1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #include <math.h> 21 22 /* 23 ** Routine needed to support the testcase() macro. 24 */ 25 #ifdef SQLITE_COVERAGE_TEST 26 void sqlite3Coverage(int x){ 27 static unsigned dummy = 0; 28 dummy += (unsigned)x; 29 } 30 #endif 31 32 /* 33 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 34 ** or to bypass normal error detection during testing in order to let 35 ** execute proceed futher downstream. 36 ** 37 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 38 ** sqlite3FaultSim() function only returns non-zero during testing. 39 ** 40 ** During testing, if the test harness has set a fault-sim callback using 41 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 42 ** each call to sqlite3FaultSim() is relayed to that application-supplied 43 ** callback and the integer return value form the application-supplied 44 ** callback is returned by sqlite3FaultSim(). 45 ** 46 ** The integer argument to sqlite3FaultSim() is a code to identify which 47 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 48 ** should have a unique code. To prevent legacy testing applications from 49 ** breaking, the codes should not be changed or reused. 50 */ 51 #ifndef SQLITE_UNTESTABLE 52 int sqlite3FaultSim(int iTest){ 53 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 54 return xCallback ? xCallback(iTest) : SQLITE_OK; 55 } 56 #endif 57 58 #ifndef SQLITE_OMIT_FLOATING_POINT 59 /* 60 ** Return true if the floating point value is Not a Number (NaN). 61 */ 62 int sqlite3IsNaN(double x){ 63 u64 y; 64 memcpy(&y,&x,sizeof(y)); 65 return IsNaN(y); 66 } 67 #endif /* SQLITE_OMIT_FLOATING_POINT */ 68 69 /* 70 ** Compute a string length that is limited to what can be stored in 71 ** lower 30 bits of a 32-bit signed integer. 72 ** 73 ** The value returned will never be negative. Nor will it ever be greater 74 ** than the actual length of the string. For very long strings (greater 75 ** than 1GiB) the value returned might be less than the true string length. 76 */ 77 int sqlite3Strlen30(const char *z){ 78 if( z==0 ) return 0; 79 return 0x3fffffff & (int)strlen(z); 80 } 81 82 /* 83 ** Return the declared type of a column. Or return zDflt if the column 84 ** has no declared type. 85 ** 86 ** The column type is an extra string stored after the zero-terminator on 87 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 88 */ 89 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 90 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; 91 return pCol->zName + strlen(pCol->zName) + 1; 92 } 93 94 /* 95 ** Helper function for sqlite3Error() - called rarely. Broken out into 96 ** a separate routine to avoid unnecessary register saves on entry to 97 ** sqlite3Error(). 98 */ 99 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 100 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 101 sqlite3SystemError(db, err_code); 102 } 103 104 /* 105 ** Set the current error code to err_code and clear any prior error message. 106 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 107 ** that would be appropriate. 108 */ 109 void sqlite3Error(sqlite3 *db, int err_code){ 110 assert( db!=0 ); 111 db->errCode = err_code; 112 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 113 } 114 115 /* 116 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 117 ** to do based on the SQLite error code in rc. 118 */ 119 void sqlite3SystemError(sqlite3 *db, int rc){ 120 if( rc==SQLITE_IOERR_NOMEM ) return; 121 rc &= 0xff; 122 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 123 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 124 } 125 } 126 127 /* 128 ** Set the most recent error code and error string for the sqlite 129 ** handle "db". The error code is set to "err_code". 130 ** 131 ** If it is not NULL, string zFormat specifies the format of the 132 ** error string in the style of the printf functions: The following 133 ** format characters are allowed: 134 ** 135 ** %s Insert a string 136 ** %z A string that should be freed after use 137 ** %d Insert an integer 138 ** %T Insert a token 139 ** %S Insert the first element of a SrcList 140 ** 141 ** zFormat and any string tokens that follow it are assumed to be 142 ** encoded in UTF-8. 143 ** 144 ** To clear the most recent error for sqlite handle "db", sqlite3Error 145 ** should be called with err_code set to SQLITE_OK and zFormat set 146 ** to NULL. 147 */ 148 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 149 assert( db!=0 ); 150 db->errCode = err_code; 151 sqlite3SystemError(db, err_code); 152 if( zFormat==0 ){ 153 sqlite3Error(db, err_code); 154 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 155 char *z; 156 va_list ap; 157 va_start(ap, zFormat); 158 z = sqlite3VMPrintf(db, zFormat, ap); 159 va_end(ap); 160 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 161 } 162 } 163 164 /* 165 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 166 ** The following formatting characters are allowed: 167 ** 168 ** %s Insert a string 169 ** %z A string that should be freed after use 170 ** %d Insert an integer 171 ** %T Insert a token 172 ** %S Insert the first element of a SrcList 173 ** 174 ** This function should be used to report any error that occurs while 175 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 176 ** last thing the sqlite3_prepare() function does is copy the error 177 ** stored by this function into the database handle using sqlite3Error(). 178 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 179 ** during statement execution (sqlite3_step() etc.). 180 */ 181 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 182 char *zMsg; 183 va_list ap; 184 sqlite3 *db = pParse->db; 185 va_start(ap, zFormat); 186 zMsg = sqlite3VMPrintf(db, zFormat, ap); 187 va_end(ap); 188 if( db->suppressErr ){ 189 sqlite3DbFree(db, zMsg); 190 }else{ 191 pParse->nErr++; 192 sqlite3DbFree(db, pParse->zErrMsg); 193 pParse->zErrMsg = zMsg; 194 pParse->rc = SQLITE_ERROR; 195 } 196 } 197 198 /* 199 ** If database connection db is currently parsing SQL, then transfer 200 ** error code errCode to that parser if the parser has not already 201 ** encountered some other kind of error. 202 */ 203 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 204 Parse *pParse; 205 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 206 pParse->rc = errCode; 207 pParse->nErr++; 208 return errCode; 209 } 210 211 /* 212 ** Convert an SQL-style quoted string into a normal string by removing 213 ** the quote characters. The conversion is done in-place. If the 214 ** input does not begin with a quote character, then this routine 215 ** is a no-op. 216 ** 217 ** The input string must be zero-terminated. A new zero-terminator 218 ** is added to the dequoted string. 219 ** 220 ** The return value is -1 if no dequoting occurs or the length of the 221 ** dequoted string, exclusive of the zero terminator, if dequoting does 222 ** occur. 223 ** 224 ** 2002-02-14: This routine is extended to remove MS-Access style 225 ** brackets from around identifiers. For example: "[a-b-c]" becomes 226 ** "a-b-c". 227 */ 228 void sqlite3Dequote(char *z){ 229 char quote; 230 int i, j; 231 if( z==0 ) return; 232 quote = z[0]; 233 if( !sqlite3Isquote(quote) ) return; 234 if( quote=='[' ) quote = ']'; 235 for(i=1, j=0;; i++){ 236 assert( z[i] ); 237 if( z[i]==quote ){ 238 if( z[i+1]==quote ){ 239 z[j++] = quote; 240 i++; 241 }else{ 242 break; 243 } 244 }else{ 245 z[j++] = z[i]; 246 } 247 } 248 z[j] = 0; 249 } 250 void sqlite3DequoteExpr(Expr *p){ 251 assert( sqlite3Isquote(p->u.zToken[0]) ); 252 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 253 sqlite3Dequote(p->u.zToken); 254 } 255 256 /* 257 ** Generate a Token object from a string 258 */ 259 void sqlite3TokenInit(Token *p, char *z){ 260 p->z = z; 261 p->n = sqlite3Strlen30(z); 262 } 263 264 /* Convenient short-hand */ 265 #define UpperToLower sqlite3UpperToLower 266 267 /* 268 ** Some systems have stricmp(). Others have strcasecmp(). Because 269 ** there is no consistency, we will define our own. 270 ** 271 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 272 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 273 ** the contents of two buffers containing UTF-8 strings in a 274 ** case-independent fashion, using the same definition of "case 275 ** independence" that SQLite uses internally when comparing identifiers. 276 */ 277 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 278 if( zLeft==0 ){ 279 return zRight ? -1 : 0; 280 }else if( zRight==0 ){ 281 return 1; 282 } 283 return sqlite3StrICmp(zLeft, zRight); 284 } 285 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 286 unsigned char *a, *b; 287 int c, x; 288 a = (unsigned char *)zLeft; 289 b = (unsigned char *)zRight; 290 for(;;){ 291 c = *a; 292 x = *b; 293 if( c==x ){ 294 if( c==0 ) break; 295 }else{ 296 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 297 if( c ) break; 298 } 299 a++; 300 b++; 301 } 302 return c; 303 } 304 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 305 register unsigned char *a, *b; 306 if( zLeft==0 ){ 307 return zRight ? -1 : 0; 308 }else if( zRight==0 ){ 309 return 1; 310 } 311 a = (unsigned char *)zLeft; 312 b = (unsigned char *)zRight; 313 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 314 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 315 } 316 317 /* 318 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 319 ** E==2 results in 100. E==50 results in 1.0e50. 320 ** 321 ** This routine only works for values of E between 1 and 341. 322 */ 323 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 324 #if defined(_MSC_VER) 325 static const LONGDOUBLE_TYPE x[] = { 326 1.0e+001L, 327 1.0e+002L, 328 1.0e+004L, 329 1.0e+008L, 330 1.0e+016L, 331 1.0e+032L, 332 1.0e+064L, 333 1.0e+128L, 334 1.0e+256L 335 }; 336 LONGDOUBLE_TYPE r = 1.0; 337 int i; 338 assert( E>=0 && E<=307 ); 339 for(i=0; E!=0; i++, E >>=1){ 340 if( E & 1 ) r *= x[i]; 341 } 342 return r; 343 #else 344 LONGDOUBLE_TYPE x = 10.0; 345 LONGDOUBLE_TYPE r = 1.0; 346 while(1){ 347 if( E & 1 ) r *= x; 348 E >>= 1; 349 if( E==0 ) break; 350 x *= x; 351 } 352 return r; 353 #endif 354 } 355 356 /* 357 ** The string z[] is an text representation of a real number. 358 ** Convert this string to a double and write it into *pResult. 359 ** 360 ** The string z[] is length bytes in length (bytes, not characters) and 361 ** uses the encoding enc. The string is not necessarily zero-terminated. 362 ** 363 ** Return TRUE if the result is a valid real number (or integer) and FALSE 364 ** if the string is empty or contains extraneous text. More specifically 365 ** return 366 ** 1 => The input string is a pure integer 367 ** 2 or more => The input has a decimal point or eNNN clause 368 ** 0 or less => The input string is not a valid number 369 ** -1 => Not a valid number, but has a valid prefix which 370 ** includes a decimal point and/or an eNNN clause 371 ** 372 ** Valid numbers are in one of these formats: 373 ** 374 ** [+-]digits[E[+-]digits] 375 ** [+-]digits.[digits][E[+-]digits] 376 ** [+-].digits[E[+-]digits] 377 ** 378 ** Leading and trailing whitespace is ignored for the purpose of determining 379 ** validity. 380 ** 381 ** If some prefix of the input string is a valid number, this routine 382 ** returns FALSE but it still converts the prefix and writes the result 383 ** into *pResult. 384 */ 385 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 386 #ifndef SQLITE_OMIT_FLOATING_POINT 387 int incr; 388 const char *zEnd = z + length; 389 /* sign * significand * (10 ^ (esign * exponent)) */ 390 int sign = 1; /* sign of significand */ 391 i64 s = 0; /* significand */ 392 int d = 0; /* adjust exponent for shifting decimal point */ 393 int esign = 1; /* sign of exponent */ 394 int e = 0; /* exponent */ 395 int eValid = 1; /* True exponent is either not used or is well-formed */ 396 double result; 397 int nDigit = 0; /* Number of digits processed */ 398 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 399 400 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 401 *pResult = 0.0; /* Default return value, in case of an error */ 402 403 if( enc==SQLITE_UTF8 ){ 404 incr = 1; 405 }else{ 406 int i; 407 incr = 2; 408 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 409 testcase( enc==SQLITE_UTF16LE ); 410 testcase( enc==SQLITE_UTF16BE ); 411 for(i=3-enc; i<length && z[i]==0; i+=2){} 412 if( i<length ) eType = -100; 413 zEnd = &z[i^1]; 414 z += (enc&1); 415 } 416 417 /* skip leading spaces */ 418 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 419 if( z>=zEnd ) return 0; 420 421 /* get sign of significand */ 422 if( *z=='-' ){ 423 sign = -1; 424 z+=incr; 425 }else if( *z=='+' ){ 426 z+=incr; 427 } 428 429 /* copy max significant digits to significand */ 430 while( z<zEnd && sqlite3Isdigit(*z) ){ 431 s = s*10 + (*z - '0'); 432 z+=incr; nDigit++; 433 if( s>=((LARGEST_INT64-9)/10) ){ 434 /* skip non-significant significand digits 435 ** (increase exponent by d to shift decimal left) */ 436 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 437 } 438 } 439 if( z>=zEnd ) goto do_atof_calc; 440 441 /* if decimal point is present */ 442 if( *z=='.' ){ 443 z+=incr; 444 eType++; 445 /* copy digits from after decimal to significand 446 ** (decrease exponent by d to shift decimal right) */ 447 while( z<zEnd && sqlite3Isdigit(*z) ){ 448 if( s<((LARGEST_INT64-9)/10) ){ 449 s = s*10 + (*z - '0'); 450 d--; 451 nDigit++; 452 } 453 z+=incr; 454 } 455 } 456 if( z>=zEnd ) goto do_atof_calc; 457 458 /* if exponent is present */ 459 if( *z=='e' || *z=='E' ){ 460 z+=incr; 461 eValid = 0; 462 eType++; 463 464 /* This branch is needed to avoid a (harmless) buffer overread. The 465 ** special comment alerts the mutation tester that the correct answer 466 ** is obtained even if the branch is omitted */ 467 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 468 469 /* get sign of exponent */ 470 if( *z=='-' ){ 471 esign = -1; 472 z+=incr; 473 }else if( *z=='+' ){ 474 z+=incr; 475 } 476 /* copy digits to exponent */ 477 while( z<zEnd && sqlite3Isdigit(*z) ){ 478 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 479 z+=incr; 480 eValid = 1; 481 } 482 } 483 484 /* skip trailing spaces */ 485 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 486 487 do_atof_calc: 488 /* adjust exponent by d, and update sign */ 489 e = (e*esign) + d; 490 if( e<0 ) { 491 esign = -1; 492 e *= -1; 493 } else { 494 esign = 1; 495 } 496 497 if( s==0 ) { 498 /* In the IEEE 754 standard, zero is signed. */ 499 result = sign<0 ? -(double)0 : (double)0; 500 } else { 501 /* Attempt to reduce exponent. 502 ** 503 ** Branches that are not required for the correct answer but which only 504 ** help to obtain the correct answer faster are marked with special 505 ** comments, as a hint to the mutation tester. 506 */ 507 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 508 if( esign>0 ){ 509 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 510 s *= 10; 511 }else{ 512 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 513 s /= 10; 514 } 515 e--; 516 } 517 518 /* adjust the sign of significand */ 519 s = sign<0 ? -s : s; 520 521 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 522 result = (double)s; 523 }else{ 524 /* attempt to handle extremely small/large numbers better */ 525 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 526 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 527 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 528 if( esign<0 ){ 529 result = s / scale; 530 result /= 1.0e+308; 531 }else{ 532 result = s * scale; 533 result *= 1.0e+308; 534 } 535 }else{ assert( e>=342 ); 536 if( esign<0 ){ 537 result = 0.0*s; 538 }else{ 539 #ifdef INFINITY 540 result = INFINITY*s; 541 #else 542 result = 1e308*1e308*s; /* Infinity */ 543 #endif 544 } 545 } 546 }else{ 547 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 548 if( esign<0 ){ 549 result = s / scale; 550 }else{ 551 result = s * scale; 552 } 553 } 554 } 555 } 556 557 /* store the result */ 558 *pResult = result; 559 560 /* return true if number and no extra non-whitespace chracters after */ 561 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 562 return eType; 563 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 564 return -1; 565 }else{ 566 return 0; 567 } 568 #else 569 return !sqlite3Atoi64(z, pResult, length, enc); 570 #endif /* SQLITE_OMIT_FLOATING_POINT */ 571 } 572 573 /* 574 ** Compare the 19-character string zNum against the text representation 575 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 576 ** if zNum is less than, equal to, or greater than the string. 577 ** Note that zNum must contain exactly 19 characters. 578 ** 579 ** Unlike memcmp() this routine is guaranteed to return the difference 580 ** in the values of the last digit if the only difference is in the 581 ** last digit. So, for example, 582 ** 583 ** compare2pow63("9223372036854775800", 1) 584 ** 585 ** will return -8. 586 */ 587 static int compare2pow63(const char *zNum, int incr){ 588 int c = 0; 589 int i; 590 /* 012345678901234567 */ 591 const char *pow63 = "922337203685477580"; 592 for(i=0; c==0 && i<18; i++){ 593 c = (zNum[i*incr]-pow63[i])*10; 594 } 595 if( c==0 ){ 596 c = zNum[18*incr] - '8'; 597 testcase( c==(-1) ); 598 testcase( c==0 ); 599 testcase( c==(+1) ); 600 } 601 return c; 602 } 603 604 /* 605 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 606 ** routine does *not* accept hexadecimal notation. 607 ** 608 ** Returns: 609 ** 610 ** -1 Not even a prefix of the input text looks like an integer 611 ** 0 Successful transformation. Fits in a 64-bit signed integer. 612 ** 1 Excess non-space text after the integer value 613 ** 2 Integer too large for a 64-bit signed integer or is malformed 614 ** 3 Special case of 9223372036854775808 615 ** 616 ** length is the number of bytes in the string (bytes, not characters). 617 ** The string is not necessarily zero-terminated. The encoding is 618 ** given by enc. 619 */ 620 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 621 int incr; 622 u64 u = 0; 623 int neg = 0; /* assume positive */ 624 int i; 625 int c = 0; 626 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 627 int rc; /* Baseline return code */ 628 const char *zStart; 629 const char *zEnd = zNum + length; 630 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 631 if( enc==SQLITE_UTF8 ){ 632 incr = 1; 633 }else{ 634 incr = 2; 635 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 636 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 637 nonNum = i<length; 638 zEnd = &zNum[i^1]; 639 zNum += (enc&1); 640 } 641 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 642 if( zNum<zEnd ){ 643 if( *zNum=='-' ){ 644 neg = 1; 645 zNum+=incr; 646 }else if( *zNum=='+' ){ 647 zNum+=incr; 648 } 649 } 650 zStart = zNum; 651 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 652 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 653 u = u*10 + c - '0'; 654 } 655 testcase( i==18*incr ); 656 testcase( i==19*incr ); 657 testcase( i==20*incr ); 658 if( u>LARGEST_INT64 ){ 659 /* This test and assignment is needed only to suppress UB warnings 660 ** from clang and -fsanitize=undefined. This test and assignment make 661 ** the code a little larger and slower, and no harm comes from omitting 662 ** them, but we must appaise the undefined-behavior pharisees. */ 663 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 664 }else if( neg ){ 665 *pNum = -(i64)u; 666 }else{ 667 *pNum = (i64)u; 668 } 669 rc = 0; 670 if( i==0 && zStart==zNum ){ /* No digits */ 671 rc = -1; 672 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 673 rc = 1; 674 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 675 int jj = i; 676 do{ 677 if( !sqlite3Isspace(zNum[jj]) ){ 678 rc = 1; /* Extra non-space text after the integer */ 679 break; 680 } 681 jj += incr; 682 }while( &zNum[jj]<zEnd ); 683 } 684 if( i<19*incr ){ 685 /* Less than 19 digits, so we know that it fits in 64 bits */ 686 assert( u<=LARGEST_INT64 ); 687 return rc; 688 }else{ 689 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 690 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 691 if( c<0 ){ 692 /* zNum is less than 9223372036854775808 so it fits */ 693 assert( u<=LARGEST_INT64 ); 694 return rc; 695 }else{ 696 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 697 if( c>0 ){ 698 /* zNum is greater than 9223372036854775808 so it overflows */ 699 return 2; 700 }else{ 701 /* zNum is exactly 9223372036854775808. Fits if negative. The 702 ** special case 2 overflow if positive */ 703 assert( u-1==LARGEST_INT64 ); 704 return neg ? rc : 3; 705 } 706 } 707 } 708 } 709 710 /* 711 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 712 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 713 ** whereas sqlite3Atoi64() does not. 714 ** 715 ** Returns: 716 ** 717 ** 0 Successful transformation. Fits in a 64-bit signed integer. 718 ** 1 Excess text after the integer value 719 ** 2 Integer too large for a 64-bit signed integer or is malformed 720 ** 3 Special case of 9223372036854775808 721 */ 722 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 723 #ifndef SQLITE_OMIT_HEX_INTEGER 724 if( z[0]=='0' 725 && (z[1]=='x' || z[1]=='X') 726 ){ 727 u64 u = 0; 728 int i, k; 729 for(i=2; z[i]=='0'; i++){} 730 for(k=i; sqlite3Isxdigit(z[k]); k++){ 731 u = u*16 + sqlite3HexToInt(z[k]); 732 } 733 memcpy(pOut, &u, 8); 734 return (z[k]==0 && k-i<=16) ? 0 : 2; 735 }else 736 #endif /* SQLITE_OMIT_HEX_INTEGER */ 737 { 738 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 739 } 740 } 741 742 /* 743 ** If zNum represents an integer that will fit in 32-bits, then set 744 ** *pValue to that integer and return true. Otherwise return false. 745 ** 746 ** This routine accepts both decimal and hexadecimal notation for integers. 747 ** 748 ** Any non-numeric characters that following zNum are ignored. 749 ** This is different from sqlite3Atoi64() which requires the 750 ** input number to be zero-terminated. 751 */ 752 int sqlite3GetInt32(const char *zNum, int *pValue){ 753 sqlite_int64 v = 0; 754 int i, c; 755 int neg = 0; 756 if( zNum[0]=='-' ){ 757 neg = 1; 758 zNum++; 759 }else if( zNum[0]=='+' ){ 760 zNum++; 761 } 762 #ifndef SQLITE_OMIT_HEX_INTEGER 763 else if( zNum[0]=='0' 764 && (zNum[1]=='x' || zNum[1]=='X') 765 && sqlite3Isxdigit(zNum[2]) 766 ){ 767 u32 u = 0; 768 zNum += 2; 769 while( zNum[0]=='0' ) zNum++; 770 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 771 u = u*16 + sqlite3HexToInt(zNum[i]); 772 } 773 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 774 memcpy(pValue, &u, 4); 775 return 1; 776 }else{ 777 return 0; 778 } 779 } 780 #endif 781 if( !sqlite3Isdigit(zNum[0]) ) return 0; 782 while( zNum[0]=='0' ) zNum++; 783 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 784 v = v*10 + c; 785 } 786 787 /* The longest decimal representation of a 32 bit integer is 10 digits: 788 ** 789 ** 1234567890 790 ** 2^31 -> 2147483648 791 */ 792 testcase( i==10 ); 793 if( i>10 ){ 794 return 0; 795 } 796 testcase( v-neg==2147483647 ); 797 if( v-neg>2147483647 ){ 798 return 0; 799 } 800 if( neg ){ 801 v = -v; 802 } 803 *pValue = (int)v; 804 return 1; 805 } 806 807 /* 808 ** Return a 32-bit integer value extracted from a string. If the 809 ** string is not an integer, just return 0. 810 */ 811 int sqlite3Atoi(const char *z){ 812 int x = 0; 813 if( z ) sqlite3GetInt32(z, &x); 814 return x; 815 } 816 817 /* 818 ** The variable-length integer encoding is as follows: 819 ** 820 ** KEY: 821 ** A = 0xxxxxxx 7 bits of data and one flag bit 822 ** B = 1xxxxxxx 7 bits of data and one flag bit 823 ** C = xxxxxxxx 8 bits of data 824 ** 825 ** 7 bits - A 826 ** 14 bits - BA 827 ** 21 bits - BBA 828 ** 28 bits - BBBA 829 ** 35 bits - BBBBA 830 ** 42 bits - BBBBBA 831 ** 49 bits - BBBBBBA 832 ** 56 bits - BBBBBBBA 833 ** 64 bits - BBBBBBBBC 834 */ 835 836 /* 837 ** Write a 64-bit variable-length integer to memory starting at p[0]. 838 ** The length of data write will be between 1 and 9 bytes. The number 839 ** of bytes written is returned. 840 ** 841 ** A variable-length integer consists of the lower 7 bits of each byte 842 ** for all bytes that have the 8th bit set and one byte with the 8th 843 ** bit clear. Except, if we get to the 9th byte, it stores the full 844 ** 8 bits and is the last byte. 845 */ 846 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 847 int i, j, n; 848 u8 buf[10]; 849 if( v & (((u64)0xff000000)<<32) ){ 850 p[8] = (u8)v; 851 v >>= 8; 852 for(i=7; i>=0; i--){ 853 p[i] = (u8)((v & 0x7f) | 0x80); 854 v >>= 7; 855 } 856 return 9; 857 } 858 n = 0; 859 do{ 860 buf[n++] = (u8)((v & 0x7f) | 0x80); 861 v >>= 7; 862 }while( v!=0 ); 863 buf[0] &= 0x7f; 864 assert( n<=9 ); 865 for(i=0, j=n-1; j>=0; j--, i++){ 866 p[i] = buf[j]; 867 } 868 return n; 869 } 870 int sqlite3PutVarint(unsigned char *p, u64 v){ 871 if( v<=0x7f ){ 872 p[0] = v&0x7f; 873 return 1; 874 } 875 if( v<=0x3fff ){ 876 p[0] = ((v>>7)&0x7f)|0x80; 877 p[1] = v&0x7f; 878 return 2; 879 } 880 return putVarint64(p,v); 881 } 882 883 /* 884 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 885 ** are defined here rather than simply putting the constant expressions 886 ** inline in order to work around bugs in the RVT compiler. 887 ** 888 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 889 ** 890 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 891 */ 892 #define SLOT_2_0 0x001fc07f 893 #define SLOT_4_2_0 0xf01fc07f 894 895 896 /* 897 ** Read a 64-bit variable-length integer from memory starting at p[0]. 898 ** Return the number of bytes read. The value is stored in *v. 899 */ 900 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 901 u32 a,b,s; 902 903 if( ((signed char*)p)[0]>=0 ){ 904 *v = *p; 905 return 1; 906 } 907 if( ((signed char*)p)[1]>=0 ){ 908 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 909 return 2; 910 } 911 912 /* Verify that constants are precomputed correctly */ 913 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 914 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 915 916 a = ((u32)p[0])<<14; 917 b = p[1]; 918 p += 2; 919 a |= *p; 920 /* a: p0<<14 | p2 (unmasked) */ 921 if (!(a&0x80)) 922 { 923 a &= SLOT_2_0; 924 b &= 0x7f; 925 b = b<<7; 926 a |= b; 927 *v = a; 928 return 3; 929 } 930 931 /* CSE1 from below */ 932 a &= SLOT_2_0; 933 p++; 934 b = b<<14; 935 b |= *p; 936 /* b: p1<<14 | p3 (unmasked) */ 937 if (!(b&0x80)) 938 { 939 b &= SLOT_2_0; 940 /* moved CSE1 up */ 941 /* a &= (0x7f<<14)|(0x7f); */ 942 a = a<<7; 943 a |= b; 944 *v = a; 945 return 4; 946 } 947 948 /* a: p0<<14 | p2 (masked) */ 949 /* b: p1<<14 | p3 (unmasked) */ 950 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 951 /* moved CSE1 up */ 952 /* a &= (0x7f<<14)|(0x7f); */ 953 b &= SLOT_2_0; 954 s = a; 955 /* s: p0<<14 | p2 (masked) */ 956 957 p++; 958 a = a<<14; 959 a |= *p; 960 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 961 if (!(a&0x80)) 962 { 963 /* we can skip these cause they were (effectively) done above 964 ** while calculating s */ 965 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 966 /* b &= (0x7f<<14)|(0x7f); */ 967 b = b<<7; 968 a |= b; 969 s = s>>18; 970 *v = ((u64)s)<<32 | a; 971 return 5; 972 } 973 974 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 975 s = s<<7; 976 s |= b; 977 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 978 979 p++; 980 b = b<<14; 981 b |= *p; 982 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 983 if (!(b&0x80)) 984 { 985 /* we can skip this cause it was (effectively) done above in calc'ing s */ 986 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 987 a &= SLOT_2_0; 988 a = a<<7; 989 a |= b; 990 s = s>>18; 991 *v = ((u64)s)<<32 | a; 992 return 6; 993 } 994 995 p++; 996 a = a<<14; 997 a |= *p; 998 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 999 if (!(a&0x80)) 1000 { 1001 a &= SLOT_4_2_0; 1002 b &= SLOT_2_0; 1003 b = b<<7; 1004 a |= b; 1005 s = s>>11; 1006 *v = ((u64)s)<<32 | a; 1007 return 7; 1008 } 1009 1010 /* CSE2 from below */ 1011 a &= SLOT_2_0; 1012 p++; 1013 b = b<<14; 1014 b |= *p; 1015 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1016 if (!(b&0x80)) 1017 { 1018 b &= SLOT_4_2_0; 1019 /* moved CSE2 up */ 1020 /* a &= (0x7f<<14)|(0x7f); */ 1021 a = a<<7; 1022 a |= b; 1023 s = s>>4; 1024 *v = ((u64)s)<<32 | a; 1025 return 8; 1026 } 1027 1028 p++; 1029 a = a<<15; 1030 a |= *p; 1031 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1032 1033 /* moved CSE2 up */ 1034 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1035 b &= SLOT_2_0; 1036 b = b<<8; 1037 a |= b; 1038 1039 s = s<<4; 1040 b = p[-4]; 1041 b &= 0x7f; 1042 b = b>>3; 1043 s |= b; 1044 1045 *v = ((u64)s)<<32 | a; 1046 1047 return 9; 1048 } 1049 1050 /* 1051 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1052 ** Return the number of bytes read. The value is stored in *v. 1053 ** 1054 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1055 ** integer, then set *v to 0xffffffff. 1056 ** 1057 ** A MACRO version, getVarint32, is provided which inlines the 1058 ** single-byte case. All code should use the MACRO version as 1059 ** this function assumes the single-byte case has already been handled. 1060 */ 1061 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1062 u32 a,b; 1063 1064 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1065 ** by the getVarin32() macro */ 1066 a = *p; 1067 /* a: p0 (unmasked) */ 1068 #ifndef getVarint32 1069 if (!(a&0x80)) 1070 { 1071 /* Values between 0 and 127 */ 1072 *v = a; 1073 return 1; 1074 } 1075 #endif 1076 1077 /* The 2-byte case */ 1078 p++; 1079 b = *p; 1080 /* b: p1 (unmasked) */ 1081 if (!(b&0x80)) 1082 { 1083 /* Values between 128 and 16383 */ 1084 a &= 0x7f; 1085 a = a<<7; 1086 *v = a | b; 1087 return 2; 1088 } 1089 1090 /* The 3-byte case */ 1091 p++; 1092 a = a<<14; 1093 a |= *p; 1094 /* a: p0<<14 | p2 (unmasked) */ 1095 if (!(a&0x80)) 1096 { 1097 /* Values between 16384 and 2097151 */ 1098 a &= (0x7f<<14)|(0x7f); 1099 b &= 0x7f; 1100 b = b<<7; 1101 *v = a | b; 1102 return 3; 1103 } 1104 1105 /* A 32-bit varint is used to store size information in btrees. 1106 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1107 ** A 3-byte varint is sufficient, for example, to record the size 1108 ** of a 1048569-byte BLOB or string. 1109 ** 1110 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1111 ** rare larger cases can be handled by the slower 64-bit varint 1112 ** routine. 1113 */ 1114 #if 1 1115 { 1116 u64 v64; 1117 u8 n; 1118 1119 p -= 2; 1120 n = sqlite3GetVarint(p, &v64); 1121 assert( n>3 && n<=9 ); 1122 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1123 *v = 0xffffffff; 1124 }else{ 1125 *v = (u32)v64; 1126 } 1127 return n; 1128 } 1129 1130 #else 1131 /* For following code (kept for historical record only) shows an 1132 ** unrolling for the 3- and 4-byte varint cases. This code is 1133 ** slightly faster, but it is also larger and much harder to test. 1134 */ 1135 p++; 1136 b = b<<14; 1137 b |= *p; 1138 /* b: p1<<14 | p3 (unmasked) */ 1139 if (!(b&0x80)) 1140 { 1141 /* Values between 2097152 and 268435455 */ 1142 b &= (0x7f<<14)|(0x7f); 1143 a &= (0x7f<<14)|(0x7f); 1144 a = a<<7; 1145 *v = a | b; 1146 return 4; 1147 } 1148 1149 p++; 1150 a = a<<14; 1151 a |= *p; 1152 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1153 if (!(a&0x80)) 1154 { 1155 /* Values between 268435456 and 34359738367 */ 1156 a &= SLOT_4_2_0; 1157 b &= SLOT_4_2_0; 1158 b = b<<7; 1159 *v = a | b; 1160 return 5; 1161 } 1162 1163 /* We can only reach this point when reading a corrupt database 1164 ** file. In that case we are not in any hurry. Use the (relatively 1165 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1166 ** value. */ 1167 { 1168 u64 v64; 1169 u8 n; 1170 1171 p -= 4; 1172 n = sqlite3GetVarint(p, &v64); 1173 assert( n>5 && n<=9 ); 1174 *v = (u32)v64; 1175 return n; 1176 } 1177 #endif 1178 } 1179 1180 /* 1181 ** Return the number of bytes that will be needed to store the given 1182 ** 64-bit integer. 1183 */ 1184 int sqlite3VarintLen(u64 v){ 1185 int i; 1186 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1187 return i; 1188 } 1189 1190 1191 /* 1192 ** Read or write a four-byte big-endian integer value. 1193 */ 1194 u32 sqlite3Get4byte(const u8 *p){ 1195 #if SQLITE_BYTEORDER==4321 1196 u32 x; 1197 memcpy(&x,p,4); 1198 return x; 1199 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1200 u32 x; 1201 memcpy(&x,p,4); 1202 return __builtin_bswap32(x); 1203 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1204 u32 x; 1205 memcpy(&x,p,4); 1206 return _byteswap_ulong(x); 1207 #else 1208 testcase( p[0]&0x80 ); 1209 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1210 #endif 1211 } 1212 void sqlite3Put4byte(unsigned char *p, u32 v){ 1213 #if SQLITE_BYTEORDER==4321 1214 memcpy(p,&v,4); 1215 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1216 u32 x = __builtin_bswap32(v); 1217 memcpy(p,&x,4); 1218 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1219 u32 x = _byteswap_ulong(v); 1220 memcpy(p,&x,4); 1221 #else 1222 p[0] = (u8)(v>>24); 1223 p[1] = (u8)(v>>16); 1224 p[2] = (u8)(v>>8); 1225 p[3] = (u8)v; 1226 #endif 1227 } 1228 1229 1230 1231 /* 1232 ** Translate a single byte of Hex into an integer. 1233 ** This routine only works if h really is a valid hexadecimal 1234 ** character: 0..9a..fA..F 1235 */ 1236 u8 sqlite3HexToInt(int h){ 1237 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1238 #ifdef SQLITE_ASCII 1239 h += 9*(1&(h>>6)); 1240 #endif 1241 #ifdef SQLITE_EBCDIC 1242 h += 9*(1&~(h>>4)); 1243 #endif 1244 return (u8)(h & 0xf); 1245 } 1246 1247 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1248 /* 1249 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1250 ** value. Return a pointer to its binary value. Space to hold the 1251 ** binary value has been obtained from malloc and must be freed by 1252 ** the calling routine. 1253 */ 1254 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1255 char *zBlob; 1256 int i; 1257 1258 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1259 n--; 1260 if( zBlob ){ 1261 for(i=0; i<n; i+=2){ 1262 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1263 } 1264 zBlob[i/2] = 0; 1265 } 1266 return zBlob; 1267 } 1268 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1269 1270 /* 1271 ** Log an error that is an API call on a connection pointer that should 1272 ** not have been used. The "type" of connection pointer is given as the 1273 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1274 */ 1275 static void logBadConnection(const char *zType){ 1276 sqlite3_log(SQLITE_MISUSE, 1277 "API call with %s database connection pointer", 1278 zType 1279 ); 1280 } 1281 1282 /* 1283 ** Check to make sure we have a valid db pointer. This test is not 1284 ** foolproof but it does provide some measure of protection against 1285 ** misuse of the interface such as passing in db pointers that are 1286 ** NULL or which have been previously closed. If this routine returns 1287 ** 1 it means that the db pointer is valid and 0 if it should not be 1288 ** dereferenced for any reason. The calling function should invoke 1289 ** SQLITE_MISUSE immediately. 1290 ** 1291 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1292 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1293 ** open properly and is not fit for general use but which can be 1294 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1295 */ 1296 int sqlite3SafetyCheckOk(sqlite3 *db){ 1297 u32 magic; 1298 if( db==0 ){ 1299 logBadConnection("NULL"); 1300 return 0; 1301 } 1302 magic = db->magic; 1303 if( magic!=SQLITE_MAGIC_OPEN ){ 1304 if( sqlite3SafetyCheckSickOrOk(db) ){ 1305 testcase( sqlite3GlobalConfig.xLog!=0 ); 1306 logBadConnection("unopened"); 1307 } 1308 return 0; 1309 }else{ 1310 return 1; 1311 } 1312 } 1313 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1314 u32 magic; 1315 magic = db->magic; 1316 if( magic!=SQLITE_MAGIC_SICK && 1317 magic!=SQLITE_MAGIC_OPEN && 1318 magic!=SQLITE_MAGIC_BUSY ){ 1319 testcase( sqlite3GlobalConfig.xLog!=0 ); 1320 logBadConnection("invalid"); 1321 return 0; 1322 }else{ 1323 return 1; 1324 } 1325 } 1326 1327 /* 1328 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1329 ** the other 64-bit signed integer at *pA and store the result in *pA. 1330 ** Return 0 on success. Or if the operation would have resulted in an 1331 ** overflow, leave *pA unchanged and return 1. 1332 */ 1333 int sqlite3AddInt64(i64 *pA, i64 iB){ 1334 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1335 return __builtin_add_overflow(*pA, iB, pA); 1336 #else 1337 i64 iA = *pA; 1338 testcase( iA==0 ); testcase( iA==1 ); 1339 testcase( iB==-1 ); testcase( iB==0 ); 1340 if( iB>=0 ){ 1341 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1342 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1343 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1344 }else{ 1345 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1346 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1347 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1348 } 1349 *pA += iB; 1350 return 0; 1351 #endif 1352 } 1353 int sqlite3SubInt64(i64 *pA, i64 iB){ 1354 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1355 return __builtin_sub_overflow(*pA, iB, pA); 1356 #else 1357 testcase( iB==SMALLEST_INT64+1 ); 1358 if( iB==SMALLEST_INT64 ){ 1359 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1360 if( (*pA)>=0 ) return 1; 1361 *pA -= iB; 1362 return 0; 1363 }else{ 1364 return sqlite3AddInt64(pA, -iB); 1365 } 1366 #endif 1367 } 1368 int sqlite3MulInt64(i64 *pA, i64 iB){ 1369 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1370 return __builtin_mul_overflow(*pA, iB, pA); 1371 #else 1372 i64 iA = *pA; 1373 if( iB>0 ){ 1374 if( iA>LARGEST_INT64/iB ) return 1; 1375 if( iA<SMALLEST_INT64/iB ) return 1; 1376 }else if( iB<0 ){ 1377 if( iA>0 ){ 1378 if( iB<SMALLEST_INT64/iA ) return 1; 1379 }else if( iA<0 ){ 1380 if( iB==SMALLEST_INT64 ) return 1; 1381 if( iA==SMALLEST_INT64 ) return 1; 1382 if( -iA>LARGEST_INT64/-iB ) return 1; 1383 } 1384 } 1385 *pA = iA*iB; 1386 return 0; 1387 #endif 1388 } 1389 1390 /* 1391 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1392 ** if the integer has a value of -2147483648, return +2147483647 1393 */ 1394 int sqlite3AbsInt32(int x){ 1395 if( x>=0 ) return x; 1396 if( x==(int)0x80000000 ) return 0x7fffffff; 1397 return -x; 1398 } 1399 1400 #ifdef SQLITE_ENABLE_8_3_NAMES 1401 /* 1402 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1403 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1404 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1405 ** three characters, then shorten the suffix on z[] to be the last three 1406 ** characters of the original suffix. 1407 ** 1408 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1409 ** do the suffix shortening regardless of URI parameter. 1410 ** 1411 ** Examples: 1412 ** 1413 ** test.db-journal => test.nal 1414 ** test.db-wal => test.wal 1415 ** test.db-shm => test.shm 1416 ** test.db-mj7f3319fa => test.9fa 1417 */ 1418 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1419 #if SQLITE_ENABLE_8_3_NAMES<2 1420 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1421 #endif 1422 { 1423 int i, sz; 1424 sz = sqlite3Strlen30(z); 1425 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1426 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1427 } 1428 } 1429 #endif 1430 1431 /* 1432 ** Find (an approximate) sum of two LogEst values. This computation is 1433 ** not a simple "+" operator because LogEst is stored as a logarithmic 1434 ** value. 1435 ** 1436 */ 1437 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1438 static const unsigned char x[] = { 1439 10, 10, /* 0,1 */ 1440 9, 9, /* 2,3 */ 1441 8, 8, /* 4,5 */ 1442 7, 7, 7, /* 6,7,8 */ 1443 6, 6, 6, /* 9,10,11 */ 1444 5, 5, 5, /* 12-14 */ 1445 4, 4, 4, 4, /* 15-18 */ 1446 3, 3, 3, 3, 3, 3, /* 19-24 */ 1447 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1448 }; 1449 if( a>=b ){ 1450 if( a>b+49 ) return a; 1451 if( a>b+31 ) return a+1; 1452 return a+x[a-b]; 1453 }else{ 1454 if( b>a+49 ) return b; 1455 if( b>a+31 ) return b+1; 1456 return b+x[b-a]; 1457 } 1458 } 1459 1460 /* 1461 ** Convert an integer into a LogEst. In other words, compute an 1462 ** approximation for 10*log2(x). 1463 */ 1464 LogEst sqlite3LogEst(u64 x){ 1465 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1466 LogEst y = 40; 1467 if( x<8 ){ 1468 if( x<2 ) return 0; 1469 while( x<8 ){ y -= 10; x <<= 1; } 1470 }else{ 1471 #if GCC_VERSION>=5004000 1472 int i = 60 - __builtin_clzll(x); 1473 y += i*10; 1474 x >>= i; 1475 #else 1476 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1477 while( x>15 ){ y += 10; x >>= 1; } 1478 #endif 1479 } 1480 return a[x&7] + y - 10; 1481 } 1482 1483 #ifndef SQLITE_OMIT_VIRTUALTABLE 1484 /* 1485 ** Convert a double into a LogEst 1486 ** In other words, compute an approximation for 10*log2(x). 1487 */ 1488 LogEst sqlite3LogEstFromDouble(double x){ 1489 u64 a; 1490 LogEst e; 1491 assert( sizeof(x)==8 && sizeof(a)==8 ); 1492 if( x<=1 ) return 0; 1493 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1494 memcpy(&a, &x, 8); 1495 e = (a>>52) - 1022; 1496 return e*10; 1497 } 1498 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1499 1500 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1501 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 1502 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1503 /* 1504 ** Convert a LogEst into an integer. 1505 ** 1506 ** Note that this routine is only used when one or more of various 1507 ** non-standard compile-time options is enabled. 1508 */ 1509 u64 sqlite3LogEstToInt(LogEst x){ 1510 u64 n; 1511 n = x%10; 1512 x /= 10; 1513 if( n>=5 ) n -= 2; 1514 else if( n>=1 ) n -= 1; 1515 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1516 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1517 if( x>60 ) return (u64)LARGEST_INT64; 1518 #else 1519 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input 1520 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1521 assert( x<=60 ); 1522 #endif 1523 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1524 } 1525 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1526 1527 /* 1528 ** Add a new name/number pair to a VList. This might require that the 1529 ** VList object be reallocated, so return the new VList. If an OOM 1530 ** error occurs, the original VList returned and the 1531 ** db->mallocFailed flag is set. 1532 ** 1533 ** A VList is really just an array of integers. To destroy a VList, 1534 ** simply pass it to sqlite3DbFree(). 1535 ** 1536 ** The first integer is the number of integers allocated for the whole 1537 ** VList. The second integer is the number of integers actually used. 1538 ** Each name/number pair is encoded by subsequent groups of 3 or more 1539 ** integers. 1540 ** 1541 ** Each name/number pair starts with two integers which are the numeric 1542 ** value for the pair and the size of the name/number pair, respectively. 1543 ** The text name overlays one or more following integers. The text name 1544 ** is always zero-terminated. 1545 ** 1546 ** Conceptually: 1547 ** 1548 ** struct VList { 1549 ** int nAlloc; // Number of allocated slots 1550 ** int nUsed; // Number of used slots 1551 ** struct VListEntry { 1552 ** int iValue; // Value for this entry 1553 ** int nSlot; // Slots used by this entry 1554 ** // ... variable name goes here 1555 ** } a[0]; 1556 ** } 1557 ** 1558 ** During code generation, pointers to the variable names within the 1559 ** VList are taken. When that happens, nAlloc is set to zero as an 1560 ** indication that the VList may never again be enlarged, since the 1561 ** accompanying realloc() would invalidate the pointers. 1562 */ 1563 VList *sqlite3VListAdd( 1564 sqlite3 *db, /* The database connection used for malloc() */ 1565 VList *pIn, /* The input VList. Might be NULL */ 1566 const char *zName, /* Name of symbol to add */ 1567 int nName, /* Bytes of text in zName */ 1568 int iVal /* Value to associate with zName */ 1569 ){ 1570 int nInt; /* number of sizeof(int) objects needed for zName */ 1571 char *z; /* Pointer to where zName will be stored */ 1572 int i; /* Index in pIn[] where zName is stored */ 1573 1574 nInt = nName/4 + 3; 1575 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1576 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1577 /* Enlarge the allocation */ 1578 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1579 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1580 if( pOut==0 ) return pIn; 1581 if( pIn==0 ) pOut[1] = 2; 1582 pIn = pOut; 1583 pIn[0] = nAlloc; 1584 } 1585 i = pIn[1]; 1586 pIn[i] = iVal; 1587 pIn[i+1] = nInt; 1588 z = (char*)&pIn[i+2]; 1589 pIn[1] = i+nInt; 1590 assert( pIn[1]<=pIn[0] ); 1591 memcpy(z, zName, nName); 1592 z[nName] = 0; 1593 return pIn; 1594 } 1595 1596 /* 1597 ** Return a pointer to the name of a variable in the given VList that 1598 ** has the value iVal. Or return a NULL if there is no such variable in 1599 ** the list 1600 */ 1601 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1602 int i, mx; 1603 if( pIn==0 ) return 0; 1604 mx = pIn[1]; 1605 i = 2; 1606 do{ 1607 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1608 i += pIn[i+1]; 1609 }while( i<mx ); 1610 return 0; 1611 } 1612 1613 /* 1614 ** Return the number of the variable named zName, if it is in VList. 1615 ** or return 0 if there is no such variable. 1616 */ 1617 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1618 int i, mx; 1619 if( pIn==0 ) return 0; 1620 mx = pIn[1]; 1621 i = 2; 1622 do{ 1623 const char *z = (const char*)&pIn[i+2]; 1624 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1625 i += pIn[i+1]; 1626 }while( i<mx ); 1627 return 0; 1628 } 1629