1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements execution method of the 13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") 14 ** handles housekeeping details such as creating and deleting 15 ** VDBE instances. This file is solely interested in executing 16 ** the VDBE program. 17 ** 18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer 19 ** to a VDBE. 20 ** 21 ** The SQL parser generates a program which is then executed by 22 ** the VDBE to do the work of the SQL statement. VDBE programs are 23 ** similar in form to assembly language. The program consists of 24 ** a linear sequence of operations. Each operation has an opcode 25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 26 ** is a null-terminated string. Operand P5 is an unsigned character. 27 ** Few opcodes use all 5 operands. 28 ** 29 ** Computation results are stored on a set of registers numbered beginning 30 ** with 1 and going up to Vdbe.nMem. Each register can store 31 ** either an integer, a null-terminated string, a floating point 32 ** number, or the SQL "NULL" value. An implicit conversion from one 33 ** type to the other occurs as necessary. 34 ** 35 ** Most of the code in this file is taken up by the sqlite3VdbeExec() 36 ** function which does the work of interpreting a VDBE program. 37 ** But other routines are also provided to help in building up 38 ** a program instruction by instruction. 39 ** 40 ** Various scripts scan this source file in order to generate HTML 41 ** documentation, headers files, or other derived files. The formatting 42 ** of the code in this file is, therefore, important. See other comments 43 ** in this file for details. If in doubt, do not deviate from existing 44 ** commenting and indentation practices when changing or adding code. 45 */ 46 #include "sqliteInt.h" 47 #include "vdbeInt.h" 48 49 /* 50 ** Invoke this macro on memory cells just prior to changing the 51 ** value of the cell. This macro verifies that shallow copies are 52 ** not misused. 53 */ 54 #ifdef SQLITE_DEBUG 55 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 56 #else 57 # define memAboutToChange(P,M) 58 #endif 59 60 /* 61 ** The following global variable is incremented every time a cursor 62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 63 ** procedures use this information to make sure that indices are 64 ** working correctly. This variable has no function other than to 65 ** help verify the correct operation of the library. 66 */ 67 #ifdef SQLITE_TEST 68 int sqlite3_search_count = 0; 69 #endif 70 71 /* 72 ** When this global variable is positive, it gets decremented once before 73 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 74 ** field of the sqlite3 structure is set in order to simulate an interrupt. 75 ** 76 ** This facility is used for testing purposes only. It does not function 77 ** in an ordinary build. 78 */ 79 #ifdef SQLITE_TEST 80 int sqlite3_interrupt_count = 0; 81 #endif 82 83 /* 84 ** The next global variable is incremented each type the OP_Sort opcode 85 ** is executed. The test procedures use this information to make sure that 86 ** sorting is occurring or not occurring at appropriate times. This variable 87 ** has no function other than to help verify the correct operation of the 88 ** library. 89 */ 90 #ifdef SQLITE_TEST 91 int sqlite3_sort_count = 0; 92 #endif 93 94 /* 95 ** The next global variable records the size of the largest MEM_Blob 96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 97 ** use this information to make sure that the zero-blob functionality 98 ** is working correctly. This variable has no function other than to 99 ** help verify the correct operation of the library. 100 */ 101 #ifdef SQLITE_TEST 102 int sqlite3_max_blobsize = 0; 103 static void updateMaxBlobsize(Mem *p){ 104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 105 sqlite3_max_blobsize = p->n; 106 } 107 } 108 #endif 109 110 /* 111 ** The next global variable is incremented each type the OP_Found opcode 112 ** is executed. This is used to test whether or not the foreign key 113 ** operation implemented using OP_FkIsZero is working. This variable 114 ** has no function other than to help verify the correct operation of the 115 ** library. 116 */ 117 #ifdef SQLITE_TEST 118 int sqlite3_found_count = 0; 119 #endif 120 121 /* 122 ** Test a register to see if it exceeds the current maximum blob size. 123 ** If it does, record the new maximum blob size. 124 */ 125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 127 #else 128 # define UPDATE_MAX_BLOBSIZE(P) 129 #endif 130 131 /* 132 ** Convert the given register into a string if it isn't one 133 ** already. Return non-zero if a malloc() fails. 134 */ 135 #define Stringify(P, enc) \ 136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ 137 { goto no_mem; } 138 139 /* 140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 141 ** a pointer to a dynamically allocated string where some other entity 142 ** is responsible for deallocating that string. Because the register 143 ** does not control the string, it might be deleted without the register 144 ** knowing it. 145 ** 146 ** This routine converts an ephemeral string into a dynamically allocated 147 ** string that the register itself controls. In other words, it 148 ** converts an MEM_Ephem string into an MEM_Dyn string. 149 */ 150 #define Deephemeralize(P) \ 151 if( ((P)->flags&MEM_Ephem)!=0 \ 152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 153 154 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 155 # define isSorter(x) ((x)->pSorter!=0) 156 157 /* 158 ** Argument pMem points at a register that will be passed to a 159 ** user-defined function or returned to the user as the result of a query. 160 ** This routine sets the pMem->type variable used by the sqlite3_value_*() 161 ** routines. 162 */ 163 void sqlite3VdbeMemStoreType(Mem *pMem){ 164 int flags = pMem->flags; 165 if( flags & MEM_Null ){ 166 pMem->type = SQLITE_NULL; 167 } 168 else if( flags & MEM_Int ){ 169 pMem->type = SQLITE_INTEGER; 170 } 171 else if( flags & MEM_Real ){ 172 pMem->type = SQLITE_FLOAT; 173 } 174 else if( flags & MEM_Str ){ 175 pMem->type = SQLITE_TEXT; 176 }else{ 177 pMem->type = SQLITE_BLOB; 178 } 179 } 180 181 /* 182 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 183 ** if we run out of memory. 184 */ 185 static VdbeCursor *allocateCursor( 186 Vdbe *p, /* The virtual machine */ 187 int iCur, /* Index of the new VdbeCursor */ 188 int nField, /* Number of fields in the table or index */ 189 int iDb, /* Database the cursor belongs to, or -1 */ 190 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 191 ){ 192 /* Find the memory cell that will be used to store the blob of memory 193 ** required for this VdbeCursor structure. It is convenient to use a 194 ** vdbe memory cell to manage the memory allocation required for a 195 ** VdbeCursor structure for the following reasons: 196 ** 197 ** * Sometimes cursor numbers are used for a couple of different 198 ** purposes in a vdbe program. The different uses might require 199 ** different sized allocations. Memory cells provide growable 200 ** allocations. 201 ** 202 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 203 ** be freed lazily via the sqlite3_release_memory() API. This 204 ** minimizes the number of malloc calls made by the system. 205 ** 206 ** Memory cells for cursors are allocated at the top of the address 207 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 208 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 209 */ 210 Mem *pMem = &p->aMem[p->nMem-iCur]; 211 212 int nByte; 213 VdbeCursor *pCx = 0; 214 nByte = 215 ROUND8(sizeof(VdbeCursor)) + 216 (isBtreeCursor?sqlite3BtreeCursorSize():0) + 217 2*nField*sizeof(u32); 218 219 assert( iCur<p->nCursor ); 220 if( p->apCsr[iCur] ){ 221 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 222 p->apCsr[iCur] = 0; 223 } 224 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 225 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 226 memset(pCx, 0, sizeof(VdbeCursor)); 227 pCx->iDb = iDb; 228 pCx->nField = nField; 229 if( nField ){ 230 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))]; 231 } 232 if( isBtreeCursor ){ 233 pCx->pCursor = (BtCursor*) 234 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)]; 235 sqlite3BtreeCursorZero(pCx->pCursor); 236 } 237 } 238 return pCx; 239 } 240 241 /* 242 ** Try to convert a value into a numeric representation if we can 243 ** do so without loss of information. In other words, if the string 244 ** looks like a number, convert it into a number. If it does not 245 ** look like a number, leave it alone. 246 */ 247 static void applyNumericAffinity(Mem *pRec){ 248 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ 249 double rValue; 250 i64 iValue; 251 u8 enc = pRec->enc; 252 if( (pRec->flags&MEM_Str)==0 ) return; 253 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 254 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 255 pRec->u.i = iValue; 256 pRec->flags |= MEM_Int; 257 }else{ 258 pRec->r = rValue; 259 pRec->flags |= MEM_Real; 260 } 261 } 262 } 263 264 /* 265 ** Processing is determine by the affinity parameter: 266 ** 267 ** SQLITE_AFF_INTEGER: 268 ** SQLITE_AFF_REAL: 269 ** SQLITE_AFF_NUMERIC: 270 ** Try to convert pRec to an integer representation or a 271 ** floating-point representation if an integer representation 272 ** is not possible. Note that the integer representation is 273 ** always preferred, even if the affinity is REAL, because 274 ** an integer representation is more space efficient on disk. 275 ** 276 ** SQLITE_AFF_TEXT: 277 ** Convert pRec to a text representation. 278 ** 279 ** SQLITE_AFF_NONE: 280 ** No-op. pRec is unchanged. 281 */ 282 static void applyAffinity( 283 Mem *pRec, /* The value to apply affinity to */ 284 char affinity, /* The affinity to be applied */ 285 u8 enc /* Use this text encoding */ 286 ){ 287 if( affinity==SQLITE_AFF_TEXT ){ 288 /* Only attempt the conversion to TEXT if there is an integer or real 289 ** representation (blob and NULL do not get converted) but no string 290 ** representation. 291 */ 292 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 293 sqlite3VdbeMemStringify(pRec, enc); 294 } 295 pRec->flags &= ~(MEM_Real|MEM_Int); 296 }else if( affinity!=SQLITE_AFF_NONE ){ 297 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 298 || affinity==SQLITE_AFF_NUMERIC ); 299 applyNumericAffinity(pRec); 300 if( pRec->flags & MEM_Real ){ 301 sqlite3VdbeIntegerAffinity(pRec); 302 } 303 } 304 } 305 306 /* 307 ** Try to convert the type of a function argument or a result column 308 ** into a numeric representation. Use either INTEGER or REAL whichever 309 ** is appropriate. But only do the conversion if it is possible without 310 ** loss of information and return the revised type of the argument. 311 */ 312 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 313 Mem *pMem = (Mem*)pVal; 314 if( pMem->type==SQLITE_TEXT ){ 315 applyNumericAffinity(pMem); 316 sqlite3VdbeMemStoreType(pMem); 317 } 318 return pMem->type; 319 } 320 321 /* 322 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 323 ** not the internal Mem* type. 324 */ 325 void sqlite3ValueApplyAffinity( 326 sqlite3_value *pVal, 327 u8 affinity, 328 u8 enc 329 ){ 330 applyAffinity((Mem *)pVal, affinity, enc); 331 } 332 333 #ifdef SQLITE_DEBUG 334 /* 335 ** Write a nice string representation of the contents of cell pMem 336 ** into buffer zBuf, length nBuf. 337 */ 338 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 339 char *zCsr = zBuf; 340 int f = pMem->flags; 341 342 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 343 344 if( f&MEM_Blob ){ 345 int i; 346 char c; 347 if( f & MEM_Dyn ){ 348 c = 'z'; 349 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 350 }else if( f & MEM_Static ){ 351 c = 't'; 352 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 353 }else if( f & MEM_Ephem ){ 354 c = 'e'; 355 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 356 }else{ 357 c = 's'; 358 } 359 360 sqlite3_snprintf(100, zCsr, "%c", c); 361 zCsr += sqlite3Strlen30(zCsr); 362 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 363 zCsr += sqlite3Strlen30(zCsr); 364 for(i=0; i<16 && i<pMem->n; i++){ 365 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 366 zCsr += sqlite3Strlen30(zCsr); 367 } 368 for(i=0; i<16 && i<pMem->n; i++){ 369 char z = pMem->z[i]; 370 if( z<32 || z>126 ) *zCsr++ = '.'; 371 else *zCsr++ = z; 372 } 373 374 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 375 zCsr += sqlite3Strlen30(zCsr); 376 if( f & MEM_Zero ){ 377 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 378 zCsr += sqlite3Strlen30(zCsr); 379 } 380 *zCsr = '\0'; 381 }else if( f & MEM_Str ){ 382 int j, k; 383 zBuf[0] = ' '; 384 if( f & MEM_Dyn ){ 385 zBuf[1] = 'z'; 386 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 387 }else if( f & MEM_Static ){ 388 zBuf[1] = 't'; 389 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 390 }else if( f & MEM_Ephem ){ 391 zBuf[1] = 'e'; 392 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 393 }else{ 394 zBuf[1] = 's'; 395 } 396 k = 2; 397 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 398 k += sqlite3Strlen30(&zBuf[k]); 399 zBuf[k++] = '['; 400 for(j=0; j<15 && j<pMem->n; j++){ 401 u8 c = pMem->z[j]; 402 if( c>=0x20 && c<0x7f ){ 403 zBuf[k++] = c; 404 }else{ 405 zBuf[k++] = '.'; 406 } 407 } 408 zBuf[k++] = ']'; 409 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 410 k += sqlite3Strlen30(&zBuf[k]); 411 zBuf[k++] = 0; 412 } 413 } 414 #endif 415 416 #ifdef SQLITE_DEBUG 417 /* 418 ** Print the value of a register for tracing purposes: 419 */ 420 static void memTracePrint(FILE *out, Mem *p){ 421 if( p->flags & MEM_Invalid ){ 422 fprintf(out, " undefined"); 423 }else if( p->flags & MEM_Null ){ 424 fprintf(out, " NULL"); 425 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 426 fprintf(out, " si:%lld", p->u.i); 427 }else if( p->flags & MEM_Int ){ 428 fprintf(out, " i:%lld", p->u.i); 429 #ifndef SQLITE_OMIT_FLOATING_POINT 430 }else if( p->flags & MEM_Real ){ 431 fprintf(out, " r:%g", p->r); 432 #endif 433 }else if( p->flags & MEM_RowSet ){ 434 fprintf(out, " (rowset)"); 435 }else{ 436 char zBuf[200]; 437 sqlite3VdbeMemPrettyPrint(p, zBuf); 438 fprintf(out, " "); 439 fprintf(out, "%s", zBuf); 440 } 441 } 442 static void registerTrace(FILE *out, int iReg, Mem *p){ 443 fprintf(out, "REG[%d] = ", iReg); 444 memTracePrint(out, p); 445 fprintf(out, "\n"); 446 } 447 #endif 448 449 #ifdef SQLITE_DEBUG 450 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M) 451 #else 452 # define REGISTER_TRACE(R,M) 453 #endif 454 455 456 #ifdef VDBE_PROFILE 457 458 /* 459 ** hwtime.h contains inline assembler code for implementing 460 ** high-performance timing routines. 461 */ 462 #include "hwtime.h" 463 464 #endif 465 466 /* 467 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the 468 ** sqlite3_interrupt() routine has been called. If it has been, then 469 ** processing of the VDBE program is interrupted. 470 ** 471 ** This macro added to every instruction that does a jump in order to 472 ** implement a loop. This test used to be on every single instruction, 473 ** but that meant we more testing than we needed. By only testing the 474 ** flag on jump instructions, we get a (small) speed improvement. 475 */ 476 #define CHECK_FOR_INTERRUPT \ 477 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 478 479 480 #ifndef NDEBUG 481 /* 482 ** This function is only called from within an assert() expression. It 483 ** checks that the sqlite3.nTransaction variable is correctly set to 484 ** the number of non-transaction savepoints currently in the 485 ** linked list starting at sqlite3.pSavepoint. 486 ** 487 ** Usage: 488 ** 489 ** assert( checkSavepointCount(db) ); 490 */ 491 static int checkSavepointCount(sqlite3 *db){ 492 int n = 0; 493 Savepoint *p; 494 for(p=db->pSavepoint; p; p=p->pNext) n++; 495 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 496 return 1; 497 } 498 #endif 499 500 /* 501 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 502 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 503 ** in memory obtained from sqlite3DbMalloc). 504 */ 505 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){ 506 sqlite3 *db = p->db; 507 sqlite3DbFree(db, p->zErrMsg); 508 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 509 sqlite3_free(pVtab->zErrMsg); 510 pVtab->zErrMsg = 0; 511 } 512 513 514 /* 515 ** Execute as much of a VDBE program as we can then return. 516 ** 517 ** sqlite3VdbeMakeReady() must be called before this routine in order to 518 ** close the program with a final OP_Halt and to set up the callbacks 519 ** and the error message pointer. 520 ** 521 ** Whenever a row or result data is available, this routine will either 522 ** invoke the result callback (if there is one) or return with 523 ** SQLITE_ROW. 524 ** 525 ** If an attempt is made to open a locked database, then this routine 526 ** will either invoke the busy callback (if there is one) or it will 527 ** return SQLITE_BUSY. 528 ** 529 ** If an error occurs, an error message is written to memory obtained 530 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. 531 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. 532 ** 533 ** If the callback ever returns non-zero, then the program exits 534 ** immediately. There will be no error message but the p->rc field is 535 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. 536 ** 537 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this 538 ** routine to return SQLITE_ERROR. 539 ** 540 ** Other fatal errors return SQLITE_ERROR. 541 ** 542 ** After this routine has finished, sqlite3VdbeFinalize() should be 543 ** used to clean up the mess that was left behind. 544 */ 545 int sqlite3VdbeExec( 546 Vdbe *p /* The VDBE */ 547 ){ 548 int pc=0; /* The program counter */ 549 Op *aOp = p->aOp; /* Copy of p->aOp */ 550 Op *pOp; /* Current operation */ 551 int rc = SQLITE_OK; /* Value to return */ 552 sqlite3 *db = p->db; /* The database */ 553 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 554 u8 encoding = ENC(db); /* The database encoding */ 555 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 556 int checkProgress; /* True if progress callbacks are enabled */ 557 int nProgressOps = 0; /* Opcodes executed since progress callback. */ 558 #endif 559 int iCompare = 0; /* Result of last OP_Compare operation */ 560 unsigned nVmStep = 0; /* Number of virtual machine steps */ 561 Mem *aMem = p->aMem; /* Copy of p->aMem */ 562 Mem *pIn1 = 0; /* 1st input operand */ 563 Mem *pIn2 = 0; /* 2nd input operand */ 564 Mem *pIn3 = 0; /* 3rd input operand */ 565 Mem *pOut = 0; /* Output operand */ 566 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 567 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 568 #ifdef VDBE_PROFILE 569 u64 start; /* CPU clock count at start of opcode */ 570 int origPc; /* Program counter at start of opcode */ 571 #endif 572 /*** INSERT STACK UNION HERE ***/ 573 574 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 575 sqlite3VdbeEnter(p); 576 if( p->rc==SQLITE_NOMEM ){ 577 /* This happens if a malloc() inside a call to sqlite3_column_text() or 578 ** sqlite3_column_text16() failed. */ 579 goto no_mem; 580 } 581 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 582 assert( p->bIsReader || p->readOnly!=0 ); 583 p->rc = SQLITE_OK; 584 assert( p->explain==0 ); 585 p->pResultSet = 0; 586 db->busyHandler.nBusy = 0; 587 CHECK_FOR_INTERRUPT; 588 sqlite3VdbeIOTraceSql(p); 589 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 590 checkProgress = db->xProgress!=0; 591 #endif 592 #ifdef SQLITE_DEBUG 593 sqlite3BeginBenignMalloc(); 594 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){ 595 int i; 596 printf("VDBE Program Listing:\n"); 597 sqlite3VdbePrintSql(p); 598 for(i=0; i<p->nOp; i++){ 599 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 600 } 601 } 602 sqlite3EndBenignMalloc(); 603 #endif 604 for(pc=p->pc; rc==SQLITE_OK; pc++){ 605 assert( pc>=0 && pc<p->nOp ); 606 if( db->mallocFailed ) goto no_mem; 607 #ifdef VDBE_PROFILE 608 origPc = pc; 609 start = sqlite3Hwtime(); 610 #endif 611 nVmStep++; 612 pOp = &aOp[pc]; 613 614 /* Only allow tracing if SQLITE_DEBUG is defined. 615 */ 616 #ifdef SQLITE_DEBUG 617 if( p->trace ){ 618 if( pc==0 ){ 619 printf("VDBE Execution Trace:\n"); 620 sqlite3VdbePrintSql(p); 621 } 622 sqlite3VdbePrintOp(p->trace, pc, pOp); 623 } 624 #endif 625 626 627 /* Check to see if we need to simulate an interrupt. This only happens 628 ** if we have a special test build. 629 */ 630 #ifdef SQLITE_TEST 631 if( sqlite3_interrupt_count>0 ){ 632 sqlite3_interrupt_count--; 633 if( sqlite3_interrupt_count==0 ){ 634 sqlite3_interrupt(db); 635 } 636 } 637 #endif 638 639 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 640 /* Call the progress callback if it is configured and the required number 641 ** of VDBE ops have been executed (either since this invocation of 642 ** sqlite3VdbeExec() or since last time the progress callback was called). 643 ** If the progress callback returns non-zero, exit the virtual machine with 644 ** a return code SQLITE_ABORT. 645 */ 646 if( checkProgress ){ 647 if( db->nProgressOps==nProgressOps ){ 648 int prc; 649 prc = db->xProgress(db->pProgressArg); 650 if( prc!=0 ){ 651 rc = SQLITE_INTERRUPT; 652 goto vdbe_error_halt; 653 } 654 nProgressOps = 0; 655 } 656 nProgressOps++; 657 } 658 #endif 659 660 /* On any opcode with the "out2-prerelease" tag, free any 661 ** external allocations out of mem[p2] and set mem[p2] to be 662 ** an undefined integer. Opcodes will either fill in the integer 663 ** value or convert mem[p2] to a different type. 664 */ 665 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 666 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ 667 assert( pOp->p2>0 ); 668 assert( pOp->p2<=p->nMem ); 669 pOut = &aMem[pOp->p2]; 670 memAboutToChange(p, pOut); 671 VdbeMemRelease(pOut); 672 pOut->flags = MEM_Int; 673 } 674 675 /* Sanity checking on other operands */ 676 #ifdef SQLITE_DEBUG 677 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 678 assert( pOp->p1>0 ); 679 assert( pOp->p1<=p->nMem ); 680 assert( memIsValid(&aMem[pOp->p1]) ); 681 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 682 } 683 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 684 assert( pOp->p2>0 ); 685 assert( pOp->p2<=p->nMem ); 686 assert( memIsValid(&aMem[pOp->p2]) ); 687 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 688 } 689 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 690 assert( pOp->p3>0 ); 691 assert( pOp->p3<=p->nMem ); 692 assert( memIsValid(&aMem[pOp->p3]) ); 693 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 694 } 695 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 696 assert( pOp->p2>0 ); 697 assert( pOp->p2<=p->nMem ); 698 memAboutToChange(p, &aMem[pOp->p2]); 699 } 700 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 701 assert( pOp->p3>0 ); 702 assert( pOp->p3<=p->nMem ); 703 memAboutToChange(p, &aMem[pOp->p3]); 704 } 705 #endif 706 707 switch( pOp->opcode ){ 708 709 /***************************************************************************** 710 ** What follows is a massive switch statement where each case implements a 711 ** separate instruction in the virtual machine. If we follow the usual 712 ** indentation conventions, each case should be indented by 6 spaces. But 713 ** that is a lot of wasted space on the left margin. So the code within 714 ** the switch statement will break with convention and be flush-left. Another 715 ** big comment (similar to this one) will mark the point in the code where 716 ** we transition back to normal indentation. 717 ** 718 ** The formatting of each case is important. The makefile for SQLite 719 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 720 ** file looking for lines that begin with "case OP_". The opcodes.h files 721 ** will be filled with #defines that give unique integer values to each 722 ** opcode and the opcodes.c file is filled with an array of strings where 723 ** each string is the symbolic name for the corresponding opcode. If the 724 ** case statement is followed by a comment of the form "/# same as ... #/" 725 ** that comment is used to determine the particular value of the opcode. 726 ** 727 ** Other keywords in the comment that follows each case are used to 728 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 729 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 730 ** the mkopcodeh.awk script for additional information. 731 ** 732 ** Documentation about VDBE opcodes is generated by scanning this file 733 ** for lines of that contain "Opcode:". That line and all subsequent 734 ** comment lines are used in the generation of the opcode.html documentation 735 ** file. 736 ** 737 ** SUMMARY: 738 ** 739 ** Formatting is important to scripts that scan this file. 740 ** Do not deviate from the formatting style currently in use. 741 ** 742 *****************************************************************************/ 743 744 /* Opcode: Goto * P2 * * * 745 ** 746 ** An unconditional jump to address P2. 747 ** The next instruction executed will be 748 ** the one at index P2 from the beginning of 749 ** the program. 750 */ 751 case OP_Goto: { /* jump */ 752 CHECK_FOR_INTERRUPT; 753 pc = pOp->p2 - 1; 754 break; 755 } 756 757 /* Opcode: Gosub P1 P2 * * * 758 ** 759 ** Write the current address onto register P1 760 ** and then jump to address P2. 761 */ 762 case OP_Gosub: { /* jump */ 763 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 764 pIn1 = &aMem[pOp->p1]; 765 assert( (pIn1->flags & MEM_Dyn)==0 ); 766 memAboutToChange(p, pIn1); 767 pIn1->flags = MEM_Int; 768 pIn1->u.i = pc; 769 REGISTER_TRACE(pOp->p1, pIn1); 770 pc = pOp->p2 - 1; 771 break; 772 } 773 774 /* Opcode: Return P1 * * * * 775 ** 776 ** Jump to the next instruction after the address in register P1. 777 */ 778 case OP_Return: { /* in1 */ 779 pIn1 = &aMem[pOp->p1]; 780 assert( pIn1->flags & MEM_Int ); 781 pc = (int)pIn1->u.i; 782 break; 783 } 784 785 /* Opcode: Yield P1 * * * * 786 ** 787 ** Swap the program counter with the value in register P1. 788 */ 789 case OP_Yield: { /* in1 */ 790 int pcDest; 791 pIn1 = &aMem[pOp->p1]; 792 assert( (pIn1->flags & MEM_Dyn)==0 ); 793 pIn1->flags = MEM_Int; 794 pcDest = (int)pIn1->u.i; 795 pIn1->u.i = pc; 796 REGISTER_TRACE(pOp->p1, pIn1); 797 pc = pcDest; 798 break; 799 } 800 801 /* Opcode: HaltIfNull P1 P2 P3 P4 * 802 ** 803 ** Check the value in register P3. If it is NULL then Halt using 804 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 805 ** value in register P3 is not NULL, then this routine is a no-op. 806 */ 807 case OP_HaltIfNull: { /* in3 */ 808 pIn3 = &aMem[pOp->p3]; 809 if( (pIn3->flags & MEM_Null)==0 ) break; 810 /* Fall through into OP_Halt */ 811 } 812 813 /* Opcode: Halt P1 P2 * P4 * 814 ** 815 ** Exit immediately. All open cursors, etc are closed 816 ** automatically. 817 ** 818 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 819 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 820 ** For errors, it can be some other value. If P1!=0 then P2 will determine 821 ** whether or not to rollback the current transaction. Do not rollback 822 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 823 ** then back out all changes that have occurred during this execution of the 824 ** VDBE, but do not rollback the transaction. 825 ** 826 ** If P4 is not null then it is an error message string. 827 ** 828 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 829 ** every program. So a jump past the last instruction of the program 830 ** is the same as executing Halt. 831 */ 832 case OP_Halt: { 833 if( pOp->p1==SQLITE_OK && p->pFrame ){ 834 /* Halt the sub-program. Return control to the parent frame. */ 835 VdbeFrame *pFrame = p->pFrame; 836 p->pFrame = pFrame->pParent; 837 p->nFrame--; 838 sqlite3VdbeSetChanges(db, p->nChange); 839 pc = sqlite3VdbeFrameRestore(pFrame); 840 lastRowid = db->lastRowid; 841 if( pOp->p2==OE_Ignore ){ 842 /* Instruction pc is the OP_Program that invoked the sub-program 843 ** currently being halted. If the p2 instruction of this OP_Halt 844 ** instruction is set to OE_Ignore, then the sub-program is throwing 845 ** an IGNORE exception. In this case jump to the address specified 846 ** as the p2 of the calling OP_Program. */ 847 pc = p->aOp[pc].p2-1; 848 } 849 aOp = p->aOp; 850 aMem = p->aMem; 851 break; 852 } 853 854 p->rc = pOp->p1; 855 p->errorAction = (u8)pOp->p2; 856 p->pc = pc; 857 if( pOp->p4.z ){ 858 assert( p->rc!=SQLITE_OK ); 859 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 860 testcase( sqlite3GlobalConfig.xLog!=0 ); 861 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z); 862 }else if( p->rc ){ 863 testcase( sqlite3GlobalConfig.xLog!=0 ); 864 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql); 865 } 866 rc = sqlite3VdbeHalt(p); 867 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 868 if( rc==SQLITE_BUSY ){ 869 p->rc = rc = SQLITE_BUSY; 870 }else{ 871 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 872 assert( rc==SQLITE_OK || db->nDeferredCons>0 ); 873 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 874 } 875 goto vdbe_return; 876 } 877 878 /* Opcode: Integer P1 P2 * * * 879 ** 880 ** The 32-bit integer value P1 is written into register P2. 881 */ 882 case OP_Integer: { /* out2-prerelease */ 883 pOut->u.i = pOp->p1; 884 break; 885 } 886 887 /* Opcode: Int64 * P2 * P4 * 888 ** 889 ** P4 is a pointer to a 64-bit integer value. 890 ** Write that value into register P2. 891 */ 892 case OP_Int64: { /* out2-prerelease */ 893 assert( pOp->p4.pI64!=0 ); 894 pOut->u.i = *pOp->p4.pI64; 895 break; 896 } 897 898 #ifndef SQLITE_OMIT_FLOATING_POINT 899 /* Opcode: Real * P2 * P4 * 900 ** 901 ** P4 is a pointer to a 64-bit floating point value. 902 ** Write that value into register P2. 903 */ 904 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 905 pOut->flags = MEM_Real; 906 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 907 pOut->r = *pOp->p4.pReal; 908 break; 909 } 910 #endif 911 912 /* Opcode: String8 * P2 * P4 * 913 ** 914 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 915 ** into an OP_String before it is executed for the first time. 916 */ 917 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 918 assert( pOp->p4.z!=0 ); 919 pOp->opcode = OP_String; 920 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 921 922 #ifndef SQLITE_OMIT_UTF16 923 if( encoding!=SQLITE_UTF8 ){ 924 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 925 if( rc==SQLITE_TOOBIG ) goto too_big; 926 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 927 assert( pOut->zMalloc==pOut->z ); 928 assert( pOut->flags & MEM_Dyn ); 929 pOut->zMalloc = 0; 930 pOut->flags |= MEM_Static; 931 pOut->flags &= ~MEM_Dyn; 932 if( pOp->p4type==P4_DYNAMIC ){ 933 sqlite3DbFree(db, pOp->p4.z); 934 } 935 pOp->p4type = P4_DYNAMIC; 936 pOp->p4.z = pOut->z; 937 pOp->p1 = pOut->n; 938 } 939 #endif 940 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 941 goto too_big; 942 } 943 /* Fall through to the next case, OP_String */ 944 } 945 946 /* Opcode: String P1 P2 * P4 * 947 ** 948 ** The string value P4 of length P1 (bytes) is stored in register P2. 949 */ 950 case OP_String: { /* out2-prerelease */ 951 assert( pOp->p4.z!=0 ); 952 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 953 pOut->z = pOp->p4.z; 954 pOut->n = pOp->p1; 955 pOut->enc = encoding; 956 UPDATE_MAX_BLOBSIZE(pOut); 957 break; 958 } 959 960 /* Opcode: Null P1 P2 P3 * * 961 ** 962 ** Write a NULL into registers P2. If P3 greater than P2, then also write 963 ** NULL into register P3 and every register in between P2 and P3. If P3 964 ** is less than P2 (typically P3 is zero) then only register P2 is 965 ** set to NULL. 966 ** 967 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 968 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 969 ** OP_Ne or OP_Eq. 970 */ 971 case OP_Null: { /* out2-prerelease */ 972 int cnt; 973 u16 nullFlag; 974 cnt = pOp->p3-pOp->p2; 975 assert( pOp->p3<=p->nMem ); 976 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 977 while( cnt>0 ){ 978 pOut++; 979 memAboutToChange(p, pOut); 980 VdbeMemRelease(pOut); 981 pOut->flags = nullFlag; 982 cnt--; 983 } 984 break; 985 } 986 987 988 /* Opcode: Blob P1 P2 * P4 989 ** 990 ** P4 points to a blob of data P1 bytes long. Store this 991 ** blob in register P2. 992 */ 993 case OP_Blob: { /* out2-prerelease */ 994 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 995 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 996 pOut->enc = encoding; 997 UPDATE_MAX_BLOBSIZE(pOut); 998 break; 999 } 1000 1001 /* Opcode: Variable P1 P2 * P4 * 1002 ** 1003 ** Transfer the values of bound parameter P1 into register P2 1004 ** 1005 ** If the parameter is named, then its name appears in P4 and P3==1. 1006 ** The P4 value is used by sqlite3_bind_parameter_name(). 1007 */ 1008 case OP_Variable: { /* out2-prerelease */ 1009 Mem *pVar; /* Value being transferred */ 1010 1011 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1012 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1013 pVar = &p->aVar[pOp->p1 - 1]; 1014 if( sqlite3VdbeMemTooBig(pVar) ){ 1015 goto too_big; 1016 } 1017 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1018 UPDATE_MAX_BLOBSIZE(pOut); 1019 break; 1020 } 1021 1022 /* Opcode: Move P1 P2 P3 * * 1023 ** 1024 ** Move the values in register P1..P1+P3 over into 1025 ** registers P2..P2+P3. Registers P1..P1+P3 are 1026 ** left holding a NULL. It is an error for register ranges 1027 ** P1..P1+P3 and P2..P2+P3 to overlap. 1028 */ 1029 case OP_Move: { 1030 char *zMalloc; /* Holding variable for allocated memory */ 1031 int n; /* Number of registers left to copy */ 1032 int p1; /* Register to copy from */ 1033 int p2; /* Register to copy to */ 1034 1035 n = pOp->p3 + 1; 1036 p1 = pOp->p1; 1037 p2 = pOp->p2; 1038 assert( n>0 && p1>0 && p2>0 ); 1039 assert( p1+n<=p2 || p2+n<=p1 ); 1040 1041 pIn1 = &aMem[p1]; 1042 pOut = &aMem[p2]; 1043 while( n-- ){ 1044 assert( pOut<=&aMem[p->nMem] ); 1045 assert( pIn1<=&aMem[p->nMem] ); 1046 assert( memIsValid(pIn1) ); 1047 memAboutToChange(p, pOut); 1048 zMalloc = pOut->zMalloc; 1049 pOut->zMalloc = 0; 1050 sqlite3VdbeMemMove(pOut, pIn1); 1051 #ifdef SQLITE_DEBUG 1052 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ 1053 pOut->pScopyFrom += p1 - pOp->p2; 1054 } 1055 #endif 1056 pIn1->zMalloc = zMalloc; 1057 REGISTER_TRACE(p2++, pOut); 1058 pIn1++; 1059 pOut++; 1060 } 1061 break; 1062 } 1063 1064 /* Opcode: Copy P1 P2 P3 * * 1065 ** 1066 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1067 ** 1068 ** This instruction makes a deep copy of the value. A duplicate 1069 ** is made of any string or blob constant. See also OP_SCopy. 1070 */ 1071 case OP_Copy: { 1072 int n; 1073 1074 n = pOp->p3; 1075 pIn1 = &aMem[pOp->p1]; 1076 pOut = &aMem[pOp->p2]; 1077 assert( pOut!=pIn1 ); 1078 while( 1 ){ 1079 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1080 Deephemeralize(pOut); 1081 #ifdef SQLITE_DEBUG 1082 pOut->pScopyFrom = 0; 1083 #endif 1084 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1085 if( (n--)==0 ) break; 1086 pOut++; 1087 pIn1++; 1088 } 1089 break; 1090 } 1091 1092 /* Opcode: SCopy P1 P2 * * * 1093 ** 1094 ** Make a shallow copy of register P1 into register P2. 1095 ** 1096 ** This instruction makes a shallow copy of the value. If the value 1097 ** is a string or blob, then the copy is only a pointer to the 1098 ** original and hence if the original changes so will the copy. 1099 ** Worse, if the original is deallocated, the copy becomes invalid. 1100 ** Thus the program must guarantee that the original will not change 1101 ** during the lifetime of the copy. Use OP_Copy to make a complete 1102 ** copy. 1103 */ 1104 case OP_SCopy: { /* in1, out2 */ 1105 pIn1 = &aMem[pOp->p1]; 1106 pOut = &aMem[pOp->p2]; 1107 assert( pOut!=pIn1 ); 1108 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1109 #ifdef SQLITE_DEBUG 1110 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1111 #endif 1112 REGISTER_TRACE(pOp->p2, pOut); 1113 break; 1114 } 1115 1116 /* Opcode: ResultRow P1 P2 * * * 1117 ** 1118 ** The registers P1 through P1+P2-1 contain a single row of 1119 ** results. This opcode causes the sqlite3_step() call to terminate 1120 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1121 ** structure to provide access to the top P1 values as the result 1122 ** row. 1123 */ 1124 case OP_ResultRow: { 1125 Mem *pMem; 1126 int i; 1127 assert( p->nResColumn==pOp->p2 ); 1128 assert( pOp->p1>0 ); 1129 assert( pOp->p1+pOp->p2<=p->nMem+1 ); 1130 1131 /* If this statement has violated immediate foreign key constraints, do 1132 ** not return the number of rows modified. And do not RELEASE the statement 1133 ** transaction. It needs to be rolled back. */ 1134 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1135 assert( db->flags&SQLITE_CountRows ); 1136 assert( p->usesStmtJournal ); 1137 break; 1138 } 1139 1140 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1141 ** DML statements invoke this opcode to return the number of rows 1142 ** modified to the user. This is the only way that a VM that 1143 ** opens a statement transaction may invoke this opcode. 1144 ** 1145 ** In case this is such a statement, close any statement transaction 1146 ** opened by this VM before returning control to the user. This is to 1147 ** ensure that statement-transactions are always nested, not overlapping. 1148 ** If the open statement-transaction is not closed here, then the user 1149 ** may step another VM that opens its own statement transaction. This 1150 ** may lead to overlapping statement transactions. 1151 ** 1152 ** The statement transaction is never a top-level transaction. Hence 1153 ** the RELEASE call below can never fail. 1154 */ 1155 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1156 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1157 if( NEVER(rc!=SQLITE_OK) ){ 1158 break; 1159 } 1160 1161 /* Invalidate all ephemeral cursor row caches */ 1162 p->cacheCtr = (p->cacheCtr + 2)|1; 1163 1164 /* Make sure the results of the current row are \000 terminated 1165 ** and have an assigned type. The results are de-ephemeralized as 1166 ** a side effect. 1167 */ 1168 pMem = p->pResultSet = &aMem[pOp->p1]; 1169 for(i=0; i<pOp->p2; i++){ 1170 assert( memIsValid(&pMem[i]) ); 1171 Deephemeralize(&pMem[i]); 1172 assert( (pMem[i].flags & MEM_Ephem)==0 1173 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1174 sqlite3VdbeMemNulTerminate(&pMem[i]); 1175 sqlite3VdbeMemStoreType(&pMem[i]); 1176 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1177 } 1178 if( db->mallocFailed ) goto no_mem; 1179 1180 /* Return SQLITE_ROW 1181 */ 1182 p->pc = pc + 1; 1183 rc = SQLITE_ROW; 1184 goto vdbe_return; 1185 } 1186 1187 /* Opcode: Concat P1 P2 P3 * * 1188 ** 1189 ** Add the text in register P1 onto the end of the text in 1190 ** register P2 and store the result in register P3. 1191 ** If either the P1 or P2 text are NULL then store NULL in P3. 1192 ** 1193 ** P3 = P2 || P1 1194 ** 1195 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1196 ** if P3 is the same register as P2, the implementation is able 1197 ** to avoid a memcpy(). 1198 */ 1199 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1200 i64 nByte; 1201 1202 pIn1 = &aMem[pOp->p1]; 1203 pIn2 = &aMem[pOp->p2]; 1204 pOut = &aMem[pOp->p3]; 1205 assert( pIn1!=pOut ); 1206 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1207 sqlite3VdbeMemSetNull(pOut); 1208 break; 1209 } 1210 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1211 Stringify(pIn1, encoding); 1212 Stringify(pIn2, encoding); 1213 nByte = pIn1->n + pIn2->n; 1214 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1215 goto too_big; 1216 } 1217 MemSetTypeFlag(pOut, MEM_Str); 1218 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1219 goto no_mem; 1220 } 1221 if( pOut!=pIn2 ){ 1222 memcpy(pOut->z, pIn2->z, pIn2->n); 1223 } 1224 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1225 pOut->z[nByte] = 0; 1226 pOut->z[nByte+1] = 0; 1227 pOut->flags |= MEM_Term; 1228 pOut->n = (int)nByte; 1229 pOut->enc = encoding; 1230 UPDATE_MAX_BLOBSIZE(pOut); 1231 break; 1232 } 1233 1234 /* Opcode: Add P1 P2 P3 * * 1235 ** 1236 ** Add the value in register P1 to the value in register P2 1237 ** and store the result in register P3. 1238 ** If either input is NULL, the result is NULL. 1239 */ 1240 /* Opcode: Multiply P1 P2 P3 * * 1241 ** 1242 ** 1243 ** Multiply the value in register P1 by the value in register P2 1244 ** and store the result in register P3. 1245 ** If either input is NULL, the result is NULL. 1246 */ 1247 /* Opcode: Subtract P1 P2 P3 * * 1248 ** 1249 ** Subtract the value in register P1 from the value in register P2 1250 ** and store the result in register P3. 1251 ** If either input is NULL, the result is NULL. 1252 */ 1253 /* Opcode: Divide P1 P2 P3 * * 1254 ** 1255 ** Divide the value in register P1 by the value in register P2 1256 ** and store the result in register P3 (P3=P2/P1). If the value in 1257 ** register P1 is zero, then the result is NULL. If either input is 1258 ** NULL, the result is NULL. 1259 */ 1260 /* Opcode: Remainder P1 P2 P3 * * 1261 ** 1262 ** Compute the remainder after integer division of the value in 1263 ** register P1 by the value in register P2 and store the result in P3. 1264 ** If the value in register P2 is zero the result is NULL. 1265 ** If either operand is NULL, the result is NULL. 1266 */ 1267 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1268 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1269 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1270 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1271 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1272 char bIntint; /* Started out as two integer operands */ 1273 int flags; /* Combined MEM_* flags from both inputs */ 1274 i64 iA; /* Integer value of left operand */ 1275 i64 iB; /* Integer value of right operand */ 1276 double rA; /* Real value of left operand */ 1277 double rB; /* Real value of right operand */ 1278 1279 pIn1 = &aMem[pOp->p1]; 1280 applyNumericAffinity(pIn1); 1281 pIn2 = &aMem[pOp->p2]; 1282 applyNumericAffinity(pIn2); 1283 pOut = &aMem[pOp->p3]; 1284 flags = pIn1->flags | pIn2->flags; 1285 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1286 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ 1287 iA = pIn1->u.i; 1288 iB = pIn2->u.i; 1289 bIntint = 1; 1290 switch( pOp->opcode ){ 1291 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1292 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1293 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1294 case OP_Divide: { 1295 if( iA==0 ) goto arithmetic_result_is_null; 1296 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1297 iB /= iA; 1298 break; 1299 } 1300 default: { 1301 if( iA==0 ) goto arithmetic_result_is_null; 1302 if( iA==-1 ) iA = 1; 1303 iB %= iA; 1304 break; 1305 } 1306 } 1307 pOut->u.i = iB; 1308 MemSetTypeFlag(pOut, MEM_Int); 1309 }else{ 1310 bIntint = 0; 1311 fp_math: 1312 rA = sqlite3VdbeRealValue(pIn1); 1313 rB = sqlite3VdbeRealValue(pIn2); 1314 switch( pOp->opcode ){ 1315 case OP_Add: rB += rA; break; 1316 case OP_Subtract: rB -= rA; break; 1317 case OP_Multiply: rB *= rA; break; 1318 case OP_Divide: { 1319 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1320 if( rA==(double)0 ) goto arithmetic_result_is_null; 1321 rB /= rA; 1322 break; 1323 } 1324 default: { 1325 iA = (i64)rA; 1326 iB = (i64)rB; 1327 if( iA==0 ) goto arithmetic_result_is_null; 1328 if( iA==-1 ) iA = 1; 1329 rB = (double)(iB % iA); 1330 break; 1331 } 1332 } 1333 #ifdef SQLITE_OMIT_FLOATING_POINT 1334 pOut->u.i = rB; 1335 MemSetTypeFlag(pOut, MEM_Int); 1336 #else 1337 if( sqlite3IsNaN(rB) ){ 1338 goto arithmetic_result_is_null; 1339 } 1340 pOut->r = rB; 1341 MemSetTypeFlag(pOut, MEM_Real); 1342 if( (flags & MEM_Real)==0 && !bIntint ){ 1343 sqlite3VdbeIntegerAffinity(pOut); 1344 } 1345 #endif 1346 } 1347 break; 1348 1349 arithmetic_result_is_null: 1350 sqlite3VdbeMemSetNull(pOut); 1351 break; 1352 } 1353 1354 /* Opcode: CollSeq P1 * * P4 1355 ** 1356 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1357 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1358 ** be returned. This is used by the built-in min(), max() and nullif() 1359 ** functions. 1360 ** 1361 ** If P1 is not zero, then it is a register that a subsequent min() or 1362 ** max() aggregate will set to 1 if the current row is not the minimum or 1363 ** maximum. The P1 register is initialized to 0 by this instruction. 1364 ** 1365 ** The interface used by the implementation of the aforementioned functions 1366 ** to retrieve the collation sequence set by this opcode is not available 1367 ** publicly, only to user functions defined in func.c. 1368 */ 1369 case OP_CollSeq: { 1370 assert( pOp->p4type==P4_COLLSEQ ); 1371 if( pOp->p1 ){ 1372 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1373 } 1374 break; 1375 } 1376 1377 /* Opcode: Function P1 P2 P3 P4 P5 1378 ** 1379 ** Invoke a user function (P4 is a pointer to a Function structure that 1380 ** defines the function) with P5 arguments taken from register P2 and 1381 ** successors. The result of the function is stored in register P3. 1382 ** Register P3 must not be one of the function inputs. 1383 ** 1384 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1385 ** function was determined to be constant at compile time. If the first 1386 ** argument was constant then bit 0 of P1 is set. This is used to determine 1387 ** whether meta data associated with a user function argument using the 1388 ** sqlite3_set_auxdata() API may be safely retained until the next 1389 ** invocation of this opcode. 1390 ** 1391 ** See also: AggStep and AggFinal 1392 */ 1393 case OP_Function: { 1394 int i; 1395 Mem *pArg; 1396 sqlite3_context ctx; 1397 sqlite3_value **apVal; 1398 int n; 1399 1400 n = pOp->p5; 1401 apVal = p->apArg; 1402 assert( apVal || n==0 ); 1403 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 1404 pOut = &aMem[pOp->p3]; 1405 memAboutToChange(p, pOut); 1406 1407 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); 1408 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1409 pArg = &aMem[pOp->p2]; 1410 for(i=0; i<n; i++, pArg++){ 1411 assert( memIsValid(pArg) ); 1412 apVal[i] = pArg; 1413 Deephemeralize(pArg); 1414 sqlite3VdbeMemStoreType(pArg); 1415 REGISTER_TRACE(pOp->p2+i, pArg); 1416 } 1417 1418 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); 1419 if( pOp->p4type==P4_FUNCDEF ){ 1420 ctx.pFunc = pOp->p4.pFunc; 1421 ctx.pVdbeFunc = 0; 1422 }else{ 1423 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; 1424 ctx.pFunc = ctx.pVdbeFunc->pFunc; 1425 } 1426 1427 ctx.s.flags = MEM_Null; 1428 ctx.s.db = db; 1429 ctx.s.xDel = 0; 1430 ctx.s.zMalloc = 0; 1431 1432 /* The output cell may already have a buffer allocated. Move 1433 ** the pointer to ctx.s so in case the user-function can use 1434 ** the already allocated buffer instead of allocating a new one. 1435 */ 1436 sqlite3VdbeMemMove(&ctx.s, pOut); 1437 MemSetTypeFlag(&ctx.s, MEM_Null); 1438 1439 ctx.isError = 0; 1440 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 1441 assert( pOp>aOp ); 1442 assert( pOp[-1].p4type==P4_COLLSEQ ); 1443 assert( pOp[-1].opcode==OP_CollSeq ); 1444 ctx.pColl = pOp[-1].p4.pColl; 1445 } 1446 db->lastRowid = lastRowid; 1447 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1448 lastRowid = db->lastRowid; 1449 1450 /* If any auxiliary data functions have been called by this user function, 1451 ** immediately call the destructor for any non-static values. 1452 */ 1453 if( ctx.pVdbeFunc ){ 1454 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); 1455 pOp->p4.pVdbeFunc = ctx.pVdbeFunc; 1456 pOp->p4type = P4_VDBEFUNC; 1457 } 1458 1459 if( db->mallocFailed ){ 1460 /* Even though a malloc() has failed, the implementation of the 1461 ** user function may have called an sqlite3_result_XXX() function 1462 ** to return a value. The following call releases any resources 1463 ** associated with such a value. 1464 */ 1465 sqlite3VdbeMemRelease(&ctx.s); 1466 goto no_mem; 1467 } 1468 1469 /* If the function returned an error, throw an exception */ 1470 if( ctx.isError ){ 1471 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 1472 rc = ctx.isError; 1473 } 1474 1475 /* Copy the result of the function into register P3 */ 1476 sqlite3VdbeChangeEncoding(&ctx.s, encoding); 1477 sqlite3VdbeMemMove(pOut, &ctx.s); 1478 if( sqlite3VdbeMemTooBig(pOut) ){ 1479 goto too_big; 1480 } 1481 1482 #if 0 1483 /* The app-defined function has done something that as caused this 1484 ** statement to expire. (Perhaps the function called sqlite3_exec() 1485 ** with a CREATE TABLE statement.) 1486 */ 1487 if( p->expired ) rc = SQLITE_ABORT; 1488 #endif 1489 1490 REGISTER_TRACE(pOp->p3, pOut); 1491 UPDATE_MAX_BLOBSIZE(pOut); 1492 break; 1493 } 1494 1495 /* Opcode: BitAnd P1 P2 P3 * * 1496 ** 1497 ** Take the bit-wise AND of the values in register P1 and P2 and 1498 ** store the result in register P3. 1499 ** If either input is NULL, the result is NULL. 1500 */ 1501 /* Opcode: BitOr P1 P2 P3 * * 1502 ** 1503 ** Take the bit-wise OR of the values in register P1 and P2 and 1504 ** store the result in register P3. 1505 ** If either input is NULL, the result is NULL. 1506 */ 1507 /* Opcode: ShiftLeft P1 P2 P3 * * 1508 ** 1509 ** Shift the integer value in register P2 to the left by the 1510 ** number of bits specified by the integer in register P1. 1511 ** Store the result in register P3. 1512 ** If either input is NULL, the result is NULL. 1513 */ 1514 /* Opcode: ShiftRight P1 P2 P3 * * 1515 ** 1516 ** Shift the integer value in register P2 to the right by the 1517 ** number of bits specified by the integer in register P1. 1518 ** Store the result in register P3. 1519 ** If either input is NULL, the result is NULL. 1520 */ 1521 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1522 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1523 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1524 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1525 i64 iA; 1526 u64 uA; 1527 i64 iB; 1528 u8 op; 1529 1530 pIn1 = &aMem[pOp->p1]; 1531 pIn2 = &aMem[pOp->p2]; 1532 pOut = &aMem[pOp->p3]; 1533 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1534 sqlite3VdbeMemSetNull(pOut); 1535 break; 1536 } 1537 iA = sqlite3VdbeIntValue(pIn2); 1538 iB = sqlite3VdbeIntValue(pIn1); 1539 op = pOp->opcode; 1540 if( op==OP_BitAnd ){ 1541 iA &= iB; 1542 }else if( op==OP_BitOr ){ 1543 iA |= iB; 1544 }else if( iB!=0 ){ 1545 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1546 1547 /* If shifting by a negative amount, shift in the other direction */ 1548 if( iB<0 ){ 1549 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1550 op = 2*OP_ShiftLeft + 1 - op; 1551 iB = iB>(-64) ? -iB : 64; 1552 } 1553 1554 if( iB>=64 ){ 1555 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1556 }else{ 1557 memcpy(&uA, &iA, sizeof(uA)); 1558 if( op==OP_ShiftLeft ){ 1559 uA <<= iB; 1560 }else{ 1561 uA >>= iB; 1562 /* Sign-extend on a right shift of a negative number */ 1563 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1564 } 1565 memcpy(&iA, &uA, sizeof(iA)); 1566 } 1567 } 1568 pOut->u.i = iA; 1569 MemSetTypeFlag(pOut, MEM_Int); 1570 break; 1571 } 1572 1573 /* Opcode: AddImm P1 P2 * * * 1574 ** 1575 ** Add the constant P2 to the value in register P1. 1576 ** The result is always an integer. 1577 ** 1578 ** To force any register to be an integer, just add 0. 1579 */ 1580 case OP_AddImm: { /* in1 */ 1581 pIn1 = &aMem[pOp->p1]; 1582 memAboutToChange(p, pIn1); 1583 sqlite3VdbeMemIntegerify(pIn1); 1584 pIn1->u.i += pOp->p2; 1585 break; 1586 } 1587 1588 /* Opcode: MustBeInt P1 P2 * * * 1589 ** 1590 ** Force the value in register P1 to be an integer. If the value 1591 ** in P1 is not an integer and cannot be converted into an integer 1592 ** without data loss, then jump immediately to P2, or if P2==0 1593 ** raise an SQLITE_MISMATCH exception. 1594 */ 1595 case OP_MustBeInt: { /* jump, in1 */ 1596 pIn1 = &aMem[pOp->p1]; 1597 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1598 if( (pIn1->flags & MEM_Int)==0 ){ 1599 if( pOp->p2==0 ){ 1600 rc = SQLITE_MISMATCH; 1601 goto abort_due_to_error; 1602 }else{ 1603 pc = pOp->p2 - 1; 1604 } 1605 }else{ 1606 MemSetTypeFlag(pIn1, MEM_Int); 1607 } 1608 break; 1609 } 1610 1611 #ifndef SQLITE_OMIT_FLOATING_POINT 1612 /* Opcode: RealAffinity P1 * * * * 1613 ** 1614 ** If register P1 holds an integer convert it to a real value. 1615 ** 1616 ** This opcode is used when extracting information from a column that 1617 ** has REAL affinity. Such column values may still be stored as 1618 ** integers, for space efficiency, but after extraction we want them 1619 ** to have only a real value. 1620 */ 1621 case OP_RealAffinity: { /* in1 */ 1622 pIn1 = &aMem[pOp->p1]; 1623 if( pIn1->flags & MEM_Int ){ 1624 sqlite3VdbeMemRealify(pIn1); 1625 } 1626 break; 1627 } 1628 #endif 1629 1630 #ifndef SQLITE_OMIT_CAST 1631 /* Opcode: ToText P1 * * * * 1632 ** 1633 ** Force the value in register P1 to be text. 1634 ** If the value is numeric, convert it to a string using the 1635 ** equivalent of printf(). Blob values are unchanged and 1636 ** are afterwards simply interpreted as text. 1637 ** 1638 ** A NULL value is not changed by this routine. It remains NULL. 1639 */ 1640 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ 1641 pIn1 = &aMem[pOp->p1]; 1642 memAboutToChange(p, pIn1); 1643 if( pIn1->flags & MEM_Null ) break; 1644 assert( MEM_Str==(MEM_Blob>>3) ); 1645 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; 1646 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1647 rc = ExpandBlob(pIn1); 1648 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1649 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 1650 UPDATE_MAX_BLOBSIZE(pIn1); 1651 break; 1652 } 1653 1654 /* Opcode: ToBlob P1 * * * * 1655 ** 1656 ** Force the value in register P1 to be a BLOB. 1657 ** If the value is numeric, convert it to a string first. 1658 ** Strings are simply reinterpreted as blobs with no change 1659 ** to the underlying data. 1660 ** 1661 ** A NULL value is not changed by this routine. It remains NULL. 1662 */ 1663 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ 1664 pIn1 = &aMem[pOp->p1]; 1665 if( pIn1->flags & MEM_Null ) break; 1666 if( (pIn1->flags & MEM_Blob)==0 ){ 1667 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1668 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1669 MemSetTypeFlag(pIn1, MEM_Blob); 1670 }else{ 1671 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); 1672 } 1673 UPDATE_MAX_BLOBSIZE(pIn1); 1674 break; 1675 } 1676 1677 /* Opcode: ToNumeric P1 * * * * 1678 ** 1679 ** Force the value in register P1 to be numeric (either an 1680 ** integer or a floating-point number.) 1681 ** If the value is text or blob, try to convert it to an using the 1682 ** equivalent of atoi() or atof() and store 0 if no such conversion 1683 ** is possible. 1684 ** 1685 ** A NULL value is not changed by this routine. It remains NULL. 1686 */ 1687 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ 1688 pIn1 = &aMem[pOp->p1]; 1689 sqlite3VdbeMemNumerify(pIn1); 1690 break; 1691 } 1692 #endif /* SQLITE_OMIT_CAST */ 1693 1694 /* Opcode: ToInt P1 * * * * 1695 ** 1696 ** Force the value in register P1 to be an integer. If 1697 ** The value is currently a real number, drop its fractional part. 1698 ** If the value is text or blob, try to convert it to an integer using the 1699 ** equivalent of atoi() and store 0 if no such conversion is possible. 1700 ** 1701 ** A NULL value is not changed by this routine. It remains NULL. 1702 */ 1703 case OP_ToInt: { /* same as TK_TO_INT, in1 */ 1704 pIn1 = &aMem[pOp->p1]; 1705 if( (pIn1->flags & MEM_Null)==0 ){ 1706 sqlite3VdbeMemIntegerify(pIn1); 1707 } 1708 break; 1709 } 1710 1711 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) 1712 /* Opcode: ToReal P1 * * * * 1713 ** 1714 ** Force the value in register P1 to be a floating point number. 1715 ** If The value is currently an integer, convert it. 1716 ** If the value is text or blob, try to convert it to an integer using the 1717 ** equivalent of atoi() and store 0.0 if no such conversion is possible. 1718 ** 1719 ** A NULL value is not changed by this routine. It remains NULL. 1720 */ 1721 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ 1722 pIn1 = &aMem[pOp->p1]; 1723 memAboutToChange(p, pIn1); 1724 if( (pIn1->flags & MEM_Null)==0 ){ 1725 sqlite3VdbeMemRealify(pIn1); 1726 } 1727 break; 1728 } 1729 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ 1730 1731 /* Opcode: Lt P1 P2 P3 P4 P5 1732 ** 1733 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1734 ** jump to address P2. 1735 ** 1736 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1737 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1738 ** bit is clear then fall through if either operand is NULL. 1739 ** 1740 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1741 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1742 ** to coerce both inputs according to this affinity before the 1743 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1744 ** affinity is used. Note that the affinity conversions are stored 1745 ** back into the input registers P1 and P3. So this opcode can cause 1746 ** persistent changes to registers P1 and P3. 1747 ** 1748 ** Once any conversions have taken place, and neither value is NULL, 1749 ** the values are compared. If both values are blobs then memcmp() is 1750 ** used to determine the results of the comparison. If both values 1751 ** are text, then the appropriate collating function specified in 1752 ** P4 is used to do the comparison. If P4 is not specified then 1753 ** memcmp() is used to compare text string. If both values are 1754 ** numeric, then a numeric comparison is used. If the two values 1755 ** are of different types, then numbers are considered less than 1756 ** strings and strings are considered less than blobs. 1757 ** 1758 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1759 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1760 ** 1761 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered 1762 ** equal to one another, provided that they do not have their MEM_Cleared 1763 ** bit set. 1764 */ 1765 /* Opcode: Ne P1 P2 P3 P4 P5 1766 ** 1767 ** This works just like the Lt opcode except that the jump is taken if 1768 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1769 ** additional information. 1770 ** 1771 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1772 ** true or false and is never NULL. If both operands are NULL then the result 1773 ** of comparison is false. If either operand is NULL then the result is true. 1774 ** If neither operand is NULL the result is the same as it would be if 1775 ** the SQLITE_NULLEQ flag were omitted from P5. 1776 */ 1777 /* Opcode: Eq P1 P2 P3 P4 P5 1778 ** 1779 ** This works just like the Lt opcode except that the jump is taken if 1780 ** the operands in registers P1 and P3 are equal. 1781 ** See the Lt opcode for additional information. 1782 ** 1783 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1784 ** true or false and is never NULL. If both operands are NULL then the result 1785 ** of comparison is true. If either operand is NULL then the result is false. 1786 ** If neither operand is NULL the result is the same as it would be if 1787 ** the SQLITE_NULLEQ flag were omitted from P5. 1788 */ 1789 /* Opcode: Le P1 P2 P3 P4 P5 1790 ** 1791 ** This works just like the Lt opcode except that the jump is taken if 1792 ** the content of register P3 is less than or equal to the content of 1793 ** register P1. See the Lt opcode for additional information. 1794 */ 1795 /* Opcode: Gt P1 P2 P3 P4 P5 1796 ** 1797 ** This works just like the Lt opcode except that the jump is taken if 1798 ** the content of register P3 is greater than the content of 1799 ** register P1. See the Lt opcode for additional information. 1800 */ 1801 /* Opcode: Ge P1 P2 P3 P4 P5 1802 ** 1803 ** This works just like the Lt opcode except that the jump is taken if 1804 ** the content of register P3 is greater than or equal to the content of 1805 ** register P1. See the Lt opcode for additional information. 1806 */ 1807 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1808 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1809 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1810 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1811 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1812 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1813 int res; /* Result of the comparison of pIn1 against pIn3 */ 1814 char affinity; /* Affinity to use for comparison */ 1815 u16 flags1; /* Copy of initial value of pIn1->flags */ 1816 u16 flags3; /* Copy of initial value of pIn3->flags */ 1817 1818 pIn1 = &aMem[pOp->p1]; 1819 pIn3 = &aMem[pOp->p3]; 1820 flags1 = pIn1->flags; 1821 flags3 = pIn3->flags; 1822 if( (flags1 | flags3)&MEM_Null ){ 1823 /* One or both operands are NULL */ 1824 if( pOp->p5 & SQLITE_NULLEQ ){ 1825 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1826 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1827 ** or not both operands are null. 1828 */ 1829 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1830 assert( (flags1 & MEM_Cleared)==0 ); 1831 if( (flags1&MEM_Null)!=0 1832 && (flags3&MEM_Null)!=0 1833 && (flags3&MEM_Cleared)==0 1834 ){ 1835 res = 0; /* Results are equal */ 1836 }else{ 1837 res = 1; /* Results are not equal */ 1838 } 1839 }else{ 1840 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1841 ** then the result is always NULL. 1842 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1843 */ 1844 if( pOp->p5 & SQLITE_STOREP2 ){ 1845 pOut = &aMem[pOp->p2]; 1846 MemSetTypeFlag(pOut, MEM_Null); 1847 REGISTER_TRACE(pOp->p2, pOut); 1848 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1849 pc = pOp->p2-1; 1850 } 1851 break; 1852 } 1853 }else{ 1854 /* Neither operand is NULL. Do a comparison. */ 1855 affinity = pOp->p5 & SQLITE_AFF_MASK; 1856 if( affinity ){ 1857 applyAffinity(pIn1, affinity, encoding); 1858 applyAffinity(pIn3, affinity, encoding); 1859 if( db->mallocFailed ) goto no_mem; 1860 } 1861 1862 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1863 ExpandBlob(pIn1); 1864 ExpandBlob(pIn3); 1865 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1866 } 1867 switch( pOp->opcode ){ 1868 case OP_Eq: res = res==0; break; 1869 case OP_Ne: res = res!=0; break; 1870 case OP_Lt: res = res<0; break; 1871 case OP_Le: res = res<=0; break; 1872 case OP_Gt: res = res>0; break; 1873 default: res = res>=0; break; 1874 } 1875 1876 if( pOp->p5 & SQLITE_STOREP2 ){ 1877 pOut = &aMem[pOp->p2]; 1878 memAboutToChange(p, pOut); 1879 MemSetTypeFlag(pOut, MEM_Int); 1880 pOut->u.i = res; 1881 REGISTER_TRACE(pOp->p2, pOut); 1882 }else if( res ){ 1883 pc = pOp->p2-1; 1884 } 1885 1886 /* Undo any changes made by applyAffinity() to the input registers. */ 1887 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); 1888 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); 1889 break; 1890 } 1891 1892 /* Opcode: Permutation * * * P4 * 1893 ** 1894 ** Set the permutation used by the OP_Compare operator to be the array 1895 ** of integers in P4. 1896 ** 1897 ** The permutation is only valid until the next OP_Compare that has 1898 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 1899 ** occur immediately prior to the OP_Compare. 1900 */ 1901 case OP_Permutation: { 1902 assert( pOp->p4type==P4_INTARRAY ); 1903 assert( pOp->p4.ai ); 1904 aPermute = pOp->p4.ai; 1905 break; 1906 } 1907 1908 /* Opcode: Compare P1 P2 P3 P4 P5 1909 ** 1910 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 1911 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 1912 ** the comparison for use by the next OP_Jump instruct. 1913 ** 1914 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 1915 ** determined by the most recent OP_Permutation operator. If the 1916 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 1917 ** order. 1918 ** 1919 ** P4 is a KeyInfo structure that defines collating sequences and sort 1920 ** orders for the comparison. The permutation applies to registers 1921 ** only. The KeyInfo elements are used sequentially. 1922 ** 1923 ** The comparison is a sort comparison, so NULLs compare equal, 1924 ** NULLs are less than numbers, numbers are less than strings, 1925 ** and strings are less than blobs. 1926 */ 1927 case OP_Compare: { 1928 int n; 1929 int i; 1930 int p1; 1931 int p2; 1932 const KeyInfo *pKeyInfo; 1933 int idx; 1934 CollSeq *pColl; /* Collating sequence to use on this term */ 1935 int bRev; /* True for DESCENDING sort order */ 1936 1937 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 1938 n = pOp->p3; 1939 pKeyInfo = pOp->p4.pKeyInfo; 1940 assert( n>0 ); 1941 assert( pKeyInfo!=0 ); 1942 p1 = pOp->p1; 1943 p2 = pOp->p2; 1944 #if SQLITE_DEBUG 1945 if( aPermute ){ 1946 int k, mx = 0; 1947 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 1948 assert( p1>0 && p1+mx<=p->nMem+1 ); 1949 assert( p2>0 && p2+mx<=p->nMem+1 ); 1950 }else{ 1951 assert( p1>0 && p1+n<=p->nMem+1 ); 1952 assert( p2>0 && p2+n<=p->nMem+1 ); 1953 } 1954 #endif /* SQLITE_DEBUG */ 1955 for(i=0; i<n; i++){ 1956 idx = aPermute ? aPermute[i] : i; 1957 assert( memIsValid(&aMem[p1+idx]) ); 1958 assert( memIsValid(&aMem[p2+idx]) ); 1959 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 1960 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 1961 assert( i<pKeyInfo->nField ); 1962 pColl = pKeyInfo->aColl[i]; 1963 bRev = pKeyInfo->aSortOrder[i]; 1964 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 1965 if( iCompare ){ 1966 if( bRev ) iCompare = -iCompare; 1967 break; 1968 } 1969 } 1970 aPermute = 0; 1971 break; 1972 } 1973 1974 /* Opcode: Jump P1 P2 P3 * * 1975 ** 1976 ** Jump to the instruction at address P1, P2, or P3 depending on whether 1977 ** in the most recent OP_Compare instruction the P1 vector was less than 1978 ** equal to, or greater than the P2 vector, respectively. 1979 */ 1980 case OP_Jump: { /* jump */ 1981 if( iCompare<0 ){ 1982 pc = pOp->p1 - 1; 1983 }else if( iCompare==0 ){ 1984 pc = pOp->p2 - 1; 1985 }else{ 1986 pc = pOp->p3 - 1; 1987 } 1988 break; 1989 } 1990 1991 /* Opcode: And P1 P2 P3 * * 1992 ** 1993 ** Take the logical AND of the values in registers P1 and P2 and 1994 ** write the result into register P3. 1995 ** 1996 ** If either P1 or P2 is 0 (false) then the result is 0 even if 1997 ** the other input is NULL. A NULL and true or two NULLs give 1998 ** a NULL output. 1999 */ 2000 /* Opcode: Or P1 P2 P3 * * 2001 ** 2002 ** Take the logical OR of the values in register P1 and P2 and 2003 ** store the answer in register P3. 2004 ** 2005 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2006 ** even if the other input is NULL. A NULL and false or two NULLs 2007 ** give a NULL output. 2008 */ 2009 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2010 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2011 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2012 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2013 2014 pIn1 = &aMem[pOp->p1]; 2015 if( pIn1->flags & MEM_Null ){ 2016 v1 = 2; 2017 }else{ 2018 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2019 } 2020 pIn2 = &aMem[pOp->p2]; 2021 if( pIn2->flags & MEM_Null ){ 2022 v2 = 2; 2023 }else{ 2024 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2025 } 2026 if( pOp->opcode==OP_And ){ 2027 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2028 v1 = and_logic[v1*3+v2]; 2029 }else{ 2030 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2031 v1 = or_logic[v1*3+v2]; 2032 } 2033 pOut = &aMem[pOp->p3]; 2034 if( v1==2 ){ 2035 MemSetTypeFlag(pOut, MEM_Null); 2036 }else{ 2037 pOut->u.i = v1; 2038 MemSetTypeFlag(pOut, MEM_Int); 2039 } 2040 break; 2041 } 2042 2043 /* Opcode: Not P1 P2 * * * 2044 ** 2045 ** Interpret the value in register P1 as a boolean value. Store the 2046 ** boolean complement in register P2. If the value in register P1 is 2047 ** NULL, then a NULL is stored in P2. 2048 */ 2049 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2050 pIn1 = &aMem[pOp->p1]; 2051 pOut = &aMem[pOp->p2]; 2052 if( pIn1->flags & MEM_Null ){ 2053 sqlite3VdbeMemSetNull(pOut); 2054 }else{ 2055 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); 2056 } 2057 break; 2058 } 2059 2060 /* Opcode: BitNot P1 P2 * * * 2061 ** 2062 ** Interpret the content of register P1 as an integer. Store the 2063 ** ones-complement of the P1 value into register P2. If P1 holds 2064 ** a NULL then store a NULL in P2. 2065 */ 2066 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2067 pIn1 = &aMem[pOp->p1]; 2068 pOut = &aMem[pOp->p2]; 2069 if( pIn1->flags & MEM_Null ){ 2070 sqlite3VdbeMemSetNull(pOut); 2071 }else{ 2072 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); 2073 } 2074 break; 2075 } 2076 2077 /* Opcode: Once P1 P2 * * * 2078 ** 2079 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, 2080 ** set the flag and fall through to the next instruction. 2081 */ 2082 case OP_Once: { /* jump */ 2083 assert( pOp->p1<p->nOnceFlag ); 2084 if( p->aOnceFlag[pOp->p1] ){ 2085 pc = pOp->p2-1; 2086 }else{ 2087 p->aOnceFlag[pOp->p1] = 1; 2088 } 2089 break; 2090 } 2091 2092 /* Opcode: If P1 P2 P3 * * 2093 ** 2094 ** Jump to P2 if the value in register P1 is true. The value 2095 ** is considered true if it is numeric and non-zero. If the value 2096 ** in P1 is NULL then take the jump if P3 is non-zero. 2097 */ 2098 /* Opcode: IfNot P1 P2 P3 * * 2099 ** 2100 ** Jump to P2 if the value in register P1 is False. The value 2101 ** is considered false if it has a numeric value of zero. If the value 2102 ** in P1 is NULL then take the jump if P3 is zero. 2103 */ 2104 case OP_If: /* jump, in1 */ 2105 case OP_IfNot: { /* jump, in1 */ 2106 int c; 2107 pIn1 = &aMem[pOp->p1]; 2108 if( pIn1->flags & MEM_Null ){ 2109 c = pOp->p3; 2110 }else{ 2111 #ifdef SQLITE_OMIT_FLOATING_POINT 2112 c = sqlite3VdbeIntValue(pIn1)!=0; 2113 #else 2114 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2115 #endif 2116 if( pOp->opcode==OP_IfNot ) c = !c; 2117 } 2118 if( c ){ 2119 pc = pOp->p2-1; 2120 } 2121 break; 2122 } 2123 2124 /* Opcode: IsNull P1 P2 * * * 2125 ** 2126 ** Jump to P2 if the value in register P1 is NULL. 2127 */ 2128 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2129 pIn1 = &aMem[pOp->p1]; 2130 if( (pIn1->flags & MEM_Null)!=0 ){ 2131 pc = pOp->p2 - 1; 2132 } 2133 break; 2134 } 2135 2136 /* Opcode: NotNull P1 P2 * * * 2137 ** 2138 ** Jump to P2 if the value in register P1 is not NULL. 2139 */ 2140 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2141 pIn1 = &aMem[pOp->p1]; 2142 if( (pIn1->flags & MEM_Null)==0 ){ 2143 pc = pOp->p2 - 1; 2144 } 2145 break; 2146 } 2147 2148 /* Opcode: Column P1 P2 P3 P4 P5 2149 ** 2150 ** Interpret the data that cursor P1 points to as a structure built using 2151 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2152 ** information about the format of the data.) Extract the P2-th column 2153 ** from this record. If there are less that (P2+1) 2154 ** values in the record, extract a NULL. 2155 ** 2156 ** The value extracted is stored in register P3. 2157 ** 2158 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2159 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2160 ** the result. 2161 ** 2162 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2163 ** then the cache of the cursor is reset prior to extracting the column. 2164 ** The first OP_Column against a pseudo-table after the value of the content 2165 ** register has changed should have this bit set. 2166 ** 2167 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2168 ** the result is guaranteed to only be used as the argument of a length() 2169 ** or typeof() function, respectively. The loading of large blobs can be 2170 ** skipped for length() and all content loading can be skipped for typeof(). 2171 */ 2172 case OP_Column: { 2173 u32 payloadSize; /* Number of bytes in the record */ 2174 i64 payloadSize64; /* Number of bytes in the record */ 2175 int p1; /* P1 value of the opcode */ 2176 int p2; /* column number to retrieve */ 2177 VdbeCursor *pC; /* The VDBE cursor */ 2178 char *zRec; /* Pointer to complete record-data */ 2179 BtCursor *pCrsr; /* The BTree cursor */ 2180 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ 2181 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2182 int nField; /* number of fields in the record */ 2183 int len; /* The length of the serialized data for the column */ 2184 int i; /* Loop counter */ 2185 char *zData; /* Part of the record being decoded */ 2186 Mem *pDest; /* Where to write the extracted value */ 2187 Mem sMem; /* For storing the record being decoded */ 2188 u8 *zIdx; /* Index into header */ 2189 u8 *zEndHdr; /* Pointer to first byte after the header */ 2190 u32 offset; /* Offset into the data */ 2191 u32 szField; /* Number of bytes in the content of a field */ 2192 int szHdr; /* Size of the header size field at start of record */ 2193 int avail; /* Number of bytes of available data */ 2194 u32 t; /* A type code from the record header */ 2195 Mem *pReg; /* PseudoTable input register */ 2196 2197 2198 p1 = pOp->p1; 2199 p2 = pOp->p2; 2200 pC = 0; 2201 memset(&sMem, 0, sizeof(sMem)); 2202 assert( p1<p->nCursor ); 2203 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 2204 pDest = &aMem[pOp->p3]; 2205 memAboutToChange(p, pDest); 2206 zRec = 0; 2207 2208 /* This block sets the variable payloadSize to be the total number of 2209 ** bytes in the record. 2210 ** 2211 ** zRec is set to be the complete text of the record if it is available. 2212 ** The complete record text is always available for pseudo-tables 2213 ** If the record is stored in a cursor, the complete record text 2214 ** might be available in the pC->aRow cache. Or it might not be. 2215 ** If the data is unavailable, zRec is set to NULL. 2216 ** 2217 ** We also compute the number of columns in the record. For cursors, 2218 ** the number of columns is stored in the VdbeCursor.nField element. 2219 */ 2220 pC = p->apCsr[p1]; 2221 assert( pC!=0 ); 2222 #ifndef SQLITE_OMIT_VIRTUALTABLE 2223 assert( pC->pVtabCursor==0 ); 2224 #endif 2225 pCrsr = pC->pCursor; 2226 if( pCrsr!=0 ){ 2227 /* The record is stored in a B-Tree */ 2228 rc = sqlite3VdbeCursorMoveto(pC); 2229 if( rc ) goto abort_due_to_error; 2230 if( pC->nullRow ){ 2231 payloadSize = 0; 2232 }else if( pC->cacheStatus==p->cacheCtr ){ 2233 payloadSize = pC->payloadSize; 2234 zRec = (char*)pC->aRow; 2235 }else if( pC->isIndex ){ 2236 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2237 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2238 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2239 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2240 ** payload size, so it is impossible for payloadSize64 to be 2241 ** larger than 32 bits. */ 2242 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2243 payloadSize = (u32)payloadSize64; 2244 }else{ 2245 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2246 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize); 2247 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2248 } 2249 }else if( ALWAYS(pC->pseudoTableReg>0) ){ 2250 pReg = &aMem[pC->pseudoTableReg]; 2251 if( pC->multiPseudo ){ 2252 sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem); 2253 Deephemeralize(pDest); 2254 goto op_column_out; 2255 } 2256 assert( pReg->flags & MEM_Blob ); 2257 assert( memIsValid(pReg) ); 2258 payloadSize = pReg->n; 2259 zRec = pReg->z; 2260 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; 2261 assert( payloadSize==0 || zRec!=0 ); 2262 }else{ 2263 /* Consider the row to be NULL */ 2264 payloadSize = 0; 2265 } 2266 2267 /* If payloadSize is 0, then just store a NULL. This can happen because of 2268 ** nullRow or because of a corrupt database. */ 2269 if( payloadSize==0 ){ 2270 MemSetTypeFlag(pDest, MEM_Null); 2271 goto op_column_out; 2272 } 2273 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 ); 2274 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2275 goto too_big; 2276 } 2277 2278 nField = pC->nField; 2279 assert( p2<nField ); 2280 2281 /* Read and parse the table header. Store the results of the parse 2282 ** into the record header cache fields of the cursor. 2283 */ 2284 aType = pC->aType; 2285 if( pC->cacheStatus==p->cacheCtr ){ 2286 aOffset = pC->aOffset; 2287 }else{ 2288 assert(aType); 2289 avail = 0; 2290 pC->aOffset = aOffset = &aType[nField]; 2291 pC->payloadSize = payloadSize; 2292 pC->cacheStatus = p->cacheCtr; 2293 2294 /* Figure out how many bytes are in the header */ 2295 if( zRec ){ 2296 zData = zRec; 2297 }else{ 2298 if( pC->isIndex ){ 2299 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); 2300 }else{ 2301 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); 2302 } 2303 /* If KeyFetch()/DataFetch() managed to get the entire payload, 2304 ** save the payload in the pC->aRow cache. That will save us from 2305 ** having to make additional calls to fetch the content portion of 2306 ** the record. 2307 */ 2308 assert( avail>=0 ); 2309 if( payloadSize <= (u32)avail ){ 2310 zRec = zData; 2311 pC->aRow = (u8*)zData; 2312 }else{ 2313 pC->aRow = 0; 2314 } 2315 } 2316 /* The following assert is true in all cases except when 2317 ** the database file has been corrupted externally. 2318 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ 2319 szHdr = getVarint32((u8*)zData, offset); 2320 2321 /* Make sure a corrupt database has not given us an oversize header. 2322 ** Do this now to avoid an oversize memory allocation. 2323 ** 2324 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2325 ** types use so much data space that there can only be 4096 and 32 of 2326 ** them, respectively. So the maximum header length results from a 2327 ** 3-byte type for each of the maximum of 32768 columns plus three 2328 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2329 */ 2330 if( offset > 98307 ){ 2331 rc = SQLITE_CORRUPT_BKPT; 2332 goto op_column_out; 2333 } 2334 2335 /* Compute in len the number of bytes of data we need to read in order 2336 ** to get nField type values. offset is an upper bound on this. But 2337 ** nField might be significantly less than the true number of columns 2338 ** in the table, and in that case, 5*nField+3 might be smaller than offset. 2339 ** We want to minimize len in order to limit the size of the memory 2340 ** allocation, especially if a corrupt database file has caused offset 2341 ** to be oversized. Offset is limited to 98307 above. But 98307 might 2342 ** still exceed Robson memory allocation limits on some configurations. 2343 ** On systems that cannot tolerate large memory allocations, nField*5+3 2344 ** will likely be much smaller since nField will likely be less than 2345 ** 20 or so. This insures that Robson memory allocation limits are 2346 ** not exceeded even for corrupt database files. 2347 */ 2348 len = nField*5 + 3; 2349 if( len > (int)offset ) len = (int)offset; 2350 2351 /* The KeyFetch() or DataFetch() above are fast and will get the entire 2352 ** record header in most cases. But they will fail to get the complete 2353 ** record header if the record header does not fit on a single page 2354 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to 2355 ** acquire the complete header text. 2356 */ 2357 if( !zRec && avail<len ){ 2358 sMem.flags = 0; 2359 sMem.db = 0; 2360 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem); 2361 if( rc!=SQLITE_OK ){ 2362 goto op_column_out; 2363 } 2364 zData = sMem.z; 2365 } 2366 zEndHdr = (u8 *)&zData[len]; 2367 zIdx = (u8 *)&zData[szHdr]; 2368 2369 /* Scan the header and use it to fill in the aType[] and aOffset[] 2370 ** arrays. aType[i] will contain the type integer for the i-th 2371 ** column and aOffset[i] will contain the offset from the beginning 2372 ** of the record to the start of the data for the i-th column 2373 */ 2374 for(i=0; i<nField; i++){ 2375 if( zIdx<zEndHdr ){ 2376 aOffset[i] = offset; 2377 if( zIdx[0]<0x80 ){ 2378 t = zIdx[0]; 2379 zIdx++; 2380 }else{ 2381 zIdx += sqlite3GetVarint32(zIdx, &t); 2382 } 2383 aType[i] = t; 2384 szField = sqlite3VdbeSerialTypeLen(t); 2385 offset += szField; 2386 if( offset<szField ){ /* True if offset overflows */ 2387 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ 2388 break; 2389 } 2390 }else{ 2391 /* If i is less that nField, then there are fewer fields in this 2392 ** record than SetNumColumns indicated there are columns in the 2393 ** table. Set the offset for any extra columns not present in 2394 ** the record to 0. This tells code below to store the default value 2395 ** for the column instead of deserializing a value from the record. 2396 */ 2397 aOffset[i] = 0; 2398 } 2399 } 2400 sqlite3VdbeMemRelease(&sMem); 2401 sMem.flags = MEM_Null; 2402 2403 /* If we have read more header data than was contained in the header, 2404 ** or if the end of the last field appears to be past the end of the 2405 ** record, or if the end of the last field appears to be before the end 2406 ** of the record (when all fields present), then we must be dealing 2407 ** with a corrupt database. 2408 */ 2409 if( (zIdx > zEndHdr) || (offset > payloadSize) 2410 || (zIdx==zEndHdr && offset!=payloadSize) ){ 2411 rc = SQLITE_CORRUPT_BKPT; 2412 goto op_column_out; 2413 } 2414 } 2415 2416 /* Get the column information. If aOffset[p2] is non-zero, then 2417 ** deserialize the value from the record. If aOffset[p2] is zero, 2418 ** then there are not enough fields in the record to satisfy the 2419 ** request. In this case, set the value NULL or to P4 if P4 is 2420 ** a pointer to a Mem object. 2421 */ 2422 if( aOffset[p2] ){ 2423 assert( rc==SQLITE_OK ); 2424 if( zRec ){ 2425 /* This is the common case where the whole row fits on a single page */ 2426 VdbeMemRelease(pDest); 2427 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); 2428 }else{ 2429 /* This branch happens only when the row overflows onto multiple pages */ 2430 t = aType[p2]; 2431 if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2432 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0) 2433 ){ 2434 /* Content is irrelevant for the typeof() function and for 2435 ** the length(X) function if X is a blob. So we might as well use 2436 ** bogus content rather than reading content from disk. NULL works 2437 ** for text and blob and whatever is in the payloadSize64 variable 2438 ** will work for everything else. */ 2439 zData = t<12 ? (char*)&payloadSize64 : 0; 2440 }else{ 2441 len = sqlite3VdbeSerialTypeLen(t); 2442 sqlite3VdbeMemMove(&sMem, pDest); 2443 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, 2444 &sMem); 2445 if( rc!=SQLITE_OK ){ 2446 goto op_column_out; 2447 } 2448 zData = sMem.z; 2449 } 2450 sqlite3VdbeSerialGet((u8*)zData, t, pDest); 2451 } 2452 pDest->enc = encoding; 2453 }else{ 2454 if( pOp->p4type==P4_MEM ){ 2455 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2456 }else{ 2457 MemSetTypeFlag(pDest, MEM_Null); 2458 } 2459 } 2460 2461 /* If we dynamically allocated space to hold the data (in the 2462 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that 2463 ** dynamically allocated space over to the pDest structure. 2464 ** This prevents a memory copy. 2465 */ 2466 if( sMem.zMalloc ){ 2467 assert( sMem.z==sMem.zMalloc ); 2468 assert( !(pDest->flags & MEM_Dyn) ); 2469 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); 2470 pDest->flags &= ~(MEM_Ephem|MEM_Static); 2471 pDest->flags |= MEM_Term; 2472 pDest->z = sMem.z; 2473 pDest->zMalloc = sMem.zMalloc; 2474 } 2475 2476 rc = sqlite3VdbeMemMakeWriteable(pDest); 2477 2478 op_column_out: 2479 UPDATE_MAX_BLOBSIZE(pDest); 2480 REGISTER_TRACE(pOp->p3, pDest); 2481 break; 2482 } 2483 2484 /* Opcode: Affinity P1 P2 * P4 * 2485 ** 2486 ** Apply affinities to a range of P2 registers starting with P1. 2487 ** 2488 ** P4 is a string that is P2 characters long. The nth character of the 2489 ** string indicates the column affinity that should be used for the nth 2490 ** memory cell in the range. 2491 */ 2492 case OP_Affinity: { 2493 const char *zAffinity; /* The affinity to be applied */ 2494 char cAff; /* A single character of affinity */ 2495 2496 zAffinity = pOp->p4.z; 2497 assert( zAffinity!=0 ); 2498 assert( zAffinity[pOp->p2]==0 ); 2499 pIn1 = &aMem[pOp->p1]; 2500 while( (cAff = *(zAffinity++))!=0 ){ 2501 assert( pIn1 <= &p->aMem[p->nMem] ); 2502 assert( memIsValid(pIn1) ); 2503 ExpandBlob(pIn1); 2504 applyAffinity(pIn1, cAff, encoding); 2505 pIn1++; 2506 } 2507 break; 2508 } 2509 2510 /* Opcode: MakeRecord P1 P2 P3 P4 * 2511 ** 2512 ** Convert P2 registers beginning with P1 into the [record format] 2513 ** use as a data record in a database table or as a key 2514 ** in an index. The OP_Column opcode can decode the record later. 2515 ** 2516 ** P4 may be a string that is P2 characters long. The nth character of the 2517 ** string indicates the column affinity that should be used for the nth 2518 ** field of the index key. 2519 ** 2520 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2521 ** macros defined in sqliteInt.h. 2522 ** 2523 ** If P4 is NULL then all index fields have the affinity NONE. 2524 */ 2525 case OP_MakeRecord: { 2526 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2527 Mem *pRec; /* The new record */ 2528 u64 nData; /* Number of bytes of data space */ 2529 int nHdr; /* Number of bytes of header space */ 2530 i64 nByte; /* Data space required for this record */ 2531 int nZero; /* Number of zero bytes at the end of the record */ 2532 int nVarint; /* Number of bytes in a varint */ 2533 u32 serial_type; /* Type field */ 2534 Mem *pData0; /* First field to be combined into the record */ 2535 Mem *pLast; /* Last field of the record */ 2536 int nField; /* Number of fields in the record */ 2537 char *zAffinity; /* The affinity string for the record */ 2538 int file_format; /* File format to use for encoding */ 2539 int i; /* Space used in zNewRecord[] */ 2540 int len; /* Length of a field */ 2541 2542 /* Assuming the record contains N fields, the record format looks 2543 ** like this: 2544 ** 2545 ** ------------------------------------------------------------------------ 2546 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2547 ** ------------------------------------------------------------------------ 2548 ** 2549 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2550 ** and so froth. 2551 ** 2552 ** Each type field is a varint representing the serial type of the 2553 ** corresponding data element (see sqlite3VdbeSerialType()). The 2554 ** hdr-size field is also a varint which is the offset from the beginning 2555 ** of the record to data0. 2556 */ 2557 nData = 0; /* Number of bytes of data space */ 2558 nHdr = 0; /* Number of bytes of header space */ 2559 nZero = 0; /* Number of zero bytes at the end of the record */ 2560 nField = pOp->p1; 2561 zAffinity = pOp->p4.z; 2562 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); 2563 pData0 = &aMem[nField]; 2564 nField = pOp->p2; 2565 pLast = &pData0[nField-1]; 2566 file_format = p->minWriteFileFormat; 2567 2568 /* Identify the output register */ 2569 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2570 pOut = &aMem[pOp->p3]; 2571 memAboutToChange(p, pOut); 2572 2573 /* Loop through the elements that will make up the record to figure 2574 ** out how much space is required for the new record. 2575 */ 2576 for(pRec=pData0; pRec<=pLast; pRec++){ 2577 assert( memIsValid(pRec) ); 2578 if( zAffinity ){ 2579 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); 2580 } 2581 if( pRec->flags&MEM_Zero && pRec->n>0 ){ 2582 sqlite3VdbeMemExpandBlob(pRec); 2583 } 2584 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2585 len = sqlite3VdbeSerialTypeLen(serial_type); 2586 nData += len; 2587 nHdr += sqlite3VarintLen(serial_type); 2588 if( pRec->flags & MEM_Zero ){ 2589 /* Only pure zero-filled BLOBs can be input to this Opcode. 2590 ** We do not allow blobs with a prefix and a zero-filled tail. */ 2591 nZero += pRec->u.nZero; 2592 }else if( len ){ 2593 nZero = 0; 2594 } 2595 } 2596 2597 /* Add the initial header varint and total the size */ 2598 nHdr += nVarint = sqlite3VarintLen(nHdr); 2599 if( nVarint<sqlite3VarintLen(nHdr) ){ 2600 nHdr++; 2601 } 2602 nByte = nHdr+nData-nZero; 2603 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2604 goto too_big; 2605 } 2606 2607 /* Make sure the output register has a buffer large enough to store 2608 ** the new record. The output register (pOp->p3) is not allowed to 2609 ** be one of the input registers (because the following call to 2610 ** sqlite3VdbeMemGrow() could clobber the value before it is used). 2611 */ 2612 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ 2613 goto no_mem; 2614 } 2615 zNewRecord = (u8 *)pOut->z; 2616 2617 /* Write the record */ 2618 i = putVarint32(zNewRecord, nHdr); 2619 for(pRec=pData0; pRec<=pLast; pRec++){ 2620 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2621 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2622 } 2623 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ 2624 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format); 2625 } 2626 assert( i==nByte ); 2627 2628 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 2629 pOut->n = (int)nByte; 2630 pOut->flags = MEM_Blob | MEM_Dyn; 2631 pOut->xDel = 0; 2632 if( nZero ){ 2633 pOut->u.nZero = nZero; 2634 pOut->flags |= MEM_Zero; 2635 } 2636 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2637 REGISTER_TRACE(pOp->p3, pOut); 2638 UPDATE_MAX_BLOBSIZE(pOut); 2639 break; 2640 } 2641 2642 /* Opcode: Count P1 P2 * * * 2643 ** 2644 ** Store the number of entries (an integer value) in the table or index 2645 ** opened by cursor P1 in register P2 2646 */ 2647 #ifndef SQLITE_OMIT_BTREECOUNT 2648 case OP_Count: { /* out2-prerelease */ 2649 i64 nEntry; 2650 BtCursor *pCrsr; 2651 2652 pCrsr = p->apCsr[pOp->p1]->pCursor; 2653 if( ALWAYS(pCrsr) ){ 2654 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2655 }else{ 2656 nEntry = 0; 2657 } 2658 pOut->u.i = nEntry; 2659 break; 2660 } 2661 #endif 2662 2663 /* Opcode: Savepoint P1 * * P4 * 2664 ** 2665 ** Open, release or rollback the savepoint named by parameter P4, depending 2666 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2667 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2668 */ 2669 case OP_Savepoint: { 2670 int p1; /* Value of P1 operand */ 2671 char *zName; /* Name of savepoint */ 2672 int nName; 2673 Savepoint *pNew; 2674 Savepoint *pSavepoint; 2675 Savepoint *pTmp; 2676 int iSavepoint; 2677 int ii; 2678 2679 p1 = pOp->p1; 2680 zName = pOp->p4.z; 2681 2682 /* Assert that the p1 parameter is valid. Also that if there is no open 2683 ** transaction, then there cannot be any savepoints. 2684 */ 2685 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2686 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2687 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2688 assert( checkSavepointCount(db) ); 2689 assert( p->bIsReader ); 2690 2691 if( p1==SAVEPOINT_BEGIN ){ 2692 if( db->nVdbeWrite>0 ){ 2693 /* A new savepoint cannot be created if there are active write 2694 ** statements (i.e. open read/write incremental blob handles). 2695 */ 2696 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2697 "SQL statements in progress"); 2698 rc = SQLITE_BUSY; 2699 }else{ 2700 nName = sqlite3Strlen30(zName); 2701 2702 #ifndef SQLITE_OMIT_VIRTUALTABLE 2703 /* This call is Ok even if this savepoint is actually a transaction 2704 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2705 ** If this is a transaction savepoint being opened, it is guaranteed 2706 ** that the db->aVTrans[] array is empty. */ 2707 assert( db->autoCommit==0 || db->nVTrans==0 ); 2708 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2709 db->nStatement+db->nSavepoint); 2710 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2711 #endif 2712 2713 /* Create a new savepoint structure. */ 2714 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2715 if( pNew ){ 2716 pNew->zName = (char *)&pNew[1]; 2717 memcpy(pNew->zName, zName, nName+1); 2718 2719 /* If there is no open transaction, then mark this as a special 2720 ** "transaction savepoint". */ 2721 if( db->autoCommit ){ 2722 db->autoCommit = 0; 2723 db->isTransactionSavepoint = 1; 2724 }else{ 2725 db->nSavepoint++; 2726 } 2727 2728 /* Link the new savepoint into the database handle's list. */ 2729 pNew->pNext = db->pSavepoint; 2730 db->pSavepoint = pNew; 2731 pNew->nDeferredCons = db->nDeferredCons; 2732 } 2733 } 2734 }else{ 2735 iSavepoint = 0; 2736 2737 /* Find the named savepoint. If there is no such savepoint, then an 2738 ** an error is returned to the user. */ 2739 for( 2740 pSavepoint = db->pSavepoint; 2741 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2742 pSavepoint = pSavepoint->pNext 2743 ){ 2744 iSavepoint++; 2745 } 2746 if( !pSavepoint ){ 2747 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2748 rc = SQLITE_ERROR; 2749 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2750 /* It is not possible to release (commit) a savepoint if there are 2751 ** active write statements. 2752 */ 2753 sqlite3SetString(&p->zErrMsg, db, 2754 "cannot release savepoint - SQL statements in progress" 2755 ); 2756 rc = SQLITE_BUSY; 2757 }else{ 2758 2759 /* Determine whether or not this is a transaction savepoint. If so, 2760 ** and this is a RELEASE command, then the current transaction 2761 ** is committed. 2762 */ 2763 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2764 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2765 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2766 goto vdbe_return; 2767 } 2768 db->autoCommit = 1; 2769 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2770 p->pc = pc; 2771 db->autoCommit = 0; 2772 p->rc = rc = SQLITE_BUSY; 2773 goto vdbe_return; 2774 } 2775 db->isTransactionSavepoint = 0; 2776 rc = p->rc; 2777 }else{ 2778 iSavepoint = db->nSavepoint - iSavepoint - 1; 2779 if( p1==SAVEPOINT_ROLLBACK ){ 2780 for(ii=0; ii<db->nDb; ii++){ 2781 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT); 2782 } 2783 } 2784 for(ii=0; ii<db->nDb; ii++){ 2785 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2786 if( rc!=SQLITE_OK ){ 2787 goto abort_due_to_error; 2788 } 2789 } 2790 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ 2791 sqlite3ExpirePreparedStatements(db); 2792 sqlite3ResetAllSchemasOfConnection(db); 2793 db->flags = (db->flags | SQLITE_InternChanges); 2794 } 2795 } 2796 2797 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2798 ** savepoints nested inside of the savepoint being operated on. */ 2799 while( db->pSavepoint!=pSavepoint ){ 2800 pTmp = db->pSavepoint; 2801 db->pSavepoint = pTmp->pNext; 2802 sqlite3DbFree(db, pTmp); 2803 db->nSavepoint--; 2804 } 2805 2806 /* If it is a RELEASE, then destroy the savepoint being operated on 2807 ** too. If it is a ROLLBACK TO, then set the number of deferred 2808 ** constraint violations present in the database to the value stored 2809 ** when the savepoint was created. */ 2810 if( p1==SAVEPOINT_RELEASE ){ 2811 assert( pSavepoint==db->pSavepoint ); 2812 db->pSavepoint = pSavepoint->pNext; 2813 sqlite3DbFree(db, pSavepoint); 2814 if( !isTransaction ){ 2815 db->nSavepoint--; 2816 } 2817 }else{ 2818 db->nDeferredCons = pSavepoint->nDeferredCons; 2819 } 2820 2821 if( !isTransaction ){ 2822 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2823 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2824 } 2825 } 2826 } 2827 2828 break; 2829 } 2830 2831 /* Opcode: AutoCommit P1 P2 * * * 2832 ** 2833 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2834 ** back any currently active btree transactions. If there are any active 2835 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2836 ** there are active writing VMs or active VMs that use shared cache. 2837 ** 2838 ** This instruction causes the VM to halt. 2839 */ 2840 case OP_AutoCommit: { 2841 int desiredAutoCommit; 2842 int iRollback; 2843 int turnOnAC; 2844 2845 desiredAutoCommit = pOp->p1; 2846 iRollback = pOp->p2; 2847 turnOnAC = desiredAutoCommit && !db->autoCommit; 2848 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2849 assert( desiredAutoCommit==1 || iRollback==0 ); 2850 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 2851 assert( p->bIsReader ); 2852 2853 #if 0 2854 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ 2855 /* If this instruction implements a ROLLBACK and other VMs are 2856 ** still running, and a transaction is active, return an error indicating 2857 ** that the other VMs must complete first. 2858 */ 2859 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2860 "SQL statements in progress"); 2861 rc = SQLITE_BUSY; 2862 }else 2863 #endif 2864 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ 2865 /* If this instruction implements a COMMIT and other VMs are writing 2866 ** return an error indicating that the other VMs must complete first. 2867 */ 2868 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2869 "SQL statements in progress"); 2870 rc = SQLITE_BUSY; 2871 }else if( desiredAutoCommit!=db->autoCommit ){ 2872 if( iRollback ){ 2873 assert( desiredAutoCommit==1 ); 2874 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2875 db->autoCommit = 1; 2876 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2877 goto vdbe_return; 2878 }else{ 2879 db->autoCommit = (u8)desiredAutoCommit; 2880 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2881 p->pc = pc; 2882 db->autoCommit = (u8)(1-desiredAutoCommit); 2883 p->rc = rc = SQLITE_BUSY; 2884 goto vdbe_return; 2885 } 2886 } 2887 assert( db->nStatement==0 ); 2888 sqlite3CloseSavepoints(db); 2889 if( p->rc==SQLITE_OK ){ 2890 rc = SQLITE_DONE; 2891 }else{ 2892 rc = SQLITE_ERROR; 2893 } 2894 goto vdbe_return; 2895 }else{ 2896 sqlite3SetString(&p->zErrMsg, db, 2897 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 2898 (iRollback)?"cannot rollback - no transaction is active": 2899 "cannot commit - no transaction is active")); 2900 2901 rc = SQLITE_ERROR; 2902 } 2903 break; 2904 } 2905 2906 /* Opcode: Transaction P1 P2 * * * 2907 ** 2908 ** Begin a transaction. The transaction ends when a Commit or Rollback 2909 ** opcode is encountered. Depending on the ON CONFLICT setting, the 2910 ** transaction might also be rolled back if an error is encountered. 2911 ** 2912 ** P1 is the index of the database file on which the transaction is 2913 ** started. Index 0 is the main database file and index 1 is the 2914 ** file used for temporary tables. Indices of 2 or more are used for 2915 ** attached databases. 2916 ** 2917 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is 2918 ** obtained on the database file when a write-transaction is started. No 2919 ** other process can start another write transaction while this transaction is 2920 ** underway. Starting a write transaction also creates a rollback journal. A 2921 ** write transaction must be started before any changes can be made to the 2922 ** database. If P2 is greater than or equal to 2 then an EXCLUSIVE lock is 2923 ** also obtained on the file. 2924 ** 2925 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 2926 ** true (this flag is set if the Vdbe may modify more than one row and may 2927 ** throw an ABORT exception), a statement transaction may also be opened. 2928 ** More specifically, a statement transaction is opened iff the database 2929 ** connection is currently not in autocommit mode, or if there are other 2930 ** active statements. A statement transaction allows the changes made by this 2931 ** VDBE to be rolled back after an error without having to roll back the 2932 ** entire transaction. If no error is encountered, the statement transaction 2933 ** will automatically commit when the VDBE halts. 2934 ** 2935 ** If P2 is zero, then a read-lock is obtained on the database file. 2936 */ 2937 case OP_Transaction: { 2938 Btree *pBt; 2939 2940 assert( p->bIsReader ); 2941 assert( p->readOnly==0 || pOp->p2==0 ); 2942 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2943 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 2944 pBt = db->aDb[pOp->p1].pBt; 2945 2946 if( pBt ){ 2947 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 2948 if( rc==SQLITE_BUSY ){ 2949 p->pc = pc; 2950 p->rc = rc = SQLITE_BUSY; 2951 goto vdbe_return; 2952 } 2953 if( rc!=SQLITE_OK ){ 2954 goto abort_due_to_error; 2955 } 2956 2957 if( pOp->p2 && p->usesStmtJournal 2958 && (db->autoCommit==0 || db->nVdbeRead>1) 2959 ){ 2960 assert( sqlite3BtreeIsInTrans(pBt) ); 2961 if( p->iStatement==0 ){ 2962 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 2963 db->nStatement++; 2964 p->iStatement = db->nSavepoint + db->nStatement; 2965 } 2966 2967 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 2968 if( rc==SQLITE_OK ){ 2969 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 2970 } 2971 2972 /* Store the current value of the database handles deferred constraint 2973 ** counter. If the statement transaction needs to be rolled back, 2974 ** the value of this counter needs to be restored too. */ 2975 p->nStmtDefCons = db->nDeferredCons; 2976 } 2977 } 2978 break; 2979 } 2980 2981 /* Opcode: ReadCookie P1 P2 P3 * * 2982 ** 2983 ** Read cookie number P3 from database P1 and write it into register P2. 2984 ** P3==1 is the schema version. P3==2 is the database format. 2985 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 2986 ** the main database file and P1==1 is the database file used to store 2987 ** temporary tables. 2988 ** 2989 ** There must be a read-lock on the database (either a transaction 2990 ** must be started or there must be an open cursor) before 2991 ** executing this instruction. 2992 */ 2993 case OP_ReadCookie: { /* out2-prerelease */ 2994 int iMeta; 2995 int iDb; 2996 int iCookie; 2997 2998 assert( p->bIsReader ); 2999 iDb = pOp->p1; 3000 iCookie = pOp->p3; 3001 assert( pOp->p3<SQLITE_N_BTREE_META ); 3002 assert( iDb>=0 && iDb<db->nDb ); 3003 assert( db->aDb[iDb].pBt!=0 ); 3004 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 3005 3006 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3007 pOut->u.i = iMeta; 3008 break; 3009 } 3010 3011 /* Opcode: SetCookie P1 P2 P3 * * 3012 ** 3013 ** Write the content of register P3 (interpreted as an integer) 3014 ** into cookie number P2 of database P1. P2==1 is the schema version. 3015 ** P2==2 is the database format. P2==3 is the recommended pager cache 3016 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3017 ** database file used to store temporary tables. 3018 ** 3019 ** A transaction must be started before executing this opcode. 3020 */ 3021 case OP_SetCookie: { /* in3 */ 3022 Db *pDb; 3023 assert( pOp->p2<SQLITE_N_BTREE_META ); 3024 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3025 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 3026 assert( p->readOnly==0 ); 3027 pDb = &db->aDb[pOp->p1]; 3028 assert( pDb->pBt!=0 ); 3029 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3030 pIn3 = &aMem[pOp->p3]; 3031 sqlite3VdbeMemIntegerify(pIn3); 3032 /* See note about index shifting on OP_ReadCookie */ 3033 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 3034 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3035 /* When the schema cookie changes, record the new cookie internally */ 3036 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 3037 db->flags |= SQLITE_InternChanges; 3038 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3039 /* Record changes in the file format */ 3040 pDb->pSchema->file_format = (u8)pIn3->u.i; 3041 } 3042 if( pOp->p1==1 ){ 3043 /* Invalidate all prepared statements whenever the TEMP database 3044 ** schema is changed. Ticket #1644 */ 3045 sqlite3ExpirePreparedStatements(db); 3046 p->expired = 0; 3047 } 3048 break; 3049 } 3050 3051 /* Opcode: VerifyCookie P1 P2 P3 * * 3052 ** 3053 ** Check the value of global database parameter number 0 (the 3054 ** schema version) and make sure it is equal to P2 and that the 3055 ** generation counter on the local schema parse equals P3. 3056 ** 3057 ** P1 is the database number which is 0 for the main database file 3058 ** and 1 for the file holding temporary tables and some higher number 3059 ** for auxiliary databases. 3060 ** 3061 ** The cookie changes its value whenever the database schema changes. 3062 ** This operation is used to detect when that the cookie has changed 3063 ** and that the current process needs to reread the schema. 3064 ** 3065 ** Either a transaction needs to have been started or an OP_Open needs 3066 ** to be executed (to establish a read lock) before this opcode is 3067 ** invoked. 3068 */ 3069 case OP_VerifyCookie: { 3070 int iMeta; 3071 int iGen; 3072 Btree *pBt; 3073 3074 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3075 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 3076 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3077 assert( p->bIsReader ); 3078 pBt = db->aDb[pOp->p1].pBt; 3079 if( pBt ){ 3080 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3081 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3082 }else{ 3083 iGen = iMeta = 0; 3084 } 3085 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){ 3086 sqlite3DbFree(db, p->zErrMsg); 3087 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3088 /* If the schema-cookie from the database file matches the cookie 3089 ** stored with the in-memory representation of the schema, do 3090 ** not reload the schema from the database file. 3091 ** 3092 ** If virtual-tables are in use, this is not just an optimization. 3093 ** Often, v-tables store their data in other SQLite tables, which 3094 ** are queried from within xNext() and other v-table methods using 3095 ** prepared queries. If such a query is out-of-date, we do not want to 3096 ** discard the database schema, as the user code implementing the 3097 ** v-table would have to be ready for the sqlite3_vtab structure itself 3098 ** to be invalidated whenever sqlite3_step() is called from within 3099 ** a v-table method. 3100 */ 3101 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3102 sqlite3ResetOneSchema(db, pOp->p1); 3103 } 3104 3105 p->expired = 1; 3106 rc = SQLITE_SCHEMA; 3107 } 3108 break; 3109 } 3110 3111 /* Opcode: OpenRead P1 P2 P3 P4 P5 3112 ** 3113 ** Open a read-only cursor for the database table whose root page is 3114 ** P2 in a database file. The database file is determined by P3. 3115 ** P3==0 means the main database, P3==1 means the database used for 3116 ** temporary tables, and P3>1 means used the corresponding attached 3117 ** database. Give the new cursor an identifier of P1. The P1 3118 ** values need not be contiguous but all P1 values should be small integers. 3119 ** It is an error for P1 to be negative. 3120 ** 3121 ** If P5!=0 then use the content of register P2 as the root page, not 3122 ** the value of P2 itself. 3123 ** 3124 ** There will be a read lock on the database whenever there is an 3125 ** open cursor. If the database was unlocked prior to this instruction 3126 ** then a read lock is acquired as part of this instruction. A read 3127 ** lock allows other processes to read the database but prohibits 3128 ** any other process from modifying the database. The read lock is 3129 ** released when all cursors are closed. If this instruction attempts 3130 ** to get a read lock but fails, the script terminates with an 3131 ** SQLITE_BUSY error code. 3132 ** 3133 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3134 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3135 ** structure, then said structure defines the content and collating 3136 ** sequence of the index being opened. Otherwise, if P4 is an integer 3137 ** value, it is set to the number of columns in the table. 3138 ** 3139 ** See also OpenWrite. 3140 */ 3141 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3142 ** 3143 ** Open a read/write cursor named P1 on the table or index whose root 3144 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3145 ** root page. 3146 ** 3147 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3148 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3149 ** structure, then said structure defines the content and collating 3150 ** sequence of the index being opened. Otherwise, if P4 is an integer 3151 ** value, it is set to the number of columns in the table, or to the 3152 ** largest index of any column of the table that is actually used. 3153 ** 3154 ** This instruction works just like OpenRead except that it opens the cursor 3155 ** in read/write mode. For a given table, there can be one or more read-only 3156 ** cursors or a single read/write cursor but not both. 3157 ** 3158 ** See also OpenRead. 3159 */ 3160 case OP_OpenRead: 3161 case OP_OpenWrite: { 3162 int nField; 3163 KeyInfo *pKeyInfo; 3164 int p2; 3165 int iDb; 3166 int wrFlag; 3167 Btree *pX; 3168 VdbeCursor *pCur; 3169 Db *pDb; 3170 3171 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); 3172 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); 3173 assert( p->bIsReader ); 3174 assert( pOp->opcode==OP_OpenRead || p->readOnly==0 ); 3175 3176 if( p->expired ){ 3177 rc = SQLITE_ABORT; 3178 break; 3179 } 3180 3181 nField = 0; 3182 pKeyInfo = 0; 3183 p2 = pOp->p2; 3184 iDb = pOp->p3; 3185 assert( iDb>=0 && iDb<db->nDb ); 3186 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 3187 pDb = &db->aDb[iDb]; 3188 pX = pDb->pBt; 3189 assert( pX!=0 ); 3190 if( pOp->opcode==OP_OpenWrite ){ 3191 wrFlag = 1; 3192 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3193 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3194 p->minWriteFileFormat = pDb->pSchema->file_format; 3195 } 3196 }else{ 3197 wrFlag = 0; 3198 } 3199 if( pOp->p5 & OPFLAG_P2ISREG ){ 3200 assert( p2>0 ); 3201 assert( p2<=p->nMem ); 3202 pIn2 = &aMem[p2]; 3203 assert( memIsValid(pIn2) ); 3204 assert( (pIn2->flags & MEM_Int)!=0 ); 3205 sqlite3VdbeMemIntegerify(pIn2); 3206 p2 = (int)pIn2->u.i; 3207 /* The p2 value always comes from a prior OP_CreateTable opcode and 3208 ** that opcode will always set the p2 value to 2 or more or else fail. 3209 ** If there were a failure, the prepared statement would have halted 3210 ** before reaching this instruction. */ 3211 if( NEVER(p2<2) ) { 3212 rc = SQLITE_CORRUPT_BKPT; 3213 goto abort_due_to_error; 3214 } 3215 } 3216 if( pOp->p4type==P4_KEYINFO ){ 3217 pKeyInfo = pOp->p4.pKeyInfo; 3218 pKeyInfo->enc = ENC(p->db); 3219 nField = pKeyInfo->nField+1; 3220 }else if( pOp->p4type==P4_INT32 ){ 3221 nField = pOp->p4.i; 3222 } 3223 assert( pOp->p1>=0 ); 3224 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3225 if( pCur==0 ) goto no_mem; 3226 pCur->nullRow = 1; 3227 pCur->isOrdered = 1; 3228 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3229 pCur->pKeyInfo = pKeyInfo; 3230 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3231 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); 3232 3233 /* Since it performs no memory allocation or IO, the only value that 3234 ** sqlite3BtreeCursor() may return is SQLITE_OK. */ 3235 assert( rc==SQLITE_OK ); 3236 3237 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of 3238 ** SQLite used to check if the root-page flags were sane at this point 3239 ** and report database corruption if they were not, but this check has 3240 ** since moved into the btree layer. */ 3241 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3242 pCur->isIndex = !pCur->isTable; 3243 break; 3244 } 3245 3246 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3247 ** 3248 ** Open a new cursor P1 to a transient table. 3249 ** The cursor is always opened read/write even if 3250 ** the main database is read-only. The ephemeral 3251 ** table is deleted automatically when the cursor is closed. 3252 ** 3253 ** P2 is the number of columns in the ephemeral table. 3254 ** The cursor points to a BTree table if P4==0 and to a BTree index 3255 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3256 ** that defines the format of keys in the index. 3257 ** 3258 ** This opcode was once called OpenTemp. But that created 3259 ** confusion because the term "temp table", might refer either 3260 ** to a TEMP table at the SQL level, or to a table opened by 3261 ** this opcode. Then this opcode was call OpenVirtual. But 3262 ** that created confusion with the whole virtual-table idea. 3263 ** 3264 ** The P5 parameter can be a mask of the BTREE_* flags defined 3265 ** in btree.h. These flags control aspects of the operation of 3266 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3267 ** added automatically. 3268 */ 3269 /* Opcode: OpenAutoindex P1 P2 * P4 * 3270 ** 3271 ** This opcode works the same as OP_OpenEphemeral. It has a 3272 ** different name to distinguish its use. Tables created using 3273 ** by this opcode will be used for automatically created transient 3274 ** indices in joins. 3275 */ 3276 case OP_OpenAutoindex: 3277 case OP_OpenEphemeral: { 3278 VdbeCursor *pCx; 3279 static const int vfsFlags = 3280 SQLITE_OPEN_READWRITE | 3281 SQLITE_OPEN_CREATE | 3282 SQLITE_OPEN_EXCLUSIVE | 3283 SQLITE_OPEN_DELETEONCLOSE | 3284 SQLITE_OPEN_TRANSIENT_DB; 3285 3286 assert( pOp->p1>=0 ); 3287 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3288 if( pCx==0 ) goto no_mem; 3289 pCx->nullRow = 1; 3290 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3291 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3292 if( rc==SQLITE_OK ){ 3293 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3294 } 3295 if( rc==SQLITE_OK ){ 3296 /* If a transient index is required, create it by calling 3297 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3298 ** opening it. If a transient table is required, just use the 3299 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3300 */ 3301 if( pOp->p4.pKeyInfo ){ 3302 int pgno; 3303 assert( pOp->p4type==P4_KEYINFO ); 3304 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3305 if( rc==SQLITE_OK ){ 3306 assert( pgno==MASTER_ROOT+1 ); 3307 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 3308 (KeyInfo*)pOp->p4.z, pCx->pCursor); 3309 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3310 pCx->pKeyInfo->enc = ENC(p->db); 3311 } 3312 pCx->isTable = 0; 3313 }else{ 3314 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3315 pCx->isTable = 1; 3316 } 3317 } 3318 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3319 pCx->isIndex = !pCx->isTable; 3320 break; 3321 } 3322 3323 /* Opcode: SorterOpen P1 P2 * P4 * 3324 ** 3325 ** This opcode works like OP_OpenEphemeral except that it opens 3326 ** a transient index that is specifically designed to sort large 3327 ** tables using an external merge-sort algorithm. 3328 */ 3329 case OP_SorterOpen: { 3330 VdbeCursor *pCx; 3331 3332 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3333 if( pCx==0 ) goto no_mem; 3334 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3335 pCx->pKeyInfo->enc = ENC(p->db); 3336 pCx->isSorter = 1; 3337 rc = sqlite3VdbeSorterInit(db, pCx); 3338 break; 3339 } 3340 3341 /* Opcode: OpenPseudo P1 P2 P3 * P5 3342 ** 3343 ** Open a new cursor that points to a fake table that contains a single 3344 ** row of data. The content of that one row in the content of memory 3345 ** register P2 when P5==0. In other words, cursor P1 becomes an alias for the 3346 ** MEM_Blob content contained in register P2. When P5==1, then the 3347 ** row is represented by P3 consecutive registers beginning with P2. 3348 ** 3349 ** A pseudo-table created by this opcode is used to hold a single 3350 ** row output from the sorter so that the row can be decomposed into 3351 ** individual columns using the OP_Column opcode. The OP_Column opcode 3352 ** is the only cursor opcode that works with a pseudo-table. 3353 ** 3354 ** P3 is the number of fields in the records that will be stored by 3355 ** the pseudo-table. 3356 */ 3357 case OP_OpenPseudo: { 3358 VdbeCursor *pCx; 3359 3360 assert( pOp->p1>=0 ); 3361 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3362 if( pCx==0 ) goto no_mem; 3363 pCx->nullRow = 1; 3364 pCx->pseudoTableReg = pOp->p2; 3365 pCx->isTable = 1; 3366 pCx->isIndex = 0; 3367 pCx->multiPseudo = pOp->p5; 3368 break; 3369 } 3370 3371 /* Opcode: Close P1 * * * * 3372 ** 3373 ** Close a cursor previously opened as P1. If P1 is not 3374 ** currently open, this instruction is a no-op. 3375 */ 3376 case OP_Close: { 3377 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3378 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3379 p->apCsr[pOp->p1] = 0; 3380 break; 3381 } 3382 3383 /* Opcode: SeekGe P1 P2 P3 P4 * 3384 ** 3385 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3386 ** use the value in register P3 as the key. If cursor P1 refers 3387 ** to an SQL index, then P3 is the first in an array of P4 registers 3388 ** that are used as an unpacked index key. 3389 ** 3390 ** Reposition cursor P1 so that it points to the smallest entry that 3391 ** is greater than or equal to the key value. If there are no records 3392 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3393 ** 3394 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe 3395 */ 3396 /* Opcode: SeekGt P1 P2 P3 P4 * 3397 ** 3398 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3399 ** use the value in register P3 as a key. If cursor P1 refers 3400 ** to an SQL index, then P3 is the first in an array of P4 registers 3401 ** that are used as an unpacked index key. 3402 ** 3403 ** Reposition cursor P1 so that it points to the smallest entry that 3404 ** is greater than the key value. If there are no records greater than 3405 ** the key and P2 is not zero, then jump to P2. 3406 ** 3407 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe 3408 */ 3409 /* Opcode: SeekLt P1 P2 P3 P4 * 3410 ** 3411 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3412 ** use the value in register P3 as a key. If cursor P1 refers 3413 ** to an SQL index, then P3 is the first in an array of P4 registers 3414 ** that are used as an unpacked index key. 3415 ** 3416 ** Reposition cursor P1 so that it points to the largest entry that 3417 ** is less than the key value. If there are no records less than 3418 ** the key and P2 is not zero, then jump to P2. 3419 ** 3420 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe 3421 */ 3422 /* Opcode: SeekLe P1 P2 P3 P4 * 3423 ** 3424 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3425 ** use the value in register P3 as a key. If cursor P1 refers 3426 ** to an SQL index, then P3 is the first in an array of P4 registers 3427 ** that are used as an unpacked index key. 3428 ** 3429 ** Reposition cursor P1 so that it points to the largest entry that 3430 ** is less than or equal to the key value. If there are no records 3431 ** less than or equal to the key and P2 is not zero, then jump to P2. 3432 ** 3433 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt 3434 */ 3435 case OP_SeekLt: /* jump, in3 */ 3436 case OP_SeekLe: /* jump, in3 */ 3437 case OP_SeekGe: /* jump, in3 */ 3438 case OP_SeekGt: { /* jump, in3 */ 3439 int res; 3440 int oc; 3441 VdbeCursor *pC; 3442 UnpackedRecord r; 3443 int nField; 3444 i64 iKey; /* The rowid we are to seek to */ 3445 3446 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3447 assert( pOp->p2!=0 ); 3448 pC = p->apCsr[pOp->p1]; 3449 assert( pC!=0 ); 3450 assert( pC->pseudoTableReg==0 ); 3451 assert( OP_SeekLe == OP_SeekLt+1 ); 3452 assert( OP_SeekGe == OP_SeekLt+2 ); 3453 assert( OP_SeekGt == OP_SeekLt+3 ); 3454 assert( pC->isOrdered ); 3455 if( ALWAYS(pC->pCursor!=0) ){ 3456 oc = pOp->opcode; 3457 pC->nullRow = 0; 3458 if( pC->isTable ){ 3459 /* The input value in P3 might be of any type: integer, real, string, 3460 ** blob, or NULL. But it needs to be an integer before we can do 3461 ** the seek, so covert it. */ 3462 pIn3 = &aMem[pOp->p3]; 3463 applyNumericAffinity(pIn3); 3464 iKey = sqlite3VdbeIntValue(pIn3); 3465 pC->rowidIsValid = 0; 3466 3467 /* If the P3 value could not be converted into an integer without 3468 ** loss of information, then special processing is required... */ 3469 if( (pIn3->flags & MEM_Int)==0 ){ 3470 if( (pIn3->flags & MEM_Real)==0 ){ 3471 /* If the P3 value cannot be converted into any kind of a number, 3472 ** then the seek is not possible, so jump to P2 */ 3473 pc = pOp->p2 - 1; 3474 break; 3475 } 3476 /* If we reach this point, then the P3 value must be a floating 3477 ** point number. */ 3478 assert( (pIn3->flags & MEM_Real)!=0 ); 3479 3480 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){ 3481 /* The P3 value is too large in magnitude to be expressed as an 3482 ** integer. */ 3483 res = 1; 3484 if( pIn3->r<0 ){ 3485 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); 3486 rc = sqlite3BtreeFirst(pC->pCursor, &res); 3487 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3488 } 3489 }else{ 3490 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe ); 3491 rc = sqlite3BtreeLast(pC->pCursor, &res); 3492 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3493 } 3494 } 3495 if( res ){ 3496 pc = pOp->p2 - 1; 3497 } 3498 break; 3499 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){ 3500 /* Use the ceiling() function to convert real->int */ 3501 if( pIn3->r > (double)iKey ) iKey++; 3502 }else{ 3503 /* Use the floor() function to convert real->int */ 3504 assert( oc==OP_SeekLe || oc==OP_SeekGt ); 3505 if( pIn3->r < (double)iKey ) iKey--; 3506 } 3507 } 3508 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3509 if( rc!=SQLITE_OK ){ 3510 goto abort_due_to_error; 3511 } 3512 if( res==0 ){ 3513 pC->rowidIsValid = 1; 3514 pC->lastRowid = iKey; 3515 } 3516 }else{ 3517 nField = pOp->p4.i; 3518 assert( pOp->p4type==P4_INT32 ); 3519 assert( nField>0 ); 3520 r.pKeyInfo = pC->pKeyInfo; 3521 r.nField = (u16)nField; 3522 3523 /* The next line of code computes as follows, only faster: 3524 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){ 3525 ** r.flags = UNPACKED_INCRKEY; 3526 ** }else{ 3527 ** r.flags = 0; 3528 ** } 3529 */ 3530 r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt))); 3531 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY ); 3532 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY ); 3533 assert( oc!=OP_SeekGe || r.flags==0 ); 3534 assert( oc!=OP_SeekLt || r.flags==0 ); 3535 3536 r.aMem = &aMem[pOp->p3]; 3537 #ifdef SQLITE_DEBUG 3538 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3539 #endif 3540 ExpandBlob(r.aMem); 3541 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3542 if( rc!=SQLITE_OK ){ 3543 goto abort_due_to_error; 3544 } 3545 pC->rowidIsValid = 0; 3546 } 3547 pC->deferredMoveto = 0; 3548 pC->cacheStatus = CACHE_STALE; 3549 #ifdef SQLITE_TEST 3550 sqlite3_search_count++; 3551 #endif 3552 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); 3553 if( res<0 || (res==0 && oc==OP_SeekGt) ){ 3554 rc = sqlite3BtreeNext(pC->pCursor, &res); 3555 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3556 pC->rowidIsValid = 0; 3557 }else{ 3558 res = 0; 3559 } 3560 }else{ 3561 assert( oc==OP_SeekLt || oc==OP_SeekLe ); 3562 if( res>0 || (res==0 && oc==OP_SeekLt) ){ 3563 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3564 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3565 pC->rowidIsValid = 0; 3566 }else{ 3567 /* res might be negative because the table is empty. Check to 3568 ** see if this is the case. 3569 */ 3570 res = sqlite3BtreeEof(pC->pCursor); 3571 } 3572 } 3573 assert( pOp->p2>0 ); 3574 if( res ){ 3575 pc = pOp->p2 - 1; 3576 } 3577 }else{ 3578 /* This happens when attempting to open the sqlite3_master table 3579 ** for read access returns SQLITE_EMPTY. In this case always 3580 ** take the jump (since there are no records in the table). 3581 */ 3582 pc = pOp->p2 - 1; 3583 } 3584 break; 3585 } 3586 3587 /* Opcode: Seek P1 P2 * * * 3588 ** 3589 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3590 ** for P1 to move so that it points to the rowid given by P2. 3591 ** 3592 ** This is actually a deferred seek. Nothing actually happens until 3593 ** the cursor is used to read a record. That way, if no reads 3594 ** occur, no unnecessary I/O happens. 3595 */ 3596 case OP_Seek: { /* in2 */ 3597 VdbeCursor *pC; 3598 3599 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3600 pC = p->apCsr[pOp->p1]; 3601 assert( pC!=0 ); 3602 if( ALWAYS(pC->pCursor!=0) ){ 3603 assert( pC->isTable ); 3604 pC->nullRow = 0; 3605 pIn2 = &aMem[pOp->p2]; 3606 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3607 pC->rowidIsValid = 0; 3608 pC->deferredMoveto = 1; 3609 } 3610 break; 3611 } 3612 3613 3614 /* Opcode: Found P1 P2 P3 P4 * 3615 ** 3616 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3617 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3618 ** record. 3619 ** 3620 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3621 ** is a prefix of any entry in P1 then a jump is made to P2 and 3622 ** P1 is left pointing at the matching entry. 3623 */ 3624 /* Opcode: NotFound P1 P2 P3 P4 * 3625 ** 3626 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3627 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3628 ** record. 3629 ** 3630 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3631 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3632 ** does contain an entry whose prefix matches the P3/P4 record then control 3633 ** falls through to the next instruction and P1 is left pointing at the 3634 ** matching entry. 3635 ** 3636 ** See also: Found, NotExists, IsUnique 3637 */ 3638 case OP_NotFound: /* jump, in3 */ 3639 case OP_Found: { /* jump, in3 */ 3640 int alreadyExists; 3641 VdbeCursor *pC; 3642 int res; 3643 char *pFree; 3644 UnpackedRecord *pIdxKey; 3645 UnpackedRecord r; 3646 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; 3647 3648 #ifdef SQLITE_TEST 3649 sqlite3_found_count++; 3650 #endif 3651 3652 alreadyExists = 0; 3653 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3654 assert( pOp->p4type==P4_INT32 ); 3655 pC = p->apCsr[pOp->p1]; 3656 assert( pC!=0 ); 3657 pIn3 = &aMem[pOp->p3]; 3658 if( ALWAYS(pC->pCursor!=0) ){ 3659 3660 assert( pC->isTable==0 ); 3661 if( pOp->p4.i>0 ){ 3662 r.pKeyInfo = pC->pKeyInfo; 3663 r.nField = (u16)pOp->p4.i; 3664 r.aMem = pIn3; 3665 #ifdef SQLITE_DEBUG 3666 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3667 #endif 3668 r.flags = UNPACKED_PREFIX_MATCH; 3669 pIdxKey = &r; 3670 }else{ 3671 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3672 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3673 ); 3674 if( pIdxKey==0 ) goto no_mem; 3675 assert( pIn3->flags & MEM_Blob ); 3676 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ 3677 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3678 pIdxKey->flags |= UNPACKED_PREFIX_MATCH; 3679 } 3680 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3681 if( pOp->p4.i==0 ){ 3682 sqlite3DbFree(db, pFree); 3683 } 3684 if( rc!=SQLITE_OK ){ 3685 break; 3686 } 3687 alreadyExists = (res==0); 3688 pC->deferredMoveto = 0; 3689 pC->cacheStatus = CACHE_STALE; 3690 } 3691 if( pOp->opcode==OP_Found ){ 3692 if( alreadyExists ) pc = pOp->p2 - 1; 3693 }else{ 3694 if( !alreadyExists ) pc = pOp->p2 - 1; 3695 } 3696 break; 3697 } 3698 3699 /* Opcode: IsUnique P1 P2 P3 P4 * 3700 ** 3701 ** Cursor P1 is open on an index b-tree - that is to say, a btree which 3702 ** no data and where the key are records generated by OP_MakeRecord with 3703 ** the list field being the integer ROWID of the entry that the index 3704 ** entry refers to. 3705 ** 3706 ** The P3 register contains an integer record number. Call this record 3707 ** number R. Register P4 is the first in a set of N contiguous registers 3708 ** that make up an unpacked index key that can be used with cursor P1. 3709 ** The value of N can be inferred from the cursor. N includes the rowid 3710 ** value appended to the end of the index record. This rowid value may 3711 ** or may not be the same as R. 3712 ** 3713 ** If any of the N registers beginning with register P4 contains a NULL 3714 ** value, jump immediately to P2. 3715 ** 3716 ** Otherwise, this instruction checks if cursor P1 contains an entry 3717 ** where the first (N-1) fields match but the rowid value at the end 3718 ** of the index entry is not R. If there is no such entry, control jumps 3719 ** to instruction P2. Otherwise, the rowid of the conflicting index 3720 ** entry is copied to register P3 and control falls through to the next 3721 ** instruction. 3722 ** 3723 ** See also: NotFound, NotExists, Found 3724 */ 3725 case OP_IsUnique: { /* jump, in3 */ 3726 u16 ii; 3727 VdbeCursor *pCx; 3728 BtCursor *pCrsr; 3729 u16 nField; 3730 Mem *aMx; 3731 UnpackedRecord r; /* B-Tree index search key */ 3732 i64 R; /* Rowid stored in register P3 */ 3733 3734 pIn3 = &aMem[pOp->p3]; 3735 aMx = &aMem[pOp->p4.i]; 3736 /* Assert that the values of parameters P1 and P4 are in range. */ 3737 assert( pOp->p4type==P4_INT32 ); 3738 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); 3739 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3740 3741 /* Find the index cursor. */ 3742 pCx = p->apCsr[pOp->p1]; 3743 assert( pCx->deferredMoveto==0 ); 3744 pCx->seekResult = 0; 3745 pCx->cacheStatus = CACHE_STALE; 3746 pCrsr = pCx->pCursor; 3747 3748 /* If any of the values are NULL, take the jump. */ 3749 nField = pCx->pKeyInfo->nField; 3750 for(ii=0; ii<nField; ii++){ 3751 if( aMx[ii].flags & MEM_Null ){ 3752 pc = pOp->p2 - 1; 3753 pCrsr = 0; 3754 break; 3755 } 3756 } 3757 assert( (aMx[nField].flags & MEM_Null)==0 ); 3758 3759 if( pCrsr!=0 ){ 3760 /* Populate the index search key. */ 3761 r.pKeyInfo = pCx->pKeyInfo; 3762 r.nField = nField + 1; 3763 r.flags = UNPACKED_PREFIX_SEARCH; 3764 r.aMem = aMx; 3765 #ifdef SQLITE_DEBUG 3766 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3767 #endif 3768 3769 /* Extract the value of R from register P3. */ 3770 sqlite3VdbeMemIntegerify(pIn3); 3771 R = pIn3->u.i; 3772 3773 /* Search the B-Tree index. If no conflicting record is found, jump 3774 ** to P2. Otherwise, copy the rowid of the conflicting record to 3775 ** register P3 and fall through to the next instruction. */ 3776 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult); 3777 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){ 3778 pc = pOp->p2 - 1; 3779 }else{ 3780 pIn3->u.i = r.rowid; 3781 } 3782 } 3783 break; 3784 } 3785 3786 /* Opcode: NotExists P1 P2 P3 * * 3787 ** 3788 ** Use the content of register P3 as an integer key. If a record 3789 ** with that key does not exist in table of P1, then jump to P2. 3790 ** If the record does exist, then fall through. The cursor is left 3791 ** pointing to the record if it exists. 3792 ** 3793 ** The difference between this operation and NotFound is that this 3794 ** operation assumes the key is an integer and that P1 is a table whereas 3795 ** NotFound assumes key is a blob constructed from MakeRecord and 3796 ** P1 is an index. 3797 ** 3798 ** See also: Found, NotFound, IsUnique 3799 */ 3800 case OP_NotExists: { /* jump, in3 */ 3801 VdbeCursor *pC; 3802 BtCursor *pCrsr; 3803 int res; 3804 u64 iKey; 3805 3806 pIn3 = &aMem[pOp->p3]; 3807 assert( pIn3->flags & MEM_Int ); 3808 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3809 pC = p->apCsr[pOp->p1]; 3810 assert( pC!=0 ); 3811 assert( pC->isTable ); 3812 assert( pC->pseudoTableReg==0 ); 3813 pCrsr = pC->pCursor; 3814 if( ALWAYS(pCrsr!=0) ){ 3815 res = 0; 3816 iKey = pIn3->u.i; 3817 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3818 pC->lastRowid = pIn3->u.i; 3819 pC->rowidIsValid = res==0 ?1:0; 3820 pC->nullRow = 0; 3821 pC->cacheStatus = CACHE_STALE; 3822 pC->deferredMoveto = 0; 3823 if( res!=0 ){ 3824 pc = pOp->p2 - 1; 3825 assert( pC->rowidIsValid==0 ); 3826 } 3827 pC->seekResult = res; 3828 }else{ 3829 /* This happens when an attempt to open a read cursor on the 3830 ** sqlite_master table returns SQLITE_EMPTY. 3831 */ 3832 pc = pOp->p2 - 1; 3833 assert( pC->rowidIsValid==0 ); 3834 pC->seekResult = 0; 3835 } 3836 break; 3837 } 3838 3839 /* Opcode: Sequence P1 P2 * * * 3840 ** 3841 ** Find the next available sequence number for cursor P1. 3842 ** Write the sequence number into register P2. 3843 ** The sequence number on the cursor is incremented after this 3844 ** instruction. 3845 */ 3846 case OP_Sequence: { /* out2-prerelease */ 3847 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3848 assert( p->apCsr[pOp->p1]!=0 ); 3849 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3850 break; 3851 } 3852 3853 3854 /* Opcode: NewRowid P1 P2 P3 * * 3855 ** 3856 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3857 ** The record number is not previously used as a key in the database 3858 ** table that cursor P1 points to. The new record number is written 3859 ** written to register P2. 3860 ** 3861 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 3862 ** the largest previously generated record number. No new record numbers are 3863 ** allowed to be less than this value. When this value reaches its maximum, 3864 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 3865 ** generated record number. This P3 mechanism is used to help implement the 3866 ** AUTOINCREMENT feature. 3867 */ 3868 case OP_NewRowid: { /* out2-prerelease */ 3869 i64 v; /* The new rowid */ 3870 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3871 int res; /* Result of an sqlite3BtreeLast() */ 3872 int cnt; /* Counter to limit the number of searches */ 3873 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3874 VdbeFrame *pFrame; /* Root frame of VDBE */ 3875 3876 v = 0; 3877 res = 0; 3878 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3879 pC = p->apCsr[pOp->p1]; 3880 assert( pC!=0 ); 3881 if( NEVER(pC->pCursor==0) ){ 3882 /* The zero initialization above is all that is needed */ 3883 }else{ 3884 /* The next rowid or record number (different terms for the same 3885 ** thing) is obtained in a two-step algorithm. 3886 ** 3887 ** First we attempt to find the largest existing rowid and add one 3888 ** to that. But if the largest existing rowid is already the maximum 3889 ** positive integer, we have to fall through to the second 3890 ** probabilistic algorithm 3891 ** 3892 ** The second algorithm is to select a rowid at random and see if 3893 ** it already exists in the table. If it does not exist, we have 3894 ** succeeded. If the random rowid does exist, we select a new one 3895 ** and try again, up to 100 times. 3896 */ 3897 assert( pC->isTable ); 3898 3899 #ifdef SQLITE_32BIT_ROWID 3900 # define MAX_ROWID 0x7fffffff 3901 #else 3902 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 3903 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 3904 ** to provide the constant while making all compilers happy. 3905 */ 3906 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 3907 #endif 3908 3909 if( !pC->useRandomRowid ){ 3910 v = sqlite3BtreeGetCachedRowid(pC->pCursor); 3911 if( v==0 ){ 3912 rc = sqlite3BtreeLast(pC->pCursor, &res); 3913 if( rc!=SQLITE_OK ){ 3914 goto abort_due_to_error; 3915 } 3916 if( res ){ 3917 v = 1; /* IMP: R-61914-48074 */ 3918 }else{ 3919 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 3920 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 3921 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 3922 if( v>=MAX_ROWID ){ 3923 pC->useRandomRowid = 1; 3924 }else{ 3925 v++; /* IMP: R-29538-34987 */ 3926 } 3927 } 3928 } 3929 3930 #ifndef SQLITE_OMIT_AUTOINCREMENT 3931 if( pOp->p3 ){ 3932 /* Assert that P3 is a valid memory cell. */ 3933 assert( pOp->p3>0 ); 3934 if( p->pFrame ){ 3935 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 3936 /* Assert that P3 is a valid memory cell. */ 3937 assert( pOp->p3<=pFrame->nMem ); 3938 pMem = &pFrame->aMem[pOp->p3]; 3939 }else{ 3940 /* Assert that P3 is a valid memory cell. */ 3941 assert( pOp->p3<=p->nMem ); 3942 pMem = &aMem[pOp->p3]; 3943 memAboutToChange(p, pMem); 3944 } 3945 assert( memIsValid(pMem) ); 3946 3947 REGISTER_TRACE(pOp->p3, pMem); 3948 sqlite3VdbeMemIntegerify(pMem); 3949 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 3950 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 3951 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 3952 goto abort_due_to_error; 3953 } 3954 if( v<pMem->u.i+1 ){ 3955 v = pMem->u.i + 1; 3956 } 3957 pMem->u.i = v; 3958 } 3959 #endif 3960 3961 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0); 3962 } 3963 if( pC->useRandomRowid ){ 3964 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 3965 ** largest possible integer (9223372036854775807) then the database 3966 ** engine starts picking positive candidate ROWIDs at random until 3967 ** it finds one that is not previously used. */ 3968 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 3969 ** an AUTOINCREMENT table. */ 3970 /* on the first attempt, simply do one more than previous */ 3971 v = lastRowid; 3972 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3973 v++; /* ensure non-zero */ 3974 cnt = 0; 3975 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 3976 0, &res))==SQLITE_OK) 3977 && (res==0) 3978 && (++cnt<100)){ 3979 /* collision - try another random rowid */ 3980 sqlite3_randomness(sizeof(v), &v); 3981 if( cnt<5 ){ 3982 /* try "small" random rowids for the initial attempts */ 3983 v &= 0xffffff; 3984 }else{ 3985 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3986 } 3987 v++; /* ensure non-zero */ 3988 } 3989 if( rc==SQLITE_OK && res==0 ){ 3990 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 3991 goto abort_due_to_error; 3992 } 3993 assert( v>0 ); /* EV: R-40812-03570 */ 3994 } 3995 pC->rowidIsValid = 0; 3996 pC->deferredMoveto = 0; 3997 pC->cacheStatus = CACHE_STALE; 3998 } 3999 pOut->u.i = v; 4000 break; 4001 } 4002 4003 /* Opcode: Insert P1 P2 P3 P4 P5 4004 ** 4005 ** Write an entry into the table of cursor P1. A new entry is 4006 ** created if it doesn't already exist or the data for an existing 4007 ** entry is overwritten. The data is the value MEM_Blob stored in register 4008 ** number P2. The key is stored in register P3. The key must 4009 ** be a MEM_Int. 4010 ** 4011 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4012 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4013 ** then rowid is stored for subsequent return by the 4014 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4015 ** 4016 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 4017 ** the last seek operation (OP_NotExists) was a success, then this 4018 ** operation will not attempt to find the appropriate row before doing 4019 ** the insert but will instead overwrite the row that the cursor is 4020 ** currently pointing to. Presumably, the prior OP_NotExists opcode 4021 ** has already positioned the cursor correctly. This is an optimization 4022 ** that boosts performance by avoiding redundant seeks. 4023 ** 4024 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4025 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4026 ** is part of an INSERT operation. The difference is only important to 4027 ** the update hook. 4028 ** 4029 ** Parameter P4 may point to a string containing the table-name, or 4030 ** may be NULL. If it is not NULL, then the update-hook 4031 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 4032 ** 4033 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4034 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4035 ** and register P2 becomes ephemeral. If the cursor is changed, the 4036 ** value of register P2 will then change. Make sure this does not 4037 ** cause any problems.) 4038 ** 4039 ** This instruction only works on tables. The equivalent instruction 4040 ** for indices is OP_IdxInsert. 4041 */ 4042 /* Opcode: InsertInt P1 P2 P3 P4 P5 4043 ** 4044 ** This works exactly like OP_Insert except that the key is the 4045 ** integer value P3, not the value of the integer stored in register P3. 4046 */ 4047 case OP_Insert: 4048 case OP_InsertInt: { 4049 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4050 Mem *pKey; /* MEM cell holding key for the record */ 4051 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 4052 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4053 int nZero; /* Number of zero-bytes to append */ 4054 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4055 const char *zDb; /* database name - used by the update hook */ 4056 const char *zTbl; /* Table name - used by the opdate hook */ 4057 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4058 4059 pData = &aMem[pOp->p2]; 4060 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4061 assert( memIsValid(pData) ); 4062 pC = p->apCsr[pOp->p1]; 4063 assert( pC!=0 ); 4064 assert( pC->pCursor!=0 ); 4065 assert( pC->pseudoTableReg==0 ); 4066 assert( pC->isTable ); 4067 REGISTER_TRACE(pOp->p2, pData); 4068 4069 if( pOp->opcode==OP_Insert ){ 4070 pKey = &aMem[pOp->p3]; 4071 assert( pKey->flags & MEM_Int ); 4072 assert( memIsValid(pKey) ); 4073 REGISTER_TRACE(pOp->p3, pKey); 4074 iKey = pKey->u.i; 4075 }else{ 4076 assert( pOp->opcode==OP_InsertInt ); 4077 iKey = pOp->p3; 4078 } 4079 4080 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4081 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4082 if( pData->flags & MEM_Null ){ 4083 pData->z = 0; 4084 pData->n = 0; 4085 }else{ 4086 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4087 } 4088 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4089 if( pData->flags & MEM_Zero ){ 4090 nZero = pData->u.nZero; 4091 }else{ 4092 nZero = 0; 4093 } 4094 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 4095 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 4096 pData->z, pData->n, nZero, 4097 pOp->p5 & OPFLAG_APPEND, seekResult 4098 ); 4099 pC->rowidIsValid = 0; 4100 pC->deferredMoveto = 0; 4101 pC->cacheStatus = CACHE_STALE; 4102 4103 /* Invoke the update-hook if required. */ 4104 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4105 zDb = db->aDb[pC->iDb].zName; 4106 zTbl = pOp->p4.z; 4107 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4108 assert( pC->isTable ); 4109 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4110 assert( pC->iDb>=0 ); 4111 } 4112 break; 4113 } 4114 4115 /* Opcode: Delete P1 P2 * P4 * 4116 ** 4117 ** Delete the record at which the P1 cursor is currently pointing. 4118 ** 4119 ** The cursor will be left pointing at either the next or the previous 4120 ** record in the table. If it is left pointing at the next record, then 4121 ** the next Next instruction will be a no-op. Hence it is OK to delete 4122 ** a record from within an Next loop. 4123 ** 4124 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 4125 ** incremented (otherwise not). 4126 ** 4127 ** P1 must not be pseudo-table. It has to be a real table with 4128 ** multiple rows. 4129 ** 4130 ** If P4 is not NULL, then it is the name of the table that P1 is 4131 ** pointing to. The update hook will be invoked, if it exists. 4132 ** If P4 is not NULL then the P1 cursor must have been positioned 4133 ** using OP_NotFound prior to invoking this opcode. 4134 */ 4135 case OP_Delete: { 4136 i64 iKey; 4137 VdbeCursor *pC; 4138 4139 iKey = 0; 4140 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4141 pC = p->apCsr[pOp->p1]; 4142 assert( pC!=0 ); 4143 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 4144 4145 /* If the update-hook will be invoked, set iKey to the rowid of the 4146 ** row being deleted. 4147 */ 4148 if( db->xUpdateCallback && pOp->p4.z ){ 4149 assert( pC->isTable ); 4150 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ 4151 iKey = pC->lastRowid; 4152 } 4153 4154 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or 4155 ** OP_Column on the same table without any intervening operations that 4156 ** might move or invalidate the cursor. Hence cursor pC is always pointing 4157 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation 4158 ** below is always a no-op and cannot fail. We will run it anyhow, though, 4159 ** to guard against future changes to the code generator. 4160 **/ 4161 assert( pC->deferredMoveto==0 ); 4162 rc = sqlite3VdbeCursorMoveto(pC); 4163 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4164 4165 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 4166 rc = sqlite3BtreeDelete(pC->pCursor); 4167 pC->cacheStatus = CACHE_STALE; 4168 4169 /* Invoke the update-hook if required. */ 4170 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4171 const char *zDb = db->aDb[pC->iDb].zName; 4172 const char *zTbl = pOp->p4.z; 4173 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); 4174 assert( pC->iDb>=0 ); 4175 } 4176 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4177 break; 4178 } 4179 /* Opcode: ResetCount * * * * * 4180 ** 4181 ** The value of the change counter is copied to the database handle 4182 ** change counter (returned by subsequent calls to sqlite3_changes()). 4183 ** Then the VMs internal change counter resets to 0. 4184 ** This is used by trigger programs. 4185 */ 4186 case OP_ResetCount: { 4187 sqlite3VdbeSetChanges(db, p->nChange); 4188 p->nChange = 0; 4189 break; 4190 } 4191 4192 /* Opcode: SorterCompare P1 P2 P3 4193 ** 4194 ** P1 is a sorter cursor. This instruction compares the record blob in 4195 ** register P3 with the entry that the sorter cursor currently points to. 4196 ** If, excluding the rowid fields at the end, the two records are a match, 4197 ** fall through to the next instruction. Otherwise, jump to instruction P2. 4198 */ 4199 case OP_SorterCompare: { 4200 VdbeCursor *pC; 4201 int res; 4202 4203 pC = p->apCsr[pOp->p1]; 4204 assert( isSorter(pC) ); 4205 pIn3 = &aMem[pOp->p3]; 4206 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res); 4207 if( res ){ 4208 pc = pOp->p2-1; 4209 } 4210 break; 4211 }; 4212 4213 /* Opcode: SorterData P1 P2 * * * 4214 ** 4215 ** Write into register P2 the current sorter data for sorter cursor P1. 4216 */ 4217 case OP_SorterData: { 4218 VdbeCursor *pC; 4219 4220 pOut = &aMem[pOp->p2]; 4221 pC = p->apCsr[pOp->p1]; 4222 assert( pC->isSorter ); 4223 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4224 break; 4225 } 4226 4227 /* Opcode: RowData P1 P2 * * * 4228 ** 4229 ** Write into register P2 the complete row data for cursor P1. 4230 ** There is no interpretation of the data. 4231 ** It is just copied onto the P2 register exactly as 4232 ** it is found in the database file. 4233 ** 4234 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4235 ** of a real table, not a pseudo-table. 4236 */ 4237 /* Opcode: RowKey P1 P2 * * * 4238 ** 4239 ** Write into register P2 the complete row key for cursor P1. 4240 ** There is no interpretation of the data. 4241 ** The key is copied onto the P3 register exactly as 4242 ** it is found in the database file. 4243 ** 4244 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4245 ** of a real table, not a pseudo-table. 4246 */ 4247 case OP_RowKey: 4248 case OP_RowData: { 4249 VdbeCursor *pC; 4250 BtCursor *pCrsr; 4251 u32 n; 4252 i64 n64; 4253 4254 pOut = &aMem[pOp->p2]; 4255 memAboutToChange(p, pOut); 4256 4257 /* Note that RowKey and RowData are really exactly the same instruction */ 4258 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4259 pC = p->apCsr[pOp->p1]; 4260 assert( pC->isSorter==0 ); 4261 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4262 assert( pC->isIndex || pOp->opcode==OP_RowData ); 4263 assert( pC!=0 ); 4264 assert( pC->nullRow==0 ); 4265 assert( pC->pseudoTableReg==0 ); 4266 assert( pC->pCursor!=0 ); 4267 pCrsr = pC->pCursor; 4268 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4269 4270 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4271 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4272 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always 4273 ** a no-op and can never fail. But we leave it in place as a safety. 4274 */ 4275 assert( pC->deferredMoveto==0 ); 4276 rc = sqlite3VdbeCursorMoveto(pC); 4277 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4278 4279 if( pC->isIndex ){ 4280 assert( !pC->isTable ); 4281 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); 4282 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4283 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4284 goto too_big; 4285 } 4286 n = (u32)n64; 4287 }else{ 4288 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); 4289 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4290 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4291 goto too_big; 4292 } 4293 } 4294 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ 4295 goto no_mem; 4296 } 4297 pOut->n = n; 4298 MemSetTypeFlag(pOut, MEM_Blob); 4299 if( pC->isIndex ){ 4300 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4301 }else{ 4302 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4303 } 4304 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4305 UPDATE_MAX_BLOBSIZE(pOut); 4306 break; 4307 } 4308 4309 /* Opcode: Rowid P1 P2 * * * 4310 ** 4311 ** Store in register P2 an integer which is the key of the table entry that 4312 ** P1 is currently point to. 4313 ** 4314 ** P1 can be either an ordinary table or a virtual table. There used to 4315 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4316 ** one opcode now works for both table types. 4317 */ 4318 case OP_Rowid: { /* out2-prerelease */ 4319 VdbeCursor *pC; 4320 i64 v; 4321 sqlite3_vtab *pVtab; 4322 const sqlite3_module *pModule; 4323 4324 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4325 pC = p->apCsr[pOp->p1]; 4326 assert( pC!=0 ); 4327 assert( pC->pseudoTableReg==0 || pC->nullRow ); 4328 if( pC->nullRow ){ 4329 pOut->flags = MEM_Null; 4330 break; 4331 }else if( pC->deferredMoveto ){ 4332 v = pC->movetoTarget; 4333 #ifndef SQLITE_OMIT_VIRTUALTABLE 4334 }else if( pC->pVtabCursor ){ 4335 pVtab = pC->pVtabCursor->pVtab; 4336 pModule = pVtab->pModule; 4337 assert( pModule->xRowid ); 4338 rc = pModule->xRowid(pC->pVtabCursor, &v); 4339 importVtabErrMsg(p, pVtab); 4340 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4341 }else{ 4342 assert( pC->pCursor!=0 ); 4343 rc = sqlite3VdbeCursorMoveto(pC); 4344 if( rc ) goto abort_due_to_error; 4345 if( pC->rowidIsValid ){ 4346 v = pC->lastRowid; 4347 }else{ 4348 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4349 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ 4350 } 4351 } 4352 pOut->u.i = v; 4353 break; 4354 } 4355 4356 /* Opcode: NullRow P1 * * * * 4357 ** 4358 ** Move the cursor P1 to a null row. Any OP_Column operations 4359 ** that occur while the cursor is on the null row will always 4360 ** write a NULL. 4361 */ 4362 case OP_NullRow: { 4363 VdbeCursor *pC; 4364 4365 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4366 pC = p->apCsr[pOp->p1]; 4367 assert( pC!=0 ); 4368 pC->nullRow = 1; 4369 pC->rowidIsValid = 0; 4370 assert( pC->pCursor || pC->pVtabCursor ); 4371 if( pC->pCursor ){ 4372 sqlite3BtreeClearCursor(pC->pCursor); 4373 } 4374 break; 4375 } 4376 4377 /* Opcode: Last P1 P2 * * * 4378 ** 4379 ** The next use of the Rowid or Column or Next instruction for P1 4380 ** will refer to the last entry in the database table or index. 4381 ** If the table or index is empty and P2>0, then jump immediately to P2. 4382 ** If P2 is 0 or if the table or index is not empty, fall through 4383 ** to the following instruction. 4384 */ 4385 case OP_Last: { /* jump */ 4386 VdbeCursor *pC; 4387 BtCursor *pCrsr; 4388 int res; 4389 4390 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4391 pC = p->apCsr[pOp->p1]; 4392 assert( pC!=0 ); 4393 pCrsr = pC->pCursor; 4394 res = 0; 4395 if( ALWAYS(pCrsr!=0) ){ 4396 rc = sqlite3BtreeLast(pCrsr, &res); 4397 } 4398 pC->nullRow = (u8)res; 4399 pC->deferredMoveto = 0; 4400 pC->rowidIsValid = 0; 4401 pC->cacheStatus = CACHE_STALE; 4402 if( pOp->p2>0 && res ){ 4403 pc = pOp->p2 - 1; 4404 } 4405 break; 4406 } 4407 4408 4409 /* Opcode: Sort P1 P2 * * * 4410 ** 4411 ** This opcode does exactly the same thing as OP_Rewind except that 4412 ** it increments an undocumented global variable used for testing. 4413 ** 4414 ** Sorting is accomplished by writing records into a sorting index, 4415 ** then rewinding that index and playing it back from beginning to 4416 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4417 ** rewinding so that the global variable will be incremented and 4418 ** regression tests can determine whether or not the optimizer is 4419 ** correctly optimizing out sorts. 4420 */ 4421 case OP_SorterSort: /* jump */ 4422 case OP_Sort: { /* jump */ 4423 #ifdef SQLITE_TEST 4424 sqlite3_sort_count++; 4425 sqlite3_search_count--; 4426 #endif 4427 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; 4428 /* Fall through into OP_Rewind */ 4429 } 4430 /* Opcode: Rewind P1 P2 * * * 4431 ** 4432 ** The next use of the Rowid or Column or Next instruction for P1 4433 ** will refer to the first entry in the database table or index. 4434 ** If the table or index is empty and P2>0, then jump immediately to P2. 4435 ** If P2 is 0 or if the table or index is not empty, fall through 4436 ** to the following instruction. 4437 */ 4438 case OP_Rewind: { /* jump */ 4439 VdbeCursor *pC; 4440 BtCursor *pCrsr; 4441 int res; 4442 4443 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4444 pC = p->apCsr[pOp->p1]; 4445 assert( pC!=0 ); 4446 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) ); 4447 res = 1; 4448 if( isSorter(pC) ){ 4449 rc = sqlite3VdbeSorterRewind(db, pC, &res); 4450 }else{ 4451 pCrsr = pC->pCursor; 4452 assert( pCrsr ); 4453 rc = sqlite3BtreeFirst(pCrsr, &res); 4454 pC->atFirst = res==0 ?1:0; 4455 pC->deferredMoveto = 0; 4456 pC->cacheStatus = CACHE_STALE; 4457 pC->rowidIsValid = 0; 4458 } 4459 pC->nullRow = (u8)res; 4460 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4461 if( res ){ 4462 pc = pOp->p2 - 1; 4463 } 4464 break; 4465 } 4466 4467 /* Opcode: Next P1 P2 * P4 P5 4468 ** 4469 ** Advance cursor P1 so that it points to the next key/data pair in its 4470 ** table or index. If there are no more key/value pairs then fall through 4471 ** to the following instruction. But if the cursor advance was successful, 4472 ** jump immediately to P2. 4473 ** 4474 ** The P1 cursor must be for a real table, not a pseudo-table. 4475 ** 4476 ** P4 is always of type P4_ADVANCE. The function pointer points to 4477 ** sqlite3BtreeNext(). 4478 ** 4479 ** If P5 is positive and the jump is taken, then event counter 4480 ** number P5-1 in the prepared statement is incremented. 4481 ** 4482 ** See also: Prev 4483 */ 4484 /* Opcode: Prev P1 P2 * * P5 4485 ** 4486 ** Back up cursor P1 so that it points to the previous key/data pair in its 4487 ** table or index. If there is no previous key/value pairs then fall through 4488 ** to the following instruction. But if the cursor backup was successful, 4489 ** jump immediately to P2. 4490 ** 4491 ** The P1 cursor must be for a real table, not a pseudo-table. 4492 ** 4493 ** P4 is always of type P4_ADVANCE. The function pointer points to 4494 ** sqlite3BtreePrevious(). 4495 ** 4496 ** If P5 is positive and the jump is taken, then event counter 4497 ** number P5-1 in the prepared statement is incremented. 4498 */ 4499 case OP_SorterNext: /* jump */ 4500 case OP_Prev: /* jump */ 4501 case OP_Next: { /* jump */ 4502 VdbeCursor *pC; 4503 int res; 4504 4505 CHECK_FOR_INTERRUPT; 4506 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4507 assert( pOp->p5<=ArraySize(p->aCounter) ); 4508 pC = p->apCsr[pOp->p1]; 4509 if( pC==0 ){ 4510 break; /* See ticket #2273 */ 4511 } 4512 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) ); 4513 if( isSorter(pC) ){ 4514 assert( pOp->opcode==OP_SorterNext ); 4515 rc = sqlite3VdbeSorterNext(db, pC, &res); 4516 }else{ 4517 res = 1; 4518 assert( pC->deferredMoveto==0 ); 4519 assert( pC->pCursor ); 4520 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4521 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4522 rc = pOp->p4.xAdvance(pC->pCursor, &res); 4523 } 4524 pC->nullRow = (u8)res; 4525 pC->cacheStatus = CACHE_STALE; 4526 if( res==0 ){ 4527 pc = pOp->p2 - 1; 4528 if( pOp->p5 ) p->aCounter[pOp->p5-1]++; 4529 #ifdef SQLITE_TEST 4530 sqlite3_search_count++; 4531 #endif 4532 } 4533 pC->rowidIsValid = 0; 4534 break; 4535 } 4536 4537 /* Opcode: IdxInsert P1 P2 P3 * P5 4538 ** 4539 ** Register P2 holds an SQL index key made using the 4540 ** MakeRecord instructions. This opcode writes that key 4541 ** into the index P1. Data for the entry is nil. 4542 ** 4543 ** P3 is a flag that provides a hint to the b-tree layer that this 4544 ** insert is likely to be an append. 4545 ** 4546 ** This instruction only works for indices. The equivalent instruction 4547 ** for tables is OP_Insert. 4548 */ 4549 case OP_SorterInsert: /* in2 */ 4550 case OP_IdxInsert: { /* in2 */ 4551 VdbeCursor *pC; 4552 BtCursor *pCrsr; 4553 int nKey; 4554 const char *zKey; 4555 4556 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4557 pC = p->apCsr[pOp->p1]; 4558 assert( pC!=0 ); 4559 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) ); 4560 pIn2 = &aMem[pOp->p2]; 4561 assert( pIn2->flags & MEM_Blob ); 4562 pCrsr = pC->pCursor; 4563 if( ALWAYS(pCrsr!=0) ){ 4564 assert( pC->isTable==0 ); 4565 rc = ExpandBlob(pIn2); 4566 if( rc==SQLITE_OK ){ 4567 if( isSorter(pC) ){ 4568 rc = sqlite3VdbeSorterWrite(db, pC, pIn2); 4569 }else{ 4570 nKey = pIn2->n; 4571 zKey = pIn2->z; 4572 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4573 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4574 ); 4575 assert( pC->deferredMoveto==0 ); 4576 pC->cacheStatus = CACHE_STALE; 4577 } 4578 } 4579 } 4580 break; 4581 } 4582 4583 /* Opcode: IdxDelete P1 P2 P3 * * 4584 ** 4585 ** The content of P3 registers starting at register P2 form 4586 ** an unpacked index key. This opcode removes that entry from the 4587 ** index opened by cursor P1. 4588 */ 4589 case OP_IdxDelete: { 4590 VdbeCursor *pC; 4591 BtCursor *pCrsr; 4592 int res; 4593 UnpackedRecord r; 4594 4595 assert( pOp->p3>0 ); 4596 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); 4597 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4598 pC = p->apCsr[pOp->p1]; 4599 assert( pC!=0 ); 4600 pCrsr = pC->pCursor; 4601 if( ALWAYS(pCrsr!=0) ){ 4602 r.pKeyInfo = pC->pKeyInfo; 4603 r.nField = (u16)pOp->p3; 4604 r.flags = 0; 4605 r.aMem = &aMem[pOp->p2]; 4606 #ifdef SQLITE_DEBUG 4607 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4608 #endif 4609 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4610 if( rc==SQLITE_OK && res==0 ){ 4611 rc = sqlite3BtreeDelete(pCrsr); 4612 } 4613 assert( pC->deferredMoveto==0 ); 4614 pC->cacheStatus = CACHE_STALE; 4615 } 4616 break; 4617 } 4618 4619 /* Opcode: IdxRowid P1 P2 * * * 4620 ** 4621 ** Write into register P2 an integer which is the last entry in the record at 4622 ** the end of the index key pointed to by cursor P1. This integer should be 4623 ** the rowid of the table entry to which this index entry points. 4624 ** 4625 ** See also: Rowid, MakeRecord. 4626 */ 4627 case OP_IdxRowid: { /* out2-prerelease */ 4628 BtCursor *pCrsr; 4629 VdbeCursor *pC; 4630 i64 rowid; 4631 4632 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4633 pC = p->apCsr[pOp->p1]; 4634 assert( pC!=0 ); 4635 pCrsr = pC->pCursor; 4636 pOut->flags = MEM_Null; 4637 if( ALWAYS(pCrsr!=0) ){ 4638 rc = sqlite3VdbeCursorMoveto(pC); 4639 if( NEVER(rc) ) goto abort_due_to_error; 4640 assert( pC->deferredMoveto==0 ); 4641 assert( pC->isTable==0 ); 4642 if( !pC->nullRow ){ 4643 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4644 if( rc!=SQLITE_OK ){ 4645 goto abort_due_to_error; 4646 } 4647 pOut->u.i = rowid; 4648 pOut->flags = MEM_Int; 4649 } 4650 } 4651 break; 4652 } 4653 4654 /* Opcode: IdxGE P1 P2 P3 P4 P5 4655 ** 4656 ** The P4 register values beginning with P3 form an unpacked index 4657 ** key that omits the ROWID. Compare this key value against the index 4658 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4659 ** 4660 ** If the P1 index entry is greater than or equal to the key value 4661 ** then jump to P2. Otherwise fall through to the next instruction. 4662 ** 4663 ** If P5 is non-zero then the key value is increased by an epsilon 4664 ** prior to the comparison. This make the opcode work like IdxGT except 4665 ** that if the key from register P3 is a prefix of the key in the cursor, 4666 ** the result is false whereas it would be true with IdxGT. 4667 */ 4668 /* Opcode: IdxLT P1 P2 P3 P4 P5 4669 ** 4670 ** The P4 register values beginning with P3 form an unpacked index 4671 ** key that omits the ROWID. Compare this key value against the index 4672 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4673 ** 4674 ** If the P1 index entry is less than the key value then jump to P2. 4675 ** Otherwise fall through to the next instruction. 4676 ** 4677 ** If P5 is non-zero then the key value is increased by an epsilon prior 4678 ** to the comparison. This makes the opcode work like IdxLE. 4679 */ 4680 case OP_IdxLT: /* jump */ 4681 case OP_IdxGE: { /* jump */ 4682 VdbeCursor *pC; 4683 int res; 4684 UnpackedRecord r; 4685 4686 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4687 pC = p->apCsr[pOp->p1]; 4688 assert( pC!=0 ); 4689 assert( pC->isOrdered ); 4690 if( ALWAYS(pC->pCursor!=0) ){ 4691 assert( pC->deferredMoveto==0 ); 4692 assert( pOp->p5==0 || pOp->p5==1 ); 4693 assert( pOp->p4type==P4_INT32 ); 4694 r.pKeyInfo = pC->pKeyInfo; 4695 r.nField = (u16)pOp->p4.i; 4696 if( pOp->p5 ){ 4697 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH; 4698 }else{ 4699 r.flags = UNPACKED_PREFIX_MATCH; 4700 } 4701 r.aMem = &aMem[pOp->p3]; 4702 #ifdef SQLITE_DEBUG 4703 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4704 #endif 4705 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); 4706 if( pOp->opcode==OP_IdxLT ){ 4707 res = -res; 4708 }else{ 4709 assert( pOp->opcode==OP_IdxGE ); 4710 res++; 4711 } 4712 if( res>0 ){ 4713 pc = pOp->p2 - 1 ; 4714 } 4715 } 4716 break; 4717 } 4718 4719 /* Opcode: Destroy P1 P2 P3 * * 4720 ** 4721 ** Delete an entire database table or index whose root page in the database 4722 ** file is given by P1. 4723 ** 4724 ** The table being destroyed is in the main database file if P3==0. If 4725 ** P3==1 then the table to be clear is in the auxiliary database file 4726 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4727 ** 4728 ** If AUTOVACUUM is enabled then it is possible that another root page 4729 ** might be moved into the newly deleted root page in order to keep all 4730 ** root pages contiguous at the beginning of the database. The former 4731 ** value of the root page that moved - its value before the move occurred - 4732 ** is stored in register P2. If no page 4733 ** movement was required (because the table being dropped was already 4734 ** the last one in the database) then a zero is stored in register P2. 4735 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4736 ** 4737 ** See also: Clear 4738 */ 4739 case OP_Destroy: { /* out2-prerelease */ 4740 int iMoved; 4741 int iCnt; 4742 Vdbe *pVdbe; 4743 int iDb; 4744 4745 assert( p->readOnly==0 ); 4746 #ifndef SQLITE_OMIT_VIRTUALTABLE 4747 iCnt = 0; 4748 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4749 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 4750 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 4751 ){ 4752 iCnt++; 4753 } 4754 } 4755 #else 4756 iCnt = db->nVdbeRead; 4757 #endif 4758 pOut->flags = MEM_Null; 4759 if( iCnt>1 ){ 4760 rc = SQLITE_LOCKED; 4761 p->errorAction = OE_Abort; 4762 }else{ 4763 iDb = pOp->p3; 4764 assert( iCnt==1 ); 4765 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 4766 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4767 pOut->flags = MEM_Int; 4768 pOut->u.i = iMoved; 4769 #ifndef SQLITE_OMIT_AUTOVACUUM 4770 if( rc==SQLITE_OK && iMoved!=0 ){ 4771 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 4772 /* All OP_Destroy operations occur on the same btree */ 4773 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 4774 resetSchemaOnFault = iDb+1; 4775 } 4776 #endif 4777 } 4778 break; 4779 } 4780 4781 /* Opcode: Clear P1 P2 P3 4782 ** 4783 ** Delete all contents of the database table or index whose root page 4784 ** in the database file is given by P1. But, unlike Destroy, do not 4785 ** remove the table or index from the database file. 4786 ** 4787 ** The table being clear is in the main database file if P2==0. If 4788 ** P2==1 then the table to be clear is in the auxiliary database file 4789 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4790 ** 4791 ** If the P3 value is non-zero, then the table referred to must be an 4792 ** intkey table (an SQL table, not an index). In this case the row change 4793 ** count is incremented by the number of rows in the table being cleared. 4794 ** If P3 is greater than zero, then the value stored in register P3 is 4795 ** also incremented by the number of rows in the table being cleared. 4796 ** 4797 ** See also: Destroy 4798 */ 4799 case OP_Clear: { 4800 int nChange; 4801 4802 nChange = 0; 4803 assert( p->readOnly==0 ); 4804 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); 4805 rc = sqlite3BtreeClearTable( 4806 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 4807 ); 4808 if( pOp->p3 ){ 4809 p->nChange += nChange; 4810 if( pOp->p3>0 ){ 4811 assert( memIsValid(&aMem[pOp->p3]) ); 4812 memAboutToChange(p, &aMem[pOp->p3]); 4813 aMem[pOp->p3].u.i += nChange; 4814 } 4815 } 4816 break; 4817 } 4818 4819 /* Opcode: CreateTable P1 P2 * * * 4820 ** 4821 ** Allocate a new table in the main database file if P1==0 or in the 4822 ** auxiliary database file if P1==1 or in an attached database if 4823 ** P1>1. Write the root page number of the new table into 4824 ** register P2 4825 ** 4826 ** The difference between a table and an index is this: A table must 4827 ** have a 4-byte integer key and can have arbitrary data. An index 4828 ** has an arbitrary key but no data. 4829 ** 4830 ** See also: CreateIndex 4831 */ 4832 /* Opcode: CreateIndex P1 P2 * * * 4833 ** 4834 ** Allocate a new index in the main database file if P1==0 or in the 4835 ** auxiliary database file if P1==1 or in an attached database if 4836 ** P1>1. Write the root page number of the new table into 4837 ** register P2. 4838 ** 4839 ** See documentation on OP_CreateTable for additional information. 4840 */ 4841 case OP_CreateIndex: /* out2-prerelease */ 4842 case OP_CreateTable: { /* out2-prerelease */ 4843 int pgno; 4844 int flags; 4845 Db *pDb; 4846 4847 pgno = 0; 4848 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4849 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 4850 assert( p->readOnly==0 ); 4851 pDb = &db->aDb[pOp->p1]; 4852 assert( pDb->pBt!=0 ); 4853 if( pOp->opcode==OP_CreateTable ){ 4854 /* flags = BTREE_INTKEY; */ 4855 flags = BTREE_INTKEY; 4856 }else{ 4857 flags = BTREE_BLOBKEY; 4858 } 4859 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 4860 pOut->u.i = pgno; 4861 break; 4862 } 4863 4864 /* Opcode: ParseSchema P1 * * P4 * 4865 ** 4866 ** Read and parse all entries from the SQLITE_MASTER table of database P1 4867 ** that match the WHERE clause P4. 4868 ** 4869 ** This opcode invokes the parser to create a new virtual machine, 4870 ** then runs the new virtual machine. It is thus a re-entrant opcode. 4871 */ 4872 case OP_ParseSchema: { 4873 int iDb; 4874 const char *zMaster; 4875 char *zSql; 4876 InitData initData; 4877 4878 /* Any prepared statement that invokes this opcode will hold mutexes 4879 ** on every btree. This is a prerequisite for invoking 4880 ** sqlite3InitCallback(). 4881 */ 4882 #ifdef SQLITE_DEBUG 4883 for(iDb=0; iDb<db->nDb; iDb++){ 4884 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 4885 } 4886 #endif 4887 4888 iDb = pOp->p1; 4889 assert( iDb>=0 && iDb<db->nDb ); 4890 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 4891 /* Used to be a conditional */ { 4892 zMaster = SCHEMA_TABLE(iDb); 4893 initData.db = db; 4894 initData.iDb = pOp->p1; 4895 initData.pzErrMsg = &p->zErrMsg; 4896 zSql = sqlite3MPrintf(db, 4897 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 4898 db->aDb[iDb].zName, zMaster, pOp->p4.z); 4899 if( zSql==0 ){ 4900 rc = SQLITE_NOMEM; 4901 }else{ 4902 assert( db->init.busy==0 ); 4903 db->init.busy = 1; 4904 initData.rc = SQLITE_OK; 4905 assert( !db->mallocFailed ); 4906 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 4907 if( rc==SQLITE_OK ) rc = initData.rc; 4908 sqlite3DbFree(db, zSql); 4909 db->init.busy = 0; 4910 } 4911 } 4912 if( rc ) sqlite3ResetAllSchemasOfConnection(db); 4913 if( rc==SQLITE_NOMEM ){ 4914 goto no_mem; 4915 } 4916 break; 4917 } 4918 4919 #if !defined(SQLITE_OMIT_ANALYZE) 4920 /* Opcode: LoadAnalysis P1 * * * * 4921 ** 4922 ** Read the sqlite_stat1 table for database P1 and load the content 4923 ** of that table into the internal index hash table. This will cause 4924 ** the analysis to be used when preparing all subsequent queries. 4925 */ 4926 case OP_LoadAnalysis: { 4927 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4928 rc = sqlite3AnalysisLoad(db, pOp->p1); 4929 break; 4930 } 4931 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 4932 4933 /* Opcode: DropTable P1 * * P4 * 4934 ** 4935 ** Remove the internal (in-memory) data structures that describe 4936 ** the table named P4 in database P1. This is called after a table 4937 ** is dropped in order to keep the internal representation of the 4938 ** schema consistent with what is on disk. 4939 */ 4940 case OP_DropTable: { 4941 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 4942 break; 4943 } 4944 4945 /* Opcode: DropIndex P1 * * P4 * 4946 ** 4947 ** Remove the internal (in-memory) data structures that describe 4948 ** the index named P4 in database P1. This is called after an index 4949 ** is dropped in order to keep the internal representation of the 4950 ** schema consistent with what is on disk. 4951 */ 4952 case OP_DropIndex: { 4953 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 4954 break; 4955 } 4956 4957 /* Opcode: DropTrigger P1 * * P4 * 4958 ** 4959 ** Remove the internal (in-memory) data structures that describe 4960 ** the trigger named P4 in database P1. This is called after a trigger 4961 ** is dropped in order to keep the internal representation of the 4962 ** schema consistent with what is on disk. 4963 */ 4964 case OP_DropTrigger: { 4965 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 4966 break; 4967 } 4968 4969 4970 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 4971 /* Opcode: IntegrityCk P1 P2 P3 * P5 4972 ** 4973 ** Do an analysis of the currently open database. Store in 4974 ** register P1 the text of an error message describing any problems. 4975 ** If no problems are found, store a NULL in register P1. 4976 ** 4977 ** The register P3 contains the maximum number of allowed errors. 4978 ** At most reg(P3) errors will be reported. 4979 ** In other words, the analysis stops as soon as reg(P1) errors are 4980 ** seen. Reg(P1) is updated with the number of errors remaining. 4981 ** 4982 ** The root page numbers of all tables in the database are integer 4983 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 4984 ** total. 4985 ** 4986 ** If P5 is not zero, the check is done on the auxiliary database 4987 ** file, not the main database file. 4988 ** 4989 ** This opcode is used to implement the integrity_check pragma. 4990 */ 4991 case OP_IntegrityCk: { 4992 int nRoot; /* Number of tables to check. (Number of root pages.) */ 4993 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 4994 int j; /* Loop counter */ 4995 int nErr; /* Number of errors reported */ 4996 char *z; /* Text of the error report */ 4997 Mem *pnErr; /* Register keeping track of errors remaining */ 4998 4999 assert( p->bIsReader ); 5000 nRoot = pOp->p2; 5001 assert( nRoot>0 ); 5002 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 5003 if( aRoot==0 ) goto no_mem; 5004 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 5005 pnErr = &aMem[pOp->p3]; 5006 assert( (pnErr->flags & MEM_Int)!=0 ); 5007 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5008 pIn1 = &aMem[pOp->p1]; 5009 for(j=0; j<nRoot; j++){ 5010 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 5011 } 5012 aRoot[j] = 0; 5013 assert( pOp->p5<db->nDb ); 5014 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 ); 5015 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5016 (int)pnErr->u.i, &nErr); 5017 sqlite3DbFree(db, aRoot); 5018 pnErr->u.i -= nErr; 5019 sqlite3VdbeMemSetNull(pIn1); 5020 if( nErr==0 ){ 5021 assert( z==0 ); 5022 }else if( z==0 ){ 5023 goto no_mem; 5024 }else{ 5025 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5026 } 5027 UPDATE_MAX_BLOBSIZE(pIn1); 5028 sqlite3VdbeChangeEncoding(pIn1, encoding); 5029 break; 5030 } 5031 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5032 5033 /* Opcode: RowSetAdd P1 P2 * * * 5034 ** 5035 ** Insert the integer value held by register P2 into a boolean index 5036 ** held in register P1. 5037 ** 5038 ** An assertion fails if P2 is not an integer. 5039 */ 5040 case OP_RowSetAdd: { /* in1, in2 */ 5041 pIn1 = &aMem[pOp->p1]; 5042 pIn2 = &aMem[pOp->p2]; 5043 assert( (pIn2->flags & MEM_Int)!=0 ); 5044 if( (pIn1->flags & MEM_RowSet)==0 ){ 5045 sqlite3VdbeMemSetRowSet(pIn1); 5046 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5047 } 5048 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5049 break; 5050 } 5051 5052 /* Opcode: RowSetRead P1 P2 P3 * * 5053 ** 5054 ** Extract the smallest value from boolean index P1 and put that value into 5055 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5056 ** unchanged and jump to instruction P2. 5057 */ 5058 case OP_RowSetRead: { /* jump, in1, out3 */ 5059 i64 val; 5060 CHECK_FOR_INTERRUPT; 5061 pIn1 = &aMem[pOp->p1]; 5062 if( (pIn1->flags & MEM_RowSet)==0 5063 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5064 ){ 5065 /* The boolean index is empty */ 5066 sqlite3VdbeMemSetNull(pIn1); 5067 pc = pOp->p2 - 1; 5068 }else{ 5069 /* A value was pulled from the index */ 5070 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5071 } 5072 break; 5073 } 5074 5075 /* Opcode: RowSetTest P1 P2 P3 P4 5076 ** 5077 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5078 ** contains a RowSet object and that RowSet object contains 5079 ** the value held in P3, jump to register P2. Otherwise, insert the 5080 ** integer in P3 into the RowSet and continue on to the 5081 ** next opcode. 5082 ** 5083 ** The RowSet object is optimized for the case where successive sets 5084 ** of integers, where each set contains no duplicates. Each set 5085 ** of values is identified by a unique P4 value. The first set 5086 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5087 ** non-negative. For non-negative values of P4 only the lower 4 5088 ** bits are significant. 5089 ** 5090 ** This allows optimizations: (a) when P4==0 there is no need to test 5091 ** the rowset object for P3, as it is guaranteed not to contain it, 5092 ** (b) when P4==-1 there is no need to insert the value, as it will 5093 ** never be tested for, and (c) when a value that is part of set X is 5094 ** inserted, there is no need to search to see if the same value was 5095 ** previously inserted as part of set X (only if it was previously 5096 ** inserted as part of some other set). 5097 */ 5098 case OP_RowSetTest: { /* jump, in1, in3 */ 5099 int iSet; 5100 int exists; 5101 5102 pIn1 = &aMem[pOp->p1]; 5103 pIn3 = &aMem[pOp->p3]; 5104 iSet = pOp->p4.i; 5105 assert( pIn3->flags&MEM_Int ); 5106 5107 /* If there is anything other than a rowset object in memory cell P1, 5108 ** delete it now and initialize P1 with an empty rowset 5109 */ 5110 if( (pIn1->flags & MEM_RowSet)==0 ){ 5111 sqlite3VdbeMemSetRowSet(pIn1); 5112 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5113 } 5114 5115 assert( pOp->p4type==P4_INT32 ); 5116 assert( iSet==-1 || iSet>=0 ); 5117 if( iSet ){ 5118 exists = sqlite3RowSetTest(pIn1->u.pRowSet, 5119 (u8)(iSet>=0 ? iSet & 0xf : 0xff), 5120 pIn3->u.i); 5121 if( exists ){ 5122 pc = pOp->p2 - 1; 5123 break; 5124 } 5125 } 5126 if( iSet>=0 ){ 5127 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5128 } 5129 break; 5130 } 5131 5132 5133 #ifndef SQLITE_OMIT_TRIGGER 5134 5135 /* Opcode: Program P1 P2 P3 P4 * 5136 ** 5137 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5138 ** 5139 ** P1 contains the address of the memory cell that contains the first memory 5140 ** cell in an array of values used as arguments to the sub-program. P2 5141 ** contains the address to jump to if the sub-program throws an IGNORE 5142 ** exception using the RAISE() function. Register P3 contains the address 5143 ** of a memory cell in this (the parent) VM that is used to allocate the 5144 ** memory required by the sub-vdbe at runtime. 5145 ** 5146 ** P4 is a pointer to the VM containing the trigger program. 5147 */ 5148 case OP_Program: { /* jump */ 5149 int nMem; /* Number of memory registers for sub-program */ 5150 int nByte; /* Bytes of runtime space required for sub-program */ 5151 Mem *pRt; /* Register to allocate runtime space */ 5152 Mem *pMem; /* Used to iterate through memory cells */ 5153 Mem *pEnd; /* Last memory cell in new array */ 5154 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5155 SubProgram *pProgram; /* Sub-program to execute */ 5156 void *t; /* Token identifying trigger */ 5157 5158 pProgram = pOp->p4.pProgram; 5159 pRt = &aMem[pOp->p3]; 5160 assert( pProgram->nOp>0 ); 5161 5162 /* If the p5 flag is clear, then recursive invocation of triggers is 5163 ** disabled for backwards compatibility (p5 is set if this sub-program 5164 ** is really a trigger, not a foreign key action, and the flag set 5165 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5166 ** 5167 ** It is recursive invocation of triggers, at the SQL level, that is 5168 ** disabled. In some cases a single trigger may generate more than one 5169 ** SubProgram (if the trigger may be executed with more than one different 5170 ** ON CONFLICT algorithm). SubProgram structures associated with a 5171 ** single trigger all have the same value for the SubProgram.token 5172 ** variable. */ 5173 if( pOp->p5 ){ 5174 t = pProgram->token; 5175 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5176 if( pFrame ) break; 5177 } 5178 5179 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5180 rc = SQLITE_ERROR; 5181 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 5182 break; 5183 } 5184 5185 /* Register pRt is used to store the memory required to save the state 5186 ** of the current program, and the memory required at runtime to execute 5187 ** the trigger program. If this trigger has been fired before, then pRt 5188 ** is already allocated. Otherwise, it must be initialized. */ 5189 if( (pRt->flags&MEM_Frame)==0 ){ 5190 /* SubProgram.nMem is set to the number of memory cells used by the 5191 ** program stored in SubProgram.aOp. As well as these, one memory 5192 ** cell is required for each cursor used by the program. Set local 5193 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5194 */ 5195 nMem = pProgram->nMem + pProgram->nCsr; 5196 nByte = ROUND8(sizeof(VdbeFrame)) 5197 + nMem * sizeof(Mem) 5198 + pProgram->nCsr * sizeof(VdbeCursor *) 5199 + pProgram->nOnce * sizeof(u8); 5200 pFrame = sqlite3DbMallocZero(db, nByte); 5201 if( !pFrame ){ 5202 goto no_mem; 5203 } 5204 sqlite3VdbeMemRelease(pRt); 5205 pRt->flags = MEM_Frame; 5206 pRt->u.pFrame = pFrame; 5207 5208 pFrame->v = p; 5209 pFrame->nChildMem = nMem; 5210 pFrame->nChildCsr = pProgram->nCsr; 5211 pFrame->pc = pc; 5212 pFrame->aMem = p->aMem; 5213 pFrame->nMem = p->nMem; 5214 pFrame->apCsr = p->apCsr; 5215 pFrame->nCursor = p->nCursor; 5216 pFrame->aOp = p->aOp; 5217 pFrame->nOp = p->nOp; 5218 pFrame->token = pProgram->token; 5219 pFrame->aOnceFlag = p->aOnceFlag; 5220 pFrame->nOnceFlag = p->nOnceFlag; 5221 5222 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5223 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5224 pMem->flags = MEM_Invalid; 5225 pMem->db = db; 5226 } 5227 }else{ 5228 pFrame = pRt->u.pFrame; 5229 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5230 assert( pProgram->nCsr==pFrame->nChildCsr ); 5231 assert( pc==pFrame->pc ); 5232 } 5233 5234 p->nFrame++; 5235 pFrame->pParent = p->pFrame; 5236 pFrame->lastRowid = lastRowid; 5237 pFrame->nChange = p->nChange; 5238 p->nChange = 0; 5239 p->pFrame = pFrame; 5240 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5241 p->nMem = pFrame->nChildMem; 5242 p->nCursor = (u16)pFrame->nChildCsr; 5243 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5244 p->aOp = aOp = pProgram->aOp; 5245 p->nOp = pProgram->nOp; 5246 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5247 p->nOnceFlag = pProgram->nOnce; 5248 pc = -1; 5249 memset(p->aOnceFlag, 0, p->nOnceFlag); 5250 5251 break; 5252 } 5253 5254 /* Opcode: Param P1 P2 * * * 5255 ** 5256 ** This opcode is only ever present in sub-programs called via the 5257 ** OP_Program instruction. Copy a value currently stored in a memory 5258 ** cell of the calling (parent) frame to cell P2 in the current frames 5259 ** address space. This is used by trigger programs to access the new.* 5260 ** and old.* values. 5261 ** 5262 ** The address of the cell in the parent frame is determined by adding 5263 ** the value of the P1 argument to the value of the P1 argument to the 5264 ** calling OP_Program instruction. 5265 */ 5266 case OP_Param: { /* out2-prerelease */ 5267 VdbeFrame *pFrame; 5268 Mem *pIn; 5269 pFrame = p->pFrame; 5270 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5271 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5272 break; 5273 } 5274 5275 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5276 5277 #ifndef SQLITE_OMIT_FOREIGN_KEY 5278 /* Opcode: FkCounter P1 P2 * * * 5279 ** 5280 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5281 ** If P1 is non-zero, the database constraint counter is incremented 5282 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5283 ** statement counter is incremented (immediate foreign key constraints). 5284 */ 5285 case OP_FkCounter: { 5286 if( pOp->p1 ){ 5287 db->nDeferredCons += pOp->p2; 5288 }else{ 5289 p->nFkConstraint += pOp->p2; 5290 } 5291 break; 5292 } 5293 5294 /* Opcode: FkIfZero P1 P2 * * * 5295 ** 5296 ** This opcode tests if a foreign key constraint-counter is currently zero. 5297 ** If so, jump to instruction P2. Otherwise, fall through to the next 5298 ** instruction. 5299 ** 5300 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5301 ** is zero (the one that counts deferred constraint violations). If P1 is 5302 ** zero, the jump is taken if the statement constraint-counter is zero 5303 ** (immediate foreign key constraint violations). 5304 */ 5305 case OP_FkIfZero: { /* jump */ 5306 if( pOp->p1 ){ 5307 if( db->nDeferredCons==0 ) pc = pOp->p2-1; 5308 }else{ 5309 if( p->nFkConstraint==0 ) pc = pOp->p2-1; 5310 } 5311 break; 5312 } 5313 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5314 5315 #ifndef SQLITE_OMIT_AUTOINCREMENT 5316 /* Opcode: MemMax P1 P2 * * * 5317 ** 5318 ** P1 is a register in the root frame of this VM (the root frame is 5319 ** different from the current frame if this instruction is being executed 5320 ** within a sub-program). Set the value of register P1 to the maximum of 5321 ** its current value and the value in register P2. 5322 ** 5323 ** This instruction throws an error if the memory cell is not initially 5324 ** an integer. 5325 */ 5326 case OP_MemMax: { /* in2 */ 5327 Mem *pIn1; 5328 VdbeFrame *pFrame; 5329 if( p->pFrame ){ 5330 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5331 pIn1 = &pFrame->aMem[pOp->p1]; 5332 }else{ 5333 pIn1 = &aMem[pOp->p1]; 5334 } 5335 assert( memIsValid(pIn1) ); 5336 sqlite3VdbeMemIntegerify(pIn1); 5337 pIn2 = &aMem[pOp->p2]; 5338 sqlite3VdbeMemIntegerify(pIn2); 5339 if( pIn1->u.i<pIn2->u.i){ 5340 pIn1->u.i = pIn2->u.i; 5341 } 5342 break; 5343 } 5344 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5345 5346 /* Opcode: IfPos P1 P2 * * * 5347 ** 5348 ** If the value of register P1 is 1 or greater, jump to P2. 5349 ** 5350 ** It is illegal to use this instruction on a register that does 5351 ** not contain an integer. An assertion fault will result if you try. 5352 */ 5353 case OP_IfPos: { /* jump, in1 */ 5354 pIn1 = &aMem[pOp->p1]; 5355 assert( pIn1->flags&MEM_Int ); 5356 if( pIn1->u.i>0 ){ 5357 pc = pOp->p2 - 1; 5358 } 5359 break; 5360 } 5361 5362 /* Opcode: IfNeg P1 P2 * * * 5363 ** 5364 ** If the value of register P1 is less than zero, jump to P2. 5365 ** 5366 ** It is illegal to use this instruction on a register that does 5367 ** not contain an integer. An assertion fault will result if you try. 5368 */ 5369 case OP_IfNeg: { /* jump, in1 */ 5370 pIn1 = &aMem[pOp->p1]; 5371 assert( pIn1->flags&MEM_Int ); 5372 if( pIn1->u.i<0 ){ 5373 pc = pOp->p2 - 1; 5374 } 5375 break; 5376 } 5377 5378 /* Opcode: IfZero P1 P2 P3 * * 5379 ** 5380 ** The register P1 must contain an integer. Add literal P3 to the 5381 ** value in register P1. If the result is exactly 0, jump to P2. 5382 ** 5383 ** It is illegal to use this instruction on a register that does 5384 ** not contain an integer. An assertion fault will result if you try. 5385 */ 5386 case OP_IfZero: { /* jump, in1 */ 5387 pIn1 = &aMem[pOp->p1]; 5388 assert( pIn1->flags&MEM_Int ); 5389 pIn1->u.i += pOp->p3; 5390 if( pIn1->u.i==0 ){ 5391 pc = pOp->p2 - 1; 5392 } 5393 break; 5394 } 5395 5396 /* Opcode: AggStep * P2 P3 P4 P5 5397 ** 5398 ** Execute the step function for an aggregate. The 5399 ** function has P5 arguments. P4 is a pointer to the FuncDef 5400 ** structure that specifies the function. Use register 5401 ** P3 as the accumulator. 5402 ** 5403 ** The P5 arguments are taken from register P2 and its 5404 ** successors. 5405 */ 5406 case OP_AggStep: { 5407 int n; 5408 int i; 5409 Mem *pMem; 5410 Mem *pRec; 5411 sqlite3_context ctx; 5412 sqlite3_value **apVal; 5413 5414 n = pOp->p5; 5415 assert( n>=0 ); 5416 pRec = &aMem[pOp->p2]; 5417 apVal = p->apArg; 5418 assert( apVal || n==0 ); 5419 for(i=0; i<n; i++, pRec++){ 5420 assert( memIsValid(pRec) ); 5421 apVal[i] = pRec; 5422 memAboutToChange(p, pRec); 5423 sqlite3VdbeMemStoreType(pRec); 5424 } 5425 ctx.pFunc = pOp->p4.pFunc; 5426 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 5427 ctx.pMem = pMem = &aMem[pOp->p3]; 5428 pMem->n++; 5429 ctx.s.flags = MEM_Null; 5430 ctx.s.z = 0; 5431 ctx.s.zMalloc = 0; 5432 ctx.s.xDel = 0; 5433 ctx.s.db = db; 5434 ctx.isError = 0; 5435 ctx.pColl = 0; 5436 ctx.skipFlag = 0; 5437 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 5438 assert( pOp>p->aOp ); 5439 assert( pOp[-1].p4type==P4_COLLSEQ ); 5440 assert( pOp[-1].opcode==OP_CollSeq ); 5441 ctx.pColl = pOp[-1].p4.pColl; 5442 } 5443 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5444 if( ctx.isError ){ 5445 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 5446 rc = ctx.isError; 5447 } 5448 if( ctx.skipFlag ){ 5449 assert( pOp[-1].opcode==OP_CollSeq ); 5450 i = pOp[-1].p1; 5451 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 5452 } 5453 5454 sqlite3VdbeMemRelease(&ctx.s); 5455 5456 break; 5457 } 5458 5459 /* Opcode: AggFinal P1 P2 * P4 * 5460 ** 5461 ** Execute the finalizer function for an aggregate. P1 is 5462 ** the memory location that is the accumulator for the aggregate. 5463 ** 5464 ** P2 is the number of arguments that the step function takes and 5465 ** P4 is a pointer to the FuncDef for this function. The P2 5466 ** argument is not used by this opcode. It is only there to disambiguate 5467 ** functions that can take varying numbers of arguments. The 5468 ** P4 argument is only needed for the degenerate case where 5469 ** the step function was not previously called. 5470 */ 5471 case OP_AggFinal: { 5472 Mem *pMem; 5473 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 5474 pMem = &aMem[pOp->p1]; 5475 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5476 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5477 if( rc ){ 5478 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5479 } 5480 sqlite3VdbeChangeEncoding(pMem, encoding); 5481 UPDATE_MAX_BLOBSIZE(pMem); 5482 if( sqlite3VdbeMemTooBig(pMem) ){ 5483 goto too_big; 5484 } 5485 break; 5486 } 5487 5488 #ifndef SQLITE_OMIT_WAL 5489 /* Opcode: Checkpoint P1 P2 P3 * * 5490 ** 5491 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5492 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL 5493 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns 5494 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5495 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5496 ** in the WAL that have been checkpointed after the checkpoint 5497 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5498 ** mem[P3+2] are initialized to -1. 5499 */ 5500 case OP_Checkpoint: { 5501 int i; /* Loop counter */ 5502 int aRes[3]; /* Results */ 5503 Mem *pMem; /* Write results here */ 5504 5505 assert( p->readOnly==0 ); 5506 aRes[0] = 0; 5507 aRes[1] = aRes[2] = -1; 5508 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5509 || pOp->p2==SQLITE_CHECKPOINT_FULL 5510 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5511 ); 5512 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5513 if( rc==SQLITE_BUSY ){ 5514 rc = SQLITE_OK; 5515 aRes[0] = 1; 5516 } 5517 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5518 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5519 } 5520 break; 5521 }; 5522 #endif 5523 5524 #ifndef SQLITE_OMIT_PRAGMA 5525 /* Opcode: JournalMode P1 P2 P3 * P5 5526 ** 5527 ** Change the journal mode of database P1 to P3. P3 must be one of the 5528 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5529 ** modes (delete, truncate, persist, off and memory), this is a simple 5530 ** operation. No IO is required. 5531 ** 5532 ** If changing into or out of WAL mode the procedure is more complicated. 5533 ** 5534 ** Write a string containing the final journal-mode to register P2. 5535 */ 5536 case OP_JournalMode: { /* out2-prerelease */ 5537 Btree *pBt; /* Btree to change journal mode of */ 5538 Pager *pPager; /* Pager associated with pBt */ 5539 int eNew; /* New journal mode */ 5540 int eOld; /* The old journal mode */ 5541 #ifndef SQLITE_OMIT_WAL 5542 const char *zFilename; /* Name of database file for pPager */ 5543 #endif 5544 5545 eNew = pOp->p3; 5546 assert( eNew==PAGER_JOURNALMODE_DELETE 5547 || eNew==PAGER_JOURNALMODE_TRUNCATE 5548 || eNew==PAGER_JOURNALMODE_PERSIST 5549 || eNew==PAGER_JOURNALMODE_OFF 5550 || eNew==PAGER_JOURNALMODE_MEMORY 5551 || eNew==PAGER_JOURNALMODE_WAL 5552 || eNew==PAGER_JOURNALMODE_QUERY 5553 ); 5554 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5555 assert( p->readOnly==0 ); 5556 5557 pBt = db->aDb[pOp->p1].pBt; 5558 pPager = sqlite3BtreePager(pBt); 5559 eOld = sqlite3PagerGetJournalMode(pPager); 5560 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 5561 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 5562 5563 #ifndef SQLITE_OMIT_WAL 5564 zFilename = sqlite3PagerFilename(pPager, 1); 5565 5566 /* Do not allow a transition to journal_mode=WAL for a database 5567 ** in temporary storage or if the VFS does not support shared memory 5568 */ 5569 if( eNew==PAGER_JOURNALMODE_WAL 5570 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 5571 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 5572 ){ 5573 eNew = eOld; 5574 } 5575 5576 if( (eNew!=eOld) 5577 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 5578 ){ 5579 if( !db->autoCommit || db->nVdbeRead>1 ){ 5580 rc = SQLITE_ERROR; 5581 sqlite3SetString(&p->zErrMsg, db, 5582 "cannot change %s wal mode from within a transaction", 5583 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 5584 ); 5585 break; 5586 }else{ 5587 5588 if( eOld==PAGER_JOURNALMODE_WAL ){ 5589 /* If leaving WAL mode, close the log file. If successful, the call 5590 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 5591 ** file. An EXCLUSIVE lock may still be held on the database file 5592 ** after a successful return. 5593 */ 5594 rc = sqlite3PagerCloseWal(pPager); 5595 if( rc==SQLITE_OK ){ 5596 sqlite3PagerSetJournalMode(pPager, eNew); 5597 } 5598 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 5599 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 5600 ** as an intermediate */ 5601 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 5602 } 5603 5604 /* Open a transaction on the database file. Regardless of the journal 5605 ** mode, this transaction always uses a rollback journal. 5606 */ 5607 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 5608 if( rc==SQLITE_OK ){ 5609 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 5610 } 5611 } 5612 } 5613 #endif /* ifndef SQLITE_OMIT_WAL */ 5614 5615 if( rc ){ 5616 eNew = eOld; 5617 } 5618 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 5619 5620 pOut = &aMem[pOp->p2]; 5621 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 5622 pOut->z = (char *)sqlite3JournalModename(eNew); 5623 pOut->n = sqlite3Strlen30(pOut->z); 5624 pOut->enc = SQLITE_UTF8; 5625 sqlite3VdbeChangeEncoding(pOut, encoding); 5626 break; 5627 }; 5628 #endif /* SQLITE_OMIT_PRAGMA */ 5629 5630 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 5631 /* Opcode: Vacuum * * * * * 5632 ** 5633 ** Vacuum the entire database. This opcode will cause other virtual 5634 ** machines to be created and run. It may not be called from within 5635 ** a transaction. 5636 */ 5637 case OP_Vacuum: { 5638 assert( p->readOnly==0 ); 5639 rc = sqlite3RunVacuum(&p->zErrMsg, db); 5640 break; 5641 } 5642 #endif 5643 5644 #if !defined(SQLITE_OMIT_AUTOVACUUM) 5645 /* Opcode: IncrVacuum P1 P2 * * * 5646 ** 5647 ** Perform a single step of the incremental vacuum procedure on 5648 ** the P1 database. If the vacuum has finished, jump to instruction 5649 ** P2. Otherwise, fall through to the next instruction. 5650 */ 5651 case OP_IncrVacuum: { /* jump */ 5652 Btree *pBt; 5653 5654 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5655 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 5656 assert( p->readOnly==0 ); 5657 pBt = db->aDb[pOp->p1].pBt; 5658 rc = sqlite3BtreeIncrVacuum(pBt); 5659 if( rc==SQLITE_DONE ){ 5660 pc = pOp->p2 - 1; 5661 rc = SQLITE_OK; 5662 } 5663 break; 5664 } 5665 #endif 5666 5667 /* Opcode: Expire P1 * * * * 5668 ** 5669 ** Cause precompiled statements to become expired. An expired statement 5670 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 5671 ** (via sqlite3_step()). 5672 ** 5673 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 5674 ** then only the currently executing statement is affected. 5675 */ 5676 case OP_Expire: { 5677 if( !pOp->p1 ){ 5678 sqlite3ExpirePreparedStatements(db); 5679 }else{ 5680 p->expired = 1; 5681 } 5682 break; 5683 } 5684 5685 #ifndef SQLITE_OMIT_SHARED_CACHE 5686 /* Opcode: TableLock P1 P2 P3 P4 * 5687 ** 5688 ** Obtain a lock on a particular table. This instruction is only used when 5689 ** the shared-cache feature is enabled. 5690 ** 5691 ** P1 is the index of the database in sqlite3.aDb[] of the database 5692 ** on which the lock is acquired. A readlock is obtained if P3==0 or 5693 ** a write lock if P3==1. 5694 ** 5695 ** P2 contains the root-page of the table to lock. 5696 ** 5697 ** P4 contains a pointer to the name of the table being locked. This is only 5698 ** used to generate an error message if the lock cannot be obtained. 5699 */ 5700 case OP_TableLock: { 5701 u8 isWriteLock = (u8)pOp->p3; 5702 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 5703 int p1 = pOp->p1; 5704 assert( p1>=0 && p1<db->nDb ); 5705 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 ); 5706 assert( isWriteLock==0 || isWriteLock==1 ); 5707 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 5708 if( (rc&0xFF)==SQLITE_LOCKED ){ 5709 const char *z = pOp->p4.z; 5710 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 5711 } 5712 } 5713 break; 5714 } 5715 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5716 5717 #ifndef SQLITE_OMIT_VIRTUALTABLE 5718 /* Opcode: VBegin * * * P4 * 5719 ** 5720 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5721 ** xBegin method for that table. 5722 ** 5723 ** Also, whether or not P4 is set, check that this is not being called from 5724 ** within a callback to a virtual table xSync() method. If it is, the error 5725 ** code will be set to SQLITE_LOCKED. 5726 */ 5727 case OP_VBegin: { 5728 VTable *pVTab; 5729 pVTab = pOp->p4.pVtab; 5730 rc = sqlite3VtabBegin(db, pVTab); 5731 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab); 5732 break; 5733 } 5734 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5735 5736 #ifndef SQLITE_OMIT_VIRTUALTABLE 5737 /* Opcode: VCreate P1 * * P4 * 5738 ** 5739 ** P4 is the name of a virtual table in database P1. Call the xCreate method 5740 ** for that table. 5741 */ 5742 case OP_VCreate: { 5743 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 5744 break; 5745 } 5746 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5747 5748 #ifndef SQLITE_OMIT_VIRTUALTABLE 5749 /* Opcode: VDestroy P1 * * P4 * 5750 ** 5751 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 5752 ** of that table. 5753 */ 5754 case OP_VDestroy: { 5755 p->inVtabMethod = 2; 5756 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 5757 p->inVtabMethod = 0; 5758 break; 5759 } 5760 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5761 5762 #ifndef SQLITE_OMIT_VIRTUALTABLE 5763 /* Opcode: VOpen P1 * * P4 * 5764 ** 5765 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5766 ** P1 is a cursor number. This opcode opens a cursor to the virtual 5767 ** table and stores that cursor in P1. 5768 */ 5769 case OP_VOpen: { 5770 VdbeCursor *pCur; 5771 sqlite3_vtab_cursor *pVtabCursor; 5772 sqlite3_vtab *pVtab; 5773 sqlite3_module *pModule; 5774 5775 assert( p->bIsReader ); 5776 pCur = 0; 5777 pVtabCursor = 0; 5778 pVtab = pOp->p4.pVtab->pVtab; 5779 pModule = (sqlite3_module *)pVtab->pModule; 5780 assert(pVtab && pModule); 5781 rc = pModule->xOpen(pVtab, &pVtabCursor); 5782 importVtabErrMsg(p, pVtab); 5783 if( SQLITE_OK==rc ){ 5784 /* Initialize sqlite3_vtab_cursor base class */ 5785 pVtabCursor->pVtab = pVtab; 5786 5787 /* Initialize vdbe cursor object */ 5788 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 5789 if( pCur ){ 5790 pCur->pVtabCursor = pVtabCursor; 5791 pCur->pModule = pVtabCursor->pVtab->pModule; 5792 }else{ 5793 db->mallocFailed = 1; 5794 pModule->xClose(pVtabCursor); 5795 } 5796 } 5797 break; 5798 } 5799 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5800 5801 #ifndef SQLITE_OMIT_VIRTUALTABLE 5802 /* Opcode: VFilter P1 P2 P3 P4 * 5803 ** 5804 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 5805 ** the filtered result set is empty. 5806 ** 5807 ** P4 is either NULL or a string that was generated by the xBestIndex 5808 ** method of the module. The interpretation of the P4 string is left 5809 ** to the module implementation. 5810 ** 5811 ** This opcode invokes the xFilter method on the virtual table specified 5812 ** by P1. The integer query plan parameter to xFilter is stored in register 5813 ** P3. Register P3+1 stores the argc parameter to be passed to the 5814 ** xFilter method. Registers P3+2..P3+1+argc are the argc 5815 ** additional parameters which are passed to 5816 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 5817 ** 5818 ** A jump is made to P2 if the result set after filtering would be empty. 5819 */ 5820 case OP_VFilter: { /* jump */ 5821 int nArg; 5822 int iQuery; 5823 const sqlite3_module *pModule; 5824 Mem *pQuery; 5825 Mem *pArgc; 5826 sqlite3_vtab_cursor *pVtabCursor; 5827 sqlite3_vtab *pVtab; 5828 VdbeCursor *pCur; 5829 int res; 5830 int i; 5831 Mem **apArg; 5832 5833 pQuery = &aMem[pOp->p3]; 5834 pArgc = &pQuery[1]; 5835 pCur = p->apCsr[pOp->p1]; 5836 assert( memIsValid(pQuery) ); 5837 REGISTER_TRACE(pOp->p3, pQuery); 5838 assert( pCur->pVtabCursor ); 5839 pVtabCursor = pCur->pVtabCursor; 5840 pVtab = pVtabCursor->pVtab; 5841 pModule = pVtab->pModule; 5842 5843 /* Grab the index number and argc parameters */ 5844 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 5845 nArg = (int)pArgc->u.i; 5846 iQuery = (int)pQuery->u.i; 5847 5848 /* Invoke the xFilter method */ 5849 { 5850 res = 0; 5851 apArg = p->apArg; 5852 for(i = 0; i<nArg; i++){ 5853 apArg[i] = &pArgc[i+1]; 5854 sqlite3VdbeMemStoreType(apArg[i]); 5855 } 5856 5857 p->inVtabMethod = 1; 5858 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 5859 p->inVtabMethod = 0; 5860 importVtabErrMsg(p, pVtab); 5861 if( rc==SQLITE_OK ){ 5862 res = pModule->xEof(pVtabCursor); 5863 } 5864 5865 if( res ){ 5866 pc = pOp->p2 - 1; 5867 } 5868 } 5869 pCur->nullRow = 0; 5870 5871 break; 5872 } 5873 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5874 5875 #ifndef SQLITE_OMIT_VIRTUALTABLE 5876 /* Opcode: VColumn P1 P2 P3 * * 5877 ** 5878 ** Store the value of the P2-th column of 5879 ** the row of the virtual-table that the 5880 ** P1 cursor is pointing to into register P3. 5881 */ 5882 case OP_VColumn: { 5883 sqlite3_vtab *pVtab; 5884 const sqlite3_module *pModule; 5885 Mem *pDest; 5886 sqlite3_context sContext; 5887 5888 VdbeCursor *pCur = p->apCsr[pOp->p1]; 5889 assert( pCur->pVtabCursor ); 5890 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 5891 pDest = &aMem[pOp->p3]; 5892 memAboutToChange(p, pDest); 5893 if( pCur->nullRow ){ 5894 sqlite3VdbeMemSetNull(pDest); 5895 break; 5896 } 5897 pVtab = pCur->pVtabCursor->pVtab; 5898 pModule = pVtab->pModule; 5899 assert( pModule->xColumn ); 5900 memset(&sContext, 0, sizeof(sContext)); 5901 5902 /* The output cell may already have a buffer allocated. Move 5903 ** the current contents to sContext.s so in case the user-function 5904 ** can use the already allocated buffer instead of allocating a 5905 ** new one. 5906 */ 5907 sqlite3VdbeMemMove(&sContext.s, pDest); 5908 MemSetTypeFlag(&sContext.s, MEM_Null); 5909 5910 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 5911 importVtabErrMsg(p, pVtab); 5912 if( sContext.isError ){ 5913 rc = sContext.isError; 5914 } 5915 5916 /* Copy the result of the function to the P3 register. We 5917 ** do this regardless of whether or not an error occurred to ensure any 5918 ** dynamic allocation in sContext.s (a Mem struct) is released. 5919 */ 5920 sqlite3VdbeChangeEncoding(&sContext.s, encoding); 5921 sqlite3VdbeMemMove(pDest, &sContext.s); 5922 REGISTER_TRACE(pOp->p3, pDest); 5923 UPDATE_MAX_BLOBSIZE(pDest); 5924 5925 if( sqlite3VdbeMemTooBig(pDest) ){ 5926 goto too_big; 5927 } 5928 break; 5929 } 5930 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5931 5932 #ifndef SQLITE_OMIT_VIRTUALTABLE 5933 /* Opcode: VNext P1 P2 * * * 5934 ** 5935 ** Advance virtual table P1 to the next row in its result set and 5936 ** jump to instruction P2. Or, if the virtual table has reached 5937 ** the end of its result set, then fall through to the next instruction. 5938 */ 5939 case OP_VNext: { /* jump */ 5940 sqlite3_vtab *pVtab; 5941 const sqlite3_module *pModule; 5942 int res; 5943 VdbeCursor *pCur; 5944 5945 res = 0; 5946 pCur = p->apCsr[pOp->p1]; 5947 assert( pCur->pVtabCursor ); 5948 if( pCur->nullRow ){ 5949 break; 5950 } 5951 pVtab = pCur->pVtabCursor->pVtab; 5952 pModule = pVtab->pModule; 5953 assert( pModule->xNext ); 5954 5955 /* Invoke the xNext() method of the module. There is no way for the 5956 ** underlying implementation to return an error if one occurs during 5957 ** xNext(). Instead, if an error occurs, true is returned (indicating that 5958 ** data is available) and the error code returned when xColumn or 5959 ** some other method is next invoked on the save virtual table cursor. 5960 */ 5961 p->inVtabMethod = 1; 5962 rc = pModule->xNext(pCur->pVtabCursor); 5963 p->inVtabMethod = 0; 5964 importVtabErrMsg(p, pVtab); 5965 if( rc==SQLITE_OK ){ 5966 res = pModule->xEof(pCur->pVtabCursor); 5967 } 5968 5969 if( !res ){ 5970 /* If there is data, jump to P2 */ 5971 pc = pOp->p2 - 1; 5972 } 5973 break; 5974 } 5975 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5976 5977 #ifndef SQLITE_OMIT_VIRTUALTABLE 5978 /* Opcode: VRename P1 * * P4 * 5979 ** 5980 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5981 ** This opcode invokes the corresponding xRename method. The value 5982 ** in register P1 is passed as the zName argument to the xRename method. 5983 */ 5984 case OP_VRename: { 5985 sqlite3_vtab *pVtab; 5986 Mem *pName; 5987 5988 pVtab = pOp->p4.pVtab->pVtab; 5989 pName = &aMem[pOp->p1]; 5990 assert( pVtab->pModule->xRename ); 5991 assert( memIsValid(pName) ); 5992 assert( p->readOnly==0 ); 5993 REGISTER_TRACE(pOp->p1, pName); 5994 assert( pName->flags & MEM_Str ); 5995 testcase( pName->enc==SQLITE_UTF8 ); 5996 testcase( pName->enc==SQLITE_UTF16BE ); 5997 testcase( pName->enc==SQLITE_UTF16LE ); 5998 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 5999 if( rc==SQLITE_OK ){ 6000 rc = pVtab->pModule->xRename(pVtab, pName->z); 6001 importVtabErrMsg(p, pVtab); 6002 p->expired = 0; 6003 } 6004 break; 6005 } 6006 #endif 6007 6008 #ifndef SQLITE_OMIT_VIRTUALTABLE 6009 /* Opcode: VUpdate P1 P2 P3 P4 * 6010 ** 6011 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6012 ** This opcode invokes the corresponding xUpdate method. P2 values 6013 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6014 ** invocation. The value in register (P3+P2-1) corresponds to the 6015 ** p2th element of the argv array passed to xUpdate. 6016 ** 6017 ** The xUpdate method will do a DELETE or an INSERT or both. 6018 ** The argv[0] element (which corresponds to memory cell P3) 6019 ** is the rowid of a row to delete. If argv[0] is NULL then no 6020 ** deletion occurs. The argv[1] element is the rowid of the new 6021 ** row. This can be NULL to have the virtual table select the new 6022 ** rowid for itself. The subsequent elements in the array are 6023 ** the values of columns in the new row. 6024 ** 6025 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6026 ** a row to delete. 6027 ** 6028 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6029 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6030 ** is set to the value of the rowid for the row just inserted. 6031 */ 6032 case OP_VUpdate: { 6033 sqlite3_vtab *pVtab; 6034 sqlite3_module *pModule; 6035 int nArg; 6036 int i; 6037 sqlite_int64 rowid; 6038 Mem **apArg; 6039 Mem *pX; 6040 6041 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6042 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6043 ); 6044 assert( p->readOnly==0 ); 6045 pVtab = pOp->p4.pVtab->pVtab; 6046 pModule = (sqlite3_module *)pVtab->pModule; 6047 nArg = pOp->p2; 6048 assert( pOp->p4type==P4_VTAB ); 6049 if( ALWAYS(pModule->xUpdate) ){ 6050 u8 vtabOnConflict = db->vtabOnConflict; 6051 apArg = p->apArg; 6052 pX = &aMem[pOp->p3]; 6053 for(i=0; i<nArg; i++){ 6054 assert( memIsValid(pX) ); 6055 memAboutToChange(p, pX); 6056 sqlite3VdbeMemStoreType(pX); 6057 apArg[i] = pX; 6058 pX++; 6059 } 6060 db->vtabOnConflict = pOp->p5; 6061 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6062 db->vtabOnConflict = vtabOnConflict; 6063 importVtabErrMsg(p, pVtab); 6064 if( rc==SQLITE_OK && pOp->p1 ){ 6065 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6066 db->lastRowid = lastRowid = rowid; 6067 } 6068 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6069 if( pOp->p5==OE_Ignore ){ 6070 rc = SQLITE_OK; 6071 }else{ 6072 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6073 } 6074 }else{ 6075 p->nChange++; 6076 } 6077 } 6078 break; 6079 } 6080 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6081 6082 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6083 /* Opcode: Pagecount P1 P2 * * * 6084 ** 6085 ** Write the current number of pages in database P1 to memory cell P2. 6086 */ 6087 case OP_Pagecount: { /* out2-prerelease */ 6088 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6089 break; 6090 } 6091 #endif 6092 6093 6094 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6095 /* Opcode: MaxPgcnt P1 P2 P3 * * 6096 ** 6097 ** Try to set the maximum page count for database P1 to the value in P3. 6098 ** Do not let the maximum page count fall below the current page count and 6099 ** do not change the maximum page count value if P3==0. 6100 ** 6101 ** Store the maximum page count after the change in register P2. 6102 */ 6103 case OP_MaxPgcnt: { /* out2-prerelease */ 6104 unsigned int newMax; 6105 Btree *pBt; 6106 6107 pBt = db->aDb[pOp->p1].pBt; 6108 newMax = 0; 6109 if( pOp->p3 ){ 6110 newMax = sqlite3BtreeLastPage(pBt); 6111 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6112 } 6113 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6114 break; 6115 } 6116 #endif 6117 6118 6119 #ifndef SQLITE_OMIT_TRACE 6120 /* Opcode: Trace * * * P4 * 6121 ** 6122 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6123 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6124 */ 6125 case OP_Trace: { 6126 char *zTrace; 6127 char *z; 6128 6129 if( db->xTrace 6130 && !p->doingRerun 6131 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6132 ){ 6133 z = sqlite3VdbeExpandSql(p, zTrace); 6134 db->xTrace(db->pTraceArg, z); 6135 sqlite3DbFree(db, z); 6136 } 6137 #ifdef SQLITE_DEBUG 6138 if( (db->flags & SQLITE_SqlTrace)!=0 6139 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6140 ){ 6141 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6142 } 6143 #endif /* SQLITE_DEBUG */ 6144 break; 6145 } 6146 #endif 6147 6148 6149 /* Opcode: Noop * * * * * 6150 ** 6151 ** Do nothing. This instruction is often useful as a jump 6152 ** destination. 6153 */ 6154 /* 6155 ** The magic Explain opcode are only inserted when explain==2 (which 6156 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6157 ** This opcode records information from the optimizer. It is the 6158 ** the same as a no-op. This opcodesnever appears in a real VM program. 6159 */ 6160 default: { /* This is really OP_Noop and OP_Explain */ 6161 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6162 break; 6163 } 6164 6165 /***************************************************************************** 6166 ** The cases of the switch statement above this line should all be indented 6167 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6168 ** readability. From this point on down, the normal indentation rules are 6169 ** restored. 6170 *****************************************************************************/ 6171 } 6172 6173 #ifdef VDBE_PROFILE 6174 { 6175 u64 elapsed = sqlite3Hwtime() - start; 6176 pOp->cycles += elapsed; 6177 pOp->cnt++; 6178 #if 0 6179 fprintf(stdout, "%10llu ", elapsed); 6180 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]); 6181 #endif 6182 } 6183 #endif 6184 6185 /* The following code adds nothing to the actual functionality 6186 ** of the program. It is only here for testing and debugging. 6187 ** On the other hand, it does burn CPU cycles every time through 6188 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6189 */ 6190 #ifndef NDEBUG 6191 assert( pc>=-1 && pc<p->nOp ); 6192 6193 #ifdef SQLITE_DEBUG 6194 if( p->trace ){ 6195 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); 6196 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 6197 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]); 6198 } 6199 if( pOp->opflags & OPFLG_OUT3 ){ 6200 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]); 6201 } 6202 } 6203 #endif /* SQLITE_DEBUG */ 6204 #endif /* NDEBUG */ 6205 } /* The end of the for(;;) loop the loops through opcodes */ 6206 6207 /* If we reach this point, it means that execution is finished with 6208 ** an error of some kind. 6209 */ 6210 vdbe_error_halt: 6211 assert( rc ); 6212 p->rc = rc; 6213 testcase( sqlite3GlobalConfig.xLog!=0 ); 6214 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6215 pc, p->zSql, p->zErrMsg); 6216 sqlite3VdbeHalt(p); 6217 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 6218 rc = SQLITE_ERROR; 6219 if( resetSchemaOnFault>0 ){ 6220 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6221 } 6222 6223 /* This is the only way out of this procedure. We have to 6224 ** release the mutexes on btrees that were acquired at the 6225 ** top. */ 6226 vdbe_return: 6227 db->lastRowid = lastRowid; 6228 p->aCounter[SQLITE_STMTSTATUS_VM_STEP-1] += (int)nVmStep; 6229 sqlite3VdbeLeave(p); 6230 return rc; 6231 6232 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6233 ** is encountered. 6234 */ 6235 too_big: 6236 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 6237 rc = SQLITE_TOOBIG; 6238 goto vdbe_error_halt; 6239 6240 /* Jump to here if a malloc() fails. 6241 */ 6242 no_mem: 6243 db->mallocFailed = 1; 6244 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 6245 rc = SQLITE_NOMEM; 6246 goto vdbe_error_halt; 6247 6248 /* Jump to here for any other kind of fatal error. The "rc" variable 6249 ** should hold the error number. 6250 */ 6251 abort_due_to_error: 6252 assert( p->zErrMsg==0 ); 6253 if( db->mallocFailed ) rc = SQLITE_NOMEM; 6254 if( rc!=SQLITE_IOERR_NOMEM ){ 6255 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6256 } 6257 goto vdbe_error_halt; 6258 6259 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6260 ** flag. 6261 */ 6262 abort_due_to_interrupt: 6263 assert( db->u1.isInterrupted ); 6264 rc = SQLITE_INTERRUPT; 6265 p->rc = rc; 6266 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6267 goto vdbe_error_halt; 6268 } 6269