1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #include <math.h> 21 22 /* 23 ** Routine needed to support the testcase() macro. 24 */ 25 #ifdef SQLITE_COVERAGE_TEST 26 void sqlite3Coverage(int x){ 27 static unsigned dummy = 0; 28 dummy += (unsigned)x; 29 } 30 #endif 31 32 /* 33 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 34 ** or to bypass normal error detection during testing in order to let 35 ** execute proceed futher downstream. 36 ** 37 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 38 ** sqlite3FaultSim() function only returns non-zero during testing. 39 ** 40 ** During testing, if the test harness has set a fault-sim callback using 41 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 42 ** each call to sqlite3FaultSim() is relayed to that application-supplied 43 ** callback and the integer return value form the application-supplied 44 ** callback is returned by sqlite3FaultSim(). 45 ** 46 ** The integer argument to sqlite3FaultSim() is a code to identify which 47 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 48 ** should have a unique code. To prevent legacy testing applications from 49 ** breaking, the codes should not be changed or reused. 50 */ 51 #ifndef SQLITE_UNTESTABLE 52 int sqlite3FaultSim(int iTest){ 53 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 54 return xCallback ? xCallback(iTest) : SQLITE_OK; 55 } 56 #endif 57 58 #ifndef SQLITE_OMIT_FLOATING_POINT 59 /* 60 ** Return true if the floating point value is Not a Number (NaN). 61 */ 62 int sqlite3IsNaN(double x){ 63 u64 y; 64 memcpy(&y,&x,sizeof(y)); 65 return IsNaN(y); 66 } 67 #endif /* SQLITE_OMIT_FLOATING_POINT */ 68 69 /* 70 ** Compute a string length that is limited to what can be stored in 71 ** lower 30 bits of a 32-bit signed integer. 72 ** 73 ** The value returned will never be negative. Nor will it ever be greater 74 ** than the actual length of the string. For very long strings (greater 75 ** than 1GiB) the value returned might be less than the true string length. 76 */ 77 int sqlite3Strlen30(const char *z){ 78 if( z==0 ) return 0; 79 return 0x3fffffff & (int)strlen(z); 80 } 81 82 /* 83 ** Return the declared type of a column. Or return zDflt if the column 84 ** has no declared type. 85 ** 86 ** The column type is an extra string stored after the zero-terminator on 87 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 88 */ 89 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 90 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; 91 return pCol->zName + strlen(pCol->zName) + 1; 92 } 93 94 /* 95 ** Helper function for sqlite3Error() - called rarely. Broken out into 96 ** a separate routine to avoid unnecessary register saves on entry to 97 ** sqlite3Error(). 98 */ 99 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 100 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 101 sqlite3SystemError(db, err_code); 102 } 103 104 /* 105 ** Set the current error code to err_code and clear any prior error message. 106 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 107 ** that would be appropriate. 108 */ 109 void sqlite3Error(sqlite3 *db, int err_code){ 110 assert( db!=0 ); 111 db->errCode = err_code; 112 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 113 } 114 115 /* 116 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 117 ** to do based on the SQLite error code in rc. 118 */ 119 void sqlite3SystemError(sqlite3 *db, int rc){ 120 if( rc==SQLITE_IOERR_NOMEM ) return; 121 rc &= 0xff; 122 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 123 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 124 } 125 } 126 127 /* 128 ** Set the most recent error code and error string for the sqlite 129 ** handle "db". The error code is set to "err_code". 130 ** 131 ** If it is not NULL, string zFormat specifies the format of the 132 ** error string in the style of the printf functions: The following 133 ** format characters are allowed: 134 ** 135 ** %s Insert a string 136 ** %z A string that should be freed after use 137 ** %d Insert an integer 138 ** %T Insert a token 139 ** %S Insert the first element of a SrcList 140 ** 141 ** zFormat and any string tokens that follow it are assumed to be 142 ** encoded in UTF-8. 143 ** 144 ** To clear the most recent error for sqlite handle "db", sqlite3Error 145 ** should be called with err_code set to SQLITE_OK and zFormat set 146 ** to NULL. 147 */ 148 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 149 assert( db!=0 ); 150 db->errCode = err_code; 151 sqlite3SystemError(db, err_code); 152 if( zFormat==0 ){ 153 sqlite3Error(db, err_code); 154 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 155 char *z; 156 va_list ap; 157 va_start(ap, zFormat); 158 z = sqlite3VMPrintf(db, zFormat, ap); 159 va_end(ap); 160 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 161 } 162 } 163 164 /* 165 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 166 ** The following formatting characters are allowed: 167 ** 168 ** %s Insert a string 169 ** %z A string that should be freed after use 170 ** %d Insert an integer 171 ** %T Insert a token 172 ** %S Insert the first element of a SrcList 173 ** 174 ** This function should be used to report any error that occurs while 175 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 176 ** last thing the sqlite3_prepare() function does is copy the error 177 ** stored by this function into the database handle using sqlite3Error(). 178 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 179 ** during statement execution (sqlite3_step() etc.). 180 */ 181 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 182 char *zMsg; 183 va_list ap; 184 sqlite3 *db = pParse->db; 185 va_start(ap, zFormat); 186 zMsg = sqlite3VMPrintf(db, zFormat, ap); 187 va_end(ap); 188 if( db->suppressErr ){ 189 sqlite3DbFree(db, zMsg); 190 }else{ 191 pParse->nErr++; 192 sqlite3DbFree(db, pParse->zErrMsg); 193 pParse->zErrMsg = zMsg; 194 pParse->rc = SQLITE_ERROR; 195 pParse->pWith = 0; 196 } 197 } 198 199 /* 200 ** If database connection db is currently parsing SQL, then transfer 201 ** error code errCode to that parser if the parser has not already 202 ** encountered some other kind of error. 203 */ 204 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 205 Parse *pParse; 206 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 207 pParse->rc = errCode; 208 pParse->nErr++; 209 return errCode; 210 } 211 212 /* 213 ** Convert an SQL-style quoted string into a normal string by removing 214 ** the quote characters. The conversion is done in-place. If the 215 ** input does not begin with a quote character, then this routine 216 ** is a no-op. 217 ** 218 ** The input string must be zero-terminated. A new zero-terminator 219 ** is added to the dequoted string. 220 ** 221 ** The return value is -1 if no dequoting occurs or the length of the 222 ** dequoted string, exclusive of the zero terminator, if dequoting does 223 ** occur. 224 ** 225 ** 2002-02-14: This routine is extended to remove MS-Access style 226 ** brackets from around identifiers. For example: "[a-b-c]" becomes 227 ** "a-b-c". 228 */ 229 void sqlite3Dequote(char *z){ 230 char quote; 231 int i, j; 232 if( z==0 ) return; 233 quote = z[0]; 234 if( !sqlite3Isquote(quote) ) return; 235 if( quote=='[' ) quote = ']'; 236 for(i=1, j=0;; i++){ 237 assert( z[i] ); 238 if( z[i]==quote ){ 239 if( z[i+1]==quote ){ 240 z[j++] = quote; 241 i++; 242 }else{ 243 break; 244 } 245 }else{ 246 z[j++] = z[i]; 247 } 248 } 249 z[j] = 0; 250 } 251 void sqlite3DequoteExpr(Expr *p){ 252 assert( sqlite3Isquote(p->u.zToken[0]) ); 253 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 254 sqlite3Dequote(p->u.zToken); 255 } 256 257 /* 258 ** Generate a Token object from a string 259 */ 260 void sqlite3TokenInit(Token *p, char *z){ 261 p->z = z; 262 p->n = sqlite3Strlen30(z); 263 } 264 265 /* Convenient short-hand */ 266 #define UpperToLower sqlite3UpperToLower 267 268 /* 269 ** Some systems have stricmp(). Others have strcasecmp(). Because 270 ** there is no consistency, we will define our own. 271 ** 272 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 273 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 274 ** the contents of two buffers containing UTF-8 strings in a 275 ** case-independent fashion, using the same definition of "case 276 ** independence" that SQLite uses internally when comparing identifiers. 277 */ 278 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 279 if( zLeft==0 ){ 280 return zRight ? -1 : 0; 281 }else if( zRight==0 ){ 282 return 1; 283 } 284 return sqlite3StrICmp(zLeft, zRight); 285 } 286 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 287 unsigned char *a, *b; 288 int c, x; 289 a = (unsigned char *)zLeft; 290 b = (unsigned char *)zRight; 291 for(;;){ 292 c = *a; 293 x = *b; 294 if( c==x ){ 295 if( c==0 ) break; 296 }else{ 297 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 298 if( c ) break; 299 } 300 a++; 301 b++; 302 } 303 return c; 304 } 305 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 306 register unsigned char *a, *b; 307 if( zLeft==0 ){ 308 return zRight ? -1 : 0; 309 }else if( zRight==0 ){ 310 return 1; 311 } 312 a = (unsigned char *)zLeft; 313 b = (unsigned char *)zRight; 314 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 315 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 316 } 317 318 /* 319 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 320 ** E==2 results in 100. E==50 results in 1.0e50. 321 ** 322 ** This routine only works for values of E between 1 and 341. 323 */ 324 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 325 #if defined(_MSC_VER) 326 static const LONGDOUBLE_TYPE x[] = { 327 1.0e+001L, 328 1.0e+002L, 329 1.0e+004L, 330 1.0e+008L, 331 1.0e+016L, 332 1.0e+032L, 333 1.0e+064L, 334 1.0e+128L, 335 1.0e+256L 336 }; 337 LONGDOUBLE_TYPE r = 1.0; 338 int i; 339 assert( E>=0 && E<=307 ); 340 for(i=0; E!=0; i++, E >>=1){ 341 if( E & 1 ) r *= x[i]; 342 } 343 return r; 344 #else 345 LONGDOUBLE_TYPE x = 10.0; 346 LONGDOUBLE_TYPE r = 1.0; 347 while(1){ 348 if( E & 1 ) r *= x; 349 E >>= 1; 350 if( E==0 ) break; 351 x *= x; 352 } 353 return r; 354 #endif 355 } 356 357 /* 358 ** The string z[] is an text representation of a real number. 359 ** Convert this string to a double and write it into *pResult. 360 ** 361 ** The string z[] is length bytes in length (bytes, not characters) and 362 ** uses the encoding enc. The string is not necessarily zero-terminated. 363 ** 364 ** Return TRUE if the result is a valid real number (or integer) and FALSE 365 ** if the string is empty or contains extraneous text. More specifically 366 ** return 367 ** 1 => The input string is a pure integer 368 ** 2 or more => The input has a decimal point or eNNN clause 369 ** 0 or less => The input string is not a valid number 370 ** -1 => Not a valid number, but has a valid prefix which 371 ** includes a decimal point and/or an eNNN clause 372 ** 373 ** Valid numbers are in one of these formats: 374 ** 375 ** [+-]digits[E[+-]digits] 376 ** [+-]digits.[digits][E[+-]digits] 377 ** [+-].digits[E[+-]digits] 378 ** 379 ** Leading and trailing whitespace is ignored for the purpose of determining 380 ** validity. 381 ** 382 ** If some prefix of the input string is a valid number, this routine 383 ** returns FALSE but it still converts the prefix and writes the result 384 ** into *pResult. 385 */ 386 #if defined(_MSC_VER) 387 #pragma warning(disable : 4756) 388 #endif 389 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 390 #ifndef SQLITE_OMIT_FLOATING_POINT 391 int incr; 392 const char *zEnd; 393 /* sign * significand * (10 ^ (esign * exponent)) */ 394 int sign = 1; /* sign of significand */ 395 i64 s = 0; /* significand */ 396 int d = 0; /* adjust exponent for shifting decimal point */ 397 int esign = 1; /* sign of exponent */ 398 int e = 0; /* exponent */ 399 int eValid = 1; /* True exponent is either not used or is well-formed */ 400 double result; 401 int nDigit = 0; /* Number of digits processed */ 402 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 403 404 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 405 *pResult = 0.0; /* Default return value, in case of an error */ 406 if( length==0 ) return 0; 407 408 if( enc==SQLITE_UTF8 ){ 409 incr = 1; 410 zEnd = z + length; 411 }else{ 412 int i; 413 incr = 2; 414 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 415 testcase( enc==SQLITE_UTF16LE ); 416 testcase( enc==SQLITE_UTF16BE ); 417 for(i=3-enc; i<length && z[i]==0; i+=2){} 418 if( i<length ) eType = -100; 419 zEnd = &z[i^1]; 420 z += (enc&1); 421 } 422 423 /* skip leading spaces */ 424 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 425 if( z>=zEnd ) return 0; 426 427 /* get sign of significand */ 428 if( *z=='-' ){ 429 sign = -1; 430 z+=incr; 431 }else if( *z=='+' ){ 432 z+=incr; 433 } 434 435 /* copy max significant digits to significand */ 436 while( z<zEnd && sqlite3Isdigit(*z) ){ 437 s = s*10 + (*z - '0'); 438 z+=incr; nDigit++; 439 if( s>=((LARGEST_INT64-9)/10) ){ 440 /* skip non-significant significand digits 441 ** (increase exponent by d to shift decimal left) */ 442 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 443 } 444 } 445 if( z>=zEnd ) goto do_atof_calc; 446 447 /* if decimal point is present */ 448 if( *z=='.' ){ 449 z+=incr; 450 eType++; 451 /* copy digits from after decimal to significand 452 ** (decrease exponent by d to shift decimal right) */ 453 while( z<zEnd && sqlite3Isdigit(*z) ){ 454 if( s<((LARGEST_INT64-9)/10) ){ 455 s = s*10 + (*z - '0'); 456 d--; 457 nDigit++; 458 } 459 z+=incr; 460 } 461 } 462 if( z>=zEnd ) goto do_atof_calc; 463 464 /* if exponent is present */ 465 if( *z=='e' || *z=='E' ){ 466 z+=incr; 467 eValid = 0; 468 eType++; 469 470 /* This branch is needed to avoid a (harmless) buffer overread. The 471 ** special comment alerts the mutation tester that the correct answer 472 ** is obtained even if the branch is omitted */ 473 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 474 475 /* get sign of exponent */ 476 if( *z=='-' ){ 477 esign = -1; 478 z+=incr; 479 }else if( *z=='+' ){ 480 z+=incr; 481 } 482 /* copy digits to exponent */ 483 while( z<zEnd && sqlite3Isdigit(*z) ){ 484 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 485 z+=incr; 486 eValid = 1; 487 } 488 } 489 490 /* skip trailing spaces */ 491 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 492 493 do_atof_calc: 494 /* adjust exponent by d, and update sign */ 495 e = (e*esign) + d; 496 if( e<0 ) { 497 esign = -1; 498 e *= -1; 499 } else { 500 esign = 1; 501 } 502 503 if( s==0 ) { 504 /* In the IEEE 754 standard, zero is signed. */ 505 result = sign<0 ? -(double)0 : (double)0; 506 } else { 507 /* Attempt to reduce exponent. 508 ** 509 ** Branches that are not required for the correct answer but which only 510 ** help to obtain the correct answer faster are marked with special 511 ** comments, as a hint to the mutation tester. 512 */ 513 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 514 if( esign>0 ){ 515 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 516 s *= 10; 517 }else{ 518 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 519 s /= 10; 520 } 521 e--; 522 } 523 524 /* adjust the sign of significand */ 525 s = sign<0 ? -s : s; 526 527 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 528 result = (double)s; 529 }else{ 530 /* attempt to handle extremely small/large numbers better */ 531 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 532 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 533 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 534 if( esign<0 ){ 535 result = s / scale; 536 result /= 1.0e+308; 537 }else{ 538 result = s * scale; 539 result *= 1.0e+308; 540 } 541 }else{ assert( e>=342 ); 542 if( esign<0 ){ 543 result = 0.0*s; 544 }else{ 545 #ifdef INFINITY 546 result = INFINITY*s; 547 #else 548 result = 1e308*1e308*s; /* Infinity */ 549 #endif 550 } 551 } 552 }else{ 553 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 554 if( esign<0 ){ 555 result = s / scale; 556 }else{ 557 result = s * scale; 558 } 559 } 560 } 561 } 562 563 /* store the result */ 564 *pResult = result; 565 566 /* return true if number and no extra non-whitespace chracters after */ 567 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 568 return eType; 569 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 570 return -1; 571 }else{ 572 return 0; 573 } 574 #else 575 return !sqlite3Atoi64(z, pResult, length, enc); 576 #endif /* SQLITE_OMIT_FLOATING_POINT */ 577 } 578 #if defined(_MSC_VER) 579 #pragma warning(default : 4756) 580 #endif 581 582 /* 583 ** Compare the 19-character string zNum against the text representation 584 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 585 ** if zNum is less than, equal to, or greater than the string. 586 ** Note that zNum must contain exactly 19 characters. 587 ** 588 ** Unlike memcmp() this routine is guaranteed to return the difference 589 ** in the values of the last digit if the only difference is in the 590 ** last digit. So, for example, 591 ** 592 ** compare2pow63("9223372036854775800", 1) 593 ** 594 ** will return -8. 595 */ 596 static int compare2pow63(const char *zNum, int incr){ 597 int c = 0; 598 int i; 599 /* 012345678901234567 */ 600 const char *pow63 = "922337203685477580"; 601 for(i=0; c==0 && i<18; i++){ 602 c = (zNum[i*incr]-pow63[i])*10; 603 } 604 if( c==0 ){ 605 c = zNum[18*incr] - '8'; 606 testcase( c==(-1) ); 607 testcase( c==0 ); 608 testcase( c==(+1) ); 609 } 610 return c; 611 } 612 613 /* 614 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 615 ** routine does *not* accept hexadecimal notation. 616 ** 617 ** Returns: 618 ** 619 ** -1 Not even a prefix of the input text looks like an integer 620 ** 0 Successful transformation. Fits in a 64-bit signed integer. 621 ** 1 Excess non-space text after the integer value 622 ** 2 Integer too large for a 64-bit signed integer or is malformed 623 ** 3 Special case of 9223372036854775808 624 ** 625 ** length is the number of bytes in the string (bytes, not characters). 626 ** The string is not necessarily zero-terminated. The encoding is 627 ** given by enc. 628 */ 629 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 630 int incr; 631 u64 u = 0; 632 int neg = 0; /* assume positive */ 633 int i; 634 int c = 0; 635 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 636 int rc; /* Baseline return code */ 637 const char *zStart; 638 const char *zEnd = zNum + length; 639 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 640 if( enc==SQLITE_UTF8 ){ 641 incr = 1; 642 }else{ 643 incr = 2; 644 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 645 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 646 nonNum = i<length; 647 zEnd = &zNum[i^1]; 648 zNum += (enc&1); 649 } 650 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 651 if( zNum<zEnd ){ 652 if( *zNum=='-' ){ 653 neg = 1; 654 zNum+=incr; 655 }else if( *zNum=='+' ){ 656 zNum+=incr; 657 } 658 } 659 zStart = zNum; 660 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 661 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 662 u = u*10 + c - '0'; 663 } 664 testcase( i==18*incr ); 665 testcase( i==19*incr ); 666 testcase( i==20*incr ); 667 if( u>LARGEST_INT64 ){ 668 /* This test and assignment is needed only to suppress UB warnings 669 ** from clang and -fsanitize=undefined. This test and assignment make 670 ** the code a little larger and slower, and no harm comes from omitting 671 ** them, but we must appaise the undefined-behavior pharisees. */ 672 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 673 }else if( neg ){ 674 *pNum = -(i64)u; 675 }else{ 676 *pNum = (i64)u; 677 } 678 rc = 0; 679 if( i==0 && zStart==zNum ){ /* No digits */ 680 rc = -1; 681 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 682 rc = 1; 683 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 684 int jj = i; 685 do{ 686 if( !sqlite3Isspace(zNum[jj]) ){ 687 rc = 1; /* Extra non-space text after the integer */ 688 break; 689 } 690 jj += incr; 691 }while( &zNum[jj]<zEnd ); 692 } 693 if( i<19*incr ){ 694 /* Less than 19 digits, so we know that it fits in 64 bits */ 695 assert( u<=LARGEST_INT64 ); 696 return rc; 697 }else{ 698 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 699 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 700 if( c<0 ){ 701 /* zNum is less than 9223372036854775808 so it fits */ 702 assert( u<=LARGEST_INT64 ); 703 return rc; 704 }else{ 705 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 706 if( c>0 ){ 707 /* zNum is greater than 9223372036854775808 so it overflows */ 708 return 2; 709 }else{ 710 /* zNum is exactly 9223372036854775808. Fits if negative. The 711 ** special case 2 overflow if positive */ 712 assert( u-1==LARGEST_INT64 ); 713 return neg ? rc : 3; 714 } 715 } 716 } 717 } 718 719 /* 720 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 721 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 722 ** whereas sqlite3Atoi64() does not. 723 ** 724 ** Returns: 725 ** 726 ** 0 Successful transformation. Fits in a 64-bit signed integer. 727 ** 1 Excess text after the integer value 728 ** 2 Integer too large for a 64-bit signed integer or is malformed 729 ** 3 Special case of 9223372036854775808 730 */ 731 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 732 #ifndef SQLITE_OMIT_HEX_INTEGER 733 if( z[0]=='0' 734 && (z[1]=='x' || z[1]=='X') 735 ){ 736 u64 u = 0; 737 int i, k; 738 for(i=2; z[i]=='0'; i++){} 739 for(k=i; sqlite3Isxdigit(z[k]); k++){ 740 u = u*16 + sqlite3HexToInt(z[k]); 741 } 742 memcpy(pOut, &u, 8); 743 return (z[k]==0 && k-i<=16) ? 0 : 2; 744 }else 745 #endif /* SQLITE_OMIT_HEX_INTEGER */ 746 { 747 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 748 } 749 } 750 751 /* 752 ** If zNum represents an integer that will fit in 32-bits, then set 753 ** *pValue to that integer and return true. Otherwise return false. 754 ** 755 ** This routine accepts both decimal and hexadecimal notation for integers. 756 ** 757 ** Any non-numeric characters that following zNum are ignored. 758 ** This is different from sqlite3Atoi64() which requires the 759 ** input number to be zero-terminated. 760 */ 761 int sqlite3GetInt32(const char *zNum, int *pValue){ 762 sqlite_int64 v = 0; 763 int i, c; 764 int neg = 0; 765 if( zNum[0]=='-' ){ 766 neg = 1; 767 zNum++; 768 }else if( zNum[0]=='+' ){ 769 zNum++; 770 } 771 #ifndef SQLITE_OMIT_HEX_INTEGER 772 else if( zNum[0]=='0' 773 && (zNum[1]=='x' || zNum[1]=='X') 774 && sqlite3Isxdigit(zNum[2]) 775 ){ 776 u32 u = 0; 777 zNum += 2; 778 while( zNum[0]=='0' ) zNum++; 779 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 780 u = u*16 + sqlite3HexToInt(zNum[i]); 781 } 782 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 783 memcpy(pValue, &u, 4); 784 return 1; 785 }else{ 786 return 0; 787 } 788 } 789 #endif 790 if( !sqlite3Isdigit(zNum[0]) ) return 0; 791 while( zNum[0]=='0' ) zNum++; 792 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 793 v = v*10 + c; 794 } 795 796 /* The longest decimal representation of a 32 bit integer is 10 digits: 797 ** 798 ** 1234567890 799 ** 2^31 -> 2147483648 800 */ 801 testcase( i==10 ); 802 if( i>10 ){ 803 return 0; 804 } 805 testcase( v-neg==2147483647 ); 806 if( v-neg>2147483647 ){ 807 return 0; 808 } 809 if( neg ){ 810 v = -v; 811 } 812 *pValue = (int)v; 813 return 1; 814 } 815 816 /* 817 ** Return a 32-bit integer value extracted from a string. If the 818 ** string is not an integer, just return 0. 819 */ 820 int sqlite3Atoi(const char *z){ 821 int x = 0; 822 if( z ) sqlite3GetInt32(z, &x); 823 return x; 824 } 825 826 /* 827 ** The variable-length integer encoding is as follows: 828 ** 829 ** KEY: 830 ** A = 0xxxxxxx 7 bits of data and one flag bit 831 ** B = 1xxxxxxx 7 bits of data and one flag bit 832 ** C = xxxxxxxx 8 bits of data 833 ** 834 ** 7 bits - A 835 ** 14 bits - BA 836 ** 21 bits - BBA 837 ** 28 bits - BBBA 838 ** 35 bits - BBBBA 839 ** 42 bits - BBBBBA 840 ** 49 bits - BBBBBBA 841 ** 56 bits - BBBBBBBA 842 ** 64 bits - BBBBBBBBC 843 */ 844 845 /* 846 ** Write a 64-bit variable-length integer to memory starting at p[0]. 847 ** The length of data write will be between 1 and 9 bytes. The number 848 ** of bytes written is returned. 849 ** 850 ** A variable-length integer consists of the lower 7 bits of each byte 851 ** for all bytes that have the 8th bit set and one byte with the 8th 852 ** bit clear. Except, if we get to the 9th byte, it stores the full 853 ** 8 bits and is the last byte. 854 */ 855 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 856 int i, j, n; 857 u8 buf[10]; 858 if( v & (((u64)0xff000000)<<32) ){ 859 p[8] = (u8)v; 860 v >>= 8; 861 for(i=7; i>=0; i--){ 862 p[i] = (u8)((v & 0x7f) | 0x80); 863 v >>= 7; 864 } 865 return 9; 866 } 867 n = 0; 868 do{ 869 buf[n++] = (u8)((v & 0x7f) | 0x80); 870 v >>= 7; 871 }while( v!=0 ); 872 buf[0] &= 0x7f; 873 assert( n<=9 ); 874 for(i=0, j=n-1; j>=0; j--, i++){ 875 p[i] = buf[j]; 876 } 877 return n; 878 } 879 int sqlite3PutVarint(unsigned char *p, u64 v){ 880 if( v<=0x7f ){ 881 p[0] = v&0x7f; 882 return 1; 883 } 884 if( v<=0x3fff ){ 885 p[0] = ((v>>7)&0x7f)|0x80; 886 p[1] = v&0x7f; 887 return 2; 888 } 889 return putVarint64(p,v); 890 } 891 892 /* 893 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 894 ** are defined here rather than simply putting the constant expressions 895 ** inline in order to work around bugs in the RVT compiler. 896 ** 897 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 898 ** 899 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 900 */ 901 #define SLOT_2_0 0x001fc07f 902 #define SLOT_4_2_0 0xf01fc07f 903 904 905 /* 906 ** Read a 64-bit variable-length integer from memory starting at p[0]. 907 ** Return the number of bytes read. The value is stored in *v. 908 */ 909 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 910 u32 a,b,s; 911 912 if( ((signed char*)p)[0]>=0 ){ 913 *v = *p; 914 return 1; 915 } 916 if( ((signed char*)p)[1]>=0 ){ 917 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 918 return 2; 919 } 920 921 /* Verify that constants are precomputed correctly */ 922 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 923 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 924 925 a = ((u32)p[0])<<14; 926 b = p[1]; 927 p += 2; 928 a |= *p; 929 /* a: p0<<14 | p2 (unmasked) */ 930 if (!(a&0x80)) 931 { 932 a &= SLOT_2_0; 933 b &= 0x7f; 934 b = b<<7; 935 a |= b; 936 *v = a; 937 return 3; 938 } 939 940 /* CSE1 from below */ 941 a &= SLOT_2_0; 942 p++; 943 b = b<<14; 944 b |= *p; 945 /* b: p1<<14 | p3 (unmasked) */ 946 if (!(b&0x80)) 947 { 948 b &= SLOT_2_0; 949 /* moved CSE1 up */ 950 /* a &= (0x7f<<14)|(0x7f); */ 951 a = a<<7; 952 a |= b; 953 *v = a; 954 return 4; 955 } 956 957 /* a: p0<<14 | p2 (masked) */ 958 /* b: p1<<14 | p3 (unmasked) */ 959 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 960 /* moved CSE1 up */ 961 /* a &= (0x7f<<14)|(0x7f); */ 962 b &= SLOT_2_0; 963 s = a; 964 /* s: p0<<14 | p2 (masked) */ 965 966 p++; 967 a = a<<14; 968 a |= *p; 969 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 970 if (!(a&0x80)) 971 { 972 /* we can skip these cause they were (effectively) done above 973 ** while calculating s */ 974 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 975 /* b &= (0x7f<<14)|(0x7f); */ 976 b = b<<7; 977 a |= b; 978 s = s>>18; 979 *v = ((u64)s)<<32 | a; 980 return 5; 981 } 982 983 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 984 s = s<<7; 985 s |= b; 986 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 987 988 p++; 989 b = b<<14; 990 b |= *p; 991 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 992 if (!(b&0x80)) 993 { 994 /* we can skip this cause it was (effectively) done above in calc'ing s */ 995 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 996 a &= SLOT_2_0; 997 a = a<<7; 998 a |= b; 999 s = s>>18; 1000 *v = ((u64)s)<<32 | a; 1001 return 6; 1002 } 1003 1004 p++; 1005 a = a<<14; 1006 a |= *p; 1007 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1008 if (!(a&0x80)) 1009 { 1010 a &= SLOT_4_2_0; 1011 b &= SLOT_2_0; 1012 b = b<<7; 1013 a |= b; 1014 s = s>>11; 1015 *v = ((u64)s)<<32 | a; 1016 return 7; 1017 } 1018 1019 /* CSE2 from below */ 1020 a &= SLOT_2_0; 1021 p++; 1022 b = b<<14; 1023 b |= *p; 1024 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1025 if (!(b&0x80)) 1026 { 1027 b &= SLOT_4_2_0; 1028 /* moved CSE2 up */ 1029 /* a &= (0x7f<<14)|(0x7f); */ 1030 a = a<<7; 1031 a |= b; 1032 s = s>>4; 1033 *v = ((u64)s)<<32 | a; 1034 return 8; 1035 } 1036 1037 p++; 1038 a = a<<15; 1039 a |= *p; 1040 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1041 1042 /* moved CSE2 up */ 1043 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1044 b &= SLOT_2_0; 1045 b = b<<8; 1046 a |= b; 1047 1048 s = s<<4; 1049 b = p[-4]; 1050 b &= 0x7f; 1051 b = b>>3; 1052 s |= b; 1053 1054 *v = ((u64)s)<<32 | a; 1055 1056 return 9; 1057 } 1058 1059 /* 1060 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1061 ** Return the number of bytes read. The value is stored in *v. 1062 ** 1063 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1064 ** integer, then set *v to 0xffffffff. 1065 ** 1066 ** A MACRO version, getVarint32, is provided which inlines the 1067 ** single-byte case. All code should use the MACRO version as 1068 ** this function assumes the single-byte case has already been handled. 1069 */ 1070 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1071 u32 a,b; 1072 1073 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1074 ** by the getVarin32() macro */ 1075 a = *p; 1076 /* a: p0 (unmasked) */ 1077 #ifndef getVarint32 1078 if (!(a&0x80)) 1079 { 1080 /* Values between 0 and 127 */ 1081 *v = a; 1082 return 1; 1083 } 1084 #endif 1085 1086 /* The 2-byte case */ 1087 p++; 1088 b = *p; 1089 /* b: p1 (unmasked) */ 1090 if (!(b&0x80)) 1091 { 1092 /* Values between 128 and 16383 */ 1093 a &= 0x7f; 1094 a = a<<7; 1095 *v = a | b; 1096 return 2; 1097 } 1098 1099 /* The 3-byte case */ 1100 p++; 1101 a = a<<14; 1102 a |= *p; 1103 /* a: p0<<14 | p2 (unmasked) */ 1104 if (!(a&0x80)) 1105 { 1106 /* Values between 16384 and 2097151 */ 1107 a &= (0x7f<<14)|(0x7f); 1108 b &= 0x7f; 1109 b = b<<7; 1110 *v = a | b; 1111 return 3; 1112 } 1113 1114 /* A 32-bit varint is used to store size information in btrees. 1115 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1116 ** A 3-byte varint is sufficient, for example, to record the size 1117 ** of a 1048569-byte BLOB or string. 1118 ** 1119 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1120 ** rare larger cases can be handled by the slower 64-bit varint 1121 ** routine. 1122 */ 1123 #if 1 1124 { 1125 u64 v64; 1126 u8 n; 1127 1128 p -= 2; 1129 n = sqlite3GetVarint(p, &v64); 1130 assert( n>3 && n<=9 ); 1131 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1132 *v = 0xffffffff; 1133 }else{ 1134 *v = (u32)v64; 1135 } 1136 return n; 1137 } 1138 1139 #else 1140 /* For following code (kept for historical record only) shows an 1141 ** unrolling for the 3- and 4-byte varint cases. This code is 1142 ** slightly faster, but it is also larger and much harder to test. 1143 */ 1144 p++; 1145 b = b<<14; 1146 b |= *p; 1147 /* b: p1<<14 | p3 (unmasked) */ 1148 if (!(b&0x80)) 1149 { 1150 /* Values between 2097152 and 268435455 */ 1151 b &= (0x7f<<14)|(0x7f); 1152 a &= (0x7f<<14)|(0x7f); 1153 a = a<<7; 1154 *v = a | b; 1155 return 4; 1156 } 1157 1158 p++; 1159 a = a<<14; 1160 a |= *p; 1161 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1162 if (!(a&0x80)) 1163 { 1164 /* Values between 268435456 and 34359738367 */ 1165 a &= SLOT_4_2_0; 1166 b &= SLOT_4_2_0; 1167 b = b<<7; 1168 *v = a | b; 1169 return 5; 1170 } 1171 1172 /* We can only reach this point when reading a corrupt database 1173 ** file. In that case we are not in any hurry. Use the (relatively 1174 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1175 ** value. */ 1176 { 1177 u64 v64; 1178 u8 n; 1179 1180 p -= 4; 1181 n = sqlite3GetVarint(p, &v64); 1182 assert( n>5 && n<=9 ); 1183 *v = (u32)v64; 1184 return n; 1185 } 1186 #endif 1187 } 1188 1189 /* 1190 ** Return the number of bytes that will be needed to store the given 1191 ** 64-bit integer. 1192 */ 1193 int sqlite3VarintLen(u64 v){ 1194 int i; 1195 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1196 return i; 1197 } 1198 1199 1200 /* 1201 ** Read or write a four-byte big-endian integer value. 1202 */ 1203 u32 sqlite3Get4byte(const u8 *p){ 1204 #if SQLITE_BYTEORDER==4321 1205 u32 x; 1206 memcpy(&x,p,4); 1207 return x; 1208 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1209 u32 x; 1210 memcpy(&x,p,4); 1211 return __builtin_bswap32(x); 1212 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1213 u32 x; 1214 memcpy(&x,p,4); 1215 return _byteswap_ulong(x); 1216 #else 1217 testcase( p[0]&0x80 ); 1218 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1219 #endif 1220 } 1221 void sqlite3Put4byte(unsigned char *p, u32 v){ 1222 #if SQLITE_BYTEORDER==4321 1223 memcpy(p,&v,4); 1224 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1225 u32 x = __builtin_bswap32(v); 1226 memcpy(p,&x,4); 1227 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1228 u32 x = _byteswap_ulong(v); 1229 memcpy(p,&x,4); 1230 #else 1231 p[0] = (u8)(v>>24); 1232 p[1] = (u8)(v>>16); 1233 p[2] = (u8)(v>>8); 1234 p[3] = (u8)v; 1235 #endif 1236 } 1237 1238 1239 1240 /* 1241 ** Translate a single byte of Hex into an integer. 1242 ** This routine only works if h really is a valid hexadecimal 1243 ** character: 0..9a..fA..F 1244 */ 1245 u8 sqlite3HexToInt(int h){ 1246 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1247 #ifdef SQLITE_ASCII 1248 h += 9*(1&(h>>6)); 1249 #endif 1250 #ifdef SQLITE_EBCDIC 1251 h += 9*(1&~(h>>4)); 1252 #endif 1253 return (u8)(h & 0xf); 1254 } 1255 1256 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1257 /* 1258 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1259 ** value. Return a pointer to its binary value. Space to hold the 1260 ** binary value has been obtained from malloc and must be freed by 1261 ** the calling routine. 1262 */ 1263 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1264 char *zBlob; 1265 int i; 1266 1267 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1268 n--; 1269 if( zBlob ){ 1270 for(i=0; i<n; i+=2){ 1271 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1272 } 1273 zBlob[i/2] = 0; 1274 } 1275 return zBlob; 1276 } 1277 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1278 1279 /* 1280 ** Log an error that is an API call on a connection pointer that should 1281 ** not have been used. The "type" of connection pointer is given as the 1282 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1283 */ 1284 static void logBadConnection(const char *zType){ 1285 sqlite3_log(SQLITE_MISUSE, 1286 "API call with %s database connection pointer", 1287 zType 1288 ); 1289 } 1290 1291 /* 1292 ** Check to make sure we have a valid db pointer. This test is not 1293 ** foolproof but it does provide some measure of protection against 1294 ** misuse of the interface such as passing in db pointers that are 1295 ** NULL or which have been previously closed. If this routine returns 1296 ** 1 it means that the db pointer is valid and 0 if it should not be 1297 ** dereferenced for any reason. The calling function should invoke 1298 ** SQLITE_MISUSE immediately. 1299 ** 1300 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1301 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1302 ** open properly and is not fit for general use but which can be 1303 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1304 */ 1305 int sqlite3SafetyCheckOk(sqlite3 *db){ 1306 u32 magic; 1307 if( db==0 ){ 1308 logBadConnection("NULL"); 1309 return 0; 1310 } 1311 magic = db->magic; 1312 if( magic!=SQLITE_MAGIC_OPEN ){ 1313 if( sqlite3SafetyCheckSickOrOk(db) ){ 1314 testcase( sqlite3GlobalConfig.xLog!=0 ); 1315 logBadConnection("unopened"); 1316 } 1317 return 0; 1318 }else{ 1319 return 1; 1320 } 1321 } 1322 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1323 u32 magic; 1324 magic = db->magic; 1325 if( magic!=SQLITE_MAGIC_SICK && 1326 magic!=SQLITE_MAGIC_OPEN && 1327 magic!=SQLITE_MAGIC_BUSY ){ 1328 testcase( sqlite3GlobalConfig.xLog!=0 ); 1329 logBadConnection("invalid"); 1330 return 0; 1331 }else{ 1332 return 1; 1333 } 1334 } 1335 1336 /* 1337 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1338 ** the other 64-bit signed integer at *pA and store the result in *pA. 1339 ** Return 0 on success. Or if the operation would have resulted in an 1340 ** overflow, leave *pA unchanged and return 1. 1341 */ 1342 int sqlite3AddInt64(i64 *pA, i64 iB){ 1343 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1344 return __builtin_add_overflow(*pA, iB, pA); 1345 #else 1346 i64 iA = *pA; 1347 testcase( iA==0 ); testcase( iA==1 ); 1348 testcase( iB==-1 ); testcase( iB==0 ); 1349 if( iB>=0 ){ 1350 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1351 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1352 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1353 }else{ 1354 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1355 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1356 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1357 } 1358 *pA += iB; 1359 return 0; 1360 #endif 1361 } 1362 int sqlite3SubInt64(i64 *pA, i64 iB){ 1363 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1364 return __builtin_sub_overflow(*pA, iB, pA); 1365 #else 1366 testcase( iB==SMALLEST_INT64+1 ); 1367 if( iB==SMALLEST_INT64 ){ 1368 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1369 if( (*pA)>=0 ) return 1; 1370 *pA -= iB; 1371 return 0; 1372 }else{ 1373 return sqlite3AddInt64(pA, -iB); 1374 } 1375 #endif 1376 } 1377 int sqlite3MulInt64(i64 *pA, i64 iB){ 1378 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1379 return __builtin_mul_overflow(*pA, iB, pA); 1380 #else 1381 i64 iA = *pA; 1382 if( iB>0 ){ 1383 if( iA>LARGEST_INT64/iB ) return 1; 1384 if( iA<SMALLEST_INT64/iB ) return 1; 1385 }else if( iB<0 ){ 1386 if( iA>0 ){ 1387 if( iB<SMALLEST_INT64/iA ) return 1; 1388 }else if( iA<0 ){ 1389 if( iB==SMALLEST_INT64 ) return 1; 1390 if( iA==SMALLEST_INT64 ) return 1; 1391 if( -iA>LARGEST_INT64/-iB ) return 1; 1392 } 1393 } 1394 *pA = iA*iB; 1395 return 0; 1396 #endif 1397 } 1398 1399 /* 1400 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1401 ** if the integer has a value of -2147483648, return +2147483647 1402 */ 1403 int sqlite3AbsInt32(int x){ 1404 if( x>=0 ) return x; 1405 if( x==(int)0x80000000 ) return 0x7fffffff; 1406 return -x; 1407 } 1408 1409 #ifdef SQLITE_ENABLE_8_3_NAMES 1410 /* 1411 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1412 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1413 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1414 ** three characters, then shorten the suffix on z[] to be the last three 1415 ** characters of the original suffix. 1416 ** 1417 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1418 ** do the suffix shortening regardless of URI parameter. 1419 ** 1420 ** Examples: 1421 ** 1422 ** test.db-journal => test.nal 1423 ** test.db-wal => test.wal 1424 ** test.db-shm => test.shm 1425 ** test.db-mj7f3319fa => test.9fa 1426 */ 1427 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1428 #if SQLITE_ENABLE_8_3_NAMES<2 1429 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1430 #endif 1431 { 1432 int i, sz; 1433 sz = sqlite3Strlen30(z); 1434 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1435 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1436 } 1437 } 1438 #endif 1439 1440 /* 1441 ** Find (an approximate) sum of two LogEst values. This computation is 1442 ** not a simple "+" operator because LogEst is stored as a logarithmic 1443 ** value. 1444 ** 1445 */ 1446 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1447 static const unsigned char x[] = { 1448 10, 10, /* 0,1 */ 1449 9, 9, /* 2,3 */ 1450 8, 8, /* 4,5 */ 1451 7, 7, 7, /* 6,7,8 */ 1452 6, 6, 6, /* 9,10,11 */ 1453 5, 5, 5, /* 12-14 */ 1454 4, 4, 4, 4, /* 15-18 */ 1455 3, 3, 3, 3, 3, 3, /* 19-24 */ 1456 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1457 }; 1458 if( a>=b ){ 1459 if( a>b+49 ) return a; 1460 if( a>b+31 ) return a+1; 1461 return a+x[a-b]; 1462 }else{ 1463 if( b>a+49 ) return b; 1464 if( b>a+31 ) return b+1; 1465 return b+x[b-a]; 1466 } 1467 } 1468 1469 /* 1470 ** Convert an integer into a LogEst. In other words, compute an 1471 ** approximation for 10*log2(x). 1472 */ 1473 LogEst sqlite3LogEst(u64 x){ 1474 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1475 LogEst y = 40; 1476 if( x<8 ){ 1477 if( x<2 ) return 0; 1478 while( x<8 ){ y -= 10; x <<= 1; } 1479 }else{ 1480 #if GCC_VERSION>=5004000 1481 int i = 60 - __builtin_clzll(x); 1482 y += i*10; 1483 x >>= i; 1484 #else 1485 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1486 while( x>15 ){ y += 10; x >>= 1; } 1487 #endif 1488 } 1489 return a[x&7] + y - 10; 1490 } 1491 1492 #ifndef SQLITE_OMIT_VIRTUALTABLE 1493 /* 1494 ** Convert a double into a LogEst 1495 ** In other words, compute an approximation for 10*log2(x). 1496 */ 1497 LogEst sqlite3LogEstFromDouble(double x){ 1498 u64 a; 1499 LogEst e; 1500 assert( sizeof(x)==8 && sizeof(a)==8 ); 1501 if( x<=1 ) return 0; 1502 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1503 memcpy(&a, &x, 8); 1504 e = (a>>52) - 1022; 1505 return e*10; 1506 } 1507 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1508 1509 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1510 defined(SQLITE_ENABLE_STAT4) || \ 1511 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1512 /* 1513 ** Convert a LogEst into an integer. 1514 ** 1515 ** Note that this routine is only used when one or more of various 1516 ** non-standard compile-time options is enabled. 1517 */ 1518 u64 sqlite3LogEstToInt(LogEst x){ 1519 u64 n; 1520 n = x%10; 1521 x /= 10; 1522 if( n>=5 ) n -= 2; 1523 else if( n>=1 ) n -= 1; 1524 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1525 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1526 if( x>60 ) return (u64)LARGEST_INT64; 1527 #else 1528 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input 1529 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1530 assert( x<=60 ); 1531 #endif 1532 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1533 } 1534 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1535 1536 /* 1537 ** Add a new name/number pair to a VList. This might require that the 1538 ** VList object be reallocated, so return the new VList. If an OOM 1539 ** error occurs, the original VList returned and the 1540 ** db->mallocFailed flag is set. 1541 ** 1542 ** A VList is really just an array of integers. To destroy a VList, 1543 ** simply pass it to sqlite3DbFree(). 1544 ** 1545 ** The first integer is the number of integers allocated for the whole 1546 ** VList. The second integer is the number of integers actually used. 1547 ** Each name/number pair is encoded by subsequent groups of 3 or more 1548 ** integers. 1549 ** 1550 ** Each name/number pair starts with two integers which are the numeric 1551 ** value for the pair and the size of the name/number pair, respectively. 1552 ** The text name overlays one or more following integers. The text name 1553 ** is always zero-terminated. 1554 ** 1555 ** Conceptually: 1556 ** 1557 ** struct VList { 1558 ** int nAlloc; // Number of allocated slots 1559 ** int nUsed; // Number of used slots 1560 ** struct VListEntry { 1561 ** int iValue; // Value for this entry 1562 ** int nSlot; // Slots used by this entry 1563 ** // ... variable name goes here 1564 ** } a[0]; 1565 ** } 1566 ** 1567 ** During code generation, pointers to the variable names within the 1568 ** VList are taken. When that happens, nAlloc is set to zero as an 1569 ** indication that the VList may never again be enlarged, since the 1570 ** accompanying realloc() would invalidate the pointers. 1571 */ 1572 VList *sqlite3VListAdd( 1573 sqlite3 *db, /* The database connection used for malloc() */ 1574 VList *pIn, /* The input VList. Might be NULL */ 1575 const char *zName, /* Name of symbol to add */ 1576 int nName, /* Bytes of text in zName */ 1577 int iVal /* Value to associate with zName */ 1578 ){ 1579 int nInt; /* number of sizeof(int) objects needed for zName */ 1580 char *z; /* Pointer to where zName will be stored */ 1581 int i; /* Index in pIn[] where zName is stored */ 1582 1583 nInt = nName/4 + 3; 1584 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1585 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1586 /* Enlarge the allocation */ 1587 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1588 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1589 if( pOut==0 ) return pIn; 1590 if( pIn==0 ) pOut[1] = 2; 1591 pIn = pOut; 1592 pIn[0] = nAlloc; 1593 } 1594 i = pIn[1]; 1595 pIn[i] = iVal; 1596 pIn[i+1] = nInt; 1597 z = (char*)&pIn[i+2]; 1598 pIn[1] = i+nInt; 1599 assert( pIn[1]<=pIn[0] ); 1600 memcpy(z, zName, nName); 1601 z[nName] = 0; 1602 return pIn; 1603 } 1604 1605 /* 1606 ** Return a pointer to the name of a variable in the given VList that 1607 ** has the value iVal. Or return a NULL if there is no such variable in 1608 ** the list 1609 */ 1610 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1611 int i, mx; 1612 if( pIn==0 ) return 0; 1613 mx = pIn[1]; 1614 i = 2; 1615 do{ 1616 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1617 i += pIn[i+1]; 1618 }while( i<mx ); 1619 return 0; 1620 } 1621 1622 /* 1623 ** Return the number of the variable named zName, if it is in VList. 1624 ** or return 0 if there is no such variable. 1625 */ 1626 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1627 int i, mx; 1628 if( pIn==0 ) return 0; 1629 mx = pIn[1]; 1630 i = 2; 1631 do{ 1632 const char *z = (const char*)&pIn[i+2]; 1633 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1634 i += pIn[i+1]; 1635 }while( i<mx ); 1636 return 0; 1637 } 1638