1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifdef SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static int dummy = 0; 30 dummy += x; 31 } 32 #endif 33 34 #ifndef SQLITE_OMIT_FLOATING_POINT 35 /* 36 ** Return true if the floating point value is Not a Number (NaN). 37 ** 38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 39 ** Otherwise, we have our own implementation that works on most systems. 40 */ 41 int sqlite3IsNaN(double x){ 42 int rc; /* The value return */ 43 #if !defined(SQLITE_HAVE_ISNAN) 44 /* 45 ** Systems that support the isnan() library function should probably 46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 47 ** found that many systems do not have a working isnan() function so 48 ** this implementation is provided as an alternative. 49 ** 50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 51 ** On the other hand, the use of -ffast-math comes with the following 52 ** warning: 53 ** 54 ** This option [-ffast-math] should never be turned on by any 55 ** -O option since it can result in incorrect output for programs 56 ** which depend on an exact implementation of IEEE or ISO 57 ** rules/specifications for math functions. 58 ** 59 ** Under MSVC, this NaN test may fail if compiled with a floating- 60 ** point precision mode other than /fp:precise. From the MSDN 61 ** documentation: 62 ** 63 ** The compiler [with /fp:precise] will properly handle comparisons 64 ** involving NaN. For example, x != x evaluates to true if x is NaN 65 ** ... 66 */ 67 #ifdef __FAST_MATH__ 68 # error SQLite will not work correctly with the -ffast-math option of GCC. 69 #endif 70 volatile double y = x; 71 volatile double z = y; 72 rc = (y!=z); 73 #else /* if defined(SQLITE_HAVE_ISNAN) */ 74 rc = isnan(x); 75 #endif /* SQLITE_HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 #endif /* SQLITE_OMIT_FLOATING_POINT */ 80 81 /* 82 ** Compute a string length that is limited to what can be stored in 83 ** lower 30 bits of a 32-bit signed integer. 84 ** 85 ** The value returned will never be negative. Nor will it ever be greater 86 ** than the actual length of the string. For very long strings (greater 87 ** than 1GiB) the value returned might be less than the true string length. 88 */ 89 int sqlite3Strlen30(const char *z){ 90 const char *z2 = z; 91 if( z==0 ) return 0; 92 while( *z2 ){ z2++; } 93 return 0x3fffffff & (int)(z2 - z); 94 } 95 96 /* 97 ** Set the most recent error code and error string for the sqlite 98 ** handle "db". The error code is set to "err_code". 99 ** 100 ** If it is not NULL, string zFormat specifies the format of the 101 ** error string in the style of the printf functions: The following 102 ** format characters are allowed: 103 ** 104 ** %s Insert a string 105 ** %z A string that should be freed after use 106 ** %d Insert an integer 107 ** %T Insert a token 108 ** %S Insert the first element of a SrcList 109 ** 110 ** zFormat and any string tokens that follow it are assumed to be 111 ** encoded in UTF-8. 112 ** 113 ** To clear the most recent error for sqlite handle "db", sqlite3Error 114 ** should be called with err_code set to SQLITE_OK and zFormat set 115 ** to NULL. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 119 db->errCode = err_code; 120 if( zFormat ){ 121 char *z; 122 va_list ap; 123 va_start(ap, zFormat); 124 z = sqlite3VMPrintf(db, zFormat, ap); 125 va_end(ap); 126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 127 }else{ 128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 129 } 130 } 131 } 132 133 /* 134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 135 ** The following formatting characters are allowed: 136 ** 137 ** %s Insert a string 138 ** %z A string that should be freed after use 139 ** %d Insert an integer 140 ** %T Insert a token 141 ** %S Insert the first element of a SrcList 142 ** 143 ** This function should be used to report any error that occurs whilst 144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 145 ** last thing the sqlite3_prepare() function does is copy the error 146 ** stored by this function into the database handle using sqlite3Error(). 147 ** Function sqlite3Error() should be used during statement execution 148 ** (sqlite3_step() etc.). 149 */ 150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 151 char *zMsg; 152 va_list ap; 153 sqlite3 *db = pParse->db; 154 va_start(ap, zFormat); 155 zMsg = sqlite3VMPrintf(db, zFormat, ap); 156 va_end(ap); 157 if( db->suppressErr ){ 158 sqlite3DbFree(db, zMsg); 159 }else{ 160 pParse->nErr++; 161 sqlite3DbFree(db, pParse->zErrMsg); 162 pParse->zErrMsg = zMsg; 163 pParse->rc = SQLITE_ERROR; 164 } 165 } 166 167 /* 168 ** Convert an SQL-style quoted string into a normal string by removing 169 ** the quote characters. The conversion is done in-place. If the 170 ** input does not begin with a quote character, then this routine 171 ** is a no-op. 172 ** 173 ** The input string must be zero-terminated. A new zero-terminator 174 ** is added to the dequoted string. 175 ** 176 ** The return value is -1 if no dequoting occurs or the length of the 177 ** dequoted string, exclusive of the zero terminator, if dequoting does 178 ** occur. 179 ** 180 ** 2002-Feb-14: This routine is extended to remove MS-Access style 181 ** brackets from around identifers. For example: "[a-b-c]" becomes 182 ** "a-b-c". 183 */ 184 int sqlite3Dequote(char *z){ 185 char quote; 186 int i, j; 187 if( z==0 ) return -1; 188 quote = z[0]; 189 switch( quote ){ 190 case '\'': break; 191 case '"': break; 192 case '`': break; /* For MySQL compatibility */ 193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 194 default: return -1; 195 } 196 for(i=1, j=0; ALWAYS(z[i]); i++){ 197 if( z[i]==quote ){ 198 if( z[i+1]==quote ){ 199 z[j++] = quote; 200 i++; 201 }else{ 202 break; 203 } 204 }else{ 205 z[j++] = z[i]; 206 } 207 } 208 z[j] = 0; 209 return j; 210 } 211 212 /* Convenient short-hand */ 213 #define UpperToLower sqlite3UpperToLower 214 215 /* 216 ** Some systems have stricmp(). Others have strcasecmp(). Because 217 ** there is no consistency, we will define our own. 218 ** 219 ** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows 220 ** applications and extensions to compare the contents of two buffers 221 ** containing UTF-8 strings in a case-independent fashion, using the same 222 ** definition of case independence that SQLite uses internally when 223 ** comparing identifiers. 224 */ 225 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 226 register unsigned char *a, *b; 227 a = (unsigned char *)zLeft; 228 b = (unsigned char *)zRight; 229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 230 return UpperToLower[*a] - UpperToLower[*b]; 231 } 232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 233 register unsigned char *a, *b; 234 a = (unsigned char *)zLeft; 235 b = (unsigned char *)zRight; 236 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 237 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 238 } 239 240 /* 241 ** Return TRUE if z is a pure numeric string. Return FALSE and leave 242 ** *realnum unchanged if the string contains any character which is not 243 ** part of a number. 244 ** 245 ** If the string is pure numeric, set *realnum to TRUE if the string 246 ** contains the '.' character or an "E+000" style exponentiation suffix. 247 ** Otherwise set *realnum to FALSE. Note that just becaue *realnum is 248 ** false does not mean that the number can be successfully converted into 249 ** an integer - it might be too big. 250 ** 251 ** An empty string is considered non-numeric. 252 */ 253 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ 254 int incr = (enc==SQLITE_UTF8?1:2); 255 if( enc==SQLITE_UTF16BE ) z++; 256 if( *z=='-' || *z=='+' ) z += incr; 257 if( !sqlite3Isdigit(*z) ){ 258 return 0; 259 } 260 z += incr; 261 *realnum = 0; 262 while( sqlite3Isdigit(*z) ){ z += incr; } 263 #ifndef SQLITE_OMIT_FLOATING_POINT 264 if( *z=='.' ){ 265 z += incr; 266 if( !sqlite3Isdigit(*z) ) return 0; 267 while( sqlite3Isdigit(*z) ){ z += incr; } 268 *realnum = 1; 269 } 270 if( *z=='e' || *z=='E' ){ 271 z += incr; 272 if( *z=='+' || *z=='-' ) z += incr; 273 if( !sqlite3Isdigit(*z) ) return 0; 274 while( sqlite3Isdigit(*z) ){ z += incr; } 275 *realnum = 1; 276 } 277 #endif 278 return *z==0; 279 } 280 281 /* 282 ** The string z[] is an ASCII representation of a real number. 283 ** Convert this string to a double. 284 ** 285 ** This routine assumes that z[] really is a valid number. If it 286 ** is not, the result is undefined. 287 ** 288 ** This routine is used instead of the library atof() function because 289 ** the library atof() might want to use "," as the decimal point instead 290 ** of "." depending on how locale is set. But that would cause problems 291 ** for SQL. So this routine always uses "." regardless of locale. 292 */ 293 int sqlite3AtoF(const char *z, double *pResult){ 294 #ifndef SQLITE_OMIT_FLOATING_POINT 295 const char *zBegin = z; 296 /* sign * significand * (10 ^ (esign * exponent)) */ 297 int sign = 1; /* sign of significand */ 298 i64 s = 0; /* significand */ 299 int d = 0; /* adjust exponent for shifting decimal point */ 300 int esign = 1; /* sign of exponent */ 301 int e = 0; /* exponent */ 302 double result; 303 int nDigits = 0; 304 305 /* skip leading spaces */ 306 while( sqlite3Isspace(*z) ) z++; 307 /* get sign of significand */ 308 if( *z=='-' ){ 309 sign = -1; 310 z++; 311 }else if( *z=='+' ){ 312 z++; 313 } 314 /* skip leading zeroes */ 315 while( z[0]=='0' ) z++, nDigits++; 316 317 /* copy max significant digits to significand */ 318 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 319 s = s*10 + (*z - '0'); 320 z++, nDigits++; 321 } 322 /* skip non-significant significand digits 323 ** (increase exponent by d to shift decimal left) */ 324 while( sqlite3Isdigit(*z) ) z++, nDigits++, d++; 325 326 /* if decimal point is present */ 327 if( *z=='.' ){ 328 z++; 329 /* copy digits from after decimal to significand 330 ** (decrease exponent by d to shift decimal right) */ 331 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 332 s = s*10 + (*z - '0'); 333 z++, nDigits++, d--; 334 } 335 /* skip non-significant digits */ 336 while( sqlite3Isdigit(*z) ) z++, nDigits++; 337 } 338 339 /* if exponent is present */ 340 if( *z=='e' || *z=='E' ){ 341 z++; 342 /* get sign of exponent */ 343 if( *z=='-' ){ 344 esign = -1; 345 z++; 346 }else if( *z=='+' ){ 347 z++; 348 } 349 /* copy digits to exponent */ 350 while( sqlite3Isdigit(*z) ){ 351 e = e*10 + (*z - '0'); 352 z++; 353 } 354 } 355 356 /* adjust exponent by d, and update sign */ 357 e = (e*esign) + d; 358 if( e<0 ) { 359 esign = -1; 360 e *= -1; 361 } else { 362 esign = 1; 363 } 364 365 /* if 0 significand */ 366 if( !s ) { 367 /* In the IEEE 754 standard, zero is signed. 368 ** Add the sign if we've seen at least one digit */ 369 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 370 } else { 371 /* attempt to reduce exponent */ 372 if( esign>0 ){ 373 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 374 }else{ 375 while( !(s%10) && e>0 ) e--,s/=10; 376 } 377 378 /* adjust the sign of significand */ 379 s = sign<0 ? -s : s; 380 381 /* if exponent, scale significand as appropriate 382 ** and store in result. */ 383 if( e ){ 384 double scale = 1.0; 385 /* attempt to handle extremely small/large numbers better */ 386 if( e>307 && e<342 ){ 387 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 388 if( esign<0 ){ 389 result = s / scale; 390 result /= 1.0e+308; 391 }else{ 392 result = s * scale; 393 result *= 1.0e+308; 394 } 395 }else{ 396 /* 1.0e+22 is the largest power of 10 than can be 397 ** represented exactly. */ 398 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 399 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 400 if( esign<0 ){ 401 result = s / scale; 402 }else{ 403 result = s * scale; 404 } 405 } 406 } else { 407 result = (double)s; 408 } 409 } 410 411 /* store the result */ 412 *pResult = result; 413 414 /* return number of characters used */ 415 return (int)(z - zBegin); 416 #else 417 return sqlite3Atoi64(z, pResult); 418 #endif /* SQLITE_OMIT_FLOATING_POINT */ 419 } 420 421 /* 422 ** Compare the 19-character string zNum against the text representation 423 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 424 ** if zNum is less than, equal to, or greater than the string. 425 ** 426 ** Unlike memcmp() this routine is guaranteed to return the difference 427 ** in the values of the last digit if the only difference is in the 428 ** last digit. So, for example, 429 ** 430 ** compare2pow63("9223372036854775800") 431 ** 432 ** will return -8. 433 */ 434 static int compare2pow63(const char *zNum){ 435 int c; 436 c = memcmp(zNum,"922337203685477580",18)*10; 437 if( c==0 ){ 438 c = zNum[18] - '8'; 439 testcase( c==(-1) ); 440 testcase( c==0 ); 441 testcase( c==(+1) ); 442 } 443 return c; 444 } 445 446 447 /* 448 ** Return TRUE if zNum is a 64-bit signed integer and write 449 ** the value of the integer into *pNum. If zNum is not an integer 450 ** or is an integer that is too large to be expressed with 64 bits, 451 ** then return false. 452 ** 453 ** When this routine was originally written it dealt with only 454 ** 32-bit numbers. At that time, it was much faster than the 455 ** atoi() library routine in RedHat 7.2. 456 */ 457 int sqlite3Atoi64(const char *zNum, i64 *pNum){ 458 i64 v = 0; 459 int neg; 460 int i, c; 461 const char *zStart; 462 while( sqlite3Isspace(*zNum) ) zNum++; 463 if( *zNum=='-' ){ 464 neg = 1; 465 zNum++; 466 }else if( *zNum=='+' ){ 467 neg = 0; 468 zNum++; 469 }else{ 470 neg = 0; 471 } 472 zStart = zNum; 473 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ 474 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ 475 v = v*10 + c - '0'; 476 } 477 *pNum = neg ? -v : v; 478 testcase( i==18 ); 479 testcase( i==19 ); 480 testcase( i==20 ); 481 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ 482 /* zNum is empty or contains non-numeric text or is longer 483 ** than 19 digits (thus guaranting that it is too large) */ 484 return 0; 485 }else if( i<19 ){ 486 /* Less than 19 digits, so we know that it fits in 64 bits */ 487 return 1; 488 }else{ 489 /* 19-digit numbers must be no larger than 9223372036854775807 if positive 490 ** or 9223372036854775808 if negative. Note that 9223372036854665808 491 ** is 2^63. */ 492 return compare2pow63(zNum)<neg; 493 } 494 } 495 496 /* 497 ** The string zNum represents an unsigned integer. The zNum string 498 ** consists of one or more digit characters and is terminated by 499 ** a zero character. Any stray characters in zNum result in undefined 500 ** behavior. 501 ** 502 ** If the unsigned integer that zNum represents will fit in a 503 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. 504 ** 505 ** If the negFlag parameter is true, that means that zNum really represents 506 ** a negative number. (The leading "-" is omitted from zNum.) This 507 ** parameter is needed to determine a boundary case. A string 508 ** of "9223373036854775808" returns false if negFlag is false or true 509 ** if negFlag is true. 510 ** 511 ** Leading zeros are ignored. 512 */ 513 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ 514 int i; 515 int neg = 0; 516 517 assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */ 518 519 if( negFlag ) neg = 1-neg; 520 while( *zNum=='0' ){ 521 zNum++; /* Skip leading zeros. Ticket #2454 */ 522 } 523 for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); } 524 testcase( i==18 ); 525 testcase( i==19 ); 526 testcase( i==20 ); 527 if( i<19 ){ 528 /* Guaranteed to fit if less than 19 digits */ 529 return 1; 530 }else if( i>19 ){ 531 /* Guaranteed to be too big if greater than 19 digits */ 532 return 0; 533 }else{ 534 /* Compare against 2^63. */ 535 return compare2pow63(zNum)<neg; 536 } 537 } 538 539 /* 540 ** If zNum represents an integer that will fit in 32-bits, then set 541 ** *pValue to that integer and return true. Otherwise return false. 542 ** 543 ** Any non-numeric characters that following zNum are ignored. 544 ** This is different from sqlite3Atoi64() which requires the 545 ** input number to be zero-terminated. 546 */ 547 int sqlite3GetInt32(const char *zNum, int *pValue){ 548 sqlite_int64 v = 0; 549 int i, c; 550 int neg = 0; 551 if( zNum[0]=='-' ){ 552 neg = 1; 553 zNum++; 554 }else if( zNum[0]=='+' ){ 555 zNum++; 556 } 557 while( zNum[0]=='0' ) zNum++; 558 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 559 v = v*10 + c; 560 } 561 562 /* The longest decimal representation of a 32 bit integer is 10 digits: 563 ** 564 ** 1234567890 565 ** 2^31 -> 2147483648 566 */ 567 testcase( i==10 ); 568 if( i>10 ){ 569 return 0; 570 } 571 testcase( v-neg==2147483647 ); 572 if( v-neg>2147483647 ){ 573 return 0; 574 } 575 if( neg ){ 576 v = -v; 577 } 578 *pValue = (int)v; 579 return 1; 580 } 581 582 /* 583 ** The variable-length integer encoding is as follows: 584 ** 585 ** KEY: 586 ** A = 0xxxxxxx 7 bits of data and one flag bit 587 ** B = 1xxxxxxx 7 bits of data and one flag bit 588 ** C = xxxxxxxx 8 bits of data 589 ** 590 ** 7 bits - A 591 ** 14 bits - BA 592 ** 21 bits - BBA 593 ** 28 bits - BBBA 594 ** 35 bits - BBBBA 595 ** 42 bits - BBBBBA 596 ** 49 bits - BBBBBBA 597 ** 56 bits - BBBBBBBA 598 ** 64 bits - BBBBBBBBC 599 */ 600 601 /* 602 ** Write a 64-bit variable-length integer to memory starting at p[0]. 603 ** The length of data write will be between 1 and 9 bytes. The number 604 ** of bytes written is returned. 605 ** 606 ** A variable-length integer consists of the lower 7 bits of each byte 607 ** for all bytes that have the 8th bit set and one byte with the 8th 608 ** bit clear. Except, if we get to the 9th byte, it stores the full 609 ** 8 bits and is the last byte. 610 */ 611 int sqlite3PutVarint(unsigned char *p, u64 v){ 612 int i, j, n; 613 u8 buf[10]; 614 if( v & (((u64)0xff000000)<<32) ){ 615 p[8] = (u8)v; 616 v >>= 8; 617 for(i=7; i>=0; i--){ 618 p[i] = (u8)((v & 0x7f) | 0x80); 619 v >>= 7; 620 } 621 return 9; 622 } 623 n = 0; 624 do{ 625 buf[n++] = (u8)((v & 0x7f) | 0x80); 626 v >>= 7; 627 }while( v!=0 ); 628 buf[0] &= 0x7f; 629 assert( n<=9 ); 630 for(i=0, j=n-1; j>=0; j--, i++){ 631 p[i] = buf[j]; 632 } 633 return n; 634 } 635 636 /* 637 ** This routine is a faster version of sqlite3PutVarint() that only 638 ** works for 32-bit positive integers and which is optimized for 639 ** the common case of small integers. A MACRO version, putVarint32, 640 ** is provided which inlines the single-byte case. All code should use 641 ** the MACRO version as this function assumes the single-byte case has 642 ** already been handled. 643 */ 644 int sqlite3PutVarint32(unsigned char *p, u32 v){ 645 #ifndef putVarint32 646 if( (v & ~0x7f)==0 ){ 647 p[0] = v; 648 return 1; 649 } 650 #endif 651 if( (v & ~0x3fff)==0 ){ 652 p[0] = (u8)((v>>7) | 0x80); 653 p[1] = (u8)(v & 0x7f); 654 return 2; 655 } 656 return sqlite3PutVarint(p, v); 657 } 658 659 /* 660 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 661 ** are defined here rather than simply putting the constant expressions 662 ** inline in order to work around bugs in the RVT compiler. 663 ** 664 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 665 ** 666 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 667 */ 668 #define SLOT_2_0 0x001fc07f 669 #define SLOT_4_2_0 0xf01fc07f 670 671 672 /* 673 ** Read a 64-bit variable-length integer from memory starting at p[0]. 674 ** Return the number of bytes read. The value is stored in *v. 675 */ 676 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 677 u32 a,b,s; 678 679 a = *p; 680 /* a: p0 (unmasked) */ 681 if (!(a&0x80)) 682 { 683 *v = a; 684 return 1; 685 } 686 687 p++; 688 b = *p; 689 /* b: p1 (unmasked) */ 690 if (!(b&0x80)) 691 { 692 a &= 0x7f; 693 a = a<<7; 694 a |= b; 695 *v = a; 696 return 2; 697 } 698 699 /* Verify that constants are precomputed correctly */ 700 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 701 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 702 703 p++; 704 a = a<<14; 705 a |= *p; 706 /* a: p0<<14 | p2 (unmasked) */ 707 if (!(a&0x80)) 708 { 709 a &= SLOT_2_0; 710 b &= 0x7f; 711 b = b<<7; 712 a |= b; 713 *v = a; 714 return 3; 715 } 716 717 /* CSE1 from below */ 718 a &= SLOT_2_0; 719 p++; 720 b = b<<14; 721 b |= *p; 722 /* b: p1<<14 | p3 (unmasked) */ 723 if (!(b&0x80)) 724 { 725 b &= SLOT_2_0; 726 /* moved CSE1 up */ 727 /* a &= (0x7f<<14)|(0x7f); */ 728 a = a<<7; 729 a |= b; 730 *v = a; 731 return 4; 732 } 733 734 /* a: p0<<14 | p2 (masked) */ 735 /* b: p1<<14 | p3 (unmasked) */ 736 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 737 /* moved CSE1 up */ 738 /* a &= (0x7f<<14)|(0x7f); */ 739 b &= SLOT_2_0; 740 s = a; 741 /* s: p0<<14 | p2 (masked) */ 742 743 p++; 744 a = a<<14; 745 a |= *p; 746 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 747 if (!(a&0x80)) 748 { 749 /* we can skip these cause they were (effectively) done above in calc'ing s */ 750 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 751 /* b &= (0x7f<<14)|(0x7f); */ 752 b = b<<7; 753 a |= b; 754 s = s>>18; 755 *v = ((u64)s)<<32 | a; 756 return 5; 757 } 758 759 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 760 s = s<<7; 761 s |= b; 762 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 763 764 p++; 765 b = b<<14; 766 b |= *p; 767 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 768 if (!(b&0x80)) 769 { 770 /* we can skip this cause it was (effectively) done above in calc'ing s */ 771 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 772 a &= SLOT_2_0; 773 a = a<<7; 774 a |= b; 775 s = s>>18; 776 *v = ((u64)s)<<32 | a; 777 return 6; 778 } 779 780 p++; 781 a = a<<14; 782 a |= *p; 783 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 784 if (!(a&0x80)) 785 { 786 a &= SLOT_4_2_0; 787 b &= SLOT_2_0; 788 b = b<<7; 789 a |= b; 790 s = s>>11; 791 *v = ((u64)s)<<32 | a; 792 return 7; 793 } 794 795 /* CSE2 from below */ 796 a &= SLOT_2_0; 797 p++; 798 b = b<<14; 799 b |= *p; 800 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 801 if (!(b&0x80)) 802 { 803 b &= SLOT_4_2_0; 804 /* moved CSE2 up */ 805 /* a &= (0x7f<<14)|(0x7f); */ 806 a = a<<7; 807 a |= b; 808 s = s>>4; 809 *v = ((u64)s)<<32 | a; 810 return 8; 811 } 812 813 p++; 814 a = a<<15; 815 a |= *p; 816 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 817 818 /* moved CSE2 up */ 819 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 820 b &= SLOT_2_0; 821 b = b<<8; 822 a |= b; 823 824 s = s<<4; 825 b = p[-4]; 826 b &= 0x7f; 827 b = b>>3; 828 s |= b; 829 830 *v = ((u64)s)<<32 | a; 831 832 return 9; 833 } 834 835 /* 836 ** Read a 32-bit variable-length integer from memory starting at p[0]. 837 ** Return the number of bytes read. The value is stored in *v. 838 ** 839 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 840 ** integer, then set *v to 0xffffffff. 841 ** 842 ** A MACRO version, getVarint32, is provided which inlines the 843 ** single-byte case. All code should use the MACRO version as 844 ** this function assumes the single-byte case has already been handled. 845 */ 846 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 847 u32 a,b; 848 849 /* The 1-byte case. Overwhelmingly the most common. Handled inline 850 ** by the getVarin32() macro */ 851 a = *p; 852 /* a: p0 (unmasked) */ 853 #ifndef getVarint32 854 if (!(a&0x80)) 855 { 856 /* Values between 0 and 127 */ 857 *v = a; 858 return 1; 859 } 860 #endif 861 862 /* The 2-byte case */ 863 p++; 864 b = *p; 865 /* b: p1 (unmasked) */ 866 if (!(b&0x80)) 867 { 868 /* Values between 128 and 16383 */ 869 a &= 0x7f; 870 a = a<<7; 871 *v = a | b; 872 return 2; 873 } 874 875 /* The 3-byte case */ 876 p++; 877 a = a<<14; 878 a |= *p; 879 /* a: p0<<14 | p2 (unmasked) */ 880 if (!(a&0x80)) 881 { 882 /* Values between 16384 and 2097151 */ 883 a &= (0x7f<<14)|(0x7f); 884 b &= 0x7f; 885 b = b<<7; 886 *v = a | b; 887 return 3; 888 } 889 890 /* A 32-bit varint is used to store size information in btrees. 891 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 892 ** A 3-byte varint is sufficient, for example, to record the size 893 ** of a 1048569-byte BLOB or string. 894 ** 895 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 896 ** rare larger cases can be handled by the slower 64-bit varint 897 ** routine. 898 */ 899 #if 1 900 { 901 u64 v64; 902 u8 n; 903 904 p -= 2; 905 n = sqlite3GetVarint(p, &v64); 906 assert( n>3 && n<=9 ); 907 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 908 *v = 0xffffffff; 909 }else{ 910 *v = (u32)v64; 911 } 912 return n; 913 } 914 915 #else 916 /* For following code (kept for historical record only) shows an 917 ** unrolling for the 3- and 4-byte varint cases. This code is 918 ** slightly faster, but it is also larger and much harder to test. 919 */ 920 p++; 921 b = b<<14; 922 b |= *p; 923 /* b: p1<<14 | p3 (unmasked) */ 924 if (!(b&0x80)) 925 { 926 /* Values between 2097152 and 268435455 */ 927 b &= (0x7f<<14)|(0x7f); 928 a &= (0x7f<<14)|(0x7f); 929 a = a<<7; 930 *v = a | b; 931 return 4; 932 } 933 934 p++; 935 a = a<<14; 936 a |= *p; 937 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 938 if (!(a&0x80)) 939 { 940 /* Values between 268435456 and 34359738367 */ 941 a &= SLOT_4_2_0; 942 b &= SLOT_4_2_0; 943 b = b<<7; 944 *v = a | b; 945 return 5; 946 } 947 948 /* We can only reach this point when reading a corrupt database 949 ** file. In that case we are not in any hurry. Use the (relatively 950 ** slow) general-purpose sqlite3GetVarint() routine to extract the 951 ** value. */ 952 { 953 u64 v64; 954 u8 n; 955 956 p -= 4; 957 n = sqlite3GetVarint(p, &v64); 958 assert( n>5 && n<=9 ); 959 *v = (u32)v64; 960 return n; 961 } 962 #endif 963 } 964 965 /* 966 ** Return the number of bytes that will be needed to store the given 967 ** 64-bit integer. 968 */ 969 int sqlite3VarintLen(u64 v){ 970 int i = 0; 971 do{ 972 i++; 973 v >>= 7; 974 }while( v!=0 && ALWAYS(i<9) ); 975 return i; 976 } 977 978 979 /* 980 ** Read or write a four-byte big-endian integer value. 981 */ 982 u32 sqlite3Get4byte(const u8 *p){ 983 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 984 } 985 void sqlite3Put4byte(unsigned char *p, u32 v){ 986 p[0] = (u8)(v>>24); 987 p[1] = (u8)(v>>16); 988 p[2] = (u8)(v>>8); 989 p[3] = (u8)v; 990 } 991 992 993 994 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 995 /* 996 ** Translate a single byte of Hex into an integer. 997 ** This routine only works if h really is a valid hexadecimal 998 ** character: 0..9a..fA..F 999 */ 1000 static u8 hexToInt(int h){ 1001 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1002 #ifdef SQLITE_ASCII 1003 h += 9*(1&(h>>6)); 1004 #endif 1005 #ifdef SQLITE_EBCDIC 1006 h += 9*(1&~(h>>4)); 1007 #endif 1008 return (u8)(h & 0xf); 1009 } 1010 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1011 1012 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1013 /* 1014 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1015 ** value. Return a pointer to its binary value. Space to hold the 1016 ** binary value has been obtained from malloc and must be freed by 1017 ** the calling routine. 1018 */ 1019 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1020 char *zBlob; 1021 int i; 1022 1023 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1024 n--; 1025 if( zBlob ){ 1026 for(i=0; i<n; i+=2){ 1027 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 1028 } 1029 zBlob[i/2] = 0; 1030 } 1031 return zBlob; 1032 } 1033 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1034 1035 /* 1036 ** Log an error that is an API call on a connection pointer that should 1037 ** not have been used. The "type" of connection pointer is given as the 1038 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1039 */ 1040 static void logBadConnection(const char *zType){ 1041 sqlite3_log(SQLITE_MISUSE, 1042 "API call with %s database connection pointer", 1043 zType 1044 ); 1045 } 1046 1047 /* 1048 ** Check to make sure we have a valid db pointer. This test is not 1049 ** foolproof but it does provide some measure of protection against 1050 ** misuse of the interface such as passing in db pointers that are 1051 ** NULL or which have been previously closed. If this routine returns 1052 ** 1 it means that the db pointer is valid and 0 if it should not be 1053 ** dereferenced for any reason. The calling function should invoke 1054 ** SQLITE_MISUSE immediately. 1055 ** 1056 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1057 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1058 ** open properly and is not fit for general use but which can be 1059 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1060 */ 1061 int sqlite3SafetyCheckOk(sqlite3 *db){ 1062 u32 magic; 1063 if( db==0 ){ 1064 logBadConnection("NULL"); 1065 return 0; 1066 } 1067 magic = db->magic; 1068 if( magic!=SQLITE_MAGIC_OPEN ){ 1069 if( sqlite3SafetyCheckSickOrOk(db) ){ 1070 testcase( sqlite3GlobalConfig.xLog!=0 ); 1071 logBadConnection("unopened"); 1072 } 1073 return 0; 1074 }else{ 1075 return 1; 1076 } 1077 } 1078 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1079 u32 magic; 1080 magic = db->magic; 1081 if( magic!=SQLITE_MAGIC_SICK && 1082 magic!=SQLITE_MAGIC_OPEN && 1083 magic!=SQLITE_MAGIC_BUSY ){ 1084 testcase( sqlite3GlobalConfig.xLog!=0 ); 1085 logBadConnection("invalid"); 1086 return 0; 1087 }else{ 1088 return 1; 1089 } 1090 } 1091