1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifdef SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static int dummy = 0; 30 dummy += x; 31 } 32 #endif 33 34 #ifndef SQLITE_OMIT_FLOATING_POINT 35 /* 36 ** Return true if the floating point value is Not a Number (NaN). 37 ** 38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 39 ** Otherwise, we have our own implementation that works on most systems. 40 */ 41 int sqlite3IsNaN(double x){ 42 int rc; /* The value return */ 43 #if !defined(SQLITE_HAVE_ISNAN) 44 /* 45 ** Systems that support the isnan() library function should probably 46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 47 ** found that many systems do not have a working isnan() function so 48 ** this implementation is provided as an alternative. 49 ** 50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 51 ** On the other hand, the use of -ffast-math comes with the following 52 ** warning: 53 ** 54 ** This option [-ffast-math] should never be turned on by any 55 ** -O option since it can result in incorrect output for programs 56 ** which depend on an exact implementation of IEEE or ISO 57 ** rules/specifications for math functions. 58 ** 59 ** Under MSVC, this NaN test may fail if compiled with a floating- 60 ** point precision mode other than /fp:precise. From the MSDN 61 ** documentation: 62 ** 63 ** The compiler [with /fp:precise] will properly handle comparisons 64 ** involving NaN. For example, x != x evaluates to true if x is NaN 65 ** ... 66 */ 67 #ifdef __FAST_MATH__ 68 # error SQLite will not work correctly with the -ffast-math option of GCC. 69 #endif 70 volatile double y = x; 71 volatile double z = y; 72 rc = (y!=z); 73 #else /* if defined(SQLITE_HAVE_ISNAN) */ 74 rc = isnan(x); 75 #endif /* SQLITE_HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 #endif /* SQLITE_OMIT_FLOATING_POINT */ 80 81 /* 82 ** Compute a string length that is limited to what can be stored in 83 ** lower 30 bits of a 32-bit signed integer. 84 ** 85 ** The value returned will never be negative. Nor will it ever be greater 86 ** than the actual length of the string. For very long strings (greater 87 ** than 1GiB) the value returned might be less than the true string length. 88 */ 89 int sqlite3Strlen30(const char *z){ 90 const char *z2 = z; 91 if( z==0 ) return 0; 92 while( *z2 ){ z2++; } 93 return 0x3fffffff & (int)(z2 - z); 94 } 95 96 /* 97 ** Set the most recent error code and error string for the sqlite 98 ** handle "db". The error code is set to "err_code". 99 ** 100 ** If it is not NULL, string zFormat specifies the format of the 101 ** error string in the style of the printf functions: The following 102 ** format characters are allowed: 103 ** 104 ** %s Insert a string 105 ** %z A string that should be freed after use 106 ** %d Insert an integer 107 ** %T Insert a token 108 ** %S Insert the first element of a SrcList 109 ** 110 ** zFormat and any string tokens that follow it are assumed to be 111 ** encoded in UTF-8. 112 ** 113 ** To clear the most recent error for sqlite handle "db", sqlite3Error 114 ** should be called with err_code set to SQLITE_OK and zFormat set 115 ** to NULL. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 119 db->errCode = err_code; 120 if( zFormat ){ 121 char *z; 122 va_list ap; 123 va_start(ap, zFormat); 124 z = sqlite3VMPrintf(db, zFormat, ap); 125 va_end(ap); 126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 127 }else{ 128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 129 } 130 } 131 } 132 133 /* 134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 135 ** The following formatting characters are allowed: 136 ** 137 ** %s Insert a string 138 ** %z A string that should be freed after use 139 ** %d Insert an integer 140 ** %T Insert a token 141 ** %S Insert the first element of a SrcList 142 ** 143 ** This function should be used to report any error that occurs whilst 144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 145 ** last thing the sqlite3_prepare() function does is copy the error 146 ** stored by this function into the database handle using sqlite3Error(). 147 ** Function sqlite3Error() should be used during statement execution 148 ** (sqlite3_step() etc.). 149 */ 150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 151 char *zMsg; 152 va_list ap; 153 sqlite3 *db = pParse->db; 154 va_start(ap, zFormat); 155 zMsg = sqlite3VMPrintf(db, zFormat, ap); 156 va_end(ap); 157 if( db->suppressErr ){ 158 sqlite3DbFree(db, zMsg); 159 }else{ 160 pParse->nErr++; 161 sqlite3DbFree(db, pParse->zErrMsg); 162 pParse->zErrMsg = zMsg; 163 pParse->rc = SQLITE_ERROR; 164 } 165 } 166 167 /* 168 ** Convert an SQL-style quoted string into a normal string by removing 169 ** the quote characters. The conversion is done in-place. If the 170 ** input does not begin with a quote character, then this routine 171 ** is a no-op. 172 ** 173 ** The input string must be zero-terminated. A new zero-terminator 174 ** is added to the dequoted string. 175 ** 176 ** The return value is -1 if no dequoting occurs or the length of the 177 ** dequoted string, exclusive of the zero terminator, if dequoting does 178 ** occur. 179 ** 180 ** 2002-Feb-14: This routine is extended to remove MS-Access style 181 ** brackets from around identifers. For example: "[a-b-c]" becomes 182 ** "a-b-c". 183 */ 184 int sqlite3Dequote(char *z){ 185 char quote; 186 int i, j; 187 if( z==0 ) return -1; 188 quote = z[0]; 189 switch( quote ){ 190 case '\'': break; 191 case '"': break; 192 case '`': break; /* For MySQL compatibility */ 193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 194 default: return -1; 195 } 196 for(i=1, j=0; ALWAYS(z[i]); i++){ 197 if( z[i]==quote ){ 198 if( z[i+1]==quote ){ 199 z[j++] = quote; 200 i++; 201 }else{ 202 break; 203 } 204 }else{ 205 z[j++] = z[i]; 206 } 207 } 208 z[j] = 0; 209 return j; 210 } 211 212 /* Convenient short-hand */ 213 #define UpperToLower sqlite3UpperToLower 214 215 /* 216 ** Some systems have stricmp(). Others have strcasecmp(). Because 217 ** there is no consistency, we will define our own. 218 ** 219 ** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows 220 ** applications and extensions to compare the contents of two buffers 221 ** containing UTF-8 strings in a case-independent fashion, using the same 222 ** definition of case independence that SQLite uses internally when 223 ** comparing identifiers. 224 */ 225 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 226 register unsigned char *a, *b; 227 a = (unsigned char *)zLeft; 228 b = (unsigned char *)zRight; 229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 230 return UpperToLower[*a] - UpperToLower[*b]; 231 } 232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 233 register unsigned char *a, *b; 234 a = (unsigned char *)zLeft; 235 b = (unsigned char *)zRight; 236 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 237 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 238 } 239 240 /* 241 ** The string z[] is an text representation of a real number. 242 ** Convert this string to a double and write it into *pResult. 243 ** 244 ** The string z[] is length bytes in length (bytes, not characters) and 245 ** uses the encoding enc. The string is not necessarily zero-terminated. 246 ** 247 ** Return TRUE if the result is a valid real number (or integer) and FALSE 248 ** if the string is empty or contains extraneous text. Valid numbers 249 ** are in one of these formats: 250 ** 251 ** [+-]digits[E[+-]digits] 252 ** [+-]digits.[digits][E[+-]digits] 253 ** [+-].digits[E[+-]digits] 254 ** 255 ** Leading and trailing whitespace is ignored for the purpose of determining 256 ** validity. 257 ** 258 ** If some prefix of the input string is a valid number, this routine 259 ** returns FALSE but it still converts the prefix and writes the result 260 ** into *pResult. 261 */ 262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 263 #ifndef SQLITE_OMIT_FLOATING_POINT 264 int incr = (enc==SQLITE_UTF8?1:2); 265 const char *zEnd = z + length; 266 /* sign * significand * (10 ^ (esign * exponent)) */ 267 int sign = 1; /* sign of significand */ 268 i64 s = 0; /* significand */ 269 int d = 0; /* adjust exponent for shifting decimal point */ 270 int esign = 1; /* sign of exponent */ 271 int e = 0; /* exponent */ 272 int eValid = 1; /* True exponent is either not used or is well-formed */ 273 double result; 274 int nDigits = 0; 275 276 *pResult = 0.0; /* Default return value, in case of an error */ 277 278 if( enc==SQLITE_UTF16BE ) z++; 279 280 /* skip leading spaces */ 281 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 282 if( z>=zEnd ) return 0; 283 284 /* get sign of significand */ 285 if( *z=='-' ){ 286 sign = -1; 287 z+=incr; 288 }else if( *z=='+' ){ 289 z+=incr; 290 } 291 292 /* skip leading zeroes */ 293 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 294 295 /* copy max significant digits to significand */ 296 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 297 s = s*10 + (*z - '0'); 298 z+=incr, nDigits++; 299 } 300 301 /* skip non-significant significand digits 302 ** (increase exponent by d to shift decimal left) */ 303 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 304 if( z>=zEnd ) goto do_atof_calc; 305 306 /* if decimal point is present */ 307 if( *z=='.' ){ 308 z+=incr; 309 /* copy digits from after decimal to significand 310 ** (decrease exponent by d to shift decimal right) */ 311 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 312 s = s*10 + (*z - '0'); 313 z+=incr, nDigits++, d--; 314 } 315 /* skip non-significant digits */ 316 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 317 } 318 if( z>=zEnd ) goto do_atof_calc; 319 320 /* if exponent is present */ 321 if( *z=='e' || *z=='E' ){ 322 z+=incr; 323 eValid = 0; 324 if( z>=zEnd ) goto do_atof_calc; 325 /* get sign of exponent */ 326 if( *z=='-' ){ 327 esign = -1; 328 z+=incr; 329 }else if( *z=='+' ){ 330 z+=incr; 331 } 332 /* copy digits to exponent */ 333 while( z<zEnd && sqlite3Isdigit(*z) ){ 334 e = e*10 + (*z - '0'); 335 z+=incr; 336 eValid = 1; 337 } 338 } 339 340 /* skip trailing spaces */ 341 if( nDigits && eValid ){ 342 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 343 } 344 345 do_atof_calc: 346 /* adjust exponent by d, and update sign */ 347 e = (e*esign) + d; 348 if( e<0 ) { 349 esign = -1; 350 e *= -1; 351 } else { 352 esign = 1; 353 } 354 355 /* if 0 significand */ 356 if( !s ) { 357 /* In the IEEE 754 standard, zero is signed. 358 ** Add the sign if we've seen at least one digit */ 359 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 360 } else { 361 /* attempt to reduce exponent */ 362 if( esign>0 ){ 363 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 364 }else{ 365 while( !(s%10) && e>0 ) e--,s/=10; 366 } 367 368 /* adjust the sign of significand */ 369 s = sign<0 ? -s : s; 370 371 /* if exponent, scale significand as appropriate 372 ** and store in result. */ 373 if( e ){ 374 double scale = 1.0; 375 /* attempt to handle extremely small/large numbers better */ 376 if( e>307 && e<342 ){ 377 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 378 if( esign<0 ){ 379 result = s / scale; 380 result /= 1.0e+308; 381 }else{ 382 result = s * scale; 383 result *= 1.0e+308; 384 } 385 }else{ 386 /* 1.0e+22 is the largest power of 10 than can be 387 ** represented exactly. */ 388 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 389 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 390 if( esign<0 ){ 391 result = s / scale; 392 }else{ 393 result = s * scale; 394 } 395 } 396 } else { 397 result = (double)s; 398 } 399 } 400 401 /* store the result */ 402 *pResult = result; 403 404 /* return true if number and no extra non-whitespace chracters after */ 405 return z>=zEnd && nDigits>0 && eValid; 406 #else 407 return !sqlite3Atoi64(z, pResult, length, enc); 408 #endif /* SQLITE_OMIT_FLOATING_POINT */ 409 } 410 411 /* 412 ** Compare the 19-character string zNum against the text representation 413 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 414 ** if zNum is less than, equal to, or greater than the string. 415 ** Note that zNum must contain exactly 19 characters. 416 ** 417 ** Unlike memcmp() this routine is guaranteed to return the difference 418 ** in the values of the last digit if the only difference is in the 419 ** last digit. So, for example, 420 ** 421 ** compare2pow63("9223372036854775800", 1) 422 ** 423 ** will return -8. 424 */ 425 static int compare2pow63(const char *zNum, int incr){ 426 int c = 0; 427 int i; 428 /* 012345678901234567 */ 429 const char *pow63 = "922337203685477580"; 430 for(i=0; c==0 && i<18; i++){ 431 c = (zNum[i*incr]-pow63[i])*10; 432 } 433 if( c==0 ){ 434 c = zNum[18*incr] - '8'; 435 testcase( c==(-1) ); 436 testcase( c==0 ); 437 testcase( c==(+1) ); 438 } 439 return c; 440 } 441 442 443 /* 444 ** Convert zNum to a 64-bit signed integer. 445 ** 446 ** If the zNum value is representable as a 64-bit twos-complement 447 ** integer, then write that value into *pNum and return 0. 448 ** 449 ** If zNum is exactly 9223372036854665808, return 2. This special 450 ** case is broken out because while 9223372036854665808 cannot be a 451 ** signed 64-bit integer, its negative -9223372036854665808 can be. 452 ** 453 ** If zNum is too big for a 64-bit integer and is not 454 ** 9223372036854665808 then return 1. 455 ** 456 ** length is the number of bytes in the string (bytes, not characters). 457 ** The string is not necessarily zero-terminated. The encoding is 458 ** given by enc. 459 */ 460 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 461 int incr = (enc==SQLITE_UTF8?1:2); 462 u64 u = 0; 463 int neg = 0; /* assume positive */ 464 int i; 465 int c = 0; 466 const char *zStart; 467 const char *zEnd = zNum + length; 468 if( enc==SQLITE_UTF16BE ) zNum++; 469 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 470 if( zNum<zEnd ){ 471 if( *zNum=='-' ){ 472 neg = 1; 473 zNum+=incr; 474 }else if( *zNum=='+' ){ 475 zNum+=incr; 476 } 477 } 478 zStart = zNum; 479 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 480 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 481 u = u*10 + c - '0'; 482 } 483 if( u>LARGEST_INT64 ){ 484 *pNum = SMALLEST_INT64; 485 }else if( neg ){ 486 *pNum = -(i64)u; 487 }else{ 488 *pNum = (i64)u; 489 } 490 testcase( i==18 ); 491 testcase( i==19 ); 492 testcase( i==20 ); 493 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){ 494 /* zNum is empty or contains non-numeric text or is longer 495 ** than 19 digits (thus guaranteeing that it is too large) */ 496 return 1; 497 }else if( i<19*incr ){ 498 /* Less than 19 digits, so we know that it fits in 64 bits */ 499 assert( u<=LARGEST_INT64 ); 500 return 0; 501 }else{ 502 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 503 c = compare2pow63(zNum, incr); 504 if( c<0 ){ 505 /* zNum is less than 9223372036854775808 so it fits */ 506 assert( u<=LARGEST_INT64 ); 507 return 0; 508 }else if( c>0 ){ 509 /* zNum is greater than 9223372036854775808 so it overflows */ 510 return 1; 511 }else{ 512 /* zNum is exactly 9223372036854775808. Fits if negative. The 513 ** special case 2 overflow if positive */ 514 assert( u-1==LARGEST_INT64 ); 515 assert( (*pNum)==SMALLEST_INT64 ); 516 return neg ? 0 : 2; 517 } 518 } 519 } 520 521 /* 522 ** If zNum represents an integer that will fit in 32-bits, then set 523 ** *pValue to that integer and return true. Otherwise return false. 524 ** 525 ** Any non-numeric characters that following zNum are ignored. 526 ** This is different from sqlite3Atoi64() which requires the 527 ** input number to be zero-terminated. 528 */ 529 int sqlite3GetInt32(const char *zNum, int *pValue){ 530 sqlite_int64 v = 0; 531 int i, c; 532 int neg = 0; 533 if( zNum[0]=='-' ){ 534 neg = 1; 535 zNum++; 536 }else if( zNum[0]=='+' ){ 537 zNum++; 538 } 539 while( zNum[0]=='0' ) zNum++; 540 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 541 v = v*10 + c; 542 } 543 544 /* The longest decimal representation of a 32 bit integer is 10 digits: 545 ** 546 ** 1234567890 547 ** 2^31 -> 2147483648 548 */ 549 testcase( i==10 ); 550 if( i>10 ){ 551 return 0; 552 } 553 testcase( v-neg==2147483647 ); 554 if( v-neg>2147483647 ){ 555 return 0; 556 } 557 if( neg ){ 558 v = -v; 559 } 560 *pValue = (int)v; 561 return 1; 562 } 563 564 /* 565 ** Return a 32-bit integer value extracted from a string. If the 566 ** string is not an integer, just return 0. 567 */ 568 int sqlite3Atoi(const char *z){ 569 int x = 0; 570 if( z ) sqlite3GetInt32(z, &x); 571 return x; 572 } 573 574 /* 575 ** The variable-length integer encoding is as follows: 576 ** 577 ** KEY: 578 ** A = 0xxxxxxx 7 bits of data and one flag bit 579 ** B = 1xxxxxxx 7 bits of data and one flag bit 580 ** C = xxxxxxxx 8 bits of data 581 ** 582 ** 7 bits - A 583 ** 14 bits - BA 584 ** 21 bits - BBA 585 ** 28 bits - BBBA 586 ** 35 bits - BBBBA 587 ** 42 bits - BBBBBA 588 ** 49 bits - BBBBBBA 589 ** 56 bits - BBBBBBBA 590 ** 64 bits - BBBBBBBBC 591 */ 592 593 /* 594 ** Write a 64-bit variable-length integer to memory starting at p[0]. 595 ** The length of data write will be between 1 and 9 bytes. The number 596 ** of bytes written is returned. 597 ** 598 ** A variable-length integer consists of the lower 7 bits of each byte 599 ** for all bytes that have the 8th bit set and one byte with the 8th 600 ** bit clear. Except, if we get to the 9th byte, it stores the full 601 ** 8 bits and is the last byte. 602 */ 603 int sqlite3PutVarint(unsigned char *p, u64 v){ 604 int i, j, n; 605 u8 buf[10]; 606 if( v & (((u64)0xff000000)<<32) ){ 607 p[8] = (u8)v; 608 v >>= 8; 609 for(i=7; i>=0; i--){ 610 p[i] = (u8)((v & 0x7f) | 0x80); 611 v >>= 7; 612 } 613 return 9; 614 } 615 n = 0; 616 do{ 617 buf[n++] = (u8)((v & 0x7f) | 0x80); 618 v >>= 7; 619 }while( v!=0 ); 620 buf[0] &= 0x7f; 621 assert( n<=9 ); 622 for(i=0, j=n-1; j>=0; j--, i++){ 623 p[i] = buf[j]; 624 } 625 return n; 626 } 627 628 /* 629 ** This routine is a faster version of sqlite3PutVarint() that only 630 ** works for 32-bit positive integers and which is optimized for 631 ** the common case of small integers. A MACRO version, putVarint32, 632 ** is provided which inlines the single-byte case. All code should use 633 ** the MACRO version as this function assumes the single-byte case has 634 ** already been handled. 635 */ 636 int sqlite3PutVarint32(unsigned char *p, u32 v){ 637 #ifndef putVarint32 638 if( (v & ~0x7f)==0 ){ 639 p[0] = v; 640 return 1; 641 } 642 #endif 643 if( (v & ~0x3fff)==0 ){ 644 p[0] = (u8)((v>>7) | 0x80); 645 p[1] = (u8)(v & 0x7f); 646 return 2; 647 } 648 return sqlite3PutVarint(p, v); 649 } 650 651 /* 652 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 653 ** are defined here rather than simply putting the constant expressions 654 ** inline in order to work around bugs in the RVT compiler. 655 ** 656 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 657 ** 658 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 659 */ 660 #define SLOT_2_0 0x001fc07f 661 #define SLOT_4_2_0 0xf01fc07f 662 663 664 /* 665 ** Read a 64-bit variable-length integer from memory starting at p[0]. 666 ** Return the number of bytes read. The value is stored in *v. 667 */ 668 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 669 u32 a,b,s; 670 671 a = *p; 672 /* a: p0 (unmasked) */ 673 if (!(a&0x80)) 674 { 675 *v = a; 676 return 1; 677 } 678 679 p++; 680 b = *p; 681 /* b: p1 (unmasked) */ 682 if (!(b&0x80)) 683 { 684 a &= 0x7f; 685 a = a<<7; 686 a |= b; 687 *v = a; 688 return 2; 689 } 690 691 /* Verify that constants are precomputed correctly */ 692 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 693 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 694 695 p++; 696 a = a<<14; 697 a |= *p; 698 /* a: p0<<14 | p2 (unmasked) */ 699 if (!(a&0x80)) 700 { 701 a &= SLOT_2_0; 702 b &= 0x7f; 703 b = b<<7; 704 a |= b; 705 *v = a; 706 return 3; 707 } 708 709 /* CSE1 from below */ 710 a &= SLOT_2_0; 711 p++; 712 b = b<<14; 713 b |= *p; 714 /* b: p1<<14 | p3 (unmasked) */ 715 if (!(b&0x80)) 716 { 717 b &= SLOT_2_0; 718 /* moved CSE1 up */ 719 /* a &= (0x7f<<14)|(0x7f); */ 720 a = a<<7; 721 a |= b; 722 *v = a; 723 return 4; 724 } 725 726 /* a: p0<<14 | p2 (masked) */ 727 /* b: p1<<14 | p3 (unmasked) */ 728 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 729 /* moved CSE1 up */ 730 /* a &= (0x7f<<14)|(0x7f); */ 731 b &= SLOT_2_0; 732 s = a; 733 /* s: p0<<14 | p2 (masked) */ 734 735 p++; 736 a = a<<14; 737 a |= *p; 738 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 739 if (!(a&0x80)) 740 { 741 /* we can skip these cause they were (effectively) done above in calc'ing s */ 742 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 743 /* b &= (0x7f<<14)|(0x7f); */ 744 b = b<<7; 745 a |= b; 746 s = s>>18; 747 *v = ((u64)s)<<32 | a; 748 return 5; 749 } 750 751 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 752 s = s<<7; 753 s |= b; 754 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 755 756 p++; 757 b = b<<14; 758 b |= *p; 759 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 760 if (!(b&0x80)) 761 { 762 /* we can skip this cause it was (effectively) done above in calc'ing s */ 763 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 764 a &= SLOT_2_0; 765 a = a<<7; 766 a |= b; 767 s = s>>18; 768 *v = ((u64)s)<<32 | a; 769 return 6; 770 } 771 772 p++; 773 a = a<<14; 774 a |= *p; 775 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 776 if (!(a&0x80)) 777 { 778 a &= SLOT_4_2_0; 779 b &= SLOT_2_0; 780 b = b<<7; 781 a |= b; 782 s = s>>11; 783 *v = ((u64)s)<<32 | a; 784 return 7; 785 } 786 787 /* CSE2 from below */ 788 a &= SLOT_2_0; 789 p++; 790 b = b<<14; 791 b |= *p; 792 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 793 if (!(b&0x80)) 794 { 795 b &= SLOT_4_2_0; 796 /* moved CSE2 up */ 797 /* a &= (0x7f<<14)|(0x7f); */ 798 a = a<<7; 799 a |= b; 800 s = s>>4; 801 *v = ((u64)s)<<32 | a; 802 return 8; 803 } 804 805 p++; 806 a = a<<15; 807 a |= *p; 808 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 809 810 /* moved CSE2 up */ 811 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 812 b &= SLOT_2_0; 813 b = b<<8; 814 a |= b; 815 816 s = s<<4; 817 b = p[-4]; 818 b &= 0x7f; 819 b = b>>3; 820 s |= b; 821 822 *v = ((u64)s)<<32 | a; 823 824 return 9; 825 } 826 827 /* 828 ** Read a 32-bit variable-length integer from memory starting at p[0]. 829 ** Return the number of bytes read. The value is stored in *v. 830 ** 831 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 832 ** integer, then set *v to 0xffffffff. 833 ** 834 ** A MACRO version, getVarint32, is provided which inlines the 835 ** single-byte case. All code should use the MACRO version as 836 ** this function assumes the single-byte case has already been handled. 837 */ 838 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 839 u32 a,b; 840 841 /* The 1-byte case. Overwhelmingly the most common. Handled inline 842 ** by the getVarin32() macro */ 843 a = *p; 844 /* a: p0 (unmasked) */ 845 #ifndef getVarint32 846 if (!(a&0x80)) 847 { 848 /* Values between 0 and 127 */ 849 *v = a; 850 return 1; 851 } 852 #endif 853 854 /* The 2-byte case */ 855 p++; 856 b = *p; 857 /* b: p1 (unmasked) */ 858 if (!(b&0x80)) 859 { 860 /* Values between 128 and 16383 */ 861 a &= 0x7f; 862 a = a<<7; 863 *v = a | b; 864 return 2; 865 } 866 867 /* The 3-byte case */ 868 p++; 869 a = a<<14; 870 a |= *p; 871 /* a: p0<<14 | p2 (unmasked) */ 872 if (!(a&0x80)) 873 { 874 /* Values between 16384 and 2097151 */ 875 a &= (0x7f<<14)|(0x7f); 876 b &= 0x7f; 877 b = b<<7; 878 *v = a | b; 879 return 3; 880 } 881 882 /* A 32-bit varint is used to store size information in btrees. 883 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 884 ** A 3-byte varint is sufficient, for example, to record the size 885 ** of a 1048569-byte BLOB or string. 886 ** 887 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 888 ** rare larger cases can be handled by the slower 64-bit varint 889 ** routine. 890 */ 891 #if 1 892 { 893 u64 v64; 894 u8 n; 895 896 p -= 2; 897 n = sqlite3GetVarint(p, &v64); 898 assert( n>3 && n<=9 ); 899 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 900 *v = 0xffffffff; 901 }else{ 902 *v = (u32)v64; 903 } 904 return n; 905 } 906 907 #else 908 /* For following code (kept for historical record only) shows an 909 ** unrolling for the 3- and 4-byte varint cases. This code is 910 ** slightly faster, but it is also larger and much harder to test. 911 */ 912 p++; 913 b = b<<14; 914 b |= *p; 915 /* b: p1<<14 | p3 (unmasked) */ 916 if (!(b&0x80)) 917 { 918 /* Values between 2097152 and 268435455 */ 919 b &= (0x7f<<14)|(0x7f); 920 a &= (0x7f<<14)|(0x7f); 921 a = a<<7; 922 *v = a | b; 923 return 4; 924 } 925 926 p++; 927 a = a<<14; 928 a |= *p; 929 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 930 if (!(a&0x80)) 931 { 932 /* Values between 268435456 and 34359738367 */ 933 a &= SLOT_4_2_0; 934 b &= SLOT_4_2_0; 935 b = b<<7; 936 *v = a | b; 937 return 5; 938 } 939 940 /* We can only reach this point when reading a corrupt database 941 ** file. In that case we are not in any hurry. Use the (relatively 942 ** slow) general-purpose sqlite3GetVarint() routine to extract the 943 ** value. */ 944 { 945 u64 v64; 946 u8 n; 947 948 p -= 4; 949 n = sqlite3GetVarint(p, &v64); 950 assert( n>5 && n<=9 ); 951 *v = (u32)v64; 952 return n; 953 } 954 #endif 955 } 956 957 /* 958 ** Return the number of bytes that will be needed to store the given 959 ** 64-bit integer. 960 */ 961 int sqlite3VarintLen(u64 v){ 962 int i = 0; 963 do{ 964 i++; 965 v >>= 7; 966 }while( v!=0 && ALWAYS(i<9) ); 967 return i; 968 } 969 970 971 /* 972 ** Read or write a four-byte big-endian integer value. 973 */ 974 u32 sqlite3Get4byte(const u8 *p){ 975 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 976 } 977 void sqlite3Put4byte(unsigned char *p, u32 v){ 978 p[0] = (u8)(v>>24); 979 p[1] = (u8)(v>>16); 980 p[2] = (u8)(v>>8); 981 p[3] = (u8)v; 982 } 983 984 985 986 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 987 /* 988 ** Translate a single byte of Hex into an integer. 989 ** This routine only works if h really is a valid hexadecimal 990 ** character: 0..9a..fA..F 991 */ 992 static u8 hexToInt(int h){ 993 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 994 #ifdef SQLITE_ASCII 995 h += 9*(1&(h>>6)); 996 #endif 997 #ifdef SQLITE_EBCDIC 998 h += 9*(1&~(h>>4)); 999 #endif 1000 return (u8)(h & 0xf); 1001 } 1002 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1003 1004 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1005 /* 1006 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1007 ** value. Return a pointer to its binary value. Space to hold the 1008 ** binary value has been obtained from malloc and must be freed by 1009 ** the calling routine. 1010 */ 1011 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1012 char *zBlob; 1013 int i; 1014 1015 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1016 n--; 1017 if( zBlob ){ 1018 for(i=0; i<n; i+=2){ 1019 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 1020 } 1021 zBlob[i/2] = 0; 1022 } 1023 return zBlob; 1024 } 1025 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1026 1027 /* 1028 ** Log an error that is an API call on a connection pointer that should 1029 ** not have been used. The "type" of connection pointer is given as the 1030 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1031 */ 1032 static void logBadConnection(const char *zType){ 1033 sqlite3_log(SQLITE_MISUSE, 1034 "API call with %s database connection pointer", 1035 zType 1036 ); 1037 } 1038 1039 /* 1040 ** Check to make sure we have a valid db pointer. This test is not 1041 ** foolproof but it does provide some measure of protection against 1042 ** misuse of the interface such as passing in db pointers that are 1043 ** NULL or which have been previously closed. If this routine returns 1044 ** 1 it means that the db pointer is valid and 0 if it should not be 1045 ** dereferenced for any reason. The calling function should invoke 1046 ** SQLITE_MISUSE immediately. 1047 ** 1048 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1049 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1050 ** open properly and is not fit for general use but which can be 1051 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1052 */ 1053 int sqlite3SafetyCheckOk(sqlite3 *db){ 1054 u32 magic; 1055 if( db==0 ){ 1056 logBadConnection("NULL"); 1057 return 0; 1058 } 1059 magic = db->magic; 1060 if( magic!=SQLITE_MAGIC_OPEN ){ 1061 if( sqlite3SafetyCheckSickOrOk(db) ){ 1062 testcase( sqlite3GlobalConfig.xLog!=0 ); 1063 logBadConnection("unopened"); 1064 } 1065 return 0; 1066 }else{ 1067 return 1; 1068 } 1069 } 1070 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1071 u32 magic; 1072 magic = db->magic; 1073 if( magic!=SQLITE_MAGIC_SICK && 1074 magic!=SQLITE_MAGIC_OPEN && 1075 magic!=SQLITE_MAGIC_BUSY ){ 1076 testcase( sqlite3GlobalConfig.xLog!=0 ); 1077 logBadConnection("invalid"); 1078 return 0; 1079 }else{ 1080 return 1; 1081 } 1082 } 1083 1084 /* 1085 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1086 ** the other 64-bit signed integer at *pA and store the result in *pA. 1087 ** Return 0 on success. Or if the operation would have resulted in an 1088 ** overflow, leave *pA unchanged and return 1. 1089 */ 1090 int sqlite3AddInt64(i64 *pA, i64 iB){ 1091 i64 iA = *pA; 1092 testcase( iA==0 ); testcase( iA==1 ); 1093 testcase( iB==-1 ); testcase( iB==0 ); 1094 if( iB>=0 ){ 1095 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1096 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1097 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1098 *pA += iB; 1099 }else{ 1100 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1101 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1102 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1103 *pA += iB; 1104 } 1105 return 0; 1106 } 1107 int sqlite3SubInt64(i64 *pA, i64 iB){ 1108 testcase( iB==SMALLEST_INT64+1 ); 1109 if( iB==SMALLEST_INT64 ){ 1110 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1111 if( (*pA)>=0 ) return 1; 1112 *pA -= iB; 1113 return 0; 1114 }else{ 1115 return sqlite3AddInt64(pA, -iB); 1116 } 1117 } 1118 #define TWOPOWER32 (((i64)1)<<32) 1119 #define TWOPOWER31 (((i64)1)<<31) 1120 int sqlite3MulInt64(i64 *pA, i64 iB){ 1121 i64 iA = *pA; 1122 i64 iA1, iA0, iB1, iB0, r; 1123 1124 iA1 = iA/TWOPOWER32; 1125 iA0 = iA % TWOPOWER32; 1126 iB1 = iB/TWOPOWER32; 1127 iB0 = iB % TWOPOWER32; 1128 if( iA1*iB1 != 0 ) return 1; 1129 assert( iA1*iB0==0 || iA0*iB1==0 ); 1130 r = iA1*iB0 + iA0*iB1; 1131 testcase( r==(-TWOPOWER31)-1 ); 1132 testcase( r==(-TWOPOWER31) ); 1133 testcase( r==TWOPOWER31 ); 1134 testcase( r==TWOPOWER31-1 ); 1135 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1136 r *= TWOPOWER32; 1137 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1138 *pA = r; 1139 return 0; 1140 } 1141 1142 /* 1143 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1144 ** if the integer has a value of -2147483648, return +2147483647 1145 */ 1146 int sqlite3AbsInt32(int x){ 1147 if( x>=0 ) return x; 1148 if( x==(int)0x80000000 ) return 0x7fffffff; 1149 return -x; 1150 } 1151