xref: /sqlite-3.40.0/src/util.c (revision fb32c44e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
38 **
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
41 **
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
44 */
45 #ifndef SQLITE_UNTESTABLE
46 int sqlite3FaultSim(int iTest){
47   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48   return xCallback ? xCallback(iTest) : SQLITE_OK;
49 }
50 #endif
51 
52 #ifndef SQLITE_OMIT_FLOATING_POINT
53 /*
54 ** Return true if the floating point value is Not a Number (NaN).
55 **
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
58 */
59 int sqlite3IsNaN(double x){
60   int rc;   /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
62   /*
63   ** Systems that support the isnan() library function should probably
64   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
65   ** found that many systems do not have a working isnan() function so
66   ** this implementation is provided as an alternative.
67   **
68   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69   ** On the other hand, the use of -ffast-math comes with the following
70   ** warning:
71   **
72   **      This option [-ffast-math] should never be turned on by any
73   **      -O option since it can result in incorrect output for programs
74   **      which depend on an exact implementation of IEEE or ISO
75   **      rules/specifications for math functions.
76   **
77   ** Under MSVC, this NaN test may fail if compiled with a floating-
78   ** point precision mode other than /fp:precise.  From the MSDN
79   ** documentation:
80   **
81   **      The compiler [with /fp:precise] will properly handle comparisons
82   **      involving NaN. For example, x != x evaluates to true if x is NaN
83   **      ...
84   */
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88   volatile double y = x;
89   volatile double z = y;
90   rc = (y!=z);
91 #else  /* if HAVE_ISNAN */
92   rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94   testcase( rc );
95   return rc;
96 }
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
98 
99 /*
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
102 **
103 ** The value returned will never be negative.  Nor will it ever be greater
104 ** than the actual length of the string.  For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
106 */
107 int sqlite3Strlen30(const char *z){
108   if( z==0 ) return 0;
109   return 0x3fffffff & (int)strlen(z);
110 }
111 
112 /*
113 ** Return the declared type of a column.  Or return zDflt if the column
114 ** has no declared type.
115 **
116 ** The column type is an extra string stored after the zero-terminator on
117 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
118 */
119 char *sqlite3ColumnType(Column *pCol, char *zDflt){
120   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121   return pCol->zName + strlen(pCol->zName) + 1;
122 }
123 
124 /*
125 ** Helper function for sqlite3Error() - called rarely.  Broken out into
126 ** a separate routine to avoid unnecessary register saves on entry to
127 ** sqlite3Error().
128 */
129 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
130   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131   sqlite3SystemError(db, err_code);
132 }
133 
134 /*
135 ** Set the current error code to err_code and clear any prior error message.
136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137 ** that would be appropriate.
138 */
139 void sqlite3Error(sqlite3 *db, int err_code){
140   assert( db!=0 );
141   db->errCode = err_code;
142   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
143 }
144 
145 /*
146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
147 ** to do based on the SQLite error code in rc.
148 */
149 void sqlite3SystemError(sqlite3 *db, int rc){
150   if( rc==SQLITE_IOERR_NOMEM ) return;
151   rc &= 0xff;
152   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
154   }
155 }
156 
157 /*
158 ** Set the most recent error code and error string for the sqlite
159 ** handle "db". The error code is set to "err_code".
160 **
161 ** If it is not NULL, string zFormat specifies the format of the
162 ** error string in the style of the printf functions: The following
163 ** format characters are allowed:
164 **
165 **      %s      Insert a string
166 **      %z      A string that should be freed after use
167 **      %d      Insert an integer
168 **      %T      Insert a token
169 **      %S      Insert the first element of a SrcList
170 **
171 ** zFormat and any string tokens that follow it are assumed to be
172 ** encoded in UTF-8.
173 **
174 ** To clear the most recent error for sqlite handle "db", sqlite3Error
175 ** should be called with err_code set to SQLITE_OK and zFormat set
176 ** to NULL.
177 */
178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
179   assert( db!=0 );
180   db->errCode = err_code;
181   sqlite3SystemError(db, err_code);
182   if( zFormat==0 ){
183     sqlite3Error(db, err_code);
184   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
185     char *z;
186     va_list ap;
187     va_start(ap, zFormat);
188     z = sqlite3VMPrintf(db, zFormat, ap);
189     va_end(ap);
190     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
191   }
192 }
193 
194 /*
195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196 ** The following formatting characters are allowed:
197 **
198 **      %s      Insert a string
199 **      %z      A string that should be freed after use
200 **      %d      Insert an integer
201 **      %T      Insert a token
202 **      %S      Insert the first element of a SrcList
203 **
204 ** This function should be used to report any error that occurs while
205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206 ** last thing the sqlite3_prepare() function does is copy the error
207 ** stored by this function into the database handle using sqlite3Error().
208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209 ** during statement execution (sqlite3_step() etc.).
210 */
211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
212   char *zMsg;
213   va_list ap;
214   sqlite3 *db = pParse->db;
215   va_start(ap, zFormat);
216   zMsg = sqlite3VMPrintf(db, zFormat, ap);
217   va_end(ap);
218   if( db->suppressErr ){
219     sqlite3DbFree(db, zMsg);
220   }else{
221     pParse->nErr++;
222     sqlite3DbFree(db, pParse->zErrMsg);
223     pParse->zErrMsg = zMsg;
224     pParse->rc = SQLITE_ERROR;
225   }
226 }
227 
228 /*
229 ** Convert an SQL-style quoted string into a normal string by removing
230 ** the quote characters.  The conversion is done in-place.  If the
231 ** input does not begin with a quote character, then this routine
232 ** is a no-op.
233 **
234 ** The input string must be zero-terminated.  A new zero-terminator
235 ** is added to the dequoted string.
236 **
237 ** The return value is -1 if no dequoting occurs or the length of the
238 ** dequoted string, exclusive of the zero terminator, if dequoting does
239 ** occur.
240 **
241 ** 2002-Feb-14: This routine is extended to remove MS-Access style
242 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
243 ** "a-b-c".
244 */
245 void sqlite3Dequote(char *z){
246   char quote;
247   int i, j;
248   if( z==0 ) return;
249   quote = z[0];
250   if( !sqlite3Isquote(quote) ) return;
251   if( quote=='[' ) quote = ']';
252   for(i=1, j=0;; i++){
253     assert( z[i] );
254     if( z[i]==quote ){
255       if( z[i+1]==quote ){
256         z[j++] = quote;
257         i++;
258       }else{
259         break;
260       }
261     }else{
262       z[j++] = z[i];
263     }
264   }
265   z[j] = 0;
266 }
267 
268 /*
269 ** Generate a Token object from a string
270 */
271 void sqlite3TokenInit(Token *p, char *z){
272   p->z = z;
273   p->n = sqlite3Strlen30(z);
274 }
275 
276 /* Convenient short-hand */
277 #define UpperToLower sqlite3UpperToLower
278 
279 /*
280 ** Some systems have stricmp().  Others have strcasecmp().  Because
281 ** there is no consistency, we will define our own.
282 **
283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
285 ** the contents of two buffers containing UTF-8 strings in a
286 ** case-independent fashion, using the same definition of "case
287 ** independence" that SQLite uses internally when comparing identifiers.
288 */
289 int sqlite3_stricmp(const char *zLeft, const char *zRight){
290   if( zLeft==0 ){
291     return zRight ? -1 : 0;
292   }else if( zRight==0 ){
293     return 1;
294   }
295   return sqlite3StrICmp(zLeft, zRight);
296 }
297 int sqlite3StrICmp(const char *zLeft, const char *zRight){
298   unsigned char *a, *b;
299   int c;
300   a = (unsigned char *)zLeft;
301   b = (unsigned char *)zRight;
302   for(;;){
303     c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
304     if( c || *a==0 ) break;
305     a++;
306     b++;
307   }
308   return c;
309 }
310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
311   register unsigned char *a, *b;
312   if( zLeft==0 ){
313     return zRight ? -1 : 0;
314   }else if( zRight==0 ){
315     return 1;
316   }
317   a = (unsigned char *)zLeft;
318   b = (unsigned char *)zRight;
319   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
320   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
321 }
322 
323 /*
324 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
325 ** E==2 results in 100.  E==50 results in 1.0e50.
326 **
327 ** This routine only works for values of E between 1 and 341.
328 */
329 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
330 #if defined(_MSC_VER)
331   static const LONGDOUBLE_TYPE x[] = {
332     1.0e+001,
333     1.0e+002,
334     1.0e+004,
335     1.0e+008,
336     1.0e+016,
337     1.0e+032,
338     1.0e+064,
339     1.0e+128,
340     1.0e+256
341   };
342   LONGDOUBLE_TYPE r = 1.0;
343   int i;
344   assert( E>=0 && E<=307 );
345   for(i=0; E!=0; i++, E >>=1){
346     if( E & 1 ) r *= x[i];
347   }
348   return r;
349 #else
350   LONGDOUBLE_TYPE x = 10.0;
351   LONGDOUBLE_TYPE r = 1.0;
352   while(1){
353     if( E & 1 ) r *= x;
354     E >>= 1;
355     if( E==0 ) break;
356     x *= x;
357   }
358   return r;
359 #endif
360 }
361 
362 /*
363 ** The string z[] is an text representation of a real number.
364 ** Convert this string to a double and write it into *pResult.
365 **
366 ** The string z[] is length bytes in length (bytes, not characters) and
367 ** uses the encoding enc.  The string is not necessarily zero-terminated.
368 **
369 ** Return TRUE if the result is a valid real number (or integer) and FALSE
370 ** if the string is empty or contains extraneous text.  Valid numbers
371 ** are in one of these formats:
372 **
373 **    [+-]digits[E[+-]digits]
374 **    [+-]digits.[digits][E[+-]digits]
375 **    [+-].digits[E[+-]digits]
376 **
377 ** Leading and trailing whitespace is ignored for the purpose of determining
378 ** validity.
379 **
380 ** If some prefix of the input string is a valid number, this routine
381 ** returns FALSE but it still converts the prefix and writes the result
382 ** into *pResult.
383 */
384 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
385 #ifndef SQLITE_OMIT_FLOATING_POINT
386   int incr;
387   const char *zEnd = z + length;
388   /* sign * significand * (10 ^ (esign * exponent)) */
389   int sign = 1;    /* sign of significand */
390   i64 s = 0;       /* significand */
391   int d = 0;       /* adjust exponent for shifting decimal point */
392   int esign = 1;   /* sign of exponent */
393   int e = 0;       /* exponent */
394   int eValid = 1;  /* True exponent is either not used or is well-formed */
395   double result;
396   int nDigits = 0;
397   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
398 
399   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
400   *pResult = 0.0;   /* Default return value, in case of an error */
401 
402   if( enc==SQLITE_UTF8 ){
403     incr = 1;
404   }else{
405     int i;
406     incr = 2;
407     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
408     for(i=3-enc; i<length && z[i]==0; i+=2){}
409     nonNum = i<length;
410     zEnd = &z[i^1];
411     z += (enc&1);
412   }
413 
414   /* skip leading spaces */
415   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
416   if( z>=zEnd ) return 0;
417 
418   /* get sign of significand */
419   if( *z=='-' ){
420     sign = -1;
421     z+=incr;
422   }else if( *z=='+' ){
423     z+=incr;
424   }
425 
426   /* copy max significant digits to significand */
427   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
428     s = s*10 + (*z - '0');
429     z+=incr; nDigits++;
430   }
431 
432   /* skip non-significant significand digits
433   ** (increase exponent by d to shift decimal left) */
434   while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; }
435   if( z>=zEnd ) goto do_atof_calc;
436 
437   /* if decimal point is present */
438   if( *z=='.' ){
439     z+=incr;
440     /* copy digits from after decimal to significand
441     ** (decrease exponent by d to shift decimal right) */
442     while( z<zEnd && sqlite3Isdigit(*z) ){
443       if( s<((LARGEST_INT64-9)/10) ){
444         s = s*10 + (*z - '0');
445         d--;
446       }
447       z+=incr; nDigits++;
448     }
449   }
450   if( z>=zEnd ) goto do_atof_calc;
451 
452   /* if exponent is present */
453   if( *z=='e' || *z=='E' ){
454     z+=incr;
455     eValid = 0;
456 
457     /* This branch is needed to avoid a (harmless) buffer overread.  The
458     ** special comment alerts the mutation tester that the correct answer
459     ** is obtained even if the branch is omitted */
460     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
461 
462     /* get sign of exponent */
463     if( *z=='-' ){
464       esign = -1;
465       z+=incr;
466     }else if( *z=='+' ){
467       z+=incr;
468     }
469     /* copy digits to exponent */
470     while( z<zEnd && sqlite3Isdigit(*z) ){
471       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
472       z+=incr;
473       eValid = 1;
474     }
475   }
476 
477   /* skip trailing spaces */
478   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
479 
480 do_atof_calc:
481   /* adjust exponent by d, and update sign */
482   e = (e*esign) + d;
483   if( e<0 ) {
484     esign = -1;
485     e *= -1;
486   } else {
487     esign = 1;
488   }
489 
490   if( s==0 ) {
491     /* In the IEEE 754 standard, zero is signed. */
492     result = sign<0 ? -(double)0 : (double)0;
493   } else {
494     /* Attempt to reduce exponent.
495     **
496     ** Branches that are not required for the correct answer but which only
497     ** help to obtain the correct answer faster are marked with special
498     ** comments, as a hint to the mutation tester.
499     */
500     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
501       if( esign>0 ){
502         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
503         s *= 10;
504       }else{
505         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
506         s /= 10;
507       }
508       e--;
509     }
510 
511     /* adjust the sign of significand */
512     s = sign<0 ? -s : s;
513 
514     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
515       result = (double)s;
516     }else{
517       /* attempt to handle extremely small/large numbers better */
518       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
519         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
520           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
521           if( esign<0 ){
522             result = s / scale;
523             result /= 1.0e+308;
524           }else{
525             result = s * scale;
526             result *= 1.0e+308;
527           }
528         }else{ assert( e>=342 );
529           if( esign<0 ){
530             result = 0.0*s;
531           }else{
532 #ifdef INFINITY
533             result = INFINITY*s;
534 #else
535             result = 1e308*1e308*s;  /* Infinity */
536 #endif
537           }
538         }
539       }else{
540         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
541         if( esign<0 ){
542           result = s / scale;
543         }else{
544           result = s * scale;
545         }
546       }
547     }
548   }
549 
550   /* store the result */
551   *pResult = result;
552 
553   /* return true if number and no extra non-whitespace chracters after */
554   return z==zEnd && nDigits>0 && eValid && nonNum==0;
555 #else
556   return !sqlite3Atoi64(z, pResult, length, enc);
557 #endif /* SQLITE_OMIT_FLOATING_POINT */
558 }
559 
560 /*
561 ** Compare the 19-character string zNum against the text representation
562 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
563 ** if zNum is less than, equal to, or greater than the string.
564 ** Note that zNum must contain exactly 19 characters.
565 **
566 ** Unlike memcmp() this routine is guaranteed to return the difference
567 ** in the values of the last digit if the only difference is in the
568 ** last digit.  So, for example,
569 **
570 **      compare2pow63("9223372036854775800", 1)
571 **
572 ** will return -8.
573 */
574 static int compare2pow63(const char *zNum, int incr){
575   int c = 0;
576   int i;
577                     /* 012345678901234567 */
578   const char *pow63 = "922337203685477580";
579   for(i=0; c==0 && i<18; i++){
580     c = (zNum[i*incr]-pow63[i])*10;
581   }
582   if( c==0 ){
583     c = zNum[18*incr] - '8';
584     testcase( c==(-1) );
585     testcase( c==0 );
586     testcase( c==(+1) );
587   }
588   return c;
589 }
590 
591 /*
592 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
593 ** routine does *not* accept hexadecimal notation.
594 **
595 ** Returns:
596 **
597 **     0    Successful transformation.  Fits in a 64-bit signed integer.
598 **     1    Excess non-space text after the integer value
599 **     2    Integer too large for a 64-bit signed integer or is malformed
600 **     3    Special case of 9223372036854775808
601 **
602 ** length is the number of bytes in the string (bytes, not characters).
603 ** The string is not necessarily zero-terminated.  The encoding is
604 ** given by enc.
605 */
606 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
607   int incr;
608   u64 u = 0;
609   int neg = 0; /* assume positive */
610   int i;
611   int c = 0;
612   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
613   int rc;          /* Baseline return code */
614   const char *zStart;
615   const char *zEnd = zNum + length;
616   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
617   if( enc==SQLITE_UTF8 ){
618     incr = 1;
619   }else{
620     incr = 2;
621     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
622     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
623     nonNum = i<length;
624     zEnd = &zNum[i^1];
625     zNum += (enc&1);
626   }
627   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
628   if( zNum<zEnd ){
629     if( *zNum=='-' ){
630       neg = 1;
631       zNum+=incr;
632     }else if( *zNum=='+' ){
633       zNum+=incr;
634     }
635   }
636   zStart = zNum;
637   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
638   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
639     u = u*10 + c - '0';
640   }
641   testcase( i==18*incr );
642   testcase( i==19*incr );
643   testcase( i==20*incr );
644   if( u>LARGEST_INT64 ){
645     /* This test and assignment is needed only to suppress UB warnings
646     ** from clang and -fsanitize=undefined.  This test and assignment make
647     ** the code a little larger and slower, and no harm comes from omitting
648     ** them, but we must appaise the undefined-behavior pharisees. */
649     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
650   }else if( neg ){
651     *pNum = -(i64)u;
652   }else{
653     *pNum = (i64)u;
654   }
655   rc = 0;
656   if( (i==0 && zStart==zNum)     /* No digits */
657    || nonNum                     /* UTF16 with high-order bytes non-zero */
658   ){
659     rc = 1;
660   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
661     int jj = i;
662     do{
663       if( !sqlite3Isspace(zNum[jj]) ){
664         rc = 1;          /* Extra non-space text after the integer */
665         break;
666       }
667       jj += incr;
668     }while( &zNum[jj]<zEnd );
669   }
670   if( i<19*incr ){
671     /* Less than 19 digits, so we know that it fits in 64 bits */
672     assert( u<=LARGEST_INT64 );
673     return rc;
674   }else{
675     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
676     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
677     if( c<0 ){
678       /* zNum is less than 9223372036854775808 so it fits */
679       assert( u<=LARGEST_INT64 );
680       return rc;
681     }else{
682       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
683       if( c>0 ){
684         /* zNum is greater than 9223372036854775808 so it overflows */
685         return 2;
686       }else{
687         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
688         ** special case 2 overflow if positive */
689         assert( u-1==LARGEST_INT64 );
690         return neg ? rc : 3;
691       }
692     }
693   }
694 }
695 
696 /*
697 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
698 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
699 ** whereas sqlite3Atoi64() does not.
700 **
701 ** Returns:
702 **
703 **     0    Successful transformation.  Fits in a 64-bit signed integer.
704 **     1    Excess text after the integer value
705 **     2    Integer too large for a 64-bit signed integer or is malformed
706 **     3    Special case of 9223372036854775808
707 */
708 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
709 #ifndef SQLITE_OMIT_HEX_INTEGER
710   if( z[0]=='0'
711    && (z[1]=='x' || z[1]=='X')
712   ){
713     u64 u = 0;
714     int i, k;
715     for(i=2; z[i]=='0'; i++){}
716     for(k=i; sqlite3Isxdigit(z[k]); k++){
717       u = u*16 + sqlite3HexToInt(z[k]);
718     }
719     memcpy(pOut, &u, 8);
720     return (z[k]==0 && k-i<=16) ? 0 : 2;
721   }else
722 #endif /* SQLITE_OMIT_HEX_INTEGER */
723   {
724     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
725   }
726 }
727 
728 /*
729 ** If zNum represents an integer that will fit in 32-bits, then set
730 ** *pValue to that integer and return true.  Otherwise return false.
731 **
732 ** This routine accepts both decimal and hexadecimal notation for integers.
733 **
734 ** Any non-numeric characters that following zNum are ignored.
735 ** This is different from sqlite3Atoi64() which requires the
736 ** input number to be zero-terminated.
737 */
738 int sqlite3GetInt32(const char *zNum, int *pValue){
739   sqlite_int64 v = 0;
740   int i, c;
741   int neg = 0;
742   if( zNum[0]=='-' ){
743     neg = 1;
744     zNum++;
745   }else if( zNum[0]=='+' ){
746     zNum++;
747   }
748 #ifndef SQLITE_OMIT_HEX_INTEGER
749   else if( zNum[0]=='0'
750         && (zNum[1]=='x' || zNum[1]=='X')
751         && sqlite3Isxdigit(zNum[2])
752   ){
753     u32 u = 0;
754     zNum += 2;
755     while( zNum[0]=='0' ) zNum++;
756     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
757       u = u*16 + sqlite3HexToInt(zNum[i]);
758     }
759     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
760       memcpy(pValue, &u, 4);
761       return 1;
762     }else{
763       return 0;
764     }
765   }
766 #endif
767   if( !sqlite3Isdigit(zNum[0]) ) return 0;
768   while( zNum[0]=='0' ) zNum++;
769   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
770     v = v*10 + c;
771   }
772 
773   /* The longest decimal representation of a 32 bit integer is 10 digits:
774   **
775   **             1234567890
776   **     2^31 -> 2147483648
777   */
778   testcase( i==10 );
779   if( i>10 ){
780     return 0;
781   }
782   testcase( v-neg==2147483647 );
783   if( v-neg>2147483647 ){
784     return 0;
785   }
786   if( neg ){
787     v = -v;
788   }
789   *pValue = (int)v;
790   return 1;
791 }
792 
793 /*
794 ** Return a 32-bit integer value extracted from a string.  If the
795 ** string is not an integer, just return 0.
796 */
797 int sqlite3Atoi(const char *z){
798   int x = 0;
799   if( z ) sqlite3GetInt32(z, &x);
800   return x;
801 }
802 
803 /*
804 ** The variable-length integer encoding is as follows:
805 **
806 ** KEY:
807 **         A = 0xxxxxxx    7 bits of data and one flag bit
808 **         B = 1xxxxxxx    7 bits of data and one flag bit
809 **         C = xxxxxxxx    8 bits of data
810 **
811 **  7 bits - A
812 ** 14 bits - BA
813 ** 21 bits - BBA
814 ** 28 bits - BBBA
815 ** 35 bits - BBBBA
816 ** 42 bits - BBBBBA
817 ** 49 bits - BBBBBBA
818 ** 56 bits - BBBBBBBA
819 ** 64 bits - BBBBBBBBC
820 */
821 
822 /*
823 ** Write a 64-bit variable-length integer to memory starting at p[0].
824 ** The length of data write will be between 1 and 9 bytes.  The number
825 ** of bytes written is returned.
826 **
827 ** A variable-length integer consists of the lower 7 bits of each byte
828 ** for all bytes that have the 8th bit set and one byte with the 8th
829 ** bit clear.  Except, if we get to the 9th byte, it stores the full
830 ** 8 bits and is the last byte.
831 */
832 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
833   int i, j, n;
834   u8 buf[10];
835   if( v & (((u64)0xff000000)<<32) ){
836     p[8] = (u8)v;
837     v >>= 8;
838     for(i=7; i>=0; i--){
839       p[i] = (u8)((v & 0x7f) | 0x80);
840       v >>= 7;
841     }
842     return 9;
843   }
844   n = 0;
845   do{
846     buf[n++] = (u8)((v & 0x7f) | 0x80);
847     v >>= 7;
848   }while( v!=0 );
849   buf[0] &= 0x7f;
850   assert( n<=9 );
851   for(i=0, j=n-1; j>=0; j--, i++){
852     p[i] = buf[j];
853   }
854   return n;
855 }
856 int sqlite3PutVarint(unsigned char *p, u64 v){
857   if( v<=0x7f ){
858     p[0] = v&0x7f;
859     return 1;
860   }
861   if( v<=0x3fff ){
862     p[0] = ((v>>7)&0x7f)|0x80;
863     p[1] = v&0x7f;
864     return 2;
865   }
866   return putVarint64(p,v);
867 }
868 
869 /*
870 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
871 ** are defined here rather than simply putting the constant expressions
872 ** inline in order to work around bugs in the RVT compiler.
873 **
874 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
875 **
876 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
877 */
878 #define SLOT_2_0     0x001fc07f
879 #define SLOT_4_2_0   0xf01fc07f
880 
881 
882 /*
883 ** Read a 64-bit variable-length integer from memory starting at p[0].
884 ** Return the number of bytes read.  The value is stored in *v.
885 */
886 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
887   u32 a,b,s;
888 
889   a = *p;
890   /* a: p0 (unmasked) */
891   if (!(a&0x80))
892   {
893     *v = a;
894     return 1;
895   }
896 
897   p++;
898   b = *p;
899   /* b: p1 (unmasked) */
900   if (!(b&0x80))
901   {
902     a &= 0x7f;
903     a = a<<7;
904     a |= b;
905     *v = a;
906     return 2;
907   }
908 
909   /* Verify that constants are precomputed correctly */
910   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
911   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
912 
913   p++;
914   a = a<<14;
915   a |= *p;
916   /* a: p0<<14 | p2 (unmasked) */
917   if (!(a&0x80))
918   {
919     a &= SLOT_2_0;
920     b &= 0x7f;
921     b = b<<7;
922     a |= b;
923     *v = a;
924     return 3;
925   }
926 
927   /* CSE1 from below */
928   a &= SLOT_2_0;
929   p++;
930   b = b<<14;
931   b |= *p;
932   /* b: p1<<14 | p3 (unmasked) */
933   if (!(b&0x80))
934   {
935     b &= SLOT_2_0;
936     /* moved CSE1 up */
937     /* a &= (0x7f<<14)|(0x7f); */
938     a = a<<7;
939     a |= b;
940     *v = a;
941     return 4;
942   }
943 
944   /* a: p0<<14 | p2 (masked) */
945   /* b: p1<<14 | p3 (unmasked) */
946   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
947   /* moved CSE1 up */
948   /* a &= (0x7f<<14)|(0x7f); */
949   b &= SLOT_2_0;
950   s = a;
951   /* s: p0<<14 | p2 (masked) */
952 
953   p++;
954   a = a<<14;
955   a |= *p;
956   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
957   if (!(a&0x80))
958   {
959     /* we can skip these cause they were (effectively) done above
960     ** while calculating s */
961     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
962     /* b &= (0x7f<<14)|(0x7f); */
963     b = b<<7;
964     a |= b;
965     s = s>>18;
966     *v = ((u64)s)<<32 | a;
967     return 5;
968   }
969 
970   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
971   s = s<<7;
972   s |= b;
973   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
974 
975   p++;
976   b = b<<14;
977   b |= *p;
978   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
979   if (!(b&0x80))
980   {
981     /* we can skip this cause it was (effectively) done above in calc'ing s */
982     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
983     a &= SLOT_2_0;
984     a = a<<7;
985     a |= b;
986     s = s>>18;
987     *v = ((u64)s)<<32 | a;
988     return 6;
989   }
990 
991   p++;
992   a = a<<14;
993   a |= *p;
994   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
995   if (!(a&0x80))
996   {
997     a &= SLOT_4_2_0;
998     b &= SLOT_2_0;
999     b = b<<7;
1000     a |= b;
1001     s = s>>11;
1002     *v = ((u64)s)<<32 | a;
1003     return 7;
1004   }
1005 
1006   /* CSE2 from below */
1007   a &= SLOT_2_0;
1008   p++;
1009   b = b<<14;
1010   b |= *p;
1011   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1012   if (!(b&0x80))
1013   {
1014     b &= SLOT_4_2_0;
1015     /* moved CSE2 up */
1016     /* a &= (0x7f<<14)|(0x7f); */
1017     a = a<<7;
1018     a |= b;
1019     s = s>>4;
1020     *v = ((u64)s)<<32 | a;
1021     return 8;
1022   }
1023 
1024   p++;
1025   a = a<<15;
1026   a |= *p;
1027   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1028 
1029   /* moved CSE2 up */
1030   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1031   b &= SLOT_2_0;
1032   b = b<<8;
1033   a |= b;
1034 
1035   s = s<<4;
1036   b = p[-4];
1037   b &= 0x7f;
1038   b = b>>3;
1039   s |= b;
1040 
1041   *v = ((u64)s)<<32 | a;
1042 
1043   return 9;
1044 }
1045 
1046 /*
1047 ** Read a 32-bit variable-length integer from memory starting at p[0].
1048 ** Return the number of bytes read.  The value is stored in *v.
1049 **
1050 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1051 ** integer, then set *v to 0xffffffff.
1052 **
1053 ** A MACRO version, getVarint32, is provided which inlines the
1054 ** single-byte case.  All code should use the MACRO version as
1055 ** this function assumes the single-byte case has already been handled.
1056 */
1057 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1058   u32 a,b;
1059 
1060   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1061   ** by the getVarin32() macro */
1062   a = *p;
1063   /* a: p0 (unmasked) */
1064 #ifndef getVarint32
1065   if (!(a&0x80))
1066   {
1067     /* Values between 0 and 127 */
1068     *v = a;
1069     return 1;
1070   }
1071 #endif
1072 
1073   /* The 2-byte case */
1074   p++;
1075   b = *p;
1076   /* b: p1 (unmasked) */
1077   if (!(b&0x80))
1078   {
1079     /* Values between 128 and 16383 */
1080     a &= 0x7f;
1081     a = a<<7;
1082     *v = a | b;
1083     return 2;
1084   }
1085 
1086   /* The 3-byte case */
1087   p++;
1088   a = a<<14;
1089   a |= *p;
1090   /* a: p0<<14 | p2 (unmasked) */
1091   if (!(a&0x80))
1092   {
1093     /* Values between 16384 and 2097151 */
1094     a &= (0x7f<<14)|(0x7f);
1095     b &= 0x7f;
1096     b = b<<7;
1097     *v = a | b;
1098     return 3;
1099   }
1100 
1101   /* A 32-bit varint is used to store size information in btrees.
1102   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1103   ** A 3-byte varint is sufficient, for example, to record the size
1104   ** of a 1048569-byte BLOB or string.
1105   **
1106   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1107   ** rare larger cases can be handled by the slower 64-bit varint
1108   ** routine.
1109   */
1110 #if 1
1111   {
1112     u64 v64;
1113     u8 n;
1114 
1115     p -= 2;
1116     n = sqlite3GetVarint(p, &v64);
1117     assert( n>3 && n<=9 );
1118     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1119       *v = 0xffffffff;
1120     }else{
1121       *v = (u32)v64;
1122     }
1123     return n;
1124   }
1125 
1126 #else
1127   /* For following code (kept for historical record only) shows an
1128   ** unrolling for the 3- and 4-byte varint cases.  This code is
1129   ** slightly faster, but it is also larger and much harder to test.
1130   */
1131   p++;
1132   b = b<<14;
1133   b |= *p;
1134   /* b: p1<<14 | p3 (unmasked) */
1135   if (!(b&0x80))
1136   {
1137     /* Values between 2097152 and 268435455 */
1138     b &= (0x7f<<14)|(0x7f);
1139     a &= (0x7f<<14)|(0x7f);
1140     a = a<<7;
1141     *v = a | b;
1142     return 4;
1143   }
1144 
1145   p++;
1146   a = a<<14;
1147   a |= *p;
1148   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1149   if (!(a&0x80))
1150   {
1151     /* Values  between 268435456 and 34359738367 */
1152     a &= SLOT_4_2_0;
1153     b &= SLOT_4_2_0;
1154     b = b<<7;
1155     *v = a | b;
1156     return 5;
1157   }
1158 
1159   /* We can only reach this point when reading a corrupt database
1160   ** file.  In that case we are not in any hurry.  Use the (relatively
1161   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1162   ** value. */
1163   {
1164     u64 v64;
1165     u8 n;
1166 
1167     p -= 4;
1168     n = sqlite3GetVarint(p, &v64);
1169     assert( n>5 && n<=9 );
1170     *v = (u32)v64;
1171     return n;
1172   }
1173 #endif
1174 }
1175 
1176 /*
1177 ** Return the number of bytes that will be needed to store the given
1178 ** 64-bit integer.
1179 */
1180 int sqlite3VarintLen(u64 v){
1181   int i;
1182   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1183   return i;
1184 }
1185 
1186 
1187 /*
1188 ** Read or write a four-byte big-endian integer value.
1189 */
1190 u32 sqlite3Get4byte(const u8 *p){
1191 #if SQLITE_BYTEORDER==4321
1192   u32 x;
1193   memcpy(&x,p,4);
1194   return x;
1195 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1196   u32 x;
1197   memcpy(&x,p,4);
1198   return __builtin_bswap32(x);
1199 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1200   u32 x;
1201   memcpy(&x,p,4);
1202   return _byteswap_ulong(x);
1203 #else
1204   testcase( p[0]&0x80 );
1205   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1206 #endif
1207 }
1208 void sqlite3Put4byte(unsigned char *p, u32 v){
1209 #if SQLITE_BYTEORDER==4321
1210   memcpy(p,&v,4);
1211 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1212   u32 x = __builtin_bswap32(v);
1213   memcpy(p,&x,4);
1214 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1215   u32 x = _byteswap_ulong(v);
1216   memcpy(p,&x,4);
1217 #else
1218   p[0] = (u8)(v>>24);
1219   p[1] = (u8)(v>>16);
1220   p[2] = (u8)(v>>8);
1221   p[3] = (u8)v;
1222 #endif
1223 }
1224 
1225 
1226 
1227 /*
1228 ** Translate a single byte of Hex into an integer.
1229 ** This routine only works if h really is a valid hexadecimal
1230 ** character:  0..9a..fA..F
1231 */
1232 u8 sqlite3HexToInt(int h){
1233   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1234 #ifdef SQLITE_ASCII
1235   h += 9*(1&(h>>6));
1236 #endif
1237 #ifdef SQLITE_EBCDIC
1238   h += 9*(1&~(h>>4));
1239 #endif
1240   return (u8)(h & 0xf);
1241 }
1242 
1243 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1244 /*
1245 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1246 ** value.  Return a pointer to its binary value.  Space to hold the
1247 ** binary value has been obtained from malloc and must be freed by
1248 ** the calling routine.
1249 */
1250 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1251   char *zBlob;
1252   int i;
1253 
1254   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1255   n--;
1256   if( zBlob ){
1257     for(i=0; i<n; i+=2){
1258       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1259     }
1260     zBlob[i/2] = 0;
1261   }
1262   return zBlob;
1263 }
1264 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1265 
1266 /*
1267 ** Log an error that is an API call on a connection pointer that should
1268 ** not have been used.  The "type" of connection pointer is given as the
1269 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1270 */
1271 static void logBadConnection(const char *zType){
1272   sqlite3_log(SQLITE_MISUSE,
1273      "API call with %s database connection pointer",
1274      zType
1275   );
1276 }
1277 
1278 /*
1279 ** Check to make sure we have a valid db pointer.  This test is not
1280 ** foolproof but it does provide some measure of protection against
1281 ** misuse of the interface such as passing in db pointers that are
1282 ** NULL or which have been previously closed.  If this routine returns
1283 ** 1 it means that the db pointer is valid and 0 if it should not be
1284 ** dereferenced for any reason.  The calling function should invoke
1285 ** SQLITE_MISUSE immediately.
1286 **
1287 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1288 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1289 ** open properly and is not fit for general use but which can be
1290 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1291 */
1292 int sqlite3SafetyCheckOk(sqlite3 *db){
1293   u32 magic;
1294   if( db==0 ){
1295     logBadConnection("NULL");
1296     return 0;
1297   }
1298   magic = db->magic;
1299   if( magic!=SQLITE_MAGIC_OPEN ){
1300     if( sqlite3SafetyCheckSickOrOk(db) ){
1301       testcase( sqlite3GlobalConfig.xLog!=0 );
1302       logBadConnection("unopened");
1303     }
1304     return 0;
1305   }else{
1306     return 1;
1307   }
1308 }
1309 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1310   u32 magic;
1311   magic = db->magic;
1312   if( magic!=SQLITE_MAGIC_SICK &&
1313       magic!=SQLITE_MAGIC_OPEN &&
1314       magic!=SQLITE_MAGIC_BUSY ){
1315     testcase( sqlite3GlobalConfig.xLog!=0 );
1316     logBadConnection("invalid");
1317     return 0;
1318   }else{
1319     return 1;
1320   }
1321 }
1322 
1323 /*
1324 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1325 ** the other 64-bit signed integer at *pA and store the result in *pA.
1326 ** Return 0 on success.  Or if the operation would have resulted in an
1327 ** overflow, leave *pA unchanged and return 1.
1328 */
1329 int sqlite3AddInt64(i64 *pA, i64 iB){
1330 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1331   return __builtin_add_overflow(*pA, iB, pA);
1332 #else
1333   i64 iA = *pA;
1334   testcase( iA==0 ); testcase( iA==1 );
1335   testcase( iB==-1 ); testcase( iB==0 );
1336   if( iB>=0 ){
1337     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1338     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1339     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1340   }else{
1341     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1342     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1343     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1344   }
1345   *pA += iB;
1346   return 0;
1347 #endif
1348 }
1349 int sqlite3SubInt64(i64 *pA, i64 iB){
1350 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1351   return __builtin_sub_overflow(*pA, iB, pA);
1352 #else
1353   testcase( iB==SMALLEST_INT64+1 );
1354   if( iB==SMALLEST_INT64 ){
1355     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1356     if( (*pA)>=0 ) return 1;
1357     *pA -= iB;
1358     return 0;
1359   }else{
1360     return sqlite3AddInt64(pA, -iB);
1361   }
1362 #endif
1363 }
1364 int sqlite3MulInt64(i64 *pA, i64 iB){
1365 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1366   return __builtin_mul_overflow(*pA, iB, pA);
1367 #else
1368   i64 iA = *pA;
1369   if( iB>0 ){
1370     if( iA>LARGEST_INT64/iB ) return 1;
1371     if( iA<SMALLEST_INT64/iB ) return 1;
1372   }else if( iB<0 ){
1373     if( iA>0 ){
1374       if( iB<SMALLEST_INT64/iA ) return 1;
1375     }else if( iA<0 ){
1376       if( iB==SMALLEST_INT64 ) return 1;
1377       if( iA==SMALLEST_INT64 ) return 1;
1378       if( -iA>LARGEST_INT64/-iB ) return 1;
1379     }
1380   }
1381   *pA = iA*iB;
1382   return 0;
1383 #endif
1384 }
1385 
1386 /*
1387 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1388 ** if the integer has a value of -2147483648, return +2147483647
1389 */
1390 int sqlite3AbsInt32(int x){
1391   if( x>=0 ) return x;
1392   if( x==(int)0x80000000 ) return 0x7fffffff;
1393   return -x;
1394 }
1395 
1396 #ifdef SQLITE_ENABLE_8_3_NAMES
1397 /*
1398 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1399 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1400 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1401 ** three characters, then shorten the suffix on z[] to be the last three
1402 ** characters of the original suffix.
1403 **
1404 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1405 ** do the suffix shortening regardless of URI parameter.
1406 **
1407 ** Examples:
1408 **
1409 **     test.db-journal    =>   test.nal
1410 **     test.db-wal        =>   test.wal
1411 **     test.db-shm        =>   test.shm
1412 **     test.db-mj7f3319fa =>   test.9fa
1413 */
1414 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1415 #if SQLITE_ENABLE_8_3_NAMES<2
1416   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1417 #endif
1418   {
1419     int i, sz;
1420     sz = sqlite3Strlen30(z);
1421     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1422     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1423   }
1424 }
1425 #endif
1426 
1427 /*
1428 ** Find (an approximate) sum of two LogEst values.  This computation is
1429 ** not a simple "+" operator because LogEst is stored as a logarithmic
1430 ** value.
1431 **
1432 */
1433 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1434   static const unsigned char x[] = {
1435      10, 10,                         /* 0,1 */
1436       9, 9,                          /* 2,3 */
1437       8, 8,                          /* 4,5 */
1438       7, 7, 7,                       /* 6,7,8 */
1439       6, 6, 6,                       /* 9,10,11 */
1440       5, 5, 5,                       /* 12-14 */
1441       4, 4, 4, 4,                    /* 15-18 */
1442       3, 3, 3, 3, 3, 3,              /* 19-24 */
1443       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1444   };
1445   if( a>=b ){
1446     if( a>b+49 ) return a;
1447     if( a>b+31 ) return a+1;
1448     return a+x[a-b];
1449   }else{
1450     if( b>a+49 ) return b;
1451     if( b>a+31 ) return b+1;
1452     return b+x[b-a];
1453   }
1454 }
1455 
1456 /*
1457 ** Convert an integer into a LogEst.  In other words, compute an
1458 ** approximation for 10*log2(x).
1459 */
1460 LogEst sqlite3LogEst(u64 x){
1461   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1462   LogEst y = 40;
1463   if( x<8 ){
1464     if( x<2 ) return 0;
1465     while( x<8 ){  y -= 10; x <<= 1; }
1466   }else{
1467 #if GCC_VERSION>=5004000
1468     int i = 60 - __builtin_clzll(x);
1469     y += i*10;
1470     x >>= i;
1471 #else
1472     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1473     while( x>15 ){  y += 10; x >>= 1; }
1474 #endif
1475   }
1476   return a[x&7] + y - 10;
1477 }
1478 
1479 #ifndef SQLITE_OMIT_VIRTUALTABLE
1480 /*
1481 ** Convert a double into a LogEst
1482 ** In other words, compute an approximation for 10*log2(x).
1483 */
1484 LogEst sqlite3LogEstFromDouble(double x){
1485   u64 a;
1486   LogEst e;
1487   assert( sizeof(x)==8 && sizeof(a)==8 );
1488   if( x<=1 ) return 0;
1489   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1490   memcpy(&a, &x, 8);
1491   e = (a>>52) - 1022;
1492   return e*10;
1493 }
1494 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1495 
1496 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1497     defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1498     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1499 /*
1500 ** Convert a LogEst into an integer.
1501 **
1502 ** Note that this routine is only used when one or more of various
1503 ** non-standard compile-time options is enabled.
1504 */
1505 u64 sqlite3LogEstToInt(LogEst x){
1506   u64 n;
1507   n = x%10;
1508   x /= 10;
1509   if( n>=5 ) n -= 2;
1510   else if( n>=1 ) n -= 1;
1511 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1512     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1513   if( x>60 ) return (u64)LARGEST_INT64;
1514 #else
1515   /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1516   ** possible to this routine is 310, resulting in a maximum x of 31 */
1517   assert( x<=60 );
1518 #endif
1519   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1520 }
1521 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1522 
1523 /*
1524 ** Add a new name/number pair to a VList.  This might require that the
1525 ** VList object be reallocated, so return the new VList.  If an OOM
1526 ** error occurs, the original VList returned and the
1527 ** db->mallocFailed flag is set.
1528 **
1529 ** A VList is really just an array of integers.  To destroy a VList,
1530 ** simply pass it to sqlite3DbFree().
1531 **
1532 ** The first integer is the number of integers allocated for the whole
1533 ** VList.  The second integer is the number of integers actually used.
1534 ** Each name/number pair is encoded by subsequent groups of 3 or more
1535 ** integers.
1536 **
1537 ** Each name/number pair starts with two integers which are the numeric
1538 ** value for the pair and the size of the name/number pair, respectively.
1539 ** The text name overlays one or more following integers.  The text name
1540 ** is always zero-terminated.
1541 **
1542 ** Conceptually:
1543 **
1544 **    struct VList {
1545 **      int nAlloc;   // Number of allocated slots
1546 **      int nUsed;    // Number of used slots
1547 **      struct VListEntry {
1548 **        int iValue;    // Value for this entry
1549 **        int nSlot;     // Slots used by this entry
1550 **        // ... variable name goes here
1551 **      } a[0];
1552 **    }
1553 **
1554 ** During code generation, pointers to the variable names within the
1555 ** VList are taken.  When that happens, nAlloc is set to zero as an
1556 ** indication that the VList may never again be enlarged, since the
1557 ** accompanying realloc() would invalidate the pointers.
1558 */
1559 VList *sqlite3VListAdd(
1560   sqlite3 *db,           /* The database connection used for malloc() */
1561   VList *pIn,            /* The input VList.  Might be NULL */
1562   const char *zName,     /* Name of symbol to add */
1563   int nName,             /* Bytes of text in zName */
1564   int iVal               /* Value to associate with zName */
1565 ){
1566   int nInt;              /* number of sizeof(int) objects needed for zName */
1567   char *z;               /* Pointer to where zName will be stored */
1568   int i;                 /* Index in pIn[] where zName is stored */
1569 
1570   nInt = nName/4 + 3;
1571   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1572   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1573     /* Enlarge the allocation */
1574     int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt;
1575     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1576     if( pOut==0 ) return pIn;
1577     if( pIn==0 ) pOut[1] = 2;
1578     pIn = pOut;
1579     pIn[0] = nAlloc;
1580   }
1581   i = pIn[1];
1582   pIn[i] = iVal;
1583   pIn[i+1] = nInt;
1584   z = (char*)&pIn[i+2];
1585   pIn[1] = i+nInt;
1586   assert( pIn[1]<=pIn[0] );
1587   memcpy(z, zName, nName);
1588   z[nName] = 0;
1589   return pIn;
1590 }
1591 
1592 /*
1593 ** Return a pointer to the name of a variable in the given VList that
1594 ** has the value iVal.  Or return a NULL if there is no such variable in
1595 ** the list
1596 */
1597 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1598   int i, mx;
1599   if( pIn==0 ) return 0;
1600   mx = pIn[1];
1601   i = 2;
1602   do{
1603     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1604     i += pIn[i+1];
1605   }while( i<mx );
1606   return 0;
1607 }
1608 
1609 /*
1610 ** Return the number of the variable named zName, if it is in VList.
1611 ** or return 0 if there is no such variable.
1612 */
1613 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1614   int i, mx;
1615   if( pIn==0 ) return 0;
1616   mx = pIn[1];
1617   i = 2;
1618   do{
1619     const char *z = (const char*)&pIn[i+2];
1620     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1621     i += pIn[i+1];
1622   }while( i<mx );
1623   return 0;
1624 }
1625