xref: /sqlite-3.40.0/src/util.c (revision e99cb2da)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #include <math.h>
21 
22 /*
23 ** Routine needed to support the testcase() macro.
24 */
25 #ifdef SQLITE_COVERAGE_TEST
26 void sqlite3Coverage(int x){
27   static unsigned dummy = 0;
28   dummy += (unsigned)x;
29 }
30 #endif
31 
32 /*
33 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
34 ** or to bypass normal error detection during testing in order to let
35 ** execute proceed futher downstream.
36 **
37 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
38 ** sqlite3FaultSim() function only returns non-zero during testing.
39 **
40 ** During testing, if the test harness has set a fault-sim callback using
41 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
42 ** each call to sqlite3FaultSim() is relayed to that application-supplied
43 ** callback and the integer return value form the application-supplied
44 ** callback is returned by sqlite3FaultSim().
45 **
46 ** The integer argument to sqlite3FaultSim() is a code to identify which
47 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
48 ** should have a unique code.  To prevent legacy testing applications from
49 ** breaking, the codes should not be changed or reused.
50 */
51 #ifndef SQLITE_UNTESTABLE
52 int sqlite3FaultSim(int iTest){
53   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
54   return xCallback ? xCallback(iTest) : SQLITE_OK;
55 }
56 #endif
57 
58 #ifndef SQLITE_OMIT_FLOATING_POINT
59 /*
60 ** Return true if the floating point value is Not a Number (NaN).
61 */
62 int sqlite3IsNaN(double x){
63   u64 y;
64   memcpy(&y,&x,sizeof(y));
65   return IsNaN(y);
66 }
67 #endif /* SQLITE_OMIT_FLOATING_POINT */
68 
69 /*
70 ** Compute a string length that is limited to what can be stored in
71 ** lower 30 bits of a 32-bit signed integer.
72 **
73 ** The value returned will never be negative.  Nor will it ever be greater
74 ** than the actual length of the string.  For very long strings (greater
75 ** than 1GiB) the value returned might be less than the true string length.
76 */
77 int sqlite3Strlen30(const char *z){
78   if( z==0 ) return 0;
79   return 0x3fffffff & (int)strlen(z);
80 }
81 
82 /*
83 ** Return the declared type of a column.  Or return zDflt if the column
84 ** has no declared type.
85 **
86 ** The column type is an extra string stored after the zero-terminator on
87 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
88 */
89 char *sqlite3ColumnType(Column *pCol, char *zDflt){
90   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
91   return pCol->zName + strlen(pCol->zName) + 1;
92 }
93 
94 /*
95 ** Helper function for sqlite3Error() - called rarely.  Broken out into
96 ** a separate routine to avoid unnecessary register saves on entry to
97 ** sqlite3Error().
98 */
99 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
100   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
101   sqlite3SystemError(db, err_code);
102 }
103 
104 /*
105 ** Set the current error code to err_code and clear any prior error message.
106 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
107 ** that would be appropriate.
108 */
109 void sqlite3Error(sqlite3 *db, int err_code){
110   assert( db!=0 );
111   db->errCode = err_code;
112   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
113 }
114 
115 /*
116 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
117 ** to do based on the SQLite error code in rc.
118 */
119 void sqlite3SystemError(sqlite3 *db, int rc){
120   if( rc==SQLITE_IOERR_NOMEM ) return;
121   rc &= 0xff;
122   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
123     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
124   }
125 }
126 
127 /*
128 ** Set the most recent error code and error string for the sqlite
129 ** handle "db". The error code is set to "err_code".
130 **
131 ** If it is not NULL, string zFormat specifies the format of the
132 ** error string in the style of the printf functions: The following
133 ** format characters are allowed:
134 **
135 **      %s      Insert a string
136 **      %z      A string that should be freed after use
137 **      %d      Insert an integer
138 **      %T      Insert a token
139 **      %S      Insert the first element of a SrcList
140 **
141 ** zFormat and any string tokens that follow it are assumed to be
142 ** encoded in UTF-8.
143 **
144 ** To clear the most recent error for sqlite handle "db", sqlite3Error
145 ** should be called with err_code set to SQLITE_OK and zFormat set
146 ** to NULL.
147 */
148 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
149   assert( db!=0 );
150   db->errCode = err_code;
151   sqlite3SystemError(db, err_code);
152   if( zFormat==0 ){
153     sqlite3Error(db, err_code);
154   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
155     char *z;
156     va_list ap;
157     va_start(ap, zFormat);
158     z = sqlite3VMPrintf(db, zFormat, ap);
159     va_end(ap);
160     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
161   }
162 }
163 
164 /*
165 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
166 ** The following formatting characters are allowed:
167 **
168 **      %s      Insert a string
169 **      %z      A string that should be freed after use
170 **      %d      Insert an integer
171 **      %T      Insert a token
172 **      %S      Insert the first element of a SrcList
173 **
174 ** This function should be used to report any error that occurs while
175 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
176 ** last thing the sqlite3_prepare() function does is copy the error
177 ** stored by this function into the database handle using sqlite3Error().
178 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
179 ** during statement execution (sqlite3_step() etc.).
180 */
181 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
182   char *zMsg;
183   va_list ap;
184   sqlite3 *db = pParse->db;
185   va_start(ap, zFormat);
186   zMsg = sqlite3VMPrintf(db, zFormat, ap);
187   va_end(ap);
188   if( db->suppressErr ){
189     sqlite3DbFree(db, zMsg);
190   }else{
191     pParse->nErr++;
192     sqlite3DbFree(db, pParse->zErrMsg);
193     pParse->zErrMsg = zMsg;
194     pParse->rc = SQLITE_ERROR;
195     pParse->pWith = 0;
196   }
197 }
198 
199 /*
200 ** If database connection db is currently parsing SQL, then transfer
201 ** error code errCode to that parser if the parser has not already
202 ** encountered some other kind of error.
203 */
204 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
205   Parse *pParse;
206   if( db==0 || (pParse = db->pParse)==0 ) return errCode;
207   pParse->rc = errCode;
208   pParse->nErr++;
209   return errCode;
210 }
211 
212 /*
213 ** Convert an SQL-style quoted string into a normal string by removing
214 ** the quote characters.  The conversion is done in-place.  If the
215 ** input does not begin with a quote character, then this routine
216 ** is a no-op.
217 **
218 ** The input string must be zero-terminated.  A new zero-terminator
219 ** is added to the dequoted string.
220 **
221 ** The return value is -1 if no dequoting occurs or the length of the
222 ** dequoted string, exclusive of the zero terminator, if dequoting does
223 ** occur.
224 **
225 ** 2002-02-14: This routine is extended to remove MS-Access style
226 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
227 ** "a-b-c".
228 */
229 void sqlite3Dequote(char *z){
230   char quote;
231   int i, j;
232   if( z==0 ) return;
233   quote = z[0];
234   if( !sqlite3Isquote(quote) ) return;
235   if( quote=='[' ) quote = ']';
236   for(i=1, j=0;; i++){
237     assert( z[i] );
238     if( z[i]==quote ){
239       if( z[i+1]==quote ){
240         z[j++] = quote;
241         i++;
242       }else{
243         break;
244       }
245     }else{
246       z[j++] = z[i];
247     }
248   }
249   z[j] = 0;
250 }
251 void sqlite3DequoteExpr(Expr *p){
252   assert( sqlite3Isquote(p->u.zToken[0]) );
253   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
254   sqlite3Dequote(p->u.zToken);
255 }
256 
257 /*
258 ** Generate a Token object from a string
259 */
260 void sqlite3TokenInit(Token *p, char *z){
261   p->z = z;
262   p->n = sqlite3Strlen30(z);
263 }
264 
265 /* Convenient short-hand */
266 #define UpperToLower sqlite3UpperToLower
267 
268 /*
269 ** Some systems have stricmp().  Others have strcasecmp().  Because
270 ** there is no consistency, we will define our own.
271 **
272 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
273 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
274 ** the contents of two buffers containing UTF-8 strings in a
275 ** case-independent fashion, using the same definition of "case
276 ** independence" that SQLite uses internally when comparing identifiers.
277 */
278 int sqlite3_stricmp(const char *zLeft, const char *zRight){
279   if( zLeft==0 ){
280     return zRight ? -1 : 0;
281   }else if( zRight==0 ){
282     return 1;
283   }
284   return sqlite3StrICmp(zLeft, zRight);
285 }
286 int sqlite3StrICmp(const char *zLeft, const char *zRight){
287   unsigned char *a, *b;
288   int c, x;
289   a = (unsigned char *)zLeft;
290   b = (unsigned char *)zRight;
291   for(;;){
292     c = *a;
293     x = *b;
294     if( c==x ){
295       if( c==0 ) break;
296     }else{
297       c = (int)UpperToLower[c] - (int)UpperToLower[x];
298       if( c ) break;
299     }
300     a++;
301     b++;
302   }
303   return c;
304 }
305 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
306   register unsigned char *a, *b;
307   if( zLeft==0 ){
308     return zRight ? -1 : 0;
309   }else if( zRight==0 ){
310     return 1;
311   }
312   a = (unsigned char *)zLeft;
313   b = (unsigned char *)zRight;
314   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
315   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
316 }
317 
318 /*
319 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
320 ** E==2 results in 100.  E==50 results in 1.0e50.
321 **
322 ** This routine only works for values of E between 1 and 341.
323 */
324 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
325 #if defined(_MSC_VER)
326   static const LONGDOUBLE_TYPE x[] = {
327     1.0e+001L,
328     1.0e+002L,
329     1.0e+004L,
330     1.0e+008L,
331     1.0e+016L,
332     1.0e+032L,
333     1.0e+064L,
334     1.0e+128L,
335     1.0e+256L
336   };
337   LONGDOUBLE_TYPE r = 1.0;
338   int i;
339   assert( E>=0 && E<=307 );
340   for(i=0; E!=0; i++, E >>=1){
341     if( E & 1 ) r *= x[i];
342   }
343   return r;
344 #else
345   LONGDOUBLE_TYPE x = 10.0;
346   LONGDOUBLE_TYPE r = 1.0;
347   while(1){
348     if( E & 1 ) r *= x;
349     E >>= 1;
350     if( E==0 ) break;
351     x *= x;
352   }
353   return r;
354 #endif
355 }
356 
357 /*
358 ** The string z[] is an text representation of a real number.
359 ** Convert this string to a double and write it into *pResult.
360 **
361 ** The string z[] is length bytes in length (bytes, not characters) and
362 ** uses the encoding enc.  The string is not necessarily zero-terminated.
363 **
364 ** Return TRUE if the result is a valid real number (or integer) and FALSE
365 ** if the string is empty or contains extraneous text.  More specifically
366 ** return
367 **      1          =>  The input string is a pure integer
368 **      2 or more  =>  The input has a decimal point or eNNN clause
369 **      0 or less  =>  The input string is not a valid number
370 **     -1          =>  Not a valid number, but has a valid prefix which
371 **                     includes a decimal point and/or an eNNN clause
372 **
373 ** Valid numbers are in one of these formats:
374 **
375 **    [+-]digits[E[+-]digits]
376 **    [+-]digits.[digits][E[+-]digits]
377 **    [+-].digits[E[+-]digits]
378 **
379 ** Leading and trailing whitespace is ignored for the purpose of determining
380 ** validity.
381 **
382 ** If some prefix of the input string is a valid number, this routine
383 ** returns FALSE but it still converts the prefix and writes the result
384 ** into *pResult.
385 */
386 #if defined(_MSC_VER)
387 #pragma warning(disable : 4756)
388 #endif
389 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
390 #ifndef SQLITE_OMIT_FLOATING_POINT
391   int incr;
392   const char *zEnd;
393   /* sign * significand * (10 ^ (esign * exponent)) */
394   int sign = 1;    /* sign of significand */
395   i64 s = 0;       /* significand */
396   int d = 0;       /* adjust exponent for shifting decimal point */
397   int esign = 1;   /* sign of exponent */
398   int e = 0;       /* exponent */
399   int eValid = 1;  /* True exponent is either not used or is well-formed */
400   double result;
401   int nDigit = 0;  /* Number of digits processed */
402   int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
403 
404   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
405   *pResult = 0.0;   /* Default return value, in case of an error */
406   if( length==0 ) return 0;
407 
408   if( enc==SQLITE_UTF8 ){
409     incr = 1;
410     zEnd = z + length;
411   }else{
412     int i;
413     incr = 2;
414     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
415     testcase( enc==SQLITE_UTF16LE );
416     testcase( enc==SQLITE_UTF16BE );
417     for(i=3-enc; i<length && z[i]==0; i+=2){}
418     if( i<length ) eType = -100;
419     zEnd = &z[i^1];
420     z += (enc&1);
421   }
422 
423   /* skip leading spaces */
424   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
425   if( z>=zEnd ) return 0;
426 
427   /* get sign of significand */
428   if( *z=='-' ){
429     sign = -1;
430     z+=incr;
431   }else if( *z=='+' ){
432     z+=incr;
433   }
434 
435   /* copy max significant digits to significand */
436   while( z<zEnd && sqlite3Isdigit(*z) ){
437     s = s*10 + (*z - '0');
438     z+=incr; nDigit++;
439     if( s>=((LARGEST_INT64-9)/10) ){
440       /* skip non-significant significand digits
441       ** (increase exponent by d to shift decimal left) */
442       while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
443     }
444   }
445   if( z>=zEnd ) goto do_atof_calc;
446 
447   /* if decimal point is present */
448   if( *z=='.' ){
449     z+=incr;
450     eType++;
451     /* copy digits from after decimal to significand
452     ** (decrease exponent by d to shift decimal right) */
453     while( z<zEnd && sqlite3Isdigit(*z) ){
454       if( s<((LARGEST_INT64-9)/10) ){
455         s = s*10 + (*z - '0');
456         d--;
457         nDigit++;
458       }
459       z+=incr;
460     }
461   }
462   if( z>=zEnd ) goto do_atof_calc;
463 
464   /* if exponent is present */
465   if( *z=='e' || *z=='E' ){
466     z+=incr;
467     eValid = 0;
468     eType++;
469 
470     /* This branch is needed to avoid a (harmless) buffer overread.  The
471     ** special comment alerts the mutation tester that the correct answer
472     ** is obtained even if the branch is omitted */
473     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
474 
475     /* get sign of exponent */
476     if( *z=='-' ){
477       esign = -1;
478       z+=incr;
479     }else if( *z=='+' ){
480       z+=incr;
481     }
482     /* copy digits to exponent */
483     while( z<zEnd && sqlite3Isdigit(*z) ){
484       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
485       z+=incr;
486       eValid = 1;
487     }
488   }
489 
490   /* skip trailing spaces */
491   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
492 
493 do_atof_calc:
494   /* adjust exponent by d, and update sign */
495   e = (e*esign) + d;
496   if( e<0 ) {
497     esign = -1;
498     e *= -1;
499   } else {
500     esign = 1;
501   }
502 
503   if( s==0 ) {
504     /* In the IEEE 754 standard, zero is signed. */
505     result = sign<0 ? -(double)0 : (double)0;
506   } else {
507     /* Attempt to reduce exponent.
508     **
509     ** Branches that are not required for the correct answer but which only
510     ** help to obtain the correct answer faster are marked with special
511     ** comments, as a hint to the mutation tester.
512     */
513     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
514       if( esign>0 ){
515         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
516         s *= 10;
517       }else{
518         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
519         s /= 10;
520       }
521       e--;
522     }
523 
524     /* adjust the sign of significand */
525     s = sign<0 ? -s : s;
526 
527     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
528       result = (double)s;
529     }else{
530       /* attempt to handle extremely small/large numbers better */
531       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
532         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
533           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
534           if( esign<0 ){
535             result = s / scale;
536             result /= 1.0e+308;
537           }else{
538             result = s * scale;
539             result *= 1.0e+308;
540           }
541         }else{ assert( e>=342 );
542           if( esign<0 ){
543             result = 0.0*s;
544           }else{
545 #ifdef INFINITY
546             result = INFINITY*s;
547 #else
548             result = 1e308*1e308*s;  /* Infinity */
549 #endif
550           }
551         }
552       }else{
553         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
554         if( esign<0 ){
555           result = s / scale;
556         }else{
557           result = s * scale;
558         }
559       }
560     }
561   }
562 
563   /* store the result */
564   *pResult = result;
565 
566   /* return true if number and no extra non-whitespace chracters after */
567   if( z==zEnd && nDigit>0 && eValid && eType>0 ){
568     return eType;
569   }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
570     return -1;
571   }else{
572     return 0;
573   }
574 #else
575   return !sqlite3Atoi64(z, pResult, length, enc);
576 #endif /* SQLITE_OMIT_FLOATING_POINT */
577 }
578 #if defined(_MSC_VER)
579 #pragma warning(default : 4756)
580 #endif
581 
582 /*
583 ** Compare the 19-character string zNum against the text representation
584 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
585 ** if zNum is less than, equal to, or greater than the string.
586 ** Note that zNum must contain exactly 19 characters.
587 **
588 ** Unlike memcmp() this routine is guaranteed to return the difference
589 ** in the values of the last digit if the only difference is in the
590 ** last digit.  So, for example,
591 **
592 **      compare2pow63("9223372036854775800", 1)
593 **
594 ** will return -8.
595 */
596 static int compare2pow63(const char *zNum, int incr){
597   int c = 0;
598   int i;
599                     /* 012345678901234567 */
600   const char *pow63 = "922337203685477580";
601   for(i=0; c==0 && i<18; i++){
602     c = (zNum[i*incr]-pow63[i])*10;
603   }
604   if( c==0 ){
605     c = zNum[18*incr] - '8';
606     testcase( c==(-1) );
607     testcase( c==0 );
608     testcase( c==(+1) );
609   }
610   return c;
611 }
612 
613 /*
614 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
615 ** routine does *not* accept hexadecimal notation.
616 **
617 ** Returns:
618 **
619 **    -1    Not even a prefix of the input text looks like an integer
620 **     0    Successful transformation.  Fits in a 64-bit signed integer.
621 **     1    Excess non-space text after the integer value
622 **     2    Integer too large for a 64-bit signed integer or is malformed
623 **     3    Special case of 9223372036854775808
624 **
625 ** length is the number of bytes in the string (bytes, not characters).
626 ** The string is not necessarily zero-terminated.  The encoding is
627 ** given by enc.
628 */
629 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
630   int incr;
631   u64 u = 0;
632   int neg = 0; /* assume positive */
633   int i;
634   int c = 0;
635   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
636   int rc;          /* Baseline return code */
637   const char *zStart;
638   const char *zEnd = zNum + length;
639   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
640   if( enc==SQLITE_UTF8 ){
641     incr = 1;
642   }else{
643     incr = 2;
644     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
645     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
646     nonNum = i<length;
647     zEnd = &zNum[i^1];
648     zNum += (enc&1);
649   }
650   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
651   if( zNum<zEnd ){
652     if( *zNum=='-' ){
653       neg = 1;
654       zNum+=incr;
655     }else if( *zNum=='+' ){
656       zNum+=incr;
657     }
658   }
659   zStart = zNum;
660   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
661   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
662     u = u*10 + c - '0';
663   }
664   testcase( i==18*incr );
665   testcase( i==19*incr );
666   testcase( i==20*incr );
667   if( u>LARGEST_INT64 ){
668     /* This test and assignment is needed only to suppress UB warnings
669     ** from clang and -fsanitize=undefined.  This test and assignment make
670     ** the code a little larger and slower, and no harm comes from omitting
671     ** them, but we must appaise the undefined-behavior pharisees. */
672     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
673   }else if( neg ){
674     *pNum = -(i64)u;
675   }else{
676     *pNum = (i64)u;
677   }
678   rc = 0;
679   if( i==0 && zStart==zNum ){    /* No digits */
680     rc = -1;
681   }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
682     rc = 1;
683   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
684     int jj = i;
685     do{
686       if( !sqlite3Isspace(zNum[jj]) ){
687         rc = 1;          /* Extra non-space text after the integer */
688         break;
689       }
690       jj += incr;
691     }while( &zNum[jj]<zEnd );
692   }
693   if( i<19*incr ){
694     /* Less than 19 digits, so we know that it fits in 64 bits */
695     assert( u<=LARGEST_INT64 );
696     return rc;
697   }else{
698     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
699     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
700     if( c<0 ){
701       /* zNum is less than 9223372036854775808 so it fits */
702       assert( u<=LARGEST_INT64 );
703       return rc;
704     }else{
705       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
706       if( c>0 ){
707         /* zNum is greater than 9223372036854775808 so it overflows */
708         return 2;
709       }else{
710         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
711         ** special case 2 overflow if positive */
712         assert( u-1==LARGEST_INT64 );
713         return neg ? rc : 3;
714       }
715     }
716   }
717 }
718 
719 /*
720 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
721 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
722 ** whereas sqlite3Atoi64() does not.
723 **
724 ** Returns:
725 **
726 **     0    Successful transformation.  Fits in a 64-bit signed integer.
727 **     1    Excess text after the integer value
728 **     2    Integer too large for a 64-bit signed integer or is malformed
729 **     3    Special case of 9223372036854775808
730 */
731 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
732 #ifndef SQLITE_OMIT_HEX_INTEGER
733   if( z[0]=='0'
734    && (z[1]=='x' || z[1]=='X')
735   ){
736     u64 u = 0;
737     int i, k;
738     for(i=2; z[i]=='0'; i++){}
739     for(k=i; sqlite3Isxdigit(z[k]); k++){
740       u = u*16 + sqlite3HexToInt(z[k]);
741     }
742     memcpy(pOut, &u, 8);
743     return (z[k]==0 && k-i<=16) ? 0 : 2;
744   }else
745 #endif /* SQLITE_OMIT_HEX_INTEGER */
746   {
747     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
748   }
749 }
750 
751 /*
752 ** If zNum represents an integer that will fit in 32-bits, then set
753 ** *pValue to that integer and return true.  Otherwise return false.
754 **
755 ** This routine accepts both decimal and hexadecimal notation for integers.
756 **
757 ** Any non-numeric characters that following zNum are ignored.
758 ** This is different from sqlite3Atoi64() which requires the
759 ** input number to be zero-terminated.
760 */
761 int sqlite3GetInt32(const char *zNum, int *pValue){
762   sqlite_int64 v = 0;
763   int i, c;
764   int neg = 0;
765   if( zNum[0]=='-' ){
766     neg = 1;
767     zNum++;
768   }else if( zNum[0]=='+' ){
769     zNum++;
770   }
771 #ifndef SQLITE_OMIT_HEX_INTEGER
772   else if( zNum[0]=='0'
773         && (zNum[1]=='x' || zNum[1]=='X')
774         && sqlite3Isxdigit(zNum[2])
775   ){
776     u32 u = 0;
777     zNum += 2;
778     while( zNum[0]=='0' ) zNum++;
779     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
780       u = u*16 + sqlite3HexToInt(zNum[i]);
781     }
782     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
783       memcpy(pValue, &u, 4);
784       return 1;
785     }else{
786       return 0;
787     }
788   }
789 #endif
790   if( !sqlite3Isdigit(zNum[0]) ) return 0;
791   while( zNum[0]=='0' ) zNum++;
792   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
793     v = v*10 + c;
794   }
795 
796   /* The longest decimal representation of a 32 bit integer is 10 digits:
797   **
798   **             1234567890
799   **     2^31 -> 2147483648
800   */
801   testcase( i==10 );
802   if( i>10 ){
803     return 0;
804   }
805   testcase( v-neg==2147483647 );
806   if( v-neg>2147483647 ){
807     return 0;
808   }
809   if( neg ){
810     v = -v;
811   }
812   *pValue = (int)v;
813   return 1;
814 }
815 
816 /*
817 ** Return a 32-bit integer value extracted from a string.  If the
818 ** string is not an integer, just return 0.
819 */
820 int sqlite3Atoi(const char *z){
821   int x = 0;
822   if( z ) sqlite3GetInt32(z, &x);
823   return x;
824 }
825 
826 /*
827 ** The variable-length integer encoding is as follows:
828 **
829 ** KEY:
830 **         A = 0xxxxxxx    7 bits of data and one flag bit
831 **         B = 1xxxxxxx    7 bits of data and one flag bit
832 **         C = xxxxxxxx    8 bits of data
833 **
834 **  7 bits - A
835 ** 14 bits - BA
836 ** 21 bits - BBA
837 ** 28 bits - BBBA
838 ** 35 bits - BBBBA
839 ** 42 bits - BBBBBA
840 ** 49 bits - BBBBBBA
841 ** 56 bits - BBBBBBBA
842 ** 64 bits - BBBBBBBBC
843 */
844 
845 /*
846 ** Write a 64-bit variable-length integer to memory starting at p[0].
847 ** The length of data write will be between 1 and 9 bytes.  The number
848 ** of bytes written is returned.
849 **
850 ** A variable-length integer consists of the lower 7 bits of each byte
851 ** for all bytes that have the 8th bit set and one byte with the 8th
852 ** bit clear.  Except, if we get to the 9th byte, it stores the full
853 ** 8 bits and is the last byte.
854 */
855 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
856   int i, j, n;
857   u8 buf[10];
858   if( v & (((u64)0xff000000)<<32) ){
859     p[8] = (u8)v;
860     v >>= 8;
861     for(i=7; i>=0; i--){
862       p[i] = (u8)((v & 0x7f) | 0x80);
863       v >>= 7;
864     }
865     return 9;
866   }
867   n = 0;
868   do{
869     buf[n++] = (u8)((v & 0x7f) | 0x80);
870     v >>= 7;
871   }while( v!=0 );
872   buf[0] &= 0x7f;
873   assert( n<=9 );
874   for(i=0, j=n-1; j>=0; j--, i++){
875     p[i] = buf[j];
876   }
877   return n;
878 }
879 int sqlite3PutVarint(unsigned char *p, u64 v){
880   if( v<=0x7f ){
881     p[0] = v&0x7f;
882     return 1;
883   }
884   if( v<=0x3fff ){
885     p[0] = ((v>>7)&0x7f)|0x80;
886     p[1] = v&0x7f;
887     return 2;
888   }
889   return putVarint64(p,v);
890 }
891 
892 /*
893 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
894 ** are defined here rather than simply putting the constant expressions
895 ** inline in order to work around bugs in the RVT compiler.
896 **
897 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
898 **
899 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
900 */
901 #define SLOT_2_0     0x001fc07f
902 #define SLOT_4_2_0   0xf01fc07f
903 
904 
905 /*
906 ** Read a 64-bit variable-length integer from memory starting at p[0].
907 ** Return the number of bytes read.  The value is stored in *v.
908 */
909 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
910   u32 a,b,s;
911 
912   if( ((signed char*)p)[0]>=0 ){
913     *v = *p;
914     return 1;
915   }
916   if( ((signed char*)p)[1]>=0 ){
917     *v = ((u32)(p[0]&0x7f)<<7) | p[1];
918     return 2;
919   }
920 
921   /* Verify that constants are precomputed correctly */
922   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
923   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
924 
925   a = ((u32)p[0])<<14;
926   b = p[1];
927   p += 2;
928   a |= *p;
929   /* a: p0<<14 | p2 (unmasked) */
930   if (!(a&0x80))
931   {
932     a &= SLOT_2_0;
933     b &= 0x7f;
934     b = b<<7;
935     a |= b;
936     *v = a;
937     return 3;
938   }
939 
940   /* CSE1 from below */
941   a &= SLOT_2_0;
942   p++;
943   b = b<<14;
944   b |= *p;
945   /* b: p1<<14 | p3 (unmasked) */
946   if (!(b&0x80))
947   {
948     b &= SLOT_2_0;
949     /* moved CSE1 up */
950     /* a &= (0x7f<<14)|(0x7f); */
951     a = a<<7;
952     a |= b;
953     *v = a;
954     return 4;
955   }
956 
957   /* a: p0<<14 | p2 (masked) */
958   /* b: p1<<14 | p3 (unmasked) */
959   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
960   /* moved CSE1 up */
961   /* a &= (0x7f<<14)|(0x7f); */
962   b &= SLOT_2_0;
963   s = a;
964   /* s: p0<<14 | p2 (masked) */
965 
966   p++;
967   a = a<<14;
968   a |= *p;
969   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
970   if (!(a&0x80))
971   {
972     /* we can skip these cause they were (effectively) done above
973     ** while calculating s */
974     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
975     /* b &= (0x7f<<14)|(0x7f); */
976     b = b<<7;
977     a |= b;
978     s = s>>18;
979     *v = ((u64)s)<<32 | a;
980     return 5;
981   }
982 
983   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
984   s = s<<7;
985   s |= b;
986   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
987 
988   p++;
989   b = b<<14;
990   b |= *p;
991   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
992   if (!(b&0x80))
993   {
994     /* we can skip this cause it was (effectively) done above in calc'ing s */
995     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
996     a &= SLOT_2_0;
997     a = a<<7;
998     a |= b;
999     s = s>>18;
1000     *v = ((u64)s)<<32 | a;
1001     return 6;
1002   }
1003 
1004   p++;
1005   a = a<<14;
1006   a |= *p;
1007   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1008   if (!(a&0x80))
1009   {
1010     a &= SLOT_4_2_0;
1011     b &= SLOT_2_0;
1012     b = b<<7;
1013     a |= b;
1014     s = s>>11;
1015     *v = ((u64)s)<<32 | a;
1016     return 7;
1017   }
1018 
1019   /* CSE2 from below */
1020   a &= SLOT_2_0;
1021   p++;
1022   b = b<<14;
1023   b |= *p;
1024   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1025   if (!(b&0x80))
1026   {
1027     b &= SLOT_4_2_0;
1028     /* moved CSE2 up */
1029     /* a &= (0x7f<<14)|(0x7f); */
1030     a = a<<7;
1031     a |= b;
1032     s = s>>4;
1033     *v = ((u64)s)<<32 | a;
1034     return 8;
1035   }
1036 
1037   p++;
1038   a = a<<15;
1039   a |= *p;
1040   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1041 
1042   /* moved CSE2 up */
1043   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1044   b &= SLOT_2_0;
1045   b = b<<8;
1046   a |= b;
1047 
1048   s = s<<4;
1049   b = p[-4];
1050   b &= 0x7f;
1051   b = b>>3;
1052   s |= b;
1053 
1054   *v = ((u64)s)<<32 | a;
1055 
1056   return 9;
1057 }
1058 
1059 /*
1060 ** Read a 32-bit variable-length integer from memory starting at p[0].
1061 ** Return the number of bytes read.  The value is stored in *v.
1062 **
1063 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1064 ** integer, then set *v to 0xffffffff.
1065 **
1066 ** A MACRO version, getVarint32, is provided which inlines the
1067 ** single-byte case.  All code should use the MACRO version as
1068 ** this function assumes the single-byte case has already been handled.
1069 */
1070 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1071   u32 a,b;
1072 
1073   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1074   ** by the getVarin32() macro */
1075   a = *p;
1076   /* a: p0 (unmasked) */
1077 #ifndef getVarint32
1078   if (!(a&0x80))
1079   {
1080     /* Values between 0 and 127 */
1081     *v = a;
1082     return 1;
1083   }
1084 #endif
1085 
1086   /* The 2-byte case */
1087   p++;
1088   b = *p;
1089   /* b: p1 (unmasked) */
1090   if (!(b&0x80))
1091   {
1092     /* Values between 128 and 16383 */
1093     a &= 0x7f;
1094     a = a<<7;
1095     *v = a | b;
1096     return 2;
1097   }
1098 
1099   /* The 3-byte case */
1100   p++;
1101   a = a<<14;
1102   a |= *p;
1103   /* a: p0<<14 | p2 (unmasked) */
1104   if (!(a&0x80))
1105   {
1106     /* Values between 16384 and 2097151 */
1107     a &= (0x7f<<14)|(0x7f);
1108     b &= 0x7f;
1109     b = b<<7;
1110     *v = a | b;
1111     return 3;
1112   }
1113 
1114   /* A 32-bit varint is used to store size information in btrees.
1115   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1116   ** A 3-byte varint is sufficient, for example, to record the size
1117   ** of a 1048569-byte BLOB or string.
1118   **
1119   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1120   ** rare larger cases can be handled by the slower 64-bit varint
1121   ** routine.
1122   */
1123 #if 1
1124   {
1125     u64 v64;
1126     u8 n;
1127 
1128     p -= 2;
1129     n = sqlite3GetVarint(p, &v64);
1130     assert( n>3 && n<=9 );
1131     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1132       *v = 0xffffffff;
1133     }else{
1134       *v = (u32)v64;
1135     }
1136     return n;
1137   }
1138 
1139 #else
1140   /* For following code (kept for historical record only) shows an
1141   ** unrolling for the 3- and 4-byte varint cases.  This code is
1142   ** slightly faster, but it is also larger and much harder to test.
1143   */
1144   p++;
1145   b = b<<14;
1146   b |= *p;
1147   /* b: p1<<14 | p3 (unmasked) */
1148   if (!(b&0x80))
1149   {
1150     /* Values between 2097152 and 268435455 */
1151     b &= (0x7f<<14)|(0x7f);
1152     a &= (0x7f<<14)|(0x7f);
1153     a = a<<7;
1154     *v = a | b;
1155     return 4;
1156   }
1157 
1158   p++;
1159   a = a<<14;
1160   a |= *p;
1161   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1162   if (!(a&0x80))
1163   {
1164     /* Values  between 268435456 and 34359738367 */
1165     a &= SLOT_4_2_0;
1166     b &= SLOT_4_2_0;
1167     b = b<<7;
1168     *v = a | b;
1169     return 5;
1170   }
1171 
1172   /* We can only reach this point when reading a corrupt database
1173   ** file.  In that case we are not in any hurry.  Use the (relatively
1174   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1175   ** value. */
1176   {
1177     u64 v64;
1178     u8 n;
1179 
1180     p -= 4;
1181     n = sqlite3GetVarint(p, &v64);
1182     assert( n>5 && n<=9 );
1183     *v = (u32)v64;
1184     return n;
1185   }
1186 #endif
1187 }
1188 
1189 /*
1190 ** Return the number of bytes that will be needed to store the given
1191 ** 64-bit integer.
1192 */
1193 int sqlite3VarintLen(u64 v){
1194   int i;
1195   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1196   return i;
1197 }
1198 
1199 
1200 /*
1201 ** Read or write a four-byte big-endian integer value.
1202 */
1203 u32 sqlite3Get4byte(const u8 *p){
1204 #if SQLITE_BYTEORDER==4321
1205   u32 x;
1206   memcpy(&x,p,4);
1207   return x;
1208 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1209   u32 x;
1210   memcpy(&x,p,4);
1211   return __builtin_bswap32(x);
1212 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1213   u32 x;
1214   memcpy(&x,p,4);
1215   return _byteswap_ulong(x);
1216 #else
1217   testcase( p[0]&0x80 );
1218   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1219 #endif
1220 }
1221 void sqlite3Put4byte(unsigned char *p, u32 v){
1222 #if SQLITE_BYTEORDER==4321
1223   memcpy(p,&v,4);
1224 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1225   u32 x = __builtin_bswap32(v);
1226   memcpy(p,&x,4);
1227 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1228   u32 x = _byteswap_ulong(v);
1229   memcpy(p,&x,4);
1230 #else
1231   p[0] = (u8)(v>>24);
1232   p[1] = (u8)(v>>16);
1233   p[2] = (u8)(v>>8);
1234   p[3] = (u8)v;
1235 #endif
1236 }
1237 
1238 
1239 
1240 /*
1241 ** Translate a single byte of Hex into an integer.
1242 ** This routine only works if h really is a valid hexadecimal
1243 ** character:  0..9a..fA..F
1244 */
1245 u8 sqlite3HexToInt(int h){
1246   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1247 #ifdef SQLITE_ASCII
1248   h += 9*(1&(h>>6));
1249 #endif
1250 #ifdef SQLITE_EBCDIC
1251   h += 9*(1&~(h>>4));
1252 #endif
1253   return (u8)(h & 0xf);
1254 }
1255 
1256 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1257 /*
1258 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1259 ** value.  Return a pointer to its binary value.  Space to hold the
1260 ** binary value has been obtained from malloc and must be freed by
1261 ** the calling routine.
1262 */
1263 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1264   char *zBlob;
1265   int i;
1266 
1267   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1268   n--;
1269   if( zBlob ){
1270     for(i=0; i<n; i+=2){
1271       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1272     }
1273     zBlob[i/2] = 0;
1274   }
1275   return zBlob;
1276 }
1277 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1278 
1279 /*
1280 ** Log an error that is an API call on a connection pointer that should
1281 ** not have been used.  The "type" of connection pointer is given as the
1282 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1283 */
1284 static void logBadConnection(const char *zType){
1285   sqlite3_log(SQLITE_MISUSE,
1286      "API call with %s database connection pointer",
1287      zType
1288   );
1289 }
1290 
1291 /*
1292 ** Check to make sure we have a valid db pointer.  This test is not
1293 ** foolproof but it does provide some measure of protection against
1294 ** misuse of the interface such as passing in db pointers that are
1295 ** NULL or which have been previously closed.  If this routine returns
1296 ** 1 it means that the db pointer is valid and 0 if it should not be
1297 ** dereferenced for any reason.  The calling function should invoke
1298 ** SQLITE_MISUSE immediately.
1299 **
1300 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1301 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1302 ** open properly and is not fit for general use but which can be
1303 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1304 */
1305 int sqlite3SafetyCheckOk(sqlite3 *db){
1306   u32 magic;
1307   if( db==0 ){
1308     logBadConnection("NULL");
1309     return 0;
1310   }
1311   magic = db->magic;
1312   if( magic!=SQLITE_MAGIC_OPEN ){
1313     if( sqlite3SafetyCheckSickOrOk(db) ){
1314       testcase( sqlite3GlobalConfig.xLog!=0 );
1315       logBadConnection("unopened");
1316     }
1317     return 0;
1318   }else{
1319     return 1;
1320   }
1321 }
1322 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1323   u32 magic;
1324   magic = db->magic;
1325   if( magic!=SQLITE_MAGIC_SICK &&
1326       magic!=SQLITE_MAGIC_OPEN &&
1327       magic!=SQLITE_MAGIC_BUSY ){
1328     testcase( sqlite3GlobalConfig.xLog!=0 );
1329     logBadConnection("invalid");
1330     return 0;
1331   }else{
1332     return 1;
1333   }
1334 }
1335 
1336 /*
1337 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1338 ** the other 64-bit signed integer at *pA and store the result in *pA.
1339 ** Return 0 on success.  Or if the operation would have resulted in an
1340 ** overflow, leave *pA unchanged and return 1.
1341 */
1342 int sqlite3AddInt64(i64 *pA, i64 iB){
1343 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1344   return __builtin_add_overflow(*pA, iB, pA);
1345 #else
1346   i64 iA = *pA;
1347   testcase( iA==0 ); testcase( iA==1 );
1348   testcase( iB==-1 ); testcase( iB==0 );
1349   if( iB>=0 ){
1350     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1351     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1352     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1353   }else{
1354     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1355     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1356     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1357   }
1358   *pA += iB;
1359   return 0;
1360 #endif
1361 }
1362 int sqlite3SubInt64(i64 *pA, i64 iB){
1363 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1364   return __builtin_sub_overflow(*pA, iB, pA);
1365 #else
1366   testcase( iB==SMALLEST_INT64+1 );
1367   if( iB==SMALLEST_INT64 ){
1368     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1369     if( (*pA)>=0 ) return 1;
1370     *pA -= iB;
1371     return 0;
1372   }else{
1373     return sqlite3AddInt64(pA, -iB);
1374   }
1375 #endif
1376 }
1377 int sqlite3MulInt64(i64 *pA, i64 iB){
1378 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1379   return __builtin_mul_overflow(*pA, iB, pA);
1380 #else
1381   i64 iA = *pA;
1382   if( iB>0 ){
1383     if( iA>LARGEST_INT64/iB ) return 1;
1384     if( iA<SMALLEST_INT64/iB ) return 1;
1385   }else if( iB<0 ){
1386     if( iA>0 ){
1387       if( iB<SMALLEST_INT64/iA ) return 1;
1388     }else if( iA<0 ){
1389       if( iB==SMALLEST_INT64 ) return 1;
1390       if( iA==SMALLEST_INT64 ) return 1;
1391       if( -iA>LARGEST_INT64/-iB ) return 1;
1392     }
1393   }
1394   *pA = iA*iB;
1395   return 0;
1396 #endif
1397 }
1398 
1399 /*
1400 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1401 ** if the integer has a value of -2147483648, return +2147483647
1402 */
1403 int sqlite3AbsInt32(int x){
1404   if( x>=0 ) return x;
1405   if( x==(int)0x80000000 ) return 0x7fffffff;
1406   return -x;
1407 }
1408 
1409 #ifdef SQLITE_ENABLE_8_3_NAMES
1410 /*
1411 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1412 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1413 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1414 ** three characters, then shorten the suffix on z[] to be the last three
1415 ** characters of the original suffix.
1416 **
1417 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1418 ** do the suffix shortening regardless of URI parameter.
1419 **
1420 ** Examples:
1421 **
1422 **     test.db-journal    =>   test.nal
1423 **     test.db-wal        =>   test.wal
1424 **     test.db-shm        =>   test.shm
1425 **     test.db-mj7f3319fa =>   test.9fa
1426 */
1427 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1428 #if SQLITE_ENABLE_8_3_NAMES<2
1429   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1430 #endif
1431   {
1432     int i, sz;
1433     sz = sqlite3Strlen30(z);
1434     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1435     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1436   }
1437 }
1438 #endif
1439 
1440 /*
1441 ** Find (an approximate) sum of two LogEst values.  This computation is
1442 ** not a simple "+" operator because LogEst is stored as a logarithmic
1443 ** value.
1444 **
1445 */
1446 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1447   static const unsigned char x[] = {
1448      10, 10,                         /* 0,1 */
1449       9, 9,                          /* 2,3 */
1450       8, 8,                          /* 4,5 */
1451       7, 7, 7,                       /* 6,7,8 */
1452       6, 6, 6,                       /* 9,10,11 */
1453       5, 5, 5,                       /* 12-14 */
1454       4, 4, 4, 4,                    /* 15-18 */
1455       3, 3, 3, 3, 3, 3,              /* 19-24 */
1456       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1457   };
1458   if( a>=b ){
1459     if( a>b+49 ) return a;
1460     if( a>b+31 ) return a+1;
1461     return a+x[a-b];
1462   }else{
1463     if( b>a+49 ) return b;
1464     if( b>a+31 ) return b+1;
1465     return b+x[b-a];
1466   }
1467 }
1468 
1469 /*
1470 ** Convert an integer into a LogEst.  In other words, compute an
1471 ** approximation for 10*log2(x).
1472 */
1473 LogEst sqlite3LogEst(u64 x){
1474   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1475   LogEst y = 40;
1476   if( x<8 ){
1477     if( x<2 ) return 0;
1478     while( x<8 ){  y -= 10; x <<= 1; }
1479   }else{
1480 #if GCC_VERSION>=5004000
1481     int i = 60 - __builtin_clzll(x);
1482     y += i*10;
1483     x >>= i;
1484 #else
1485     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1486     while( x>15 ){  y += 10; x >>= 1; }
1487 #endif
1488   }
1489   return a[x&7] + y - 10;
1490 }
1491 
1492 #ifndef SQLITE_OMIT_VIRTUALTABLE
1493 /*
1494 ** Convert a double into a LogEst
1495 ** In other words, compute an approximation for 10*log2(x).
1496 */
1497 LogEst sqlite3LogEstFromDouble(double x){
1498   u64 a;
1499   LogEst e;
1500   assert( sizeof(x)==8 && sizeof(a)==8 );
1501   if( x<=1 ) return 0;
1502   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1503   memcpy(&a, &x, 8);
1504   e = (a>>52) - 1022;
1505   return e*10;
1506 }
1507 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1508 
1509 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1510     defined(SQLITE_ENABLE_STAT4) || \
1511     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1512 /*
1513 ** Convert a LogEst into an integer.
1514 **
1515 ** Note that this routine is only used when one or more of various
1516 ** non-standard compile-time options is enabled.
1517 */
1518 u64 sqlite3LogEstToInt(LogEst x){
1519   u64 n;
1520   n = x%10;
1521   x /= 10;
1522   if( n>=5 ) n -= 2;
1523   else if( n>=1 ) n -= 1;
1524 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1525     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1526   if( x>60 ) return (u64)LARGEST_INT64;
1527 #else
1528   /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
1529   ** possible to this routine is 310, resulting in a maximum x of 31 */
1530   assert( x<=60 );
1531 #endif
1532   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1533 }
1534 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1535 
1536 /*
1537 ** Add a new name/number pair to a VList.  This might require that the
1538 ** VList object be reallocated, so return the new VList.  If an OOM
1539 ** error occurs, the original VList returned and the
1540 ** db->mallocFailed flag is set.
1541 **
1542 ** A VList is really just an array of integers.  To destroy a VList,
1543 ** simply pass it to sqlite3DbFree().
1544 **
1545 ** The first integer is the number of integers allocated for the whole
1546 ** VList.  The second integer is the number of integers actually used.
1547 ** Each name/number pair is encoded by subsequent groups of 3 or more
1548 ** integers.
1549 **
1550 ** Each name/number pair starts with two integers which are the numeric
1551 ** value for the pair and the size of the name/number pair, respectively.
1552 ** The text name overlays one or more following integers.  The text name
1553 ** is always zero-terminated.
1554 **
1555 ** Conceptually:
1556 **
1557 **    struct VList {
1558 **      int nAlloc;   // Number of allocated slots
1559 **      int nUsed;    // Number of used slots
1560 **      struct VListEntry {
1561 **        int iValue;    // Value for this entry
1562 **        int nSlot;     // Slots used by this entry
1563 **        // ... variable name goes here
1564 **      } a[0];
1565 **    }
1566 **
1567 ** During code generation, pointers to the variable names within the
1568 ** VList are taken.  When that happens, nAlloc is set to zero as an
1569 ** indication that the VList may never again be enlarged, since the
1570 ** accompanying realloc() would invalidate the pointers.
1571 */
1572 VList *sqlite3VListAdd(
1573   sqlite3 *db,           /* The database connection used for malloc() */
1574   VList *pIn,            /* The input VList.  Might be NULL */
1575   const char *zName,     /* Name of symbol to add */
1576   int nName,             /* Bytes of text in zName */
1577   int iVal               /* Value to associate with zName */
1578 ){
1579   int nInt;              /* number of sizeof(int) objects needed for zName */
1580   char *z;               /* Pointer to where zName will be stored */
1581   int i;                 /* Index in pIn[] where zName is stored */
1582 
1583   nInt = nName/4 + 3;
1584   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1585   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1586     /* Enlarge the allocation */
1587     sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1588     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1589     if( pOut==0 ) return pIn;
1590     if( pIn==0 ) pOut[1] = 2;
1591     pIn = pOut;
1592     pIn[0] = nAlloc;
1593   }
1594   i = pIn[1];
1595   pIn[i] = iVal;
1596   pIn[i+1] = nInt;
1597   z = (char*)&pIn[i+2];
1598   pIn[1] = i+nInt;
1599   assert( pIn[1]<=pIn[0] );
1600   memcpy(z, zName, nName);
1601   z[nName] = 0;
1602   return pIn;
1603 }
1604 
1605 /*
1606 ** Return a pointer to the name of a variable in the given VList that
1607 ** has the value iVal.  Or return a NULL if there is no such variable in
1608 ** the list
1609 */
1610 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1611   int i, mx;
1612   if( pIn==0 ) return 0;
1613   mx = pIn[1];
1614   i = 2;
1615   do{
1616     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1617     i += pIn[i+1];
1618   }while( i<mx );
1619   return 0;
1620 }
1621 
1622 /*
1623 ** Return the number of the variable named zName, if it is in VList.
1624 ** or return 0 if there is no such variable.
1625 */
1626 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1627   int i, mx;
1628   if( pIn==0 ) return 0;
1629   mx = pIn[1];
1630   i = 2;
1631   do{
1632     const char *z = (const char*)&pIn[i+2];
1633     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1634     i += pIn[i+1];
1635   }while( i<mx );
1636   return 0;
1637 }
1638