xref: /sqlite-3.40.0/src/util.c (revision e7a37704)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36 ** or to bypass normal error detection during testing in order to let
37 ** execute proceed futher downstream.
38 **
39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
40 ** sqlite3FaultSim() function only returns non-zero during testing.
41 **
42 ** During testing, if the test harness has set a fault-sim callback using
43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44 ** each call to sqlite3FaultSim() is relayed to that application-supplied
45 ** callback and the integer return value form the application-supplied
46 ** callback is returned by sqlite3FaultSim().
47 **
48 ** The integer argument to sqlite3FaultSim() is a code to identify which
49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50 ** should have a unique code.  To prevent legacy testing applications from
51 ** breaking, the codes should not be changed or reused.
52 */
53 #ifndef SQLITE_UNTESTABLE
54 int sqlite3FaultSim(int iTest){
55   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56   return xCallback ? xCallback(iTest) : SQLITE_OK;
57 }
58 #endif
59 
60 #ifndef SQLITE_OMIT_FLOATING_POINT
61 /*
62 ** Return true if the floating point value is Not a Number (NaN).
63 */
64 int sqlite3IsNaN(double x){
65   u64 y;
66   memcpy(&y,&x,sizeof(y));
67   return IsNaN(y);
68 }
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
70 
71 /*
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
74 **
75 ** The value returned will never be negative.  Nor will it ever be greater
76 ** than the actual length of the string.  For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
78 */
79 int sqlite3Strlen30(const char *z){
80   if( z==0 ) return 0;
81   return 0x3fffffff & (int)strlen(z);
82 }
83 
84 /*
85 ** Return the declared type of a column.  Or return zDflt if the column
86 ** has no declared type.
87 **
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
90 */
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
93   return pCol->zName + strlen(pCol->zName) + 1;
94 }
95 
96 /*
97 ** Helper function for sqlite3Error() - called rarely.  Broken out into
98 ** a separate routine to avoid unnecessary register saves on entry to
99 ** sqlite3Error().
100 */
101 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
102   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
103   sqlite3SystemError(db, err_code);
104 }
105 
106 /*
107 ** Set the current error code to err_code and clear any prior error message.
108 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
109 ** that would be appropriate.
110 */
111 void sqlite3Error(sqlite3 *db, int err_code){
112   assert( db!=0 );
113   db->errCode = err_code;
114   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
115 }
116 
117 /*
118 ** The equivalent of sqlite3Error(db, SQLITE_OK).  Clear the error state
119 ** and error message.
120 */
121 void sqlite3ErrorClear(sqlite3 *db){
122   assert( db!=0 );
123   db->errCode = SQLITE_OK;
124   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
125 }
126 
127 /*
128 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
129 ** to do based on the SQLite error code in rc.
130 */
131 void sqlite3SystemError(sqlite3 *db, int rc){
132   if( rc==SQLITE_IOERR_NOMEM ) return;
133   rc &= 0xff;
134   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
135     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
136   }
137 }
138 
139 /*
140 ** Set the most recent error code and error string for the sqlite
141 ** handle "db". The error code is set to "err_code".
142 **
143 ** If it is not NULL, string zFormat specifies the format of the
144 ** error string in the style of the printf functions: The following
145 ** format characters are allowed:
146 **
147 **      %s      Insert a string
148 **      %z      A string that should be freed after use
149 **      %d      Insert an integer
150 **      %T      Insert a token
151 **      %S      Insert the first element of a SrcList
152 **
153 ** zFormat and any string tokens that follow it are assumed to be
154 ** encoded in UTF-8.
155 **
156 ** To clear the most recent error for sqlite handle "db", sqlite3Error
157 ** should be called with err_code set to SQLITE_OK and zFormat set
158 ** to NULL.
159 */
160 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
161   assert( db!=0 );
162   db->errCode = err_code;
163   sqlite3SystemError(db, err_code);
164   if( zFormat==0 ){
165     sqlite3Error(db, err_code);
166   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
167     char *z;
168     va_list ap;
169     va_start(ap, zFormat);
170     z = sqlite3VMPrintf(db, zFormat, ap);
171     va_end(ap);
172     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
173   }
174 }
175 
176 /*
177 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
178 ** The following formatting characters are allowed:
179 **
180 **      %s      Insert a string
181 **      %z      A string that should be freed after use
182 **      %d      Insert an integer
183 **      %T      Insert a token
184 **      %S      Insert the first element of a SrcList
185 **
186 ** This function should be used to report any error that occurs while
187 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
188 ** last thing the sqlite3_prepare() function does is copy the error
189 ** stored by this function into the database handle using sqlite3Error().
190 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
191 ** during statement execution (sqlite3_step() etc.).
192 */
193 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
194   char *zMsg;
195   va_list ap;
196   sqlite3 *db = pParse->db;
197   va_start(ap, zFormat);
198   zMsg = sqlite3VMPrintf(db, zFormat, ap);
199   va_end(ap);
200   if( db->suppressErr ){
201     sqlite3DbFree(db, zMsg);
202   }else{
203     pParse->nErr++;
204     sqlite3DbFree(db, pParse->zErrMsg);
205     pParse->zErrMsg = zMsg;
206     pParse->rc = SQLITE_ERROR;
207     pParse->pWith = 0;
208   }
209 }
210 
211 /*
212 ** If database connection db is currently parsing SQL, then transfer
213 ** error code errCode to that parser if the parser has not already
214 ** encountered some other kind of error.
215 */
216 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
217   Parse *pParse;
218   if( db==0 || (pParse = db->pParse)==0 ) return errCode;
219   pParse->rc = errCode;
220   pParse->nErr++;
221   return errCode;
222 }
223 
224 /*
225 ** Convert an SQL-style quoted string into a normal string by removing
226 ** the quote characters.  The conversion is done in-place.  If the
227 ** input does not begin with a quote character, then this routine
228 ** is a no-op.
229 **
230 ** The input string must be zero-terminated.  A new zero-terminator
231 ** is added to the dequoted string.
232 **
233 ** The return value is -1 if no dequoting occurs or the length of the
234 ** dequoted string, exclusive of the zero terminator, if dequoting does
235 ** occur.
236 **
237 ** 2002-02-14: This routine is extended to remove MS-Access style
238 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
239 ** "a-b-c".
240 */
241 void sqlite3Dequote(char *z){
242   char quote;
243   int i, j;
244   if( z==0 ) return;
245   quote = z[0];
246   if( !sqlite3Isquote(quote) ) return;
247   if( quote=='[' ) quote = ']';
248   for(i=1, j=0;; i++){
249     assert( z[i] );
250     if( z[i]==quote ){
251       if( z[i+1]==quote ){
252         z[j++] = quote;
253         i++;
254       }else{
255         break;
256       }
257     }else{
258       z[j++] = z[i];
259     }
260   }
261   z[j] = 0;
262 }
263 void sqlite3DequoteExpr(Expr *p){
264   assert( sqlite3Isquote(p->u.zToken[0]) );
265   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
266   sqlite3Dequote(p->u.zToken);
267 }
268 
269 /*
270 ** Generate a Token object from a string
271 */
272 void sqlite3TokenInit(Token *p, char *z){
273   p->z = z;
274   p->n = sqlite3Strlen30(z);
275 }
276 
277 /* Convenient short-hand */
278 #define UpperToLower sqlite3UpperToLower
279 
280 /*
281 ** Some systems have stricmp().  Others have strcasecmp().  Because
282 ** there is no consistency, we will define our own.
283 **
284 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
285 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
286 ** the contents of two buffers containing UTF-8 strings in a
287 ** case-independent fashion, using the same definition of "case
288 ** independence" that SQLite uses internally when comparing identifiers.
289 */
290 int sqlite3_stricmp(const char *zLeft, const char *zRight){
291   if( zLeft==0 ){
292     return zRight ? -1 : 0;
293   }else if( zRight==0 ){
294     return 1;
295   }
296   return sqlite3StrICmp(zLeft, zRight);
297 }
298 int sqlite3StrICmp(const char *zLeft, const char *zRight){
299   unsigned char *a, *b;
300   int c, x;
301   a = (unsigned char *)zLeft;
302   b = (unsigned char *)zRight;
303   for(;;){
304     c = *a;
305     x = *b;
306     if( c==x ){
307       if( c==0 ) break;
308     }else{
309       c = (int)UpperToLower[c] - (int)UpperToLower[x];
310       if( c ) break;
311     }
312     a++;
313     b++;
314   }
315   return c;
316 }
317 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
318   register unsigned char *a, *b;
319   if( zLeft==0 ){
320     return zRight ? -1 : 0;
321   }else if( zRight==0 ){
322     return 1;
323   }
324   a = (unsigned char *)zLeft;
325   b = (unsigned char *)zRight;
326   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
327   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
328 }
329 
330 /*
331 ** Compute an 8-bit hash on a string that is insensitive to case differences
332 */
333 u8 sqlite3StrIHash(const char *z){
334   u8 h = 0;
335   if( z==0 ) return 0;
336   while( z[0] ){
337     h += UpperToLower[(unsigned char)z[0]];
338     z++;
339   }
340   return h;
341 }
342 
343 /*
344 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
345 ** E==2 results in 100.  E==50 results in 1.0e50.
346 **
347 ** This routine only works for values of E between 1 and 341.
348 */
349 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
350 #if defined(_MSC_VER)
351   static const LONGDOUBLE_TYPE x[] = {
352     1.0e+001L,
353     1.0e+002L,
354     1.0e+004L,
355     1.0e+008L,
356     1.0e+016L,
357     1.0e+032L,
358     1.0e+064L,
359     1.0e+128L,
360     1.0e+256L
361   };
362   LONGDOUBLE_TYPE r = 1.0;
363   int i;
364   assert( E>=0 && E<=307 );
365   for(i=0; E!=0; i++, E >>=1){
366     if( E & 1 ) r *= x[i];
367   }
368   return r;
369 #else
370   LONGDOUBLE_TYPE x = 10.0;
371   LONGDOUBLE_TYPE r = 1.0;
372   while(1){
373     if( E & 1 ) r *= x;
374     E >>= 1;
375     if( E==0 ) break;
376     x *= x;
377   }
378   return r;
379 #endif
380 }
381 
382 /*
383 ** The string z[] is an text representation of a real number.
384 ** Convert this string to a double and write it into *pResult.
385 **
386 ** The string z[] is length bytes in length (bytes, not characters) and
387 ** uses the encoding enc.  The string is not necessarily zero-terminated.
388 **
389 ** Return TRUE if the result is a valid real number (or integer) and FALSE
390 ** if the string is empty or contains extraneous text.  More specifically
391 ** return
392 **      1          =>  The input string is a pure integer
393 **      2 or more  =>  The input has a decimal point or eNNN clause
394 **      0 or less  =>  The input string is not a valid number
395 **     -1          =>  Not a valid number, but has a valid prefix which
396 **                     includes a decimal point and/or an eNNN clause
397 **
398 ** Valid numbers are in one of these formats:
399 **
400 **    [+-]digits[E[+-]digits]
401 **    [+-]digits.[digits][E[+-]digits]
402 **    [+-].digits[E[+-]digits]
403 **
404 ** Leading and trailing whitespace is ignored for the purpose of determining
405 ** validity.
406 **
407 ** If some prefix of the input string is a valid number, this routine
408 ** returns FALSE but it still converts the prefix and writes the result
409 ** into *pResult.
410 */
411 #if defined(_MSC_VER)
412 #pragma warning(disable : 4756)
413 #endif
414 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
415 #ifndef SQLITE_OMIT_FLOATING_POINT
416   int incr;
417   const char *zEnd;
418   /* sign * significand * (10 ^ (esign * exponent)) */
419   int sign = 1;    /* sign of significand */
420   i64 s = 0;       /* significand */
421   int d = 0;       /* adjust exponent for shifting decimal point */
422   int esign = 1;   /* sign of exponent */
423   int e = 0;       /* exponent */
424   int eValid = 1;  /* True exponent is either not used or is well-formed */
425   double result;
426   int nDigit = 0;  /* Number of digits processed */
427   int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
428 
429   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
430   *pResult = 0.0;   /* Default return value, in case of an error */
431   if( length==0 ) return 0;
432 
433   if( enc==SQLITE_UTF8 ){
434     incr = 1;
435     zEnd = z + length;
436   }else{
437     int i;
438     incr = 2;
439     length &= ~1;
440     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
441     testcase( enc==SQLITE_UTF16LE );
442     testcase( enc==SQLITE_UTF16BE );
443     for(i=3-enc; i<length && z[i]==0; i+=2){}
444     if( i<length ) eType = -100;
445     zEnd = &z[i^1];
446     z += (enc&1);
447   }
448 
449   /* skip leading spaces */
450   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
451   if( z>=zEnd ) return 0;
452 
453   /* get sign of significand */
454   if( *z=='-' ){
455     sign = -1;
456     z+=incr;
457   }else if( *z=='+' ){
458     z+=incr;
459   }
460 
461   /* copy max significant digits to significand */
462   while( z<zEnd && sqlite3Isdigit(*z) ){
463     s = s*10 + (*z - '0');
464     z+=incr; nDigit++;
465     if( s>=((LARGEST_INT64-9)/10) ){
466       /* skip non-significant significand digits
467       ** (increase exponent by d to shift decimal left) */
468       while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
469     }
470   }
471   if( z>=zEnd ) goto do_atof_calc;
472 
473   /* if decimal point is present */
474   if( *z=='.' ){
475     z+=incr;
476     eType++;
477     /* copy digits from after decimal to significand
478     ** (decrease exponent by d to shift decimal right) */
479     while( z<zEnd && sqlite3Isdigit(*z) ){
480       if( s<((LARGEST_INT64-9)/10) ){
481         s = s*10 + (*z - '0');
482         d--;
483         nDigit++;
484       }
485       z+=incr;
486     }
487   }
488   if( z>=zEnd ) goto do_atof_calc;
489 
490   /* if exponent is present */
491   if( *z=='e' || *z=='E' ){
492     z+=incr;
493     eValid = 0;
494     eType++;
495 
496     /* This branch is needed to avoid a (harmless) buffer overread.  The
497     ** special comment alerts the mutation tester that the correct answer
498     ** is obtained even if the branch is omitted */
499     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
500 
501     /* get sign of exponent */
502     if( *z=='-' ){
503       esign = -1;
504       z+=incr;
505     }else if( *z=='+' ){
506       z+=incr;
507     }
508     /* copy digits to exponent */
509     while( z<zEnd && sqlite3Isdigit(*z) ){
510       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
511       z+=incr;
512       eValid = 1;
513     }
514   }
515 
516   /* skip trailing spaces */
517   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
518 
519 do_atof_calc:
520   /* adjust exponent by d, and update sign */
521   e = (e*esign) + d;
522   if( e<0 ) {
523     esign = -1;
524     e *= -1;
525   } else {
526     esign = 1;
527   }
528 
529   if( s==0 ) {
530     /* In the IEEE 754 standard, zero is signed. */
531     result = sign<0 ? -(double)0 : (double)0;
532   } else {
533     /* Attempt to reduce exponent.
534     **
535     ** Branches that are not required for the correct answer but which only
536     ** help to obtain the correct answer faster are marked with special
537     ** comments, as a hint to the mutation tester.
538     */
539     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
540       if( esign>0 ){
541         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
542         s *= 10;
543       }else{
544         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
545         s /= 10;
546       }
547       e--;
548     }
549 
550     /* adjust the sign of significand */
551     s = sign<0 ? -s : s;
552 
553     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
554       result = (double)s;
555     }else{
556       /* attempt to handle extremely small/large numbers better */
557       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
558         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
559           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
560           if( esign<0 ){
561             result = s / scale;
562             result /= 1.0e+308;
563           }else{
564             result = s * scale;
565             result *= 1.0e+308;
566           }
567         }else{ assert( e>=342 );
568           if( esign<0 ){
569             result = 0.0*s;
570           }else{
571 #ifdef INFINITY
572             result = INFINITY*s;
573 #else
574             result = 1e308*1e308*s;  /* Infinity */
575 #endif
576           }
577         }
578       }else{
579         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
580         if( esign<0 ){
581           result = s / scale;
582         }else{
583           result = s * scale;
584         }
585       }
586     }
587   }
588 
589   /* store the result */
590   *pResult = result;
591 
592   /* return true if number and no extra non-whitespace chracters after */
593   if( z==zEnd && nDigit>0 && eValid && eType>0 ){
594     return eType;
595   }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
596     return -1;
597   }else{
598     return 0;
599   }
600 #else
601   return !sqlite3Atoi64(z, pResult, length, enc);
602 #endif /* SQLITE_OMIT_FLOATING_POINT */
603 }
604 #if defined(_MSC_VER)
605 #pragma warning(default : 4756)
606 #endif
607 
608 /*
609 ** Render an signed 64-bit integer as text.  Store the result in zOut[].
610 **
611 ** The caller must ensure that zOut[] is at least 21 bytes in size.
612 */
613 void sqlite3Int64ToText(i64 v, char *zOut){
614   int i;
615   u64 x;
616   char zTemp[22];
617   if( v<0 ){
618     x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
619   }else{
620     x = v;
621   }
622   i = sizeof(zTemp)-2;
623   zTemp[sizeof(zTemp)-1] = 0;
624   do{
625     zTemp[i--] = (x%10) + '0';
626     x = x/10;
627   }while( x );
628   if( v<0 ) zTemp[i--] = '-';
629   memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
630 }
631 
632 /*
633 ** Compare the 19-character string zNum against the text representation
634 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
635 ** if zNum is less than, equal to, or greater than the string.
636 ** Note that zNum must contain exactly 19 characters.
637 **
638 ** Unlike memcmp() this routine is guaranteed to return the difference
639 ** in the values of the last digit if the only difference is in the
640 ** last digit.  So, for example,
641 **
642 **      compare2pow63("9223372036854775800", 1)
643 **
644 ** will return -8.
645 */
646 static int compare2pow63(const char *zNum, int incr){
647   int c = 0;
648   int i;
649                     /* 012345678901234567 */
650   const char *pow63 = "922337203685477580";
651   for(i=0; c==0 && i<18; i++){
652     c = (zNum[i*incr]-pow63[i])*10;
653   }
654   if( c==0 ){
655     c = zNum[18*incr] - '8';
656     testcase( c==(-1) );
657     testcase( c==0 );
658     testcase( c==(+1) );
659   }
660   return c;
661 }
662 
663 /*
664 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
665 ** routine does *not* accept hexadecimal notation.
666 **
667 ** Returns:
668 **
669 **    -1    Not even a prefix of the input text looks like an integer
670 **     0    Successful transformation.  Fits in a 64-bit signed integer.
671 **     1    Excess non-space text after the integer value
672 **     2    Integer too large for a 64-bit signed integer or is malformed
673 **     3    Special case of 9223372036854775808
674 **
675 ** length is the number of bytes in the string (bytes, not characters).
676 ** The string is not necessarily zero-terminated.  The encoding is
677 ** given by enc.
678 */
679 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
680   int incr;
681   u64 u = 0;
682   int neg = 0; /* assume positive */
683   int i;
684   int c = 0;
685   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
686   int rc;          /* Baseline return code */
687   const char *zStart;
688   const char *zEnd = zNum + length;
689   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
690   if( enc==SQLITE_UTF8 ){
691     incr = 1;
692   }else{
693     incr = 2;
694     length &= ~1;
695     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
696     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
697     nonNum = i<length;
698     zEnd = &zNum[i^1];
699     zNum += (enc&1);
700   }
701   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
702   if( zNum<zEnd ){
703     if( *zNum=='-' ){
704       neg = 1;
705       zNum+=incr;
706     }else if( *zNum=='+' ){
707       zNum+=incr;
708     }
709   }
710   zStart = zNum;
711   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
712   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
713     u = u*10 + c - '0';
714   }
715   testcase( i==18*incr );
716   testcase( i==19*incr );
717   testcase( i==20*incr );
718   if( u>LARGEST_INT64 ){
719     /* This test and assignment is needed only to suppress UB warnings
720     ** from clang and -fsanitize=undefined.  This test and assignment make
721     ** the code a little larger and slower, and no harm comes from omitting
722     ** them, but we must appaise the undefined-behavior pharisees. */
723     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
724   }else if( neg ){
725     *pNum = -(i64)u;
726   }else{
727     *pNum = (i64)u;
728   }
729   rc = 0;
730   if( i==0 && zStart==zNum ){    /* No digits */
731     rc = -1;
732   }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
733     rc = 1;
734   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
735     int jj = i;
736     do{
737       if( !sqlite3Isspace(zNum[jj]) ){
738         rc = 1;          /* Extra non-space text after the integer */
739         break;
740       }
741       jj += incr;
742     }while( &zNum[jj]<zEnd );
743   }
744   if( i<19*incr ){
745     /* Less than 19 digits, so we know that it fits in 64 bits */
746     assert( u<=LARGEST_INT64 );
747     return rc;
748   }else{
749     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
750     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
751     if( c<0 ){
752       /* zNum is less than 9223372036854775808 so it fits */
753       assert( u<=LARGEST_INT64 );
754       return rc;
755     }else{
756       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
757       if( c>0 ){
758         /* zNum is greater than 9223372036854775808 so it overflows */
759         return 2;
760       }else{
761         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
762         ** special case 2 overflow if positive */
763         assert( u-1==LARGEST_INT64 );
764         return neg ? rc : 3;
765       }
766     }
767   }
768 }
769 
770 /*
771 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
772 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
773 ** whereas sqlite3Atoi64() does not.
774 **
775 ** Returns:
776 **
777 **     0    Successful transformation.  Fits in a 64-bit signed integer.
778 **     1    Excess text after the integer value
779 **     2    Integer too large for a 64-bit signed integer or is malformed
780 **     3    Special case of 9223372036854775808
781 */
782 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
783 #ifndef SQLITE_OMIT_HEX_INTEGER
784   if( z[0]=='0'
785    && (z[1]=='x' || z[1]=='X')
786   ){
787     u64 u = 0;
788     int i, k;
789     for(i=2; z[i]=='0'; i++){}
790     for(k=i; sqlite3Isxdigit(z[k]); k++){
791       u = u*16 + sqlite3HexToInt(z[k]);
792     }
793     memcpy(pOut, &u, 8);
794     return (z[k]==0 && k-i<=16) ? 0 : 2;
795   }else
796 #endif /* SQLITE_OMIT_HEX_INTEGER */
797   {
798     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
799   }
800 }
801 
802 /*
803 ** If zNum represents an integer that will fit in 32-bits, then set
804 ** *pValue to that integer and return true.  Otherwise return false.
805 **
806 ** This routine accepts both decimal and hexadecimal notation for integers.
807 **
808 ** Any non-numeric characters that following zNum are ignored.
809 ** This is different from sqlite3Atoi64() which requires the
810 ** input number to be zero-terminated.
811 */
812 int sqlite3GetInt32(const char *zNum, int *pValue){
813   sqlite_int64 v = 0;
814   int i, c;
815   int neg = 0;
816   if( zNum[0]=='-' ){
817     neg = 1;
818     zNum++;
819   }else if( zNum[0]=='+' ){
820     zNum++;
821   }
822 #ifndef SQLITE_OMIT_HEX_INTEGER
823   else if( zNum[0]=='0'
824         && (zNum[1]=='x' || zNum[1]=='X')
825         && sqlite3Isxdigit(zNum[2])
826   ){
827     u32 u = 0;
828     zNum += 2;
829     while( zNum[0]=='0' ) zNum++;
830     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
831       u = u*16 + sqlite3HexToInt(zNum[i]);
832     }
833     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
834       memcpy(pValue, &u, 4);
835       return 1;
836     }else{
837       return 0;
838     }
839   }
840 #endif
841   if( !sqlite3Isdigit(zNum[0]) ) return 0;
842   while( zNum[0]=='0' ) zNum++;
843   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
844     v = v*10 + c;
845   }
846 
847   /* The longest decimal representation of a 32 bit integer is 10 digits:
848   **
849   **             1234567890
850   **     2^31 -> 2147483648
851   */
852   testcase( i==10 );
853   if( i>10 ){
854     return 0;
855   }
856   testcase( v-neg==2147483647 );
857   if( v-neg>2147483647 ){
858     return 0;
859   }
860   if( neg ){
861     v = -v;
862   }
863   *pValue = (int)v;
864   return 1;
865 }
866 
867 /*
868 ** Return a 32-bit integer value extracted from a string.  If the
869 ** string is not an integer, just return 0.
870 */
871 int sqlite3Atoi(const char *z){
872   int x = 0;
873   sqlite3GetInt32(z, &x);
874   return x;
875 }
876 
877 /*
878 ** Try to convert z into an unsigned 32-bit integer.  Return true on
879 ** success and false if there is an error.
880 **
881 ** Only decimal notation is accepted.
882 */
883 int sqlite3GetUInt32(const char *z, u32 *pI){
884   u64 v = 0;
885   int i;
886   for(i=0; sqlite3Isdigit(z[i]); i++){
887     v = v*10 + z[i] - '0';
888     if( v>4294967296LL ){ *pI = 0; return 0; }
889   }
890   if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
891   *pI = (u32)v;
892   return 1;
893 }
894 
895 /*
896 ** The variable-length integer encoding is as follows:
897 **
898 ** KEY:
899 **         A = 0xxxxxxx    7 bits of data and one flag bit
900 **         B = 1xxxxxxx    7 bits of data and one flag bit
901 **         C = xxxxxxxx    8 bits of data
902 **
903 **  7 bits - A
904 ** 14 bits - BA
905 ** 21 bits - BBA
906 ** 28 bits - BBBA
907 ** 35 bits - BBBBA
908 ** 42 bits - BBBBBA
909 ** 49 bits - BBBBBBA
910 ** 56 bits - BBBBBBBA
911 ** 64 bits - BBBBBBBBC
912 */
913 
914 /*
915 ** Write a 64-bit variable-length integer to memory starting at p[0].
916 ** The length of data write will be between 1 and 9 bytes.  The number
917 ** of bytes written is returned.
918 **
919 ** A variable-length integer consists of the lower 7 bits of each byte
920 ** for all bytes that have the 8th bit set and one byte with the 8th
921 ** bit clear.  Except, if we get to the 9th byte, it stores the full
922 ** 8 bits and is the last byte.
923 */
924 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
925   int i, j, n;
926   u8 buf[10];
927   if( v & (((u64)0xff000000)<<32) ){
928     p[8] = (u8)v;
929     v >>= 8;
930     for(i=7; i>=0; i--){
931       p[i] = (u8)((v & 0x7f) | 0x80);
932       v >>= 7;
933     }
934     return 9;
935   }
936   n = 0;
937   do{
938     buf[n++] = (u8)((v & 0x7f) | 0x80);
939     v >>= 7;
940   }while( v!=0 );
941   buf[0] &= 0x7f;
942   assert( n<=9 );
943   for(i=0, j=n-1; j>=0; j--, i++){
944     p[i] = buf[j];
945   }
946   return n;
947 }
948 int sqlite3PutVarint(unsigned char *p, u64 v){
949   if( v<=0x7f ){
950     p[0] = v&0x7f;
951     return 1;
952   }
953   if( v<=0x3fff ){
954     p[0] = ((v>>7)&0x7f)|0x80;
955     p[1] = v&0x7f;
956     return 2;
957   }
958   return putVarint64(p,v);
959 }
960 
961 /*
962 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
963 ** are defined here rather than simply putting the constant expressions
964 ** inline in order to work around bugs in the RVT compiler.
965 **
966 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
967 **
968 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
969 */
970 #define SLOT_2_0     0x001fc07f
971 #define SLOT_4_2_0   0xf01fc07f
972 
973 
974 /*
975 ** Read a 64-bit variable-length integer from memory starting at p[0].
976 ** Return the number of bytes read.  The value is stored in *v.
977 */
978 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
979   u32 a,b,s;
980 
981   if( ((signed char*)p)[0]>=0 ){
982     *v = *p;
983     return 1;
984   }
985   if( ((signed char*)p)[1]>=0 ){
986     *v = ((u32)(p[0]&0x7f)<<7) | p[1];
987     return 2;
988   }
989 
990   /* Verify that constants are precomputed correctly */
991   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
992   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
993 
994   a = ((u32)p[0])<<14;
995   b = p[1];
996   p += 2;
997   a |= *p;
998   /* a: p0<<14 | p2 (unmasked) */
999   if (!(a&0x80))
1000   {
1001     a &= SLOT_2_0;
1002     b &= 0x7f;
1003     b = b<<7;
1004     a |= b;
1005     *v = a;
1006     return 3;
1007   }
1008 
1009   /* CSE1 from below */
1010   a &= SLOT_2_0;
1011   p++;
1012   b = b<<14;
1013   b |= *p;
1014   /* b: p1<<14 | p3 (unmasked) */
1015   if (!(b&0x80))
1016   {
1017     b &= SLOT_2_0;
1018     /* moved CSE1 up */
1019     /* a &= (0x7f<<14)|(0x7f); */
1020     a = a<<7;
1021     a |= b;
1022     *v = a;
1023     return 4;
1024   }
1025 
1026   /* a: p0<<14 | p2 (masked) */
1027   /* b: p1<<14 | p3 (unmasked) */
1028   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1029   /* moved CSE1 up */
1030   /* a &= (0x7f<<14)|(0x7f); */
1031   b &= SLOT_2_0;
1032   s = a;
1033   /* s: p0<<14 | p2 (masked) */
1034 
1035   p++;
1036   a = a<<14;
1037   a |= *p;
1038   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1039   if (!(a&0x80))
1040   {
1041     /* we can skip these cause they were (effectively) done above
1042     ** while calculating s */
1043     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1044     /* b &= (0x7f<<14)|(0x7f); */
1045     b = b<<7;
1046     a |= b;
1047     s = s>>18;
1048     *v = ((u64)s)<<32 | a;
1049     return 5;
1050   }
1051 
1052   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1053   s = s<<7;
1054   s |= b;
1055   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1056 
1057   p++;
1058   b = b<<14;
1059   b |= *p;
1060   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1061   if (!(b&0x80))
1062   {
1063     /* we can skip this cause it was (effectively) done above in calc'ing s */
1064     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1065     a &= SLOT_2_0;
1066     a = a<<7;
1067     a |= b;
1068     s = s>>18;
1069     *v = ((u64)s)<<32 | a;
1070     return 6;
1071   }
1072 
1073   p++;
1074   a = a<<14;
1075   a |= *p;
1076   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1077   if (!(a&0x80))
1078   {
1079     a &= SLOT_4_2_0;
1080     b &= SLOT_2_0;
1081     b = b<<7;
1082     a |= b;
1083     s = s>>11;
1084     *v = ((u64)s)<<32 | a;
1085     return 7;
1086   }
1087 
1088   /* CSE2 from below */
1089   a &= SLOT_2_0;
1090   p++;
1091   b = b<<14;
1092   b |= *p;
1093   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1094   if (!(b&0x80))
1095   {
1096     b &= SLOT_4_2_0;
1097     /* moved CSE2 up */
1098     /* a &= (0x7f<<14)|(0x7f); */
1099     a = a<<7;
1100     a |= b;
1101     s = s>>4;
1102     *v = ((u64)s)<<32 | a;
1103     return 8;
1104   }
1105 
1106   p++;
1107   a = a<<15;
1108   a |= *p;
1109   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1110 
1111   /* moved CSE2 up */
1112   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1113   b &= SLOT_2_0;
1114   b = b<<8;
1115   a |= b;
1116 
1117   s = s<<4;
1118   b = p[-4];
1119   b &= 0x7f;
1120   b = b>>3;
1121   s |= b;
1122 
1123   *v = ((u64)s)<<32 | a;
1124 
1125   return 9;
1126 }
1127 
1128 /*
1129 ** Read a 32-bit variable-length integer from memory starting at p[0].
1130 ** Return the number of bytes read.  The value is stored in *v.
1131 **
1132 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1133 ** integer, then set *v to 0xffffffff.
1134 **
1135 ** A MACRO version, getVarint32, is provided which inlines the
1136 ** single-byte case.  All code should use the MACRO version as
1137 ** this function assumes the single-byte case has already been handled.
1138 */
1139 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1140   u32 a,b;
1141 
1142   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1143   ** by the getVarin32() macro */
1144   a = *p;
1145   /* a: p0 (unmasked) */
1146 #ifndef getVarint32
1147   if (!(a&0x80))
1148   {
1149     /* Values between 0 and 127 */
1150     *v = a;
1151     return 1;
1152   }
1153 #endif
1154 
1155   /* The 2-byte case */
1156   p++;
1157   b = *p;
1158   /* b: p1 (unmasked) */
1159   if (!(b&0x80))
1160   {
1161     /* Values between 128 and 16383 */
1162     a &= 0x7f;
1163     a = a<<7;
1164     *v = a | b;
1165     return 2;
1166   }
1167 
1168   /* The 3-byte case */
1169   p++;
1170   a = a<<14;
1171   a |= *p;
1172   /* a: p0<<14 | p2 (unmasked) */
1173   if (!(a&0x80))
1174   {
1175     /* Values between 16384 and 2097151 */
1176     a &= (0x7f<<14)|(0x7f);
1177     b &= 0x7f;
1178     b = b<<7;
1179     *v = a | b;
1180     return 3;
1181   }
1182 
1183   /* A 32-bit varint is used to store size information in btrees.
1184   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1185   ** A 3-byte varint is sufficient, for example, to record the size
1186   ** of a 1048569-byte BLOB or string.
1187   **
1188   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1189   ** rare larger cases can be handled by the slower 64-bit varint
1190   ** routine.
1191   */
1192 #if 1
1193   {
1194     u64 v64;
1195     u8 n;
1196 
1197     n = sqlite3GetVarint(p-2, &v64);
1198     assert( n>3 && n<=9 );
1199     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1200       *v = 0xffffffff;
1201     }else{
1202       *v = (u32)v64;
1203     }
1204     return n;
1205   }
1206 
1207 #else
1208   /* For following code (kept for historical record only) shows an
1209   ** unrolling for the 3- and 4-byte varint cases.  This code is
1210   ** slightly faster, but it is also larger and much harder to test.
1211   */
1212   p++;
1213   b = b<<14;
1214   b |= *p;
1215   /* b: p1<<14 | p3 (unmasked) */
1216   if (!(b&0x80))
1217   {
1218     /* Values between 2097152 and 268435455 */
1219     b &= (0x7f<<14)|(0x7f);
1220     a &= (0x7f<<14)|(0x7f);
1221     a = a<<7;
1222     *v = a | b;
1223     return 4;
1224   }
1225 
1226   p++;
1227   a = a<<14;
1228   a |= *p;
1229   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1230   if (!(a&0x80))
1231   {
1232     /* Values  between 268435456 and 34359738367 */
1233     a &= SLOT_4_2_0;
1234     b &= SLOT_4_2_0;
1235     b = b<<7;
1236     *v = a | b;
1237     return 5;
1238   }
1239 
1240   /* We can only reach this point when reading a corrupt database
1241   ** file.  In that case we are not in any hurry.  Use the (relatively
1242   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1243   ** value. */
1244   {
1245     u64 v64;
1246     u8 n;
1247 
1248     p -= 4;
1249     n = sqlite3GetVarint(p, &v64);
1250     assert( n>5 && n<=9 );
1251     *v = (u32)v64;
1252     return n;
1253   }
1254 #endif
1255 }
1256 
1257 /*
1258 ** Return the number of bytes that will be needed to store the given
1259 ** 64-bit integer.
1260 */
1261 int sqlite3VarintLen(u64 v){
1262   int i;
1263   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1264   return i;
1265 }
1266 
1267 
1268 /*
1269 ** Read or write a four-byte big-endian integer value.
1270 */
1271 u32 sqlite3Get4byte(const u8 *p){
1272 #if SQLITE_BYTEORDER==4321
1273   u32 x;
1274   memcpy(&x,p,4);
1275   return x;
1276 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1277   u32 x;
1278   memcpy(&x,p,4);
1279   return __builtin_bswap32(x);
1280 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1281   u32 x;
1282   memcpy(&x,p,4);
1283   return _byteswap_ulong(x);
1284 #else
1285   testcase( p[0]&0x80 );
1286   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1287 #endif
1288 }
1289 void sqlite3Put4byte(unsigned char *p, u32 v){
1290 #if SQLITE_BYTEORDER==4321
1291   memcpy(p,&v,4);
1292 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1293   u32 x = __builtin_bswap32(v);
1294   memcpy(p,&x,4);
1295 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1296   u32 x = _byteswap_ulong(v);
1297   memcpy(p,&x,4);
1298 #else
1299   p[0] = (u8)(v>>24);
1300   p[1] = (u8)(v>>16);
1301   p[2] = (u8)(v>>8);
1302   p[3] = (u8)v;
1303 #endif
1304 }
1305 
1306 
1307 
1308 /*
1309 ** Translate a single byte of Hex into an integer.
1310 ** This routine only works if h really is a valid hexadecimal
1311 ** character:  0..9a..fA..F
1312 */
1313 u8 sqlite3HexToInt(int h){
1314   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1315 #ifdef SQLITE_ASCII
1316   h += 9*(1&(h>>6));
1317 #endif
1318 #ifdef SQLITE_EBCDIC
1319   h += 9*(1&~(h>>4));
1320 #endif
1321   return (u8)(h & 0xf);
1322 }
1323 
1324 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1325 /*
1326 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1327 ** value.  Return a pointer to its binary value.  Space to hold the
1328 ** binary value has been obtained from malloc and must be freed by
1329 ** the calling routine.
1330 */
1331 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1332   char *zBlob;
1333   int i;
1334 
1335   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1336   n--;
1337   if( zBlob ){
1338     for(i=0; i<n; i+=2){
1339       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1340     }
1341     zBlob[i/2] = 0;
1342   }
1343   return zBlob;
1344 }
1345 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1346 
1347 /*
1348 ** Log an error that is an API call on a connection pointer that should
1349 ** not have been used.  The "type" of connection pointer is given as the
1350 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1351 */
1352 static void logBadConnection(const char *zType){
1353   sqlite3_log(SQLITE_MISUSE,
1354      "API call with %s database connection pointer",
1355      zType
1356   );
1357 }
1358 
1359 /*
1360 ** Check to make sure we have a valid db pointer.  This test is not
1361 ** foolproof but it does provide some measure of protection against
1362 ** misuse of the interface such as passing in db pointers that are
1363 ** NULL or which have been previously closed.  If this routine returns
1364 ** 1 it means that the db pointer is valid and 0 if it should not be
1365 ** dereferenced for any reason.  The calling function should invoke
1366 ** SQLITE_MISUSE immediately.
1367 **
1368 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1369 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1370 ** open properly and is not fit for general use but which can be
1371 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1372 */
1373 int sqlite3SafetyCheckOk(sqlite3 *db){
1374   u32 magic;
1375   if( db==0 ){
1376     logBadConnection("NULL");
1377     return 0;
1378   }
1379   magic = db->magic;
1380   if( magic!=SQLITE_MAGIC_OPEN ){
1381     if( sqlite3SafetyCheckSickOrOk(db) ){
1382       testcase( sqlite3GlobalConfig.xLog!=0 );
1383       logBadConnection("unopened");
1384     }
1385     return 0;
1386   }else{
1387     return 1;
1388   }
1389 }
1390 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1391   u32 magic;
1392   magic = db->magic;
1393   if( magic!=SQLITE_MAGIC_SICK &&
1394       magic!=SQLITE_MAGIC_OPEN &&
1395       magic!=SQLITE_MAGIC_BUSY ){
1396     testcase( sqlite3GlobalConfig.xLog!=0 );
1397     logBadConnection("invalid");
1398     return 0;
1399   }else{
1400     return 1;
1401   }
1402 }
1403 
1404 /*
1405 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1406 ** the other 64-bit signed integer at *pA and store the result in *pA.
1407 ** Return 0 on success.  Or if the operation would have resulted in an
1408 ** overflow, leave *pA unchanged and return 1.
1409 */
1410 int sqlite3AddInt64(i64 *pA, i64 iB){
1411 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1412   return __builtin_add_overflow(*pA, iB, pA);
1413 #else
1414   i64 iA = *pA;
1415   testcase( iA==0 ); testcase( iA==1 );
1416   testcase( iB==-1 ); testcase( iB==0 );
1417   if( iB>=0 ){
1418     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1419     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1420     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1421   }else{
1422     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1423     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1424     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1425   }
1426   *pA += iB;
1427   return 0;
1428 #endif
1429 }
1430 int sqlite3SubInt64(i64 *pA, i64 iB){
1431 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1432   return __builtin_sub_overflow(*pA, iB, pA);
1433 #else
1434   testcase( iB==SMALLEST_INT64+1 );
1435   if( iB==SMALLEST_INT64 ){
1436     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1437     if( (*pA)>=0 ) return 1;
1438     *pA -= iB;
1439     return 0;
1440   }else{
1441     return sqlite3AddInt64(pA, -iB);
1442   }
1443 #endif
1444 }
1445 int sqlite3MulInt64(i64 *pA, i64 iB){
1446 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1447   return __builtin_mul_overflow(*pA, iB, pA);
1448 #else
1449   i64 iA = *pA;
1450   if( iB>0 ){
1451     if( iA>LARGEST_INT64/iB ) return 1;
1452     if( iA<SMALLEST_INT64/iB ) return 1;
1453   }else if( iB<0 ){
1454     if( iA>0 ){
1455       if( iB<SMALLEST_INT64/iA ) return 1;
1456     }else if( iA<0 ){
1457       if( iB==SMALLEST_INT64 ) return 1;
1458       if( iA==SMALLEST_INT64 ) return 1;
1459       if( -iA>LARGEST_INT64/-iB ) return 1;
1460     }
1461   }
1462   *pA = iA*iB;
1463   return 0;
1464 #endif
1465 }
1466 
1467 /*
1468 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1469 ** if the integer has a value of -2147483648, return +2147483647
1470 */
1471 int sqlite3AbsInt32(int x){
1472   if( x>=0 ) return x;
1473   if( x==(int)0x80000000 ) return 0x7fffffff;
1474   return -x;
1475 }
1476 
1477 #ifdef SQLITE_ENABLE_8_3_NAMES
1478 /*
1479 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1480 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1481 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1482 ** three characters, then shorten the suffix on z[] to be the last three
1483 ** characters of the original suffix.
1484 **
1485 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1486 ** do the suffix shortening regardless of URI parameter.
1487 **
1488 ** Examples:
1489 **
1490 **     test.db-journal    =>   test.nal
1491 **     test.db-wal        =>   test.wal
1492 **     test.db-shm        =>   test.shm
1493 **     test.db-mj7f3319fa =>   test.9fa
1494 */
1495 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1496 #if SQLITE_ENABLE_8_3_NAMES<2
1497   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1498 #endif
1499   {
1500     int i, sz;
1501     sz = sqlite3Strlen30(z);
1502     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1503     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1504   }
1505 }
1506 #endif
1507 
1508 /*
1509 ** Find (an approximate) sum of two LogEst values.  This computation is
1510 ** not a simple "+" operator because LogEst is stored as a logarithmic
1511 ** value.
1512 **
1513 */
1514 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1515   static const unsigned char x[] = {
1516      10, 10,                         /* 0,1 */
1517       9, 9,                          /* 2,3 */
1518       8, 8,                          /* 4,5 */
1519       7, 7, 7,                       /* 6,7,8 */
1520       6, 6, 6,                       /* 9,10,11 */
1521       5, 5, 5,                       /* 12-14 */
1522       4, 4, 4, 4,                    /* 15-18 */
1523       3, 3, 3, 3, 3, 3,              /* 19-24 */
1524       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1525   };
1526   if( a>=b ){
1527     if( a>b+49 ) return a;
1528     if( a>b+31 ) return a+1;
1529     return a+x[a-b];
1530   }else{
1531     if( b>a+49 ) return b;
1532     if( b>a+31 ) return b+1;
1533     return b+x[b-a];
1534   }
1535 }
1536 
1537 /*
1538 ** Convert an integer into a LogEst.  In other words, compute an
1539 ** approximation for 10*log2(x).
1540 */
1541 LogEst sqlite3LogEst(u64 x){
1542   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1543   LogEst y = 40;
1544   if( x<8 ){
1545     if( x<2 ) return 0;
1546     while( x<8 ){  y -= 10; x <<= 1; }
1547   }else{
1548 #if GCC_VERSION>=5004000
1549     int i = 60 - __builtin_clzll(x);
1550     y += i*10;
1551     x >>= i;
1552 #else
1553     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1554     while( x>15 ){  y += 10; x >>= 1; }
1555 #endif
1556   }
1557   return a[x&7] + y - 10;
1558 }
1559 
1560 #ifndef SQLITE_OMIT_VIRTUALTABLE
1561 /*
1562 ** Convert a double into a LogEst
1563 ** In other words, compute an approximation for 10*log2(x).
1564 */
1565 LogEst sqlite3LogEstFromDouble(double x){
1566   u64 a;
1567   LogEst e;
1568   assert( sizeof(x)==8 && sizeof(a)==8 );
1569   if( x<=1 ) return 0;
1570   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1571   memcpy(&a, &x, 8);
1572   e = (a>>52) - 1022;
1573   return e*10;
1574 }
1575 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1576 
1577 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1578     defined(SQLITE_ENABLE_STAT4) || \
1579     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1580 /*
1581 ** Convert a LogEst into an integer.
1582 **
1583 ** Note that this routine is only used when one or more of various
1584 ** non-standard compile-time options is enabled.
1585 */
1586 u64 sqlite3LogEstToInt(LogEst x){
1587   u64 n;
1588   n = x%10;
1589   x /= 10;
1590   if( n>=5 ) n -= 2;
1591   else if( n>=1 ) n -= 1;
1592 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1593     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1594   if( x>60 ) return (u64)LARGEST_INT64;
1595 #else
1596   /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
1597   ** possible to this routine is 310, resulting in a maximum x of 31 */
1598   assert( x<=60 );
1599 #endif
1600   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1601 }
1602 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1603 
1604 /*
1605 ** Add a new name/number pair to a VList.  This might require that the
1606 ** VList object be reallocated, so return the new VList.  If an OOM
1607 ** error occurs, the original VList returned and the
1608 ** db->mallocFailed flag is set.
1609 **
1610 ** A VList is really just an array of integers.  To destroy a VList,
1611 ** simply pass it to sqlite3DbFree().
1612 **
1613 ** The first integer is the number of integers allocated for the whole
1614 ** VList.  The second integer is the number of integers actually used.
1615 ** Each name/number pair is encoded by subsequent groups of 3 or more
1616 ** integers.
1617 **
1618 ** Each name/number pair starts with two integers which are the numeric
1619 ** value for the pair and the size of the name/number pair, respectively.
1620 ** The text name overlays one or more following integers.  The text name
1621 ** is always zero-terminated.
1622 **
1623 ** Conceptually:
1624 **
1625 **    struct VList {
1626 **      int nAlloc;   // Number of allocated slots
1627 **      int nUsed;    // Number of used slots
1628 **      struct VListEntry {
1629 **        int iValue;    // Value for this entry
1630 **        int nSlot;     // Slots used by this entry
1631 **        // ... variable name goes here
1632 **      } a[0];
1633 **    }
1634 **
1635 ** During code generation, pointers to the variable names within the
1636 ** VList are taken.  When that happens, nAlloc is set to zero as an
1637 ** indication that the VList may never again be enlarged, since the
1638 ** accompanying realloc() would invalidate the pointers.
1639 */
1640 VList *sqlite3VListAdd(
1641   sqlite3 *db,           /* The database connection used for malloc() */
1642   VList *pIn,            /* The input VList.  Might be NULL */
1643   const char *zName,     /* Name of symbol to add */
1644   int nName,             /* Bytes of text in zName */
1645   int iVal               /* Value to associate with zName */
1646 ){
1647   int nInt;              /* number of sizeof(int) objects needed for zName */
1648   char *z;               /* Pointer to where zName will be stored */
1649   int i;                 /* Index in pIn[] where zName is stored */
1650 
1651   nInt = nName/4 + 3;
1652   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1653   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1654     /* Enlarge the allocation */
1655     sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1656     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1657     if( pOut==0 ) return pIn;
1658     if( pIn==0 ) pOut[1] = 2;
1659     pIn = pOut;
1660     pIn[0] = nAlloc;
1661   }
1662   i = pIn[1];
1663   pIn[i] = iVal;
1664   pIn[i+1] = nInt;
1665   z = (char*)&pIn[i+2];
1666   pIn[1] = i+nInt;
1667   assert( pIn[1]<=pIn[0] );
1668   memcpy(z, zName, nName);
1669   z[nName] = 0;
1670   return pIn;
1671 }
1672 
1673 /*
1674 ** Return a pointer to the name of a variable in the given VList that
1675 ** has the value iVal.  Or return a NULL if there is no such variable in
1676 ** the list
1677 */
1678 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1679   int i, mx;
1680   if( pIn==0 ) return 0;
1681   mx = pIn[1];
1682   i = 2;
1683   do{
1684     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1685     i += pIn[i+1];
1686   }while( i<mx );
1687   return 0;
1688 }
1689 
1690 /*
1691 ** Return the number of the variable named zName, if it is in VList.
1692 ** or return 0 if there is no such variable.
1693 */
1694 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1695   int i, mx;
1696   if( pIn==0 ) return 0;
1697   mx = pIn[1];
1698   i = 2;
1699   do{
1700     const char *z = (const char*)&pIn[i+2];
1701     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1702     i += pIn[i+1];
1703   }while( i<mx );
1704   return 0;
1705 }
1706