1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_UNTESTABLE 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 if( z==0 ) return 0; 109 return 0x3fffffff & (int)strlen(z); 110 } 111 112 /* 113 ** Return the declared type of a column. Or return zDflt if the column 114 ** has no declared type. 115 ** 116 ** The column type is an extra string stored after the zero-terminator on 117 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 118 */ 119 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; 121 return pCol->zName + strlen(pCol->zName) + 1; 122 } 123 124 /* 125 ** Helper function for sqlite3Error() - called rarely. Broken out into 126 ** a separate routine to avoid unnecessary register saves on entry to 127 ** sqlite3Error(). 128 */ 129 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 130 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 131 sqlite3SystemError(db, err_code); 132 } 133 134 /* 135 ** Set the current error code to err_code and clear any prior error message. 136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 137 ** that would be appropriate. 138 */ 139 void sqlite3Error(sqlite3 *db, int err_code){ 140 assert( db!=0 ); 141 db->errCode = err_code; 142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 143 } 144 145 /* 146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 147 ** to do based on the SQLite error code in rc. 148 */ 149 void sqlite3SystemError(sqlite3 *db, int rc){ 150 if( rc==SQLITE_IOERR_NOMEM ) return; 151 rc &= 0xff; 152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 154 } 155 } 156 157 /* 158 ** Set the most recent error code and error string for the sqlite 159 ** handle "db". The error code is set to "err_code". 160 ** 161 ** If it is not NULL, string zFormat specifies the format of the 162 ** error string in the style of the printf functions: The following 163 ** format characters are allowed: 164 ** 165 ** %s Insert a string 166 ** %z A string that should be freed after use 167 ** %d Insert an integer 168 ** %T Insert a token 169 ** %S Insert the first element of a SrcList 170 ** 171 ** zFormat and any string tokens that follow it are assumed to be 172 ** encoded in UTF-8. 173 ** 174 ** To clear the most recent error for sqlite handle "db", sqlite3Error 175 ** should be called with err_code set to SQLITE_OK and zFormat set 176 ** to NULL. 177 */ 178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 179 assert( db!=0 ); 180 db->errCode = err_code; 181 sqlite3SystemError(db, err_code); 182 if( zFormat==0 ){ 183 sqlite3Error(db, err_code); 184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 185 char *z; 186 va_list ap; 187 va_start(ap, zFormat); 188 z = sqlite3VMPrintf(db, zFormat, ap); 189 va_end(ap); 190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 191 } 192 } 193 194 /* 195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 196 ** The following formatting characters are allowed: 197 ** 198 ** %s Insert a string 199 ** %z A string that should be freed after use 200 ** %d Insert an integer 201 ** %T Insert a token 202 ** %S Insert the first element of a SrcList 203 ** 204 ** This function should be used to report any error that occurs while 205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 206 ** last thing the sqlite3_prepare() function does is copy the error 207 ** stored by this function into the database handle using sqlite3Error(). 208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 209 ** during statement execution (sqlite3_step() etc.). 210 */ 211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 212 char *zMsg; 213 va_list ap; 214 sqlite3 *db = pParse->db; 215 va_start(ap, zFormat); 216 zMsg = sqlite3VMPrintf(db, zFormat, ap); 217 va_end(ap); 218 if( db->suppressErr ){ 219 sqlite3DbFree(db, zMsg); 220 }else{ 221 pParse->nErr++; 222 sqlite3DbFree(db, pParse->zErrMsg); 223 pParse->zErrMsg = zMsg; 224 pParse->rc = SQLITE_ERROR; 225 } 226 } 227 228 /* 229 ** Convert an SQL-style quoted string into a normal string by removing 230 ** the quote characters. The conversion is done in-place. If the 231 ** input does not begin with a quote character, then this routine 232 ** is a no-op. 233 ** 234 ** The input string must be zero-terminated. A new zero-terminator 235 ** is added to the dequoted string. 236 ** 237 ** The return value is -1 if no dequoting occurs or the length of the 238 ** dequoted string, exclusive of the zero terminator, if dequoting does 239 ** occur. 240 ** 241 ** 2002-Feb-14: This routine is extended to remove MS-Access style 242 ** brackets from around identifiers. For example: "[a-b-c]" becomes 243 ** "a-b-c". 244 */ 245 void sqlite3Dequote(char *z){ 246 char quote; 247 int i, j; 248 if( z==0 ) return; 249 quote = z[0]; 250 if( !sqlite3Isquote(quote) ) return; 251 if( quote=='[' ) quote = ']'; 252 for(i=1, j=0;; i++){ 253 assert( z[i] ); 254 if( z[i]==quote ){ 255 if( z[i+1]==quote ){ 256 z[j++] = quote; 257 i++; 258 }else{ 259 break; 260 } 261 }else{ 262 z[j++] = z[i]; 263 } 264 } 265 z[j] = 0; 266 } 267 268 /* 269 ** Generate a Token object from a string 270 */ 271 void sqlite3TokenInit(Token *p, char *z){ 272 p->z = z; 273 p->n = sqlite3Strlen30(z); 274 } 275 276 /* Convenient short-hand */ 277 #define UpperToLower sqlite3UpperToLower 278 279 /* 280 ** Some systems have stricmp(). Others have strcasecmp(). Because 281 ** there is no consistency, we will define our own. 282 ** 283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 285 ** the contents of two buffers containing UTF-8 strings in a 286 ** case-independent fashion, using the same definition of "case 287 ** independence" that SQLite uses internally when comparing identifiers. 288 */ 289 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 290 if( zLeft==0 ){ 291 return zRight ? -1 : 0; 292 }else if( zRight==0 ){ 293 return 1; 294 } 295 return sqlite3StrICmp(zLeft, zRight); 296 } 297 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 298 unsigned char *a, *b; 299 int c; 300 a = (unsigned char *)zLeft; 301 b = (unsigned char *)zRight; 302 for(;;){ 303 c = (int)UpperToLower[*a] - (int)UpperToLower[*b]; 304 if( c || *a==0 ) break; 305 a++; 306 b++; 307 } 308 return c; 309 } 310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 311 register unsigned char *a, *b; 312 if( zLeft==0 ){ 313 return zRight ? -1 : 0; 314 }else if( zRight==0 ){ 315 return 1; 316 } 317 a = (unsigned char *)zLeft; 318 b = (unsigned char *)zRight; 319 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 320 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 321 } 322 323 /* 324 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 325 ** E==2 results in 100. E==50 results in 1.0e50. 326 ** 327 ** This routine only works for values of E between 1 and 341. 328 */ 329 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 330 #if defined(_MSC_VER) 331 static const LONGDOUBLE_TYPE x[] = { 332 1.0e+001, 333 1.0e+002, 334 1.0e+004, 335 1.0e+008, 336 1.0e+016, 337 1.0e+032, 338 1.0e+064, 339 1.0e+128, 340 1.0e+256 341 }; 342 LONGDOUBLE_TYPE r = 1.0; 343 int i; 344 assert( E>=0 && E<=307 ); 345 for(i=0; E!=0; i++, E >>=1){ 346 if( E & 1 ) r *= x[i]; 347 } 348 return r; 349 #else 350 LONGDOUBLE_TYPE x = 10.0; 351 LONGDOUBLE_TYPE r = 1.0; 352 while(1){ 353 if( E & 1 ) r *= x; 354 E >>= 1; 355 if( E==0 ) break; 356 x *= x; 357 } 358 return r; 359 #endif 360 } 361 362 /* 363 ** The string z[] is an text representation of a real number. 364 ** Convert this string to a double and write it into *pResult. 365 ** 366 ** The string z[] is length bytes in length (bytes, not characters) and 367 ** uses the encoding enc. The string is not necessarily zero-terminated. 368 ** 369 ** Return TRUE if the result is a valid real number (or integer) and FALSE 370 ** if the string is empty or contains extraneous text. Valid numbers 371 ** are in one of these formats: 372 ** 373 ** [+-]digits[E[+-]digits] 374 ** [+-]digits.[digits][E[+-]digits] 375 ** [+-].digits[E[+-]digits] 376 ** 377 ** Leading and trailing whitespace is ignored for the purpose of determining 378 ** validity. 379 ** 380 ** If some prefix of the input string is a valid number, this routine 381 ** returns FALSE but it still converts the prefix and writes the result 382 ** into *pResult. 383 */ 384 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 385 #ifndef SQLITE_OMIT_FLOATING_POINT 386 int incr; 387 const char *zEnd = z + length; 388 /* sign * significand * (10 ^ (esign * exponent)) */ 389 int sign = 1; /* sign of significand */ 390 i64 s = 0; /* significand */ 391 int d = 0; /* adjust exponent for shifting decimal point */ 392 int esign = 1; /* sign of exponent */ 393 int e = 0; /* exponent */ 394 int eValid = 1; /* True exponent is either not used or is well-formed */ 395 double result; 396 int nDigits = 0; 397 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 398 399 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 400 *pResult = 0.0; /* Default return value, in case of an error */ 401 402 if( enc==SQLITE_UTF8 ){ 403 incr = 1; 404 }else{ 405 int i; 406 incr = 2; 407 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 408 for(i=3-enc; i<length && z[i]==0; i+=2){} 409 nonNum = i<length; 410 zEnd = &z[i^1]; 411 z += (enc&1); 412 } 413 414 /* skip leading spaces */ 415 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 416 if( z>=zEnd ) return 0; 417 418 /* get sign of significand */ 419 if( *z=='-' ){ 420 sign = -1; 421 z+=incr; 422 }else if( *z=='+' ){ 423 z+=incr; 424 } 425 426 /* copy max significant digits to significand */ 427 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 428 s = s*10 + (*z - '0'); 429 z+=incr; nDigits++; 430 } 431 432 /* skip non-significant significand digits 433 ** (increase exponent by d to shift decimal left) */ 434 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; } 435 if( z>=zEnd ) goto do_atof_calc; 436 437 /* if decimal point is present */ 438 if( *z=='.' ){ 439 z+=incr; 440 /* copy digits from after decimal to significand 441 ** (decrease exponent by d to shift decimal right) */ 442 while( z<zEnd && sqlite3Isdigit(*z) ){ 443 if( s<((LARGEST_INT64-9)/10) ){ 444 s = s*10 + (*z - '0'); 445 d--; 446 } 447 z+=incr; nDigits++; 448 } 449 } 450 if( z>=zEnd ) goto do_atof_calc; 451 452 /* if exponent is present */ 453 if( *z=='e' || *z=='E' ){ 454 z+=incr; 455 eValid = 0; 456 457 /* This branch is needed to avoid a (harmless) buffer overread. The 458 ** special comment alerts the mutation tester that the correct answer 459 ** is obtained even if the branch is omitted */ 460 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 461 462 /* get sign of exponent */ 463 if( *z=='-' ){ 464 esign = -1; 465 z+=incr; 466 }else if( *z=='+' ){ 467 z+=incr; 468 } 469 /* copy digits to exponent */ 470 while( z<zEnd && sqlite3Isdigit(*z) ){ 471 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 472 z+=incr; 473 eValid = 1; 474 } 475 } 476 477 /* skip trailing spaces */ 478 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 479 480 do_atof_calc: 481 /* adjust exponent by d, and update sign */ 482 e = (e*esign) + d; 483 if( e<0 ) { 484 esign = -1; 485 e *= -1; 486 } else { 487 esign = 1; 488 } 489 490 if( s==0 ) { 491 /* In the IEEE 754 standard, zero is signed. */ 492 result = sign<0 ? -(double)0 : (double)0; 493 } else { 494 /* Attempt to reduce exponent. 495 ** 496 ** Branches that are not required for the correct answer but which only 497 ** help to obtain the correct answer faster are marked with special 498 ** comments, as a hint to the mutation tester. 499 */ 500 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 501 if( esign>0 ){ 502 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 503 s *= 10; 504 }else{ 505 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 506 s /= 10; 507 } 508 e--; 509 } 510 511 /* adjust the sign of significand */ 512 s = sign<0 ? -s : s; 513 514 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 515 result = (double)s; 516 }else{ 517 /* attempt to handle extremely small/large numbers better */ 518 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 519 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 520 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 521 if( esign<0 ){ 522 result = s / scale; 523 result /= 1.0e+308; 524 }else{ 525 result = s * scale; 526 result *= 1.0e+308; 527 } 528 }else{ assert( e>=342 ); 529 if( esign<0 ){ 530 result = 0.0*s; 531 }else{ 532 #ifdef INFINITY 533 result = INFINITY*s; 534 #else 535 result = 1e308*1e308*s; /* Infinity */ 536 #endif 537 } 538 } 539 }else{ 540 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 541 if( esign<0 ){ 542 result = s / scale; 543 }else{ 544 result = s * scale; 545 } 546 } 547 } 548 } 549 550 /* store the result */ 551 *pResult = result; 552 553 /* return true if number and no extra non-whitespace chracters after */ 554 return z==zEnd && nDigits>0 && eValid && nonNum==0; 555 #else 556 return !sqlite3Atoi64(z, pResult, length, enc); 557 #endif /* SQLITE_OMIT_FLOATING_POINT */ 558 } 559 560 /* 561 ** Compare the 19-character string zNum against the text representation 562 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 563 ** if zNum is less than, equal to, or greater than the string. 564 ** Note that zNum must contain exactly 19 characters. 565 ** 566 ** Unlike memcmp() this routine is guaranteed to return the difference 567 ** in the values of the last digit if the only difference is in the 568 ** last digit. So, for example, 569 ** 570 ** compare2pow63("9223372036854775800", 1) 571 ** 572 ** will return -8. 573 */ 574 static int compare2pow63(const char *zNum, int incr){ 575 int c = 0; 576 int i; 577 /* 012345678901234567 */ 578 const char *pow63 = "922337203685477580"; 579 for(i=0; c==0 && i<18; i++){ 580 c = (zNum[i*incr]-pow63[i])*10; 581 } 582 if( c==0 ){ 583 c = zNum[18*incr] - '8'; 584 testcase( c==(-1) ); 585 testcase( c==0 ); 586 testcase( c==(+1) ); 587 } 588 return c; 589 } 590 591 /* 592 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 593 ** routine does *not* accept hexadecimal notation. 594 ** 595 ** Returns: 596 ** 597 ** 0 Successful transformation. Fits in a 64-bit signed integer. 598 ** 1 Excess non-space text after the integer value 599 ** 2 Integer too large for a 64-bit signed integer or is malformed 600 ** 3 Special case of 9223372036854775808 601 ** 602 ** length is the number of bytes in the string (bytes, not characters). 603 ** The string is not necessarily zero-terminated. The encoding is 604 ** given by enc. 605 */ 606 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 607 int incr; 608 u64 u = 0; 609 int neg = 0; /* assume positive */ 610 int i; 611 int c = 0; 612 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 613 int rc; /* Baseline return code */ 614 const char *zStart; 615 const char *zEnd = zNum + length; 616 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 617 if( enc==SQLITE_UTF8 ){ 618 incr = 1; 619 }else{ 620 incr = 2; 621 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 622 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 623 nonNum = i<length; 624 zEnd = &zNum[i^1]; 625 zNum += (enc&1); 626 } 627 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 628 if( zNum<zEnd ){ 629 if( *zNum=='-' ){ 630 neg = 1; 631 zNum+=incr; 632 }else if( *zNum=='+' ){ 633 zNum+=incr; 634 } 635 } 636 zStart = zNum; 637 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 638 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 639 u = u*10 + c - '0'; 640 } 641 testcase( i==18*incr ); 642 testcase( i==19*incr ); 643 testcase( i==20*incr ); 644 if( u>LARGEST_INT64 ){ 645 /* This test and assignment is needed only to suppress UB warnings 646 ** from clang and -fsanitize=undefined. This test and assignment make 647 ** the code a little larger and slower, and no harm comes from omitting 648 ** them, but we must appaise the undefined-behavior pharisees. */ 649 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 650 }else if( neg ){ 651 *pNum = -(i64)u; 652 }else{ 653 *pNum = (i64)u; 654 } 655 rc = 0; 656 if( (i==0 && zStart==zNum) /* No digits */ 657 || nonNum /* UTF16 with high-order bytes non-zero */ 658 ){ 659 rc = 1; 660 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 661 int jj = i; 662 do{ 663 if( !sqlite3Isspace(zNum[jj]) ){ 664 rc = 1; /* Extra non-space text after the integer */ 665 break; 666 } 667 jj += incr; 668 }while( &zNum[jj]<zEnd ); 669 } 670 if( i<19*incr ){ 671 /* Less than 19 digits, so we know that it fits in 64 bits */ 672 assert( u<=LARGEST_INT64 ); 673 return rc; 674 }else{ 675 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 676 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 677 if( c<0 ){ 678 /* zNum is less than 9223372036854775808 so it fits */ 679 assert( u<=LARGEST_INT64 ); 680 return rc; 681 }else{ 682 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 683 if( c>0 ){ 684 /* zNum is greater than 9223372036854775808 so it overflows */ 685 return 2; 686 }else{ 687 /* zNum is exactly 9223372036854775808. Fits if negative. The 688 ** special case 2 overflow if positive */ 689 assert( u-1==LARGEST_INT64 ); 690 return neg ? rc : 3; 691 } 692 } 693 } 694 } 695 696 /* 697 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 698 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 699 ** whereas sqlite3Atoi64() does not. 700 ** 701 ** Returns: 702 ** 703 ** 0 Successful transformation. Fits in a 64-bit signed integer. 704 ** 1 Excess text after the integer value 705 ** 2 Integer too large for a 64-bit signed integer or is malformed 706 ** 3 Special case of 9223372036854775808 707 */ 708 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 709 #ifndef SQLITE_OMIT_HEX_INTEGER 710 if( z[0]=='0' 711 && (z[1]=='x' || z[1]=='X') 712 ){ 713 u64 u = 0; 714 int i, k; 715 for(i=2; z[i]=='0'; i++){} 716 for(k=i; sqlite3Isxdigit(z[k]); k++){ 717 u = u*16 + sqlite3HexToInt(z[k]); 718 } 719 memcpy(pOut, &u, 8); 720 return (z[k]==0 && k-i<=16) ? 0 : 2; 721 }else 722 #endif /* SQLITE_OMIT_HEX_INTEGER */ 723 { 724 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 725 } 726 } 727 728 /* 729 ** If zNum represents an integer that will fit in 32-bits, then set 730 ** *pValue to that integer and return true. Otherwise return false. 731 ** 732 ** This routine accepts both decimal and hexadecimal notation for integers. 733 ** 734 ** Any non-numeric characters that following zNum are ignored. 735 ** This is different from sqlite3Atoi64() which requires the 736 ** input number to be zero-terminated. 737 */ 738 int sqlite3GetInt32(const char *zNum, int *pValue){ 739 sqlite_int64 v = 0; 740 int i, c; 741 int neg = 0; 742 if( zNum[0]=='-' ){ 743 neg = 1; 744 zNum++; 745 }else if( zNum[0]=='+' ){ 746 zNum++; 747 } 748 #ifndef SQLITE_OMIT_HEX_INTEGER 749 else if( zNum[0]=='0' 750 && (zNum[1]=='x' || zNum[1]=='X') 751 && sqlite3Isxdigit(zNum[2]) 752 ){ 753 u32 u = 0; 754 zNum += 2; 755 while( zNum[0]=='0' ) zNum++; 756 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 757 u = u*16 + sqlite3HexToInt(zNum[i]); 758 } 759 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 760 memcpy(pValue, &u, 4); 761 return 1; 762 }else{ 763 return 0; 764 } 765 } 766 #endif 767 if( !sqlite3Isdigit(zNum[0]) ) return 0; 768 while( zNum[0]=='0' ) zNum++; 769 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 770 v = v*10 + c; 771 } 772 773 /* The longest decimal representation of a 32 bit integer is 10 digits: 774 ** 775 ** 1234567890 776 ** 2^31 -> 2147483648 777 */ 778 testcase( i==10 ); 779 if( i>10 ){ 780 return 0; 781 } 782 testcase( v-neg==2147483647 ); 783 if( v-neg>2147483647 ){ 784 return 0; 785 } 786 if( neg ){ 787 v = -v; 788 } 789 *pValue = (int)v; 790 return 1; 791 } 792 793 /* 794 ** Return a 32-bit integer value extracted from a string. If the 795 ** string is not an integer, just return 0. 796 */ 797 int sqlite3Atoi(const char *z){ 798 int x = 0; 799 if( z ) sqlite3GetInt32(z, &x); 800 return x; 801 } 802 803 /* 804 ** The variable-length integer encoding is as follows: 805 ** 806 ** KEY: 807 ** A = 0xxxxxxx 7 bits of data and one flag bit 808 ** B = 1xxxxxxx 7 bits of data and one flag bit 809 ** C = xxxxxxxx 8 bits of data 810 ** 811 ** 7 bits - A 812 ** 14 bits - BA 813 ** 21 bits - BBA 814 ** 28 bits - BBBA 815 ** 35 bits - BBBBA 816 ** 42 bits - BBBBBA 817 ** 49 bits - BBBBBBA 818 ** 56 bits - BBBBBBBA 819 ** 64 bits - BBBBBBBBC 820 */ 821 822 /* 823 ** Write a 64-bit variable-length integer to memory starting at p[0]. 824 ** The length of data write will be between 1 and 9 bytes. The number 825 ** of bytes written is returned. 826 ** 827 ** A variable-length integer consists of the lower 7 bits of each byte 828 ** for all bytes that have the 8th bit set and one byte with the 8th 829 ** bit clear. Except, if we get to the 9th byte, it stores the full 830 ** 8 bits and is the last byte. 831 */ 832 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 833 int i, j, n; 834 u8 buf[10]; 835 if( v & (((u64)0xff000000)<<32) ){ 836 p[8] = (u8)v; 837 v >>= 8; 838 for(i=7; i>=0; i--){ 839 p[i] = (u8)((v & 0x7f) | 0x80); 840 v >>= 7; 841 } 842 return 9; 843 } 844 n = 0; 845 do{ 846 buf[n++] = (u8)((v & 0x7f) | 0x80); 847 v >>= 7; 848 }while( v!=0 ); 849 buf[0] &= 0x7f; 850 assert( n<=9 ); 851 for(i=0, j=n-1; j>=0; j--, i++){ 852 p[i] = buf[j]; 853 } 854 return n; 855 } 856 int sqlite3PutVarint(unsigned char *p, u64 v){ 857 if( v<=0x7f ){ 858 p[0] = v&0x7f; 859 return 1; 860 } 861 if( v<=0x3fff ){ 862 p[0] = ((v>>7)&0x7f)|0x80; 863 p[1] = v&0x7f; 864 return 2; 865 } 866 return putVarint64(p,v); 867 } 868 869 /* 870 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 871 ** are defined here rather than simply putting the constant expressions 872 ** inline in order to work around bugs in the RVT compiler. 873 ** 874 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 875 ** 876 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 877 */ 878 #define SLOT_2_0 0x001fc07f 879 #define SLOT_4_2_0 0xf01fc07f 880 881 882 /* 883 ** Read a 64-bit variable-length integer from memory starting at p[0]. 884 ** Return the number of bytes read. The value is stored in *v. 885 */ 886 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 887 u32 a,b,s; 888 889 a = *p; 890 /* a: p0 (unmasked) */ 891 if (!(a&0x80)) 892 { 893 *v = a; 894 return 1; 895 } 896 897 p++; 898 b = *p; 899 /* b: p1 (unmasked) */ 900 if (!(b&0x80)) 901 { 902 a &= 0x7f; 903 a = a<<7; 904 a |= b; 905 *v = a; 906 return 2; 907 } 908 909 /* Verify that constants are precomputed correctly */ 910 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 911 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 912 913 p++; 914 a = a<<14; 915 a |= *p; 916 /* a: p0<<14 | p2 (unmasked) */ 917 if (!(a&0x80)) 918 { 919 a &= SLOT_2_0; 920 b &= 0x7f; 921 b = b<<7; 922 a |= b; 923 *v = a; 924 return 3; 925 } 926 927 /* CSE1 from below */ 928 a &= SLOT_2_0; 929 p++; 930 b = b<<14; 931 b |= *p; 932 /* b: p1<<14 | p3 (unmasked) */ 933 if (!(b&0x80)) 934 { 935 b &= SLOT_2_0; 936 /* moved CSE1 up */ 937 /* a &= (0x7f<<14)|(0x7f); */ 938 a = a<<7; 939 a |= b; 940 *v = a; 941 return 4; 942 } 943 944 /* a: p0<<14 | p2 (masked) */ 945 /* b: p1<<14 | p3 (unmasked) */ 946 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 947 /* moved CSE1 up */ 948 /* a &= (0x7f<<14)|(0x7f); */ 949 b &= SLOT_2_0; 950 s = a; 951 /* s: p0<<14 | p2 (masked) */ 952 953 p++; 954 a = a<<14; 955 a |= *p; 956 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 957 if (!(a&0x80)) 958 { 959 /* we can skip these cause they were (effectively) done above 960 ** while calculating s */ 961 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 962 /* b &= (0x7f<<14)|(0x7f); */ 963 b = b<<7; 964 a |= b; 965 s = s>>18; 966 *v = ((u64)s)<<32 | a; 967 return 5; 968 } 969 970 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 971 s = s<<7; 972 s |= b; 973 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 974 975 p++; 976 b = b<<14; 977 b |= *p; 978 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 979 if (!(b&0x80)) 980 { 981 /* we can skip this cause it was (effectively) done above in calc'ing s */ 982 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 983 a &= SLOT_2_0; 984 a = a<<7; 985 a |= b; 986 s = s>>18; 987 *v = ((u64)s)<<32 | a; 988 return 6; 989 } 990 991 p++; 992 a = a<<14; 993 a |= *p; 994 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 995 if (!(a&0x80)) 996 { 997 a &= SLOT_4_2_0; 998 b &= SLOT_2_0; 999 b = b<<7; 1000 a |= b; 1001 s = s>>11; 1002 *v = ((u64)s)<<32 | a; 1003 return 7; 1004 } 1005 1006 /* CSE2 from below */ 1007 a &= SLOT_2_0; 1008 p++; 1009 b = b<<14; 1010 b |= *p; 1011 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1012 if (!(b&0x80)) 1013 { 1014 b &= SLOT_4_2_0; 1015 /* moved CSE2 up */ 1016 /* a &= (0x7f<<14)|(0x7f); */ 1017 a = a<<7; 1018 a |= b; 1019 s = s>>4; 1020 *v = ((u64)s)<<32 | a; 1021 return 8; 1022 } 1023 1024 p++; 1025 a = a<<15; 1026 a |= *p; 1027 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1028 1029 /* moved CSE2 up */ 1030 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1031 b &= SLOT_2_0; 1032 b = b<<8; 1033 a |= b; 1034 1035 s = s<<4; 1036 b = p[-4]; 1037 b &= 0x7f; 1038 b = b>>3; 1039 s |= b; 1040 1041 *v = ((u64)s)<<32 | a; 1042 1043 return 9; 1044 } 1045 1046 /* 1047 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1048 ** Return the number of bytes read. The value is stored in *v. 1049 ** 1050 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1051 ** integer, then set *v to 0xffffffff. 1052 ** 1053 ** A MACRO version, getVarint32, is provided which inlines the 1054 ** single-byte case. All code should use the MACRO version as 1055 ** this function assumes the single-byte case has already been handled. 1056 */ 1057 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1058 u32 a,b; 1059 1060 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1061 ** by the getVarin32() macro */ 1062 a = *p; 1063 /* a: p0 (unmasked) */ 1064 #ifndef getVarint32 1065 if (!(a&0x80)) 1066 { 1067 /* Values between 0 and 127 */ 1068 *v = a; 1069 return 1; 1070 } 1071 #endif 1072 1073 /* The 2-byte case */ 1074 p++; 1075 b = *p; 1076 /* b: p1 (unmasked) */ 1077 if (!(b&0x80)) 1078 { 1079 /* Values between 128 and 16383 */ 1080 a &= 0x7f; 1081 a = a<<7; 1082 *v = a | b; 1083 return 2; 1084 } 1085 1086 /* The 3-byte case */ 1087 p++; 1088 a = a<<14; 1089 a |= *p; 1090 /* a: p0<<14 | p2 (unmasked) */ 1091 if (!(a&0x80)) 1092 { 1093 /* Values between 16384 and 2097151 */ 1094 a &= (0x7f<<14)|(0x7f); 1095 b &= 0x7f; 1096 b = b<<7; 1097 *v = a | b; 1098 return 3; 1099 } 1100 1101 /* A 32-bit varint is used to store size information in btrees. 1102 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1103 ** A 3-byte varint is sufficient, for example, to record the size 1104 ** of a 1048569-byte BLOB or string. 1105 ** 1106 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1107 ** rare larger cases can be handled by the slower 64-bit varint 1108 ** routine. 1109 */ 1110 #if 1 1111 { 1112 u64 v64; 1113 u8 n; 1114 1115 p -= 2; 1116 n = sqlite3GetVarint(p, &v64); 1117 assert( n>3 && n<=9 ); 1118 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1119 *v = 0xffffffff; 1120 }else{ 1121 *v = (u32)v64; 1122 } 1123 return n; 1124 } 1125 1126 #else 1127 /* For following code (kept for historical record only) shows an 1128 ** unrolling for the 3- and 4-byte varint cases. This code is 1129 ** slightly faster, but it is also larger and much harder to test. 1130 */ 1131 p++; 1132 b = b<<14; 1133 b |= *p; 1134 /* b: p1<<14 | p3 (unmasked) */ 1135 if (!(b&0x80)) 1136 { 1137 /* Values between 2097152 and 268435455 */ 1138 b &= (0x7f<<14)|(0x7f); 1139 a &= (0x7f<<14)|(0x7f); 1140 a = a<<7; 1141 *v = a | b; 1142 return 4; 1143 } 1144 1145 p++; 1146 a = a<<14; 1147 a |= *p; 1148 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1149 if (!(a&0x80)) 1150 { 1151 /* Values between 268435456 and 34359738367 */ 1152 a &= SLOT_4_2_0; 1153 b &= SLOT_4_2_0; 1154 b = b<<7; 1155 *v = a | b; 1156 return 5; 1157 } 1158 1159 /* We can only reach this point when reading a corrupt database 1160 ** file. In that case we are not in any hurry. Use the (relatively 1161 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1162 ** value. */ 1163 { 1164 u64 v64; 1165 u8 n; 1166 1167 p -= 4; 1168 n = sqlite3GetVarint(p, &v64); 1169 assert( n>5 && n<=9 ); 1170 *v = (u32)v64; 1171 return n; 1172 } 1173 #endif 1174 } 1175 1176 /* 1177 ** Return the number of bytes that will be needed to store the given 1178 ** 64-bit integer. 1179 */ 1180 int sqlite3VarintLen(u64 v){ 1181 int i; 1182 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1183 return i; 1184 } 1185 1186 1187 /* 1188 ** Read or write a four-byte big-endian integer value. 1189 */ 1190 u32 sqlite3Get4byte(const u8 *p){ 1191 #if SQLITE_BYTEORDER==4321 1192 u32 x; 1193 memcpy(&x,p,4); 1194 return x; 1195 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1196 u32 x; 1197 memcpy(&x,p,4); 1198 return __builtin_bswap32(x); 1199 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1200 u32 x; 1201 memcpy(&x,p,4); 1202 return _byteswap_ulong(x); 1203 #else 1204 testcase( p[0]&0x80 ); 1205 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1206 #endif 1207 } 1208 void sqlite3Put4byte(unsigned char *p, u32 v){ 1209 #if SQLITE_BYTEORDER==4321 1210 memcpy(p,&v,4); 1211 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1212 u32 x = __builtin_bswap32(v); 1213 memcpy(p,&x,4); 1214 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1215 u32 x = _byteswap_ulong(v); 1216 memcpy(p,&x,4); 1217 #else 1218 p[0] = (u8)(v>>24); 1219 p[1] = (u8)(v>>16); 1220 p[2] = (u8)(v>>8); 1221 p[3] = (u8)v; 1222 #endif 1223 } 1224 1225 1226 1227 /* 1228 ** Translate a single byte of Hex into an integer. 1229 ** This routine only works if h really is a valid hexadecimal 1230 ** character: 0..9a..fA..F 1231 */ 1232 u8 sqlite3HexToInt(int h){ 1233 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1234 #ifdef SQLITE_ASCII 1235 h += 9*(1&(h>>6)); 1236 #endif 1237 #ifdef SQLITE_EBCDIC 1238 h += 9*(1&~(h>>4)); 1239 #endif 1240 return (u8)(h & 0xf); 1241 } 1242 1243 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1244 /* 1245 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1246 ** value. Return a pointer to its binary value. Space to hold the 1247 ** binary value has been obtained from malloc and must be freed by 1248 ** the calling routine. 1249 */ 1250 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1251 char *zBlob; 1252 int i; 1253 1254 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1255 n--; 1256 if( zBlob ){ 1257 for(i=0; i<n; i+=2){ 1258 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1259 } 1260 zBlob[i/2] = 0; 1261 } 1262 return zBlob; 1263 } 1264 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1265 1266 /* 1267 ** Log an error that is an API call on a connection pointer that should 1268 ** not have been used. The "type" of connection pointer is given as the 1269 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1270 */ 1271 static void logBadConnection(const char *zType){ 1272 sqlite3_log(SQLITE_MISUSE, 1273 "API call with %s database connection pointer", 1274 zType 1275 ); 1276 } 1277 1278 /* 1279 ** Check to make sure we have a valid db pointer. This test is not 1280 ** foolproof but it does provide some measure of protection against 1281 ** misuse of the interface such as passing in db pointers that are 1282 ** NULL or which have been previously closed. If this routine returns 1283 ** 1 it means that the db pointer is valid and 0 if it should not be 1284 ** dereferenced for any reason. The calling function should invoke 1285 ** SQLITE_MISUSE immediately. 1286 ** 1287 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1288 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1289 ** open properly and is not fit for general use but which can be 1290 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1291 */ 1292 int sqlite3SafetyCheckOk(sqlite3 *db){ 1293 u32 magic; 1294 if( db==0 ){ 1295 logBadConnection("NULL"); 1296 return 0; 1297 } 1298 magic = db->magic; 1299 if( magic!=SQLITE_MAGIC_OPEN ){ 1300 if( sqlite3SafetyCheckSickOrOk(db) ){ 1301 testcase( sqlite3GlobalConfig.xLog!=0 ); 1302 logBadConnection("unopened"); 1303 } 1304 return 0; 1305 }else{ 1306 return 1; 1307 } 1308 } 1309 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1310 u32 magic; 1311 magic = db->magic; 1312 if( magic!=SQLITE_MAGIC_SICK && 1313 magic!=SQLITE_MAGIC_OPEN && 1314 magic!=SQLITE_MAGIC_BUSY ){ 1315 testcase( sqlite3GlobalConfig.xLog!=0 ); 1316 logBadConnection("invalid"); 1317 return 0; 1318 }else{ 1319 return 1; 1320 } 1321 } 1322 1323 /* 1324 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1325 ** the other 64-bit signed integer at *pA and store the result in *pA. 1326 ** Return 0 on success. Or if the operation would have resulted in an 1327 ** overflow, leave *pA unchanged and return 1. 1328 */ 1329 int sqlite3AddInt64(i64 *pA, i64 iB){ 1330 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1331 return __builtin_add_overflow(*pA, iB, pA); 1332 #else 1333 i64 iA = *pA; 1334 testcase( iA==0 ); testcase( iA==1 ); 1335 testcase( iB==-1 ); testcase( iB==0 ); 1336 if( iB>=0 ){ 1337 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1338 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1339 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1340 }else{ 1341 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1342 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1343 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1344 } 1345 *pA += iB; 1346 return 0; 1347 #endif 1348 } 1349 int sqlite3SubInt64(i64 *pA, i64 iB){ 1350 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1351 return __builtin_sub_overflow(*pA, iB, pA); 1352 #else 1353 testcase( iB==SMALLEST_INT64+1 ); 1354 if( iB==SMALLEST_INT64 ){ 1355 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1356 if( (*pA)>=0 ) return 1; 1357 *pA -= iB; 1358 return 0; 1359 }else{ 1360 return sqlite3AddInt64(pA, -iB); 1361 } 1362 #endif 1363 } 1364 int sqlite3MulInt64(i64 *pA, i64 iB){ 1365 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1366 return __builtin_mul_overflow(*pA, iB, pA); 1367 #else 1368 i64 iA = *pA; 1369 if( iB>0 ){ 1370 if( iA>LARGEST_INT64/iB ) return 1; 1371 if( iA<SMALLEST_INT64/iB ) return 1; 1372 }else if( iB<0 ){ 1373 if( iA>0 ){ 1374 if( iB<SMALLEST_INT64/iA ) return 1; 1375 }else if( iA<0 ){ 1376 if( iB==SMALLEST_INT64 ) return 1; 1377 if( iA==SMALLEST_INT64 ) return 1; 1378 if( -iA>LARGEST_INT64/-iB ) return 1; 1379 } 1380 } 1381 *pA = iA*iB; 1382 return 0; 1383 #endif 1384 } 1385 1386 /* 1387 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1388 ** if the integer has a value of -2147483648, return +2147483647 1389 */ 1390 int sqlite3AbsInt32(int x){ 1391 if( x>=0 ) return x; 1392 if( x==(int)0x80000000 ) return 0x7fffffff; 1393 return -x; 1394 } 1395 1396 #ifdef SQLITE_ENABLE_8_3_NAMES 1397 /* 1398 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1399 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1400 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1401 ** three characters, then shorten the suffix on z[] to be the last three 1402 ** characters of the original suffix. 1403 ** 1404 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1405 ** do the suffix shortening regardless of URI parameter. 1406 ** 1407 ** Examples: 1408 ** 1409 ** test.db-journal => test.nal 1410 ** test.db-wal => test.wal 1411 ** test.db-shm => test.shm 1412 ** test.db-mj7f3319fa => test.9fa 1413 */ 1414 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1415 #if SQLITE_ENABLE_8_3_NAMES<2 1416 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1417 #endif 1418 { 1419 int i, sz; 1420 sz = sqlite3Strlen30(z); 1421 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1422 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1423 } 1424 } 1425 #endif 1426 1427 /* 1428 ** Find (an approximate) sum of two LogEst values. This computation is 1429 ** not a simple "+" operator because LogEst is stored as a logarithmic 1430 ** value. 1431 ** 1432 */ 1433 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1434 static const unsigned char x[] = { 1435 10, 10, /* 0,1 */ 1436 9, 9, /* 2,3 */ 1437 8, 8, /* 4,5 */ 1438 7, 7, 7, /* 6,7,8 */ 1439 6, 6, 6, /* 9,10,11 */ 1440 5, 5, 5, /* 12-14 */ 1441 4, 4, 4, 4, /* 15-18 */ 1442 3, 3, 3, 3, 3, 3, /* 19-24 */ 1443 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1444 }; 1445 if( a>=b ){ 1446 if( a>b+49 ) return a; 1447 if( a>b+31 ) return a+1; 1448 return a+x[a-b]; 1449 }else{ 1450 if( b>a+49 ) return b; 1451 if( b>a+31 ) return b+1; 1452 return b+x[b-a]; 1453 } 1454 } 1455 1456 /* 1457 ** Convert an integer into a LogEst. In other words, compute an 1458 ** approximation for 10*log2(x). 1459 */ 1460 LogEst sqlite3LogEst(u64 x){ 1461 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1462 LogEst y = 40; 1463 if( x<8 ){ 1464 if( x<2 ) return 0; 1465 while( x<8 ){ y -= 10; x <<= 1; } 1466 }else{ 1467 #if GCC_VERSION>=5004000 1468 int i = 60 - __builtin_clzll(x); 1469 y += i*10; 1470 x >>= i; 1471 #else 1472 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1473 while( x>15 ){ y += 10; x >>= 1; } 1474 #endif 1475 } 1476 return a[x&7] + y - 10; 1477 } 1478 1479 #ifndef SQLITE_OMIT_VIRTUALTABLE 1480 /* 1481 ** Convert a double into a LogEst 1482 ** In other words, compute an approximation for 10*log2(x). 1483 */ 1484 LogEst sqlite3LogEstFromDouble(double x){ 1485 u64 a; 1486 LogEst e; 1487 assert( sizeof(x)==8 && sizeof(a)==8 ); 1488 if( x<=1 ) return 0; 1489 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1490 memcpy(&a, &x, 8); 1491 e = (a>>52) - 1022; 1492 return e*10; 1493 } 1494 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1495 1496 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1497 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 1498 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1499 /* 1500 ** Convert a LogEst into an integer. 1501 ** 1502 ** Note that this routine is only used when one or more of various 1503 ** non-standard compile-time options is enabled. 1504 */ 1505 u64 sqlite3LogEstToInt(LogEst x){ 1506 u64 n; 1507 n = x%10; 1508 x /= 10; 1509 if( n>=5 ) n -= 2; 1510 else if( n>=1 ) n -= 1; 1511 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1512 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1513 if( x>60 ) return (u64)LARGEST_INT64; 1514 #else 1515 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input 1516 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1517 assert( x<=60 ); 1518 #endif 1519 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1520 } 1521 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1522 1523 /* 1524 ** Add a new name/number pair to a VList. This might require that the 1525 ** VList object be reallocated, so return the new VList. If an OOM 1526 ** error occurs, the original VList returned and the 1527 ** db->mallocFailed flag is set. 1528 ** 1529 ** A VList is really just an array of integers. To destroy a VList, 1530 ** simply pass it to sqlite3DbFree(). 1531 ** 1532 ** The first integer is the number of integers allocated for the whole 1533 ** VList. The second integer is the number of integers actually used. 1534 ** Each name/number pair is encoded by subsequent groups of 3 or more 1535 ** integers. 1536 ** 1537 ** Each name/number pair starts with two integers which are the numeric 1538 ** value for the pair and the size of the name/number pair, respectively. 1539 ** The text name overlays one or more following integers. The text name 1540 ** is always zero-terminated. 1541 ** 1542 ** Conceptually: 1543 ** 1544 ** struct VList { 1545 ** int nAlloc; // Number of allocated slots 1546 ** int nUsed; // Number of used slots 1547 ** struct VListEntry { 1548 ** int iValue; // Value for this entry 1549 ** int nSlot; // Slots used by this entry 1550 ** // ... variable name goes here 1551 ** } a[0]; 1552 ** } 1553 ** 1554 ** During code generation, pointers to the variable names within the 1555 ** VList are taken. When that happens, nAlloc is set to zero as an 1556 ** indication that the VList may never again be enlarged, since the 1557 ** accompanying realloc() would invalidate the pointers. 1558 */ 1559 VList *sqlite3VListAdd( 1560 sqlite3 *db, /* The database connection used for malloc() */ 1561 VList *pIn, /* The input VList. Might be NULL */ 1562 const char *zName, /* Name of symbol to add */ 1563 int nName, /* Bytes of text in zName */ 1564 int iVal /* Value to associate with zName */ 1565 ){ 1566 int nInt; /* number of sizeof(int) objects needed for zName */ 1567 char *z; /* Pointer to where zName will be stored */ 1568 int i; /* Index in pIn[] where zName is stored */ 1569 1570 nInt = nName/4 + 3; 1571 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1572 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1573 /* Enlarge the allocation */ 1574 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt; 1575 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1576 if( pOut==0 ) return pIn; 1577 if( pIn==0 ) pOut[1] = 2; 1578 pIn = pOut; 1579 pIn[0] = nAlloc; 1580 } 1581 i = pIn[1]; 1582 pIn[i] = iVal; 1583 pIn[i+1] = nInt; 1584 z = (char*)&pIn[i+2]; 1585 pIn[1] = i+nInt; 1586 assert( pIn[1]<=pIn[0] ); 1587 memcpy(z, zName, nName); 1588 z[nName] = 0; 1589 return pIn; 1590 } 1591 1592 /* 1593 ** Return a pointer to the name of a variable in the given VList that 1594 ** has the value iVal. Or return a NULL if there is no such variable in 1595 ** the list 1596 */ 1597 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1598 int i, mx; 1599 if( pIn==0 ) return 0; 1600 mx = pIn[1]; 1601 i = 2; 1602 do{ 1603 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1604 i += pIn[i+1]; 1605 }while( i<mx ); 1606 return 0; 1607 } 1608 1609 /* 1610 ** Return the number of the variable named zName, if it is in VList. 1611 ** or return 0 if there is no such variable. 1612 */ 1613 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1614 int i, mx; 1615 if( pIn==0 ) return 0; 1616 mx = pIn[1]; 1617 i = 2; 1618 do{ 1619 const char *z = (const char*)&pIn[i+2]; 1620 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1621 i += pIn[i+1]; 1622 }while( i<mx ); 1623 return 0; 1624 } 1625