1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifdef SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_OMIT_BUILTIN_TEST 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !defined(SQLITE_HAVE_ISNAN) 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if defined(SQLITE_HAVE_ISNAN) */ 92 rc = isnan(x); 93 #endif /* SQLITE_HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 const char *z2 = z; 109 if( z==0 ) return 0; 110 while( *z2 ){ z2++; } 111 return 0x3fffffff & (int)(z2 - z); 112 } 113 114 /* 115 ** Set the most recent error code and error string for the sqlite 116 ** handle "db". The error code is set to "err_code". 117 ** 118 ** If it is not NULL, string zFormat specifies the format of the 119 ** error string in the style of the printf functions: The following 120 ** format characters are allowed: 121 ** 122 ** %s Insert a string 123 ** %z A string that should be freed after use 124 ** %d Insert an integer 125 ** %T Insert a token 126 ** %S Insert the first element of a SrcList 127 ** 128 ** zFormat and any string tokens that follow it are assumed to be 129 ** encoded in UTF-8. 130 ** 131 ** To clear the most recent error for sqlite handle "db", sqlite3Error 132 ** should be called with err_code set to SQLITE_OK and zFormat set 133 ** to NULL. 134 */ 135 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 136 assert( db!=0 ); 137 db->errCode = err_code; 138 if( zFormat && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 139 char *z; 140 va_list ap; 141 va_start(ap, zFormat); 142 z = sqlite3VMPrintf(db, zFormat, ap); 143 va_end(ap); 144 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 145 }else if( db->pErr ){ 146 sqlite3ValueSetNull(db->pErr); 147 } 148 } 149 150 /* 151 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 152 ** The following formatting characters are allowed: 153 ** 154 ** %s Insert a string 155 ** %z A string that should be freed after use 156 ** %d Insert an integer 157 ** %T Insert a token 158 ** %S Insert the first element of a SrcList 159 ** 160 ** This function should be used to report any error that occurs whilst 161 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 162 ** last thing the sqlite3_prepare() function does is copy the error 163 ** stored by this function into the database handle using sqlite3Error(). 164 ** Function sqlite3Error() should be used during statement execution 165 ** (sqlite3_step() etc.). 166 */ 167 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 168 char *zMsg; 169 va_list ap; 170 sqlite3 *db = pParse->db; 171 va_start(ap, zFormat); 172 zMsg = sqlite3VMPrintf(db, zFormat, ap); 173 va_end(ap); 174 if( db->suppressErr ){ 175 sqlite3DbFree(db, zMsg); 176 }else{ 177 pParse->nErr++; 178 sqlite3DbFree(db, pParse->zErrMsg); 179 pParse->zErrMsg = zMsg; 180 pParse->rc = SQLITE_ERROR; 181 } 182 } 183 184 /* 185 ** Convert an SQL-style quoted string into a normal string by removing 186 ** the quote characters. The conversion is done in-place. If the 187 ** input does not begin with a quote character, then this routine 188 ** is a no-op. 189 ** 190 ** The input string must be zero-terminated. A new zero-terminator 191 ** is added to the dequoted string. 192 ** 193 ** The return value is -1 if no dequoting occurs or the length of the 194 ** dequoted string, exclusive of the zero terminator, if dequoting does 195 ** occur. 196 ** 197 ** 2002-Feb-14: This routine is extended to remove MS-Access style 198 ** brackets from around identifers. For example: "[a-b-c]" becomes 199 ** "a-b-c". 200 */ 201 int sqlite3Dequote(char *z){ 202 char quote; 203 int i, j; 204 if( z==0 ) return -1; 205 quote = z[0]; 206 switch( quote ){ 207 case '\'': break; 208 case '"': break; 209 case '`': break; /* For MySQL compatibility */ 210 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 211 default: return -1; 212 } 213 for(i=1, j=0;; i++){ 214 assert( z[i] ); 215 if( z[i]==quote ){ 216 if( z[i+1]==quote ){ 217 z[j++] = quote; 218 i++; 219 }else{ 220 break; 221 } 222 }else{ 223 z[j++] = z[i]; 224 } 225 } 226 z[j] = 0; 227 return j; 228 } 229 230 /* Convenient short-hand */ 231 #define UpperToLower sqlite3UpperToLower 232 233 /* 234 ** Some systems have stricmp(). Others have strcasecmp(). Because 235 ** there is no consistency, we will define our own. 236 ** 237 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 238 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 239 ** the contents of two buffers containing UTF-8 strings in a 240 ** case-independent fashion, using the same definition of "case 241 ** independence" that SQLite uses internally when comparing identifiers. 242 */ 243 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 244 register unsigned char *a, *b; 245 a = (unsigned char *)zLeft; 246 b = (unsigned char *)zRight; 247 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 248 return UpperToLower[*a] - UpperToLower[*b]; 249 } 250 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 251 register unsigned char *a, *b; 252 a = (unsigned char *)zLeft; 253 b = (unsigned char *)zRight; 254 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 255 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 256 } 257 258 /* 259 ** The string z[] is an text representation of a real number. 260 ** Convert this string to a double and write it into *pResult. 261 ** 262 ** The string z[] is length bytes in length (bytes, not characters) and 263 ** uses the encoding enc. The string is not necessarily zero-terminated. 264 ** 265 ** Return TRUE if the result is a valid real number (or integer) and FALSE 266 ** if the string is empty or contains extraneous text. Valid numbers 267 ** are in one of these formats: 268 ** 269 ** [+-]digits[E[+-]digits] 270 ** [+-]digits.[digits][E[+-]digits] 271 ** [+-].digits[E[+-]digits] 272 ** 273 ** Leading and trailing whitespace is ignored for the purpose of determining 274 ** validity. 275 ** 276 ** If some prefix of the input string is a valid number, this routine 277 ** returns FALSE but it still converts the prefix and writes the result 278 ** into *pResult. 279 */ 280 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 281 #ifndef SQLITE_OMIT_FLOATING_POINT 282 int incr; 283 const char *zEnd = z + length; 284 /* sign * significand * (10 ^ (esign * exponent)) */ 285 int sign = 1; /* sign of significand */ 286 i64 s = 0; /* significand */ 287 int d = 0; /* adjust exponent for shifting decimal point */ 288 int esign = 1; /* sign of exponent */ 289 int e = 0; /* exponent */ 290 int eValid = 1; /* True exponent is either not used or is well-formed */ 291 double result; 292 int nDigits = 0; 293 int nonNum = 0; 294 295 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 296 *pResult = 0.0; /* Default return value, in case of an error */ 297 298 if( enc==SQLITE_UTF8 ){ 299 incr = 1; 300 }else{ 301 int i; 302 incr = 2; 303 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 304 for(i=3-enc; i<length && z[i]==0; i+=2){} 305 nonNum = i<length; 306 zEnd = z+i+enc-3; 307 z += (enc&1); 308 } 309 310 /* skip leading spaces */ 311 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 312 if( z>=zEnd ) return 0; 313 314 /* get sign of significand */ 315 if( *z=='-' ){ 316 sign = -1; 317 z+=incr; 318 }else if( *z=='+' ){ 319 z+=incr; 320 } 321 322 /* skip leading zeroes */ 323 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 324 325 /* copy max significant digits to significand */ 326 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 327 s = s*10 + (*z - '0'); 328 z+=incr, nDigits++; 329 } 330 331 /* skip non-significant significand digits 332 ** (increase exponent by d to shift decimal left) */ 333 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 334 if( z>=zEnd ) goto do_atof_calc; 335 336 /* if decimal point is present */ 337 if( *z=='.' ){ 338 z+=incr; 339 /* copy digits from after decimal to significand 340 ** (decrease exponent by d to shift decimal right) */ 341 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 342 s = s*10 + (*z - '0'); 343 z+=incr, nDigits++, d--; 344 } 345 /* skip non-significant digits */ 346 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 347 } 348 if( z>=zEnd ) goto do_atof_calc; 349 350 /* if exponent is present */ 351 if( *z=='e' || *z=='E' ){ 352 z+=incr; 353 eValid = 0; 354 if( z>=zEnd ) goto do_atof_calc; 355 /* get sign of exponent */ 356 if( *z=='-' ){ 357 esign = -1; 358 z+=incr; 359 }else if( *z=='+' ){ 360 z+=incr; 361 } 362 /* copy digits to exponent */ 363 while( z<zEnd && sqlite3Isdigit(*z) ){ 364 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 365 z+=incr; 366 eValid = 1; 367 } 368 } 369 370 /* skip trailing spaces */ 371 if( nDigits && eValid ){ 372 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 373 } 374 375 do_atof_calc: 376 /* adjust exponent by d, and update sign */ 377 e = (e*esign) + d; 378 if( e<0 ) { 379 esign = -1; 380 e *= -1; 381 } else { 382 esign = 1; 383 } 384 385 /* if 0 significand */ 386 if( !s ) { 387 /* In the IEEE 754 standard, zero is signed. 388 ** Add the sign if we've seen at least one digit */ 389 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 390 } else { 391 /* attempt to reduce exponent */ 392 if( esign>0 ){ 393 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 394 }else{ 395 while( !(s%10) && e>0 ) e--,s/=10; 396 } 397 398 /* adjust the sign of significand */ 399 s = sign<0 ? -s : s; 400 401 /* if exponent, scale significand as appropriate 402 ** and store in result. */ 403 if( e ){ 404 LONGDOUBLE_TYPE scale = 1.0; 405 /* attempt to handle extremely small/large numbers better */ 406 if( e>307 && e<342 ){ 407 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 408 if( esign<0 ){ 409 result = s / scale; 410 result /= 1.0e+308; 411 }else{ 412 result = s * scale; 413 result *= 1.0e+308; 414 } 415 }else if( e>=342 ){ 416 if( esign<0 ){ 417 result = 0.0*s; 418 }else{ 419 result = 1e308*1e308*s; /* Infinity */ 420 } 421 }else{ 422 /* 1.0e+22 is the largest power of 10 than can be 423 ** represented exactly. */ 424 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 425 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 426 if( esign<0 ){ 427 result = s / scale; 428 }else{ 429 result = s * scale; 430 } 431 } 432 } else { 433 result = (double)s; 434 } 435 } 436 437 /* store the result */ 438 *pResult = result; 439 440 /* return true if number and no extra non-whitespace chracters after */ 441 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 442 #else 443 return !sqlite3Atoi64(z, pResult, length, enc); 444 #endif /* SQLITE_OMIT_FLOATING_POINT */ 445 } 446 447 /* 448 ** Compare the 19-character string zNum against the text representation 449 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 450 ** if zNum is less than, equal to, or greater than the string. 451 ** Note that zNum must contain exactly 19 characters. 452 ** 453 ** Unlike memcmp() this routine is guaranteed to return the difference 454 ** in the values of the last digit if the only difference is in the 455 ** last digit. So, for example, 456 ** 457 ** compare2pow63("9223372036854775800", 1) 458 ** 459 ** will return -8. 460 */ 461 static int compare2pow63(const char *zNum, int incr){ 462 int c = 0; 463 int i; 464 /* 012345678901234567 */ 465 const char *pow63 = "922337203685477580"; 466 for(i=0; c==0 && i<18; i++){ 467 c = (zNum[i*incr]-pow63[i])*10; 468 } 469 if( c==0 ){ 470 c = zNum[18*incr] - '8'; 471 testcase( c==(-1) ); 472 testcase( c==0 ); 473 testcase( c==(+1) ); 474 } 475 return c; 476 } 477 478 /* 479 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 480 ** routine does *not* accept hexadecimal notation. 481 ** 482 ** If the zNum value is representable as a 64-bit twos-complement 483 ** integer, then write that value into *pNum and return 0. 484 ** 485 ** If zNum is exactly 9223372036854775808, return 2. This special 486 ** case is broken out because while 9223372036854775808 cannot be a 487 ** signed 64-bit integer, its negative -9223372036854775808 can be. 488 ** 489 ** If zNum is too big for a 64-bit integer and is not 490 ** 9223372036854775808 or if zNum contains any non-numeric text, 491 ** then return 1. 492 ** 493 ** length is the number of bytes in the string (bytes, not characters). 494 ** The string is not necessarily zero-terminated. The encoding is 495 ** given by enc. 496 */ 497 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 498 int incr; 499 u64 u = 0; 500 int neg = 0; /* assume positive */ 501 int i; 502 int c = 0; 503 int nonNum = 0; 504 const char *zStart; 505 const char *zEnd = zNum + length; 506 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 507 if( enc==SQLITE_UTF8 ){ 508 incr = 1; 509 }else{ 510 incr = 2; 511 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 512 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 513 nonNum = i<length; 514 zEnd = zNum+i+enc-3; 515 zNum += (enc&1); 516 } 517 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 518 if( zNum<zEnd ){ 519 if( *zNum=='-' ){ 520 neg = 1; 521 zNum+=incr; 522 }else if( *zNum=='+' ){ 523 zNum+=incr; 524 } 525 } 526 zStart = zNum; 527 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 528 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 529 u = u*10 + c - '0'; 530 } 531 if( u>LARGEST_INT64 ){ 532 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 533 }else if( neg ){ 534 *pNum = -(i64)u; 535 }else{ 536 *pNum = (i64)u; 537 } 538 testcase( i==18 ); 539 testcase( i==19 ); 540 testcase( i==20 ); 541 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){ 542 /* zNum is empty or contains non-numeric text or is longer 543 ** than 19 digits (thus guaranteeing that it is too large) */ 544 return 1; 545 }else if( i<19*incr ){ 546 /* Less than 19 digits, so we know that it fits in 64 bits */ 547 assert( u<=LARGEST_INT64 ); 548 return 0; 549 }else{ 550 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 551 c = compare2pow63(zNum, incr); 552 if( c<0 ){ 553 /* zNum is less than 9223372036854775808 so it fits */ 554 assert( u<=LARGEST_INT64 ); 555 return 0; 556 }else if( c>0 ){ 557 /* zNum is greater than 9223372036854775808 so it overflows */ 558 return 1; 559 }else{ 560 /* zNum is exactly 9223372036854775808. Fits if negative. The 561 ** special case 2 overflow if positive */ 562 assert( u-1==LARGEST_INT64 ); 563 return neg ? 0 : 2; 564 } 565 } 566 } 567 568 /* 569 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 570 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 571 ** whereas sqlite3Atoi64() does not. 572 ** 573 ** Returns: 574 ** 575 ** 0 Successful transformation. Fits in a 64-bit signed integer. 576 ** 1 Integer too large for a 64-bit signed integer or is malformed 577 ** 2 Special case of 9223372036854775808 578 */ 579 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 580 #ifndef SQLITE_OMIT_HEX_INTEGER 581 if( z[0]=='0' 582 && (z[1]=='x' || z[1]=='X') 583 && sqlite3Isxdigit(z[2]) 584 ){ 585 u64 u = 0; 586 int i, k; 587 for(i=2; z[i]=='0'; i++){} 588 for(k=i; sqlite3Isxdigit(z[k]); k++){ 589 u = u*16 + sqlite3HexToInt(z[k]); 590 } 591 memcpy(pOut, &u, 8); 592 return (z[k]==0 && k-i<=16) ? 0 : 1; 593 }else 594 #endif /* SQLITE_OMIT_HEX_INTEGER */ 595 { 596 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 597 } 598 } 599 600 /* 601 ** If zNum represents an integer that will fit in 32-bits, then set 602 ** *pValue to that integer and return true. Otherwise return false. 603 ** 604 ** This routine accepts both decimal and hexadecimal notation for integers. 605 ** 606 ** Any non-numeric characters that following zNum are ignored. 607 ** This is different from sqlite3Atoi64() which requires the 608 ** input number to be zero-terminated. 609 */ 610 int sqlite3GetInt32(const char *zNum, int *pValue){ 611 sqlite_int64 v = 0; 612 int i, c; 613 int neg = 0; 614 if( zNum[0]=='-' ){ 615 neg = 1; 616 zNum++; 617 }else if( zNum[0]=='+' ){ 618 zNum++; 619 } 620 #ifndef SQLITE_OMIT_HEX_INTEGER 621 else if( zNum[0]=='0' 622 && (zNum[1]=='x' || zNum[1]=='X') 623 && sqlite3Isxdigit(zNum[2]) 624 ){ 625 u32 u = 0; 626 zNum += 2; 627 while( zNum[0]=='0' ) zNum++; 628 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 629 u = u*16 + sqlite3HexToInt(zNum[i]); 630 } 631 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 632 memcpy(pValue, &u, 4); 633 return 1; 634 }else{ 635 return 0; 636 } 637 } 638 #endif 639 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 640 v = v*10 + c; 641 } 642 643 /* The longest decimal representation of a 32 bit integer is 10 digits: 644 ** 645 ** 1234567890 646 ** 2^31 -> 2147483648 647 */ 648 testcase( i==10 ); 649 if( i>10 ){ 650 return 0; 651 } 652 testcase( v-neg==2147483647 ); 653 if( v-neg>2147483647 ){ 654 return 0; 655 } 656 if( neg ){ 657 v = -v; 658 } 659 *pValue = (int)v; 660 return 1; 661 } 662 663 /* 664 ** Return a 32-bit integer value extracted from a string. If the 665 ** string is not an integer, just return 0. 666 */ 667 int sqlite3Atoi(const char *z){ 668 int x = 0; 669 if( z ) sqlite3GetInt32(z, &x); 670 return x; 671 } 672 673 /* 674 ** The variable-length integer encoding is as follows: 675 ** 676 ** KEY: 677 ** A = 0xxxxxxx 7 bits of data and one flag bit 678 ** B = 1xxxxxxx 7 bits of data and one flag bit 679 ** C = xxxxxxxx 8 bits of data 680 ** 681 ** 7 bits - A 682 ** 14 bits - BA 683 ** 21 bits - BBA 684 ** 28 bits - BBBA 685 ** 35 bits - BBBBA 686 ** 42 bits - BBBBBA 687 ** 49 bits - BBBBBBA 688 ** 56 bits - BBBBBBBA 689 ** 64 bits - BBBBBBBBC 690 */ 691 692 /* 693 ** Write a 64-bit variable-length integer to memory starting at p[0]. 694 ** The length of data write will be between 1 and 9 bytes. The number 695 ** of bytes written is returned. 696 ** 697 ** A variable-length integer consists of the lower 7 bits of each byte 698 ** for all bytes that have the 8th bit set and one byte with the 8th 699 ** bit clear. Except, if we get to the 9th byte, it stores the full 700 ** 8 bits and is the last byte. 701 */ 702 int sqlite3PutVarint(unsigned char *p, u64 v){ 703 int i, j, n; 704 u8 buf[10]; 705 if( v & (((u64)0xff000000)<<32) ){ 706 p[8] = (u8)v; 707 v >>= 8; 708 for(i=7; i>=0; i--){ 709 p[i] = (u8)((v & 0x7f) | 0x80); 710 v >>= 7; 711 } 712 return 9; 713 } 714 n = 0; 715 do{ 716 buf[n++] = (u8)((v & 0x7f) | 0x80); 717 v >>= 7; 718 }while( v!=0 ); 719 buf[0] &= 0x7f; 720 assert( n<=9 ); 721 for(i=0, j=n-1; j>=0; j--, i++){ 722 p[i] = buf[j]; 723 } 724 return n; 725 } 726 727 /* 728 ** This routine is a faster version of sqlite3PutVarint() that only 729 ** works for 32-bit positive integers and which is optimized for 730 ** the common case of small integers. A MACRO version, putVarint32, 731 ** is provided which inlines the single-byte case. All code should use 732 ** the MACRO version as this function assumes the single-byte case has 733 ** already been handled. 734 */ 735 int sqlite3PutVarint32(unsigned char *p, u32 v){ 736 #ifndef putVarint32 737 if( (v & ~0x7f)==0 ){ 738 p[0] = v; 739 return 1; 740 } 741 #endif 742 if( (v & ~0x3fff)==0 ){ 743 p[0] = (u8)((v>>7) | 0x80); 744 p[1] = (u8)(v & 0x7f); 745 return 2; 746 } 747 return sqlite3PutVarint(p, v); 748 } 749 750 /* 751 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 752 ** are defined here rather than simply putting the constant expressions 753 ** inline in order to work around bugs in the RVT compiler. 754 ** 755 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 756 ** 757 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 758 */ 759 #define SLOT_2_0 0x001fc07f 760 #define SLOT_4_2_0 0xf01fc07f 761 762 763 /* 764 ** Read a 64-bit variable-length integer from memory starting at p[0]. 765 ** Return the number of bytes read. The value is stored in *v. 766 */ 767 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 768 u32 a,b,s; 769 770 a = *p; 771 /* a: p0 (unmasked) */ 772 if (!(a&0x80)) 773 { 774 *v = a; 775 return 1; 776 } 777 778 p++; 779 b = *p; 780 /* b: p1 (unmasked) */ 781 if (!(b&0x80)) 782 { 783 a &= 0x7f; 784 a = a<<7; 785 a |= b; 786 *v = a; 787 return 2; 788 } 789 790 /* Verify that constants are precomputed correctly */ 791 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 792 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 793 794 p++; 795 a = a<<14; 796 a |= *p; 797 /* a: p0<<14 | p2 (unmasked) */ 798 if (!(a&0x80)) 799 { 800 a &= SLOT_2_0; 801 b &= 0x7f; 802 b = b<<7; 803 a |= b; 804 *v = a; 805 return 3; 806 } 807 808 /* CSE1 from below */ 809 a &= SLOT_2_0; 810 p++; 811 b = b<<14; 812 b |= *p; 813 /* b: p1<<14 | p3 (unmasked) */ 814 if (!(b&0x80)) 815 { 816 b &= SLOT_2_0; 817 /* moved CSE1 up */ 818 /* a &= (0x7f<<14)|(0x7f); */ 819 a = a<<7; 820 a |= b; 821 *v = a; 822 return 4; 823 } 824 825 /* a: p0<<14 | p2 (masked) */ 826 /* b: p1<<14 | p3 (unmasked) */ 827 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 828 /* moved CSE1 up */ 829 /* a &= (0x7f<<14)|(0x7f); */ 830 b &= SLOT_2_0; 831 s = a; 832 /* s: p0<<14 | p2 (masked) */ 833 834 p++; 835 a = a<<14; 836 a |= *p; 837 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 838 if (!(a&0x80)) 839 { 840 /* we can skip these cause they were (effectively) done above in calc'ing s */ 841 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 842 /* b &= (0x7f<<14)|(0x7f); */ 843 b = b<<7; 844 a |= b; 845 s = s>>18; 846 *v = ((u64)s)<<32 | a; 847 return 5; 848 } 849 850 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 851 s = s<<7; 852 s |= b; 853 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 854 855 p++; 856 b = b<<14; 857 b |= *p; 858 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 859 if (!(b&0x80)) 860 { 861 /* we can skip this cause it was (effectively) done above in calc'ing s */ 862 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 863 a &= SLOT_2_0; 864 a = a<<7; 865 a |= b; 866 s = s>>18; 867 *v = ((u64)s)<<32 | a; 868 return 6; 869 } 870 871 p++; 872 a = a<<14; 873 a |= *p; 874 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 875 if (!(a&0x80)) 876 { 877 a &= SLOT_4_2_0; 878 b &= SLOT_2_0; 879 b = b<<7; 880 a |= b; 881 s = s>>11; 882 *v = ((u64)s)<<32 | a; 883 return 7; 884 } 885 886 /* CSE2 from below */ 887 a &= SLOT_2_0; 888 p++; 889 b = b<<14; 890 b |= *p; 891 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 892 if (!(b&0x80)) 893 { 894 b &= SLOT_4_2_0; 895 /* moved CSE2 up */ 896 /* a &= (0x7f<<14)|(0x7f); */ 897 a = a<<7; 898 a |= b; 899 s = s>>4; 900 *v = ((u64)s)<<32 | a; 901 return 8; 902 } 903 904 p++; 905 a = a<<15; 906 a |= *p; 907 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 908 909 /* moved CSE2 up */ 910 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 911 b &= SLOT_2_0; 912 b = b<<8; 913 a |= b; 914 915 s = s<<4; 916 b = p[-4]; 917 b &= 0x7f; 918 b = b>>3; 919 s |= b; 920 921 *v = ((u64)s)<<32 | a; 922 923 return 9; 924 } 925 926 /* 927 ** Read a 32-bit variable-length integer from memory starting at p[0]. 928 ** Return the number of bytes read. The value is stored in *v. 929 ** 930 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 931 ** integer, then set *v to 0xffffffff. 932 ** 933 ** A MACRO version, getVarint32, is provided which inlines the 934 ** single-byte case. All code should use the MACRO version as 935 ** this function assumes the single-byte case has already been handled. 936 */ 937 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 938 u32 a,b; 939 940 /* The 1-byte case. Overwhelmingly the most common. Handled inline 941 ** by the getVarin32() macro */ 942 a = *p; 943 /* a: p0 (unmasked) */ 944 #ifndef getVarint32 945 if (!(a&0x80)) 946 { 947 /* Values between 0 and 127 */ 948 *v = a; 949 return 1; 950 } 951 #endif 952 953 /* The 2-byte case */ 954 p++; 955 b = *p; 956 /* b: p1 (unmasked) */ 957 if (!(b&0x80)) 958 { 959 /* Values between 128 and 16383 */ 960 a &= 0x7f; 961 a = a<<7; 962 *v = a | b; 963 return 2; 964 } 965 966 /* The 3-byte case */ 967 p++; 968 a = a<<14; 969 a |= *p; 970 /* a: p0<<14 | p2 (unmasked) */ 971 if (!(a&0x80)) 972 { 973 /* Values between 16384 and 2097151 */ 974 a &= (0x7f<<14)|(0x7f); 975 b &= 0x7f; 976 b = b<<7; 977 *v = a | b; 978 return 3; 979 } 980 981 /* A 32-bit varint is used to store size information in btrees. 982 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 983 ** A 3-byte varint is sufficient, for example, to record the size 984 ** of a 1048569-byte BLOB or string. 985 ** 986 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 987 ** rare larger cases can be handled by the slower 64-bit varint 988 ** routine. 989 */ 990 #if 1 991 { 992 u64 v64; 993 u8 n; 994 995 p -= 2; 996 n = sqlite3GetVarint(p, &v64); 997 assert( n>3 && n<=9 ); 998 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 999 *v = 0xffffffff; 1000 }else{ 1001 *v = (u32)v64; 1002 } 1003 return n; 1004 } 1005 1006 #else 1007 /* For following code (kept for historical record only) shows an 1008 ** unrolling for the 3- and 4-byte varint cases. This code is 1009 ** slightly faster, but it is also larger and much harder to test. 1010 */ 1011 p++; 1012 b = b<<14; 1013 b |= *p; 1014 /* b: p1<<14 | p3 (unmasked) */ 1015 if (!(b&0x80)) 1016 { 1017 /* Values between 2097152 and 268435455 */ 1018 b &= (0x7f<<14)|(0x7f); 1019 a &= (0x7f<<14)|(0x7f); 1020 a = a<<7; 1021 *v = a | b; 1022 return 4; 1023 } 1024 1025 p++; 1026 a = a<<14; 1027 a |= *p; 1028 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1029 if (!(a&0x80)) 1030 { 1031 /* Values between 268435456 and 34359738367 */ 1032 a &= SLOT_4_2_0; 1033 b &= SLOT_4_2_0; 1034 b = b<<7; 1035 *v = a | b; 1036 return 5; 1037 } 1038 1039 /* We can only reach this point when reading a corrupt database 1040 ** file. In that case we are not in any hurry. Use the (relatively 1041 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1042 ** value. */ 1043 { 1044 u64 v64; 1045 u8 n; 1046 1047 p -= 4; 1048 n = sqlite3GetVarint(p, &v64); 1049 assert( n>5 && n<=9 ); 1050 *v = (u32)v64; 1051 return n; 1052 } 1053 #endif 1054 } 1055 1056 /* 1057 ** Return the number of bytes that will be needed to store the given 1058 ** 64-bit integer. 1059 */ 1060 int sqlite3VarintLen(u64 v){ 1061 int i = 0; 1062 do{ 1063 i++; 1064 v >>= 7; 1065 }while( v!=0 && ALWAYS(i<9) ); 1066 return i; 1067 } 1068 1069 1070 /* 1071 ** Read or write a four-byte big-endian integer value. 1072 */ 1073 u32 sqlite3Get4byte(const u8 *p){ 1074 testcase( p[0]&0x80 ); 1075 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1076 } 1077 void sqlite3Put4byte(unsigned char *p, u32 v){ 1078 p[0] = (u8)(v>>24); 1079 p[1] = (u8)(v>>16); 1080 p[2] = (u8)(v>>8); 1081 p[3] = (u8)v; 1082 } 1083 1084 1085 1086 /* 1087 ** Translate a single byte of Hex into an integer. 1088 ** This routine only works if h really is a valid hexadecimal 1089 ** character: 0..9a..fA..F 1090 */ 1091 u8 sqlite3HexToInt(int h){ 1092 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1093 #ifdef SQLITE_ASCII 1094 h += 9*(1&(h>>6)); 1095 #endif 1096 #ifdef SQLITE_EBCDIC 1097 h += 9*(1&~(h>>4)); 1098 #endif 1099 return (u8)(h & 0xf); 1100 } 1101 1102 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1103 /* 1104 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1105 ** value. Return a pointer to its binary value. Space to hold the 1106 ** binary value has been obtained from malloc and must be freed by 1107 ** the calling routine. 1108 */ 1109 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1110 char *zBlob; 1111 int i; 1112 1113 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1114 n--; 1115 if( zBlob ){ 1116 for(i=0; i<n; i+=2){ 1117 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1118 } 1119 zBlob[i/2] = 0; 1120 } 1121 return zBlob; 1122 } 1123 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1124 1125 /* 1126 ** Log an error that is an API call on a connection pointer that should 1127 ** not have been used. The "type" of connection pointer is given as the 1128 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1129 */ 1130 static void logBadConnection(const char *zType){ 1131 sqlite3_log(SQLITE_MISUSE, 1132 "API call with %s database connection pointer", 1133 zType 1134 ); 1135 } 1136 1137 /* 1138 ** Check to make sure we have a valid db pointer. This test is not 1139 ** foolproof but it does provide some measure of protection against 1140 ** misuse of the interface such as passing in db pointers that are 1141 ** NULL or which have been previously closed. If this routine returns 1142 ** 1 it means that the db pointer is valid and 0 if it should not be 1143 ** dereferenced for any reason. The calling function should invoke 1144 ** SQLITE_MISUSE immediately. 1145 ** 1146 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1147 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1148 ** open properly and is not fit for general use but which can be 1149 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1150 */ 1151 int sqlite3SafetyCheckOk(sqlite3 *db){ 1152 u32 magic; 1153 if( db==0 ){ 1154 logBadConnection("NULL"); 1155 return 0; 1156 } 1157 magic = db->magic; 1158 if( magic!=SQLITE_MAGIC_OPEN ){ 1159 if( sqlite3SafetyCheckSickOrOk(db) ){ 1160 testcase( sqlite3GlobalConfig.xLog!=0 ); 1161 logBadConnection("unopened"); 1162 } 1163 return 0; 1164 }else{ 1165 return 1; 1166 } 1167 } 1168 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1169 u32 magic; 1170 magic = db->magic; 1171 if( magic!=SQLITE_MAGIC_SICK && 1172 magic!=SQLITE_MAGIC_OPEN && 1173 magic!=SQLITE_MAGIC_BUSY ){ 1174 testcase( sqlite3GlobalConfig.xLog!=0 ); 1175 logBadConnection("invalid"); 1176 return 0; 1177 }else{ 1178 return 1; 1179 } 1180 } 1181 1182 /* 1183 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1184 ** the other 64-bit signed integer at *pA and store the result in *pA. 1185 ** Return 0 on success. Or if the operation would have resulted in an 1186 ** overflow, leave *pA unchanged and return 1. 1187 */ 1188 int sqlite3AddInt64(i64 *pA, i64 iB){ 1189 i64 iA = *pA; 1190 testcase( iA==0 ); testcase( iA==1 ); 1191 testcase( iB==-1 ); testcase( iB==0 ); 1192 if( iB>=0 ){ 1193 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1194 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1195 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1196 }else{ 1197 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1198 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1199 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1200 } 1201 *pA += iB; 1202 return 0; 1203 } 1204 int sqlite3SubInt64(i64 *pA, i64 iB){ 1205 testcase( iB==SMALLEST_INT64+1 ); 1206 if( iB==SMALLEST_INT64 ){ 1207 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1208 if( (*pA)>=0 ) return 1; 1209 *pA -= iB; 1210 return 0; 1211 }else{ 1212 return sqlite3AddInt64(pA, -iB); 1213 } 1214 } 1215 #define TWOPOWER32 (((i64)1)<<32) 1216 #define TWOPOWER31 (((i64)1)<<31) 1217 int sqlite3MulInt64(i64 *pA, i64 iB){ 1218 i64 iA = *pA; 1219 i64 iA1, iA0, iB1, iB0, r; 1220 1221 iA1 = iA/TWOPOWER32; 1222 iA0 = iA % TWOPOWER32; 1223 iB1 = iB/TWOPOWER32; 1224 iB0 = iB % TWOPOWER32; 1225 if( iA1==0 ){ 1226 if( iB1==0 ){ 1227 *pA *= iB; 1228 return 0; 1229 } 1230 r = iA0*iB1; 1231 }else if( iB1==0 ){ 1232 r = iA1*iB0; 1233 }else{ 1234 /* If both iA1 and iB1 are non-zero, overflow will result */ 1235 return 1; 1236 } 1237 testcase( r==(-TWOPOWER31)-1 ); 1238 testcase( r==(-TWOPOWER31) ); 1239 testcase( r==TWOPOWER31 ); 1240 testcase( r==TWOPOWER31-1 ); 1241 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1242 r *= TWOPOWER32; 1243 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1244 *pA = r; 1245 return 0; 1246 } 1247 1248 /* 1249 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1250 ** if the integer has a value of -2147483648, return +2147483647 1251 */ 1252 int sqlite3AbsInt32(int x){ 1253 if( x>=0 ) return x; 1254 if( x==(int)0x80000000 ) return 0x7fffffff; 1255 return -x; 1256 } 1257 1258 #ifdef SQLITE_ENABLE_8_3_NAMES 1259 /* 1260 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1261 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1262 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1263 ** three characters, then shorten the suffix on z[] to be the last three 1264 ** characters of the original suffix. 1265 ** 1266 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1267 ** do the suffix shortening regardless of URI parameter. 1268 ** 1269 ** Examples: 1270 ** 1271 ** test.db-journal => test.nal 1272 ** test.db-wal => test.wal 1273 ** test.db-shm => test.shm 1274 ** test.db-mj7f3319fa => test.9fa 1275 */ 1276 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1277 #if SQLITE_ENABLE_8_3_NAMES<2 1278 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1279 #endif 1280 { 1281 int i, sz; 1282 sz = sqlite3Strlen30(z); 1283 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1284 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1285 } 1286 } 1287 #endif 1288 1289 /* 1290 ** Find (an approximate) sum of two LogEst values. This computation is 1291 ** not a simple "+" operator because LogEst is stored as a logarithmic 1292 ** value. 1293 ** 1294 */ 1295 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1296 static const unsigned char x[] = { 1297 10, 10, /* 0,1 */ 1298 9, 9, /* 2,3 */ 1299 8, 8, /* 4,5 */ 1300 7, 7, 7, /* 6,7,8 */ 1301 6, 6, 6, /* 9,10,11 */ 1302 5, 5, 5, /* 12-14 */ 1303 4, 4, 4, 4, /* 15-18 */ 1304 3, 3, 3, 3, 3, 3, /* 19-24 */ 1305 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1306 }; 1307 if( a>=b ){ 1308 if( a>b+49 ) return a; 1309 if( a>b+31 ) return a+1; 1310 return a+x[a-b]; 1311 }else{ 1312 if( b>a+49 ) return b; 1313 if( b>a+31 ) return b+1; 1314 return b+x[b-a]; 1315 } 1316 } 1317 1318 /* 1319 ** Convert an integer into a LogEst. In other words, compute an 1320 ** approximation for 10*log2(x). 1321 */ 1322 LogEst sqlite3LogEst(u64 x){ 1323 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1324 LogEst y = 40; 1325 if( x<8 ){ 1326 if( x<2 ) return 0; 1327 while( x<8 ){ y -= 10; x <<= 1; } 1328 }else{ 1329 while( x>255 ){ y += 40; x >>= 4; } 1330 while( x>15 ){ y += 10; x >>= 1; } 1331 } 1332 return a[x&7] + y - 10; 1333 } 1334 1335 #ifndef SQLITE_OMIT_VIRTUALTABLE 1336 /* 1337 ** Convert a double into a LogEst 1338 ** In other words, compute an approximation for 10*log2(x). 1339 */ 1340 LogEst sqlite3LogEstFromDouble(double x){ 1341 u64 a; 1342 LogEst e; 1343 assert( sizeof(x)==8 && sizeof(a)==8 ); 1344 if( x<=1 ) return 0; 1345 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1346 memcpy(&a, &x, 8); 1347 e = (a>>52) - 1022; 1348 return e*10; 1349 } 1350 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1351 1352 /* 1353 ** Convert a LogEst into an integer. 1354 */ 1355 u64 sqlite3LogEstToInt(LogEst x){ 1356 u64 n; 1357 if( x<10 ) return 1; 1358 n = x%10; 1359 x /= 10; 1360 if( n>=5 ) n -= 2; 1361 else if( n>=1 ) n -= 1; 1362 if( x>=3 ){ 1363 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); 1364 } 1365 return (n+8)>>(3-x); 1366 } 1367