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6534 } 6535 #endif 6536 6537 iDb = pOp->p1; 6538 assert( iDb>=0 && iDb<db->nDb ); 6539 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6540 || db->mallocFailed 6541 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6542 6543 #ifndef SQLITE_OMIT_ALTERTABLE 6544 if( pOp->p4.z==0 ){ 6545 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6546 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6547 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6548 db->mDbFlags |= DBFLAG_SchemaChange; 6549 p->expired = 0; 6550 }else 6551 #endif 6552 { 6553 zSchema = LEGACY_SCHEMA_TABLE; 6554 initData.db = db; 6555 initData.iDb = iDb; 6556 initData.pzErrMsg = &p->zErrMsg; 6557 initData.mInitFlags = 0; 6558 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6559 zSql = sqlite3MPrintf(db, 6560 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6561 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6562 if( zSql==0 ){ 6563 rc = SQLITE_NOMEM_BKPT; 6564 }else{ 6565 assert( db->init.busy==0 ); 6566 db->init.busy = 1; 6567 initData.rc = SQLITE_OK; 6568 initData.nInitRow = 0; 6569 assert( !db->mallocFailed ); 6570 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6571 if( rc==SQLITE_OK ) rc = initData.rc; 6572 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6573 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6574 ** at least one SQL statement. Any less than that indicates that 6575 ** the sqlite_schema table is corrupt. */ 6576 rc = SQLITE_CORRUPT_BKPT; 6577 } 6578 sqlite3DbFreeNN(db, zSql); 6579 db->init.busy = 0; 6580 } 6581 } 6582 if( rc ){ 6583 sqlite3ResetAllSchemasOfConnection(db); 6584 if( rc==SQLITE_NOMEM ){ 6585 goto no_mem; 6586 } 6587 goto abort_due_to_error; 6588 } 6589 break; 6590 } 6591 6592 #if !defined(SQLITE_OMIT_ANALYZE) 6593 /* Opcode: LoadAnalysis P1 * * * * 6594 ** 6595 ** Read the sqlite_stat1 table for database P1 and load the content 6596 ** of that table into the internal index hash table. This will cause 6597 ** the analysis to be used when preparing all subsequent queries. 6598 */ 6599 case OP_LoadAnalysis: { 6600 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6601 rc = sqlite3AnalysisLoad(db, pOp->p1); 6602 if( rc ) goto abort_due_to_error; 6603 break; 6604 } 6605 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6606 6607 /* Opcode: DropTable P1 * * P4 * 6608 ** 6609 ** Remove the internal (in-memory) data structures that describe 6610 ** the table named P4 in database P1. This is called after a table 6611 ** is dropped from disk (using the Destroy opcode) in order to keep 6612 ** the internal representation of the 6613 ** schema consistent with what is on disk. 6614 */ 6615 case OP_DropTable: { 6616 sqlite3VdbeIncrWriteCounter(p, 0); 6617 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6618 break; 6619 } 6620 6621 /* Opcode: DropIndex P1 * * P4 * 6622 ** 6623 ** Remove the internal (in-memory) data structures that describe 6624 ** the index named P4 in database P1. This is called after an index 6625 ** is dropped from disk (using the Destroy opcode) 6626 ** in order to keep the internal representation of the 6627 ** schema consistent with what is on disk. 6628 */ 6629 case OP_DropIndex: { 6630 sqlite3VdbeIncrWriteCounter(p, 0); 6631 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6632 break; 6633 } 6634 6635 /* Opcode: DropTrigger P1 * * P4 * 6636 ** 6637 ** Remove the internal (in-memory) data structures that describe 6638 ** the trigger named P4 in database P1. This is called after a trigger 6639 ** is dropped from disk (using the Destroy opcode) in order to keep 6640 ** the internal representation of the 6641 ** schema consistent with what is on disk. 6642 */ 6643 case OP_DropTrigger: { 6644 sqlite3VdbeIncrWriteCounter(p, 0); 6645 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6646 break; 6647 } 6648 6649 6650 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6651 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6652 ** 6653 ** Do an analysis of the currently open database. Store in 6654 ** register P1 the text of an error message describing any problems. 6655 ** If no problems are found, store a NULL in register P1. 6656 ** 6657 ** The register P3 contains one less than the maximum number of allowed errors. 6658 ** At most reg(P3) errors will be reported. 6659 ** In other words, the analysis stops as soon as reg(P1) errors are 6660 ** seen. Reg(P1) is updated with the number of errors remaining. 6661 ** 6662 ** The root page numbers of all tables in the database are integers 6663 ** stored in P4_INTARRAY argument. 6664 ** 6665 ** If P5 is not zero, the check is done on the auxiliary database 6666 ** file, not the main database file. 6667 ** 6668 ** This opcode is used to implement the integrity_check pragma. 6669 */ 6670 case OP_IntegrityCk: { 6671 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6672 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6673 int nErr; /* Number of errors reported */ 6674 char *z; /* Text of the error report */ 6675 Mem *pnErr; /* Register keeping track of errors remaining */ 6676 6677 assert( p->bIsReader ); 6678 nRoot = pOp->p2; 6679 aRoot = pOp->p4.ai; 6680 assert( nRoot>0 ); 6681 assert( aRoot[0]==(Pgno)nRoot ); 6682 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6683 pnErr = &aMem[pOp->p3]; 6684 assert( (pnErr->flags & MEM_Int)!=0 ); 6685 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6686 pIn1 = &aMem[pOp->p1]; 6687 assert( pOp->p5<db->nDb ); 6688 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6689 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6690 (int)pnErr->u.i+1, &nErr); 6691 sqlite3VdbeMemSetNull(pIn1); 6692 if( nErr==0 ){ 6693 assert( z==0 ); 6694 }else if( z==0 ){ 6695 goto no_mem; 6696 }else{ 6697 pnErr->u.i -= nErr-1; 6698 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6699 } 6700 UPDATE_MAX_BLOBSIZE(pIn1); 6701 sqlite3VdbeChangeEncoding(pIn1, encoding); 6702 goto check_for_interrupt; 6703 } 6704 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6705 6706 /* Opcode: RowSetAdd P1 P2 * * * 6707 ** Synopsis: rowset(P1)=r[P2] 6708 ** 6709 ** Insert the integer value held by register P2 into a RowSet object 6710 ** held in register P1. 6711 ** 6712 ** An assertion fails if P2 is not an integer. 6713 */ 6714 case OP_RowSetAdd: { /* in1, in2 */ 6715 pIn1 = &aMem[pOp->p1]; 6716 pIn2 = &aMem[pOp->p2]; 6717 assert( (pIn2->flags & MEM_Int)!=0 ); 6718 if( (pIn1->flags & MEM_Blob)==0 ){ 6719 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6720 } 6721 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6722 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6723 break; 6724 } 6725 6726 /* Opcode: RowSetRead P1 P2 P3 * * 6727 ** Synopsis: r[P3]=rowset(P1) 6728 ** 6729 ** Extract the smallest value from the RowSet object in P1 6730 ** and put that value into register P3. 6731 ** Or, if RowSet object P1 is initially empty, leave P3 6732 ** unchanged and jump to instruction P2. 6733 */ 6734 case OP_RowSetRead: { /* jump, in1, out3 */ 6735 i64 val; 6736 6737 pIn1 = &aMem[pOp->p1]; 6738 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6739 if( (pIn1->flags & MEM_Blob)==0 6740 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6741 ){ 6742 /* The boolean index is empty */ 6743 sqlite3VdbeMemSetNull(pIn1); 6744 VdbeBranchTaken(1,2); 6745 goto jump_to_p2_and_check_for_interrupt; 6746 }else{ 6747 /* A value was pulled from the index */ 6748 VdbeBranchTaken(0,2); 6749 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6750 } 6751 goto check_for_interrupt; 6752 } 6753 6754 /* Opcode: RowSetTest P1 P2 P3 P4 6755 ** Synopsis: if r[P3] in rowset(P1) goto P2 6756 ** 6757 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6758 ** contains a RowSet object and that RowSet object contains 6759 ** the value held in P3, jump to register P2. Otherwise, insert the 6760 ** integer in P3 into the RowSet and continue on to the 6761 ** next opcode. 6762 ** 6763 ** The RowSet object is optimized for the case where sets of integers 6764 ** are inserted in distinct phases, which each set contains no duplicates. 6765 ** Each set is identified by a unique P4 value. The first set 6766 ** must have P4==0, the final set must have P4==-1, and for all other sets 6767 ** must have P4>0. 6768 ** 6769 ** This allows optimizations: (a) when P4==0 there is no need to test 6770 ** the RowSet object for P3, as it is guaranteed not to contain it, 6771 ** (b) when P4==-1 there is no need to insert the value, as it will 6772 ** never be tested for, and (c) when a value that is part of set X is 6773 ** inserted, there is no need to search to see if the same value was 6774 ** previously inserted as part of set X (only if it was previously 6775 ** inserted as part of some other set). 6776 */ 6777 case OP_RowSetTest: { /* jump, in1, in3 */ 6778 int iSet; 6779 int exists; 6780 6781 pIn1 = &aMem[pOp->p1]; 6782 pIn3 = &aMem[pOp->p3]; 6783 iSet = pOp->p4.i; 6784 assert( pIn3->flags&MEM_Int ); 6785 6786 /* If there is anything other than a rowset object in memory cell P1, 6787 ** delete it now and initialize P1 with an empty rowset 6788 */ 6789 if( (pIn1->flags & MEM_Blob)==0 ){ 6790 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6791 } 6792 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6793 assert( pOp->p4type==P4_INT32 ); 6794 assert( iSet==-1 || iSet>=0 ); 6795 if( iSet ){ 6796 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6797 VdbeBranchTaken(exists!=0,2); 6798 if( exists ) goto jump_to_p2; 6799 } 6800 if( iSet>=0 ){ 6801 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6802 } 6803 break; 6804 } 6805 6806 6807 #ifndef SQLITE_OMIT_TRIGGER 6808 6809 /* Opcode: Program P1 P2 P3 P4 P5 6810 ** 6811 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6812 ** 6813 ** P1 contains the address of the memory cell that contains the first memory 6814 ** cell in an array of values used as arguments to the sub-program. P2 6815 ** contains the address to jump to if the sub-program throws an IGNORE 6816 ** exception using the RAISE() function. Register P3 contains the address 6817 ** of a memory cell in this (the parent) VM that is used to allocate the 6818 ** memory required by the sub-vdbe at runtime. 6819 ** 6820 ** P4 is a pointer to the VM containing the trigger program. 6821 ** 6822 ** If P5 is non-zero, then recursive program invocation is enabled. 6823 */ 6824 case OP_Program: { /* jump */ 6825 int nMem; /* Number of memory registers for sub-program */ 6826 int nByte; /* Bytes of runtime space required for sub-program */ 6827 Mem *pRt; /* Register to allocate runtime space */ 6828 Mem *pMem; /* Used to iterate through memory cells */ 6829 Mem *pEnd; /* Last memory cell in new array */ 6830 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6831 SubProgram *pProgram; /* Sub-program to execute */ 6832 void *t; /* Token identifying trigger */ 6833 6834 pProgram = pOp->p4.pProgram; 6835 pRt = &aMem[pOp->p3]; 6836 assert( pProgram->nOp>0 ); 6837 6838 /* If the p5 flag is clear, then recursive invocation of triggers is 6839 ** disabled for backwards compatibility (p5 is set if this sub-program 6840 ** is really a trigger, not a foreign key action, and the flag set 6841 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6842 ** 6843 ** It is recursive invocation of triggers, at the SQL level, that is 6844 ** disabled. In some cases a single trigger may generate more than one 6845 ** SubProgram (if the trigger may be executed with more than one different 6846 ** ON CONFLICT algorithm). SubProgram structures associated with a 6847 ** single trigger all have the same value for the SubProgram.token 6848 ** variable. */ 6849 if( pOp->p5 ){ 6850 t = pProgram->token; 6851 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6852 if( pFrame ) break; 6853 } 6854 6855 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6856 rc = SQLITE_ERROR; 6857 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6858 goto abort_due_to_error; 6859 } 6860 6861 /* Register pRt is used to store the memory required to save the state 6862 ** of the current program, and the memory required at runtime to execute 6863 ** the trigger program. If this trigger has been fired before, then pRt 6864 ** is already allocated. Otherwise, it must be initialized. */ 6865 if( (pRt->flags&MEM_Blob)==0 ){ 6866 /* SubProgram.nMem is set to the number of memory cells used by the 6867 ** program stored in SubProgram.aOp. As well as these, one memory 6868 ** cell is required for each cursor used by the program. Set local 6869 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6870 */ 6871 nMem = pProgram->nMem + pProgram->nCsr; 6872 assert( nMem>0 ); 6873 if( pProgram->nCsr==0 ) nMem++; 6874 nByte = ROUND8(sizeof(VdbeFrame)) 6875 + nMem * sizeof(Mem) 6876 + pProgram->nCsr * sizeof(VdbeCursor*) 6877 + (pProgram->nOp + 7)/8; 6878 pFrame = sqlite3DbMallocZero(db, nByte); 6879 if( !pFrame ){ 6880 goto no_mem; 6881 } 6882 sqlite3VdbeMemRelease(pRt); 6883 pRt->flags = MEM_Blob|MEM_Dyn; 6884 pRt->z = (char*)pFrame; 6885 pRt->n = nByte; 6886 pRt->xDel = sqlite3VdbeFrameMemDel; 6887 6888 pFrame->v = p; 6889 pFrame->nChildMem = nMem; 6890 pFrame->nChildCsr = pProgram->nCsr; 6891 pFrame->pc = (int)(pOp - aOp); 6892 pFrame->aMem = p->aMem; 6893 pFrame->nMem = p->nMem; 6894 pFrame->apCsr = p->apCsr; 6895 pFrame->nCursor = p->nCursor; 6896 pFrame->aOp = p->aOp; 6897 pFrame->nOp = p->nOp; 6898 pFrame->token = pProgram->token; 6899 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6900 pFrame->anExec = p->anExec; 6901 #endif 6902 #ifdef SQLITE_DEBUG 6903 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6904 #endif 6905 6906 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6907 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6908 pMem->flags = MEM_Undefined; 6909 pMem->db = db; 6910 } 6911 }else{ 6912 pFrame = (VdbeFrame*)pRt->z; 6913 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6914 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6915 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6916 assert( pProgram->nCsr==pFrame->nChildCsr ); 6917 assert( (int)(pOp - aOp)==pFrame->pc ); 6918 } 6919 6920 p->nFrame++; 6921 pFrame->pParent = p->pFrame; 6922 pFrame->lastRowid = db->lastRowid; 6923 pFrame->nChange = p->nChange; 6924 pFrame->nDbChange = p->db->nChange; 6925 assert( pFrame->pAuxData==0 ); 6926 pFrame->pAuxData = p->pAuxData; 6927 p->pAuxData = 0; 6928 p->nChange = 0; 6929 p->pFrame = pFrame; 6930 p->aMem = aMem = VdbeFrameMem(pFrame); 6931 p->nMem = pFrame->nChildMem; 6932 p->nCursor = (u16)pFrame->nChildCsr; 6933 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6934 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6935 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6936 p->aOp = aOp = pProgram->aOp; 6937 p->nOp = pProgram->nOp; 6938 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6939 p->anExec = 0; 6940 #endif 6941 #ifdef SQLITE_DEBUG 6942 /* Verify that second and subsequent executions of the same trigger do not 6943 ** try to reuse register values from the first use. */ 6944 { 6945 int i; 6946 for(i=0; i<p->nMem; i++){ 6947 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6948 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6949 } 6950 } 6951 #endif 6952 pOp = &aOp[-1]; 6953 goto check_for_interrupt; 6954 } 6955 6956 /* Opcode: Param P1 P2 * * * 6957 ** 6958 ** This opcode is only ever present in sub-programs called via the 6959 ** OP_Program instruction. Copy a value currently stored in a memory 6960 ** cell of the calling (parent) frame to cell P2 in the current frames 6961 ** address space. This is used by trigger programs to access the new.* 6962 ** and old.* values. 6963 ** 6964 ** The address of the cell in the parent frame is determined by adding 6965 ** the value of the P1 argument to the value of the P1 argument to the 6966 ** calling OP_Program instruction. 6967 */ 6968 case OP_Param: { /* out2 */ 6969 VdbeFrame *pFrame; 6970 Mem *pIn; 6971 pOut = out2Prerelease(p, pOp); 6972 pFrame = p->pFrame; 6973 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6974 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6975 break; 6976 } 6977 6978 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6979 6980 #ifndef SQLITE_OMIT_FOREIGN_KEY 6981 /* Opcode: FkCounter P1 P2 * * * 6982 ** Synopsis: fkctr[P1]+=P2 6983 ** 6984 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6985 ** If P1 is non-zero, the database constraint counter is incremented 6986 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6987 ** statement counter is incremented (immediate foreign key constraints). 6988 */ 6989 case OP_FkCounter: { 6990 if( db->flags & SQLITE_DeferFKs ){ 6991 db->nDeferredImmCons += pOp->p2; 6992 }else if( pOp->p1 ){ 6993 db->nDeferredCons += pOp->p2; 6994 }else{ 6995 p->nFkConstraint += pOp->p2; 6996 } 6997 break; 6998 } 6999 7000 /* Opcode: FkIfZero P1 P2 * * * 7001 ** Synopsis: if fkctr[P1]==0 goto P2 7002 ** 7003 ** This opcode tests if a foreign key constraint-counter is currently zero. 7004 ** If so, jump to instruction P2. Otherwise, fall through to the next 7005 ** instruction. 7006 ** 7007 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 7008 ** is zero (the one that counts deferred constraint violations). If P1 is 7009 ** zero, the jump is taken if the statement constraint-counter is zero 7010 ** (immediate foreign key constraint violations). 7011 */ 7012 case OP_FkIfZero: { /* jump */ 7013 if( pOp->p1 ){ 7014 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 7015 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7016 }else{ 7017 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 7018 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7019 } 7020 break; 7021 } 7022 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 7023 7024 #ifndef SQLITE_OMIT_AUTOINCREMENT 7025 /* Opcode: MemMax P1 P2 * * * 7026 ** Synopsis: r[P1]=max(r[P1],r[P2]) 7027 ** 7028 ** P1 is a register in the root frame of this VM (the root frame is 7029 ** different from the current frame if this instruction is being executed 7030 ** within a sub-program). Set the value of register P1 to the maximum of 7031 ** its current value and the value in register P2. 7032 ** 7033 ** This instruction throws an error if the memory cell is not initially 7034 ** an integer. 7035 */ 7036 case OP_MemMax: { /* in2 */ 7037 VdbeFrame *pFrame; 7038 if( p->pFrame ){ 7039 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7040 pIn1 = &pFrame->aMem[pOp->p1]; 7041 }else{ 7042 pIn1 = &aMem[pOp->p1]; 7043 } 7044 assert( memIsValid(pIn1) ); 7045 sqlite3VdbeMemIntegerify(pIn1); 7046 pIn2 = &aMem[pOp->p2]; 7047 sqlite3VdbeMemIntegerify(pIn2); 7048 if( pIn1->u.i<pIn2->u.i){ 7049 pIn1->u.i = pIn2->u.i; 7050 } 7051 break; 7052 } 7053 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7054 7055 /* Opcode: IfPos P1 P2 P3 * * 7056 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7057 ** 7058 ** Register P1 must contain an integer. 7059 ** If the value of register P1 is 1 or greater, subtract P3 from the 7060 ** value in P1 and jump to P2. 7061 ** 7062 ** If the initial value of register P1 is less than 1, then the 7063 ** value is unchanged and control passes through to the next instruction. 7064 */ 7065 case OP_IfPos: { /* jump, in1 */ 7066 pIn1 = &aMem[pOp->p1]; 7067 assert( pIn1->flags&MEM_Int ); 7068 VdbeBranchTaken( pIn1->u.i>0, 2); 7069 if( pIn1->u.i>0 ){ 7070 pIn1->u.i -= pOp->p3; 7071 goto jump_to_p2; 7072 } 7073 break; 7074 } 7075 7076 /* Opcode: OffsetLimit P1 P2 P3 * * 7077 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7078 ** 7079 ** This opcode performs a commonly used computation associated with 7080 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 7081 ** holds the offset counter. The opcode computes the combined value 7082 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7083 ** value computed is the total number of rows that will need to be 7084 ** visited in order to complete the query. 7085 ** 7086 ** If r[P3] is zero or negative, that means there is no OFFSET 7087 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7088 ** 7089 ** if r[P1] is zero or negative, that means there is no LIMIT 7090 ** and r[P2] is set to -1. 7091 ** 7092 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7093 */ 7094 case OP_OffsetLimit: { /* in1, out2, in3 */ 7095 i64 x; 7096 pIn1 = &aMem[pOp->p1]; 7097 pIn3 = &aMem[pOp->p3]; 7098 pOut = out2Prerelease(p, pOp); 7099 assert( pIn1->flags & MEM_Int ); 7100 assert( pIn3->flags & MEM_Int ); 7101 x = pIn1->u.i; 7102 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7103 /* If the LIMIT is less than or equal to zero, loop forever. This 7104 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7105 ** also loop forever. This is undocumented. In fact, one could argue 7106 ** that the loop should terminate. But assuming 1 billion iterations 7107 ** per second (far exceeding the capabilities of any current hardware) 7108 ** it would take nearly 300 years to actually reach the limit. So 7109 ** looping forever is a reasonable approximation. */ 7110 pOut->u.i = -1; 7111 }else{ 7112 pOut->u.i = x; 7113 } 7114 break; 7115 } 7116 7117 /* Opcode: IfNotZero P1 P2 * * * 7118 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7119 ** 7120 ** Register P1 must contain an integer. If the content of register P1 is 7121 ** initially greater than zero, then decrement the value in register P1. 7122 ** If it is non-zero (negative or positive) and then also jump to P2. 7123 ** If register P1 is initially zero, leave it unchanged and fall through. 7124 */ 7125 case OP_IfNotZero: { /* jump, in1 */ 7126 pIn1 = &aMem[pOp->p1]; 7127 assert( pIn1->flags&MEM_Int ); 7128 VdbeBranchTaken(pIn1->u.i<0, 2); 7129 if( pIn1->u.i ){ 7130 if( pIn1->u.i>0 ) pIn1->u.i--; 7131 goto jump_to_p2; 7132 } 7133 break; 7134 } 7135 7136 /* Opcode: DecrJumpZero P1 P2 * * * 7137 ** Synopsis: if (--r[P1])==0 goto P2 7138 ** 7139 ** Register P1 must hold an integer. Decrement the value in P1 7140 ** and jump to P2 if the new value is exactly zero. 7141 */ 7142 case OP_DecrJumpZero: { /* jump, in1 */ 7143 pIn1 = &aMem[pOp->p1]; 7144 assert( pIn1->flags&MEM_Int ); 7145 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7146 VdbeBranchTaken(pIn1->u.i==0, 2); 7147 if( pIn1->u.i==0 ) goto jump_to_p2; 7148 break; 7149 } 7150 7151 7152 /* Opcode: AggStep * P2 P3 P4 P5 7153 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7154 ** 7155 ** Execute the xStep function for an aggregate. 7156 ** The function has P5 arguments. P4 is a pointer to the 7157 ** FuncDef structure that specifies the function. Register P3 is the 7158 ** accumulator. 7159 ** 7160 ** The P5 arguments are taken from register P2 and its 7161 ** successors. 7162 */ 7163 /* Opcode: AggInverse * P2 P3 P4 P5 7164 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7165 ** 7166 ** Execute the xInverse function for an aggregate. 7167 ** The function has P5 arguments. P4 is a pointer to the 7168 ** FuncDef structure that specifies the function. Register P3 is the 7169 ** accumulator. 7170 ** 7171 ** The P5 arguments are taken from register P2 and its 7172 ** successors. 7173 */ 7174 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7175 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7176 ** 7177 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7178 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7179 ** FuncDef structure that specifies the function. Register P3 is the 7180 ** accumulator. 7181 ** 7182 ** The P5 arguments are taken from register P2 and its 7183 ** successors. 7184 ** 7185 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7186 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7187 ** the opcode is changed. In this way, the initialization of the 7188 ** sqlite3_context only happens once, instead of on each call to the 7189 ** step function. 7190 */ 7191 case OP_AggInverse: 7192 case OP_AggStep: { 7193 int n; 7194 sqlite3_context *pCtx; 7195 7196 assert( pOp->p4type==P4_FUNCDEF ); 7197 n = pOp->p5; 7198 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7199 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7200 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7201 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7202 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7203 if( pCtx==0 ) goto no_mem; 7204 pCtx->pMem = 0; 7205 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7206 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7207 pCtx->pFunc = pOp->p4.pFunc; 7208 pCtx->iOp = (int)(pOp - aOp); 7209 pCtx->pVdbe = p; 7210 pCtx->skipFlag = 0; 7211 pCtx->isError = 0; 7212 pCtx->argc = n; 7213 pOp->p4type = P4_FUNCCTX; 7214 pOp->p4.pCtx = pCtx; 7215 7216 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7217 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7218 7219 pOp->opcode = OP_AggStep1; 7220 /* Fall through into OP_AggStep */ 7221 /* no break */ deliberate_fall_through 7222 } 7223 case OP_AggStep1: { 7224 int i; 7225 sqlite3_context *pCtx; 7226 Mem *pMem; 7227 7228 assert( pOp->p4type==P4_FUNCCTX ); 7229 pCtx = pOp->p4.pCtx; 7230 pMem = &aMem[pOp->p3]; 7231 7232 #ifdef SQLITE_DEBUG 7233 if( pOp->p1 ){ 7234 /* This is an OP_AggInverse call. Verify that xStep has always 7235 ** been called at least once prior to any xInverse call. */ 7236 assert( pMem->uTemp==0x1122e0e3 ); 7237 }else{ 7238 /* This is an OP_AggStep call. Mark it as such. */ 7239 pMem->uTemp = 0x1122e0e3; 7240 } 7241 #endif 7242 7243 /* If this function is inside of a trigger, the register array in aMem[] 7244 ** might change from one evaluation to the next. The next block of code 7245 ** checks to see if the register array has changed, and if so it 7246 ** reinitializes the relavant parts of the sqlite3_context object */ 7247 if( pCtx->pMem != pMem ){ 7248 pCtx->pMem = pMem; 7249 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7250 } 7251 7252 #ifdef SQLITE_DEBUG 7253 for(i=0; i<pCtx->argc; i++){ 7254 assert( memIsValid(pCtx->argv[i]) ); 7255 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7256 } 7257 #endif 7258 7259 pMem->n++; 7260 assert( pCtx->pOut->flags==MEM_Null ); 7261 assert( pCtx->isError==0 ); 7262 assert( pCtx->skipFlag==0 ); 7263 #ifndef SQLITE_OMIT_WINDOWFUNC 7264 if( pOp->p1 ){ 7265 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7266 }else 7267 #endif 7268 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7269 7270 if( pCtx->isError ){ 7271 if( pCtx->isError>0 ){ 7272 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7273 rc = pCtx->isError; 7274 } 7275 if( pCtx->skipFlag ){ 7276 assert( pOp[-1].opcode==OP_CollSeq ); 7277 i = pOp[-1].p1; 7278 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7279 pCtx->skipFlag = 0; 7280 } 7281 sqlite3VdbeMemRelease(pCtx->pOut); 7282 pCtx->pOut->flags = MEM_Null; 7283 pCtx->isError = 0; 7284 if( rc ) goto abort_due_to_error; 7285 } 7286 assert( pCtx->pOut->flags==MEM_Null ); 7287 assert( pCtx->skipFlag==0 ); 7288 break; 7289 } 7290 7291 /* Opcode: AggFinal P1 P2 * P4 * 7292 ** Synopsis: accum=r[P1] N=P2 7293 ** 7294 ** P1 is the memory location that is the accumulator for an aggregate 7295 ** or window function. Execute the finalizer function 7296 ** for an aggregate and store the result in P1. 7297 ** 7298 ** P2 is the number of arguments that the step function takes and 7299 ** P4 is a pointer to the FuncDef for this function. The P2 7300 ** argument is not used by this opcode. It is only there to disambiguate 7301 ** functions that can take varying numbers of arguments. The 7302 ** P4 argument is only needed for the case where 7303 ** the step function was not previously called. 7304 */ 7305 /* Opcode: AggValue * P2 P3 P4 * 7306 ** Synopsis: r[P3]=value N=P2 7307 ** 7308 ** Invoke the xValue() function and store the result in register P3. 7309 ** 7310 ** P2 is the number of arguments that the step function takes and 7311 ** P4 is a pointer to the FuncDef for this function. The P2 7312 ** argument is not used by this opcode. It is only there to disambiguate 7313 ** functions that can take varying numbers of arguments. The 7314 ** P4 argument is only needed for the case where 7315 ** the step function was not previously called. 7316 */ 7317 case OP_AggValue: 7318 case OP_AggFinal: { 7319 Mem *pMem; 7320 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7321 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7322 pMem = &aMem[pOp->p1]; 7323 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7324 #ifndef SQLITE_OMIT_WINDOWFUNC 7325 if( pOp->p3 ){ 7326 memAboutToChange(p, &aMem[pOp->p3]); 7327 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7328 pMem = &aMem[pOp->p3]; 7329 }else 7330 #endif 7331 { 7332 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7333 } 7334 7335 if( rc ){ 7336 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7337 goto abort_due_to_error; 7338 } 7339 sqlite3VdbeChangeEncoding(pMem, encoding); 7340 UPDATE_MAX_BLOBSIZE(pMem); 7341 if( sqlite3VdbeMemTooBig(pMem) ){ 7342 goto too_big; 7343 } 7344 break; 7345 } 7346 7347 #ifndef SQLITE_OMIT_WAL 7348 /* Opcode: Checkpoint P1 P2 P3 * * 7349 ** 7350 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7351 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7352 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7353 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7354 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7355 ** in the WAL that have been checkpointed after the checkpoint 7356 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7357 ** mem[P3+2] are initialized to -1. 7358 */ 7359 case OP_Checkpoint: { 7360 int i; /* Loop counter */ 7361 int aRes[3]; /* Results */ 7362 Mem *pMem; /* Write results here */ 7363 7364 assert( p->readOnly==0 ); 7365 aRes[0] = 0; 7366 aRes[1] = aRes[2] = -1; 7367 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7368 || pOp->p2==SQLITE_CHECKPOINT_FULL 7369 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7370 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7371 ); 7372 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7373 if( rc ){ 7374 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7375 rc = SQLITE_OK; 7376 aRes[0] = 1; 7377 } 7378 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7379 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7380 } 7381 break; 7382 }; 7383 #endif 7384 7385 #ifndef SQLITE_OMIT_PRAGMA 7386 /* Opcode: JournalMode P1 P2 P3 * * 7387 ** 7388 ** Change the journal mode of database P1 to P3. P3 must be one of the 7389 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7390 ** modes (delete, truncate, persist, off and memory), this is a simple 7391 ** operation. No IO is required. 7392 ** 7393 ** If changing into or out of WAL mode the procedure is more complicated. 7394 ** 7395 ** Write a string containing the final journal-mode to register P2. 7396 */ 7397 case OP_JournalMode: { /* out2 */ 7398 Btree *pBt; /* Btree to change journal mode of */ 7399 Pager *pPager; /* Pager associated with pBt */ 7400 int eNew; /* New journal mode */ 7401 int eOld; /* The old journal mode */ 7402 #ifndef SQLITE_OMIT_WAL 7403 const char *zFilename; /* Name of database file for pPager */ 7404 #endif 7405 7406 pOut = out2Prerelease(p, pOp); 7407 eNew = pOp->p3; 7408 assert( eNew==PAGER_JOURNALMODE_DELETE 7409 || eNew==PAGER_JOURNALMODE_TRUNCATE 7410 || eNew==PAGER_JOURNALMODE_PERSIST 7411 || eNew==PAGER_JOURNALMODE_OFF 7412 || eNew==PAGER_JOURNALMODE_MEMORY 7413 || eNew==PAGER_JOURNALMODE_WAL 7414 || eNew==PAGER_JOURNALMODE_QUERY 7415 ); 7416 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7417 assert( p->readOnly==0 ); 7418 7419 pBt = db->aDb[pOp->p1].pBt; 7420 pPager = sqlite3BtreePager(pBt); 7421 eOld = sqlite3PagerGetJournalMode(pPager); 7422 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7423 assert( sqlite3BtreeHoldsMutex(pBt) ); 7424 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7425 7426 #ifndef SQLITE_OMIT_WAL 7427 zFilename = sqlite3PagerFilename(pPager, 1); 7428 7429 /* Do not allow a transition to journal_mode=WAL for a database 7430 ** in temporary storage or if the VFS does not support shared memory 7431 */ 7432 if( eNew==PAGER_JOURNALMODE_WAL 7433 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7434 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7435 ){ 7436 eNew = eOld; 7437 } 7438 7439 if( (eNew!=eOld) 7440 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7441 ){ 7442 if( !db->autoCommit || db->nVdbeRead>1 ){ 7443 rc = SQLITE_ERROR; 7444 sqlite3VdbeError(p, 7445 "cannot change %s wal mode from within a transaction", 7446 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7447 ); 7448 goto abort_due_to_error; 7449 }else{ 7450 7451 if( eOld==PAGER_JOURNALMODE_WAL ){ 7452 /* If leaving WAL mode, close the log file. If successful, the call 7453 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7454 ** file. An EXCLUSIVE lock may still be held on the database file 7455 ** after a successful return. 7456 */ 7457 rc = sqlite3PagerCloseWal(pPager, db); 7458 if( rc==SQLITE_OK ){ 7459 sqlite3PagerSetJournalMode(pPager, eNew); 7460 } 7461 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7462 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7463 ** as an intermediate */ 7464 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7465 } 7466 7467 /* Open a transaction on the database file. Regardless of the journal 7468 ** mode, this transaction always uses a rollback journal. 7469 */ 7470 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7471 if( rc==SQLITE_OK ){ 7472 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7473 } 7474 } 7475 } 7476 #endif /* ifndef SQLITE_OMIT_WAL */ 7477 7478 if( rc ) eNew = eOld; 7479 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7480 7481 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7482 pOut->z = (char *)sqlite3JournalModename(eNew); 7483 pOut->n = sqlite3Strlen30(pOut->z); 7484 pOut->enc = SQLITE_UTF8; 7485 sqlite3VdbeChangeEncoding(pOut, encoding); 7486 if( rc ) goto abort_due_to_error; 7487 break; 7488 }; 7489 #endif /* SQLITE_OMIT_PRAGMA */ 7490 7491 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7492 /* Opcode: Vacuum P1 P2 * * * 7493 ** 7494 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7495 ** for an attached database. The "temp" database may not be vacuumed. 7496 ** 7497 ** If P2 is not zero, then it is a register holding a string which is 7498 ** the file into which the result of vacuum should be written. When 7499 ** P2 is zero, the vacuum overwrites the original database. 7500 */ 7501 case OP_Vacuum: { 7502 assert( p->readOnly==0 ); 7503 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7504 pOp->p2 ? &aMem[pOp->p2] : 0); 7505 if( rc ) goto abort_due_to_error; 7506 break; 7507 } 7508 #endif 7509 7510 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7511 /* Opcode: IncrVacuum P1 P2 * * * 7512 ** 7513 ** Perform a single step of the incremental vacuum procedure on 7514 ** the P1 database. If the vacuum has finished, jump to instruction 7515 ** P2. Otherwise, fall through to the next instruction. 7516 */ 7517 case OP_IncrVacuum: { /* jump */ 7518 Btree *pBt; 7519 7520 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7521 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7522 assert( p->readOnly==0 ); 7523 pBt = db->aDb[pOp->p1].pBt; 7524 rc = sqlite3BtreeIncrVacuum(pBt); 7525 VdbeBranchTaken(rc==SQLITE_DONE,2); 7526 if( rc ){ 7527 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7528 rc = SQLITE_OK; 7529 goto jump_to_p2; 7530 } 7531 break; 7532 } 7533 #endif 7534 7535 /* Opcode: Expire P1 P2 * * * 7536 ** 7537 ** Cause precompiled statements to expire. When an expired statement 7538 ** is executed using sqlite3_step() it will either automatically 7539 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7540 ** or it will fail with SQLITE_SCHEMA. 7541 ** 7542 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7543 ** then only the currently executing statement is expired. 7544 ** 7545 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7546 ** then running SQL statements are allowed to continue to run to completion. 7547 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7548 ** that might help the statement run faster but which does not affect the 7549 ** correctness of operation. 7550 */ 7551 case OP_Expire: { 7552 assert( pOp->p2==0 || pOp->p2==1 ); 7553 if( !pOp->p1 ){ 7554 sqlite3ExpirePreparedStatements(db, pOp->p2); 7555 }else{ 7556 p->expired = pOp->p2+1; 7557 } 7558 break; 7559 } 7560 7561 /* Opcode: CursorLock P1 * * * * 7562 ** 7563 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7564 ** written by an other cursor. 7565 */ 7566 case OP_CursorLock: { 7567 VdbeCursor *pC; 7568 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7569 pC = p->apCsr[pOp->p1]; 7570 assert( pC!=0 ); 7571 assert( pC->eCurType==CURTYPE_BTREE ); 7572 sqlite3BtreeCursorPin(pC->uc.pCursor); 7573 break; 7574 } 7575 7576 /* Opcode: CursorUnlock P1 * * * * 7577 ** 7578 ** Unlock the btree to which cursor P1 is pointing so that it can be 7579 ** written by other cursors. 7580 */ 7581 case OP_CursorUnlock: { 7582 VdbeCursor *pC; 7583 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7584 pC = p->apCsr[pOp->p1]; 7585 assert( pC!=0 ); 7586 assert( pC->eCurType==CURTYPE_BTREE ); 7587 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7588 break; 7589 } 7590 7591 #ifndef SQLITE_OMIT_SHARED_CACHE 7592 /* Opcode: TableLock P1 P2 P3 P4 * 7593 ** Synopsis: iDb=P1 root=P2 write=P3 7594 ** 7595 ** Obtain a lock on a particular table. This instruction is only used when 7596 ** the shared-cache feature is enabled. 7597 ** 7598 ** P1 is the index of the database in sqlite3.aDb[] of the database 7599 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7600 ** a write lock if P3==1. 7601 ** 7602 ** P2 contains the root-page of the table to lock. 7603 ** 7604 ** P4 contains a pointer to the name of the table being locked. This is only 7605 ** used to generate an error message if the lock cannot be obtained. 7606 */ 7607 case OP_TableLock: { 7608 u8 isWriteLock = (u8)pOp->p3; 7609 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7610 int p1 = pOp->p1; 7611 assert( p1>=0 && p1<db->nDb ); 7612 assert( DbMaskTest(p->btreeMask, p1) ); 7613 assert( isWriteLock==0 || isWriteLock==1 ); 7614 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7615 if( rc ){ 7616 if( (rc&0xFF)==SQLITE_LOCKED ){ 7617 const char *z = pOp->p4.z; 7618 sqlite3VdbeError(p, "database table is locked: %s", z); 7619 } 7620 goto abort_due_to_error; 7621 } 7622 } 7623 break; 7624 } 7625 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7626 7627 #ifndef SQLITE_OMIT_VIRTUALTABLE 7628 /* Opcode: VBegin * * * P4 * 7629 ** 7630 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7631 ** xBegin method for that table. 7632 ** 7633 ** Also, whether or not P4 is set, check that this is not being called from 7634 ** within a callback to a virtual table xSync() method. If it is, the error 7635 ** code will be set to SQLITE_LOCKED. 7636 */ 7637 case OP_VBegin: { 7638 VTable *pVTab; 7639 pVTab = pOp->p4.pVtab; 7640 rc = sqlite3VtabBegin(db, pVTab); 7641 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7642 if( rc ) goto abort_due_to_error; 7643 break; 7644 } 7645 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7646 7647 #ifndef SQLITE_OMIT_VIRTUALTABLE 7648 /* Opcode: VCreate P1 P2 * * * 7649 ** 7650 ** P2 is a register that holds the name of a virtual table in database 7651 ** P1. Call the xCreate method for that table. 7652 */ 7653 case OP_VCreate: { 7654 Mem sMem; /* For storing the record being decoded */ 7655 const char *zTab; /* Name of the virtual table */ 7656 7657 memset(&sMem, 0, sizeof(sMem)); 7658 sMem.db = db; 7659 /* Because P2 is always a static string, it is impossible for the 7660 ** sqlite3VdbeMemCopy() to fail */ 7661 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7662 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7663 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7664 assert( rc==SQLITE_OK ); 7665 zTab = (const char*)sqlite3_value_text(&sMem); 7666 assert( zTab || db->mallocFailed ); 7667 if( zTab ){ 7668 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7669 } 7670 sqlite3VdbeMemRelease(&sMem); 7671 if( rc ) goto abort_due_to_error; 7672 break; 7673 } 7674 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7675 7676 #ifndef SQLITE_OMIT_VIRTUALTABLE 7677 /* Opcode: VDestroy P1 * * P4 * 7678 ** 7679 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7680 ** of that table. 7681 */ 7682 case OP_VDestroy: { 7683 db->nVDestroy++; 7684 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7685 db->nVDestroy--; 7686 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7687 if( rc ) goto abort_due_to_error; 7688 break; 7689 } 7690 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7691 7692 #ifndef SQLITE_OMIT_VIRTUALTABLE 7693 /* Opcode: VOpen P1 * * P4 * 7694 ** 7695 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7696 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7697 ** table and stores that cursor in P1. 7698 */ 7699 case OP_VOpen: { 7700 VdbeCursor *pCur; 7701 sqlite3_vtab_cursor *pVCur; 7702 sqlite3_vtab *pVtab; 7703 const sqlite3_module *pModule; 7704 7705 assert( p->bIsReader ); 7706 pCur = 0; 7707 pVCur = 0; 7708 pVtab = pOp->p4.pVtab->pVtab; 7709 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7710 rc = SQLITE_LOCKED; 7711 goto abort_due_to_error; 7712 } 7713 pModule = pVtab->pModule; 7714 rc = pModule->xOpen(pVtab, &pVCur); 7715 sqlite3VtabImportErrmsg(p, pVtab); 7716 if( rc ) goto abort_due_to_error; 7717 7718 /* Initialize sqlite3_vtab_cursor base class */ 7719 pVCur->pVtab = pVtab; 7720 7721 /* Initialize vdbe cursor object */ 7722 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7723 if( pCur ){ 7724 pCur->uc.pVCur = pVCur; 7725 pVtab->nRef++; 7726 }else{ 7727 assert( db->mallocFailed ); 7728 pModule->xClose(pVCur); 7729 goto no_mem; 7730 } 7731 break; 7732 } 7733 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7734 7735 #ifndef SQLITE_OMIT_VIRTUALTABLE 7736 /* Opcode: VFilter P1 P2 P3 P4 * 7737 ** Synopsis: iplan=r[P3] zplan='P4' 7738 ** 7739 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7740 ** the filtered result set is empty. 7741 ** 7742 ** P4 is either NULL or a string that was generated by the xBestIndex 7743 ** method of the module. The interpretation of the P4 string is left 7744 ** to the module implementation. 7745 ** 7746 ** This opcode invokes the xFilter method on the virtual table specified 7747 ** by P1. The integer query plan parameter to xFilter is stored in register 7748 ** P3. Register P3+1 stores the argc parameter to be passed to the 7749 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7750 ** additional parameters which are passed to 7751 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7752 ** 7753 ** A jump is made to P2 if the result set after filtering would be empty. 7754 */ 7755 case OP_VFilter: { /* jump */ 7756 int nArg; 7757 int iQuery; 7758 const sqlite3_module *pModule; 7759 Mem *pQuery; 7760 Mem *pArgc; 7761 sqlite3_vtab_cursor *pVCur; 7762 sqlite3_vtab *pVtab; 7763 VdbeCursor *pCur; 7764 int res; 7765 int i; 7766 Mem **apArg; 7767 7768 pQuery = &aMem[pOp->p3]; 7769 pArgc = &pQuery[1]; 7770 pCur = p->apCsr[pOp->p1]; 7771 assert( memIsValid(pQuery) ); 7772 REGISTER_TRACE(pOp->p3, pQuery); 7773 assert( pCur!=0 ); 7774 assert( pCur->eCurType==CURTYPE_VTAB ); 7775 pVCur = pCur->uc.pVCur; 7776 pVtab = pVCur->pVtab; 7777 pModule = pVtab->pModule; 7778 7779 /* Grab the index number and argc parameters */ 7780 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7781 nArg = (int)pArgc->u.i; 7782 iQuery = (int)pQuery->u.i; 7783 7784 /* Invoke the xFilter method */ 7785 apArg = p->apArg; 7786 for(i = 0; i<nArg; i++){ 7787 apArg[i] = &pArgc[i+1]; 7788 } 7789 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7790 sqlite3VtabImportErrmsg(p, pVtab); 7791 if( rc ) goto abort_due_to_error; 7792 res = pModule->xEof(pVCur); 7793 pCur->nullRow = 0; 7794 VdbeBranchTaken(res!=0,2); 7795 if( res ) goto jump_to_p2; 7796 break; 7797 } 7798 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7799 7800 #ifndef SQLITE_OMIT_VIRTUALTABLE 7801 /* Opcode: VColumn P1 P2 P3 * P5 7802 ** Synopsis: r[P3]=vcolumn(P2) 7803 ** 7804 ** Store in register P3 the value of the P2-th column of 7805 ** the current row of the virtual-table of cursor P1. 7806 ** 7807 ** If the VColumn opcode is being used to fetch the value of 7808 ** an unchanging column during an UPDATE operation, then the P5 7809 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7810 ** function to return true inside the xColumn method of the virtual 7811 ** table implementation. The P5 column might also contain other 7812 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7813 ** unused by OP_VColumn. 7814 */ 7815 case OP_VColumn: { 7816 sqlite3_vtab *pVtab; 7817 const sqlite3_module *pModule; 7818 Mem *pDest; 7819 sqlite3_context sContext; 7820 7821 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7822 assert( pCur!=0 ); 7823 assert( pCur->eCurType==CURTYPE_VTAB ); 7824 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7825 pDest = &aMem[pOp->p3]; 7826 memAboutToChange(p, pDest); 7827 if( pCur->nullRow ){ 7828 sqlite3VdbeMemSetNull(pDest); 7829 break; 7830 } 7831 pVtab = pCur->uc.pVCur->pVtab; 7832 pModule = pVtab->pModule; 7833 assert( pModule->xColumn ); 7834 memset(&sContext, 0, sizeof(sContext)); 7835 sContext.pOut = pDest; 7836 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7837 if( pOp->p5 & OPFLAG_NOCHNG ){ 7838 sqlite3VdbeMemSetNull(pDest); 7839 pDest->flags = MEM_Null|MEM_Zero; 7840 pDest->u.nZero = 0; 7841 }else{ 7842 MemSetTypeFlag(pDest, MEM_Null); 7843 } 7844 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7845 sqlite3VtabImportErrmsg(p, pVtab); 7846 if( sContext.isError>0 ){ 7847 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7848 rc = sContext.isError; 7849 } 7850 sqlite3VdbeChangeEncoding(pDest, encoding); 7851 REGISTER_TRACE(pOp->p3, pDest); 7852 UPDATE_MAX_BLOBSIZE(pDest); 7853 7854 if( sqlite3VdbeMemTooBig(pDest) ){ 7855 goto too_big; 7856 } 7857 if( rc ) goto abort_due_to_error; 7858 break; 7859 } 7860 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7861 7862 #ifndef SQLITE_OMIT_VIRTUALTABLE 7863 /* Opcode: VNext P1 P2 * * * 7864 ** 7865 ** Advance virtual table P1 to the next row in its result set and 7866 ** jump to instruction P2. Or, if the virtual table has reached 7867 ** the end of its result set, then fall through to the next instruction. 7868 */ 7869 case OP_VNext: { /* jump */ 7870 sqlite3_vtab *pVtab; 7871 const sqlite3_module *pModule; 7872 int res; 7873 VdbeCursor *pCur; 7874 7875 pCur = p->apCsr[pOp->p1]; 7876 assert( pCur!=0 ); 7877 assert( pCur->eCurType==CURTYPE_VTAB ); 7878 if( pCur->nullRow ){ 7879 break; 7880 } 7881 pVtab = pCur->uc.pVCur->pVtab; 7882 pModule = pVtab->pModule; 7883 assert( pModule->xNext ); 7884 7885 /* Invoke the xNext() method of the module. There is no way for the 7886 ** underlying implementation to return an error if one occurs during 7887 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7888 ** data is available) and the error code returned when xColumn or 7889 ** some other method is next invoked on the save virtual table cursor. 7890 */ 7891 rc = pModule->xNext(pCur->uc.pVCur); 7892 sqlite3VtabImportErrmsg(p, pVtab); 7893 if( rc ) goto abort_due_to_error; 7894 res = pModule->xEof(pCur->uc.pVCur); 7895 VdbeBranchTaken(!res,2); 7896 if( !res ){ 7897 /* If there is data, jump to P2 */ 7898 goto jump_to_p2_and_check_for_interrupt; 7899 } 7900 goto check_for_interrupt; 7901 } 7902 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7903 7904 #ifndef SQLITE_OMIT_VIRTUALTABLE 7905 /* Opcode: VRename P1 * * P4 * 7906 ** 7907 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7908 ** This opcode invokes the corresponding xRename method. The value 7909 ** in register P1 is passed as the zName argument to the xRename method. 7910 */ 7911 case OP_VRename: { 7912 sqlite3_vtab *pVtab; 7913 Mem *pName; 7914 int isLegacy; 7915 7916 isLegacy = (db->flags & SQLITE_LegacyAlter); 7917 db->flags |= SQLITE_LegacyAlter; 7918 pVtab = pOp->p4.pVtab->pVtab; 7919 pName = &aMem[pOp->p1]; 7920 assert( pVtab->pModule->xRename ); 7921 assert( memIsValid(pName) ); 7922 assert( p->readOnly==0 ); 7923 REGISTER_TRACE(pOp->p1, pName); 7924 assert( pName->flags & MEM_Str ); 7925 testcase( pName->enc==SQLITE_UTF8 ); 7926 testcase( pName->enc==SQLITE_UTF16BE ); 7927 testcase( pName->enc==SQLITE_UTF16LE ); 7928 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7929 if( rc ) goto abort_due_to_error; 7930 rc = pVtab->pModule->xRename(pVtab, pName->z); 7931 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7932 sqlite3VtabImportErrmsg(p, pVtab); 7933 p->expired = 0; 7934 if( rc ) goto abort_due_to_error; 7935 break; 7936 } 7937 #endif 7938 7939 #ifndef SQLITE_OMIT_VIRTUALTABLE 7940 /* Opcode: VUpdate P1 P2 P3 P4 P5 7941 ** Synopsis: data=r[P3@P2] 7942 ** 7943 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7944 ** This opcode invokes the corresponding xUpdate method. P2 values 7945 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7946 ** invocation. The value in register (P3+P2-1) corresponds to the 7947 ** p2th element of the argv array passed to xUpdate. 7948 ** 7949 ** The xUpdate method will do a DELETE or an INSERT or both. 7950 ** The argv[0] element (which corresponds to memory cell P3) 7951 ** is the rowid of a row to delete. If argv[0] is NULL then no 7952 ** deletion occurs. The argv[1] element is the rowid of the new 7953 ** row. This can be NULL to have the virtual table select the new 7954 ** rowid for itself. The subsequent elements in the array are 7955 ** the values of columns in the new row. 7956 ** 7957 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7958 ** a row to delete. 7959 ** 7960 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7961 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7962 ** is set to the value of the rowid for the row just inserted. 7963 ** 7964 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7965 ** apply in the case of a constraint failure on an insert or update. 7966 */ 7967 case OP_VUpdate: { 7968 sqlite3_vtab *pVtab; 7969 const sqlite3_module *pModule; 7970 int nArg; 7971 int i; 7972 sqlite_int64 rowid = 0; 7973 Mem **apArg; 7974 Mem *pX; 7975 7976 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7977 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7978 ); 7979 assert( p->readOnly==0 ); 7980 if( db->mallocFailed ) goto no_mem; 7981 sqlite3VdbeIncrWriteCounter(p, 0); 7982 pVtab = pOp->p4.pVtab->pVtab; 7983 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7984 rc = SQLITE_LOCKED; 7985 goto abort_due_to_error; 7986 } 7987 pModule = pVtab->pModule; 7988 nArg = pOp->p2; 7989 assert( pOp->p4type==P4_VTAB ); 7990 if( ALWAYS(pModule->xUpdate) ){ 7991 u8 vtabOnConflict = db->vtabOnConflict; 7992 apArg = p->apArg; 7993 pX = &aMem[pOp->p3]; 7994 for(i=0; i<nArg; i++){ 7995 assert( memIsValid(pX) ); 7996 memAboutToChange(p, pX); 7997 apArg[i] = pX; 7998 pX++; 7999 } 8000 db->vtabOnConflict = pOp->p5; 8001 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 8002 db->vtabOnConflict = vtabOnConflict; 8003 sqlite3VtabImportErrmsg(p, pVtab); 8004 if( rc==SQLITE_OK && pOp->p1 ){ 8005 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 8006 db->lastRowid = rowid; 8007 } 8008 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 8009 if( pOp->p5==OE_Ignore ){ 8010 rc = SQLITE_OK; 8011 }else{ 8012 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 8013 } 8014 }else{ 8015 p->nChange++; 8016 } 8017 if( rc ) goto abort_due_to_error; 8018 } 8019 break; 8020 } 8021 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8022 8023 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8024 /* Opcode: Pagecount P1 P2 * * * 8025 ** 8026 ** Write the current number of pages in database P1 to memory cell P2. 8027 */ 8028 case OP_Pagecount: { /* out2 */ 8029 pOut = out2Prerelease(p, pOp); 8030 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8031 break; 8032 } 8033 #endif 8034 8035 8036 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8037 /* Opcode: MaxPgcnt P1 P2 P3 * * 8038 ** 8039 ** Try to set the maximum page count for database P1 to the value in P3. 8040 ** Do not let the maximum page count fall below the current page count and 8041 ** do not change the maximum page count value if P3==0. 8042 ** 8043 ** Store the maximum page count after the change in register P2. 8044 */ 8045 case OP_MaxPgcnt: { /* out2 */ 8046 unsigned int newMax; 8047 Btree *pBt; 8048 8049 pOut = out2Prerelease(p, pOp); 8050 pBt = db->aDb[pOp->p1].pBt; 8051 newMax = 0; 8052 if( pOp->p3 ){ 8053 newMax = sqlite3BtreeLastPage(pBt); 8054 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8055 } 8056 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8057 break; 8058 } 8059 #endif 8060 8061 /* Opcode: Function P1 P2 P3 P4 * 8062 ** Synopsis: r[P3]=func(r[P2@NP]) 8063 ** 8064 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8065 ** contains a pointer to the function to be run) with arguments taken 8066 ** from register P2 and successors. The number of arguments is in 8067 ** the sqlite3_context object that P4 points to. 8068 ** The result of the function is stored 8069 ** in register P3. Register P3 must not be one of the function inputs. 8070 ** 8071 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8072 ** function was determined to be constant at compile time. If the first 8073 ** argument was constant then bit 0 of P1 is set. This is used to determine 8074 ** whether meta data associated with a user function argument using the 8075 ** sqlite3_set_auxdata() API may be safely retained until the next 8076 ** invocation of this opcode. 8077 ** 8078 ** See also: AggStep, AggFinal, PureFunc 8079 */ 8080 /* Opcode: PureFunc P1 P2 P3 P4 * 8081 ** Synopsis: r[P3]=func(r[P2@NP]) 8082 ** 8083 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8084 ** contains a pointer to the function to be run) with arguments taken 8085 ** from register P2 and successors. The number of arguments is in 8086 ** the sqlite3_context object that P4 points to. 8087 ** The result of the function is stored 8088 ** in register P3. Register P3 must not be one of the function inputs. 8089 ** 8090 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8091 ** function was determined to be constant at compile time. If the first 8092 ** argument was constant then bit 0 of P1 is set. This is used to determine 8093 ** whether meta data associated with a user function argument using the 8094 ** sqlite3_set_auxdata() API may be safely retained until the next 8095 ** invocation of this opcode. 8096 ** 8097 ** This opcode works exactly like OP_Function. The only difference is in 8098 ** its name. This opcode is used in places where the function must be 8099 ** purely non-deterministic. Some built-in date/time functions can be 8100 ** either determinitic of non-deterministic, depending on their arguments. 8101 ** When those function are used in a non-deterministic way, they will check 8102 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8103 ** if they were, they throw an error. 8104 ** 8105 ** See also: AggStep, AggFinal, Function 8106 */ 8107 case OP_PureFunc: /* group */ 8108 case OP_Function: { /* group */ 8109 int i; 8110 sqlite3_context *pCtx; 8111 8112 assert( pOp->p4type==P4_FUNCCTX ); 8113 pCtx = pOp->p4.pCtx; 8114 8115 /* If this function is inside of a trigger, the register array in aMem[] 8116 ** might change from one evaluation to the next. The next block of code 8117 ** checks to see if the register array has changed, and if so it 8118 ** reinitializes the relavant parts of the sqlite3_context object */ 8119 pOut = &aMem[pOp->p3]; 8120 if( pCtx->pOut != pOut ){ 8121 pCtx->pVdbe = p; 8122 pCtx->pOut = pOut; 8123 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8124 } 8125 assert( pCtx->pVdbe==p ); 8126 8127 memAboutToChange(p, pOut); 8128 #ifdef SQLITE_DEBUG 8129 for(i=0; i<pCtx->argc; i++){ 8130 assert( memIsValid(pCtx->argv[i]) ); 8131 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8132 } 8133 #endif 8134 MemSetTypeFlag(pOut, MEM_Null); 8135 assert( pCtx->isError==0 ); 8136 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8137 8138 /* If the function returned an error, throw an exception */ 8139 if( pCtx->isError ){ 8140 if( pCtx->isError>0 ){ 8141 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8142 rc = pCtx->isError; 8143 } 8144 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8145 pCtx->isError = 0; 8146 if( rc ) goto abort_due_to_error; 8147 } 8148 8149 /* Copy the result of the function into register P3 */ 8150 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 8151 sqlite3VdbeChangeEncoding(pOut, encoding); 8152 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 8153 } 8154 8155 REGISTER_TRACE(pOp->p3, pOut); 8156 UPDATE_MAX_BLOBSIZE(pOut); 8157 break; 8158 } 8159 8160 /* Opcode: FilterAdd P1 * P3 P4 * 8161 ** Synopsis: filter(P1) += key(P3@P4) 8162 ** 8163 ** Compute a hash on the P4 registers starting with r[P3] and 8164 ** add that hash to the bloom filter contained in r[P1]. 8165 */ 8166 case OP_FilterAdd: { 8167 u64 h; 8168 8169 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8170 pIn1 = &aMem[pOp->p1]; 8171 assert( pIn1->flags & MEM_Blob ); 8172 assert( pIn1->n>0 ); 8173 h = filterHash(aMem, pOp); 8174 #ifdef SQLITE_DEBUG 8175 if( db->flags&SQLITE_VdbeTrace ){ 8176 int ii; 8177 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8178 registerTrace(ii, &aMem[ii]); 8179 } 8180 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8181 } 8182 #endif 8183 h %= pIn1->n; 8184 pIn1->z[h/8] |= 1<<(h&7); 8185 break; 8186 } 8187 8188 /* Opcode: Filter P1 P2 P3 P4 * 8189 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 8190 ** 8191 ** Compute a hash on the key contained in the P4 registers starting 8192 ** with r[P3]. Check to see if that hash is found in the 8193 ** bloom filter hosted by register P1. If it is not present then 8194 ** maybe jump to P2. Otherwise fall through. 8195 ** 8196 ** False negatives are harmless. It is always safe to fall through, 8197 ** even if the value is in the bloom filter. A false negative causes 8198 ** more CPU cycles to be used, but it should still yield the correct 8199 ** answer. However, an incorrect answer may well arise from a 8200 ** false positive - if the jump is taken when it should fall through. 8201 */ 8202 case OP_Filter: { /* jump */ 8203 u64 h; 8204 8205 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8206 pIn1 = &aMem[pOp->p1]; 8207 assert( (pIn1->flags & MEM_Blob)!=0 ); 8208 assert( pIn1->n >= 1 ); 8209 h = filterHash(aMem, pOp); 8210 #ifdef SQLITE_DEBUG 8211 if( db->flags&SQLITE_VdbeTrace ){ 8212 int ii; 8213 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8214 registerTrace(ii, &aMem[ii]); 8215 } 8216 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8217 } 8218 #endif 8219 h %= pIn1->n; 8220 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 8221 VdbeBranchTaken(1, 2); 8222 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 8223 goto jump_to_p2; 8224 }else{ 8225 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 8226 VdbeBranchTaken(0, 2); 8227 } 8228 break; 8229 } 8230 8231 /* Opcode: Trace P1 P2 * P4 * 8232 ** 8233 ** Write P4 on the statement trace output if statement tracing is 8234 ** enabled. 8235 ** 8236 ** Operand P1 must be 0x7fffffff and P2 must positive. 8237 */ 8238 /* Opcode: Init P1 P2 P3 P4 * 8239 ** Synopsis: Start at P2 8240 ** 8241 ** Programs contain a single instance of this opcode as the very first 8242 ** opcode. 8243 ** 8244 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8245 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8246 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8247 ** 8248 ** If P2 is not zero, jump to instruction P2. 8249 ** 8250 ** Increment the value of P1 so that OP_Once opcodes will jump the 8251 ** first time they are evaluated for this run. 8252 ** 8253 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8254 ** error is encountered. 8255 */ 8256 case OP_Trace: 8257 case OP_Init: { /* jump */ 8258 int i; 8259 #ifndef SQLITE_OMIT_TRACE 8260 char *zTrace; 8261 #endif 8262 8263 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8264 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8265 ** 8266 ** This assert() provides evidence for: 8267 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8268 ** would have been returned by the legacy sqlite3_trace() interface by 8269 ** using the X argument when X begins with "--" and invoking 8270 ** sqlite3_expanded_sql(P) otherwise. 8271 */ 8272 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8273 8274 /* OP_Init is always instruction 0 */ 8275 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8276 8277 #ifndef SQLITE_OMIT_TRACE 8278 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8279 && !p->doingRerun 8280 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8281 ){ 8282 #ifndef SQLITE_OMIT_DEPRECATED 8283 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8284 char *z = sqlite3VdbeExpandSql(p, zTrace); 8285 db->trace.xLegacy(db->pTraceArg, z); 8286 sqlite3_free(z); 8287 }else 8288 #endif 8289 if( db->nVdbeExec>1 ){ 8290 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8291 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8292 sqlite3DbFree(db, z); 8293 }else{ 8294 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8295 } 8296 } 8297 #ifdef SQLITE_USE_FCNTL_TRACE 8298 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8299 if( zTrace ){ 8300 int j; 8301 for(j=0; j<db->nDb; j++){ 8302 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8303 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8304 } 8305 } 8306 #endif /* SQLITE_USE_FCNTL_TRACE */ 8307 #ifdef SQLITE_DEBUG 8308 if( (db->flags & SQLITE_SqlTrace)!=0 8309 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8310 ){ 8311 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8312 } 8313 #endif /* SQLITE_DEBUG */ 8314 #endif /* SQLITE_OMIT_TRACE */ 8315 assert( pOp->p2>0 ); 8316 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8317 if( pOp->opcode==OP_Trace ) break; 8318 for(i=1; i<p->nOp; i++){ 8319 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8320 } 8321 pOp->p1 = 0; 8322 } 8323 pOp->p1++; 8324 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8325 goto jump_to_p2; 8326 } 8327 8328 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8329 /* Opcode: CursorHint P1 * * P4 * 8330 ** 8331 ** Provide a hint to cursor P1 that it only needs to return rows that 8332 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8333 ** to values currently held in registers. TK_COLUMN terms in the P4 8334 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8335 */ 8336 case OP_CursorHint: { 8337 VdbeCursor *pC; 8338 8339 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8340 assert( pOp->p4type==P4_EXPR ); 8341 pC = p->apCsr[pOp->p1]; 8342 if( pC ){ 8343 assert( pC->eCurType==CURTYPE_BTREE ); 8344 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8345 pOp->p4.pExpr, aMem); 8346 } 8347 break; 8348 } 8349 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8350 8351 #ifdef SQLITE_DEBUG 8352 /* Opcode: Abortable * * * * * 8353 ** 8354 ** Verify that an Abort can happen. Assert if an Abort at this point 8355 ** might cause database corruption. This opcode only appears in debugging 8356 ** builds. 8357 ** 8358 ** An Abort is safe if either there have been no writes, or if there is 8359 ** an active statement journal. 8360 */ 8361 case OP_Abortable: { 8362 sqlite3VdbeAssertAbortable(p); 8363 break; 8364 } 8365 #endif 8366 8367 #ifdef SQLITE_DEBUG 8368 /* Opcode: ReleaseReg P1 P2 P3 * P5 8369 ** Synopsis: release r[P1@P2] mask P3 8370 ** 8371 ** Release registers from service. Any content that was in the 8372 ** the registers is unreliable after this opcode completes. 8373 ** 8374 ** The registers released will be the P2 registers starting at P1, 8375 ** except if bit ii of P3 set, then do not release register P1+ii. 8376 ** In other words, P3 is a mask of registers to preserve. 8377 ** 8378 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8379 ** that if the content of the released register was set using OP_SCopy, 8380 ** a change to the value of the source register for the OP_SCopy will no longer 8381 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8382 ** 8383 ** If P5 is set, then all released registers have their type set 8384 ** to MEM_Undefined so that any subsequent attempt to read the released 8385 ** register (before it is reinitialized) will generate an assertion fault. 8386 ** 8387 ** P5 ought to be set on every call to this opcode. 8388 ** However, there are places in the code generator will release registers 8389 ** before their are used, under the (valid) assumption that the registers 8390 ** will not be reallocated for some other purpose before they are used and 8391 ** hence are safe to release. 8392 ** 8393 ** This opcode is only available in testing and debugging builds. It is 8394 ** not generated for release builds. The purpose of this opcode is to help 8395 ** validate the generated bytecode. This opcode does not actually contribute 8396 ** to computing an answer. 8397 */ 8398 case OP_ReleaseReg: { 8399 Mem *pMem; 8400 int i; 8401 u32 constMask; 8402 assert( pOp->p1>0 ); 8403 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8404 pMem = &aMem[pOp->p1]; 8405 constMask = pOp->p3; 8406 for(i=0; i<pOp->p2; i++, pMem++){ 8407 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8408 pMem->pScopyFrom = 0; 8409 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8410 } 8411 } 8412 break; 8413 } 8414 #endif 8415 8416 /* Opcode: Noop * * * * * 8417 ** 8418 ** Do nothing. This instruction is often useful as a jump 8419 ** destination. 8420 */ 8421 /* 8422 ** The magic Explain opcode are only inserted when explain==2 (which 8423 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8424 ** This opcode records information from the optimizer. It is the 8425 ** the same as a no-op. This opcodesnever appears in a real VM program. 8426 */ 8427 default: { /* This is really OP_Noop, OP_Explain */ 8428 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8429 8430 break; 8431 } 8432 8433 /***************************************************************************** 8434 ** The cases of the switch statement above this line should all be indented 8435 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8436 ** readability. From this point on down, the normal indentation rules are 8437 ** restored. 8438 *****************************************************************************/ 8439 } 8440 8441 #ifdef VDBE_PROFILE 8442 { 8443 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8444 if( endTime>start ) pOrigOp->cycles += endTime - start; 8445 pOrigOp->cnt++; 8446 } 8447 #endif 8448 8449 /* The following code adds nothing to the actual functionality 8450 ** of the program. It is only here for testing and debugging. 8451 ** On the other hand, it does burn CPU cycles every time through 8452 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8453 */ 8454 #ifndef NDEBUG 8455 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8456 8457 #ifdef SQLITE_DEBUG 8458 if( db->flags & SQLITE_VdbeTrace ){ 8459 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8460 if( rc!=0 ) printf("rc=%d\n",rc); 8461 if( opProperty & (OPFLG_OUT2) ){ 8462 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8463 } 8464 if( opProperty & OPFLG_OUT3 ){ 8465 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8466 } 8467 if( opProperty==0xff ){ 8468 /* Never happens. This code exists to avoid a harmless linkage 8469 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8470 ** used. */ 8471 sqlite3VdbeRegisterDump(p); 8472 } 8473 } 8474 #endif /* SQLITE_DEBUG */ 8475 #endif /* NDEBUG */ 8476 } /* The end of the for(;;) loop the loops through opcodes */ 8477 8478 /* If we reach this point, it means that execution is finished with 8479 ** an error of some kind. 8480 */ 8481 abort_due_to_error: 8482 if( db->mallocFailed ){ 8483 rc = SQLITE_NOMEM_BKPT; 8484 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8485 rc = SQLITE_CORRUPT_BKPT; 8486 } 8487 assert( rc ); 8488 #ifdef SQLITE_DEBUG 8489 if( db->flags & SQLITE_VdbeTrace ){ 8490 const char *zTrace = p->zSql; 8491 if( zTrace==0 ){ 8492 if( aOp[0].opcode==OP_Trace ){ 8493 zTrace = aOp[0].p4.z; 8494 } 8495 if( zTrace==0 ) zTrace = "???"; 8496 } 8497 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8498 } 8499 #endif 8500 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8501 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8502 } 8503 p->rc = rc; 8504 sqlite3SystemError(db, rc); 8505 testcase( sqlite3GlobalConfig.xLog!=0 ); 8506 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8507 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8508 sqlite3VdbeHalt(p); 8509 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8510 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8511 db->flags |= SQLITE_CorruptRdOnly; 8512 } 8513 rc = SQLITE_ERROR; 8514 if( resetSchemaOnFault>0 ){ 8515 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8516 } 8517 8518 /* This is the only way out of this procedure. We have to 8519 ** release the mutexes on btrees that were acquired at the 8520 ** top. */ 8521 vdbe_return: 8522 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8523 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8524 nProgressLimit += db->nProgressOps; 8525 if( db->xProgress(db->pProgressArg) ){ 8526 nProgressLimit = LARGEST_UINT64; 8527 rc = SQLITE_INTERRUPT; 8528 goto abort_due_to_error; 8529 } 8530 } 8531 #endif 8532 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8533 sqlite3VdbeLeave(p); 8534 assert( rc!=SQLITE_OK || nExtraDelete==0 8535 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8536 ); 8537 return rc; 8538 8539 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8540 ** is encountered. 8541 */ 8542 too_big: 8543 sqlite3VdbeError(p, "string or blob too big"); 8544 rc = SQLITE_TOOBIG; 8545 goto abort_due_to_error; 8546 8547 /* Jump to here if a malloc() fails. 8548 */ 8549 no_mem: 8550 sqlite3OomFault(db); 8551 sqlite3VdbeError(p, "out of memory"); 8552 rc = SQLITE_NOMEM_BKPT; 8553 goto abort_due_to_error; 8554 8555 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8556 ** flag. 8557 */ 8558 abort_due_to_interrupt: 8559 assert( AtomicLoad(&db->u1.isInterrupted) ); 8560 rc = SQLITE_INTERRUPT; 8561 goto abort_due_to_error; 8562 } 8563