xref: /sqlite-3.40.0/src/vdbe.c (revision 181d75ef)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   u8 eCurType           /* Type of the new cursor */
245 ){
246   /* Find the memory cell that will be used to store the blob of memory
247   ** required for this VdbeCursor structure. It is convenient to use a
248   ** vdbe memory cell to manage the memory allocation required for a
249   ** VdbeCursor structure for the following reasons:
250   **
251   **   * Sometimes cursor numbers are used for a couple of different
252   **     purposes in a vdbe program. The different uses might require
253   **     different sized allocations. Memory cells provide growable
254   **     allocations.
255   **
256   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257   **     be freed lazily via the sqlite3_release_memory() API. This
258   **     minimizes the number of malloc calls made by the system.
259   **
260   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
262   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
263   */
264   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
265 
266   int nByte;
267   VdbeCursor *pCx = 0;
268   nByte =
269       ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
270       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
271 
272   assert( iCur>=0 && iCur<p->nCursor );
273   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
274     sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
275     p->apCsr[iCur] = 0;
276   }
277 
278   /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279   ** the pMem used to hold space for the cursor has enough storage available
280   ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
281   ** to hold cursors, it is faster to in-line the logic. */
282   assert( pMem->flags==MEM_Undefined );
283   assert( (pMem->flags & MEM_Dyn)==0 );
284   assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
285   if( pMem->szMalloc<nByte ){
286     if( pMem->szMalloc>0 ){
287       sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
288     }
289     pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
290     if( pMem->zMalloc==0 ){
291       pMem->szMalloc = 0;
292       return 0;
293     }
294     pMem->szMalloc = nByte;
295   }
296 
297   p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
298   memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
299   pCx->eCurType = eCurType;
300   pCx->nField = nField;
301   pCx->aOffset = &pCx->aType[nField];
302   if( eCurType==CURTYPE_BTREE ){
303     pCx->uc.pCursor = (BtCursor*)
304         &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
305     sqlite3BtreeCursorZero(pCx->uc.pCursor);
306   }
307   return pCx;
308 }
309 
310 /*
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue.  Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer.  Otherwise,
314 ** return false.
315 */
316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
317   i64 iValue = (double)rValue;
318   if( sqlite3RealSameAsInt(rValue,iValue) ){
319     *piValue = iValue;
320     return 1;
321   }
322   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
323 }
324 
325 /*
326 ** Try to convert a value into a numeric representation if we can
327 ** do so without loss of information.  In other words, if the string
328 ** looks like a number, convert it into a number.  If it does not
329 ** look like a number, leave it alone.
330 **
331 ** If the bTryForInt flag is true, then extra effort is made to give
332 ** an integer representation.  Strings that look like floating point
333 ** values but which have no fractional component (example: '48.00')
334 ** will have a MEM_Int representation when bTryForInt is true.
335 **
336 ** If bTryForInt is false, then if the input string contains a decimal
337 ** point or exponential notation, the result is only MEM_Real, even
338 ** if there is an exact integer representation of the quantity.
339 */
340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
341   double rValue;
342   u8 enc = pRec->enc;
343   int rc;
344   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
345   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
346   if( rc<=0 ) return;
347   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
348     pRec->flags |= MEM_Int;
349   }else{
350     pRec->u.r = rValue;
351     pRec->flags |= MEM_Real;
352     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
353   }
354   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
355   ** string representation after computing a numeric equivalent, because the
356   ** string representation might not be the canonical representation for the
357   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
358   pRec->flags &= ~MEM_Str;
359 }
360 
361 /*
362 ** Processing is determine by the affinity parameter:
363 **
364 ** SQLITE_AFF_INTEGER:
365 ** SQLITE_AFF_REAL:
366 ** SQLITE_AFF_NUMERIC:
367 **    Try to convert pRec to an integer representation or a
368 **    floating-point representation if an integer representation
369 **    is not possible.  Note that the integer representation is
370 **    always preferred, even if the affinity is REAL, because
371 **    an integer representation is more space efficient on disk.
372 **
373 ** SQLITE_AFF_TEXT:
374 **    Convert pRec to a text representation.
375 **
376 ** SQLITE_AFF_BLOB:
377 ** SQLITE_AFF_NONE:
378 **    No-op.  pRec is unchanged.
379 */
380 static void applyAffinity(
381   Mem *pRec,          /* The value to apply affinity to */
382   char affinity,      /* The affinity to be applied */
383   u8 enc              /* Use this text encoding */
384 ){
385   if( affinity>=SQLITE_AFF_NUMERIC ){
386     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
387              || affinity==SQLITE_AFF_NUMERIC );
388     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
389       if( (pRec->flags & MEM_Real)==0 ){
390         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
391       }else{
392         sqlite3VdbeIntegerAffinity(pRec);
393       }
394     }
395   }else if( affinity==SQLITE_AFF_TEXT ){
396     /* Only attempt the conversion to TEXT if there is an integer or real
397     ** representation (blob and NULL do not get converted) but no string
398     ** representation.  It would be harmless to repeat the conversion if
399     ** there is already a string rep, but it is pointless to waste those
400     ** CPU cycles. */
401     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
402       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
403         testcase( pRec->flags & MEM_Int );
404         testcase( pRec->flags & MEM_Real );
405         testcase( pRec->flags & MEM_IntReal );
406         sqlite3VdbeMemStringify(pRec, enc, 1);
407       }
408     }
409     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
410   }
411 }
412 
413 /*
414 ** Try to convert the type of a function argument or a result column
415 ** into a numeric representation.  Use either INTEGER or REAL whichever
416 ** is appropriate.  But only do the conversion if it is possible without
417 ** loss of information and return the revised type of the argument.
418 */
419 int sqlite3_value_numeric_type(sqlite3_value *pVal){
420   int eType = sqlite3_value_type(pVal);
421   if( eType==SQLITE_TEXT ){
422     Mem *pMem = (Mem*)pVal;
423     applyNumericAffinity(pMem, 0);
424     eType = sqlite3_value_type(pVal);
425   }
426   return eType;
427 }
428 
429 /*
430 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
431 ** not the internal Mem* type.
432 */
433 void sqlite3ValueApplyAffinity(
434   sqlite3_value *pVal,
435   u8 affinity,
436   u8 enc
437 ){
438   applyAffinity((Mem *)pVal, affinity, enc);
439 }
440 
441 /*
442 ** pMem currently only holds a string type (or maybe a BLOB that we can
443 ** interpret as a string if we want to).  Compute its corresponding
444 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
445 ** accordingly.
446 */
447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
448   int rc;
449   sqlite3_int64 ix;
450   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
451   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
452   if( ExpandBlob(pMem) ){
453     pMem->u.i = 0;
454     return MEM_Int;
455   }
456   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
457   if( rc<=0 ){
458     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
459       pMem->u.i = ix;
460       return MEM_Int;
461     }else{
462       return MEM_Real;
463     }
464   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
465     pMem->u.i = ix;
466     return MEM_Int;
467   }
468   return MEM_Real;
469 }
470 
471 /*
472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
473 ** none.
474 **
475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
476 ** But it does set pMem->u.r and pMem->u.i appropriately.
477 */
478 static u16 numericType(Mem *pMem){
479   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
480     testcase( pMem->flags & MEM_Int );
481     testcase( pMem->flags & MEM_Real );
482     testcase( pMem->flags & MEM_IntReal );
483     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
484   }
485   if( pMem->flags & (MEM_Str|MEM_Blob) ){
486     testcase( pMem->flags & MEM_Str );
487     testcase( pMem->flags & MEM_Blob );
488     return computeNumericType(pMem);
489   }
490   return 0;
491 }
492 
493 #ifdef SQLITE_DEBUG
494 /*
495 ** Write a nice string representation of the contents of cell pMem
496 ** into buffer zBuf, length nBuf.
497 */
498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
499   int f = pMem->flags;
500   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
501   if( f&MEM_Blob ){
502     int i;
503     char c;
504     if( f & MEM_Dyn ){
505       c = 'z';
506       assert( (f & (MEM_Static|MEM_Ephem))==0 );
507     }else if( f & MEM_Static ){
508       c = 't';
509       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
510     }else if( f & MEM_Ephem ){
511       c = 'e';
512       assert( (f & (MEM_Static|MEM_Dyn))==0 );
513     }else{
514       c = 's';
515     }
516     sqlite3_str_appendf(pStr, "%cx[", c);
517     for(i=0; i<25 && i<pMem->n; i++){
518       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
519     }
520     sqlite3_str_appendf(pStr, "|");
521     for(i=0; i<25 && i<pMem->n; i++){
522       char z = pMem->z[i];
523       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
524     }
525     sqlite3_str_appendf(pStr,"]");
526     if( f & MEM_Zero ){
527       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
528     }
529   }else if( f & MEM_Str ){
530     int j;
531     u8 c;
532     if( f & MEM_Dyn ){
533       c = 'z';
534       assert( (f & (MEM_Static|MEM_Ephem))==0 );
535     }else if( f & MEM_Static ){
536       c = 't';
537       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
538     }else if( f & MEM_Ephem ){
539       c = 'e';
540       assert( (f & (MEM_Static|MEM_Dyn))==0 );
541     }else{
542       c = 's';
543     }
544     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
545     for(j=0; j<25 && j<pMem->n; j++){
546       c = pMem->z[j];
547       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
548     }
549     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
550   }
551 }
552 #endif
553 
554 #ifdef SQLITE_DEBUG
555 /*
556 ** Print the value of a register for tracing purposes:
557 */
558 static void memTracePrint(Mem *p){
559   if( p->flags & MEM_Undefined ){
560     printf(" undefined");
561   }else if( p->flags & MEM_Null ){
562     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
563   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
564     printf(" si:%lld", p->u.i);
565   }else if( (p->flags & (MEM_IntReal))!=0 ){
566     printf(" ir:%lld", p->u.i);
567   }else if( p->flags & MEM_Int ){
568     printf(" i:%lld", p->u.i);
569 #ifndef SQLITE_OMIT_FLOATING_POINT
570   }else if( p->flags & MEM_Real ){
571     printf(" r:%.17g", p->u.r);
572 #endif
573   }else if( sqlite3VdbeMemIsRowSet(p) ){
574     printf(" (rowset)");
575   }else{
576     StrAccum acc;
577     char zBuf[1000];
578     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
579     sqlite3VdbeMemPrettyPrint(p, &acc);
580     printf(" %s", sqlite3StrAccumFinish(&acc));
581   }
582   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
583 }
584 static void registerTrace(int iReg, Mem *p){
585   printf("R[%d] = ", iReg);
586   memTracePrint(p);
587   if( p->pScopyFrom ){
588     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
589   }
590   printf("\n");
591   sqlite3VdbeCheckMemInvariants(p);
592 }
593 /**/ void sqlite3PrintMem(Mem *pMem){
594   memTracePrint(pMem);
595   printf("\n");
596   fflush(stdout);
597 }
598 #endif
599 
600 #ifdef SQLITE_DEBUG
601 /*
602 ** Show the values of all registers in the virtual machine.  Used for
603 ** interactive debugging.
604 */
605 void sqlite3VdbeRegisterDump(Vdbe *v){
606   int i;
607   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
608 }
609 #endif /* SQLITE_DEBUG */
610 
611 
612 #ifdef SQLITE_DEBUG
613 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
614 #else
615 #  define REGISTER_TRACE(R,M)
616 #endif
617 
618 
619 #ifdef VDBE_PROFILE
620 
621 /*
622 ** hwtime.h contains inline assembler code for implementing
623 ** high-performance timing routines.
624 */
625 #include "hwtime.h"
626 
627 #endif
628 
629 #ifndef NDEBUG
630 /*
631 ** This function is only called from within an assert() expression. It
632 ** checks that the sqlite3.nTransaction variable is correctly set to
633 ** the number of non-transaction savepoints currently in the
634 ** linked list starting at sqlite3.pSavepoint.
635 **
636 ** Usage:
637 **
638 **     assert( checkSavepointCount(db) );
639 */
640 static int checkSavepointCount(sqlite3 *db){
641   int n = 0;
642   Savepoint *p;
643   for(p=db->pSavepoint; p; p=p->pNext) n++;
644   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
645   return 1;
646 }
647 #endif
648 
649 /*
650 ** Return the register of pOp->p2 after first preparing it to be
651 ** overwritten with an integer value.
652 */
653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
654   sqlite3VdbeMemSetNull(pOut);
655   pOut->flags = MEM_Int;
656   return pOut;
657 }
658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
659   Mem *pOut;
660   assert( pOp->p2>0 );
661   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
662   pOut = &p->aMem[pOp->p2];
663   memAboutToChange(p, pOut);
664   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
665     return out2PrereleaseWithClear(pOut);
666   }else{
667     pOut->flags = MEM_Int;
668     return pOut;
669   }
670 }
671 
672 /*
673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
674 ** with pOp->p3.  Return the hash.
675 */
676 static u64 filterHash(const Mem *aMem, const Op *pOp){
677   int i, mx;
678   u64 h = 0;
679 
680   assert( pOp->p4type==P4_INT32 );
681   for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
682     const Mem *p = &aMem[i];
683     if( p->flags & (MEM_Int|MEM_IntReal) ){
684       h += p->u.i;
685     }else if( p->flags & MEM_Real ){
686       h += sqlite3VdbeIntValue(p);
687     }else if( p->flags & (MEM_Str|MEM_Blob) ){
688       h += p->n;
689       if( p->flags & MEM_Zero ) h += p->u.nZero;
690     }
691   }
692   return h;
693 }
694 
695 /*
696 ** Return the symbolic name for the data type of a pMem
697 */
698 static const char *vdbeMemTypeName(Mem *pMem){
699   static const char *azTypes[] = {
700       /* SQLITE_INTEGER */ "INT",
701       /* SQLITE_FLOAT   */ "REAL",
702       /* SQLITE_TEXT    */ "TEXT",
703       /* SQLITE_BLOB    */ "BLOB",
704       /* SQLITE_NULL    */ "NULL"
705   };
706   return azTypes[sqlite3_value_type(pMem)-1];
707 }
708 
709 /*
710 ** Execute as much of a VDBE program as we can.
711 ** This is the core of sqlite3_step().
712 */
713 int sqlite3VdbeExec(
714   Vdbe *p                    /* The VDBE */
715 ){
716   Op *aOp = p->aOp;          /* Copy of p->aOp */
717   Op *pOp = aOp;             /* Current operation */
718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
719   Op *pOrigOp;               /* Value of pOp at the top of the loop */
720 #endif
721 #ifdef SQLITE_DEBUG
722   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
723 #endif
724   int rc = SQLITE_OK;        /* Value to return */
725   sqlite3 *db = p->db;       /* The database */
726   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
727   u8 encoding = ENC(db);     /* The database encoding */
728   int iCompare = 0;          /* Result of last comparison */
729   u64 nVmStep = 0;           /* Number of virtual machine steps */
730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
731   u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
732 #endif
733   Mem *aMem = p->aMem;       /* Copy of p->aMem */
734   Mem *pIn1 = 0;             /* 1st input operand */
735   Mem *pIn2 = 0;             /* 2nd input operand */
736   Mem *pIn3 = 0;             /* 3rd input operand */
737   Mem *pOut = 0;             /* Output operand */
738 #ifdef VDBE_PROFILE
739   u64 start;                 /* CPU clock count at start of opcode */
740 #endif
741   /*** INSERT STACK UNION HERE ***/
742 
743   assert( p->eVdbeState==VDBE_RUN_STATE );  /* sqlite3_step() verifies this */
744   sqlite3VdbeEnter(p);
745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
746   if( db->xProgress ){
747     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
748     assert( 0 < db->nProgressOps );
749     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
750   }else{
751     nProgressLimit = LARGEST_UINT64;
752   }
753 #endif
754   if( p->rc==SQLITE_NOMEM ){
755     /* This happens if a malloc() inside a call to sqlite3_column_text() or
756     ** sqlite3_column_text16() failed.  */
757     goto no_mem;
758   }
759   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
760   testcase( p->rc!=SQLITE_OK );
761   p->rc = SQLITE_OK;
762   assert( p->bIsReader || p->readOnly!=0 );
763   p->iCurrentTime = 0;
764   assert( p->explain==0 );
765   p->pResultSet = 0;
766   db->busyHandler.nBusy = 0;
767   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
768   sqlite3VdbeIOTraceSql(p);
769 #ifdef SQLITE_DEBUG
770   sqlite3BeginBenignMalloc();
771   if( p->pc==0
772    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
773   ){
774     int i;
775     int once = 1;
776     sqlite3VdbePrintSql(p);
777     if( p->db->flags & SQLITE_VdbeListing ){
778       printf("VDBE Program Listing:\n");
779       for(i=0; i<p->nOp; i++){
780         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
781       }
782     }
783     if( p->db->flags & SQLITE_VdbeEQP ){
784       for(i=0; i<p->nOp; i++){
785         if( aOp[i].opcode==OP_Explain ){
786           if( once ) printf("VDBE Query Plan:\n");
787           printf("%s\n", aOp[i].p4.z);
788           once = 0;
789         }
790       }
791     }
792     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
793   }
794   sqlite3EndBenignMalloc();
795 #endif
796   for(pOp=&aOp[p->pc]; 1; pOp++){
797     /* Errors are detected by individual opcodes, with an immediate
798     ** jumps to abort_due_to_error. */
799     assert( rc==SQLITE_OK );
800 
801     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
802 #ifdef VDBE_PROFILE
803     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
804 #endif
805     nVmStep++;
806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
807     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
808 #endif
809 
810     /* Only allow tracing if SQLITE_DEBUG is defined.
811     */
812 #ifdef SQLITE_DEBUG
813     if( db->flags & SQLITE_VdbeTrace ){
814       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
815       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
816     }
817 #endif
818 
819 
820     /* Check to see if we need to simulate an interrupt.  This only happens
821     ** if we have a special test build.
822     */
823 #ifdef SQLITE_TEST
824     if( sqlite3_interrupt_count>0 ){
825       sqlite3_interrupt_count--;
826       if( sqlite3_interrupt_count==0 ){
827         sqlite3_interrupt(db);
828       }
829     }
830 #endif
831 
832     /* Sanity checking on other operands */
833 #ifdef SQLITE_DEBUG
834     {
835       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
836       if( (opProperty & OPFLG_IN1)!=0 ){
837         assert( pOp->p1>0 );
838         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
839         assert( memIsValid(&aMem[pOp->p1]) );
840         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
841         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
842       }
843       if( (opProperty & OPFLG_IN2)!=0 ){
844         assert( pOp->p2>0 );
845         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
846         assert( memIsValid(&aMem[pOp->p2]) );
847         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
848         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
849       }
850       if( (opProperty & OPFLG_IN3)!=0 ){
851         assert( pOp->p3>0 );
852         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
853         assert( memIsValid(&aMem[pOp->p3]) );
854         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
855         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
856       }
857       if( (opProperty & OPFLG_OUT2)!=0 ){
858         assert( pOp->p2>0 );
859         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
860         memAboutToChange(p, &aMem[pOp->p2]);
861       }
862       if( (opProperty & OPFLG_OUT3)!=0 ){
863         assert( pOp->p3>0 );
864         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
865         memAboutToChange(p, &aMem[pOp->p3]);
866       }
867     }
868 #endif
869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
870     pOrigOp = pOp;
871 #endif
872 
873     switch( pOp->opcode ){
874 
875 /*****************************************************************************
876 ** What follows is a massive switch statement where each case implements a
877 ** separate instruction in the virtual machine.  If we follow the usual
878 ** indentation conventions, each case should be indented by 6 spaces.  But
879 ** that is a lot of wasted space on the left margin.  So the code within
880 ** the switch statement will break with convention and be flush-left. Another
881 ** big comment (similar to this one) will mark the point in the code where
882 ** we transition back to normal indentation.
883 **
884 ** The formatting of each case is important.  The makefile for SQLite
885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
886 ** file looking for lines that begin with "case OP_".  The opcodes.h files
887 ** will be filled with #defines that give unique integer values to each
888 ** opcode and the opcodes.c file is filled with an array of strings where
889 ** each string is the symbolic name for the corresponding opcode.  If the
890 ** case statement is followed by a comment of the form "/# same as ... #/"
891 ** that comment is used to determine the particular value of the opcode.
892 **
893 ** Other keywords in the comment that follows each case are used to
894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
895 ** Keywords include: in1, in2, in3, out2, out3.  See
896 ** the mkopcodeh.awk script for additional information.
897 **
898 ** Documentation about VDBE opcodes is generated by scanning this file
899 ** for lines of that contain "Opcode:".  That line and all subsequent
900 ** comment lines are used in the generation of the opcode.html documentation
901 ** file.
902 **
903 ** SUMMARY:
904 **
905 **     Formatting is important to scripts that scan this file.
906 **     Do not deviate from the formatting style currently in use.
907 **
908 *****************************************************************************/
909 
910 /* Opcode:  Goto * P2 * * *
911 **
912 ** An unconditional jump to address P2.
913 ** The next instruction executed will be
914 ** the one at index P2 from the beginning of
915 ** the program.
916 **
917 ** The P1 parameter is not actually used by this opcode.  However, it
918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
919 ** that this Goto is the bottom of a loop and that the lines from P2 down
920 ** to the current line should be indented for EXPLAIN output.
921 */
922 case OP_Goto: {             /* jump */
923 
924 #ifdef SQLITE_DEBUG
925   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
926   ** means we should really jump back to the preceeding OP_ReleaseReg
927   ** instruction. */
928   if( pOp->p5 ){
929     assert( pOp->p2 < (int)(pOp - aOp) );
930     assert( pOp->p2 > 1 );
931     pOp = &aOp[pOp->p2 - 2];
932     assert( pOp[1].opcode==OP_ReleaseReg );
933     goto check_for_interrupt;
934   }
935 #endif
936 
937 jump_to_p2_and_check_for_interrupt:
938   pOp = &aOp[pOp->p2 - 1];
939 
940   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
941   ** OP_VNext, or OP_SorterNext) all jump here upon
942   ** completion.  Check to see if sqlite3_interrupt() has been called
943   ** or if the progress callback needs to be invoked.
944   **
945   ** This code uses unstructured "goto" statements and does not look clean.
946   ** But that is not due to sloppy coding habits. The code is written this
947   ** way for performance, to avoid having to run the interrupt and progress
948   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
949   ** faster according to "valgrind --tool=cachegrind" */
950 check_for_interrupt:
951   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
953   /* Call the progress callback if it is configured and the required number
954   ** of VDBE ops have been executed (either since this invocation of
955   ** sqlite3VdbeExec() or since last time the progress callback was called).
956   ** If the progress callback returns non-zero, exit the virtual machine with
957   ** a return code SQLITE_ABORT.
958   */
959   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
960     assert( db->nProgressOps!=0 );
961     nProgressLimit += db->nProgressOps;
962     if( db->xProgress(db->pProgressArg) ){
963       nProgressLimit = LARGEST_UINT64;
964       rc = SQLITE_INTERRUPT;
965       goto abort_due_to_error;
966     }
967   }
968 #endif
969 
970   break;
971 }
972 
973 /* Opcode:  Gosub P1 P2 * * *
974 **
975 ** Write the current address onto register P1
976 ** and then jump to address P2.
977 */
978 case OP_Gosub: {            /* jump */
979   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
980   pIn1 = &aMem[pOp->p1];
981   assert( VdbeMemDynamic(pIn1)==0 );
982   memAboutToChange(p, pIn1);
983   pIn1->flags = MEM_Int;
984   pIn1->u.i = (int)(pOp-aOp);
985   REGISTER_TRACE(pOp->p1, pIn1);
986   goto jump_to_p2_and_check_for_interrupt;
987 }
988 
989 /* Opcode:  Return P1 P2 P3 * *
990 **
991 ** Jump to the address stored in register P1.  If P1 is a return address
992 ** register, then this accomplishes a return from a subroutine.
993 **
994 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
995 ** values, otherwise execution falls through to the next opcode, and the
996 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
997 ** integer or else an assert() is raised.  P3 should be set to 1 when
998 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
999 ** otherwise.
1000 **
1001 ** The value in register P1 is unchanged by this opcode.
1002 **
1003 ** P2 is not used by the byte-code engine.  However, if P2 is positive
1004 ** and also less than the current address, then the "EXPLAIN" output
1005 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1006 ** to be not including the current Return.   P2 should be the first opcode
1007 ** in the subroutine from which this opcode is returnning.  Thus the P2
1008 ** value is a byte-code indentation hint.  See tag-20220407a in
1009 ** wherecode.c and shell.c.
1010 */
1011 case OP_Return: {           /* in1 */
1012   pIn1 = &aMem[pOp->p1];
1013   if( pIn1->flags & MEM_Int ){
1014     if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1015     pOp = &aOp[pIn1->u.i];
1016   }else if( ALWAYS(pOp->p3) ){
1017     VdbeBranchTaken(0, 2);
1018   }
1019   break;
1020 }
1021 
1022 /* Opcode: InitCoroutine P1 P2 P3 * *
1023 **
1024 ** Set up register P1 so that it will Yield to the coroutine
1025 ** located at address P3.
1026 **
1027 ** If P2!=0 then the coroutine implementation immediately follows
1028 ** this opcode.  So jump over the coroutine implementation to
1029 ** address P2.
1030 **
1031 ** See also: EndCoroutine
1032 */
1033 case OP_InitCoroutine: {     /* jump */
1034   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
1035   assert( pOp->p2>=0 && pOp->p2<p->nOp );
1036   assert( pOp->p3>=0 && pOp->p3<p->nOp );
1037   pOut = &aMem[pOp->p1];
1038   assert( !VdbeMemDynamic(pOut) );
1039   pOut->u.i = pOp->p3 - 1;
1040   pOut->flags = MEM_Int;
1041   if( pOp->p2==0 ) break;
1042 
1043   /* Most jump operations do a goto to this spot in order to update
1044   ** the pOp pointer. */
1045 jump_to_p2:
1046   assert( pOp->p2>0 );       /* There are never any jumps to instruction 0 */
1047   assert( pOp->p2<p->nOp );  /* Jumps must be in range */
1048   pOp = &aOp[pOp->p2 - 1];
1049   break;
1050 }
1051 
1052 /* Opcode:  EndCoroutine P1 * * * *
1053 **
1054 ** The instruction at the address in register P1 is a Yield.
1055 ** Jump to the P2 parameter of that Yield.
1056 ** After the jump, register P1 becomes undefined.
1057 **
1058 ** See also: InitCoroutine
1059 */
1060 case OP_EndCoroutine: {           /* in1 */
1061   VdbeOp *pCaller;
1062   pIn1 = &aMem[pOp->p1];
1063   assert( pIn1->flags==MEM_Int );
1064   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1065   pCaller = &aOp[pIn1->u.i];
1066   assert( pCaller->opcode==OP_Yield );
1067   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1068   pOp = &aOp[pCaller->p2 - 1];
1069   pIn1->flags = MEM_Undefined;
1070   break;
1071 }
1072 
1073 /* Opcode:  Yield P1 P2 * * *
1074 **
1075 ** Swap the program counter with the value in register P1.  This
1076 ** has the effect of yielding to a coroutine.
1077 **
1078 ** If the coroutine that is launched by this instruction ends with
1079 ** Yield or Return then continue to the next instruction.  But if
1080 ** the coroutine launched by this instruction ends with
1081 ** EndCoroutine, then jump to P2 rather than continuing with the
1082 ** next instruction.
1083 **
1084 ** See also: InitCoroutine
1085 */
1086 case OP_Yield: {            /* in1, jump */
1087   int pcDest;
1088   pIn1 = &aMem[pOp->p1];
1089   assert( VdbeMemDynamic(pIn1)==0 );
1090   pIn1->flags = MEM_Int;
1091   pcDest = (int)pIn1->u.i;
1092   pIn1->u.i = (int)(pOp - aOp);
1093   REGISTER_TRACE(pOp->p1, pIn1);
1094   pOp = &aOp[pcDest];
1095   break;
1096 }
1097 
1098 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1099 ** Synopsis: if r[P3]=null halt
1100 **
1101 ** Check the value in register P3.  If it is NULL then Halt using
1102 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1103 ** value in register P3 is not NULL, then this routine is a no-op.
1104 ** The P5 parameter should be 1.
1105 */
1106 case OP_HaltIfNull: {      /* in3 */
1107   pIn3 = &aMem[pOp->p3];
1108 #ifdef SQLITE_DEBUG
1109   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1110 #endif
1111   if( (pIn3->flags & MEM_Null)==0 ) break;
1112   /* Fall through into OP_Halt */
1113   /* no break */ deliberate_fall_through
1114 }
1115 
1116 /* Opcode:  Halt P1 P2 * P4 P5
1117 **
1118 ** Exit immediately.  All open cursors, etc are closed
1119 ** automatically.
1120 **
1121 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1122 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1123 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1124 ** whether or not to rollback the current transaction.  Do not rollback
1125 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1126 ** then back out all changes that have occurred during this execution of the
1127 ** VDBE, but do not rollback the transaction.
1128 **
1129 ** If P4 is not null then it is an error message string.
1130 **
1131 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1132 **
1133 **    0:  (no change)
1134 **    1:  NOT NULL contraint failed: P4
1135 **    2:  UNIQUE constraint failed: P4
1136 **    3:  CHECK constraint failed: P4
1137 **    4:  FOREIGN KEY constraint failed: P4
1138 **
1139 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1140 ** omitted.
1141 **
1142 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1143 ** every program.  So a jump past the last instruction of the program
1144 ** is the same as executing Halt.
1145 */
1146 case OP_Halt: {
1147   VdbeFrame *pFrame;
1148   int pcx;
1149 
1150 #ifdef SQLITE_DEBUG
1151   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1152 #endif
1153   if( p->pFrame && pOp->p1==SQLITE_OK ){
1154     /* Halt the sub-program. Return control to the parent frame. */
1155     pFrame = p->pFrame;
1156     p->pFrame = pFrame->pParent;
1157     p->nFrame--;
1158     sqlite3VdbeSetChanges(db, p->nChange);
1159     pcx = sqlite3VdbeFrameRestore(pFrame);
1160     if( pOp->p2==OE_Ignore ){
1161       /* Instruction pcx is the OP_Program that invoked the sub-program
1162       ** currently being halted. If the p2 instruction of this OP_Halt
1163       ** instruction is set to OE_Ignore, then the sub-program is throwing
1164       ** an IGNORE exception. In this case jump to the address specified
1165       ** as the p2 of the calling OP_Program.  */
1166       pcx = p->aOp[pcx].p2-1;
1167     }
1168     aOp = p->aOp;
1169     aMem = p->aMem;
1170     pOp = &aOp[pcx];
1171     break;
1172   }
1173   p->rc = pOp->p1;
1174   p->errorAction = (u8)pOp->p2;
1175   assert( pOp->p5<=4 );
1176   if( p->rc ){
1177     if( pOp->p5 ){
1178       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1179                                              "FOREIGN KEY" };
1180       testcase( pOp->p5==1 );
1181       testcase( pOp->p5==2 );
1182       testcase( pOp->p5==3 );
1183       testcase( pOp->p5==4 );
1184       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1185       if( pOp->p4.z ){
1186         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1187       }
1188     }else{
1189       sqlite3VdbeError(p, "%s", pOp->p4.z);
1190     }
1191     pcx = (int)(pOp - aOp);
1192     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1193   }
1194   rc = sqlite3VdbeHalt(p);
1195   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1196   if( rc==SQLITE_BUSY ){
1197     p->rc = SQLITE_BUSY;
1198   }else{
1199     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1200     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1201     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1202   }
1203   goto vdbe_return;
1204 }
1205 
1206 /* Opcode: Integer P1 P2 * * *
1207 ** Synopsis: r[P2]=P1
1208 **
1209 ** The 32-bit integer value P1 is written into register P2.
1210 */
1211 case OP_Integer: {         /* out2 */
1212   pOut = out2Prerelease(p, pOp);
1213   pOut->u.i = pOp->p1;
1214   break;
1215 }
1216 
1217 /* Opcode: Int64 * P2 * P4 *
1218 ** Synopsis: r[P2]=P4
1219 **
1220 ** P4 is a pointer to a 64-bit integer value.
1221 ** Write that value into register P2.
1222 */
1223 case OP_Int64: {           /* out2 */
1224   pOut = out2Prerelease(p, pOp);
1225   assert( pOp->p4.pI64!=0 );
1226   pOut->u.i = *pOp->p4.pI64;
1227   break;
1228 }
1229 
1230 #ifndef SQLITE_OMIT_FLOATING_POINT
1231 /* Opcode: Real * P2 * P4 *
1232 ** Synopsis: r[P2]=P4
1233 **
1234 ** P4 is a pointer to a 64-bit floating point value.
1235 ** Write that value into register P2.
1236 */
1237 case OP_Real: {            /* same as TK_FLOAT, out2 */
1238   pOut = out2Prerelease(p, pOp);
1239   pOut->flags = MEM_Real;
1240   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1241   pOut->u.r = *pOp->p4.pReal;
1242   break;
1243 }
1244 #endif
1245 
1246 /* Opcode: String8 * P2 * P4 *
1247 ** Synopsis: r[P2]='P4'
1248 **
1249 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1250 ** into a String opcode before it is executed for the first time.  During
1251 ** this transformation, the length of string P4 is computed and stored
1252 ** as the P1 parameter.
1253 */
1254 case OP_String8: {         /* same as TK_STRING, out2 */
1255   assert( pOp->p4.z!=0 );
1256   pOut = out2Prerelease(p, pOp);
1257   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1258 
1259 #ifndef SQLITE_OMIT_UTF16
1260   if( encoding!=SQLITE_UTF8 ){
1261     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1262     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1263     if( rc ) goto too_big;
1264     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1265     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1266     assert( VdbeMemDynamic(pOut)==0 );
1267     pOut->szMalloc = 0;
1268     pOut->flags |= MEM_Static;
1269     if( pOp->p4type==P4_DYNAMIC ){
1270       sqlite3DbFree(db, pOp->p4.z);
1271     }
1272     pOp->p4type = P4_DYNAMIC;
1273     pOp->p4.z = pOut->z;
1274     pOp->p1 = pOut->n;
1275   }
1276 #endif
1277   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1278     goto too_big;
1279   }
1280   pOp->opcode = OP_String;
1281   assert( rc==SQLITE_OK );
1282   /* Fall through to the next case, OP_String */
1283   /* no break */ deliberate_fall_through
1284 }
1285 
1286 /* Opcode: String P1 P2 P3 P4 P5
1287 ** Synopsis: r[P2]='P4' (len=P1)
1288 **
1289 ** The string value P4 of length P1 (bytes) is stored in register P2.
1290 **
1291 ** If P3 is not zero and the content of register P3 is equal to P5, then
1292 ** the datatype of the register P2 is converted to BLOB.  The content is
1293 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1294 ** of a string, as if it had been CAST.  In other words:
1295 **
1296 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1297 */
1298 case OP_String: {          /* out2 */
1299   assert( pOp->p4.z!=0 );
1300   pOut = out2Prerelease(p, pOp);
1301   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1302   pOut->z = pOp->p4.z;
1303   pOut->n = pOp->p1;
1304   pOut->enc = encoding;
1305   UPDATE_MAX_BLOBSIZE(pOut);
1306 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1307   if( pOp->p3>0 ){
1308     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1309     pIn3 = &aMem[pOp->p3];
1310     assert( pIn3->flags & MEM_Int );
1311     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1312   }
1313 #endif
1314   break;
1315 }
1316 
1317 /* Opcode: BeginSubrtn * P2 * * *
1318 ** Synopsis: r[P2]=NULL
1319 **
1320 ** Mark the beginning of a subroutine that can be entered in-line
1321 ** or that can be called using OP_Gosub.  The subroutine should
1322 ** be terminated by an OP_Return instruction that has a P1 operand that
1323 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1324 ** If the subroutine is entered in-line, then the OP_Return will simply
1325 ** fall through.  But if the subroutine is entered using OP_Gosub, then
1326 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1327 **
1328 ** This routine works by loading a NULL into the P2 register.  When the
1329 ** return address register contains a NULL, the OP_Return instruction is
1330 ** a no-op that simply falls through to the next instruction (assuming that
1331 ** the OP_Return opcode has a P3 value of 1).  Thus if the subroutine is
1332 ** entered in-line, then the OP_Return will cause in-line execution to
1333 ** continue.  But if the subroutine is entered via OP_Gosub, then the
1334 ** OP_Return will cause a return to the address following the OP_Gosub.
1335 **
1336 ** This opcode is identical to OP_Null.  It has a different name
1337 ** only to make the byte code easier to read and verify.
1338 */
1339 /* Opcode: Null P1 P2 P3 * *
1340 ** Synopsis: r[P2..P3]=NULL
1341 **
1342 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1343 ** NULL into register P3 and every register in between P2 and P3.  If P3
1344 ** is less than P2 (typically P3 is zero) then only register P2 is
1345 ** set to NULL.
1346 **
1347 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1348 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1349 ** OP_Ne or OP_Eq.
1350 */
1351 case OP_BeginSubrtn:
1352 case OP_Null: {           /* out2 */
1353   int cnt;
1354   u16 nullFlag;
1355   pOut = out2Prerelease(p, pOp);
1356   cnt = pOp->p3-pOp->p2;
1357   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1358   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1359   pOut->n = 0;
1360 #ifdef SQLITE_DEBUG
1361   pOut->uTemp = 0;
1362 #endif
1363   while( cnt>0 ){
1364     pOut++;
1365     memAboutToChange(p, pOut);
1366     sqlite3VdbeMemSetNull(pOut);
1367     pOut->flags = nullFlag;
1368     pOut->n = 0;
1369     cnt--;
1370   }
1371   break;
1372 }
1373 
1374 /* Opcode: SoftNull P1 * * * *
1375 ** Synopsis: r[P1]=NULL
1376 **
1377 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1378 ** instruction, but do not free any string or blob memory associated with
1379 ** the register, so that if the value was a string or blob that was
1380 ** previously copied using OP_SCopy, the copies will continue to be valid.
1381 */
1382 case OP_SoftNull: {
1383   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1384   pOut = &aMem[pOp->p1];
1385   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1386   break;
1387 }
1388 
1389 /* Opcode: Blob P1 P2 * P4 *
1390 ** Synopsis: r[P2]=P4 (len=P1)
1391 **
1392 ** P4 points to a blob of data P1 bytes long.  Store this
1393 ** blob in register P2.  If P4 is a NULL pointer, then construct
1394 ** a zero-filled blob that is P1 bytes long in P2.
1395 */
1396 case OP_Blob: {                /* out2 */
1397   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1398   pOut = out2Prerelease(p, pOp);
1399   if( pOp->p4.z==0 ){
1400     sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1401     if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1402   }else{
1403     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1404   }
1405   pOut->enc = encoding;
1406   UPDATE_MAX_BLOBSIZE(pOut);
1407   break;
1408 }
1409 
1410 /* Opcode: Variable P1 P2 * P4 *
1411 ** Synopsis: r[P2]=parameter(P1,P4)
1412 **
1413 ** Transfer the values of bound parameter P1 into register P2
1414 **
1415 ** If the parameter is named, then its name appears in P4.
1416 ** The P4 value is used by sqlite3_bind_parameter_name().
1417 */
1418 case OP_Variable: {            /* out2 */
1419   Mem *pVar;       /* Value being transferred */
1420 
1421   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1422   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1423   pVar = &p->aVar[pOp->p1 - 1];
1424   if( sqlite3VdbeMemTooBig(pVar) ){
1425     goto too_big;
1426   }
1427   pOut = &aMem[pOp->p2];
1428   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1429   memcpy(pOut, pVar, MEMCELLSIZE);
1430   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1431   pOut->flags |= MEM_Static|MEM_FromBind;
1432   UPDATE_MAX_BLOBSIZE(pOut);
1433   break;
1434 }
1435 
1436 /* Opcode: Move P1 P2 P3 * *
1437 ** Synopsis: r[P2@P3]=r[P1@P3]
1438 **
1439 ** Move the P3 values in register P1..P1+P3-1 over into
1440 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1441 ** left holding a NULL.  It is an error for register ranges
1442 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1443 ** for P3 to be less than 1.
1444 */
1445 case OP_Move: {
1446   int n;           /* Number of registers left to copy */
1447   int p1;          /* Register to copy from */
1448   int p2;          /* Register to copy to */
1449 
1450   n = pOp->p3;
1451   p1 = pOp->p1;
1452   p2 = pOp->p2;
1453   assert( n>0 && p1>0 && p2>0 );
1454   assert( p1+n<=p2 || p2+n<=p1 );
1455 
1456   pIn1 = &aMem[p1];
1457   pOut = &aMem[p2];
1458   do{
1459     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1460     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1461     assert( memIsValid(pIn1) );
1462     memAboutToChange(p, pOut);
1463     sqlite3VdbeMemMove(pOut, pIn1);
1464 #ifdef SQLITE_DEBUG
1465     pIn1->pScopyFrom = 0;
1466     { int i;
1467       for(i=1; i<p->nMem; i++){
1468         if( aMem[i].pScopyFrom==pIn1 ){
1469           aMem[i].pScopyFrom = pOut;
1470         }
1471       }
1472     }
1473 #endif
1474     Deephemeralize(pOut);
1475     REGISTER_TRACE(p2++, pOut);
1476     pIn1++;
1477     pOut++;
1478   }while( --n );
1479   break;
1480 }
1481 
1482 /* Opcode: Copy P1 P2 P3 * *
1483 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1484 **
1485 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1486 **
1487 ** This instruction makes a deep copy of the value.  A duplicate
1488 ** is made of any string or blob constant.  See also OP_SCopy.
1489 */
1490 case OP_Copy: {
1491   int n;
1492 
1493   n = pOp->p3;
1494   pIn1 = &aMem[pOp->p1];
1495   pOut = &aMem[pOp->p2];
1496   assert( pOut!=pIn1 );
1497   while( 1 ){
1498     memAboutToChange(p, pOut);
1499     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1500     Deephemeralize(pOut);
1501 #ifdef SQLITE_DEBUG
1502     pOut->pScopyFrom = 0;
1503 #endif
1504     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1505     if( (n--)==0 ) break;
1506     pOut++;
1507     pIn1++;
1508   }
1509   break;
1510 }
1511 
1512 /* Opcode: SCopy P1 P2 * * *
1513 ** Synopsis: r[P2]=r[P1]
1514 **
1515 ** Make a shallow copy of register P1 into register P2.
1516 **
1517 ** This instruction makes a shallow copy of the value.  If the value
1518 ** is a string or blob, then the copy is only a pointer to the
1519 ** original and hence if the original changes so will the copy.
1520 ** Worse, if the original is deallocated, the copy becomes invalid.
1521 ** Thus the program must guarantee that the original will not change
1522 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1523 ** copy.
1524 */
1525 case OP_SCopy: {            /* out2 */
1526   pIn1 = &aMem[pOp->p1];
1527   pOut = &aMem[pOp->p2];
1528   assert( pOut!=pIn1 );
1529   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1530 #ifdef SQLITE_DEBUG
1531   pOut->pScopyFrom = pIn1;
1532   pOut->mScopyFlags = pIn1->flags;
1533 #endif
1534   break;
1535 }
1536 
1537 /* Opcode: IntCopy P1 P2 * * *
1538 ** Synopsis: r[P2]=r[P1]
1539 **
1540 ** Transfer the integer value held in register P1 into register P2.
1541 **
1542 ** This is an optimized version of SCopy that works only for integer
1543 ** values.
1544 */
1545 case OP_IntCopy: {            /* out2 */
1546   pIn1 = &aMem[pOp->p1];
1547   assert( (pIn1->flags & MEM_Int)!=0 );
1548   pOut = &aMem[pOp->p2];
1549   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1550   break;
1551 }
1552 
1553 /* Opcode: FkCheck * * * * *
1554 **
1555 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1556 ** foreign key constraint violations.  If there are no foreign key
1557 ** constraint violations, this is a no-op.
1558 **
1559 ** FK constraint violations are also checked when the prepared statement
1560 ** exits.  This opcode is used to raise foreign key constraint errors prior
1561 ** to returning results such as a row change count or the result of a
1562 ** RETURNING clause.
1563 */
1564 case OP_FkCheck: {
1565   if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1566     goto abort_due_to_error;
1567   }
1568   break;
1569 }
1570 
1571 /* Opcode: ResultRow P1 P2 * * *
1572 ** Synopsis: output=r[P1@P2]
1573 **
1574 ** The registers P1 through P1+P2-1 contain a single row of
1575 ** results. This opcode causes the sqlite3_step() call to terminate
1576 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1577 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1578 ** the result row.
1579 */
1580 case OP_ResultRow: {
1581   assert( p->nResColumn==pOp->p2 );
1582   assert( pOp->p1>0 || CORRUPT_DB );
1583   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1584 
1585   p->cacheCtr = (p->cacheCtr + 2)|1;
1586   p->pResultSet = &aMem[pOp->p1];
1587 #ifdef SQLITE_DEBUG
1588   {
1589     Mem *pMem = p->pResultSet;
1590     int i;
1591     for(i=0; i<pOp->p2; i++){
1592       assert( memIsValid(&pMem[i]) );
1593       REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1594       /* The registers in the result will not be used again when the
1595       ** prepared statement restarts.  This is because sqlite3_column()
1596       ** APIs might have caused type conversions of made other changes to
1597       ** the register values.  Therefore, we can go ahead and break any
1598       ** OP_SCopy dependencies. */
1599       pMem[i].pScopyFrom = 0;
1600     }
1601   }
1602 #endif
1603   if( db->mallocFailed ) goto no_mem;
1604   if( db->mTrace & SQLITE_TRACE_ROW ){
1605     db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1606   }
1607   p->pc = (int)(pOp - aOp) + 1;
1608   rc = SQLITE_ROW;
1609   goto vdbe_return;
1610 }
1611 
1612 /* Opcode: Concat P1 P2 P3 * *
1613 ** Synopsis: r[P3]=r[P2]+r[P1]
1614 **
1615 ** Add the text in register P1 onto the end of the text in
1616 ** register P2 and store the result in register P3.
1617 ** If either the P1 or P2 text are NULL then store NULL in P3.
1618 **
1619 **   P3 = P2 || P1
1620 **
1621 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1622 ** if P3 is the same register as P2, the implementation is able
1623 ** to avoid a memcpy().
1624 */
1625 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1626   i64 nByte;          /* Total size of the output string or blob */
1627   u16 flags1;         /* Initial flags for P1 */
1628   u16 flags2;         /* Initial flags for P2 */
1629 
1630   pIn1 = &aMem[pOp->p1];
1631   pIn2 = &aMem[pOp->p2];
1632   pOut = &aMem[pOp->p3];
1633   testcase( pOut==pIn2 );
1634   assert( pIn1!=pOut );
1635   flags1 = pIn1->flags;
1636   testcase( flags1 & MEM_Null );
1637   testcase( pIn2->flags & MEM_Null );
1638   if( (flags1 | pIn2->flags) & MEM_Null ){
1639     sqlite3VdbeMemSetNull(pOut);
1640     break;
1641   }
1642   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1643     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1644     flags1 = pIn1->flags & ~MEM_Str;
1645   }else if( (flags1 & MEM_Zero)!=0 ){
1646     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1647     flags1 = pIn1->flags & ~MEM_Str;
1648   }
1649   flags2 = pIn2->flags;
1650   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1651     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1652     flags2 = pIn2->flags & ~MEM_Str;
1653   }else if( (flags2 & MEM_Zero)!=0 ){
1654     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1655     flags2 = pIn2->flags & ~MEM_Str;
1656   }
1657   nByte = pIn1->n + pIn2->n;
1658   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1659     goto too_big;
1660   }
1661   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1662     goto no_mem;
1663   }
1664   MemSetTypeFlag(pOut, MEM_Str);
1665   if( pOut!=pIn2 ){
1666     memcpy(pOut->z, pIn2->z, pIn2->n);
1667     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1668     pIn2->flags = flags2;
1669   }
1670   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1671   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1672   pIn1->flags = flags1;
1673   pOut->z[nByte]=0;
1674   pOut->z[nByte+1] = 0;
1675   pOut->z[nByte+2] = 0;
1676   pOut->flags |= MEM_Term;
1677   pOut->n = (int)nByte;
1678   pOut->enc = encoding;
1679   UPDATE_MAX_BLOBSIZE(pOut);
1680   break;
1681 }
1682 
1683 /* Opcode: Add P1 P2 P3 * *
1684 ** Synopsis: r[P3]=r[P1]+r[P2]
1685 **
1686 ** Add the value in register P1 to the value in register P2
1687 ** and store the result in register P3.
1688 ** If either input is NULL, the result is NULL.
1689 */
1690 /* Opcode: Multiply P1 P2 P3 * *
1691 ** Synopsis: r[P3]=r[P1]*r[P2]
1692 **
1693 **
1694 ** Multiply the value in register P1 by the value in register P2
1695 ** and store the result in register P3.
1696 ** If either input is NULL, the result is NULL.
1697 */
1698 /* Opcode: Subtract P1 P2 P3 * *
1699 ** Synopsis: r[P3]=r[P2]-r[P1]
1700 **
1701 ** Subtract the value in register P1 from the value in register P2
1702 ** and store the result in register P3.
1703 ** If either input is NULL, the result is NULL.
1704 */
1705 /* Opcode: Divide P1 P2 P3 * *
1706 ** Synopsis: r[P3]=r[P2]/r[P1]
1707 **
1708 ** Divide the value in register P1 by the value in register P2
1709 ** and store the result in register P3 (P3=P2/P1). If the value in
1710 ** register P1 is zero, then the result is NULL. If either input is
1711 ** NULL, the result is NULL.
1712 */
1713 /* Opcode: Remainder P1 P2 P3 * *
1714 ** Synopsis: r[P3]=r[P2]%r[P1]
1715 **
1716 ** Compute the remainder after integer register P2 is divided by
1717 ** register P1 and store the result in register P3.
1718 ** If the value in register P1 is zero the result is NULL.
1719 ** If either operand is NULL, the result is NULL.
1720 */
1721 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1722 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1723 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1724 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1725 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1726   u16 flags;      /* Combined MEM_* flags from both inputs */
1727   u16 type1;      /* Numeric type of left operand */
1728   u16 type2;      /* Numeric type of right operand */
1729   i64 iA;         /* Integer value of left operand */
1730   i64 iB;         /* Integer value of right operand */
1731   double rA;      /* Real value of left operand */
1732   double rB;      /* Real value of right operand */
1733 
1734   pIn1 = &aMem[pOp->p1];
1735   type1 = numericType(pIn1);
1736   pIn2 = &aMem[pOp->p2];
1737   type2 = numericType(pIn2);
1738   pOut = &aMem[pOp->p3];
1739   flags = pIn1->flags | pIn2->flags;
1740   if( (type1 & type2 & MEM_Int)!=0 ){
1741     iA = pIn1->u.i;
1742     iB = pIn2->u.i;
1743     switch( pOp->opcode ){
1744       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1745       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1746       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1747       case OP_Divide: {
1748         if( iA==0 ) goto arithmetic_result_is_null;
1749         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1750         iB /= iA;
1751         break;
1752       }
1753       default: {
1754         if( iA==0 ) goto arithmetic_result_is_null;
1755         if( iA==-1 ) iA = 1;
1756         iB %= iA;
1757         break;
1758       }
1759     }
1760     pOut->u.i = iB;
1761     MemSetTypeFlag(pOut, MEM_Int);
1762   }else if( (flags & MEM_Null)!=0 ){
1763     goto arithmetic_result_is_null;
1764   }else{
1765 fp_math:
1766     rA = sqlite3VdbeRealValue(pIn1);
1767     rB = sqlite3VdbeRealValue(pIn2);
1768     switch( pOp->opcode ){
1769       case OP_Add:         rB += rA;       break;
1770       case OP_Subtract:    rB -= rA;       break;
1771       case OP_Multiply:    rB *= rA;       break;
1772       case OP_Divide: {
1773         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1774         if( rA==(double)0 ) goto arithmetic_result_is_null;
1775         rB /= rA;
1776         break;
1777       }
1778       default: {
1779         iA = sqlite3VdbeIntValue(pIn1);
1780         iB = sqlite3VdbeIntValue(pIn2);
1781         if( iA==0 ) goto arithmetic_result_is_null;
1782         if( iA==-1 ) iA = 1;
1783         rB = (double)(iB % iA);
1784         break;
1785       }
1786     }
1787 #ifdef SQLITE_OMIT_FLOATING_POINT
1788     pOut->u.i = rB;
1789     MemSetTypeFlag(pOut, MEM_Int);
1790 #else
1791     if( sqlite3IsNaN(rB) ){
1792       goto arithmetic_result_is_null;
1793     }
1794     pOut->u.r = rB;
1795     MemSetTypeFlag(pOut, MEM_Real);
1796 #endif
1797   }
1798   break;
1799 
1800 arithmetic_result_is_null:
1801   sqlite3VdbeMemSetNull(pOut);
1802   break;
1803 }
1804 
1805 /* Opcode: CollSeq P1 * * P4
1806 **
1807 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1808 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1809 ** be returned. This is used by the built-in min(), max() and nullif()
1810 ** functions.
1811 **
1812 ** If P1 is not zero, then it is a register that a subsequent min() or
1813 ** max() aggregate will set to 1 if the current row is not the minimum or
1814 ** maximum.  The P1 register is initialized to 0 by this instruction.
1815 **
1816 ** The interface used by the implementation of the aforementioned functions
1817 ** to retrieve the collation sequence set by this opcode is not available
1818 ** publicly.  Only built-in functions have access to this feature.
1819 */
1820 case OP_CollSeq: {
1821   assert( pOp->p4type==P4_COLLSEQ );
1822   if( pOp->p1 ){
1823     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1824   }
1825   break;
1826 }
1827 
1828 /* Opcode: BitAnd P1 P2 P3 * *
1829 ** Synopsis: r[P3]=r[P1]&r[P2]
1830 **
1831 ** Take the bit-wise AND of the values in register P1 and P2 and
1832 ** store the result in register P3.
1833 ** If either input is NULL, the result is NULL.
1834 */
1835 /* Opcode: BitOr P1 P2 P3 * *
1836 ** Synopsis: r[P3]=r[P1]|r[P2]
1837 **
1838 ** Take the bit-wise OR of the values in register P1 and P2 and
1839 ** store the result in register P3.
1840 ** If either input is NULL, the result is NULL.
1841 */
1842 /* Opcode: ShiftLeft P1 P2 P3 * *
1843 ** Synopsis: r[P3]=r[P2]<<r[P1]
1844 **
1845 ** Shift the integer value in register P2 to the left by the
1846 ** number of bits specified by the integer in register P1.
1847 ** Store the result in register P3.
1848 ** If either input is NULL, the result is NULL.
1849 */
1850 /* Opcode: ShiftRight P1 P2 P3 * *
1851 ** Synopsis: r[P3]=r[P2]>>r[P1]
1852 **
1853 ** Shift the integer value in register P2 to the right by the
1854 ** number of bits specified by the integer in register P1.
1855 ** Store the result in register P3.
1856 ** If either input is NULL, the result is NULL.
1857 */
1858 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1859 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1860 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1861 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1862   i64 iA;
1863   u64 uA;
1864   i64 iB;
1865   u8 op;
1866 
1867   pIn1 = &aMem[pOp->p1];
1868   pIn2 = &aMem[pOp->p2];
1869   pOut = &aMem[pOp->p3];
1870   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1871     sqlite3VdbeMemSetNull(pOut);
1872     break;
1873   }
1874   iA = sqlite3VdbeIntValue(pIn2);
1875   iB = sqlite3VdbeIntValue(pIn1);
1876   op = pOp->opcode;
1877   if( op==OP_BitAnd ){
1878     iA &= iB;
1879   }else if( op==OP_BitOr ){
1880     iA |= iB;
1881   }else if( iB!=0 ){
1882     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1883 
1884     /* If shifting by a negative amount, shift in the other direction */
1885     if( iB<0 ){
1886       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1887       op = 2*OP_ShiftLeft + 1 - op;
1888       iB = iB>(-64) ? -iB : 64;
1889     }
1890 
1891     if( iB>=64 ){
1892       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1893     }else{
1894       memcpy(&uA, &iA, sizeof(uA));
1895       if( op==OP_ShiftLeft ){
1896         uA <<= iB;
1897       }else{
1898         uA >>= iB;
1899         /* Sign-extend on a right shift of a negative number */
1900         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1901       }
1902       memcpy(&iA, &uA, sizeof(iA));
1903     }
1904   }
1905   pOut->u.i = iA;
1906   MemSetTypeFlag(pOut, MEM_Int);
1907   break;
1908 }
1909 
1910 /* Opcode: AddImm  P1 P2 * * *
1911 ** Synopsis: r[P1]=r[P1]+P2
1912 **
1913 ** Add the constant P2 to the value in register P1.
1914 ** The result is always an integer.
1915 **
1916 ** To force any register to be an integer, just add 0.
1917 */
1918 case OP_AddImm: {            /* in1 */
1919   pIn1 = &aMem[pOp->p1];
1920   memAboutToChange(p, pIn1);
1921   sqlite3VdbeMemIntegerify(pIn1);
1922   pIn1->u.i += pOp->p2;
1923   break;
1924 }
1925 
1926 /* Opcode: MustBeInt P1 P2 * * *
1927 **
1928 ** Force the value in register P1 to be an integer.  If the value
1929 ** in P1 is not an integer and cannot be converted into an integer
1930 ** without data loss, then jump immediately to P2, or if P2==0
1931 ** raise an SQLITE_MISMATCH exception.
1932 */
1933 case OP_MustBeInt: {            /* jump, in1 */
1934   pIn1 = &aMem[pOp->p1];
1935   if( (pIn1->flags & MEM_Int)==0 ){
1936     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1937     if( (pIn1->flags & MEM_Int)==0 ){
1938       VdbeBranchTaken(1, 2);
1939       if( pOp->p2==0 ){
1940         rc = SQLITE_MISMATCH;
1941         goto abort_due_to_error;
1942       }else{
1943         goto jump_to_p2;
1944       }
1945     }
1946   }
1947   VdbeBranchTaken(0, 2);
1948   MemSetTypeFlag(pIn1, MEM_Int);
1949   break;
1950 }
1951 
1952 #ifndef SQLITE_OMIT_FLOATING_POINT
1953 /* Opcode: RealAffinity P1 * * * *
1954 **
1955 ** If register P1 holds an integer convert it to a real value.
1956 **
1957 ** This opcode is used when extracting information from a column that
1958 ** has REAL affinity.  Such column values may still be stored as
1959 ** integers, for space efficiency, but after extraction we want them
1960 ** to have only a real value.
1961 */
1962 case OP_RealAffinity: {                  /* in1 */
1963   pIn1 = &aMem[pOp->p1];
1964   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1965     testcase( pIn1->flags & MEM_Int );
1966     testcase( pIn1->flags & MEM_IntReal );
1967     sqlite3VdbeMemRealify(pIn1);
1968     REGISTER_TRACE(pOp->p1, pIn1);
1969   }
1970   break;
1971 }
1972 #endif
1973 
1974 #ifndef SQLITE_OMIT_CAST
1975 /* Opcode: Cast P1 P2 * * *
1976 ** Synopsis: affinity(r[P1])
1977 **
1978 ** Force the value in register P1 to be the type defined by P2.
1979 **
1980 ** <ul>
1981 ** <li> P2=='A' &rarr; BLOB
1982 ** <li> P2=='B' &rarr; TEXT
1983 ** <li> P2=='C' &rarr; NUMERIC
1984 ** <li> P2=='D' &rarr; INTEGER
1985 ** <li> P2=='E' &rarr; REAL
1986 ** </ul>
1987 **
1988 ** A NULL value is not changed by this routine.  It remains NULL.
1989 */
1990 case OP_Cast: {                  /* in1 */
1991   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1992   testcase( pOp->p2==SQLITE_AFF_TEXT );
1993   testcase( pOp->p2==SQLITE_AFF_BLOB );
1994   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1995   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1996   testcase( pOp->p2==SQLITE_AFF_REAL );
1997   pIn1 = &aMem[pOp->p1];
1998   memAboutToChange(p, pIn1);
1999   rc = ExpandBlob(pIn1);
2000   if( rc ) goto abort_due_to_error;
2001   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2002   if( rc ) goto abort_due_to_error;
2003   UPDATE_MAX_BLOBSIZE(pIn1);
2004   REGISTER_TRACE(pOp->p1, pIn1);
2005   break;
2006 }
2007 #endif /* SQLITE_OMIT_CAST */
2008 
2009 /* Opcode: Eq P1 P2 P3 P4 P5
2010 ** Synopsis: IF r[P3]==r[P1]
2011 **
2012 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
2013 ** jump to address P2.
2014 **
2015 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2016 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2017 ** to coerce both inputs according to this affinity before the
2018 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2019 ** affinity is used. Note that the affinity conversions are stored
2020 ** back into the input registers P1 and P3.  So this opcode can cause
2021 ** persistent changes to registers P1 and P3.
2022 **
2023 ** Once any conversions have taken place, and neither value is NULL,
2024 ** the values are compared. If both values are blobs then memcmp() is
2025 ** used to determine the results of the comparison.  If both values
2026 ** are text, then the appropriate collating function specified in
2027 ** P4 is used to do the comparison.  If P4 is not specified then
2028 ** memcmp() is used to compare text string.  If both values are
2029 ** numeric, then a numeric comparison is used. If the two values
2030 ** are of different types, then numbers are considered less than
2031 ** strings and strings are considered less than blobs.
2032 **
2033 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2034 ** true or false and is never NULL.  If both operands are NULL then the result
2035 ** of comparison is true.  If either operand is NULL then the result is false.
2036 ** If neither operand is NULL the result is the same as it would be if
2037 ** the SQLITE_NULLEQ flag were omitted from P5.
2038 **
2039 ** This opcode saves the result of comparison for use by the new
2040 ** OP_Jump opcode.
2041 */
2042 /* Opcode: Ne P1 P2 P3 P4 P5
2043 ** Synopsis: IF r[P3]!=r[P1]
2044 **
2045 ** This works just like the Eq opcode except that the jump is taken if
2046 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
2047 ** additional information.
2048 */
2049 /* Opcode: Lt P1 P2 P3 P4 P5
2050 ** Synopsis: IF r[P3]<r[P1]
2051 **
2052 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
2053 ** jump to address P2.
2054 **
2055 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2056 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
2057 ** bit is clear then fall through if either operand is NULL.
2058 **
2059 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2060 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2061 ** to coerce both inputs according to this affinity before the
2062 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2063 ** affinity is used. Note that the affinity conversions are stored
2064 ** back into the input registers P1 and P3.  So this opcode can cause
2065 ** persistent changes to registers P1 and P3.
2066 **
2067 ** Once any conversions have taken place, and neither value is NULL,
2068 ** the values are compared. If both values are blobs then memcmp() is
2069 ** used to determine the results of the comparison.  If both values
2070 ** are text, then the appropriate collating function specified in
2071 ** P4 is  used to do the comparison.  If P4 is not specified then
2072 ** memcmp() is used to compare text string.  If both values are
2073 ** numeric, then a numeric comparison is used. If the two values
2074 ** are of different types, then numbers are considered less than
2075 ** strings and strings are considered less than blobs.
2076 **
2077 ** This opcode saves the result of comparison for use by the new
2078 ** OP_Jump opcode.
2079 */
2080 /* Opcode: Le P1 P2 P3 P4 P5
2081 ** Synopsis: IF r[P3]<=r[P1]
2082 **
2083 ** This works just like the Lt opcode except that the jump is taken if
2084 ** the content of register P3 is less than or equal to the content of
2085 ** register P1.  See the Lt opcode for additional information.
2086 */
2087 /* Opcode: Gt P1 P2 P3 P4 P5
2088 ** Synopsis: IF r[P3]>r[P1]
2089 **
2090 ** This works just like the Lt opcode except that the jump is taken if
2091 ** the content of register P3 is greater than the content of
2092 ** register P1.  See the Lt opcode for additional information.
2093 */
2094 /* Opcode: Ge P1 P2 P3 P4 P5
2095 ** Synopsis: IF r[P3]>=r[P1]
2096 **
2097 ** This works just like the Lt opcode except that the jump is taken if
2098 ** the content of register P3 is greater than or equal to the content of
2099 ** register P1.  See the Lt opcode for additional information.
2100 */
2101 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2102 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2103 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2104 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2105 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2106 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2107   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2108   char affinity;      /* Affinity to use for comparison */
2109   u16 flags1;         /* Copy of initial value of pIn1->flags */
2110   u16 flags3;         /* Copy of initial value of pIn3->flags */
2111 
2112   pIn1 = &aMem[pOp->p1];
2113   pIn3 = &aMem[pOp->p3];
2114   flags1 = pIn1->flags;
2115   flags3 = pIn3->flags;
2116   if( (flags1 & flags3 & MEM_Int)!=0 ){
2117     assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
2118     /* Common case of comparison of two integers */
2119     if( pIn3->u.i > pIn1->u.i ){
2120       if( sqlite3aGTb[pOp->opcode] ){
2121         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2122         goto jump_to_p2;
2123       }
2124       iCompare = +1;
2125     }else if( pIn3->u.i < pIn1->u.i ){
2126       if( sqlite3aLTb[pOp->opcode] ){
2127         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2128         goto jump_to_p2;
2129       }
2130       iCompare = -1;
2131     }else{
2132       if( sqlite3aEQb[pOp->opcode] ){
2133         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2134         goto jump_to_p2;
2135       }
2136       iCompare = 0;
2137     }
2138     VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2139     break;
2140   }
2141   if( (flags1 | flags3)&MEM_Null ){
2142     /* One or both operands are NULL */
2143     if( pOp->p5 & SQLITE_NULLEQ ){
2144       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2145       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2146       ** or not both operands are null.
2147       */
2148       assert( (flags1 & MEM_Cleared)==0 );
2149       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2150       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2151       if( (flags1&flags3&MEM_Null)!=0
2152        && (flags3&MEM_Cleared)==0
2153       ){
2154         res = 0;  /* Operands are equal */
2155       }else{
2156         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2157       }
2158     }else{
2159       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2160       ** then the result is always NULL.
2161       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2162       */
2163       VdbeBranchTaken(2,3);
2164       if( pOp->p5 & SQLITE_JUMPIFNULL ){
2165         goto jump_to_p2;
2166       }
2167       iCompare = 1;    /* Operands are not equal */
2168       break;
2169     }
2170   }else{
2171     /* Neither operand is NULL and we couldn't do the special high-speed
2172     ** integer comparison case.  So do a general-case comparison. */
2173     affinity = pOp->p5 & SQLITE_AFF_MASK;
2174     if( affinity>=SQLITE_AFF_NUMERIC ){
2175       if( (flags1 | flags3)&MEM_Str ){
2176         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2177           applyNumericAffinity(pIn1,0);
2178           testcase( flags3==pIn3->flags );
2179           flags3 = pIn3->flags;
2180         }
2181         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2182           applyNumericAffinity(pIn3,0);
2183         }
2184       }
2185     }else if( affinity==SQLITE_AFF_TEXT ){
2186       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2187         testcase( pIn1->flags & MEM_Int );
2188         testcase( pIn1->flags & MEM_Real );
2189         testcase( pIn1->flags & MEM_IntReal );
2190         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2191         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2192         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2193         if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2194       }
2195       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2196         testcase( pIn3->flags & MEM_Int );
2197         testcase( pIn3->flags & MEM_Real );
2198         testcase( pIn3->flags & MEM_IntReal );
2199         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2200         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2201         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2202       }
2203     }
2204     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2205     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2206   }
2207 
2208   /* At this point, res is negative, zero, or positive if reg[P1] is
2209   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2210   ** the answer to this operator in res2, depending on what the comparison
2211   ** operator actually is.  The next block of code depends on the fact
2212   ** that the 6 comparison operators are consecutive integers in this
2213   ** order:  NE, EQ, GT, LE, LT, GE */
2214   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2215   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2216   if( res<0 ){
2217     res2 = sqlite3aLTb[pOp->opcode];
2218   }else if( res==0 ){
2219     res2 = sqlite3aEQb[pOp->opcode];
2220   }else{
2221     res2 = sqlite3aGTb[pOp->opcode];
2222   }
2223   iCompare = res;
2224 
2225   /* Undo any changes made by applyAffinity() to the input registers. */
2226   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2227   pIn3->flags = flags3;
2228   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2229   pIn1->flags = flags1;
2230 
2231   VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2232   if( res2 ){
2233     goto jump_to_p2;
2234   }
2235   break;
2236 }
2237 
2238 /* Opcode: ElseEq * P2 * * *
2239 **
2240 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2241 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2242 ** opcodes are allowed to occur between this instruction and the previous
2243 ** OP_Lt or OP_Gt.
2244 **
2245 ** If result of an OP_Eq comparison on the same two operands as the
2246 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2247 ** If the result of an OP_Eq comparison on the two previous
2248 ** operands would have been false or NULL, then fall through.
2249 */
2250 case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
2251 
2252 #ifdef SQLITE_DEBUG
2253   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2254   ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2255   int iAddr;
2256   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2257     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2258     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2259     break;
2260   }
2261 #endif /* SQLITE_DEBUG */
2262   VdbeBranchTaken(iCompare==0, 2);
2263   if( iCompare==0 ) goto jump_to_p2;
2264   break;
2265 }
2266 
2267 
2268 /* Opcode: Permutation * * * P4 *
2269 **
2270 ** Set the permutation used by the OP_Compare operator in the next
2271 ** instruction.  The permutation is stored in the P4 operand.
2272 **
2273 ** The permutation is only valid for the next opcode which must be
2274 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2275 **
2276 ** The first integer in the P4 integer array is the length of the array
2277 ** and does not become part of the permutation.
2278 */
2279 case OP_Permutation: {
2280   assert( pOp->p4type==P4_INTARRAY );
2281   assert( pOp->p4.ai );
2282   assert( pOp[1].opcode==OP_Compare );
2283   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2284   break;
2285 }
2286 
2287 /* Opcode: Compare P1 P2 P3 P4 P5
2288 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2289 **
2290 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2291 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2292 ** the comparison for use by the next OP_Jump instruct.
2293 **
2294 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2295 ** determined by the most recent OP_Permutation operator.  If the
2296 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2297 ** order.
2298 **
2299 ** P4 is a KeyInfo structure that defines collating sequences and sort
2300 ** orders for the comparison.  The permutation applies to registers
2301 ** only.  The KeyInfo elements are used sequentially.
2302 **
2303 ** The comparison is a sort comparison, so NULLs compare equal,
2304 ** NULLs are less than numbers, numbers are less than strings,
2305 ** and strings are less than blobs.
2306 **
2307 ** This opcode must be immediately followed by an OP_Jump opcode.
2308 */
2309 case OP_Compare: {
2310   int n;
2311   int i;
2312   int p1;
2313   int p2;
2314   const KeyInfo *pKeyInfo;
2315   u32 idx;
2316   CollSeq *pColl;    /* Collating sequence to use on this term */
2317   int bRev;          /* True for DESCENDING sort order */
2318   u32 *aPermute;     /* The permutation */
2319 
2320   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2321     aPermute = 0;
2322   }else{
2323     assert( pOp>aOp );
2324     assert( pOp[-1].opcode==OP_Permutation );
2325     assert( pOp[-1].p4type==P4_INTARRAY );
2326     aPermute = pOp[-1].p4.ai + 1;
2327     assert( aPermute!=0 );
2328   }
2329   n = pOp->p3;
2330   pKeyInfo = pOp->p4.pKeyInfo;
2331   assert( n>0 );
2332   assert( pKeyInfo!=0 );
2333   p1 = pOp->p1;
2334   p2 = pOp->p2;
2335 #ifdef SQLITE_DEBUG
2336   if( aPermute ){
2337     int k, mx = 0;
2338     for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2339     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2340     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2341   }else{
2342     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2343     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2344   }
2345 #endif /* SQLITE_DEBUG */
2346   for(i=0; i<n; i++){
2347     idx = aPermute ? aPermute[i] : (u32)i;
2348     assert( memIsValid(&aMem[p1+idx]) );
2349     assert( memIsValid(&aMem[p2+idx]) );
2350     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2351     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2352     assert( i<pKeyInfo->nKeyField );
2353     pColl = pKeyInfo->aColl[i];
2354     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2355     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2356     if( iCompare ){
2357       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2358        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2359       ){
2360         iCompare = -iCompare;
2361       }
2362       if( bRev ) iCompare = -iCompare;
2363       break;
2364     }
2365   }
2366   assert( pOp[1].opcode==OP_Jump );
2367   break;
2368 }
2369 
2370 /* Opcode: Jump P1 P2 P3 * *
2371 **
2372 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2373 ** in the most recent OP_Compare instruction the P1 vector was less than
2374 ** equal to, or greater than the P2 vector, respectively.
2375 **
2376 ** This opcode must immediately follow an OP_Compare opcode.
2377 */
2378 case OP_Jump: {             /* jump */
2379   assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2380   if( iCompare<0 ){
2381     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2382   }else if( iCompare==0 ){
2383     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2384   }else{
2385     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2386   }
2387   break;
2388 }
2389 
2390 /* Opcode: And P1 P2 P3 * *
2391 ** Synopsis: r[P3]=(r[P1] && r[P2])
2392 **
2393 ** Take the logical AND of the values in registers P1 and P2 and
2394 ** write the result into register P3.
2395 **
2396 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2397 ** the other input is NULL.  A NULL and true or two NULLs give
2398 ** a NULL output.
2399 */
2400 /* Opcode: Or P1 P2 P3 * *
2401 ** Synopsis: r[P3]=(r[P1] || r[P2])
2402 **
2403 ** Take the logical OR of the values in register P1 and P2 and
2404 ** store the answer in register P3.
2405 **
2406 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2407 ** even if the other input is NULL.  A NULL and false or two NULLs
2408 ** give a NULL output.
2409 */
2410 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2411 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2412   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2413   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2414 
2415   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2416   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2417   if( pOp->opcode==OP_And ){
2418     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2419     v1 = and_logic[v1*3+v2];
2420   }else{
2421     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2422     v1 = or_logic[v1*3+v2];
2423   }
2424   pOut = &aMem[pOp->p3];
2425   if( v1==2 ){
2426     MemSetTypeFlag(pOut, MEM_Null);
2427   }else{
2428     pOut->u.i = v1;
2429     MemSetTypeFlag(pOut, MEM_Int);
2430   }
2431   break;
2432 }
2433 
2434 /* Opcode: IsTrue P1 P2 P3 P4 *
2435 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2436 **
2437 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2438 ** IS NOT FALSE operators.
2439 **
2440 ** Interpret the value in register P1 as a boolean value.  Store that
2441 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2442 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2443 ** is 1.
2444 **
2445 ** The logic is summarized like this:
2446 **
2447 ** <ul>
2448 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2449 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2450 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2451 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2452 ** </ul>
2453 */
2454 case OP_IsTrue: {               /* in1, out2 */
2455   assert( pOp->p4type==P4_INT32 );
2456   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2457   assert( pOp->p3==0 || pOp->p3==1 );
2458   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2459       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2460   break;
2461 }
2462 
2463 /* Opcode: Not P1 P2 * * *
2464 ** Synopsis: r[P2]= !r[P1]
2465 **
2466 ** Interpret the value in register P1 as a boolean value.  Store the
2467 ** boolean complement in register P2.  If the value in register P1 is
2468 ** NULL, then a NULL is stored in P2.
2469 */
2470 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2471   pIn1 = &aMem[pOp->p1];
2472   pOut = &aMem[pOp->p2];
2473   if( (pIn1->flags & MEM_Null)==0 ){
2474     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2475   }else{
2476     sqlite3VdbeMemSetNull(pOut);
2477   }
2478   break;
2479 }
2480 
2481 /* Opcode: BitNot P1 P2 * * *
2482 ** Synopsis: r[P2]= ~r[P1]
2483 **
2484 ** Interpret the content of register P1 as an integer.  Store the
2485 ** ones-complement of the P1 value into register P2.  If P1 holds
2486 ** a NULL then store a NULL in P2.
2487 */
2488 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2489   pIn1 = &aMem[pOp->p1];
2490   pOut = &aMem[pOp->p2];
2491   sqlite3VdbeMemSetNull(pOut);
2492   if( (pIn1->flags & MEM_Null)==0 ){
2493     pOut->flags = MEM_Int;
2494     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2495   }
2496   break;
2497 }
2498 
2499 /* Opcode: Once P1 P2 * * *
2500 **
2501 ** Fall through to the next instruction the first time this opcode is
2502 ** encountered on each invocation of the byte-code program.  Jump to P2
2503 ** on the second and all subsequent encounters during the same invocation.
2504 **
2505 ** Top-level programs determine first invocation by comparing the P1
2506 ** operand against the P1 operand on the OP_Init opcode at the beginning
2507 ** of the program.  If the P1 values differ, then fall through and make
2508 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2509 ** the same then take the jump.
2510 **
2511 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2512 ** whether or not the jump should be taken.  The bitmask is necessary
2513 ** because the self-altering code trick does not work for recursive
2514 ** triggers.
2515 */
2516 case OP_Once: {             /* jump */
2517   u32 iAddr;                /* Address of this instruction */
2518   assert( p->aOp[0].opcode==OP_Init );
2519   if( p->pFrame ){
2520     iAddr = (int)(pOp - p->aOp);
2521     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2522       VdbeBranchTaken(1, 2);
2523       goto jump_to_p2;
2524     }
2525     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2526   }else{
2527     if( p->aOp[0].p1==pOp->p1 ){
2528       VdbeBranchTaken(1, 2);
2529       goto jump_to_p2;
2530     }
2531   }
2532   VdbeBranchTaken(0, 2);
2533   pOp->p1 = p->aOp[0].p1;
2534   break;
2535 }
2536 
2537 /* Opcode: If P1 P2 P3 * *
2538 **
2539 ** Jump to P2 if the value in register P1 is true.  The value
2540 ** is considered true if it is numeric and non-zero.  If the value
2541 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2542 */
2543 case OP_If:  {               /* jump, in1 */
2544   int c;
2545   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2546   VdbeBranchTaken(c!=0, 2);
2547   if( c ) goto jump_to_p2;
2548   break;
2549 }
2550 
2551 /* Opcode: IfNot P1 P2 P3 * *
2552 **
2553 ** Jump to P2 if the value in register P1 is False.  The value
2554 ** is considered false if it has a numeric value of zero.  If the value
2555 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2556 */
2557 case OP_IfNot: {            /* jump, in1 */
2558   int c;
2559   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2560   VdbeBranchTaken(c!=0, 2);
2561   if( c ) goto jump_to_p2;
2562   break;
2563 }
2564 
2565 /* Opcode: IsNull P1 P2 * * *
2566 ** Synopsis: if r[P1]==NULL goto P2
2567 **
2568 ** Jump to P2 if the value in register P1 is NULL.
2569 */
2570 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2571   pIn1 = &aMem[pOp->p1];
2572   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2573   if( (pIn1->flags & MEM_Null)!=0 ){
2574     goto jump_to_p2;
2575   }
2576   break;
2577 }
2578 
2579 /* Opcode: IsNullOrType P1 P2 P3 * *
2580 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2
2581 **
2582 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3.
2583 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT,
2584 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT.
2585 */
2586 case OP_IsNullOrType: {      /* jump, in1 */
2587   int doTheJump;
2588   pIn1 = &aMem[pOp->p1];
2589   doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3;
2590   VdbeBranchTaken( doTheJump, 2);
2591   if( doTheJump ) goto jump_to_p2;
2592   break;
2593 }
2594 
2595 /* Opcode: ZeroOrNull P1 P2 P3 * *
2596 ** Synopsis: r[P2] = 0 OR NULL
2597 **
2598 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2599 ** register P2.  If either registers P1 or P3 are NULL then put
2600 ** a NULL in register P2.
2601 */
2602 case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
2603   if( (aMem[pOp->p1].flags & MEM_Null)!=0
2604    || (aMem[pOp->p3].flags & MEM_Null)!=0
2605   ){
2606     sqlite3VdbeMemSetNull(aMem + pOp->p2);
2607   }else{
2608     sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2609   }
2610   break;
2611 }
2612 
2613 /* Opcode: NotNull P1 P2 * * *
2614 ** Synopsis: if r[P1]!=NULL goto P2
2615 **
2616 ** Jump to P2 if the value in register P1 is not NULL.
2617 */
2618 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2619   pIn1 = &aMem[pOp->p1];
2620   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2621   if( (pIn1->flags & MEM_Null)==0 ){
2622     goto jump_to_p2;
2623   }
2624   break;
2625 }
2626 
2627 /* Opcode: IfNullRow P1 P2 P3 * *
2628 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2629 **
2630 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2631 ** If it is, then set register P3 to NULL and jump immediately to P2.
2632 ** If P1 is not on a NULL row, then fall through without making any
2633 ** changes.
2634 */
2635 case OP_IfNullRow: {         /* jump */
2636   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2637   assert( p->apCsr[pOp->p1]!=0 );
2638   if( p->apCsr[pOp->p1]->nullRow ){
2639     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2640     goto jump_to_p2;
2641   }
2642   break;
2643 }
2644 
2645 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2646 /* Opcode: Offset P1 P2 P3 * *
2647 ** Synopsis: r[P3] = sqlite_offset(P1)
2648 **
2649 ** Store in register r[P3] the byte offset into the database file that is the
2650 ** start of the payload for the record at which that cursor P1 is currently
2651 ** pointing.
2652 **
2653 ** P2 is the column number for the argument to the sqlite_offset() function.
2654 ** This opcode does not use P2 itself, but the P2 value is used by the
2655 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2656 ** same as for OP_Column.
2657 **
2658 ** This opcode is only available if SQLite is compiled with the
2659 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2660 */
2661 case OP_Offset: {          /* out3 */
2662   VdbeCursor *pC;    /* The VDBE cursor */
2663   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2664   pC = p->apCsr[pOp->p1];
2665   pOut = &p->aMem[pOp->p3];
2666   if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2667     sqlite3VdbeMemSetNull(pOut);
2668   }else{
2669     if( pC->deferredMoveto ){
2670       rc = sqlite3VdbeFinishMoveto(pC);
2671       if( rc ) goto abort_due_to_error;
2672     }
2673     if( sqlite3BtreeEof(pC->uc.pCursor) ){
2674       sqlite3VdbeMemSetNull(pOut);
2675     }else{
2676       sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2677     }
2678   }
2679   break;
2680 }
2681 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2682 
2683 /* Opcode: Column P1 P2 P3 P4 P5
2684 ** Synopsis: r[P3]=PX cursor P1 column P2
2685 **
2686 ** Interpret the data that cursor P1 points to as a structure built using
2687 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2688 ** information about the format of the data.)  Extract the P2-th column
2689 ** from this record.  If there are less that (P2+1)
2690 ** values in the record, extract a NULL.
2691 **
2692 ** The value extracted is stored in register P3.
2693 **
2694 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2695 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2696 ** the result.
2697 **
2698 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2699 ** the result is guaranteed to only be used as the argument of a length()
2700 ** or typeof() function, respectively.  The loading of large blobs can be
2701 ** skipped for length() and all content loading can be skipped for typeof().
2702 */
2703 case OP_Column: {
2704   u32 p2;            /* column number to retrieve */
2705   VdbeCursor *pC;    /* The VDBE cursor */
2706   BtCursor *pCrsr;   /* The B-Tree cursor corresponding to pC */
2707   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2708   int len;           /* The length of the serialized data for the column */
2709   int i;             /* Loop counter */
2710   Mem *pDest;        /* Where to write the extracted value */
2711   Mem sMem;          /* For storing the record being decoded */
2712   const u8 *zData;   /* Part of the record being decoded */
2713   const u8 *zHdr;    /* Next unparsed byte of the header */
2714   const u8 *zEndHdr; /* Pointer to first byte after the header */
2715   u64 offset64;      /* 64-bit offset */
2716   u32 t;             /* A type code from the record header */
2717   Mem *pReg;         /* PseudoTable input register */
2718 
2719   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2720   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2721   pC = p->apCsr[pOp->p1];
2722   p2 = (u32)pOp->p2;
2723 
2724 op_column_restart:
2725   assert( pC!=0 );
2726   assert( p2<(u32)pC->nField
2727        || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2728   aOffset = pC->aOffset;
2729   assert( aOffset==pC->aType+pC->nField );
2730   assert( pC->eCurType!=CURTYPE_VTAB );
2731   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2732   assert( pC->eCurType!=CURTYPE_SORTER );
2733 
2734   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2735     if( pC->nullRow ){
2736       if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2737         /* For the special case of as pseudo-cursor, the seekResult field
2738         ** identifies the register that holds the record */
2739         pReg = &aMem[pC->seekResult];
2740         assert( pReg->flags & MEM_Blob );
2741         assert( memIsValid(pReg) );
2742         pC->payloadSize = pC->szRow = pReg->n;
2743         pC->aRow = (u8*)pReg->z;
2744       }else{
2745         pDest = &aMem[pOp->p3];
2746         memAboutToChange(p, pDest);
2747         sqlite3VdbeMemSetNull(pDest);
2748         goto op_column_out;
2749       }
2750     }else{
2751       pCrsr = pC->uc.pCursor;
2752       if( pC->deferredMoveto ){
2753         u32 iMap;
2754         assert( !pC->isEphemeral );
2755         if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0  ){
2756           pC = pC->pAltCursor;
2757           p2 = iMap - 1;
2758           goto op_column_restart;
2759         }
2760         rc = sqlite3VdbeFinishMoveto(pC);
2761         if( rc ) goto abort_due_to_error;
2762       }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2763         rc = sqlite3VdbeHandleMovedCursor(pC);
2764         if( rc ) goto abort_due_to_error;
2765         goto op_column_restart;
2766       }
2767       assert( pC->eCurType==CURTYPE_BTREE );
2768       assert( pCrsr );
2769       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2770       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2771       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2772       assert( pC->szRow<=pC->payloadSize );
2773       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2774     }
2775     pC->cacheStatus = p->cacheCtr;
2776     if( (aOffset[0] = pC->aRow[0])<0x80 ){
2777       pC->iHdrOffset = 1;
2778     }else{
2779       pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2780     }
2781     pC->nHdrParsed = 0;
2782 
2783     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2784       /* pC->aRow does not have to hold the entire row, but it does at least
2785       ** need to cover the header of the record.  If pC->aRow does not contain
2786       ** the complete header, then set it to zero, forcing the header to be
2787       ** dynamically allocated. */
2788       pC->aRow = 0;
2789       pC->szRow = 0;
2790 
2791       /* Make sure a corrupt database has not given us an oversize header.
2792       ** Do this now to avoid an oversize memory allocation.
2793       **
2794       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2795       ** types use so much data space that there can only be 4096 and 32 of
2796       ** them, respectively.  So the maximum header length results from a
2797       ** 3-byte type for each of the maximum of 32768 columns plus three
2798       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2799       */
2800       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2801         goto op_column_corrupt;
2802       }
2803     }else{
2804       /* This is an optimization.  By skipping over the first few tests
2805       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2806       ** measurable performance gain.
2807       **
2808       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2809       ** generated by SQLite, and could be considered corruption, but we
2810       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2811       ** branch jumps to reads past the end of the record, but never more
2812       ** than a few bytes.  Even if the record occurs at the end of the page
2813       ** content area, the "page header" comes after the page content and so
2814       ** this overread is harmless.  Similar overreads can occur for a corrupt
2815       ** database file.
2816       */
2817       zData = pC->aRow;
2818       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2819       testcase( aOffset[0]==0 );
2820       goto op_column_read_header;
2821     }
2822   }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
2823     rc = sqlite3VdbeHandleMovedCursor(pC);
2824     if( rc ) goto abort_due_to_error;
2825     goto op_column_restart;
2826   }
2827 
2828   /* Make sure at least the first p2+1 entries of the header have been
2829   ** parsed and valid information is in aOffset[] and pC->aType[].
2830   */
2831   if( pC->nHdrParsed<=p2 ){
2832     /* If there is more header available for parsing in the record, try
2833     ** to extract additional fields up through the p2+1-th field
2834     */
2835     if( pC->iHdrOffset<aOffset[0] ){
2836       /* Make sure zData points to enough of the record to cover the header. */
2837       if( pC->aRow==0 ){
2838         memset(&sMem, 0, sizeof(sMem));
2839         rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2840         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2841         zData = (u8*)sMem.z;
2842       }else{
2843         zData = pC->aRow;
2844       }
2845 
2846       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2847     op_column_read_header:
2848       i = pC->nHdrParsed;
2849       offset64 = aOffset[i];
2850       zHdr = zData + pC->iHdrOffset;
2851       zEndHdr = zData + aOffset[0];
2852       testcase( zHdr>=zEndHdr );
2853       do{
2854         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2855           zHdr++;
2856           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2857         }else{
2858           zHdr += sqlite3GetVarint32(zHdr, &t);
2859           pC->aType[i] = t;
2860           offset64 += sqlite3VdbeSerialTypeLen(t);
2861         }
2862         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2863       }while( (u32)i<=p2 && zHdr<zEndHdr );
2864 
2865       /* The record is corrupt if any of the following are true:
2866       ** (1) the bytes of the header extend past the declared header size
2867       ** (2) the entire header was used but not all data was used
2868       ** (3) the end of the data extends beyond the end of the record.
2869       */
2870       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2871        || (offset64 > pC->payloadSize)
2872       ){
2873         if( aOffset[0]==0 ){
2874           i = 0;
2875           zHdr = zEndHdr;
2876         }else{
2877           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2878           goto op_column_corrupt;
2879         }
2880       }
2881 
2882       pC->nHdrParsed = i;
2883       pC->iHdrOffset = (u32)(zHdr - zData);
2884       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2885     }else{
2886       t = 0;
2887     }
2888 
2889     /* If after trying to extract new entries from the header, nHdrParsed is
2890     ** still not up to p2, that means that the record has fewer than p2
2891     ** columns.  So the result will be either the default value or a NULL.
2892     */
2893     if( pC->nHdrParsed<=p2 ){
2894       pDest = &aMem[pOp->p3];
2895       memAboutToChange(p, pDest);
2896       if( pOp->p4type==P4_MEM ){
2897         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2898       }else{
2899         sqlite3VdbeMemSetNull(pDest);
2900       }
2901       goto op_column_out;
2902     }
2903   }else{
2904     t = pC->aType[p2];
2905   }
2906 
2907   /* Extract the content for the p2+1-th column.  Control can only
2908   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2909   ** all valid.
2910   */
2911   assert( p2<pC->nHdrParsed );
2912   assert( rc==SQLITE_OK );
2913   pDest = &aMem[pOp->p3];
2914   memAboutToChange(p, pDest);
2915   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2916   if( VdbeMemDynamic(pDest) ){
2917     sqlite3VdbeMemSetNull(pDest);
2918   }
2919   assert( t==pC->aType[p2] );
2920   if( pC->szRow>=aOffset[p2+1] ){
2921     /* This is the common case where the desired content fits on the original
2922     ** page - where the content is not on an overflow page */
2923     zData = pC->aRow + aOffset[p2];
2924     if( t<12 ){
2925       sqlite3VdbeSerialGet(zData, t, pDest);
2926     }else{
2927       /* If the column value is a string, we need a persistent value, not
2928       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2929       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2930       */
2931       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2932       pDest->n = len = (t-12)/2;
2933       pDest->enc = encoding;
2934       if( pDest->szMalloc < len+2 ){
2935         if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2936         pDest->flags = MEM_Null;
2937         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2938       }else{
2939         pDest->z = pDest->zMalloc;
2940       }
2941       memcpy(pDest->z, zData, len);
2942       pDest->z[len] = 0;
2943       pDest->z[len+1] = 0;
2944       pDest->flags = aFlag[t&1];
2945     }
2946   }else{
2947     pDest->enc = encoding;
2948     /* This branch happens only when content is on overflow pages */
2949     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2950           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2951      || (len = sqlite3VdbeSerialTypeLen(t))==0
2952     ){
2953       /* Content is irrelevant for
2954       **    1. the typeof() function,
2955       **    2. the length(X) function if X is a blob, and
2956       **    3. if the content length is zero.
2957       ** So we might as well use bogus content rather than reading
2958       ** content from disk.
2959       **
2960       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2961       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2962       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
2963       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2964       ** and it begins with a bunch of zeros.
2965       */
2966       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2967     }else{
2968       if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2969       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2970       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2971       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2972       pDest->flags &= ~MEM_Ephem;
2973     }
2974   }
2975 
2976 op_column_out:
2977   UPDATE_MAX_BLOBSIZE(pDest);
2978   REGISTER_TRACE(pOp->p3, pDest);
2979   break;
2980 
2981 op_column_corrupt:
2982   if( aOp[0].p3>0 ){
2983     pOp = &aOp[aOp[0].p3-1];
2984     break;
2985   }else{
2986     rc = SQLITE_CORRUPT_BKPT;
2987     goto abort_due_to_error;
2988   }
2989 }
2990 
2991 /* Opcode: TypeCheck P1 P2 P3 P4 *
2992 ** Synopsis: typecheck(r[P1@P2])
2993 **
2994 ** Apply affinities to the range of P2 registers beginning with P1.
2995 ** Take the affinities from the Table object in P4.  If any value
2996 ** cannot be coerced into the correct type, then raise an error.
2997 **
2998 ** This opcode is similar to OP_Affinity except that this opcode
2999 ** forces the register type to the Table column type.  This is used
3000 ** to implement "strict affinity".
3001 **
3002 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3003 ** is zero.  When P3 is non-zero, no type checking occurs for
3004 ** static generated columns.  Virtual columns are computed at query time
3005 ** and so they are never checked.
3006 **
3007 ** Preconditions:
3008 **
3009 ** <ul>
3010 ** <li> P2 should be the number of non-virtual columns in the
3011 **      table of P4.
3012 ** <li> Table P4 should be a STRICT table.
3013 ** </ul>
3014 **
3015 ** If any precondition is false, an assertion fault occurs.
3016 */
3017 case OP_TypeCheck: {
3018   Table *pTab;
3019   Column *aCol;
3020   int i;
3021 
3022   assert( pOp->p4type==P4_TABLE );
3023   pTab = pOp->p4.pTab;
3024   assert( pTab->tabFlags & TF_Strict );
3025   assert( pTab->nNVCol==pOp->p2 );
3026   aCol = pTab->aCol;
3027   pIn1 = &aMem[pOp->p1];
3028   for(i=0; i<pTab->nCol; i++){
3029     if( aCol[i].colFlags & COLFLAG_GENERATED ){
3030       if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3031       if( pOp->p3 ){ pIn1++; continue; }
3032     }
3033     assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3034     applyAffinity(pIn1, aCol[i].affinity, encoding);
3035     if( (pIn1->flags & MEM_Null)==0 ){
3036       switch( aCol[i].eCType ){
3037         case COLTYPE_BLOB: {
3038           if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3039           break;
3040         }
3041         case COLTYPE_INTEGER:
3042         case COLTYPE_INT: {
3043           if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3044           break;
3045         }
3046         case COLTYPE_TEXT: {
3047           if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3048           break;
3049         }
3050         case COLTYPE_REAL: {
3051           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3052           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal );
3053           if( pIn1->flags & MEM_Int ){
3054             /* When applying REAL affinity, if the result is still an MEM_Int
3055             ** that will fit in 6 bytes, then change the type to MEM_IntReal
3056             ** so that we keep the high-resolution integer value but know that
3057             ** the type really wants to be REAL. */
3058             testcase( pIn1->u.i==140737488355328LL );
3059             testcase( pIn1->u.i==140737488355327LL );
3060             testcase( pIn1->u.i==-140737488355328LL );
3061             testcase( pIn1->u.i==-140737488355329LL );
3062             if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3063               pIn1->flags |= MEM_IntReal;
3064               pIn1->flags &= ~MEM_Int;
3065             }else{
3066               pIn1->u.r = (double)pIn1->u.i;
3067               pIn1->flags |= MEM_Real;
3068               pIn1->flags &= ~MEM_Int;
3069             }
3070           }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3071             goto vdbe_type_error;
3072           }
3073           break;
3074         }
3075         default: {
3076           /* COLTYPE_ANY.  Accept anything. */
3077           break;
3078         }
3079       }
3080     }
3081     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3082     pIn1++;
3083   }
3084   assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3085   break;
3086 
3087 vdbe_type_error:
3088   sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3089      vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3090      pTab->zName, aCol[i].zCnName);
3091   rc = SQLITE_CONSTRAINT_DATATYPE;
3092   goto abort_due_to_error;
3093 }
3094 
3095 /* Opcode: Affinity P1 P2 * P4 *
3096 ** Synopsis: affinity(r[P1@P2])
3097 **
3098 ** Apply affinities to a range of P2 registers starting with P1.
3099 **
3100 ** P4 is a string that is P2 characters long. The N-th character of the
3101 ** string indicates the column affinity that should be used for the N-th
3102 ** memory cell in the range.
3103 */
3104 case OP_Affinity: {
3105   const char *zAffinity;   /* The affinity to be applied */
3106 
3107   zAffinity = pOp->p4.z;
3108   assert( zAffinity!=0 );
3109   assert( pOp->p2>0 );
3110   assert( zAffinity[pOp->p2]==0 );
3111   pIn1 = &aMem[pOp->p1];
3112   while( 1 /*exit-by-break*/ ){
3113     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3114     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3115     applyAffinity(pIn1, zAffinity[0], encoding);
3116     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3117       /* When applying REAL affinity, if the result is still an MEM_Int
3118       ** that will fit in 6 bytes, then change the type to MEM_IntReal
3119       ** so that we keep the high-resolution integer value but know that
3120       ** the type really wants to be REAL. */
3121       testcase( pIn1->u.i==140737488355328LL );
3122       testcase( pIn1->u.i==140737488355327LL );
3123       testcase( pIn1->u.i==-140737488355328LL );
3124       testcase( pIn1->u.i==-140737488355329LL );
3125       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3126         pIn1->flags |= MEM_IntReal;
3127         pIn1->flags &= ~MEM_Int;
3128       }else{
3129         pIn1->u.r = (double)pIn1->u.i;
3130         pIn1->flags |= MEM_Real;
3131         pIn1->flags &= ~MEM_Int;
3132       }
3133     }
3134     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3135     zAffinity++;
3136     if( zAffinity[0]==0 ) break;
3137     pIn1++;
3138   }
3139   break;
3140 }
3141 
3142 /* Opcode: MakeRecord P1 P2 P3 P4 *
3143 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3144 **
3145 ** Convert P2 registers beginning with P1 into the [record format]
3146 ** use as a data record in a database table or as a key
3147 ** in an index.  The OP_Column opcode can decode the record later.
3148 **
3149 ** P4 may be a string that is P2 characters long.  The N-th character of the
3150 ** string indicates the column affinity that should be used for the N-th
3151 ** field of the index key.
3152 **
3153 ** The mapping from character to affinity is given by the SQLITE_AFF_
3154 ** macros defined in sqliteInt.h.
3155 **
3156 ** If P4 is NULL then all index fields have the affinity BLOB.
3157 **
3158 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3159 ** compile-time option is enabled:
3160 **
3161 **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3162 **     of the right-most table that can be null-trimmed.
3163 **
3164 **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3165 **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3166 **     accept no-change records with serial_type 10.  This value is
3167 **     only used inside an assert() and does not affect the end result.
3168 */
3169 case OP_MakeRecord: {
3170   Mem *pRec;             /* The new record */
3171   u64 nData;             /* Number of bytes of data space */
3172   int nHdr;              /* Number of bytes of header space */
3173   i64 nByte;             /* Data space required for this record */
3174   i64 nZero;             /* Number of zero bytes at the end of the record */
3175   int nVarint;           /* Number of bytes in a varint */
3176   u32 serial_type;       /* Type field */
3177   Mem *pData0;           /* First field to be combined into the record */
3178   Mem *pLast;            /* Last field of the record */
3179   int nField;            /* Number of fields in the record */
3180   char *zAffinity;       /* The affinity string for the record */
3181   u32 len;               /* Length of a field */
3182   u8 *zHdr;              /* Where to write next byte of the header */
3183   u8 *zPayload;          /* Where to write next byte of the payload */
3184 
3185   /* Assuming the record contains N fields, the record format looks
3186   ** like this:
3187   **
3188   ** ------------------------------------------------------------------------
3189   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3190   ** ------------------------------------------------------------------------
3191   **
3192   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
3193   ** and so forth.
3194   **
3195   ** Each type field is a varint representing the serial type of the
3196   ** corresponding data element (see sqlite3VdbeSerialType()). The
3197   ** hdr-size field is also a varint which is the offset from the beginning
3198   ** of the record to data0.
3199   */
3200   nData = 0;         /* Number of bytes of data space */
3201   nHdr = 0;          /* Number of bytes of header space */
3202   nZero = 0;         /* Number of zero bytes at the end of the record */
3203   nField = pOp->p1;
3204   zAffinity = pOp->p4.z;
3205   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3206   pData0 = &aMem[nField];
3207   nField = pOp->p2;
3208   pLast = &pData0[nField-1];
3209 
3210   /* Identify the output register */
3211   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3212   pOut = &aMem[pOp->p3];
3213   memAboutToChange(p, pOut);
3214 
3215   /* Apply the requested affinity to all inputs
3216   */
3217   assert( pData0<=pLast );
3218   if( zAffinity ){
3219     pRec = pData0;
3220     do{
3221       applyAffinity(pRec, zAffinity[0], encoding);
3222       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3223         pRec->flags |= MEM_IntReal;
3224         pRec->flags &= ~(MEM_Int);
3225       }
3226       REGISTER_TRACE((int)(pRec-aMem), pRec);
3227       zAffinity++;
3228       pRec++;
3229       assert( zAffinity[0]==0 || pRec<=pLast );
3230     }while( zAffinity[0] );
3231   }
3232 
3233 #ifdef SQLITE_ENABLE_NULL_TRIM
3234   /* NULLs can be safely trimmed from the end of the record, as long as
3235   ** as the schema format is 2 or more and none of the omitted columns
3236   ** have a non-NULL default value.  Also, the record must be left with
3237   ** at least one field.  If P5>0 then it will be one more than the
3238   ** index of the right-most column with a non-NULL default value */
3239   if( pOp->p5 ){
3240     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3241       pLast--;
3242       nField--;
3243     }
3244   }
3245 #endif
3246 
3247   /* Loop through the elements that will make up the record to figure
3248   ** out how much space is required for the new record.  After this loop,
3249   ** the Mem.uTemp field of each term should hold the serial-type that will
3250   ** be used for that term in the generated record:
3251   **
3252   **   Mem.uTemp value    type
3253   **   ---------------    ---------------
3254   **      0               NULL
3255   **      1               1-byte signed integer
3256   **      2               2-byte signed integer
3257   **      3               3-byte signed integer
3258   **      4               4-byte signed integer
3259   **      5               6-byte signed integer
3260   **      6               8-byte signed integer
3261   **      7               IEEE float
3262   **      8               Integer constant 0
3263   **      9               Integer constant 1
3264   **     10,11            reserved for expansion
3265   **    N>=12 and even    BLOB
3266   **    N>=13 and odd     text
3267   **
3268   ** The following additional values are computed:
3269   **     nHdr        Number of bytes needed for the record header
3270   **     nData       Number of bytes of data space needed for the record
3271   **     nZero       Zero bytes at the end of the record
3272   */
3273   pRec = pLast;
3274   do{
3275     assert( memIsValid(pRec) );
3276     if( pRec->flags & MEM_Null ){
3277       if( pRec->flags & MEM_Zero ){
3278         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3279         ** table methods that never invoke sqlite3_result_xxxxx() while
3280         ** computing an unchanging column value in an UPDATE statement.
3281         ** Give such values a special internal-use-only serial-type of 10
3282         ** so that they can be passed through to xUpdate and have
3283         ** a true sqlite3_value_nochange(). */
3284 #ifndef SQLITE_ENABLE_NULL_TRIM
3285         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3286 #endif
3287         pRec->uTemp = 10;
3288       }else{
3289         pRec->uTemp = 0;
3290       }
3291       nHdr++;
3292     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3293       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3294       i64 i = pRec->u.i;
3295       u64 uu;
3296       testcase( pRec->flags & MEM_Int );
3297       testcase( pRec->flags & MEM_IntReal );
3298       if( i<0 ){
3299         uu = ~i;
3300       }else{
3301         uu = i;
3302       }
3303       nHdr++;
3304       testcase( uu==127 );               testcase( uu==128 );
3305       testcase( uu==32767 );             testcase( uu==32768 );
3306       testcase( uu==8388607 );           testcase( uu==8388608 );
3307       testcase( uu==2147483647 );        testcase( uu==2147483648LL );
3308       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3309       if( uu<=127 ){
3310         if( (i&1)==i && p->minWriteFileFormat>=4 ){
3311           pRec->uTemp = 8+(u32)uu;
3312         }else{
3313           nData++;
3314           pRec->uTemp = 1;
3315         }
3316       }else if( uu<=32767 ){
3317         nData += 2;
3318         pRec->uTemp = 2;
3319       }else if( uu<=8388607 ){
3320         nData += 3;
3321         pRec->uTemp = 3;
3322       }else if( uu<=2147483647 ){
3323         nData += 4;
3324         pRec->uTemp = 4;
3325       }else if( uu<=140737488355327LL ){
3326         nData += 6;
3327         pRec->uTemp = 5;
3328       }else{
3329         nData += 8;
3330         if( pRec->flags & MEM_IntReal ){
3331           /* If the value is IntReal and is going to take up 8 bytes to store
3332           ** as an integer, then we might as well make it an 8-byte floating
3333           ** point value */
3334           pRec->u.r = (double)pRec->u.i;
3335           pRec->flags &= ~MEM_IntReal;
3336           pRec->flags |= MEM_Real;
3337           pRec->uTemp = 7;
3338         }else{
3339           pRec->uTemp = 6;
3340         }
3341       }
3342     }else if( pRec->flags & MEM_Real ){
3343       nHdr++;
3344       nData += 8;
3345       pRec->uTemp = 7;
3346     }else{
3347       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3348       assert( pRec->n>=0 );
3349       len = (u32)pRec->n;
3350       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3351       if( pRec->flags & MEM_Zero ){
3352         serial_type += pRec->u.nZero*2;
3353         if( nData ){
3354           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3355           len += pRec->u.nZero;
3356         }else{
3357           nZero += pRec->u.nZero;
3358         }
3359       }
3360       nData += len;
3361       nHdr += sqlite3VarintLen(serial_type);
3362       pRec->uTemp = serial_type;
3363     }
3364     if( pRec==pData0 ) break;
3365     pRec--;
3366   }while(1);
3367 
3368   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3369   ** which determines the total number of bytes in the header. The varint
3370   ** value is the size of the header in bytes including the size varint
3371   ** itself. */
3372   testcase( nHdr==126 );
3373   testcase( nHdr==127 );
3374   if( nHdr<=126 ){
3375     /* The common case */
3376     nHdr += 1;
3377   }else{
3378     /* Rare case of a really large header */
3379     nVarint = sqlite3VarintLen(nHdr);
3380     nHdr += nVarint;
3381     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3382   }
3383   nByte = nHdr+nData;
3384 
3385   /* Make sure the output register has a buffer large enough to store
3386   ** the new record. The output register (pOp->p3) is not allowed to
3387   ** be one of the input registers (because the following call to
3388   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3389   */
3390   if( nByte+nZero<=pOut->szMalloc ){
3391     /* The output register is already large enough to hold the record.
3392     ** No error checks or buffer enlargement is required */
3393     pOut->z = pOut->zMalloc;
3394   }else{
3395     /* Need to make sure that the output is not too big and then enlarge
3396     ** the output register to hold the full result */
3397     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3398       goto too_big;
3399     }
3400     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3401       goto no_mem;
3402     }
3403   }
3404   pOut->n = (int)nByte;
3405   pOut->flags = MEM_Blob;
3406   if( nZero ){
3407     pOut->u.nZero = nZero;
3408     pOut->flags |= MEM_Zero;
3409   }
3410   UPDATE_MAX_BLOBSIZE(pOut);
3411   zHdr = (u8 *)pOut->z;
3412   zPayload = zHdr + nHdr;
3413 
3414   /* Write the record */
3415   if( nHdr<0x80 ){
3416     *(zHdr++) = nHdr;
3417   }else{
3418     zHdr += sqlite3PutVarint(zHdr,nHdr);
3419   }
3420   assert( pData0<=pLast );
3421   pRec = pData0;
3422   while( 1 /*exit-by-break*/ ){
3423     serial_type = pRec->uTemp;
3424     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3425     ** additional varints, one per column.
3426     ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3427     ** immediately follow the header. */
3428     if( serial_type<=7 ){
3429       *(zHdr++) = serial_type;
3430       if( serial_type==0 ){
3431         /* NULL value.  No change in zPayload */
3432       }else{
3433         u64 v;
3434         u32 i;
3435         if( serial_type==7 ){
3436           assert( sizeof(v)==sizeof(pRec->u.r) );
3437           memcpy(&v, &pRec->u.r, sizeof(v));
3438           swapMixedEndianFloat(v);
3439         }else{
3440           v = pRec->u.i;
3441         }
3442         len = i = sqlite3SmallTypeSizes[serial_type];
3443         assert( i>0 );
3444         while( 1 /*exit-by-break*/ ){
3445           zPayload[--i] = (u8)(v&0xFF);
3446           if( i==0 ) break;
3447           v >>= 8;
3448         }
3449         zPayload += len;
3450       }
3451     }else if( serial_type<0x80 ){
3452       *(zHdr++) = serial_type;
3453       if( serial_type>=14 && pRec->n>0 ){
3454         assert( pRec->z!=0 );
3455         memcpy(zPayload, pRec->z, pRec->n);
3456         zPayload += pRec->n;
3457       }
3458     }else{
3459       zHdr += sqlite3PutVarint(zHdr, serial_type);
3460       if( pRec->n ){
3461         assert( pRec->z!=0 );
3462         memcpy(zPayload, pRec->z, pRec->n);
3463         zPayload += pRec->n;
3464       }
3465     }
3466     if( pRec==pLast ) break;
3467     pRec++;
3468   }
3469   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3470   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3471 
3472   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3473   REGISTER_TRACE(pOp->p3, pOut);
3474   break;
3475 }
3476 
3477 /* Opcode: Count P1 P2 P3 * *
3478 ** Synopsis: r[P2]=count()
3479 **
3480 ** Store the number of entries (an integer value) in the table or index
3481 ** opened by cursor P1 in register P2.
3482 **
3483 ** If P3==0, then an exact count is obtained, which involves visiting
3484 ** every btree page of the table.  But if P3 is non-zero, an estimate
3485 ** is returned based on the current cursor position.
3486 */
3487 case OP_Count: {         /* out2 */
3488   i64 nEntry;
3489   BtCursor *pCrsr;
3490 
3491   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3492   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3493   assert( pCrsr );
3494   if( pOp->p3 ){
3495     nEntry = sqlite3BtreeRowCountEst(pCrsr);
3496   }else{
3497     nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3498     rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3499     if( rc ) goto abort_due_to_error;
3500   }
3501   pOut = out2Prerelease(p, pOp);
3502   pOut->u.i = nEntry;
3503   goto check_for_interrupt;
3504 }
3505 
3506 /* Opcode: Savepoint P1 * * P4 *
3507 **
3508 ** Open, release or rollback the savepoint named by parameter P4, depending
3509 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3510 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3511 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3512 */
3513 case OP_Savepoint: {
3514   int p1;                         /* Value of P1 operand */
3515   char *zName;                    /* Name of savepoint */
3516   int nName;
3517   Savepoint *pNew;
3518   Savepoint *pSavepoint;
3519   Savepoint *pTmp;
3520   int iSavepoint;
3521   int ii;
3522 
3523   p1 = pOp->p1;
3524   zName = pOp->p4.z;
3525 
3526   /* Assert that the p1 parameter is valid. Also that if there is no open
3527   ** transaction, then there cannot be any savepoints.
3528   */
3529   assert( db->pSavepoint==0 || db->autoCommit==0 );
3530   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3531   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3532   assert( checkSavepointCount(db) );
3533   assert( p->bIsReader );
3534 
3535   if( p1==SAVEPOINT_BEGIN ){
3536     if( db->nVdbeWrite>0 ){
3537       /* A new savepoint cannot be created if there are active write
3538       ** statements (i.e. open read/write incremental blob handles).
3539       */
3540       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3541       rc = SQLITE_BUSY;
3542     }else{
3543       nName = sqlite3Strlen30(zName);
3544 
3545 #ifndef SQLITE_OMIT_VIRTUALTABLE
3546       /* This call is Ok even if this savepoint is actually a transaction
3547       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3548       ** If this is a transaction savepoint being opened, it is guaranteed
3549       ** that the db->aVTrans[] array is empty.  */
3550       assert( db->autoCommit==0 || db->nVTrans==0 );
3551       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3552                                 db->nStatement+db->nSavepoint);
3553       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3554 #endif
3555 
3556       /* Create a new savepoint structure. */
3557       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3558       if( pNew ){
3559         pNew->zName = (char *)&pNew[1];
3560         memcpy(pNew->zName, zName, nName+1);
3561 
3562         /* If there is no open transaction, then mark this as a special
3563         ** "transaction savepoint". */
3564         if( db->autoCommit ){
3565           db->autoCommit = 0;
3566           db->isTransactionSavepoint = 1;
3567         }else{
3568           db->nSavepoint++;
3569         }
3570 
3571         /* Link the new savepoint into the database handle's list. */
3572         pNew->pNext = db->pSavepoint;
3573         db->pSavepoint = pNew;
3574         pNew->nDeferredCons = db->nDeferredCons;
3575         pNew->nDeferredImmCons = db->nDeferredImmCons;
3576       }
3577     }
3578   }else{
3579     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3580     iSavepoint = 0;
3581 
3582     /* Find the named savepoint. If there is no such savepoint, then an
3583     ** an error is returned to the user.  */
3584     for(
3585       pSavepoint = db->pSavepoint;
3586       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3587       pSavepoint = pSavepoint->pNext
3588     ){
3589       iSavepoint++;
3590     }
3591     if( !pSavepoint ){
3592       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3593       rc = SQLITE_ERROR;
3594     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3595       /* It is not possible to release (commit) a savepoint if there are
3596       ** active write statements.
3597       */
3598       sqlite3VdbeError(p, "cannot release savepoint - "
3599                           "SQL statements in progress");
3600       rc = SQLITE_BUSY;
3601     }else{
3602 
3603       /* Determine whether or not this is a transaction savepoint. If so,
3604       ** and this is a RELEASE command, then the current transaction
3605       ** is committed.
3606       */
3607       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3608       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3609         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3610           goto vdbe_return;
3611         }
3612         db->autoCommit = 1;
3613         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3614           p->pc = (int)(pOp - aOp);
3615           db->autoCommit = 0;
3616           p->rc = rc = SQLITE_BUSY;
3617           goto vdbe_return;
3618         }
3619         rc = p->rc;
3620         if( rc ){
3621           db->autoCommit = 0;
3622         }else{
3623           db->isTransactionSavepoint = 0;
3624         }
3625       }else{
3626         int isSchemaChange;
3627         iSavepoint = db->nSavepoint - iSavepoint - 1;
3628         if( p1==SAVEPOINT_ROLLBACK ){
3629           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3630           for(ii=0; ii<db->nDb; ii++){
3631             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3632                                        SQLITE_ABORT_ROLLBACK,
3633                                        isSchemaChange==0);
3634             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3635           }
3636         }else{
3637           assert( p1==SAVEPOINT_RELEASE );
3638           isSchemaChange = 0;
3639         }
3640         for(ii=0; ii<db->nDb; ii++){
3641           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3642           if( rc!=SQLITE_OK ){
3643             goto abort_due_to_error;
3644           }
3645         }
3646         if( isSchemaChange ){
3647           sqlite3ExpirePreparedStatements(db, 0);
3648           sqlite3ResetAllSchemasOfConnection(db);
3649           db->mDbFlags |= DBFLAG_SchemaChange;
3650         }
3651       }
3652       if( rc ) goto abort_due_to_error;
3653 
3654       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3655       ** savepoints nested inside of the savepoint being operated on. */
3656       while( db->pSavepoint!=pSavepoint ){
3657         pTmp = db->pSavepoint;
3658         db->pSavepoint = pTmp->pNext;
3659         sqlite3DbFree(db, pTmp);
3660         db->nSavepoint--;
3661       }
3662 
3663       /* If it is a RELEASE, then destroy the savepoint being operated on
3664       ** too. If it is a ROLLBACK TO, then set the number of deferred
3665       ** constraint violations present in the database to the value stored
3666       ** when the savepoint was created.  */
3667       if( p1==SAVEPOINT_RELEASE ){
3668         assert( pSavepoint==db->pSavepoint );
3669         db->pSavepoint = pSavepoint->pNext;
3670         sqlite3DbFree(db, pSavepoint);
3671         if( !isTransaction ){
3672           db->nSavepoint--;
3673         }
3674       }else{
3675         assert( p1==SAVEPOINT_ROLLBACK );
3676         db->nDeferredCons = pSavepoint->nDeferredCons;
3677         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3678       }
3679 
3680       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3681         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3682         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3683       }
3684     }
3685   }
3686   if( rc ) goto abort_due_to_error;
3687   if( p->eVdbeState==VDBE_HALT_STATE ){
3688     rc = SQLITE_DONE;
3689     goto vdbe_return;
3690   }
3691   break;
3692 }
3693 
3694 /* Opcode: AutoCommit P1 P2 * * *
3695 **
3696 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3697 ** back any currently active btree transactions. If there are any active
3698 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3699 ** there are active writing VMs or active VMs that use shared cache.
3700 **
3701 ** This instruction causes the VM to halt.
3702 */
3703 case OP_AutoCommit: {
3704   int desiredAutoCommit;
3705   int iRollback;
3706 
3707   desiredAutoCommit = pOp->p1;
3708   iRollback = pOp->p2;
3709   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3710   assert( desiredAutoCommit==1 || iRollback==0 );
3711   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3712   assert( p->bIsReader );
3713 
3714   if( desiredAutoCommit!=db->autoCommit ){
3715     if( iRollback ){
3716       assert( desiredAutoCommit==1 );
3717       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3718       db->autoCommit = 1;
3719     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3720       /* If this instruction implements a COMMIT and other VMs are writing
3721       ** return an error indicating that the other VMs must complete first.
3722       */
3723       sqlite3VdbeError(p, "cannot commit transaction - "
3724                           "SQL statements in progress");
3725       rc = SQLITE_BUSY;
3726       goto abort_due_to_error;
3727     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3728       goto vdbe_return;
3729     }else{
3730       db->autoCommit = (u8)desiredAutoCommit;
3731     }
3732     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3733       p->pc = (int)(pOp - aOp);
3734       db->autoCommit = (u8)(1-desiredAutoCommit);
3735       p->rc = rc = SQLITE_BUSY;
3736       goto vdbe_return;
3737     }
3738     sqlite3CloseSavepoints(db);
3739     if( p->rc==SQLITE_OK ){
3740       rc = SQLITE_DONE;
3741     }else{
3742       rc = SQLITE_ERROR;
3743     }
3744     goto vdbe_return;
3745   }else{
3746     sqlite3VdbeError(p,
3747         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3748         (iRollback)?"cannot rollback - no transaction is active":
3749                    "cannot commit - no transaction is active"));
3750 
3751     rc = SQLITE_ERROR;
3752     goto abort_due_to_error;
3753   }
3754   /*NOTREACHED*/ assert(0);
3755 }
3756 
3757 /* Opcode: Transaction P1 P2 P3 P4 P5
3758 **
3759 ** Begin a transaction on database P1 if a transaction is not already
3760 ** active.
3761 ** If P2 is non-zero, then a write-transaction is started, or if a
3762 ** read-transaction is already active, it is upgraded to a write-transaction.
3763 ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
3764 ** then an exclusive transaction is started.
3765 **
3766 ** P1 is the index of the database file on which the transaction is
3767 ** started.  Index 0 is the main database file and index 1 is the
3768 ** file used for temporary tables.  Indices of 2 or more are used for
3769 ** attached databases.
3770 **
3771 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3772 ** true (this flag is set if the Vdbe may modify more than one row and may
3773 ** throw an ABORT exception), a statement transaction may also be opened.
3774 ** More specifically, a statement transaction is opened iff the database
3775 ** connection is currently not in autocommit mode, or if there are other
3776 ** active statements. A statement transaction allows the changes made by this
3777 ** VDBE to be rolled back after an error without having to roll back the
3778 ** entire transaction. If no error is encountered, the statement transaction
3779 ** will automatically commit when the VDBE halts.
3780 **
3781 ** If P5!=0 then this opcode also checks the schema cookie against P3
3782 ** and the schema generation counter against P4.
3783 ** The cookie changes its value whenever the database schema changes.
3784 ** This operation is used to detect when that the cookie has changed
3785 ** and that the current process needs to reread the schema.  If the schema
3786 ** cookie in P3 differs from the schema cookie in the database header or
3787 ** if the schema generation counter in P4 differs from the current
3788 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3789 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3790 ** statement and rerun it from the beginning.
3791 */
3792 case OP_Transaction: {
3793   Btree *pBt;
3794   Db *pDb;
3795   int iMeta = 0;
3796 
3797   assert( p->bIsReader );
3798   assert( p->readOnly==0 || pOp->p2==0 );
3799   assert( pOp->p2>=0 && pOp->p2<=2 );
3800   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3801   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3802   assert( rc==SQLITE_OK );
3803   if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3804     if( db->flags & SQLITE_QueryOnly ){
3805       /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3806       rc = SQLITE_READONLY;
3807     }else{
3808       /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3809       ** transaction */
3810       rc = SQLITE_CORRUPT;
3811     }
3812     goto abort_due_to_error;
3813   }
3814   pDb = &db->aDb[pOp->p1];
3815   pBt = pDb->pBt;
3816 
3817   if( pBt ){
3818     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3819     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3820     testcase( rc==SQLITE_BUSY_RECOVERY );
3821     if( rc!=SQLITE_OK ){
3822       if( (rc&0xff)==SQLITE_BUSY ){
3823         p->pc = (int)(pOp - aOp);
3824         p->rc = rc;
3825         goto vdbe_return;
3826       }
3827       goto abort_due_to_error;
3828     }
3829 
3830     if( p->usesStmtJournal
3831      && pOp->p2
3832      && (db->autoCommit==0 || db->nVdbeRead>1)
3833     ){
3834       assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3835       if( p->iStatement==0 ){
3836         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3837         db->nStatement++;
3838         p->iStatement = db->nSavepoint + db->nStatement;
3839       }
3840 
3841       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3842       if( rc==SQLITE_OK ){
3843         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3844       }
3845 
3846       /* Store the current value of the database handles deferred constraint
3847       ** counter. If the statement transaction needs to be rolled back,
3848       ** the value of this counter needs to be restored too.  */
3849       p->nStmtDefCons = db->nDeferredCons;
3850       p->nStmtDefImmCons = db->nDeferredImmCons;
3851     }
3852   }
3853   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3854   if( rc==SQLITE_OK
3855    && pOp->p5
3856    && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
3857   ){
3858     /*
3859     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3860     ** version is checked to ensure that the schema has not changed since the
3861     ** SQL statement was prepared.
3862     */
3863     sqlite3DbFree(db, p->zErrMsg);
3864     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3865     /* If the schema-cookie from the database file matches the cookie
3866     ** stored with the in-memory representation of the schema, do
3867     ** not reload the schema from the database file.
3868     **
3869     ** If virtual-tables are in use, this is not just an optimization.
3870     ** Often, v-tables store their data in other SQLite tables, which
3871     ** are queried from within xNext() and other v-table methods using
3872     ** prepared queries. If such a query is out-of-date, we do not want to
3873     ** discard the database schema, as the user code implementing the
3874     ** v-table would have to be ready for the sqlite3_vtab structure itself
3875     ** to be invalidated whenever sqlite3_step() is called from within
3876     ** a v-table method.
3877     */
3878     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3879       sqlite3ResetOneSchema(db, pOp->p1);
3880     }
3881     p->expired = 1;
3882     rc = SQLITE_SCHEMA;
3883   }
3884   if( rc ) goto abort_due_to_error;
3885   break;
3886 }
3887 
3888 /* Opcode: ReadCookie P1 P2 P3 * *
3889 **
3890 ** Read cookie number P3 from database P1 and write it into register P2.
3891 ** P3==1 is the schema version.  P3==2 is the database format.
3892 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3893 ** the main database file and P1==1 is the database file used to store
3894 ** temporary tables.
3895 **
3896 ** There must be a read-lock on the database (either a transaction
3897 ** must be started or there must be an open cursor) before
3898 ** executing this instruction.
3899 */
3900 case OP_ReadCookie: {               /* out2 */
3901   int iMeta;
3902   int iDb;
3903   int iCookie;
3904 
3905   assert( p->bIsReader );
3906   iDb = pOp->p1;
3907   iCookie = pOp->p3;
3908   assert( pOp->p3<SQLITE_N_BTREE_META );
3909   assert( iDb>=0 && iDb<db->nDb );
3910   assert( db->aDb[iDb].pBt!=0 );
3911   assert( DbMaskTest(p->btreeMask, iDb) );
3912 
3913   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3914   pOut = out2Prerelease(p, pOp);
3915   pOut->u.i = iMeta;
3916   break;
3917 }
3918 
3919 /* Opcode: SetCookie P1 P2 P3 * P5
3920 **
3921 ** Write the integer value P3 into cookie number P2 of database P1.
3922 ** P2==1 is the schema version.  P2==2 is the database format.
3923 ** P2==3 is the recommended pager cache
3924 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3925 ** database file used to store temporary tables.
3926 **
3927 ** A transaction must be started before executing this opcode.
3928 **
3929 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
3930 ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
3931 ** has P5 set to 1, so that the internal schema version will be different
3932 ** from the database schema version, resulting in a schema reset.
3933 */
3934 case OP_SetCookie: {
3935   Db *pDb;
3936 
3937   sqlite3VdbeIncrWriteCounter(p, 0);
3938   assert( pOp->p2<SQLITE_N_BTREE_META );
3939   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3940   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3941   assert( p->readOnly==0 );
3942   pDb = &db->aDb[pOp->p1];
3943   assert( pDb->pBt!=0 );
3944   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3945   /* See note about index shifting on OP_ReadCookie */
3946   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3947   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3948     /* When the schema cookie changes, record the new cookie internally */
3949     pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5;
3950     db->mDbFlags |= DBFLAG_SchemaChange;
3951     sqlite3FkClearTriggerCache(db, pOp->p1);
3952   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3953     /* Record changes in the file format */
3954     pDb->pSchema->file_format = pOp->p3;
3955   }
3956   if( pOp->p1==1 ){
3957     /* Invalidate all prepared statements whenever the TEMP database
3958     ** schema is changed.  Ticket #1644 */
3959     sqlite3ExpirePreparedStatements(db, 0);
3960     p->expired = 0;
3961   }
3962   if( rc ) goto abort_due_to_error;
3963   break;
3964 }
3965 
3966 /* Opcode: OpenRead P1 P2 P3 P4 P5
3967 ** Synopsis: root=P2 iDb=P3
3968 **
3969 ** Open a read-only cursor for the database table whose root page is
3970 ** P2 in a database file.  The database file is determined by P3.
3971 ** P3==0 means the main database, P3==1 means the database used for
3972 ** temporary tables, and P3>1 means used the corresponding attached
3973 ** database.  Give the new cursor an identifier of P1.  The P1
3974 ** values need not be contiguous but all P1 values should be small integers.
3975 ** It is an error for P1 to be negative.
3976 **
3977 ** Allowed P5 bits:
3978 ** <ul>
3979 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3980 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3981 **       of OP_SeekLE/OP_IdxLT)
3982 ** </ul>
3983 **
3984 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3985 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3986 ** object, then table being opened must be an [index b-tree] where the
3987 ** KeyInfo object defines the content and collating
3988 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3989 ** value, then the table being opened must be a [table b-tree] with a
3990 ** number of columns no less than the value of P4.
3991 **
3992 ** See also: OpenWrite, ReopenIdx
3993 */
3994 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3995 ** Synopsis: root=P2 iDb=P3
3996 **
3997 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3998 ** checks to see if the cursor on P1 is already open on the same
3999 ** b-tree and if it is this opcode becomes a no-op.  In other words,
4000 ** if the cursor is already open, do not reopen it.
4001 **
4002 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4003 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
4004 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4005 ** number.
4006 **
4007 ** Allowed P5 bits:
4008 ** <ul>
4009 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4010 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4011 **       of OP_SeekLE/OP_IdxLT)
4012 ** </ul>
4013 **
4014 ** See also: OP_OpenRead, OP_OpenWrite
4015 */
4016 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4017 ** Synopsis: root=P2 iDb=P3
4018 **
4019 ** Open a read/write cursor named P1 on the table or index whose root
4020 ** page is P2 (or whose root page is held in register P2 if the
4021 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4022 **
4023 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4024 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4025 ** object, then table being opened must be an [index b-tree] where the
4026 ** KeyInfo object defines the content and collating
4027 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4028 ** value, then the table being opened must be a [table b-tree] with a
4029 ** number of columns no less than the value of P4.
4030 **
4031 ** Allowed P5 bits:
4032 ** <ul>
4033 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4034 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4035 **       of OP_SeekLE/OP_IdxLT)
4036 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4037 **       and subsequently delete entries in an index btree.  This is a
4038 **       hint to the storage engine that the storage engine is allowed to
4039 **       ignore.  The hint is not used by the official SQLite b*tree storage
4040 **       engine, but is used by COMDB2.
4041 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4042 **       as the root page, not the value of P2 itself.
4043 ** </ul>
4044 **
4045 ** This instruction works like OpenRead except that it opens the cursor
4046 ** in read/write mode.
4047 **
4048 ** See also: OP_OpenRead, OP_ReopenIdx
4049 */
4050 case OP_ReopenIdx: {
4051   int nField;
4052   KeyInfo *pKeyInfo;
4053   u32 p2;
4054   int iDb;
4055   int wrFlag;
4056   Btree *pX;
4057   VdbeCursor *pCur;
4058   Db *pDb;
4059 
4060   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4061   assert( pOp->p4type==P4_KEYINFO );
4062   pCur = p->apCsr[pOp->p1];
4063   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4064     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
4065     assert( pCur->eCurType==CURTYPE_BTREE );
4066     sqlite3BtreeClearCursor(pCur->uc.pCursor);
4067     goto open_cursor_set_hints;
4068   }
4069   /* If the cursor is not currently open or is open on a different
4070   ** index, then fall through into OP_OpenRead to force a reopen */
4071 case OP_OpenRead:
4072 case OP_OpenWrite:
4073 
4074   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4075   assert( p->bIsReader );
4076   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4077           || p->readOnly==0 );
4078 
4079   if( p->expired==1 ){
4080     rc = SQLITE_ABORT_ROLLBACK;
4081     goto abort_due_to_error;
4082   }
4083 
4084   nField = 0;
4085   pKeyInfo = 0;
4086   p2 = (u32)pOp->p2;
4087   iDb = pOp->p3;
4088   assert( iDb>=0 && iDb<db->nDb );
4089   assert( DbMaskTest(p->btreeMask, iDb) );
4090   pDb = &db->aDb[iDb];
4091   pX = pDb->pBt;
4092   assert( pX!=0 );
4093   if( pOp->opcode==OP_OpenWrite ){
4094     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4095     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4096     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4097     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4098       p->minWriteFileFormat = pDb->pSchema->file_format;
4099     }
4100   }else{
4101     wrFlag = 0;
4102   }
4103   if( pOp->p5 & OPFLAG_P2ISREG ){
4104     assert( p2>0 );
4105     assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4106     assert( pOp->opcode==OP_OpenWrite );
4107     pIn2 = &aMem[p2];
4108     assert( memIsValid(pIn2) );
4109     assert( (pIn2->flags & MEM_Int)!=0 );
4110     sqlite3VdbeMemIntegerify(pIn2);
4111     p2 = (int)pIn2->u.i;
4112     /* The p2 value always comes from a prior OP_CreateBtree opcode and
4113     ** that opcode will always set the p2 value to 2 or more or else fail.
4114     ** If there were a failure, the prepared statement would have halted
4115     ** before reaching this instruction. */
4116     assert( p2>=2 );
4117   }
4118   if( pOp->p4type==P4_KEYINFO ){
4119     pKeyInfo = pOp->p4.pKeyInfo;
4120     assert( pKeyInfo->enc==ENC(db) );
4121     assert( pKeyInfo->db==db );
4122     nField = pKeyInfo->nAllField;
4123   }else if( pOp->p4type==P4_INT32 ){
4124     nField = pOp->p4.i;
4125   }
4126   assert( pOp->p1>=0 );
4127   assert( nField>=0 );
4128   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
4129   pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4130   if( pCur==0 ) goto no_mem;
4131   pCur->iDb = iDb;
4132   pCur->nullRow = 1;
4133   pCur->isOrdered = 1;
4134   pCur->pgnoRoot = p2;
4135 #ifdef SQLITE_DEBUG
4136   pCur->wrFlag = wrFlag;
4137 #endif
4138   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4139   pCur->pKeyInfo = pKeyInfo;
4140   /* Set the VdbeCursor.isTable variable. Previous versions of
4141   ** SQLite used to check if the root-page flags were sane at this point
4142   ** and report database corruption if they were not, but this check has
4143   ** since moved into the btree layer.  */
4144   pCur->isTable = pOp->p4type!=P4_KEYINFO;
4145 
4146 open_cursor_set_hints:
4147   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4148   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4149   testcase( pOp->p5 & OPFLAG_BULKCSR );
4150   testcase( pOp->p2 & OPFLAG_SEEKEQ );
4151   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4152                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4153   if( rc ) goto abort_due_to_error;
4154   break;
4155 }
4156 
4157 /* Opcode: OpenDup P1 P2 * * *
4158 **
4159 ** Open a new cursor P1 that points to the same ephemeral table as
4160 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
4161 ** opcode.  Only ephemeral cursors may be duplicated.
4162 **
4163 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4164 */
4165 case OP_OpenDup: {
4166   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
4167   VdbeCursor *pCx;      /* The new cursor */
4168 
4169   pOrig = p->apCsr[pOp->p2];
4170   assert( pOrig );
4171   assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
4172 
4173   pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4174   if( pCx==0 ) goto no_mem;
4175   pCx->nullRow = 1;
4176   pCx->isEphemeral = 1;
4177   pCx->pKeyInfo = pOrig->pKeyInfo;
4178   pCx->isTable = pOrig->isTable;
4179   pCx->pgnoRoot = pOrig->pgnoRoot;
4180   pCx->isOrdered = pOrig->isOrdered;
4181   pCx->ub.pBtx = pOrig->ub.pBtx;
4182   pCx->hasBeenDuped = 1;
4183   pOrig->hasBeenDuped = 1;
4184   rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4185                           pCx->pKeyInfo, pCx->uc.pCursor);
4186   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4187   ** opened for a database.  Since there is already an open cursor when this
4188   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4189   assert( rc==SQLITE_OK );
4190   break;
4191 }
4192 
4193 
4194 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4195 ** Synopsis: nColumn=P2
4196 **
4197 ** Open a new cursor P1 to a transient table.
4198 ** The cursor is always opened read/write even if
4199 ** the main database is read-only.  The ephemeral
4200 ** table is deleted automatically when the cursor is closed.
4201 **
4202 ** If the cursor P1 is already opened on an ephemeral table, the table
4203 ** is cleared (all content is erased).
4204 **
4205 ** P2 is the number of columns in the ephemeral table.
4206 ** The cursor points to a BTree table if P4==0 and to a BTree index
4207 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
4208 ** that defines the format of keys in the index.
4209 **
4210 ** The P5 parameter can be a mask of the BTREE_* flags defined
4211 ** in btree.h.  These flags control aspects of the operation of
4212 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4213 ** added automatically.
4214 **
4215 ** If P3 is positive, then reg[P3] is modified slightly so that it
4216 ** can be used as zero-length data for OP_Insert.  This is an optimization
4217 ** that avoids an extra OP_Blob opcode to initialize that register.
4218 */
4219 /* Opcode: OpenAutoindex P1 P2 * P4 *
4220 ** Synopsis: nColumn=P2
4221 **
4222 ** This opcode works the same as OP_OpenEphemeral.  It has a
4223 ** different name to distinguish its use.  Tables created using
4224 ** by this opcode will be used for automatically created transient
4225 ** indices in joins.
4226 */
4227 case OP_OpenAutoindex:
4228 case OP_OpenEphemeral: {
4229   VdbeCursor *pCx;
4230   KeyInfo *pKeyInfo;
4231 
4232   static const int vfsFlags =
4233       SQLITE_OPEN_READWRITE |
4234       SQLITE_OPEN_CREATE |
4235       SQLITE_OPEN_EXCLUSIVE |
4236       SQLITE_OPEN_DELETEONCLOSE |
4237       SQLITE_OPEN_TRANSIENT_DB;
4238   assert( pOp->p1>=0 );
4239   assert( pOp->p2>=0 );
4240   if( pOp->p3>0 ){
4241     /* Make register reg[P3] into a value that can be used as the data
4242     ** form sqlite3BtreeInsert() where the length of the data is zero. */
4243     assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4244     assert( pOp->opcode==OP_OpenEphemeral );
4245     assert( aMem[pOp->p3].flags & MEM_Null );
4246     aMem[pOp->p3].n = 0;
4247     aMem[pOp->p3].z = "";
4248   }
4249   pCx = p->apCsr[pOp->p1];
4250   if( pCx && !pCx->hasBeenDuped &&  ALWAYS(pOp->p2<=pCx->nField) ){
4251     /* If the ephermeral table is already open and has no duplicates from
4252     ** OP_OpenDup, then erase all existing content so that the table is
4253     ** empty again, rather than creating a new table. */
4254     assert( pCx->isEphemeral );
4255     pCx->seqCount = 0;
4256     pCx->cacheStatus = CACHE_STALE;
4257     rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4258   }else{
4259     pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4260     if( pCx==0 ) goto no_mem;
4261     pCx->isEphemeral = 1;
4262     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4263                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4264                           vfsFlags);
4265     if( rc==SQLITE_OK ){
4266       rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4267       if( rc==SQLITE_OK ){
4268         /* If a transient index is required, create it by calling
4269         ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4270         ** opening it. If a transient table is required, just use the
4271         ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4272         */
4273         if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4274           assert( pOp->p4type==P4_KEYINFO );
4275           rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4276               BTREE_BLOBKEY | pOp->p5);
4277           if( rc==SQLITE_OK ){
4278             assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4279             assert( pKeyInfo->db==db );
4280             assert( pKeyInfo->enc==ENC(db) );
4281             rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4282                 pKeyInfo, pCx->uc.pCursor);
4283           }
4284           pCx->isTable = 0;
4285         }else{
4286           pCx->pgnoRoot = SCHEMA_ROOT;
4287           rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4288               0, pCx->uc.pCursor);
4289           pCx->isTable = 1;
4290         }
4291       }
4292       pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4293       if( rc ){
4294         sqlite3BtreeClose(pCx->ub.pBtx);
4295       }
4296     }
4297   }
4298   if( rc ) goto abort_due_to_error;
4299   pCx->nullRow = 1;
4300   break;
4301 }
4302 
4303 /* Opcode: SorterOpen P1 P2 P3 P4 *
4304 **
4305 ** This opcode works like OP_OpenEphemeral except that it opens
4306 ** a transient index that is specifically designed to sort large
4307 ** tables using an external merge-sort algorithm.
4308 **
4309 ** If argument P3 is non-zero, then it indicates that the sorter may
4310 ** assume that a stable sort considering the first P3 fields of each
4311 ** key is sufficient to produce the required results.
4312 */
4313 case OP_SorterOpen: {
4314   VdbeCursor *pCx;
4315 
4316   assert( pOp->p1>=0 );
4317   assert( pOp->p2>=0 );
4318   pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4319   if( pCx==0 ) goto no_mem;
4320   pCx->pKeyInfo = pOp->p4.pKeyInfo;
4321   assert( pCx->pKeyInfo->db==db );
4322   assert( pCx->pKeyInfo->enc==ENC(db) );
4323   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4324   if( rc ) goto abort_due_to_error;
4325   break;
4326 }
4327 
4328 /* Opcode: SequenceTest P1 P2 * * *
4329 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4330 **
4331 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4332 ** to P2. Regardless of whether or not the jump is taken, increment the
4333 ** the sequence value.
4334 */
4335 case OP_SequenceTest: {
4336   VdbeCursor *pC;
4337   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4338   pC = p->apCsr[pOp->p1];
4339   assert( isSorter(pC) );
4340   if( (pC->seqCount++)==0 ){
4341     goto jump_to_p2;
4342   }
4343   break;
4344 }
4345 
4346 /* Opcode: OpenPseudo P1 P2 P3 * *
4347 ** Synopsis: P3 columns in r[P2]
4348 **
4349 ** Open a new cursor that points to a fake table that contains a single
4350 ** row of data.  The content of that one row is the content of memory
4351 ** register P2.  In other words, cursor P1 becomes an alias for the
4352 ** MEM_Blob content contained in register P2.
4353 **
4354 ** A pseudo-table created by this opcode is used to hold a single
4355 ** row output from the sorter so that the row can be decomposed into
4356 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4357 ** is the only cursor opcode that works with a pseudo-table.
4358 **
4359 ** P3 is the number of fields in the records that will be stored by
4360 ** the pseudo-table.
4361 */
4362 case OP_OpenPseudo: {
4363   VdbeCursor *pCx;
4364 
4365   assert( pOp->p1>=0 );
4366   assert( pOp->p3>=0 );
4367   pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4368   if( pCx==0 ) goto no_mem;
4369   pCx->nullRow = 1;
4370   pCx->seekResult = pOp->p2;
4371   pCx->isTable = 1;
4372   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4373   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4374   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4375   ** which is a performance optimization */
4376   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4377   assert( pOp->p5==0 );
4378   break;
4379 }
4380 
4381 /* Opcode: Close P1 * * * *
4382 **
4383 ** Close a cursor previously opened as P1.  If P1 is not
4384 ** currently open, this instruction is a no-op.
4385 */
4386 case OP_Close: {
4387   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4388   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4389   p->apCsr[pOp->p1] = 0;
4390   break;
4391 }
4392 
4393 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4394 /* Opcode: ColumnsUsed P1 * * P4 *
4395 **
4396 ** This opcode (which only exists if SQLite was compiled with
4397 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4398 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4399 ** (P4_INT64) in which the first 63 bits are one for each of the
4400 ** first 63 columns of the table or index that are actually used
4401 ** by the cursor.  The high-order bit is set if any column after
4402 ** the 64th is used.
4403 */
4404 case OP_ColumnsUsed: {
4405   VdbeCursor *pC;
4406   pC = p->apCsr[pOp->p1];
4407   assert( pC->eCurType==CURTYPE_BTREE );
4408   pC->maskUsed = *(u64*)pOp->p4.pI64;
4409   break;
4410 }
4411 #endif
4412 
4413 /* Opcode: SeekGE P1 P2 P3 P4 *
4414 ** Synopsis: key=r[P3@P4]
4415 **
4416 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4417 ** use the value in register P3 as the key.  If cursor P1 refers
4418 ** to an SQL index, then P3 is the first in an array of P4 registers
4419 ** that are used as an unpacked index key.
4420 **
4421 ** Reposition cursor P1 so that  it points to the smallest entry that
4422 ** is greater than or equal to the key value. If there are no records
4423 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4424 **
4425 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4426 ** opcode will either land on a record that exactly matches the key, or
4427 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4428 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4429 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4430 ** IdxGT opcode will be used on subsequent loop iterations.  The
4431 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4432 ** is an equality search.
4433 **
4434 ** This opcode leaves the cursor configured to move in forward order,
4435 ** from the beginning toward the end.  In other words, the cursor is
4436 ** configured to use Next, not Prev.
4437 **
4438 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4439 */
4440 /* Opcode: SeekGT P1 P2 P3 P4 *
4441 ** Synopsis: key=r[P3@P4]
4442 **
4443 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4444 ** use the value in register P3 as a key. If cursor P1 refers
4445 ** to an SQL index, then P3 is the first in an array of P4 registers
4446 ** that are used as an unpacked index key.
4447 **
4448 ** Reposition cursor P1 so that it points to the smallest entry that
4449 ** is greater than the key value. If there are no records greater than
4450 ** the key and P2 is not zero, then jump to P2.
4451 **
4452 ** This opcode leaves the cursor configured to move in forward order,
4453 ** from the beginning toward the end.  In other words, the cursor is
4454 ** configured to use Next, not Prev.
4455 **
4456 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4457 */
4458 /* Opcode: SeekLT P1 P2 P3 P4 *
4459 ** Synopsis: key=r[P3@P4]
4460 **
4461 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4462 ** use the value in register P3 as a key. If cursor P1 refers
4463 ** to an SQL index, then P3 is the first in an array of P4 registers
4464 ** that are used as an unpacked index key.
4465 **
4466 ** Reposition cursor P1 so that  it points to the largest entry that
4467 ** is less than the key value. If there are no records less than
4468 ** the key and P2 is not zero, then jump to P2.
4469 **
4470 ** This opcode leaves the cursor configured to move in reverse order,
4471 ** from the end toward the beginning.  In other words, the cursor is
4472 ** configured to use Prev, not Next.
4473 **
4474 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4475 */
4476 /* Opcode: SeekLE P1 P2 P3 P4 *
4477 ** Synopsis: key=r[P3@P4]
4478 **
4479 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4480 ** use the value in register P3 as a key. If cursor P1 refers
4481 ** to an SQL index, then P3 is the first in an array of P4 registers
4482 ** that are used as an unpacked index key.
4483 **
4484 ** Reposition cursor P1 so that it points to the largest entry that
4485 ** is less than or equal to the key value. If there are no records
4486 ** less than or equal to the key and P2 is not zero, then jump to P2.
4487 **
4488 ** This opcode leaves the cursor configured to move in reverse order,
4489 ** from the end toward the beginning.  In other words, the cursor is
4490 ** configured to use Prev, not Next.
4491 **
4492 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4493 ** opcode will either land on a record that exactly matches the key, or
4494 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4495 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4496 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4497 ** IdxGE opcode will be used on subsequent loop iterations.  The
4498 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4499 ** is an equality search.
4500 **
4501 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4502 */
4503 case OP_SeekLT:         /* jump, in3, group */
4504 case OP_SeekLE:         /* jump, in3, group */
4505 case OP_SeekGE:         /* jump, in3, group */
4506 case OP_SeekGT: {       /* jump, in3, group */
4507   int res;           /* Comparison result */
4508   int oc;            /* Opcode */
4509   VdbeCursor *pC;    /* The cursor to seek */
4510   UnpackedRecord r;  /* The key to seek for */
4511   int nField;        /* Number of columns or fields in the key */
4512   i64 iKey;          /* The rowid we are to seek to */
4513   int eqOnly;        /* Only interested in == results */
4514 
4515   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4516   assert( pOp->p2!=0 );
4517   pC = p->apCsr[pOp->p1];
4518   assert( pC!=0 );
4519   assert( pC->eCurType==CURTYPE_BTREE );
4520   assert( OP_SeekLE == OP_SeekLT+1 );
4521   assert( OP_SeekGE == OP_SeekLT+2 );
4522   assert( OP_SeekGT == OP_SeekLT+3 );
4523   assert( pC->isOrdered );
4524   assert( pC->uc.pCursor!=0 );
4525   oc = pOp->opcode;
4526   eqOnly = 0;
4527   pC->nullRow = 0;
4528 #ifdef SQLITE_DEBUG
4529   pC->seekOp = pOp->opcode;
4530 #endif
4531 
4532   pC->deferredMoveto = 0;
4533   pC->cacheStatus = CACHE_STALE;
4534   if( pC->isTable ){
4535     u16 flags3, newType;
4536     /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4537     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4538               || CORRUPT_DB );
4539 
4540     /* The input value in P3 might be of any type: integer, real, string,
4541     ** blob, or NULL.  But it needs to be an integer before we can do
4542     ** the seek, so convert it. */
4543     pIn3 = &aMem[pOp->p3];
4544     flags3 = pIn3->flags;
4545     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4546       applyNumericAffinity(pIn3, 0);
4547     }
4548     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4549     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4550     pIn3->flags = flags3;  /* But convert the type back to its original */
4551 
4552     /* If the P3 value could not be converted into an integer without
4553     ** loss of information, then special processing is required... */
4554     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4555       int c;
4556       if( (newType & MEM_Real)==0 ){
4557         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4558           VdbeBranchTaken(1,2);
4559           goto jump_to_p2;
4560         }else{
4561           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4562           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4563           goto seek_not_found;
4564         }
4565       }
4566       c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4567 
4568       /* If the approximation iKey is larger than the actual real search
4569       ** term, substitute >= for > and < for <=. e.g. if the search term
4570       ** is 4.9 and the integer approximation 5:
4571       **
4572       **        (x >  4.9)    ->     (x >= 5)
4573       **        (x <= 4.9)    ->     (x <  5)
4574       */
4575       if( c>0 ){
4576         assert( OP_SeekGE==(OP_SeekGT-1) );
4577         assert( OP_SeekLT==(OP_SeekLE-1) );
4578         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4579         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4580       }
4581 
4582       /* If the approximation iKey is smaller than the actual real search
4583       ** term, substitute <= for < and > for >=.  */
4584       else if( c<0 ){
4585         assert( OP_SeekLE==(OP_SeekLT+1) );
4586         assert( OP_SeekGT==(OP_SeekGE+1) );
4587         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4588         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4589       }
4590     }
4591     rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4592     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4593     if( rc!=SQLITE_OK ){
4594       goto abort_due_to_error;
4595     }
4596   }else{
4597     /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4598     ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4599     ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4600     ** with the same key.
4601     */
4602     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4603       eqOnly = 1;
4604       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4605       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4606       assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4607       assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4608       assert( pOp[1].p1==pOp[0].p1 );
4609       assert( pOp[1].p2==pOp[0].p2 );
4610       assert( pOp[1].p3==pOp[0].p3 );
4611       assert( pOp[1].p4.i==pOp[0].p4.i );
4612     }
4613 
4614     nField = pOp->p4.i;
4615     assert( pOp->p4type==P4_INT32 );
4616     assert( nField>0 );
4617     r.pKeyInfo = pC->pKeyInfo;
4618     r.nField = (u16)nField;
4619 
4620     /* The next line of code computes as follows, only faster:
4621     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4622     **     r.default_rc = -1;
4623     **   }else{
4624     **     r.default_rc = +1;
4625     **   }
4626     */
4627     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4628     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4629     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4630     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4631     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4632 
4633     r.aMem = &aMem[pOp->p3];
4634 #ifdef SQLITE_DEBUG
4635     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4636 #endif
4637     r.eqSeen = 0;
4638     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4639     if( rc!=SQLITE_OK ){
4640       goto abort_due_to_error;
4641     }
4642     if( eqOnly && r.eqSeen==0 ){
4643       assert( res!=0 );
4644       goto seek_not_found;
4645     }
4646   }
4647 #ifdef SQLITE_TEST
4648   sqlite3_search_count++;
4649 #endif
4650   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4651     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4652       res = 0;
4653       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4654       if( rc!=SQLITE_OK ){
4655         if( rc==SQLITE_DONE ){
4656           rc = SQLITE_OK;
4657           res = 1;
4658         }else{
4659           goto abort_due_to_error;
4660         }
4661       }
4662     }else{
4663       res = 0;
4664     }
4665   }else{
4666     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4667     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4668       res = 0;
4669       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4670       if( rc!=SQLITE_OK ){
4671         if( rc==SQLITE_DONE ){
4672           rc = SQLITE_OK;
4673           res = 1;
4674         }else{
4675           goto abort_due_to_error;
4676         }
4677       }
4678     }else{
4679       /* res might be negative because the table is empty.  Check to
4680       ** see if this is the case.
4681       */
4682       res = sqlite3BtreeEof(pC->uc.pCursor);
4683     }
4684   }
4685 seek_not_found:
4686   assert( pOp->p2>0 );
4687   VdbeBranchTaken(res!=0,2);
4688   if( res ){
4689     goto jump_to_p2;
4690   }else if( eqOnly ){
4691     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4692     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4693   }
4694   break;
4695 }
4696 
4697 
4698 /* Opcode: SeekScan  P1 P2 * * *
4699 ** Synopsis: Scan-ahead up to P1 rows
4700 **
4701 ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
4702 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4703 ** checked by assert() statements.
4704 **
4705 ** This opcode uses the P1 through P4 operands of the subsequent
4706 ** OP_SeekGE.  In the text that follows, the operands of the subsequent
4707 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
4708 ** the P1 and P2 operands of this opcode are also used, and  are called
4709 ** This.P1 and This.P2.
4710 **
4711 ** This opcode helps to optimize IN operators on a multi-column index
4712 ** where the IN operator is on the later terms of the index by avoiding
4713 ** unnecessary seeks on the btree, substituting steps to the next row
4714 ** of the b-tree instead.  A correct answer is obtained if this opcode
4715 ** is omitted or is a no-op.
4716 **
4717 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4718 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4719 ** to.  Call this SeekGE.P4/P5 row the "target".
4720 **
4721 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4722 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4723 **
4724 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4725 ** might be the target row, or it might be near and slightly before the
4726 ** target row.  This opcode attempts to position the cursor on the target
4727 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor
4728 ** between 0 and This.P1 times.
4729 **
4730 ** There are three possible outcomes from this opcode:<ol>
4731 **
4732 ** <li> If after This.P1 steps, the cursor is still pointing to a place that
4733 **      is earlier in the btree than the target row, then fall through
4734 **      into the subsquence OP_SeekGE opcode.
4735 **
4736 ** <li> If the cursor is successfully moved to the target row by 0 or more
4737 **      sqlite3BtreeNext() calls, then jump to This.P2, which will land just
4738 **      past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE.
4739 **
4740 ** <li> If the cursor ends up past the target row (indicating the the target
4741 **      row does not exist in the btree) then jump to SeekOP.P2.
4742 ** </ol>
4743 */
4744 case OP_SeekScan: {
4745   VdbeCursor *pC;
4746   int res;
4747   int nStep;
4748   UnpackedRecord r;
4749 
4750   assert( pOp[1].opcode==OP_SeekGE );
4751 
4752   /* pOp->p2 points to the first instruction past the OP_IdxGT that
4753   ** follows the OP_SeekGE.  */
4754   assert( pOp->p2>=(int)(pOp-aOp)+2 );
4755   assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE );
4756   testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4757   assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4758   assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4759   assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4760 
4761   assert( pOp->p1>0 );
4762   pC = p->apCsr[pOp[1].p1];
4763   assert( pC!=0 );
4764   assert( pC->eCurType==CURTYPE_BTREE );
4765   assert( !pC->isTable );
4766   if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4767 #ifdef SQLITE_DEBUG
4768      if( db->flags&SQLITE_VdbeTrace ){
4769        printf("... cursor not valid - fall through\n");
4770      }
4771 #endif
4772     break;
4773   }
4774   nStep = pOp->p1;
4775   assert( nStep>=1 );
4776   r.pKeyInfo = pC->pKeyInfo;
4777   r.nField = (u16)pOp[1].p4.i;
4778   r.default_rc = 0;
4779   r.aMem = &aMem[pOp[1].p3];
4780 #ifdef SQLITE_DEBUG
4781   {
4782     int i;
4783     for(i=0; i<r.nField; i++){
4784       assert( memIsValid(&r.aMem[i]) );
4785       REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4786     }
4787   }
4788 #endif
4789   res = 0;  /* Not needed.  Only used to silence a warning. */
4790   while(1){
4791     rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4792     if( rc ) goto abort_due_to_error;
4793     if( res>0 ){
4794       seekscan_search_fail:
4795 #ifdef SQLITE_DEBUG
4796       if( db->flags&SQLITE_VdbeTrace ){
4797         printf("... %d steps and then skip\n", pOp->p1 - nStep);
4798       }
4799 #endif
4800       VdbeBranchTaken(1,3);
4801       pOp++;
4802       goto jump_to_p2;
4803     }
4804     if( res==0 ){
4805 #ifdef SQLITE_DEBUG
4806       if( db->flags&SQLITE_VdbeTrace ){
4807         printf("... %d steps and then success\n", pOp->p1 - nStep);
4808       }
4809 #endif
4810       VdbeBranchTaken(2,3);
4811       goto jump_to_p2;
4812       break;
4813     }
4814     if( nStep<=0 ){
4815 #ifdef SQLITE_DEBUG
4816       if( db->flags&SQLITE_VdbeTrace ){
4817         printf("... fall through after %d steps\n", pOp->p1);
4818       }
4819 #endif
4820       VdbeBranchTaken(0,3);
4821       break;
4822     }
4823     nStep--;
4824     rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4825     if( rc ){
4826       if( rc==SQLITE_DONE ){
4827         rc = SQLITE_OK;
4828         goto seekscan_search_fail;
4829       }else{
4830         goto abort_due_to_error;
4831       }
4832     }
4833   }
4834 
4835   break;
4836 }
4837 
4838 
4839 /* Opcode: SeekHit P1 P2 P3 * *
4840 ** Synopsis: set P2<=seekHit<=P3
4841 **
4842 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4843 ** so that it is no less than P2 and no greater than P3.
4844 **
4845 ** The seekHit integer represents the maximum of terms in an index for which
4846 ** there is known to be at least one match.  If the seekHit value is smaller
4847 ** than the total number of equality terms in an index lookup, then the
4848 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4849 ** early, thus saving work.  This is part of the IN-early-out optimization.
4850 **
4851 ** P1 must be a valid b-tree cursor.
4852 */
4853 case OP_SeekHit: {
4854   VdbeCursor *pC;
4855   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4856   pC = p->apCsr[pOp->p1];
4857   assert( pC!=0 );
4858   assert( pOp->p3>=pOp->p2 );
4859   if( pC->seekHit<pOp->p2 ){
4860 #ifdef SQLITE_DEBUG
4861     if( db->flags&SQLITE_VdbeTrace ){
4862       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
4863     }
4864 #endif
4865     pC->seekHit = pOp->p2;
4866   }else if( pC->seekHit>pOp->p3 ){
4867 #ifdef SQLITE_DEBUG
4868     if( db->flags&SQLITE_VdbeTrace ){
4869       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
4870     }
4871 #endif
4872     pC->seekHit = pOp->p3;
4873   }
4874   break;
4875 }
4876 
4877 /* Opcode: IfNotOpen P1 P2 * * *
4878 ** Synopsis: if( !csr[P1] ) goto P2
4879 **
4880 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4881 */
4882 case OP_IfNotOpen: {        /* jump */
4883   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4884   VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4885   if( !p->apCsr[pOp->p1] ){
4886     goto jump_to_p2_and_check_for_interrupt;
4887   }
4888   break;
4889 }
4890 
4891 /* Opcode: Found P1 P2 P3 P4 *
4892 ** Synopsis: key=r[P3@P4]
4893 **
4894 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4895 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4896 ** record.
4897 **
4898 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4899 ** is a prefix of any entry in P1 then a jump is made to P2 and
4900 ** P1 is left pointing at the matching entry.
4901 **
4902 ** This operation leaves the cursor in a state where it can be
4903 ** advanced in the forward direction.  The Next instruction will work,
4904 ** but not the Prev instruction.
4905 **
4906 ** See also: NotFound, NoConflict, NotExists. SeekGe
4907 */
4908 /* Opcode: NotFound P1 P2 P3 P4 *
4909 ** Synopsis: key=r[P3@P4]
4910 **
4911 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4912 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4913 ** record.
4914 **
4915 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4916 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4917 ** does contain an entry whose prefix matches the P3/P4 record then control
4918 ** falls through to the next instruction and P1 is left pointing at the
4919 ** matching entry.
4920 **
4921 ** This operation leaves the cursor in a state where it cannot be
4922 ** advanced in either direction.  In other words, the Next and Prev
4923 ** opcodes do not work after this operation.
4924 **
4925 ** See also: Found, NotExists, NoConflict, IfNoHope
4926 */
4927 /* Opcode: IfNoHope P1 P2 P3 P4 *
4928 ** Synopsis: key=r[P3@P4]
4929 **
4930 ** Register P3 is the first of P4 registers that form an unpacked
4931 ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
4932 ** In other words, the operands to this opcode are the same as the
4933 ** operands to OP_NotFound and OP_IdxGT.
4934 **
4935 ** This opcode is an optimization attempt only.  If this opcode always
4936 ** falls through, the correct answer is still obtained, but extra works
4937 ** is performed.
4938 **
4939 ** A value of N in the seekHit flag of cursor P1 means that there exists
4940 ** a key P3:N that will match some record in the index.  We want to know
4941 ** if it is possible for a record P3:P4 to match some record in the
4942 ** index.  If it is not possible, we can skips some work.  So if seekHit
4943 ** is less than P4, attempt to find out if a match is possible by running
4944 ** OP_NotFound.
4945 **
4946 ** This opcode is used in IN clause processing for a multi-column key.
4947 ** If an IN clause is attached to an element of the key other than the
4948 ** left-most element, and if there are no matches on the most recent
4949 ** seek over the whole key, then it might be that one of the key element
4950 ** to the left is prohibiting a match, and hence there is "no hope" of
4951 ** any match regardless of how many IN clause elements are checked.
4952 ** In such a case, we abandon the IN clause search early, using this
4953 ** opcode.  The opcode name comes from the fact that the
4954 ** jump is taken if there is "no hope" of achieving a match.
4955 **
4956 ** See also: NotFound, SeekHit
4957 */
4958 /* Opcode: NoConflict P1 P2 P3 P4 *
4959 ** Synopsis: key=r[P3@P4]
4960 **
4961 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4962 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4963 ** record.
4964 **
4965 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4966 ** contains any NULL value, jump immediately to P2.  If all terms of the
4967 ** record are not-NULL then a check is done to determine if any row in the
4968 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4969 ** immediately to P2.  If there is a match, fall through and leave the P1
4970 ** cursor pointing to the matching row.
4971 **
4972 ** This opcode is similar to OP_NotFound with the exceptions that the
4973 ** branch is always taken if any part of the search key input is NULL.
4974 **
4975 ** This operation leaves the cursor in a state where it cannot be
4976 ** advanced in either direction.  In other words, the Next and Prev
4977 ** opcodes do not work after this operation.
4978 **
4979 ** See also: NotFound, Found, NotExists
4980 */
4981 case OP_IfNoHope: {     /* jump, in3 */
4982   VdbeCursor *pC;
4983   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4984   pC = p->apCsr[pOp->p1];
4985   assert( pC!=0 );
4986 #ifdef SQLITE_DEBUG
4987   if( db->flags&SQLITE_VdbeTrace ){
4988     printf("seekHit is %d\n", pC->seekHit);
4989   }
4990 #endif
4991   if( pC->seekHit>=pOp->p4.i ) break;
4992   /* Fall through into OP_NotFound */
4993   /* no break */ deliberate_fall_through
4994 }
4995 case OP_NoConflict:     /* jump, in3 */
4996 case OP_NotFound:       /* jump, in3 */
4997 case OP_Found: {        /* jump, in3 */
4998   int alreadyExists;
4999   int ii;
5000   VdbeCursor *pC;
5001   UnpackedRecord *pIdxKey;
5002   UnpackedRecord r;
5003 
5004 #ifdef SQLITE_TEST
5005   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5006 #endif
5007 
5008   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5009   assert( pOp->p4type==P4_INT32 );
5010   pC = p->apCsr[pOp->p1];
5011   assert( pC!=0 );
5012 #ifdef SQLITE_DEBUG
5013   pC->seekOp = pOp->opcode;
5014 #endif
5015   r.aMem = &aMem[pOp->p3];
5016   assert( pC->eCurType==CURTYPE_BTREE );
5017   assert( pC->uc.pCursor!=0 );
5018   assert( pC->isTable==0 );
5019   r.nField = (u16)pOp->p4.i;
5020   if( r.nField>0 ){
5021     /* Key values in an array of registers */
5022     r.pKeyInfo = pC->pKeyInfo;
5023     r.default_rc = 0;
5024 #ifdef SQLITE_DEBUG
5025     for(ii=0; ii<r.nField; ii++){
5026       assert( memIsValid(&r.aMem[ii]) );
5027       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5028       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5029     }
5030 #endif
5031     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5032   }else{
5033     /* Composite key generated by OP_MakeRecord */
5034     assert( r.aMem->flags & MEM_Blob );
5035     assert( pOp->opcode!=OP_NoConflict );
5036     rc = ExpandBlob(r.aMem);
5037     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5038     if( rc ) goto no_mem;
5039     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5040     if( pIdxKey==0 ) goto no_mem;
5041     sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5042     pIdxKey->default_rc = 0;
5043     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5044     sqlite3DbFreeNN(db, pIdxKey);
5045   }
5046   if( rc!=SQLITE_OK ){
5047     goto abort_due_to_error;
5048   }
5049   alreadyExists = (pC->seekResult==0);
5050   pC->nullRow = 1-alreadyExists;
5051   pC->deferredMoveto = 0;
5052   pC->cacheStatus = CACHE_STALE;
5053   if( pOp->opcode==OP_Found ){
5054     VdbeBranchTaken(alreadyExists!=0,2);
5055     if( alreadyExists ) goto jump_to_p2;
5056   }else{
5057     if( !alreadyExists ){
5058       VdbeBranchTaken(1,2);
5059       goto jump_to_p2;
5060     }
5061     if( pOp->opcode==OP_NoConflict ){
5062       /* For the OP_NoConflict opcode, take the jump if any of the
5063       ** input fields are NULL, since any key with a NULL will not
5064       ** conflict */
5065       for(ii=0; ii<r.nField; ii++){
5066         if( r.aMem[ii].flags & MEM_Null ){
5067           VdbeBranchTaken(1,2);
5068           goto jump_to_p2;
5069         }
5070       }
5071     }
5072     VdbeBranchTaken(0,2);
5073     if( pOp->opcode==OP_IfNoHope ){
5074       pC->seekHit = pOp->p4.i;
5075     }
5076   }
5077   break;
5078 }
5079 
5080 /* Opcode: SeekRowid P1 P2 P3 * *
5081 ** Synopsis: intkey=r[P3]
5082 **
5083 ** P1 is the index of a cursor open on an SQL table btree (with integer
5084 ** keys).  If register P3 does not contain an integer or if P1 does not
5085 ** contain a record with rowid P3 then jump immediately to P2.
5086 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5087 ** a record with rowid P3 then
5088 ** leave the cursor pointing at that record and fall through to the next
5089 ** instruction.
5090 **
5091 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5092 ** the P3 register must be guaranteed to contain an integer value.  With this
5093 ** opcode, register P3 might not contain an integer.
5094 **
5095 ** The OP_NotFound opcode performs the same operation on index btrees
5096 ** (with arbitrary multi-value keys).
5097 **
5098 ** This opcode leaves the cursor in a state where it cannot be advanced
5099 ** in either direction.  In other words, the Next and Prev opcodes will
5100 ** not work following this opcode.
5101 **
5102 ** See also: Found, NotFound, NoConflict, SeekRowid
5103 */
5104 /* Opcode: NotExists P1 P2 P3 * *
5105 ** Synopsis: intkey=r[P3]
5106 **
5107 ** P1 is the index of a cursor open on an SQL table btree (with integer
5108 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
5109 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
5110 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5111 ** leave the cursor pointing at that record and fall through to the next
5112 ** instruction.
5113 **
5114 ** The OP_SeekRowid opcode performs the same operation but also allows the
5115 ** P3 register to contain a non-integer value, in which case the jump is
5116 ** always taken.  This opcode requires that P3 always contain an integer.
5117 **
5118 ** The OP_NotFound opcode performs the same operation on index btrees
5119 ** (with arbitrary multi-value keys).
5120 **
5121 ** This opcode leaves the cursor in a state where it cannot be advanced
5122 ** in either direction.  In other words, the Next and Prev opcodes will
5123 ** not work following this opcode.
5124 **
5125 ** See also: Found, NotFound, NoConflict, SeekRowid
5126 */
5127 case OP_SeekRowid: {        /* jump, in3 */
5128   VdbeCursor *pC;
5129   BtCursor *pCrsr;
5130   int res;
5131   u64 iKey;
5132 
5133   pIn3 = &aMem[pOp->p3];
5134   testcase( pIn3->flags & MEM_Int );
5135   testcase( pIn3->flags & MEM_IntReal );
5136   testcase( pIn3->flags & MEM_Real );
5137   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5138   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5139     /* If pIn3->u.i does not contain an integer, compute iKey as the
5140     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
5141     ** into an integer without loss of information.  Take care to avoid
5142     ** changing the datatype of pIn3, however, as it is used by other
5143     ** parts of the prepared statement. */
5144     Mem x = pIn3[0];
5145     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5146     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5147     iKey = x.u.i;
5148     goto notExistsWithKey;
5149   }
5150   /* Fall through into OP_NotExists */
5151   /* no break */ deliberate_fall_through
5152 case OP_NotExists:          /* jump, in3 */
5153   pIn3 = &aMem[pOp->p3];
5154   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5155   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5156   iKey = pIn3->u.i;
5157 notExistsWithKey:
5158   pC = p->apCsr[pOp->p1];
5159   assert( pC!=0 );
5160 #ifdef SQLITE_DEBUG
5161   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5162 #endif
5163   assert( pC->isTable );
5164   assert( pC->eCurType==CURTYPE_BTREE );
5165   pCrsr = pC->uc.pCursor;
5166   assert( pCrsr!=0 );
5167   res = 0;
5168   rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5169   assert( rc==SQLITE_OK || res==0 );
5170   pC->movetoTarget = iKey;  /* Used by OP_Delete */
5171   pC->nullRow = 0;
5172   pC->cacheStatus = CACHE_STALE;
5173   pC->deferredMoveto = 0;
5174   VdbeBranchTaken(res!=0,2);
5175   pC->seekResult = res;
5176   if( res!=0 ){
5177     assert( rc==SQLITE_OK );
5178     if( pOp->p2==0 ){
5179       rc = SQLITE_CORRUPT_BKPT;
5180     }else{
5181       goto jump_to_p2;
5182     }
5183   }
5184   if( rc ) goto abort_due_to_error;
5185   break;
5186 }
5187 
5188 /* Opcode: Sequence P1 P2 * * *
5189 ** Synopsis: r[P2]=cursor[P1].ctr++
5190 **
5191 ** Find the next available sequence number for cursor P1.
5192 ** Write the sequence number into register P2.
5193 ** The sequence number on the cursor is incremented after this
5194 ** instruction.
5195 */
5196 case OP_Sequence: {           /* out2 */
5197   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5198   assert( p->apCsr[pOp->p1]!=0 );
5199   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5200   pOut = out2Prerelease(p, pOp);
5201   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5202   break;
5203 }
5204 
5205 
5206 /* Opcode: NewRowid P1 P2 P3 * *
5207 ** Synopsis: r[P2]=rowid
5208 **
5209 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5210 ** The record number is not previously used as a key in the database
5211 ** table that cursor P1 points to.  The new record number is written
5212 ** written to register P2.
5213 **
5214 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5215 ** the largest previously generated record number. No new record numbers are
5216 ** allowed to be less than this value. When this value reaches its maximum,
5217 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5218 ** generated record number. This P3 mechanism is used to help implement the
5219 ** AUTOINCREMENT feature.
5220 */
5221 case OP_NewRowid: {           /* out2 */
5222   i64 v;                 /* The new rowid */
5223   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
5224   int res;               /* Result of an sqlite3BtreeLast() */
5225   int cnt;               /* Counter to limit the number of searches */
5226 #ifndef SQLITE_OMIT_AUTOINCREMENT
5227   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
5228   VdbeFrame *pFrame;     /* Root frame of VDBE */
5229 #endif
5230 
5231   v = 0;
5232   res = 0;
5233   pOut = out2Prerelease(p, pOp);
5234   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5235   pC = p->apCsr[pOp->p1];
5236   assert( pC!=0 );
5237   assert( pC->isTable );
5238   assert( pC->eCurType==CURTYPE_BTREE );
5239   assert( pC->uc.pCursor!=0 );
5240   {
5241     /* The next rowid or record number (different terms for the same
5242     ** thing) is obtained in a two-step algorithm.
5243     **
5244     ** First we attempt to find the largest existing rowid and add one
5245     ** to that.  But if the largest existing rowid is already the maximum
5246     ** positive integer, we have to fall through to the second
5247     ** probabilistic algorithm
5248     **
5249     ** The second algorithm is to select a rowid at random and see if
5250     ** it already exists in the table.  If it does not exist, we have
5251     ** succeeded.  If the random rowid does exist, we select a new one
5252     ** and try again, up to 100 times.
5253     */
5254     assert( pC->isTable );
5255 
5256 #ifdef SQLITE_32BIT_ROWID
5257 #   define MAX_ROWID 0x7fffffff
5258 #else
5259     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5260     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
5261     ** to provide the constant while making all compilers happy.
5262     */
5263 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5264 #endif
5265 
5266     if( !pC->useRandomRowid ){
5267       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5268       if( rc!=SQLITE_OK ){
5269         goto abort_due_to_error;
5270       }
5271       if( res ){
5272         v = 1;   /* IMP: R-61914-48074 */
5273       }else{
5274         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5275         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5276         if( v>=MAX_ROWID ){
5277           pC->useRandomRowid = 1;
5278         }else{
5279           v++;   /* IMP: R-29538-34987 */
5280         }
5281       }
5282     }
5283 
5284 #ifndef SQLITE_OMIT_AUTOINCREMENT
5285     if( pOp->p3 ){
5286       /* Assert that P3 is a valid memory cell. */
5287       assert( pOp->p3>0 );
5288       if( p->pFrame ){
5289         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5290         /* Assert that P3 is a valid memory cell. */
5291         assert( pOp->p3<=pFrame->nMem );
5292         pMem = &pFrame->aMem[pOp->p3];
5293       }else{
5294         /* Assert that P3 is a valid memory cell. */
5295         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5296         pMem = &aMem[pOp->p3];
5297         memAboutToChange(p, pMem);
5298       }
5299       assert( memIsValid(pMem) );
5300 
5301       REGISTER_TRACE(pOp->p3, pMem);
5302       sqlite3VdbeMemIntegerify(pMem);
5303       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
5304       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5305         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
5306         goto abort_due_to_error;
5307       }
5308       if( v<pMem->u.i+1 ){
5309         v = pMem->u.i + 1;
5310       }
5311       pMem->u.i = v;
5312     }
5313 #endif
5314     if( pC->useRandomRowid ){
5315       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5316       ** largest possible integer (9223372036854775807) then the database
5317       ** engine starts picking positive candidate ROWIDs at random until
5318       ** it finds one that is not previously used. */
5319       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
5320                              ** an AUTOINCREMENT table. */
5321       cnt = 0;
5322       do{
5323         sqlite3_randomness(sizeof(v), &v);
5324         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
5325       }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5326                                                  0, &res))==SQLITE_OK)
5327             && (res==0)
5328             && (++cnt<100));
5329       if( rc ) goto abort_due_to_error;
5330       if( res==0 ){
5331         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
5332         goto abort_due_to_error;
5333       }
5334       assert( v>0 );  /* EV: R-40812-03570 */
5335     }
5336     pC->deferredMoveto = 0;
5337     pC->cacheStatus = CACHE_STALE;
5338   }
5339   pOut->u.i = v;
5340   break;
5341 }
5342 
5343 /* Opcode: Insert P1 P2 P3 P4 P5
5344 ** Synopsis: intkey=r[P3] data=r[P2]
5345 **
5346 ** Write an entry into the table of cursor P1.  A new entry is
5347 ** created if it doesn't already exist or the data for an existing
5348 ** entry is overwritten.  The data is the value MEM_Blob stored in register
5349 ** number P2. The key is stored in register P3. The key must
5350 ** be a MEM_Int.
5351 **
5352 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5353 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
5354 ** then rowid is stored for subsequent return by the
5355 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5356 **
5357 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5358 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5359 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5360 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5361 **
5362 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5363 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
5364 ** is part of an INSERT operation.  The difference is only important to
5365 ** the update hook.
5366 **
5367 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5368 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5369 ** following a successful insert.
5370 **
5371 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5372 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5373 ** and register P2 becomes ephemeral.  If the cursor is changed, the
5374 ** value of register P2 will then change.  Make sure this does not
5375 ** cause any problems.)
5376 **
5377 ** This instruction only works on tables.  The equivalent instruction
5378 ** for indices is OP_IdxInsert.
5379 */
5380 case OP_Insert: {
5381   Mem *pData;       /* MEM cell holding data for the record to be inserted */
5382   Mem *pKey;        /* MEM cell holding key  for the record */
5383   VdbeCursor *pC;   /* Cursor to table into which insert is written */
5384   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
5385   const char *zDb;  /* database name - used by the update hook */
5386   Table *pTab;      /* Table structure - used by update and pre-update hooks */
5387   BtreePayload x;   /* Payload to be inserted */
5388 
5389   pData = &aMem[pOp->p2];
5390   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5391   assert( memIsValid(pData) );
5392   pC = p->apCsr[pOp->p1];
5393   assert( pC!=0 );
5394   assert( pC->eCurType==CURTYPE_BTREE );
5395   assert( pC->deferredMoveto==0 );
5396   assert( pC->uc.pCursor!=0 );
5397   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5398   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5399   REGISTER_TRACE(pOp->p2, pData);
5400   sqlite3VdbeIncrWriteCounter(p, pC);
5401 
5402   pKey = &aMem[pOp->p3];
5403   assert( pKey->flags & MEM_Int );
5404   assert( memIsValid(pKey) );
5405   REGISTER_TRACE(pOp->p3, pKey);
5406   x.nKey = pKey->u.i;
5407 
5408   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5409     assert( pC->iDb>=0 );
5410     zDb = db->aDb[pC->iDb].zDbSName;
5411     pTab = pOp->p4.pTab;
5412     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5413   }else{
5414     pTab = 0;
5415     zDb = 0;
5416   }
5417 
5418 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5419   /* Invoke the pre-update hook, if any */
5420   if( pTab ){
5421     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5422       sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5423     }
5424     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5425       /* Prevent post-update hook from running in cases when it should not */
5426       pTab = 0;
5427     }
5428   }
5429   if( pOp->p5 & OPFLAG_ISNOOP ) break;
5430 #endif
5431 
5432   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5433   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5434   assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5435   x.pData = pData->z;
5436   x.nData = pData->n;
5437   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5438   if( pData->flags & MEM_Zero ){
5439     x.nZero = pData->u.nZero;
5440   }else{
5441     x.nZero = 0;
5442   }
5443   x.pKey = 0;
5444   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5445       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5446       seekResult
5447   );
5448   pC->deferredMoveto = 0;
5449   pC->cacheStatus = CACHE_STALE;
5450 
5451   /* Invoke the update-hook if required. */
5452   if( rc ) goto abort_due_to_error;
5453   if( pTab ){
5454     assert( db->xUpdateCallback!=0 );
5455     assert( pTab->aCol!=0 );
5456     db->xUpdateCallback(db->pUpdateArg,
5457            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5458            zDb, pTab->zName, x.nKey);
5459   }
5460   break;
5461 }
5462 
5463 /* Opcode: RowCell P1 P2 P3 * *
5464 **
5465 ** P1 and P2 are both open cursors. Both must be opened on the same type
5466 ** of table - intkey or index. This opcode is used as part of copying
5467 ** the current row from P2 into P1. If the cursors are opened on intkey
5468 ** tables, register P3 contains the rowid to use with the new record in
5469 ** P1. If they are opened on index tables, P3 is not used.
5470 **
5471 ** This opcode must be followed by either an Insert or InsertIdx opcode
5472 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5473 */
5474 case OP_RowCell: {
5475   VdbeCursor *pDest;              /* Cursor to write to */
5476   VdbeCursor *pSrc;               /* Cursor to read from */
5477   i64 iKey;                       /* Rowid value to insert with */
5478   assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5479   assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
5480   assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5481   assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5482   pDest = p->apCsr[pOp->p1];
5483   pSrc = p->apCsr[pOp->p2];
5484   iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5485   rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5486   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5487   break;
5488 };
5489 
5490 /* Opcode: Delete P1 P2 P3 P4 P5
5491 **
5492 ** Delete the record at which the P1 cursor is currently pointing.
5493 **
5494 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5495 ** the cursor will be left pointing at  either the next or the previous
5496 ** record in the table. If it is left pointing at the next record, then
5497 ** the next Next instruction will be a no-op. As a result, in this case
5498 ** it is ok to delete a record from within a Next loop. If
5499 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5500 ** left in an undefined state.
5501 **
5502 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5503 ** delete one of several associated with deleting a table row and all its
5504 ** associated index entries.  Exactly one of those deletes is the "primary"
5505 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
5506 ** marked with the AUXDELETE flag.
5507 **
5508 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5509 ** change count is incremented (otherwise not).
5510 **
5511 ** P1 must not be pseudo-table.  It has to be a real table with
5512 ** multiple rows.
5513 **
5514 ** If P4 is not NULL then it points to a Table object. In this case either
5515 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5516 ** have been positioned using OP_NotFound prior to invoking this opcode in
5517 ** this case. Specifically, if one is configured, the pre-update hook is
5518 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5519 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5520 **
5521 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5522 ** of the memory cell that contains the value that the rowid of the row will
5523 ** be set to by the update.
5524 */
5525 case OP_Delete: {
5526   VdbeCursor *pC;
5527   const char *zDb;
5528   Table *pTab;
5529   int opflags;
5530 
5531   opflags = pOp->p2;
5532   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5533   pC = p->apCsr[pOp->p1];
5534   assert( pC!=0 );
5535   assert( pC->eCurType==CURTYPE_BTREE );
5536   assert( pC->uc.pCursor!=0 );
5537   assert( pC->deferredMoveto==0 );
5538   sqlite3VdbeIncrWriteCounter(p, pC);
5539 
5540 #ifdef SQLITE_DEBUG
5541   if( pOp->p4type==P4_TABLE
5542    && HasRowid(pOp->p4.pTab)
5543    && pOp->p5==0
5544    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5545   ){
5546     /* If p5 is zero, the seek operation that positioned the cursor prior to
5547     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5548     ** the row that is being deleted */
5549     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5550     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5551   }
5552 #endif
5553 
5554   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5555   ** the name of the db to pass as to it. Also set local pTab to a copy
5556   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5557   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5558   ** VdbeCursor.movetoTarget to the current rowid.  */
5559   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5560     assert( pC->iDb>=0 );
5561     assert( pOp->p4.pTab!=0 );
5562     zDb = db->aDb[pC->iDb].zDbSName;
5563     pTab = pOp->p4.pTab;
5564     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5565       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5566     }
5567   }else{
5568     zDb = 0;
5569     pTab = 0;
5570   }
5571 
5572 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5573   /* Invoke the pre-update-hook if required. */
5574   assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5575   if( db->xPreUpdateCallback && pTab ){
5576     assert( !(opflags & OPFLAG_ISUPDATE)
5577          || HasRowid(pTab)==0
5578          || (aMem[pOp->p3].flags & MEM_Int)
5579     );
5580     sqlite3VdbePreUpdateHook(p, pC,
5581         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5582         zDb, pTab, pC->movetoTarget,
5583         pOp->p3, -1
5584     );
5585   }
5586   if( opflags & OPFLAG_ISNOOP ) break;
5587 #endif
5588 
5589   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5590   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5591   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5592   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5593 
5594 #ifdef SQLITE_DEBUG
5595   if( p->pFrame==0 ){
5596     if( pC->isEphemeral==0
5597         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5598         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5599       ){
5600       nExtraDelete++;
5601     }
5602     if( pOp->p2 & OPFLAG_NCHANGE ){
5603       nExtraDelete--;
5604     }
5605   }
5606 #endif
5607 
5608   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5609   pC->cacheStatus = CACHE_STALE;
5610   pC->seekResult = 0;
5611   if( rc ) goto abort_due_to_error;
5612 
5613   /* Invoke the update-hook if required. */
5614   if( opflags & OPFLAG_NCHANGE ){
5615     p->nChange++;
5616     if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5617       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5618           pC->movetoTarget);
5619       assert( pC->iDb>=0 );
5620     }
5621   }
5622 
5623   break;
5624 }
5625 /* Opcode: ResetCount * * * * *
5626 **
5627 ** The value of the change counter is copied to the database handle
5628 ** change counter (returned by subsequent calls to sqlite3_changes()).
5629 ** Then the VMs internal change counter resets to 0.
5630 ** This is used by trigger programs.
5631 */
5632 case OP_ResetCount: {
5633   sqlite3VdbeSetChanges(db, p->nChange);
5634   p->nChange = 0;
5635   break;
5636 }
5637 
5638 /* Opcode: SorterCompare P1 P2 P3 P4
5639 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5640 **
5641 ** P1 is a sorter cursor. This instruction compares a prefix of the
5642 ** record blob in register P3 against a prefix of the entry that
5643 ** the sorter cursor currently points to.  Only the first P4 fields
5644 ** of r[P3] and the sorter record are compared.
5645 **
5646 ** If either P3 or the sorter contains a NULL in one of their significant
5647 ** fields (not counting the P4 fields at the end which are ignored) then
5648 ** the comparison is assumed to be equal.
5649 **
5650 ** Fall through to next instruction if the two records compare equal to
5651 ** each other.  Jump to P2 if they are different.
5652 */
5653 case OP_SorterCompare: {
5654   VdbeCursor *pC;
5655   int res;
5656   int nKeyCol;
5657 
5658   pC = p->apCsr[pOp->p1];
5659   assert( isSorter(pC) );
5660   assert( pOp->p4type==P4_INT32 );
5661   pIn3 = &aMem[pOp->p3];
5662   nKeyCol = pOp->p4.i;
5663   res = 0;
5664   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5665   VdbeBranchTaken(res!=0,2);
5666   if( rc ) goto abort_due_to_error;
5667   if( res ) goto jump_to_p2;
5668   break;
5669 };
5670 
5671 /* Opcode: SorterData P1 P2 P3 * *
5672 ** Synopsis: r[P2]=data
5673 **
5674 ** Write into register P2 the current sorter data for sorter cursor P1.
5675 ** Then clear the column header cache on cursor P3.
5676 **
5677 ** This opcode is normally use to move a record out of the sorter and into
5678 ** a register that is the source for a pseudo-table cursor created using
5679 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5680 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5681 ** us from having to issue a separate NullRow instruction to clear that cache.
5682 */
5683 case OP_SorterData: {
5684   VdbeCursor *pC;
5685 
5686   pOut = &aMem[pOp->p2];
5687   pC = p->apCsr[pOp->p1];
5688   assert( isSorter(pC) );
5689   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5690   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5691   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5692   if( rc ) goto abort_due_to_error;
5693   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5694   break;
5695 }
5696 
5697 /* Opcode: RowData P1 P2 P3 * *
5698 ** Synopsis: r[P2]=data
5699 **
5700 ** Write into register P2 the complete row content for the row at
5701 ** which cursor P1 is currently pointing.
5702 ** There is no interpretation of the data.
5703 ** It is just copied onto the P2 register exactly as
5704 ** it is found in the database file.
5705 **
5706 ** If cursor P1 is an index, then the content is the key of the row.
5707 ** If cursor P2 is a table, then the content extracted is the data.
5708 **
5709 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5710 ** of a real table, not a pseudo-table.
5711 **
5712 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5713 ** into the database page.  That means that the content of the output
5714 ** register will be invalidated as soon as the cursor moves - including
5715 ** moves caused by other cursors that "save" the current cursors
5716 ** position in order that they can write to the same table.  If P3==0
5717 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5718 ** P3==0 is safer.
5719 **
5720 ** If P3!=0 then the content of the P2 register is unsuitable for use
5721 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5722 ** The P2 register content is invalidated by opcodes like OP_Function or
5723 ** by any use of another cursor pointing to the same table.
5724 */
5725 case OP_RowData: {
5726   VdbeCursor *pC;
5727   BtCursor *pCrsr;
5728   u32 n;
5729 
5730   pOut = out2Prerelease(p, pOp);
5731 
5732   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5733   pC = p->apCsr[pOp->p1];
5734   assert( pC!=0 );
5735   assert( pC->eCurType==CURTYPE_BTREE );
5736   assert( isSorter(pC)==0 );
5737   assert( pC->nullRow==0 );
5738   assert( pC->uc.pCursor!=0 );
5739   pCrsr = pC->uc.pCursor;
5740 
5741   /* The OP_RowData opcodes always follow OP_NotExists or
5742   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5743   ** that might invalidate the cursor.
5744   ** If this where not the case, on of the following assert()s
5745   ** would fail.  Should this ever change (because of changes in the code
5746   ** generator) then the fix would be to insert a call to
5747   ** sqlite3VdbeCursorMoveto().
5748   */
5749   assert( pC->deferredMoveto==0 );
5750   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5751 
5752   n = sqlite3BtreePayloadSize(pCrsr);
5753   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5754     goto too_big;
5755   }
5756   testcase( n==0 );
5757   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5758   if( rc ) goto abort_due_to_error;
5759   if( !pOp->p3 ) Deephemeralize(pOut);
5760   UPDATE_MAX_BLOBSIZE(pOut);
5761   REGISTER_TRACE(pOp->p2, pOut);
5762   break;
5763 }
5764 
5765 /* Opcode: Rowid P1 P2 * * *
5766 ** Synopsis: r[P2]=PX rowid of P1
5767 **
5768 ** Store in register P2 an integer which is the key of the table entry that
5769 ** P1 is currently point to.
5770 **
5771 ** P1 can be either an ordinary table or a virtual table.  There used to
5772 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5773 ** one opcode now works for both table types.
5774 */
5775 case OP_Rowid: {                 /* out2 */
5776   VdbeCursor *pC;
5777   i64 v;
5778   sqlite3_vtab *pVtab;
5779   const sqlite3_module *pModule;
5780 
5781   pOut = out2Prerelease(p, pOp);
5782   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5783   pC = p->apCsr[pOp->p1];
5784   assert( pC!=0 );
5785   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5786   if( pC->nullRow ){
5787     pOut->flags = MEM_Null;
5788     break;
5789   }else if( pC->deferredMoveto ){
5790     v = pC->movetoTarget;
5791 #ifndef SQLITE_OMIT_VIRTUALTABLE
5792   }else if( pC->eCurType==CURTYPE_VTAB ){
5793     assert( pC->uc.pVCur!=0 );
5794     pVtab = pC->uc.pVCur->pVtab;
5795     pModule = pVtab->pModule;
5796     assert( pModule->xRowid );
5797     rc = pModule->xRowid(pC->uc.pVCur, &v);
5798     sqlite3VtabImportErrmsg(p, pVtab);
5799     if( rc ) goto abort_due_to_error;
5800 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5801   }else{
5802     assert( pC->eCurType==CURTYPE_BTREE );
5803     assert( pC->uc.pCursor!=0 );
5804     rc = sqlite3VdbeCursorRestore(pC);
5805     if( rc ) goto abort_due_to_error;
5806     if( pC->nullRow ){
5807       pOut->flags = MEM_Null;
5808       break;
5809     }
5810     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5811   }
5812   pOut->u.i = v;
5813   break;
5814 }
5815 
5816 /* Opcode: NullRow P1 * * * *
5817 **
5818 ** Move the cursor P1 to a null row.  Any OP_Column operations
5819 ** that occur while the cursor is on the null row will always
5820 ** write a NULL.
5821 **
5822 ** If cursor P1 is not previously opened, open it now to a special
5823 ** pseudo-cursor that always returns NULL for every column.
5824 */
5825 case OP_NullRow: {
5826   VdbeCursor *pC;
5827 
5828   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5829   pC = p->apCsr[pOp->p1];
5830   if( pC==0 ){
5831     /* If the cursor is not already open, create a special kind of
5832     ** pseudo-cursor that always gives null rows. */
5833     pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
5834     if( pC==0 ) goto no_mem;
5835     pC->seekResult = 0;
5836     pC->isTable = 1;
5837     pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
5838   }
5839   pC->nullRow = 1;
5840   pC->cacheStatus = CACHE_STALE;
5841   if( pC->eCurType==CURTYPE_BTREE ){
5842     assert( pC->uc.pCursor!=0 );
5843     sqlite3BtreeClearCursor(pC->uc.pCursor);
5844   }
5845 #ifdef SQLITE_DEBUG
5846   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5847 #endif
5848   break;
5849 }
5850 
5851 /* Opcode: SeekEnd P1 * * * *
5852 **
5853 ** Position cursor P1 at the end of the btree for the purpose of
5854 ** appending a new entry onto the btree.
5855 **
5856 ** It is assumed that the cursor is used only for appending and so
5857 ** if the cursor is valid, then the cursor must already be pointing
5858 ** at the end of the btree and so no changes are made to
5859 ** the cursor.
5860 */
5861 /* Opcode: Last P1 P2 * * *
5862 **
5863 ** The next use of the Rowid or Column or Prev instruction for P1
5864 ** will refer to the last entry in the database table or index.
5865 ** If the table or index is empty and P2>0, then jump immediately to P2.
5866 ** If P2 is 0 or if the table or index is not empty, fall through
5867 ** to the following instruction.
5868 **
5869 ** This opcode leaves the cursor configured to move in reverse order,
5870 ** from the end toward the beginning.  In other words, the cursor is
5871 ** configured to use Prev, not Next.
5872 */
5873 case OP_SeekEnd:
5874 case OP_Last: {        /* jump */
5875   VdbeCursor *pC;
5876   BtCursor *pCrsr;
5877   int res;
5878 
5879   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5880   pC = p->apCsr[pOp->p1];
5881   assert( pC!=0 );
5882   assert( pC->eCurType==CURTYPE_BTREE );
5883   pCrsr = pC->uc.pCursor;
5884   res = 0;
5885   assert( pCrsr!=0 );
5886 #ifdef SQLITE_DEBUG
5887   pC->seekOp = pOp->opcode;
5888 #endif
5889   if( pOp->opcode==OP_SeekEnd ){
5890     assert( pOp->p2==0 );
5891     pC->seekResult = -1;
5892     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5893       break;
5894     }
5895   }
5896   rc = sqlite3BtreeLast(pCrsr, &res);
5897   pC->nullRow = (u8)res;
5898   pC->deferredMoveto = 0;
5899   pC->cacheStatus = CACHE_STALE;
5900   if( rc ) goto abort_due_to_error;
5901   if( pOp->p2>0 ){
5902     VdbeBranchTaken(res!=0,2);
5903     if( res ) goto jump_to_p2;
5904   }
5905   break;
5906 }
5907 
5908 /* Opcode: IfSmaller P1 P2 P3 * *
5909 **
5910 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5911 ** estimate is less than approximately 2**(0.1*P3).
5912 */
5913 case OP_IfSmaller: {        /* jump */
5914   VdbeCursor *pC;
5915   BtCursor *pCrsr;
5916   int res;
5917   i64 sz;
5918 
5919   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5920   pC = p->apCsr[pOp->p1];
5921   assert( pC!=0 );
5922   pCrsr = pC->uc.pCursor;
5923   assert( pCrsr );
5924   rc = sqlite3BtreeFirst(pCrsr, &res);
5925   if( rc ) goto abort_due_to_error;
5926   if( res==0 ){
5927     sz = sqlite3BtreeRowCountEst(pCrsr);
5928     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5929   }
5930   VdbeBranchTaken(res!=0,2);
5931   if( res ) goto jump_to_p2;
5932   break;
5933 }
5934 
5935 
5936 /* Opcode: SorterSort P1 P2 * * *
5937 **
5938 ** After all records have been inserted into the Sorter object
5939 ** identified by P1, invoke this opcode to actually do the sorting.
5940 ** Jump to P2 if there are no records to be sorted.
5941 **
5942 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5943 ** for Sorter objects.
5944 */
5945 /* Opcode: Sort P1 P2 * * *
5946 **
5947 ** This opcode does exactly the same thing as OP_Rewind except that
5948 ** it increments an undocumented global variable used for testing.
5949 **
5950 ** Sorting is accomplished by writing records into a sorting index,
5951 ** then rewinding that index and playing it back from beginning to
5952 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5953 ** rewinding so that the global variable will be incremented and
5954 ** regression tests can determine whether or not the optimizer is
5955 ** correctly optimizing out sorts.
5956 */
5957 case OP_SorterSort:    /* jump */
5958 case OP_Sort: {        /* jump */
5959 #ifdef SQLITE_TEST
5960   sqlite3_sort_count++;
5961   sqlite3_search_count--;
5962 #endif
5963   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5964   /* Fall through into OP_Rewind */
5965   /* no break */ deliberate_fall_through
5966 }
5967 /* Opcode: Rewind P1 P2 * * *
5968 **
5969 ** The next use of the Rowid or Column or Next instruction for P1
5970 ** will refer to the first entry in the database table or index.
5971 ** If the table or index is empty, jump immediately to P2.
5972 ** If the table or index is not empty, fall through to the following
5973 ** instruction.
5974 **
5975 ** This opcode leaves the cursor configured to move in forward order,
5976 ** from the beginning toward the end.  In other words, the cursor is
5977 ** configured to use Next, not Prev.
5978 */
5979 case OP_Rewind: {        /* jump */
5980   VdbeCursor *pC;
5981   BtCursor *pCrsr;
5982   int res;
5983 
5984   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5985   assert( pOp->p5==0 );
5986   pC = p->apCsr[pOp->p1];
5987   assert( pC!=0 );
5988   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5989   res = 1;
5990 #ifdef SQLITE_DEBUG
5991   pC->seekOp = OP_Rewind;
5992 #endif
5993   if( isSorter(pC) ){
5994     rc = sqlite3VdbeSorterRewind(pC, &res);
5995   }else{
5996     assert( pC->eCurType==CURTYPE_BTREE );
5997     pCrsr = pC->uc.pCursor;
5998     assert( pCrsr );
5999     rc = sqlite3BtreeFirst(pCrsr, &res);
6000     pC->deferredMoveto = 0;
6001     pC->cacheStatus = CACHE_STALE;
6002   }
6003   if( rc ) goto abort_due_to_error;
6004   pC->nullRow = (u8)res;
6005   assert( pOp->p2>0 && pOp->p2<p->nOp );
6006   VdbeBranchTaken(res!=0,2);
6007   if( res ) goto jump_to_p2;
6008   break;
6009 }
6010 
6011 /* Opcode: Next P1 P2 P3 * P5
6012 **
6013 ** Advance cursor P1 so that it points to the next key/data pair in its
6014 ** table or index.  If there are no more key/value pairs then fall through
6015 ** to the following instruction.  But if the cursor advance was successful,
6016 ** jump immediately to P2.
6017 **
6018 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6019 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
6020 ** to follow SeekLT, SeekLE, or OP_Last.
6021 **
6022 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
6023 ** been opened prior to this opcode or the program will segfault.
6024 **
6025 ** The P3 value is a hint to the btree implementation. If P3==1, that
6026 ** means P1 is an SQL index and that this instruction could have been
6027 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6028 ** always either 0 or 1.
6029 **
6030 ** If P5 is positive and the jump is taken, then event counter
6031 ** number P5-1 in the prepared statement is incremented.
6032 **
6033 ** See also: Prev
6034 */
6035 /* Opcode: Prev P1 P2 P3 * P5
6036 **
6037 ** Back up cursor P1 so that it points to the previous key/data pair in its
6038 ** table or index.  If there is no previous key/value pairs then fall through
6039 ** to the following instruction.  But if the cursor backup was successful,
6040 ** jump immediately to P2.
6041 **
6042 **
6043 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6044 ** OP_Last opcode used to position the cursor.  Prev is not allowed
6045 ** to follow SeekGT, SeekGE, or OP_Rewind.
6046 **
6047 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
6048 ** not open then the behavior is undefined.
6049 **
6050 ** The P3 value is a hint to the btree implementation. If P3==1, that
6051 ** means P1 is an SQL index and that this instruction could have been
6052 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6053 ** always either 0 or 1.
6054 **
6055 ** If P5 is positive and the jump is taken, then event counter
6056 ** number P5-1 in the prepared statement is incremented.
6057 */
6058 /* Opcode: SorterNext P1 P2 * * P5
6059 **
6060 ** This opcode works just like OP_Next except that P1 must be a
6061 ** sorter object for which the OP_SorterSort opcode has been
6062 ** invoked.  This opcode advances the cursor to the next sorted
6063 ** record, or jumps to P2 if there are no more sorted records.
6064 */
6065 case OP_SorterNext: {  /* jump */
6066   VdbeCursor *pC;
6067 
6068   pC = p->apCsr[pOp->p1];
6069   assert( isSorter(pC) );
6070   rc = sqlite3VdbeSorterNext(db, pC);
6071   goto next_tail;
6072 
6073 case OP_Prev:          /* jump */
6074   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6075   assert( pOp->p5<ArraySize(p->aCounter) );
6076   pC = p->apCsr[pOp->p1];
6077   assert( pC!=0 );
6078   assert( pC->deferredMoveto==0 );
6079   assert( pC->eCurType==CURTYPE_BTREE );
6080   assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6081        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
6082        || pC->seekOp==OP_NullRow);
6083   rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6084   goto next_tail;
6085 
6086 case OP_Next:          /* jump */
6087   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6088   assert( pOp->p5<ArraySize(p->aCounter) );
6089   pC = p->apCsr[pOp->p1];
6090   assert( pC!=0 );
6091   assert( pC->deferredMoveto==0 );
6092   assert( pC->eCurType==CURTYPE_BTREE );
6093   assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6094        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6095        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6096        || pC->seekOp==OP_IfNoHope);
6097   rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6098 
6099 next_tail:
6100   pC->cacheStatus = CACHE_STALE;
6101   VdbeBranchTaken(rc==SQLITE_OK,2);
6102   if( rc==SQLITE_OK ){
6103     pC->nullRow = 0;
6104     p->aCounter[pOp->p5]++;
6105 #ifdef SQLITE_TEST
6106     sqlite3_search_count++;
6107 #endif
6108     goto jump_to_p2_and_check_for_interrupt;
6109   }
6110   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6111   rc = SQLITE_OK;
6112   pC->nullRow = 1;
6113   goto check_for_interrupt;
6114 }
6115 
6116 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6117 ** Synopsis: key=r[P2]
6118 **
6119 ** Register P2 holds an SQL index key made using the
6120 ** MakeRecord instructions.  This opcode writes that key
6121 ** into the index P1.  Data for the entry is nil.
6122 **
6123 ** If P4 is not zero, then it is the number of values in the unpacked
6124 ** key of reg(P2).  In that case, P3 is the index of the first register
6125 ** for the unpacked key.  The availability of the unpacked key can sometimes
6126 ** be an optimization.
6127 **
6128 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6129 ** that this insert is likely to be an append.
6130 **
6131 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6132 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
6133 ** then the change counter is unchanged.
6134 **
6135 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6136 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
6137 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6138 ** seeks on the cursor or if the most recent seek used a key equivalent
6139 ** to P2.
6140 **
6141 ** This instruction only works for indices.  The equivalent instruction
6142 ** for tables is OP_Insert.
6143 */
6144 case OP_IdxInsert: {        /* in2 */
6145   VdbeCursor *pC;
6146   BtreePayload x;
6147 
6148   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6149   pC = p->apCsr[pOp->p1];
6150   sqlite3VdbeIncrWriteCounter(p, pC);
6151   assert( pC!=0 );
6152   assert( !isSorter(pC) );
6153   pIn2 = &aMem[pOp->p2];
6154   assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6155   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6156   assert( pC->eCurType==CURTYPE_BTREE );
6157   assert( pC->isTable==0 );
6158   rc = ExpandBlob(pIn2);
6159   if( rc ) goto abort_due_to_error;
6160   x.nKey = pIn2->n;
6161   x.pKey = pIn2->z;
6162   x.aMem = aMem + pOp->p3;
6163   x.nMem = (u16)pOp->p4.i;
6164   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6165        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6166       ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6167       );
6168   assert( pC->deferredMoveto==0 );
6169   pC->cacheStatus = CACHE_STALE;
6170   if( rc) goto abort_due_to_error;
6171   break;
6172 }
6173 
6174 /* Opcode: SorterInsert P1 P2 * * *
6175 ** Synopsis: key=r[P2]
6176 **
6177 ** Register P2 holds an SQL index key made using the
6178 ** MakeRecord instructions.  This opcode writes that key
6179 ** into the sorter P1.  Data for the entry is nil.
6180 */
6181 case OP_SorterInsert: {     /* in2 */
6182   VdbeCursor *pC;
6183 
6184   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6185   pC = p->apCsr[pOp->p1];
6186   sqlite3VdbeIncrWriteCounter(p, pC);
6187   assert( pC!=0 );
6188   assert( isSorter(pC) );
6189   pIn2 = &aMem[pOp->p2];
6190   assert( pIn2->flags & MEM_Blob );
6191   assert( pC->isTable==0 );
6192   rc = ExpandBlob(pIn2);
6193   if( rc ) goto abort_due_to_error;
6194   rc = sqlite3VdbeSorterWrite(pC, pIn2);
6195   if( rc) goto abort_due_to_error;
6196   break;
6197 }
6198 
6199 /* Opcode: IdxDelete P1 P2 P3 * P5
6200 ** Synopsis: key=r[P2@P3]
6201 **
6202 ** The content of P3 registers starting at register P2 form
6203 ** an unpacked index key. This opcode removes that entry from the
6204 ** index opened by cursor P1.
6205 **
6206 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6207 ** if no matching index entry is found.  This happens when running
6208 ** an UPDATE or DELETE statement and the index entry to be updated
6209 ** or deleted is not found.  For some uses of IdxDelete
6210 ** (example:  the EXCEPT operator) it does not matter that no matching
6211 ** entry is found.  For those cases, P5 is zero.  Also, do not raise
6212 ** this (self-correcting and non-critical) error if in writable_schema mode.
6213 */
6214 case OP_IdxDelete: {
6215   VdbeCursor *pC;
6216   BtCursor *pCrsr;
6217   int res;
6218   UnpackedRecord r;
6219 
6220   assert( pOp->p3>0 );
6221   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6222   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6223   pC = p->apCsr[pOp->p1];
6224   assert( pC!=0 );
6225   assert( pC->eCurType==CURTYPE_BTREE );
6226   sqlite3VdbeIncrWriteCounter(p, pC);
6227   pCrsr = pC->uc.pCursor;
6228   assert( pCrsr!=0 );
6229   r.pKeyInfo = pC->pKeyInfo;
6230   r.nField = (u16)pOp->p3;
6231   r.default_rc = 0;
6232   r.aMem = &aMem[pOp->p2];
6233   rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6234   if( rc ) goto abort_due_to_error;
6235   if( res==0 ){
6236     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6237     if( rc ) goto abort_due_to_error;
6238   }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6239     rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6240     goto abort_due_to_error;
6241   }
6242   assert( pC->deferredMoveto==0 );
6243   pC->cacheStatus = CACHE_STALE;
6244   pC->seekResult = 0;
6245   break;
6246 }
6247 
6248 /* Opcode: DeferredSeek P1 * P3 P4 *
6249 ** Synopsis: Move P3 to P1.rowid if needed
6250 **
6251 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6252 ** table.  This opcode does a deferred seek of the P3 table cursor
6253 ** to the row that corresponds to the current row of P1.
6254 **
6255 ** This is a deferred seek.  Nothing actually happens until
6256 ** the cursor is used to read a record.  That way, if no reads
6257 ** occur, no unnecessary I/O happens.
6258 **
6259 ** P4 may be an array of integers (type P4_INTARRAY) containing
6260 ** one entry for each column in the P3 table.  If array entry a(i)
6261 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6262 ** equivalent to performing the deferred seek and then reading column i
6263 ** from P1.  This information is stored in P3 and used to redirect
6264 ** reads against P3 over to P1, thus possibly avoiding the need to
6265 ** seek and read cursor P3.
6266 */
6267 /* Opcode: IdxRowid P1 P2 * * *
6268 ** Synopsis: r[P2]=rowid
6269 **
6270 ** Write into register P2 an integer which is the last entry in the record at
6271 ** the end of the index key pointed to by cursor P1.  This integer should be
6272 ** the rowid of the table entry to which this index entry points.
6273 **
6274 ** See also: Rowid, MakeRecord.
6275 */
6276 case OP_DeferredSeek:
6277 case OP_IdxRowid: {           /* out2 */
6278   VdbeCursor *pC;             /* The P1 index cursor */
6279   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
6280   i64 rowid;                  /* Rowid that P1 current points to */
6281 
6282   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6283   pC = p->apCsr[pOp->p1];
6284   assert( pC!=0 );
6285   assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6286   assert( pC->uc.pCursor!=0 );
6287   assert( pC->isTable==0 || IsNullCursor(pC) );
6288   assert( pC->deferredMoveto==0 );
6289   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6290 
6291   /* The IdxRowid and Seek opcodes are combined because of the commonality
6292   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6293   rc = sqlite3VdbeCursorRestore(pC);
6294 
6295   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
6296   ** out from under the cursor.  That will never happens for an IdxRowid
6297   ** or Seek opcode */
6298   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
6299 
6300   if( !pC->nullRow ){
6301     rowid = 0;  /* Not needed.  Only used to silence a warning. */
6302     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6303     if( rc!=SQLITE_OK ){
6304       goto abort_due_to_error;
6305     }
6306     if( pOp->opcode==OP_DeferredSeek ){
6307       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6308       pTabCur = p->apCsr[pOp->p3];
6309       assert( pTabCur!=0 );
6310       assert( pTabCur->eCurType==CURTYPE_BTREE );
6311       assert( pTabCur->uc.pCursor!=0 );
6312       assert( pTabCur->isTable );
6313       pTabCur->nullRow = 0;
6314       pTabCur->movetoTarget = rowid;
6315       pTabCur->deferredMoveto = 1;
6316       pTabCur->cacheStatus = CACHE_STALE;
6317       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6318       assert( !pTabCur->isEphemeral );
6319       pTabCur->ub.aAltMap = pOp->p4.ai;
6320       assert( !pC->isEphemeral );
6321       pTabCur->pAltCursor = pC;
6322     }else{
6323       pOut = out2Prerelease(p, pOp);
6324       pOut->u.i = rowid;
6325     }
6326   }else{
6327     assert( pOp->opcode==OP_IdxRowid );
6328     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6329   }
6330   break;
6331 }
6332 
6333 /* Opcode: FinishSeek P1 * * * *
6334 **
6335 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6336 ** seek operation now, without further delay.  If the cursor seek has
6337 ** already occurred, this instruction is a no-op.
6338 */
6339 case OP_FinishSeek: {
6340   VdbeCursor *pC;             /* The P1 index cursor */
6341 
6342   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6343   pC = p->apCsr[pOp->p1];
6344   if( pC->deferredMoveto ){
6345     rc = sqlite3VdbeFinishMoveto(pC);
6346     if( rc ) goto abort_due_to_error;
6347   }
6348   break;
6349 }
6350 
6351 /* Opcode: IdxGE P1 P2 P3 P4 *
6352 ** Synopsis: key=r[P3@P4]
6353 **
6354 ** The P4 register values beginning with P3 form an unpacked index
6355 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6356 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6357 ** fields at the end.
6358 **
6359 ** If the P1 index entry is greater than or equal to the key value
6360 ** then jump to P2.  Otherwise fall through to the next instruction.
6361 */
6362 /* Opcode: IdxGT P1 P2 P3 P4 *
6363 ** Synopsis: key=r[P3@P4]
6364 **
6365 ** The P4 register values beginning with P3 form an unpacked index
6366 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6367 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6368 ** fields at the end.
6369 **
6370 ** If the P1 index entry is greater than the key value
6371 ** then jump to P2.  Otherwise fall through to the next instruction.
6372 */
6373 /* Opcode: IdxLT P1 P2 P3 P4 *
6374 ** Synopsis: key=r[P3@P4]
6375 **
6376 ** The P4 register values beginning with P3 form an unpacked index
6377 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6378 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6379 ** ROWID on the P1 index.
6380 **
6381 ** If the P1 index entry is less than the key value then jump to P2.
6382 ** Otherwise fall through to the next instruction.
6383 */
6384 /* Opcode: IdxLE P1 P2 P3 P4 *
6385 ** Synopsis: key=r[P3@P4]
6386 **
6387 ** The P4 register values beginning with P3 form an unpacked index
6388 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6389 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6390 ** ROWID on the P1 index.
6391 **
6392 ** If the P1 index entry is less than or equal to the key value then jump
6393 ** to P2. Otherwise fall through to the next instruction.
6394 */
6395 case OP_IdxLE:          /* jump */
6396 case OP_IdxGT:          /* jump */
6397 case OP_IdxLT:          /* jump */
6398 case OP_IdxGE:  {       /* jump */
6399   VdbeCursor *pC;
6400   int res;
6401   UnpackedRecord r;
6402 
6403   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6404   pC = p->apCsr[pOp->p1];
6405   assert( pC!=0 );
6406   assert( pC->isOrdered );
6407   assert( pC->eCurType==CURTYPE_BTREE );
6408   assert( pC->uc.pCursor!=0);
6409   assert( pC->deferredMoveto==0 );
6410   assert( pOp->p4type==P4_INT32 );
6411   r.pKeyInfo = pC->pKeyInfo;
6412   r.nField = (u16)pOp->p4.i;
6413   if( pOp->opcode<OP_IdxLT ){
6414     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6415     r.default_rc = -1;
6416   }else{
6417     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6418     r.default_rc = 0;
6419   }
6420   r.aMem = &aMem[pOp->p3];
6421 #ifdef SQLITE_DEBUG
6422   {
6423     int i;
6424     for(i=0; i<r.nField; i++){
6425       assert( memIsValid(&r.aMem[i]) );
6426       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6427     }
6428   }
6429 #endif
6430 
6431   /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6432   {
6433     i64 nCellKey = 0;
6434     BtCursor *pCur;
6435     Mem m;
6436 
6437     assert( pC->eCurType==CURTYPE_BTREE );
6438     pCur = pC->uc.pCursor;
6439     assert( sqlite3BtreeCursorIsValid(pCur) );
6440     nCellKey = sqlite3BtreePayloadSize(pCur);
6441     /* nCellKey will always be between 0 and 0xffffffff because of the way
6442     ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6443     if( nCellKey<=0 || nCellKey>0x7fffffff ){
6444       rc = SQLITE_CORRUPT_BKPT;
6445       goto abort_due_to_error;
6446     }
6447     sqlite3VdbeMemInit(&m, db, 0);
6448     rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6449     if( rc ) goto abort_due_to_error;
6450     res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6451     sqlite3VdbeMemReleaseMalloc(&m);
6452   }
6453   /* End of inlined sqlite3VdbeIdxKeyCompare() */
6454 
6455   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6456   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6457     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6458     res = -res;
6459   }else{
6460     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6461     res++;
6462   }
6463   VdbeBranchTaken(res>0,2);
6464   assert( rc==SQLITE_OK );
6465   if( res>0 ) goto jump_to_p2;
6466   break;
6467 }
6468 
6469 /* Opcode: Destroy P1 P2 P3 * *
6470 **
6471 ** Delete an entire database table or index whose root page in the database
6472 ** file is given by P1.
6473 **
6474 ** The table being destroyed is in the main database file if P3==0.  If
6475 ** P3==1 then the table to be clear is in the auxiliary database file
6476 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6477 **
6478 ** If AUTOVACUUM is enabled then it is possible that another root page
6479 ** might be moved into the newly deleted root page in order to keep all
6480 ** root pages contiguous at the beginning of the database.  The former
6481 ** value of the root page that moved - its value before the move occurred -
6482 ** is stored in register P2. If no page movement was required (because the
6483 ** table being dropped was already the last one in the database) then a
6484 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
6485 ** is stored in register P2.
6486 **
6487 ** This opcode throws an error if there are any active reader VMs when
6488 ** it is invoked. This is done to avoid the difficulty associated with
6489 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6490 ** database. This error is thrown even if the database is not an AUTOVACUUM
6491 ** db in order to avoid introducing an incompatibility between autovacuum
6492 ** and non-autovacuum modes.
6493 **
6494 ** See also: Clear
6495 */
6496 case OP_Destroy: {     /* out2 */
6497   int iMoved;
6498   int iDb;
6499 
6500   sqlite3VdbeIncrWriteCounter(p, 0);
6501   assert( p->readOnly==0 );
6502   assert( pOp->p1>1 );
6503   pOut = out2Prerelease(p, pOp);
6504   pOut->flags = MEM_Null;
6505   if( db->nVdbeRead > db->nVDestroy+1 ){
6506     rc = SQLITE_LOCKED;
6507     p->errorAction = OE_Abort;
6508     goto abort_due_to_error;
6509   }else{
6510     iDb = pOp->p3;
6511     assert( DbMaskTest(p->btreeMask, iDb) );
6512     iMoved = 0;  /* Not needed.  Only to silence a warning. */
6513     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6514     pOut->flags = MEM_Int;
6515     pOut->u.i = iMoved;
6516     if( rc ) goto abort_due_to_error;
6517 #ifndef SQLITE_OMIT_AUTOVACUUM
6518     if( iMoved!=0 ){
6519       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6520       /* All OP_Destroy operations occur on the same btree */
6521       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6522       resetSchemaOnFault = iDb+1;
6523     }
6524 #endif
6525   }
6526   break;
6527 }
6528 
6529 /* Opcode: Clear P1 P2 P3
6530 **
6531 ** Delete all contents of the database table or index whose root page
6532 ** in the database file is given by P1.  But, unlike Destroy, do not
6533 ** remove the table or index from the database file.
6534 **
6535 ** The table being clear is in the main database file if P2==0.  If
6536 ** P2==1 then the table to be clear is in the auxiliary database file
6537 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6538 **
6539 ** If the P3 value is non-zero, then the row change count is incremented
6540 ** by the number of rows in the table being cleared. If P3 is greater
6541 ** than zero, then the value stored in register P3 is also incremented
6542 ** by the number of rows in the table being cleared.
6543 **
6544 ** See also: Destroy
6545 */
6546 case OP_Clear: {
6547   i64 nChange;
6548 
6549   sqlite3VdbeIncrWriteCounter(p, 0);
6550   nChange = 0;
6551   assert( p->readOnly==0 );
6552   assert( DbMaskTest(p->btreeMask, pOp->p2) );
6553   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6554   if( pOp->p3 ){
6555     p->nChange += nChange;
6556     if( pOp->p3>0 ){
6557       assert( memIsValid(&aMem[pOp->p3]) );
6558       memAboutToChange(p, &aMem[pOp->p3]);
6559       aMem[pOp->p3].u.i += nChange;
6560     }
6561   }
6562   if( rc ) goto abort_due_to_error;
6563   break;
6564 }
6565 
6566 /* Opcode: ResetSorter P1 * * * *
6567 **
6568 ** Delete all contents from the ephemeral table or sorter
6569 ** that is open on cursor P1.
6570 **
6571 ** This opcode only works for cursors used for sorting and
6572 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6573 */
6574 case OP_ResetSorter: {
6575   VdbeCursor *pC;
6576 
6577   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6578   pC = p->apCsr[pOp->p1];
6579   assert( pC!=0 );
6580   if( isSorter(pC) ){
6581     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6582   }else{
6583     assert( pC->eCurType==CURTYPE_BTREE );
6584     assert( pC->isEphemeral );
6585     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6586     if( rc ) goto abort_due_to_error;
6587   }
6588   break;
6589 }
6590 
6591 /* Opcode: CreateBtree P1 P2 P3 * *
6592 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6593 **
6594 ** Allocate a new b-tree in the main database file if P1==0 or in the
6595 ** TEMP database file if P1==1 or in an attached database if
6596 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6597 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6598 ** The root page number of the new b-tree is stored in register P2.
6599 */
6600 case OP_CreateBtree: {          /* out2 */
6601   Pgno pgno;
6602   Db *pDb;
6603 
6604   sqlite3VdbeIncrWriteCounter(p, 0);
6605   pOut = out2Prerelease(p, pOp);
6606   pgno = 0;
6607   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6608   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6609   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6610   assert( p->readOnly==0 );
6611   pDb = &db->aDb[pOp->p1];
6612   assert( pDb->pBt!=0 );
6613   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6614   if( rc ) goto abort_due_to_error;
6615   pOut->u.i = pgno;
6616   break;
6617 }
6618 
6619 /* Opcode: SqlExec * * * P4 *
6620 **
6621 ** Run the SQL statement or statements specified in the P4 string.
6622 */
6623 case OP_SqlExec: {
6624   sqlite3VdbeIncrWriteCounter(p, 0);
6625   db->nSqlExec++;
6626   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6627   db->nSqlExec--;
6628   if( rc ) goto abort_due_to_error;
6629   break;
6630 }
6631 
6632 /* Opcode: ParseSchema P1 * * P4 *
6633 **
6634 ** Read and parse all entries from the schema table of database P1
6635 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6636 ** entire schema for P1 is reparsed.
6637 **
6638 ** This opcode invokes the parser to create a new virtual machine,
6639 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6640 */
6641 case OP_ParseSchema: {
6642   int iDb;
6643   const char *zSchema;
6644   char *zSql;
6645   InitData initData;
6646 
6647   /* Any prepared statement that invokes this opcode will hold mutexes
6648   ** on every btree.  This is a prerequisite for invoking
6649   ** sqlite3InitCallback().
6650   */
6651 #ifdef SQLITE_DEBUG
6652   for(iDb=0; iDb<db->nDb; iDb++){
6653     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6654   }
6655 #endif
6656 
6657   iDb = pOp->p1;
6658   assert( iDb>=0 && iDb<db->nDb );
6659   assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6660            || db->mallocFailed
6661            || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6662 
6663 #ifndef SQLITE_OMIT_ALTERTABLE
6664   if( pOp->p4.z==0 ){
6665     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6666     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6667     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6668     db->mDbFlags |= DBFLAG_SchemaChange;
6669     p->expired = 0;
6670   }else
6671 #endif
6672   {
6673     zSchema = LEGACY_SCHEMA_TABLE;
6674     initData.db = db;
6675     initData.iDb = iDb;
6676     initData.pzErrMsg = &p->zErrMsg;
6677     initData.mInitFlags = 0;
6678     initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6679     zSql = sqlite3MPrintf(db,
6680        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6681        db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6682     if( zSql==0 ){
6683       rc = SQLITE_NOMEM_BKPT;
6684     }else{
6685       assert( db->init.busy==0 );
6686       db->init.busy = 1;
6687       initData.rc = SQLITE_OK;
6688       initData.nInitRow = 0;
6689       assert( !db->mallocFailed );
6690       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6691       if( rc==SQLITE_OK ) rc = initData.rc;
6692       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6693         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6694         ** at least one SQL statement. Any less than that indicates that
6695         ** the sqlite_schema table is corrupt. */
6696         rc = SQLITE_CORRUPT_BKPT;
6697       }
6698       sqlite3DbFreeNN(db, zSql);
6699       db->init.busy = 0;
6700     }
6701   }
6702   if( rc ){
6703     sqlite3ResetAllSchemasOfConnection(db);
6704     if( rc==SQLITE_NOMEM ){
6705       goto no_mem;
6706     }
6707     goto abort_due_to_error;
6708   }
6709   break;
6710 }
6711 
6712 #if !defined(SQLITE_OMIT_ANALYZE)
6713 /* Opcode: LoadAnalysis P1 * * * *
6714 **
6715 ** Read the sqlite_stat1 table for database P1 and load the content
6716 ** of that table into the internal index hash table.  This will cause
6717 ** the analysis to be used when preparing all subsequent queries.
6718 */
6719 case OP_LoadAnalysis: {
6720   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6721   rc = sqlite3AnalysisLoad(db, pOp->p1);
6722   if( rc ) goto abort_due_to_error;
6723   break;
6724 }
6725 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6726 
6727 /* Opcode: DropTable P1 * * P4 *
6728 **
6729 ** Remove the internal (in-memory) data structures that describe
6730 ** the table named P4 in database P1.  This is called after a table
6731 ** is dropped from disk (using the Destroy opcode) in order to keep
6732 ** the internal representation of the
6733 ** schema consistent with what is on disk.
6734 */
6735 case OP_DropTable: {
6736   sqlite3VdbeIncrWriteCounter(p, 0);
6737   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6738   break;
6739 }
6740 
6741 /* Opcode: DropIndex P1 * * P4 *
6742 **
6743 ** Remove the internal (in-memory) data structures that describe
6744 ** the index named P4 in database P1.  This is called after an index
6745 ** is dropped from disk (using the Destroy opcode)
6746 ** in order to keep the internal representation of the
6747 ** schema consistent with what is on disk.
6748 */
6749 case OP_DropIndex: {
6750   sqlite3VdbeIncrWriteCounter(p, 0);
6751   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6752   break;
6753 }
6754 
6755 /* Opcode: DropTrigger P1 * * P4 *
6756 **
6757 ** Remove the internal (in-memory) data structures that describe
6758 ** the trigger named P4 in database P1.  This is called after a trigger
6759 ** is dropped from disk (using the Destroy opcode) in order to keep
6760 ** the internal representation of the
6761 ** schema consistent with what is on disk.
6762 */
6763 case OP_DropTrigger: {
6764   sqlite3VdbeIncrWriteCounter(p, 0);
6765   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6766   break;
6767 }
6768 
6769 
6770 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6771 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6772 **
6773 ** Do an analysis of the currently open database.  Store in
6774 ** register P1 the text of an error message describing any problems.
6775 ** If no problems are found, store a NULL in register P1.
6776 **
6777 ** The register P3 contains one less than the maximum number of allowed errors.
6778 ** At most reg(P3) errors will be reported.
6779 ** In other words, the analysis stops as soon as reg(P1) errors are
6780 ** seen.  Reg(P1) is updated with the number of errors remaining.
6781 **
6782 ** The root page numbers of all tables in the database are integers
6783 ** stored in P4_INTARRAY argument.
6784 **
6785 ** If P5 is not zero, the check is done on the auxiliary database
6786 ** file, not the main database file.
6787 **
6788 ** This opcode is used to implement the integrity_check pragma.
6789 */
6790 case OP_IntegrityCk: {
6791   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6792   Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
6793   int nErr;       /* Number of errors reported */
6794   char *z;        /* Text of the error report */
6795   Mem *pnErr;     /* Register keeping track of errors remaining */
6796 
6797   assert( p->bIsReader );
6798   nRoot = pOp->p2;
6799   aRoot = pOp->p4.ai;
6800   assert( nRoot>0 );
6801   assert( aRoot[0]==(Pgno)nRoot );
6802   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6803   pnErr = &aMem[pOp->p3];
6804   assert( (pnErr->flags & MEM_Int)!=0 );
6805   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6806   pIn1 = &aMem[pOp->p1];
6807   assert( pOp->p5<db->nDb );
6808   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6809   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6810                                  (int)pnErr->u.i+1, &nErr);
6811   sqlite3VdbeMemSetNull(pIn1);
6812   if( nErr==0 ){
6813     assert( z==0 );
6814   }else if( z==0 ){
6815     goto no_mem;
6816   }else{
6817     pnErr->u.i -= nErr-1;
6818     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6819   }
6820   UPDATE_MAX_BLOBSIZE(pIn1);
6821   sqlite3VdbeChangeEncoding(pIn1, encoding);
6822   goto check_for_interrupt;
6823 }
6824 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6825 
6826 /* Opcode: RowSetAdd P1 P2 * * *
6827 ** Synopsis: rowset(P1)=r[P2]
6828 **
6829 ** Insert the integer value held by register P2 into a RowSet object
6830 ** held in register P1.
6831 **
6832 ** An assertion fails if P2 is not an integer.
6833 */
6834 case OP_RowSetAdd: {       /* in1, in2 */
6835   pIn1 = &aMem[pOp->p1];
6836   pIn2 = &aMem[pOp->p2];
6837   assert( (pIn2->flags & MEM_Int)!=0 );
6838   if( (pIn1->flags & MEM_Blob)==0 ){
6839     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6840   }
6841   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6842   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6843   break;
6844 }
6845 
6846 /* Opcode: RowSetRead P1 P2 P3 * *
6847 ** Synopsis: r[P3]=rowset(P1)
6848 **
6849 ** Extract the smallest value from the RowSet object in P1
6850 ** and put that value into register P3.
6851 ** Or, if RowSet object P1 is initially empty, leave P3
6852 ** unchanged and jump to instruction P2.
6853 */
6854 case OP_RowSetRead: {       /* jump, in1, out3 */
6855   i64 val;
6856 
6857   pIn1 = &aMem[pOp->p1];
6858   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6859   if( (pIn1->flags & MEM_Blob)==0
6860    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6861   ){
6862     /* The boolean index is empty */
6863     sqlite3VdbeMemSetNull(pIn1);
6864     VdbeBranchTaken(1,2);
6865     goto jump_to_p2_and_check_for_interrupt;
6866   }else{
6867     /* A value was pulled from the index */
6868     VdbeBranchTaken(0,2);
6869     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6870   }
6871   goto check_for_interrupt;
6872 }
6873 
6874 /* Opcode: RowSetTest P1 P2 P3 P4
6875 ** Synopsis: if r[P3] in rowset(P1) goto P2
6876 **
6877 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6878 ** contains a RowSet object and that RowSet object contains
6879 ** the value held in P3, jump to register P2. Otherwise, insert the
6880 ** integer in P3 into the RowSet and continue on to the
6881 ** next opcode.
6882 **
6883 ** The RowSet object is optimized for the case where sets of integers
6884 ** are inserted in distinct phases, which each set contains no duplicates.
6885 ** Each set is identified by a unique P4 value. The first set
6886 ** must have P4==0, the final set must have P4==-1, and for all other sets
6887 ** must have P4>0.
6888 **
6889 ** This allows optimizations: (a) when P4==0 there is no need to test
6890 ** the RowSet object for P3, as it is guaranteed not to contain it,
6891 ** (b) when P4==-1 there is no need to insert the value, as it will
6892 ** never be tested for, and (c) when a value that is part of set X is
6893 ** inserted, there is no need to search to see if the same value was
6894 ** previously inserted as part of set X (only if it was previously
6895 ** inserted as part of some other set).
6896 */
6897 case OP_RowSetTest: {                     /* jump, in1, in3 */
6898   int iSet;
6899   int exists;
6900 
6901   pIn1 = &aMem[pOp->p1];
6902   pIn3 = &aMem[pOp->p3];
6903   iSet = pOp->p4.i;
6904   assert( pIn3->flags&MEM_Int );
6905 
6906   /* If there is anything other than a rowset object in memory cell P1,
6907   ** delete it now and initialize P1 with an empty rowset
6908   */
6909   if( (pIn1->flags & MEM_Blob)==0 ){
6910     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6911   }
6912   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6913   assert( pOp->p4type==P4_INT32 );
6914   assert( iSet==-1 || iSet>=0 );
6915   if( iSet ){
6916     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6917     VdbeBranchTaken(exists!=0,2);
6918     if( exists ) goto jump_to_p2;
6919   }
6920   if( iSet>=0 ){
6921     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6922   }
6923   break;
6924 }
6925 
6926 
6927 #ifndef SQLITE_OMIT_TRIGGER
6928 
6929 /* Opcode: Program P1 P2 P3 P4 P5
6930 **
6931 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6932 **
6933 ** P1 contains the address of the memory cell that contains the first memory
6934 ** cell in an array of values used as arguments to the sub-program. P2
6935 ** contains the address to jump to if the sub-program throws an IGNORE
6936 ** exception using the RAISE() function. Register P3 contains the address
6937 ** of a memory cell in this (the parent) VM that is used to allocate the
6938 ** memory required by the sub-vdbe at runtime.
6939 **
6940 ** P4 is a pointer to the VM containing the trigger program.
6941 **
6942 ** If P5 is non-zero, then recursive program invocation is enabled.
6943 */
6944 case OP_Program: {        /* jump */
6945   int nMem;               /* Number of memory registers for sub-program */
6946   int nByte;              /* Bytes of runtime space required for sub-program */
6947   Mem *pRt;               /* Register to allocate runtime space */
6948   Mem *pMem;              /* Used to iterate through memory cells */
6949   Mem *pEnd;              /* Last memory cell in new array */
6950   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6951   SubProgram *pProgram;   /* Sub-program to execute */
6952   void *t;                /* Token identifying trigger */
6953 
6954   pProgram = pOp->p4.pProgram;
6955   pRt = &aMem[pOp->p3];
6956   assert( pProgram->nOp>0 );
6957 
6958   /* If the p5 flag is clear, then recursive invocation of triggers is
6959   ** disabled for backwards compatibility (p5 is set if this sub-program
6960   ** is really a trigger, not a foreign key action, and the flag set
6961   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6962   **
6963   ** It is recursive invocation of triggers, at the SQL level, that is
6964   ** disabled. In some cases a single trigger may generate more than one
6965   ** SubProgram (if the trigger may be executed with more than one different
6966   ** ON CONFLICT algorithm). SubProgram structures associated with a
6967   ** single trigger all have the same value for the SubProgram.token
6968   ** variable.  */
6969   if( pOp->p5 ){
6970     t = pProgram->token;
6971     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6972     if( pFrame ) break;
6973   }
6974 
6975   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6976     rc = SQLITE_ERROR;
6977     sqlite3VdbeError(p, "too many levels of trigger recursion");
6978     goto abort_due_to_error;
6979   }
6980 
6981   /* Register pRt is used to store the memory required to save the state
6982   ** of the current program, and the memory required at runtime to execute
6983   ** the trigger program. If this trigger has been fired before, then pRt
6984   ** is already allocated. Otherwise, it must be initialized.  */
6985   if( (pRt->flags&MEM_Blob)==0 ){
6986     /* SubProgram.nMem is set to the number of memory cells used by the
6987     ** program stored in SubProgram.aOp. As well as these, one memory
6988     ** cell is required for each cursor used by the program. Set local
6989     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6990     */
6991     nMem = pProgram->nMem + pProgram->nCsr;
6992     assert( nMem>0 );
6993     if( pProgram->nCsr==0 ) nMem++;
6994     nByte = ROUND8(sizeof(VdbeFrame))
6995               + nMem * sizeof(Mem)
6996               + pProgram->nCsr * sizeof(VdbeCursor*)
6997               + (pProgram->nOp + 7)/8;
6998     pFrame = sqlite3DbMallocZero(db, nByte);
6999     if( !pFrame ){
7000       goto no_mem;
7001     }
7002     sqlite3VdbeMemRelease(pRt);
7003     pRt->flags = MEM_Blob|MEM_Dyn;
7004     pRt->z = (char*)pFrame;
7005     pRt->n = nByte;
7006     pRt->xDel = sqlite3VdbeFrameMemDel;
7007 
7008     pFrame->v = p;
7009     pFrame->nChildMem = nMem;
7010     pFrame->nChildCsr = pProgram->nCsr;
7011     pFrame->pc = (int)(pOp - aOp);
7012     pFrame->aMem = p->aMem;
7013     pFrame->nMem = p->nMem;
7014     pFrame->apCsr = p->apCsr;
7015     pFrame->nCursor = p->nCursor;
7016     pFrame->aOp = p->aOp;
7017     pFrame->nOp = p->nOp;
7018     pFrame->token = pProgram->token;
7019 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7020     pFrame->anExec = p->anExec;
7021 #endif
7022 #ifdef SQLITE_DEBUG
7023     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7024 #endif
7025 
7026     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7027     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7028       pMem->flags = MEM_Undefined;
7029       pMem->db = db;
7030     }
7031   }else{
7032     pFrame = (VdbeFrame*)pRt->z;
7033     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7034     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7035         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7036     assert( pProgram->nCsr==pFrame->nChildCsr );
7037     assert( (int)(pOp - aOp)==pFrame->pc );
7038   }
7039 
7040   p->nFrame++;
7041   pFrame->pParent = p->pFrame;
7042   pFrame->lastRowid = db->lastRowid;
7043   pFrame->nChange = p->nChange;
7044   pFrame->nDbChange = p->db->nChange;
7045   assert( pFrame->pAuxData==0 );
7046   pFrame->pAuxData = p->pAuxData;
7047   p->pAuxData = 0;
7048   p->nChange = 0;
7049   p->pFrame = pFrame;
7050   p->aMem = aMem = VdbeFrameMem(pFrame);
7051   p->nMem = pFrame->nChildMem;
7052   p->nCursor = (u16)pFrame->nChildCsr;
7053   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7054   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7055   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7056   p->aOp = aOp = pProgram->aOp;
7057   p->nOp = pProgram->nOp;
7058 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7059   p->anExec = 0;
7060 #endif
7061 #ifdef SQLITE_DEBUG
7062   /* Verify that second and subsequent executions of the same trigger do not
7063   ** try to reuse register values from the first use. */
7064   {
7065     int i;
7066     for(i=0; i<p->nMem; i++){
7067       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
7068       MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7069     }
7070   }
7071 #endif
7072   pOp = &aOp[-1];
7073   goto check_for_interrupt;
7074 }
7075 
7076 /* Opcode: Param P1 P2 * * *
7077 **
7078 ** This opcode is only ever present in sub-programs called via the
7079 ** OP_Program instruction. Copy a value currently stored in a memory
7080 ** cell of the calling (parent) frame to cell P2 in the current frames
7081 ** address space. This is used by trigger programs to access the new.*
7082 ** and old.* values.
7083 **
7084 ** The address of the cell in the parent frame is determined by adding
7085 ** the value of the P1 argument to the value of the P1 argument to the
7086 ** calling OP_Program instruction.
7087 */
7088 case OP_Param: {           /* out2 */
7089   VdbeFrame *pFrame;
7090   Mem *pIn;
7091   pOut = out2Prerelease(p, pOp);
7092   pFrame = p->pFrame;
7093   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7094   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7095   break;
7096 }
7097 
7098 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7099 
7100 #ifndef SQLITE_OMIT_FOREIGN_KEY
7101 /* Opcode: FkCounter P1 P2 * * *
7102 ** Synopsis: fkctr[P1]+=P2
7103 **
7104 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7105 ** If P1 is non-zero, the database constraint counter is incremented
7106 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7107 ** statement counter is incremented (immediate foreign key constraints).
7108 */
7109 case OP_FkCounter: {
7110   if( db->flags & SQLITE_DeferFKs ){
7111     db->nDeferredImmCons += pOp->p2;
7112   }else if( pOp->p1 ){
7113     db->nDeferredCons += pOp->p2;
7114   }else{
7115     p->nFkConstraint += pOp->p2;
7116   }
7117   break;
7118 }
7119 
7120 /* Opcode: FkIfZero P1 P2 * * *
7121 ** Synopsis: if fkctr[P1]==0 goto P2
7122 **
7123 ** This opcode tests if a foreign key constraint-counter is currently zero.
7124 ** If so, jump to instruction P2. Otherwise, fall through to the next
7125 ** instruction.
7126 **
7127 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7128 ** is zero (the one that counts deferred constraint violations). If P1 is
7129 ** zero, the jump is taken if the statement constraint-counter is zero
7130 ** (immediate foreign key constraint violations).
7131 */
7132 case OP_FkIfZero: {         /* jump */
7133   if( pOp->p1 ){
7134     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7135     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7136   }else{
7137     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7138     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7139   }
7140   break;
7141 }
7142 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7143 
7144 #ifndef SQLITE_OMIT_AUTOINCREMENT
7145 /* Opcode: MemMax P1 P2 * * *
7146 ** Synopsis: r[P1]=max(r[P1],r[P2])
7147 **
7148 ** P1 is a register in the root frame of this VM (the root frame is
7149 ** different from the current frame if this instruction is being executed
7150 ** within a sub-program). Set the value of register P1 to the maximum of
7151 ** its current value and the value in register P2.
7152 **
7153 ** This instruction throws an error if the memory cell is not initially
7154 ** an integer.
7155 */
7156 case OP_MemMax: {        /* in2 */
7157   VdbeFrame *pFrame;
7158   if( p->pFrame ){
7159     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7160     pIn1 = &pFrame->aMem[pOp->p1];
7161   }else{
7162     pIn1 = &aMem[pOp->p1];
7163   }
7164   assert( memIsValid(pIn1) );
7165   sqlite3VdbeMemIntegerify(pIn1);
7166   pIn2 = &aMem[pOp->p2];
7167   sqlite3VdbeMemIntegerify(pIn2);
7168   if( pIn1->u.i<pIn2->u.i){
7169     pIn1->u.i = pIn2->u.i;
7170   }
7171   break;
7172 }
7173 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7174 
7175 /* Opcode: IfPos P1 P2 P3 * *
7176 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7177 **
7178 ** Register P1 must contain an integer.
7179 ** If the value of register P1 is 1 or greater, subtract P3 from the
7180 ** value in P1 and jump to P2.
7181 **
7182 ** If the initial value of register P1 is less than 1, then the
7183 ** value is unchanged and control passes through to the next instruction.
7184 */
7185 case OP_IfPos: {        /* jump, in1 */
7186   pIn1 = &aMem[pOp->p1];
7187   assert( pIn1->flags&MEM_Int );
7188   VdbeBranchTaken( pIn1->u.i>0, 2);
7189   if( pIn1->u.i>0 ){
7190     pIn1->u.i -= pOp->p3;
7191     goto jump_to_p2;
7192   }
7193   break;
7194 }
7195 
7196 /* Opcode: OffsetLimit P1 P2 P3 * *
7197 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7198 **
7199 ** This opcode performs a commonly used computation associated with
7200 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
7201 ** holds the offset counter.  The opcode computes the combined value
7202 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
7203 ** value computed is the total number of rows that will need to be
7204 ** visited in order to complete the query.
7205 **
7206 ** If r[P3] is zero or negative, that means there is no OFFSET
7207 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7208 **
7209 ** if r[P1] is zero or negative, that means there is no LIMIT
7210 ** and r[P2] is set to -1.
7211 **
7212 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7213 */
7214 case OP_OffsetLimit: {    /* in1, out2, in3 */
7215   i64 x;
7216   pIn1 = &aMem[pOp->p1];
7217   pIn3 = &aMem[pOp->p3];
7218   pOut = out2Prerelease(p, pOp);
7219   assert( pIn1->flags & MEM_Int );
7220   assert( pIn3->flags & MEM_Int );
7221   x = pIn1->u.i;
7222   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7223     /* If the LIMIT is less than or equal to zero, loop forever.  This
7224     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
7225     ** also loop forever.  This is undocumented.  In fact, one could argue
7226     ** that the loop should terminate.  But assuming 1 billion iterations
7227     ** per second (far exceeding the capabilities of any current hardware)
7228     ** it would take nearly 300 years to actually reach the limit.  So
7229     ** looping forever is a reasonable approximation. */
7230     pOut->u.i = -1;
7231   }else{
7232     pOut->u.i = x;
7233   }
7234   break;
7235 }
7236 
7237 /* Opcode: IfNotZero P1 P2 * * *
7238 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7239 **
7240 ** Register P1 must contain an integer.  If the content of register P1 is
7241 ** initially greater than zero, then decrement the value in register P1.
7242 ** If it is non-zero (negative or positive) and then also jump to P2.
7243 ** If register P1 is initially zero, leave it unchanged and fall through.
7244 */
7245 case OP_IfNotZero: {        /* jump, in1 */
7246   pIn1 = &aMem[pOp->p1];
7247   assert( pIn1->flags&MEM_Int );
7248   VdbeBranchTaken(pIn1->u.i<0, 2);
7249   if( pIn1->u.i ){
7250      if( pIn1->u.i>0 ) pIn1->u.i--;
7251      goto jump_to_p2;
7252   }
7253   break;
7254 }
7255 
7256 /* Opcode: DecrJumpZero P1 P2 * * *
7257 ** Synopsis: if (--r[P1])==0 goto P2
7258 **
7259 ** Register P1 must hold an integer.  Decrement the value in P1
7260 ** and jump to P2 if the new value is exactly zero.
7261 */
7262 case OP_DecrJumpZero: {      /* jump, in1 */
7263   pIn1 = &aMem[pOp->p1];
7264   assert( pIn1->flags&MEM_Int );
7265   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7266   VdbeBranchTaken(pIn1->u.i==0, 2);
7267   if( pIn1->u.i==0 ) goto jump_to_p2;
7268   break;
7269 }
7270 
7271 
7272 /* Opcode: AggStep * P2 P3 P4 P5
7273 ** Synopsis: accum=r[P3] step(r[P2@P5])
7274 **
7275 ** Execute the xStep function for an aggregate.
7276 ** The function has P5 arguments.  P4 is a pointer to the
7277 ** FuncDef structure that specifies the function.  Register P3 is the
7278 ** accumulator.
7279 **
7280 ** The P5 arguments are taken from register P2 and its
7281 ** successors.
7282 */
7283 /* Opcode: AggInverse * P2 P3 P4 P5
7284 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7285 **
7286 ** Execute the xInverse function for an aggregate.
7287 ** The function has P5 arguments.  P4 is a pointer to the
7288 ** FuncDef structure that specifies the function.  Register P3 is the
7289 ** accumulator.
7290 **
7291 ** The P5 arguments are taken from register P2 and its
7292 ** successors.
7293 */
7294 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7295 ** Synopsis: accum=r[P3] step(r[P2@P5])
7296 **
7297 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7298 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
7299 ** FuncDef structure that specifies the function.  Register P3 is the
7300 ** accumulator.
7301 **
7302 ** The P5 arguments are taken from register P2 and its
7303 ** successors.
7304 **
7305 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
7306 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7307 ** the opcode is changed.  In this way, the initialization of the
7308 ** sqlite3_context only happens once, instead of on each call to the
7309 ** step function.
7310 */
7311 case OP_AggInverse:
7312 case OP_AggStep: {
7313   int n;
7314   sqlite3_context *pCtx;
7315 
7316   assert( pOp->p4type==P4_FUNCDEF );
7317   n = pOp->p5;
7318   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7319   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7320   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7321   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7322                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7323   if( pCtx==0 ) goto no_mem;
7324   pCtx->pMem = 0;
7325   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7326   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7327   pCtx->pFunc = pOp->p4.pFunc;
7328   pCtx->iOp = (int)(pOp - aOp);
7329   pCtx->pVdbe = p;
7330   pCtx->skipFlag = 0;
7331   pCtx->isError = 0;
7332   pCtx->enc = encoding;
7333   pCtx->argc = n;
7334   pOp->p4type = P4_FUNCCTX;
7335   pOp->p4.pCtx = pCtx;
7336 
7337   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7338   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7339 
7340   pOp->opcode = OP_AggStep1;
7341   /* Fall through into OP_AggStep */
7342   /* no break */ deliberate_fall_through
7343 }
7344 case OP_AggStep1: {
7345   int i;
7346   sqlite3_context *pCtx;
7347   Mem *pMem;
7348 
7349   assert( pOp->p4type==P4_FUNCCTX );
7350   pCtx = pOp->p4.pCtx;
7351   pMem = &aMem[pOp->p3];
7352 
7353 #ifdef SQLITE_DEBUG
7354   if( pOp->p1 ){
7355     /* This is an OP_AggInverse call.  Verify that xStep has always
7356     ** been called at least once prior to any xInverse call. */
7357     assert( pMem->uTemp==0x1122e0e3 );
7358   }else{
7359     /* This is an OP_AggStep call.  Mark it as such. */
7360     pMem->uTemp = 0x1122e0e3;
7361   }
7362 #endif
7363 
7364   /* If this function is inside of a trigger, the register array in aMem[]
7365   ** might change from one evaluation to the next.  The next block of code
7366   ** checks to see if the register array has changed, and if so it
7367   ** reinitializes the relavant parts of the sqlite3_context object */
7368   if( pCtx->pMem != pMem ){
7369     pCtx->pMem = pMem;
7370     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7371   }
7372 
7373 #ifdef SQLITE_DEBUG
7374   for(i=0; i<pCtx->argc; i++){
7375     assert( memIsValid(pCtx->argv[i]) );
7376     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7377   }
7378 #endif
7379 
7380   pMem->n++;
7381   assert( pCtx->pOut->flags==MEM_Null );
7382   assert( pCtx->isError==0 );
7383   assert( pCtx->skipFlag==0 );
7384 #ifndef SQLITE_OMIT_WINDOWFUNC
7385   if( pOp->p1 ){
7386     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7387   }else
7388 #endif
7389   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7390 
7391   if( pCtx->isError ){
7392     if( pCtx->isError>0 ){
7393       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7394       rc = pCtx->isError;
7395     }
7396     if( pCtx->skipFlag ){
7397       assert( pOp[-1].opcode==OP_CollSeq );
7398       i = pOp[-1].p1;
7399       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7400       pCtx->skipFlag = 0;
7401     }
7402     sqlite3VdbeMemRelease(pCtx->pOut);
7403     pCtx->pOut->flags = MEM_Null;
7404     pCtx->isError = 0;
7405     if( rc ) goto abort_due_to_error;
7406   }
7407   assert( pCtx->pOut->flags==MEM_Null );
7408   assert( pCtx->skipFlag==0 );
7409   break;
7410 }
7411 
7412 /* Opcode: AggFinal P1 P2 * P4 *
7413 ** Synopsis: accum=r[P1] N=P2
7414 **
7415 ** P1 is the memory location that is the accumulator for an aggregate
7416 ** or window function.  Execute the finalizer function
7417 ** for an aggregate and store the result in P1.
7418 **
7419 ** P2 is the number of arguments that the step function takes and
7420 ** P4 is a pointer to the FuncDef for this function.  The P2
7421 ** argument is not used by this opcode.  It is only there to disambiguate
7422 ** functions that can take varying numbers of arguments.  The
7423 ** P4 argument is only needed for the case where
7424 ** the step function was not previously called.
7425 */
7426 /* Opcode: AggValue * P2 P3 P4 *
7427 ** Synopsis: r[P3]=value N=P2
7428 **
7429 ** Invoke the xValue() function and store the result in register P3.
7430 **
7431 ** P2 is the number of arguments that the step function takes and
7432 ** P4 is a pointer to the FuncDef for this function.  The P2
7433 ** argument is not used by this opcode.  It is only there to disambiguate
7434 ** functions that can take varying numbers of arguments.  The
7435 ** P4 argument is only needed for the case where
7436 ** the step function was not previously called.
7437 */
7438 case OP_AggValue:
7439 case OP_AggFinal: {
7440   Mem *pMem;
7441   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7442   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7443   pMem = &aMem[pOp->p1];
7444   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7445 #ifndef SQLITE_OMIT_WINDOWFUNC
7446   if( pOp->p3 ){
7447     memAboutToChange(p, &aMem[pOp->p3]);
7448     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7449     pMem = &aMem[pOp->p3];
7450   }else
7451 #endif
7452   {
7453     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7454   }
7455 
7456   if( rc ){
7457     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7458     goto abort_due_to_error;
7459   }
7460   sqlite3VdbeChangeEncoding(pMem, encoding);
7461   UPDATE_MAX_BLOBSIZE(pMem);
7462   break;
7463 }
7464 
7465 #ifndef SQLITE_OMIT_WAL
7466 /* Opcode: Checkpoint P1 P2 P3 * *
7467 **
7468 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7469 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7470 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
7471 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
7472 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7473 ** in the WAL that have been checkpointed after the checkpoint
7474 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
7475 ** mem[P3+2] are initialized to -1.
7476 */
7477 case OP_Checkpoint: {
7478   int i;                          /* Loop counter */
7479   int aRes[3];                    /* Results */
7480   Mem *pMem;                      /* Write results here */
7481 
7482   assert( p->readOnly==0 );
7483   aRes[0] = 0;
7484   aRes[1] = aRes[2] = -1;
7485   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7486        || pOp->p2==SQLITE_CHECKPOINT_FULL
7487        || pOp->p2==SQLITE_CHECKPOINT_RESTART
7488        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7489   );
7490   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7491   if( rc ){
7492     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7493     rc = SQLITE_OK;
7494     aRes[0] = 1;
7495   }
7496   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7497     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7498   }
7499   break;
7500 };
7501 #endif
7502 
7503 #ifndef SQLITE_OMIT_PRAGMA
7504 /* Opcode: JournalMode P1 P2 P3 * *
7505 **
7506 ** Change the journal mode of database P1 to P3. P3 must be one of the
7507 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7508 ** modes (delete, truncate, persist, off and memory), this is a simple
7509 ** operation. No IO is required.
7510 **
7511 ** If changing into or out of WAL mode the procedure is more complicated.
7512 **
7513 ** Write a string containing the final journal-mode to register P2.
7514 */
7515 case OP_JournalMode: {    /* out2 */
7516   Btree *pBt;                     /* Btree to change journal mode of */
7517   Pager *pPager;                  /* Pager associated with pBt */
7518   int eNew;                       /* New journal mode */
7519   int eOld;                       /* The old journal mode */
7520 #ifndef SQLITE_OMIT_WAL
7521   const char *zFilename;          /* Name of database file for pPager */
7522 #endif
7523 
7524   pOut = out2Prerelease(p, pOp);
7525   eNew = pOp->p3;
7526   assert( eNew==PAGER_JOURNALMODE_DELETE
7527        || eNew==PAGER_JOURNALMODE_TRUNCATE
7528        || eNew==PAGER_JOURNALMODE_PERSIST
7529        || eNew==PAGER_JOURNALMODE_OFF
7530        || eNew==PAGER_JOURNALMODE_MEMORY
7531        || eNew==PAGER_JOURNALMODE_WAL
7532        || eNew==PAGER_JOURNALMODE_QUERY
7533   );
7534   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7535   assert( p->readOnly==0 );
7536 
7537   pBt = db->aDb[pOp->p1].pBt;
7538   pPager = sqlite3BtreePager(pBt);
7539   eOld = sqlite3PagerGetJournalMode(pPager);
7540   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7541   assert( sqlite3BtreeHoldsMutex(pBt) );
7542   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7543 
7544 #ifndef SQLITE_OMIT_WAL
7545   zFilename = sqlite3PagerFilename(pPager, 1);
7546 
7547   /* Do not allow a transition to journal_mode=WAL for a database
7548   ** in temporary storage or if the VFS does not support shared memory
7549   */
7550   if( eNew==PAGER_JOURNALMODE_WAL
7551    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
7552        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
7553   ){
7554     eNew = eOld;
7555   }
7556 
7557   if( (eNew!=eOld)
7558    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7559   ){
7560     if( !db->autoCommit || db->nVdbeRead>1 ){
7561       rc = SQLITE_ERROR;
7562       sqlite3VdbeError(p,
7563           "cannot change %s wal mode from within a transaction",
7564           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7565       );
7566       goto abort_due_to_error;
7567     }else{
7568 
7569       if( eOld==PAGER_JOURNALMODE_WAL ){
7570         /* If leaving WAL mode, close the log file. If successful, the call
7571         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7572         ** file. An EXCLUSIVE lock may still be held on the database file
7573         ** after a successful return.
7574         */
7575         rc = sqlite3PagerCloseWal(pPager, db);
7576         if( rc==SQLITE_OK ){
7577           sqlite3PagerSetJournalMode(pPager, eNew);
7578         }
7579       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7580         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
7581         ** as an intermediate */
7582         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7583       }
7584 
7585       /* Open a transaction on the database file. Regardless of the journal
7586       ** mode, this transaction always uses a rollback journal.
7587       */
7588       assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7589       if( rc==SQLITE_OK ){
7590         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7591       }
7592     }
7593   }
7594 #endif /* ifndef SQLITE_OMIT_WAL */
7595 
7596   if( rc ) eNew = eOld;
7597   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7598 
7599   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7600   pOut->z = (char *)sqlite3JournalModename(eNew);
7601   pOut->n = sqlite3Strlen30(pOut->z);
7602   pOut->enc = SQLITE_UTF8;
7603   sqlite3VdbeChangeEncoding(pOut, encoding);
7604   if( rc ) goto abort_due_to_error;
7605   break;
7606 };
7607 #endif /* SQLITE_OMIT_PRAGMA */
7608 
7609 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7610 /* Opcode: Vacuum P1 P2 * * *
7611 **
7612 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7613 ** for an attached database.  The "temp" database may not be vacuumed.
7614 **
7615 ** If P2 is not zero, then it is a register holding a string which is
7616 ** the file into which the result of vacuum should be written.  When
7617 ** P2 is zero, the vacuum overwrites the original database.
7618 */
7619 case OP_Vacuum: {
7620   assert( p->readOnly==0 );
7621   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7622                         pOp->p2 ? &aMem[pOp->p2] : 0);
7623   if( rc ) goto abort_due_to_error;
7624   break;
7625 }
7626 #endif
7627 
7628 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7629 /* Opcode: IncrVacuum P1 P2 * * *
7630 **
7631 ** Perform a single step of the incremental vacuum procedure on
7632 ** the P1 database. If the vacuum has finished, jump to instruction
7633 ** P2. Otherwise, fall through to the next instruction.
7634 */
7635 case OP_IncrVacuum: {        /* jump */
7636   Btree *pBt;
7637 
7638   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7639   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7640   assert( p->readOnly==0 );
7641   pBt = db->aDb[pOp->p1].pBt;
7642   rc = sqlite3BtreeIncrVacuum(pBt);
7643   VdbeBranchTaken(rc==SQLITE_DONE,2);
7644   if( rc ){
7645     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7646     rc = SQLITE_OK;
7647     goto jump_to_p2;
7648   }
7649   break;
7650 }
7651 #endif
7652 
7653 /* Opcode: Expire P1 P2 * * *
7654 **
7655 ** Cause precompiled statements to expire.  When an expired statement
7656 ** is executed using sqlite3_step() it will either automatically
7657 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7658 ** or it will fail with SQLITE_SCHEMA.
7659 **
7660 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7661 ** then only the currently executing statement is expired.
7662 **
7663 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7664 ** then running SQL statements are allowed to continue to run to completion.
7665 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7666 ** that might help the statement run faster but which does not affect the
7667 ** correctness of operation.
7668 */
7669 case OP_Expire: {
7670   assert( pOp->p2==0 || pOp->p2==1 );
7671   if( !pOp->p1 ){
7672     sqlite3ExpirePreparedStatements(db, pOp->p2);
7673   }else{
7674     p->expired = pOp->p2+1;
7675   }
7676   break;
7677 }
7678 
7679 /* Opcode: CursorLock P1 * * * *
7680 **
7681 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7682 ** written by an other cursor.
7683 */
7684 case OP_CursorLock: {
7685   VdbeCursor *pC;
7686   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7687   pC = p->apCsr[pOp->p1];
7688   assert( pC!=0 );
7689   assert( pC->eCurType==CURTYPE_BTREE );
7690   sqlite3BtreeCursorPin(pC->uc.pCursor);
7691   break;
7692 }
7693 
7694 /* Opcode: CursorUnlock P1 * * * *
7695 **
7696 ** Unlock the btree to which cursor P1 is pointing so that it can be
7697 ** written by other cursors.
7698 */
7699 case OP_CursorUnlock: {
7700   VdbeCursor *pC;
7701   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7702   pC = p->apCsr[pOp->p1];
7703   assert( pC!=0 );
7704   assert( pC->eCurType==CURTYPE_BTREE );
7705   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7706   break;
7707 }
7708 
7709 #ifndef SQLITE_OMIT_SHARED_CACHE
7710 /* Opcode: TableLock P1 P2 P3 P4 *
7711 ** Synopsis: iDb=P1 root=P2 write=P3
7712 **
7713 ** Obtain a lock on a particular table. This instruction is only used when
7714 ** the shared-cache feature is enabled.
7715 **
7716 ** P1 is the index of the database in sqlite3.aDb[] of the database
7717 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7718 ** a write lock if P3==1.
7719 **
7720 ** P2 contains the root-page of the table to lock.
7721 **
7722 ** P4 contains a pointer to the name of the table being locked. This is only
7723 ** used to generate an error message if the lock cannot be obtained.
7724 */
7725 case OP_TableLock: {
7726   u8 isWriteLock = (u8)pOp->p3;
7727   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7728     int p1 = pOp->p1;
7729     assert( p1>=0 && p1<db->nDb );
7730     assert( DbMaskTest(p->btreeMask, p1) );
7731     assert( isWriteLock==0 || isWriteLock==1 );
7732     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7733     if( rc ){
7734       if( (rc&0xFF)==SQLITE_LOCKED ){
7735         const char *z = pOp->p4.z;
7736         sqlite3VdbeError(p, "database table is locked: %s", z);
7737       }
7738       goto abort_due_to_error;
7739     }
7740   }
7741   break;
7742 }
7743 #endif /* SQLITE_OMIT_SHARED_CACHE */
7744 
7745 #ifndef SQLITE_OMIT_VIRTUALTABLE
7746 /* Opcode: VBegin * * * P4 *
7747 **
7748 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7749 ** xBegin method for that table.
7750 **
7751 ** Also, whether or not P4 is set, check that this is not being called from
7752 ** within a callback to a virtual table xSync() method. If it is, the error
7753 ** code will be set to SQLITE_LOCKED.
7754 */
7755 case OP_VBegin: {
7756   VTable *pVTab;
7757   pVTab = pOp->p4.pVtab;
7758   rc = sqlite3VtabBegin(db, pVTab);
7759   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7760   if( rc ) goto abort_due_to_error;
7761   break;
7762 }
7763 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7764 
7765 #ifndef SQLITE_OMIT_VIRTUALTABLE
7766 /* Opcode: VCreate P1 P2 * * *
7767 **
7768 ** P2 is a register that holds the name of a virtual table in database
7769 ** P1. Call the xCreate method for that table.
7770 */
7771 case OP_VCreate: {
7772   Mem sMem;          /* For storing the record being decoded */
7773   const char *zTab;  /* Name of the virtual table */
7774 
7775   memset(&sMem, 0, sizeof(sMem));
7776   sMem.db = db;
7777   /* Because P2 is always a static string, it is impossible for the
7778   ** sqlite3VdbeMemCopy() to fail */
7779   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7780   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7781   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7782   assert( rc==SQLITE_OK );
7783   zTab = (const char*)sqlite3_value_text(&sMem);
7784   assert( zTab || db->mallocFailed );
7785   if( zTab ){
7786     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7787   }
7788   sqlite3VdbeMemRelease(&sMem);
7789   if( rc ) goto abort_due_to_error;
7790   break;
7791 }
7792 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7793 
7794 #ifndef SQLITE_OMIT_VIRTUALTABLE
7795 /* Opcode: VDestroy P1 * * P4 *
7796 **
7797 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7798 ** of that table.
7799 */
7800 case OP_VDestroy: {
7801   db->nVDestroy++;
7802   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7803   db->nVDestroy--;
7804   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7805   if( rc ) goto abort_due_to_error;
7806   break;
7807 }
7808 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7809 
7810 #ifndef SQLITE_OMIT_VIRTUALTABLE
7811 /* Opcode: VOpen P1 * * P4 *
7812 **
7813 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7814 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7815 ** table and stores that cursor in P1.
7816 */
7817 case OP_VOpen: {
7818   VdbeCursor *pCur;
7819   sqlite3_vtab_cursor *pVCur;
7820   sqlite3_vtab *pVtab;
7821   const sqlite3_module *pModule;
7822 
7823   assert( p->bIsReader );
7824   pCur = 0;
7825   pVCur = 0;
7826   pVtab = pOp->p4.pVtab->pVtab;
7827   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7828     rc = SQLITE_LOCKED;
7829     goto abort_due_to_error;
7830   }
7831   pModule = pVtab->pModule;
7832   rc = pModule->xOpen(pVtab, &pVCur);
7833   sqlite3VtabImportErrmsg(p, pVtab);
7834   if( rc ) goto abort_due_to_error;
7835 
7836   /* Initialize sqlite3_vtab_cursor base class */
7837   pVCur->pVtab = pVtab;
7838 
7839   /* Initialize vdbe cursor object */
7840   pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
7841   if( pCur ){
7842     pCur->uc.pVCur = pVCur;
7843     pVtab->nRef++;
7844   }else{
7845     assert( db->mallocFailed );
7846     pModule->xClose(pVCur);
7847     goto no_mem;
7848   }
7849   break;
7850 }
7851 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7852 
7853 #ifndef SQLITE_OMIT_VIRTUALTABLE
7854 /* Opcode: VInitIn P1 P2 P3 * *
7855 ** Synopsis: r[P2]=ValueList(P1,P3)
7856 **
7857 ** Set register P2 to be a pointer to a ValueList object for cursor P1
7858 ** with cache register P3 and output register P3+1.  This ValueList object
7859 ** can be used as the first argument to sqlite3_vtab_in_first() and
7860 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
7861 ** cursor.  Register P3 is used to hold the values returned by
7862 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
7863 */
7864 case OP_VInitIn: {        /* out2 */
7865   VdbeCursor *pC;         /* The cursor containing the RHS values */
7866   ValueList *pRhs;        /* New ValueList object to put in reg[P2] */
7867 
7868   pC = p->apCsr[pOp->p1];
7869   pRhs = sqlite3_malloc64( sizeof(*pRhs) );
7870   if( pRhs==0 ) goto no_mem;
7871   pRhs->pCsr = pC->uc.pCursor;
7872   pRhs->pOut = &aMem[pOp->p3];
7873   pOut = out2Prerelease(p, pOp);
7874   pOut->flags = MEM_Null;
7875   sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free);
7876   break;
7877 }
7878 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7879 
7880 
7881 #ifndef SQLITE_OMIT_VIRTUALTABLE
7882 /* Opcode: VFilter P1 P2 P3 P4 *
7883 ** Synopsis: iplan=r[P3] zplan='P4'
7884 **
7885 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7886 ** the filtered result set is empty.
7887 **
7888 ** P4 is either NULL or a string that was generated by the xBestIndex
7889 ** method of the module.  The interpretation of the P4 string is left
7890 ** to the module implementation.
7891 **
7892 ** This opcode invokes the xFilter method on the virtual table specified
7893 ** by P1.  The integer query plan parameter to xFilter is stored in register
7894 ** P3. Register P3+1 stores the argc parameter to be passed to the
7895 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7896 ** additional parameters which are passed to
7897 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7898 **
7899 ** A jump is made to P2 if the result set after filtering would be empty.
7900 */
7901 case OP_VFilter: {   /* jump */
7902   int nArg;
7903   int iQuery;
7904   const sqlite3_module *pModule;
7905   Mem *pQuery;
7906   Mem *pArgc;
7907   sqlite3_vtab_cursor *pVCur;
7908   sqlite3_vtab *pVtab;
7909   VdbeCursor *pCur;
7910   int res;
7911   int i;
7912   Mem **apArg;
7913 
7914   pQuery = &aMem[pOp->p3];
7915   pArgc = &pQuery[1];
7916   pCur = p->apCsr[pOp->p1];
7917   assert( memIsValid(pQuery) );
7918   REGISTER_TRACE(pOp->p3, pQuery);
7919   assert( pCur!=0 );
7920   assert( pCur->eCurType==CURTYPE_VTAB );
7921   pVCur = pCur->uc.pVCur;
7922   pVtab = pVCur->pVtab;
7923   pModule = pVtab->pModule;
7924 
7925   /* Grab the index number and argc parameters */
7926   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7927   nArg = (int)pArgc->u.i;
7928   iQuery = (int)pQuery->u.i;
7929 
7930   /* Invoke the xFilter method */
7931   apArg = p->apArg;
7932   for(i = 0; i<nArg; i++){
7933     apArg[i] = &pArgc[i+1];
7934   }
7935   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7936   sqlite3VtabImportErrmsg(p, pVtab);
7937   if( rc ) goto abort_due_to_error;
7938   res = pModule->xEof(pVCur);
7939   pCur->nullRow = 0;
7940   VdbeBranchTaken(res!=0,2);
7941   if( res ) goto jump_to_p2;
7942   break;
7943 }
7944 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7945 
7946 #ifndef SQLITE_OMIT_VIRTUALTABLE
7947 /* Opcode: VColumn P1 P2 P3 * P5
7948 ** Synopsis: r[P3]=vcolumn(P2)
7949 **
7950 ** Store in register P3 the value of the P2-th column of
7951 ** the current row of the virtual-table of cursor P1.
7952 **
7953 ** If the VColumn opcode is being used to fetch the value of
7954 ** an unchanging column during an UPDATE operation, then the P5
7955 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7956 ** function to return true inside the xColumn method of the virtual
7957 ** table implementation.  The P5 column might also contain other
7958 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7959 ** unused by OP_VColumn.
7960 */
7961 case OP_VColumn: {
7962   sqlite3_vtab *pVtab;
7963   const sqlite3_module *pModule;
7964   Mem *pDest;
7965   sqlite3_context sContext;
7966 
7967   VdbeCursor *pCur = p->apCsr[pOp->p1];
7968   assert( pCur!=0 );
7969   assert( pCur->eCurType==CURTYPE_VTAB );
7970   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7971   pDest = &aMem[pOp->p3];
7972   memAboutToChange(p, pDest);
7973   if( pCur->nullRow ){
7974     sqlite3VdbeMemSetNull(pDest);
7975     break;
7976   }
7977   pVtab = pCur->uc.pVCur->pVtab;
7978   pModule = pVtab->pModule;
7979   assert( pModule->xColumn );
7980   memset(&sContext, 0, sizeof(sContext));
7981   sContext.pOut = pDest;
7982   sContext.enc = encoding;
7983   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7984   if( pOp->p5 & OPFLAG_NOCHNG ){
7985     sqlite3VdbeMemSetNull(pDest);
7986     pDest->flags = MEM_Null|MEM_Zero;
7987     pDest->u.nZero = 0;
7988   }else{
7989     MemSetTypeFlag(pDest, MEM_Null);
7990   }
7991   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7992   sqlite3VtabImportErrmsg(p, pVtab);
7993   if( sContext.isError>0 ){
7994     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7995     rc = sContext.isError;
7996   }
7997   sqlite3VdbeChangeEncoding(pDest, encoding);
7998   REGISTER_TRACE(pOp->p3, pDest);
7999   UPDATE_MAX_BLOBSIZE(pDest);
8000 
8001   if( rc ) goto abort_due_to_error;
8002   break;
8003 }
8004 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8005 
8006 #ifndef SQLITE_OMIT_VIRTUALTABLE
8007 /* Opcode: VNext P1 P2 * * *
8008 **
8009 ** Advance virtual table P1 to the next row in its result set and
8010 ** jump to instruction P2.  Or, if the virtual table has reached
8011 ** the end of its result set, then fall through to the next instruction.
8012 */
8013 case OP_VNext: {   /* jump */
8014   sqlite3_vtab *pVtab;
8015   const sqlite3_module *pModule;
8016   int res;
8017   VdbeCursor *pCur;
8018 
8019   pCur = p->apCsr[pOp->p1];
8020   assert( pCur!=0 );
8021   assert( pCur->eCurType==CURTYPE_VTAB );
8022   if( pCur->nullRow ){
8023     break;
8024   }
8025   pVtab = pCur->uc.pVCur->pVtab;
8026   pModule = pVtab->pModule;
8027   assert( pModule->xNext );
8028 
8029   /* Invoke the xNext() method of the module. There is no way for the
8030   ** underlying implementation to return an error if one occurs during
8031   ** xNext(). Instead, if an error occurs, true is returned (indicating that
8032   ** data is available) and the error code returned when xColumn or
8033   ** some other method is next invoked on the save virtual table cursor.
8034   */
8035   rc = pModule->xNext(pCur->uc.pVCur);
8036   sqlite3VtabImportErrmsg(p, pVtab);
8037   if( rc ) goto abort_due_to_error;
8038   res = pModule->xEof(pCur->uc.pVCur);
8039   VdbeBranchTaken(!res,2);
8040   if( !res ){
8041     /* If there is data, jump to P2 */
8042     goto jump_to_p2_and_check_for_interrupt;
8043   }
8044   goto check_for_interrupt;
8045 }
8046 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8047 
8048 #ifndef SQLITE_OMIT_VIRTUALTABLE
8049 /* Opcode: VRename P1 * * P4 *
8050 **
8051 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8052 ** This opcode invokes the corresponding xRename method. The value
8053 ** in register P1 is passed as the zName argument to the xRename method.
8054 */
8055 case OP_VRename: {
8056   sqlite3_vtab *pVtab;
8057   Mem *pName;
8058   int isLegacy;
8059 
8060   isLegacy = (db->flags & SQLITE_LegacyAlter);
8061   db->flags |= SQLITE_LegacyAlter;
8062   pVtab = pOp->p4.pVtab->pVtab;
8063   pName = &aMem[pOp->p1];
8064   assert( pVtab->pModule->xRename );
8065   assert( memIsValid(pName) );
8066   assert( p->readOnly==0 );
8067   REGISTER_TRACE(pOp->p1, pName);
8068   assert( pName->flags & MEM_Str );
8069   testcase( pName->enc==SQLITE_UTF8 );
8070   testcase( pName->enc==SQLITE_UTF16BE );
8071   testcase( pName->enc==SQLITE_UTF16LE );
8072   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8073   if( rc ) goto abort_due_to_error;
8074   rc = pVtab->pModule->xRename(pVtab, pName->z);
8075   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8076   sqlite3VtabImportErrmsg(p, pVtab);
8077   p->expired = 0;
8078   if( rc ) goto abort_due_to_error;
8079   break;
8080 }
8081 #endif
8082 
8083 #ifndef SQLITE_OMIT_VIRTUALTABLE
8084 /* Opcode: VUpdate P1 P2 P3 P4 P5
8085 ** Synopsis: data=r[P3@P2]
8086 **
8087 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8088 ** This opcode invokes the corresponding xUpdate method. P2 values
8089 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8090 ** invocation. The value in register (P3+P2-1) corresponds to the
8091 ** p2th element of the argv array passed to xUpdate.
8092 **
8093 ** The xUpdate method will do a DELETE or an INSERT or both.
8094 ** The argv[0] element (which corresponds to memory cell P3)
8095 ** is the rowid of a row to delete.  If argv[0] is NULL then no
8096 ** deletion occurs.  The argv[1] element is the rowid of the new
8097 ** row.  This can be NULL to have the virtual table select the new
8098 ** rowid for itself.  The subsequent elements in the array are
8099 ** the values of columns in the new row.
8100 **
8101 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
8102 ** a row to delete.
8103 **
8104 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8105 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8106 ** is set to the value of the rowid for the row just inserted.
8107 **
8108 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8109 ** apply in the case of a constraint failure on an insert or update.
8110 */
8111 case OP_VUpdate: {
8112   sqlite3_vtab *pVtab;
8113   const sqlite3_module *pModule;
8114   int nArg;
8115   int i;
8116   sqlite_int64 rowid = 0;
8117   Mem **apArg;
8118   Mem *pX;
8119 
8120   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
8121        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8122   );
8123   assert( p->readOnly==0 );
8124   if( db->mallocFailed ) goto no_mem;
8125   sqlite3VdbeIncrWriteCounter(p, 0);
8126   pVtab = pOp->p4.pVtab->pVtab;
8127   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8128     rc = SQLITE_LOCKED;
8129     goto abort_due_to_error;
8130   }
8131   pModule = pVtab->pModule;
8132   nArg = pOp->p2;
8133   assert( pOp->p4type==P4_VTAB );
8134   if( ALWAYS(pModule->xUpdate) ){
8135     u8 vtabOnConflict = db->vtabOnConflict;
8136     apArg = p->apArg;
8137     pX = &aMem[pOp->p3];
8138     for(i=0; i<nArg; i++){
8139       assert( memIsValid(pX) );
8140       memAboutToChange(p, pX);
8141       apArg[i] = pX;
8142       pX++;
8143     }
8144     db->vtabOnConflict = pOp->p5;
8145     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8146     db->vtabOnConflict = vtabOnConflict;
8147     sqlite3VtabImportErrmsg(p, pVtab);
8148     if( rc==SQLITE_OK && pOp->p1 ){
8149       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8150       db->lastRowid = rowid;
8151     }
8152     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8153       if( pOp->p5==OE_Ignore ){
8154         rc = SQLITE_OK;
8155       }else{
8156         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8157       }
8158     }else{
8159       p->nChange++;
8160     }
8161     if( rc ) goto abort_due_to_error;
8162   }
8163   break;
8164 }
8165 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8166 
8167 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8168 /* Opcode: Pagecount P1 P2 * * *
8169 **
8170 ** Write the current number of pages in database P1 to memory cell P2.
8171 */
8172 case OP_Pagecount: {            /* out2 */
8173   pOut = out2Prerelease(p, pOp);
8174   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8175   break;
8176 }
8177 #endif
8178 
8179 
8180 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8181 /* Opcode: MaxPgcnt P1 P2 P3 * *
8182 **
8183 ** Try to set the maximum page count for database P1 to the value in P3.
8184 ** Do not let the maximum page count fall below the current page count and
8185 ** do not change the maximum page count value if P3==0.
8186 **
8187 ** Store the maximum page count after the change in register P2.
8188 */
8189 case OP_MaxPgcnt: {            /* out2 */
8190   unsigned int newMax;
8191   Btree *pBt;
8192 
8193   pOut = out2Prerelease(p, pOp);
8194   pBt = db->aDb[pOp->p1].pBt;
8195   newMax = 0;
8196   if( pOp->p3 ){
8197     newMax = sqlite3BtreeLastPage(pBt);
8198     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8199   }
8200   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8201   break;
8202 }
8203 #endif
8204 
8205 /* Opcode: Function P1 P2 P3 P4 *
8206 ** Synopsis: r[P3]=func(r[P2@NP])
8207 **
8208 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8209 ** contains a pointer to the function to be run) with arguments taken
8210 ** from register P2 and successors.  The number of arguments is in
8211 ** the sqlite3_context object that P4 points to.
8212 ** The result of the function is stored
8213 ** in register P3.  Register P3 must not be one of the function inputs.
8214 **
8215 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8216 ** function was determined to be constant at compile time. If the first
8217 ** argument was constant then bit 0 of P1 is set. This is used to determine
8218 ** whether meta data associated with a user function argument using the
8219 ** sqlite3_set_auxdata() API may be safely retained until the next
8220 ** invocation of this opcode.
8221 **
8222 ** See also: AggStep, AggFinal, PureFunc
8223 */
8224 /* Opcode: PureFunc P1 P2 P3 P4 *
8225 ** Synopsis: r[P3]=func(r[P2@NP])
8226 **
8227 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8228 ** contains a pointer to the function to be run) with arguments taken
8229 ** from register P2 and successors.  The number of arguments is in
8230 ** the sqlite3_context object that P4 points to.
8231 ** The result of the function is stored
8232 ** in register P3.  Register P3 must not be one of the function inputs.
8233 **
8234 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8235 ** function was determined to be constant at compile time. If the first
8236 ** argument was constant then bit 0 of P1 is set. This is used to determine
8237 ** whether meta data associated with a user function argument using the
8238 ** sqlite3_set_auxdata() API may be safely retained until the next
8239 ** invocation of this opcode.
8240 **
8241 ** This opcode works exactly like OP_Function.  The only difference is in
8242 ** its name.  This opcode is used in places where the function must be
8243 ** purely non-deterministic.  Some built-in date/time functions can be
8244 ** either determinitic of non-deterministic, depending on their arguments.
8245 ** When those function are used in a non-deterministic way, they will check
8246 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8247 ** if they were, they throw an error.
8248 **
8249 ** See also: AggStep, AggFinal, Function
8250 */
8251 case OP_PureFunc:              /* group */
8252 case OP_Function: {            /* group */
8253   int i;
8254   sqlite3_context *pCtx;
8255 
8256   assert( pOp->p4type==P4_FUNCCTX );
8257   pCtx = pOp->p4.pCtx;
8258 
8259   /* If this function is inside of a trigger, the register array in aMem[]
8260   ** might change from one evaluation to the next.  The next block of code
8261   ** checks to see if the register array has changed, and if so it
8262   ** reinitializes the relavant parts of the sqlite3_context object */
8263   pOut = &aMem[pOp->p3];
8264   if( pCtx->pOut != pOut ){
8265     pCtx->pVdbe = p;
8266     pCtx->pOut = pOut;
8267     pCtx->enc = encoding;
8268     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8269   }
8270   assert( pCtx->pVdbe==p );
8271 
8272   memAboutToChange(p, pOut);
8273 #ifdef SQLITE_DEBUG
8274   for(i=0; i<pCtx->argc; i++){
8275     assert( memIsValid(pCtx->argv[i]) );
8276     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8277   }
8278 #endif
8279   MemSetTypeFlag(pOut, MEM_Null);
8280   assert( pCtx->isError==0 );
8281   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8282 
8283   /* If the function returned an error, throw an exception */
8284   if( pCtx->isError ){
8285     if( pCtx->isError>0 ){
8286       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8287       rc = pCtx->isError;
8288     }
8289     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8290     pCtx->isError = 0;
8291     if( rc ) goto abort_due_to_error;
8292   }
8293 
8294   assert( (pOut->flags&MEM_Str)==0
8295        || pOut->enc==encoding
8296        || db->mallocFailed );
8297   assert( !sqlite3VdbeMemTooBig(pOut) );
8298 
8299   REGISTER_TRACE(pOp->p3, pOut);
8300   UPDATE_MAX_BLOBSIZE(pOut);
8301   break;
8302 }
8303 
8304 /* Opcode: FilterAdd P1 * P3 P4 *
8305 ** Synopsis: filter(P1) += key(P3@P4)
8306 **
8307 ** Compute a hash on the P4 registers starting with r[P3] and
8308 ** add that hash to the bloom filter contained in r[P1].
8309 */
8310 case OP_FilterAdd: {
8311   u64 h;
8312 
8313   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8314   pIn1 = &aMem[pOp->p1];
8315   assert( pIn1->flags & MEM_Blob );
8316   assert( pIn1->n>0 );
8317   h = filterHash(aMem, pOp);
8318 #ifdef SQLITE_DEBUG
8319   if( db->flags&SQLITE_VdbeTrace ){
8320     int ii;
8321     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8322       registerTrace(ii, &aMem[ii]);
8323     }
8324     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8325   }
8326 #endif
8327   h %= pIn1->n;
8328   pIn1->z[h/8] |= 1<<(h&7);
8329   break;
8330 }
8331 
8332 /* Opcode: Filter P1 P2 P3 P4 *
8333 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8334 **
8335 ** Compute a hash on the key contained in the P4 registers starting
8336 ** with r[P3].  Check to see if that hash is found in the
8337 ** bloom filter hosted by register P1.  If it is not present then
8338 ** maybe jump to P2.  Otherwise fall through.
8339 **
8340 ** False negatives are harmless.  It is always safe to fall through,
8341 ** even if the value is in the bloom filter.  A false negative causes
8342 ** more CPU cycles to be used, but it should still yield the correct
8343 ** answer.  However, an incorrect answer may well arise from a
8344 ** false positive - if the jump is taken when it should fall through.
8345 */
8346 case OP_Filter: {          /* jump */
8347   u64 h;
8348 
8349   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8350   pIn1 = &aMem[pOp->p1];
8351   assert( (pIn1->flags & MEM_Blob)!=0 );
8352   assert( pIn1->n >= 1 );
8353   h = filterHash(aMem, pOp);
8354 #ifdef SQLITE_DEBUG
8355   if( db->flags&SQLITE_VdbeTrace ){
8356     int ii;
8357     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8358       registerTrace(ii, &aMem[ii]);
8359     }
8360     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8361   }
8362 #endif
8363   h %= pIn1->n;
8364   if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8365     VdbeBranchTaken(1, 2);
8366     p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8367     goto jump_to_p2;
8368   }else{
8369     p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8370     VdbeBranchTaken(0, 2);
8371   }
8372   break;
8373 }
8374 
8375 /* Opcode: Trace P1 P2 * P4 *
8376 **
8377 ** Write P4 on the statement trace output if statement tracing is
8378 ** enabled.
8379 **
8380 ** Operand P1 must be 0x7fffffff and P2 must positive.
8381 */
8382 /* Opcode: Init P1 P2 P3 P4 *
8383 ** Synopsis: Start at P2
8384 **
8385 ** Programs contain a single instance of this opcode as the very first
8386 ** opcode.
8387 **
8388 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8389 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8390 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8391 **
8392 ** If P2 is not zero, jump to instruction P2.
8393 **
8394 ** Increment the value of P1 so that OP_Once opcodes will jump the
8395 ** first time they are evaluated for this run.
8396 **
8397 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8398 ** error is encountered.
8399 */
8400 case OP_Trace:
8401 case OP_Init: {          /* jump */
8402   int i;
8403 #ifndef SQLITE_OMIT_TRACE
8404   char *zTrace;
8405 #endif
8406 
8407   /* If the P4 argument is not NULL, then it must be an SQL comment string.
8408   ** The "--" string is broken up to prevent false-positives with srcck1.c.
8409   **
8410   ** This assert() provides evidence for:
8411   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8412   ** would have been returned by the legacy sqlite3_trace() interface by
8413   ** using the X argument when X begins with "--" and invoking
8414   ** sqlite3_expanded_sql(P) otherwise.
8415   */
8416   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8417 
8418   /* OP_Init is always instruction 0 */
8419   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8420 
8421 #ifndef SQLITE_OMIT_TRACE
8422   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8423    && p->minWriteFileFormat!=254  /* tag-20220401a */
8424    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8425   ){
8426 #ifndef SQLITE_OMIT_DEPRECATED
8427     if( db->mTrace & SQLITE_TRACE_LEGACY ){
8428       char *z = sqlite3VdbeExpandSql(p, zTrace);
8429       db->trace.xLegacy(db->pTraceArg, z);
8430       sqlite3_free(z);
8431     }else
8432 #endif
8433     if( db->nVdbeExec>1 ){
8434       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8435       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8436       sqlite3DbFree(db, z);
8437     }else{
8438       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8439     }
8440   }
8441 #ifdef SQLITE_USE_FCNTL_TRACE
8442   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8443   if( zTrace ){
8444     int j;
8445     for(j=0; j<db->nDb; j++){
8446       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8447       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8448     }
8449   }
8450 #endif /* SQLITE_USE_FCNTL_TRACE */
8451 #ifdef SQLITE_DEBUG
8452   if( (db->flags & SQLITE_SqlTrace)!=0
8453    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8454   ){
8455     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8456   }
8457 #endif /* SQLITE_DEBUG */
8458 #endif /* SQLITE_OMIT_TRACE */
8459   assert( pOp->p2>0 );
8460   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8461     if( pOp->opcode==OP_Trace ) break;
8462     for(i=1; i<p->nOp; i++){
8463       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8464     }
8465     pOp->p1 = 0;
8466   }
8467   pOp->p1++;
8468   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8469   goto jump_to_p2;
8470 }
8471 
8472 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8473 /* Opcode: CursorHint P1 * * P4 *
8474 **
8475 ** Provide a hint to cursor P1 that it only needs to return rows that
8476 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
8477 ** to values currently held in registers.  TK_COLUMN terms in the P4
8478 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8479 */
8480 case OP_CursorHint: {
8481   VdbeCursor *pC;
8482 
8483   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8484   assert( pOp->p4type==P4_EXPR );
8485   pC = p->apCsr[pOp->p1];
8486   if( pC ){
8487     assert( pC->eCurType==CURTYPE_BTREE );
8488     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8489                            pOp->p4.pExpr, aMem);
8490   }
8491   break;
8492 }
8493 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8494 
8495 #ifdef SQLITE_DEBUG
8496 /* Opcode:  Abortable   * * * * *
8497 **
8498 ** Verify that an Abort can happen.  Assert if an Abort at this point
8499 ** might cause database corruption.  This opcode only appears in debugging
8500 ** builds.
8501 **
8502 ** An Abort is safe if either there have been no writes, or if there is
8503 ** an active statement journal.
8504 */
8505 case OP_Abortable: {
8506   sqlite3VdbeAssertAbortable(p);
8507   break;
8508 }
8509 #endif
8510 
8511 #ifdef SQLITE_DEBUG
8512 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
8513 ** Synopsis: release r[P1@P2] mask P3
8514 **
8515 ** Release registers from service.  Any content that was in the
8516 ** the registers is unreliable after this opcode completes.
8517 **
8518 ** The registers released will be the P2 registers starting at P1,
8519 ** except if bit ii of P3 set, then do not release register P1+ii.
8520 ** In other words, P3 is a mask of registers to preserve.
8521 **
8522 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
8523 ** that if the content of the released register was set using OP_SCopy,
8524 ** a change to the value of the source register for the OP_SCopy will no longer
8525 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8526 **
8527 ** If P5 is set, then all released registers have their type set
8528 ** to MEM_Undefined so that any subsequent attempt to read the released
8529 ** register (before it is reinitialized) will generate an assertion fault.
8530 **
8531 ** P5 ought to be set on every call to this opcode.
8532 ** However, there are places in the code generator will release registers
8533 ** before their are used, under the (valid) assumption that the registers
8534 ** will not be reallocated for some other purpose before they are used and
8535 ** hence are safe to release.
8536 **
8537 ** This opcode is only available in testing and debugging builds.  It is
8538 ** not generated for release builds.  The purpose of this opcode is to help
8539 ** validate the generated bytecode.  This opcode does not actually contribute
8540 ** to computing an answer.
8541 */
8542 case OP_ReleaseReg: {
8543   Mem *pMem;
8544   int i;
8545   u32 constMask;
8546   assert( pOp->p1>0 );
8547   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8548   pMem = &aMem[pOp->p1];
8549   constMask = pOp->p3;
8550   for(i=0; i<pOp->p2; i++, pMem++){
8551     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8552       pMem->pScopyFrom = 0;
8553       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8554     }
8555   }
8556   break;
8557 }
8558 #endif
8559 
8560 /* Opcode: Noop * * * * *
8561 **
8562 ** Do nothing.  This instruction is often useful as a jump
8563 ** destination.
8564 */
8565 /*
8566 ** The magic Explain opcode are only inserted when explain==2 (which
8567 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8568 ** This opcode records information from the optimizer.  It is the
8569 ** the same as a no-op.  This opcodesnever appears in a real VM program.
8570 */
8571 default: {          /* This is really OP_Noop, OP_Explain */
8572   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8573 
8574   break;
8575 }
8576 
8577 /*****************************************************************************
8578 ** The cases of the switch statement above this line should all be indented
8579 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
8580 ** readability.  From this point on down, the normal indentation rules are
8581 ** restored.
8582 *****************************************************************************/
8583     }
8584 
8585 #ifdef VDBE_PROFILE
8586     {
8587       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8588       if( endTime>start ) pOrigOp->cycles += endTime - start;
8589       pOrigOp->cnt++;
8590     }
8591 #endif
8592 
8593     /* The following code adds nothing to the actual functionality
8594     ** of the program.  It is only here for testing and debugging.
8595     ** On the other hand, it does burn CPU cycles every time through
8596     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
8597     */
8598 #ifndef NDEBUG
8599     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8600 
8601 #ifdef SQLITE_DEBUG
8602     if( db->flags & SQLITE_VdbeTrace ){
8603       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8604       if( rc!=0 ) printf("rc=%d\n",rc);
8605       if( opProperty & (OPFLG_OUT2) ){
8606         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8607       }
8608       if( opProperty & OPFLG_OUT3 ){
8609         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8610       }
8611       if( opProperty==0xff ){
8612         /* Never happens.  This code exists to avoid a harmless linkage
8613         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8614         ** used. */
8615         sqlite3VdbeRegisterDump(p);
8616       }
8617     }
8618 #endif  /* SQLITE_DEBUG */
8619 #endif  /* NDEBUG */
8620   }  /* The end of the for(;;) loop the loops through opcodes */
8621 
8622   /* If we reach this point, it means that execution is finished with
8623   ** an error of some kind.
8624   */
8625 abort_due_to_error:
8626   if( db->mallocFailed ){
8627     rc = SQLITE_NOMEM_BKPT;
8628   }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8629     rc = SQLITE_CORRUPT_BKPT;
8630   }
8631   assert( rc );
8632 #ifdef SQLITE_DEBUG
8633   if( db->flags & SQLITE_VdbeTrace ){
8634     const char *zTrace = p->zSql;
8635     if( zTrace==0 ){
8636       if( aOp[0].opcode==OP_Trace ){
8637         zTrace = aOp[0].p4.z;
8638       }
8639       if( zTrace==0 ) zTrace = "???";
8640     }
8641     printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8642   }
8643 #endif
8644   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8645     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8646   }
8647   p->rc = rc;
8648   sqlite3SystemError(db, rc);
8649   testcase( sqlite3GlobalConfig.xLog!=0 );
8650   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8651                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
8652   if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
8653   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8654   if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8655     db->flags |= SQLITE_CorruptRdOnly;
8656   }
8657   rc = SQLITE_ERROR;
8658   if( resetSchemaOnFault>0 ){
8659     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8660   }
8661 
8662   /* This is the only way out of this procedure.  We have to
8663   ** release the mutexes on btrees that were acquired at the
8664   ** top. */
8665 vdbe_return:
8666 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8667   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8668     nProgressLimit += db->nProgressOps;
8669     if( db->xProgress(db->pProgressArg) ){
8670       nProgressLimit = LARGEST_UINT64;
8671       rc = SQLITE_INTERRUPT;
8672       goto abort_due_to_error;
8673     }
8674   }
8675 #endif
8676   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8677   sqlite3VdbeLeave(p);
8678   assert( rc!=SQLITE_OK || nExtraDelete==0
8679        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8680   );
8681   return rc;
8682 
8683   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8684   ** is encountered.
8685   */
8686 too_big:
8687   sqlite3VdbeError(p, "string or blob too big");
8688   rc = SQLITE_TOOBIG;
8689   goto abort_due_to_error;
8690 
8691   /* Jump to here if a malloc() fails.
8692   */
8693 no_mem:
8694   sqlite3OomFault(db);
8695   sqlite3VdbeError(p, "out of memory");
8696   rc = SQLITE_NOMEM_BKPT;
8697   goto abort_due_to_error;
8698 
8699   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8700   ** flag.
8701   */
8702 abort_due_to_interrupt:
8703   assert( AtomicLoad(&db->u1.isInterrupted) );
8704   rc = SQLITE_INTERRUPT;
8705   goto abort_due_to_error;
8706 }
8707