1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifndef SQLITE_OMIT_FLOATING_POINT 21 #include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 36 ** or to bypass normal error detection during testing in order to let 37 ** execute proceed futher downstream. 38 ** 39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 40 ** sqlite3FaultSim() function only returns non-zero during testing. 41 ** 42 ** During testing, if the test harness has set a fault-sim callback using 43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 44 ** each call to sqlite3FaultSim() is relayed to that application-supplied 45 ** callback and the integer return value form the application-supplied 46 ** callback is returned by sqlite3FaultSim(). 47 ** 48 ** The integer argument to sqlite3FaultSim() is a code to identify which 49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 50 ** should have a unique code. To prevent legacy testing applications from 51 ** breaking, the codes should not be changed or reused. 52 */ 53 #ifndef SQLITE_UNTESTABLE 54 int sqlite3FaultSim(int iTest){ 55 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 56 return xCallback ? xCallback(iTest) : SQLITE_OK; 57 } 58 #endif 59 60 #ifndef SQLITE_OMIT_FLOATING_POINT 61 /* 62 ** Return true if the floating point value is Not a Number (NaN). 63 ** 64 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 65 ** Otherwise, we have our own implementation that works on most systems. 66 */ 67 int sqlite3IsNaN(double x){ 68 int rc; /* The value return */ 69 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 70 u64 y; 71 memcpy(&y,&x,sizeof(y)); 72 rc = IsNaN(y); 73 #else 74 rc = isnan(x); 75 #endif /* HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 #endif /* SQLITE_OMIT_FLOATING_POINT */ 80 81 /* 82 ** Compute a string length that is limited to what can be stored in 83 ** lower 30 bits of a 32-bit signed integer. 84 ** 85 ** The value returned will never be negative. Nor will it ever be greater 86 ** than the actual length of the string. For very long strings (greater 87 ** than 1GiB) the value returned might be less than the true string length. 88 */ 89 int sqlite3Strlen30(const char *z){ 90 if( z==0 ) return 0; 91 return 0x3fffffff & (int)strlen(z); 92 } 93 94 /* 95 ** Return the declared type of a column. Or return zDflt if the column 96 ** has no declared type. 97 ** 98 ** The column type is an extra string stored after the zero-terminator on 99 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 100 */ 101 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 102 if( pCol->colFlags & COLFLAG_HASTYPE ){ 103 return pCol->zCnName + strlen(pCol->zCnName) + 1; 104 }else if( pCol->eCType ){ 105 assert( pCol->eCType<=SQLITE_N_STDTYPE ); 106 return (char*)sqlite3StdType[pCol->eCType-1]; 107 }else{ 108 return zDflt; 109 } 110 } 111 112 /* 113 ** Helper function for sqlite3Error() - called rarely. Broken out into 114 ** a separate routine to avoid unnecessary register saves on entry to 115 ** sqlite3Error(). 116 */ 117 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 118 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 119 sqlite3SystemError(db, err_code); 120 } 121 122 /* 123 ** Set the current error code to err_code and clear any prior error message. 124 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 125 ** that would be appropriate. 126 */ 127 void sqlite3Error(sqlite3 *db, int err_code){ 128 assert( db!=0 ); 129 db->errCode = err_code; 130 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 131 } 132 133 /* 134 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state 135 ** and error message. 136 */ 137 void sqlite3ErrorClear(sqlite3 *db){ 138 assert( db!=0 ); 139 db->errCode = SQLITE_OK; 140 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 141 } 142 143 /* 144 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 145 ** to do based on the SQLite error code in rc. 146 */ 147 void sqlite3SystemError(sqlite3 *db, int rc){ 148 if( rc==SQLITE_IOERR_NOMEM ) return; 149 rc &= 0xff; 150 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 151 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 152 } 153 } 154 155 /* 156 ** Set the most recent error code and error string for the sqlite 157 ** handle "db". The error code is set to "err_code". 158 ** 159 ** If it is not NULL, string zFormat specifies the format of the 160 ** error string in the style of the printf functions: The following 161 ** format characters are allowed: 162 ** 163 ** %s Insert a string 164 ** %z A string that should be freed after use 165 ** %d Insert an integer 166 ** %T Insert a token 167 ** %S Insert the first element of a SrcList 168 ** 169 ** zFormat and any string tokens that follow it are assumed to be 170 ** encoded in UTF-8. 171 ** 172 ** To clear the most recent error for sqlite handle "db", sqlite3Error 173 ** should be called with err_code set to SQLITE_OK and zFormat set 174 ** to NULL. 175 */ 176 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 177 assert( db!=0 ); 178 db->errCode = err_code; 179 sqlite3SystemError(db, err_code); 180 if( zFormat==0 ){ 181 sqlite3Error(db, err_code); 182 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 183 char *z; 184 va_list ap; 185 va_start(ap, zFormat); 186 z = sqlite3VMPrintf(db, zFormat, ap); 187 va_end(ap); 188 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 189 } 190 } 191 192 /* 193 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 194 ** The following formatting characters are allowed: 195 ** 196 ** %s Insert a string 197 ** %z A string that should be freed after use 198 ** %d Insert an integer 199 ** %T Insert a token 200 ** %S Insert the first element of a SrcList 201 ** 202 ** This function should be used to report any error that occurs while 203 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 204 ** last thing the sqlite3_prepare() function does is copy the error 205 ** stored by this function into the database handle using sqlite3Error(). 206 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 207 ** during statement execution (sqlite3_step() etc.). 208 */ 209 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 210 char *zMsg; 211 va_list ap; 212 sqlite3 *db = pParse->db; 213 va_start(ap, zFormat); 214 zMsg = sqlite3VMPrintf(db, zFormat, ap); 215 va_end(ap); 216 if( db->suppressErr ){ 217 sqlite3DbFree(db, zMsg); 218 }else{ 219 pParse->nErr++; 220 sqlite3DbFree(db, pParse->zErrMsg); 221 pParse->zErrMsg = zMsg; 222 pParse->rc = SQLITE_ERROR; 223 pParse->pWith = 0; 224 } 225 } 226 227 /* 228 ** If database connection db is currently parsing SQL, then transfer 229 ** error code errCode to that parser if the parser has not already 230 ** encountered some other kind of error. 231 */ 232 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 233 Parse *pParse; 234 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 235 pParse->rc = errCode; 236 pParse->nErr++; 237 return errCode; 238 } 239 240 /* 241 ** Convert an SQL-style quoted string into a normal string by removing 242 ** the quote characters. The conversion is done in-place. If the 243 ** input does not begin with a quote character, then this routine 244 ** is a no-op. 245 ** 246 ** The input string must be zero-terminated. A new zero-terminator 247 ** is added to the dequoted string. 248 ** 249 ** The return value is -1 if no dequoting occurs or the length of the 250 ** dequoted string, exclusive of the zero terminator, if dequoting does 251 ** occur. 252 ** 253 ** 2002-02-14: This routine is extended to remove MS-Access style 254 ** brackets from around identifiers. For example: "[a-b-c]" becomes 255 ** "a-b-c". 256 */ 257 void sqlite3Dequote(char *z){ 258 char quote; 259 int i, j; 260 if( z==0 ) return; 261 quote = z[0]; 262 if( !sqlite3Isquote(quote) ) return; 263 if( quote=='[' ) quote = ']'; 264 for(i=1, j=0;; i++){ 265 assert( z[i] ); 266 if( z[i]==quote ){ 267 if( z[i+1]==quote ){ 268 z[j++] = quote; 269 i++; 270 }else{ 271 break; 272 } 273 }else{ 274 z[j++] = z[i]; 275 } 276 } 277 z[j] = 0; 278 } 279 void sqlite3DequoteExpr(Expr *p){ 280 assert( !ExprHasProperty(p, EP_IntValue) ); 281 assert( sqlite3Isquote(p->u.zToken[0]) ); 282 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 283 sqlite3Dequote(p->u.zToken); 284 } 285 286 /* 287 ** If the input token p is quoted, try to adjust the token to remove 288 ** the quotes. This is not always possible: 289 ** 290 ** "abc" -> abc 291 ** "ab""cd" -> (not possible because of the interior "") 292 ** 293 ** Remove the quotes if possible. This is a optimization. The overall 294 ** system should still return the correct answer even if this routine 295 ** is always a no-op. 296 */ 297 void sqlite3DequoteToken(Token *p){ 298 unsigned int i; 299 if( p->n<2 ) return; 300 if( !sqlite3Isquote(p->z[0]) ) return; 301 for(i=1; i<p->n-1; i++){ 302 if( sqlite3Isquote(p->z[i]) ) return; 303 } 304 p->n -= 2; 305 p->z++; 306 } 307 308 /* 309 ** Generate a Token object from a string 310 */ 311 void sqlite3TokenInit(Token *p, char *z){ 312 p->z = z; 313 p->n = sqlite3Strlen30(z); 314 } 315 316 /* Convenient short-hand */ 317 #define UpperToLower sqlite3UpperToLower 318 319 /* 320 ** Some systems have stricmp(). Others have strcasecmp(). Because 321 ** there is no consistency, we will define our own. 322 ** 323 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 324 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 325 ** the contents of two buffers containing UTF-8 strings in a 326 ** case-independent fashion, using the same definition of "case 327 ** independence" that SQLite uses internally when comparing identifiers. 328 */ 329 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 330 if( zLeft==0 ){ 331 return zRight ? -1 : 0; 332 }else if( zRight==0 ){ 333 return 1; 334 } 335 return sqlite3StrICmp(zLeft, zRight); 336 } 337 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 338 unsigned char *a, *b; 339 int c, x; 340 a = (unsigned char *)zLeft; 341 b = (unsigned char *)zRight; 342 for(;;){ 343 c = *a; 344 x = *b; 345 if( c==x ){ 346 if( c==0 ) break; 347 }else{ 348 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 349 if( c ) break; 350 } 351 a++; 352 b++; 353 } 354 return c; 355 } 356 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 357 register unsigned char *a, *b; 358 if( zLeft==0 ){ 359 return zRight ? -1 : 0; 360 }else if( zRight==0 ){ 361 return 1; 362 } 363 a = (unsigned char *)zLeft; 364 b = (unsigned char *)zRight; 365 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 366 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 367 } 368 369 /* 370 ** Compute an 8-bit hash on a string that is insensitive to case differences 371 */ 372 u8 sqlite3StrIHash(const char *z){ 373 u8 h = 0; 374 if( z==0 ) return 0; 375 while( z[0] ){ 376 h += UpperToLower[(unsigned char)z[0]]; 377 z++; 378 } 379 return h; 380 } 381 382 /* 383 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 384 ** E==2 results in 100. E==50 results in 1.0e50. 385 ** 386 ** This routine only works for values of E between 1 and 341. 387 */ 388 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 389 #if defined(_MSC_VER) 390 static const LONGDOUBLE_TYPE x[] = { 391 1.0e+001L, 392 1.0e+002L, 393 1.0e+004L, 394 1.0e+008L, 395 1.0e+016L, 396 1.0e+032L, 397 1.0e+064L, 398 1.0e+128L, 399 1.0e+256L 400 }; 401 LONGDOUBLE_TYPE r = 1.0; 402 int i; 403 assert( E>=0 && E<=307 ); 404 for(i=0; E!=0; i++, E >>=1){ 405 if( E & 1 ) r *= x[i]; 406 } 407 return r; 408 #else 409 LONGDOUBLE_TYPE x = 10.0; 410 LONGDOUBLE_TYPE r = 1.0; 411 while(1){ 412 if( E & 1 ) r *= x; 413 E >>= 1; 414 if( E==0 ) break; 415 x *= x; 416 } 417 return r; 418 #endif 419 } 420 421 /* 422 ** The string z[] is an text representation of a real number. 423 ** Convert this string to a double and write it into *pResult. 424 ** 425 ** The string z[] is length bytes in length (bytes, not characters) and 426 ** uses the encoding enc. The string is not necessarily zero-terminated. 427 ** 428 ** Return TRUE if the result is a valid real number (or integer) and FALSE 429 ** if the string is empty or contains extraneous text. More specifically 430 ** return 431 ** 1 => The input string is a pure integer 432 ** 2 or more => The input has a decimal point or eNNN clause 433 ** 0 or less => The input string is not a valid number 434 ** -1 => Not a valid number, but has a valid prefix which 435 ** includes a decimal point and/or an eNNN clause 436 ** 437 ** Valid numbers are in one of these formats: 438 ** 439 ** [+-]digits[E[+-]digits] 440 ** [+-]digits.[digits][E[+-]digits] 441 ** [+-].digits[E[+-]digits] 442 ** 443 ** Leading and trailing whitespace is ignored for the purpose of determining 444 ** validity. 445 ** 446 ** If some prefix of the input string is a valid number, this routine 447 ** returns FALSE but it still converts the prefix and writes the result 448 ** into *pResult. 449 */ 450 #if defined(_MSC_VER) 451 #pragma warning(disable : 4756) 452 #endif 453 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 454 #ifndef SQLITE_OMIT_FLOATING_POINT 455 int incr; 456 const char *zEnd; 457 /* sign * significand * (10 ^ (esign * exponent)) */ 458 int sign = 1; /* sign of significand */ 459 i64 s = 0; /* significand */ 460 int d = 0; /* adjust exponent for shifting decimal point */ 461 int esign = 1; /* sign of exponent */ 462 int e = 0; /* exponent */ 463 int eValid = 1; /* True exponent is either not used or is well-formed */ 464 double result; 465 int nDigit = 0; /* Number of digits processed */ 466 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 467 468 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 469 *pResult = 0.0; /* Default return value, in case of an error */ 470 if( length==0 ) return 0; 471 472 if( enc==SQLITE_UTF8 ){ 473 incr = 1; 474 zEnd = z + length; 475 }else{ 476 int i; 477 incr = 2; 478 length &= ~1; 479 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 480 testcase( enc==SQLITE_UTF16LE ); 481 testcase( enc==SQLITE_UTF16BE ); 482 for(i=3-enc; i<length && z[i]==0; i+=2){} 483 if( i<length ) eType = -100; 484 zEnd = &z[i^1]; 485 z += (enc&1); 486 } 487 488 /* skip leading spaces */ 489 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 490 if( z>=zEnd ) return 0; 491 492 /* get sign of significand */ 493 if( *z=='-' ){ 494 sign = -1; 495 z+=incr; 496 }else if( *z=='+' ){ 497 z+=incr; 498 } 499 500 /* copy max significant digits to significand */ 501 while( z<zEnd && sqlite3Isdigit(*z) ){ 502 s = s*10 + (*z - '0'); 503 z+=incr; nDigit++; 504 if( s>=((LARGEST_INT64-9)/10) ){ 505 /* skip non-significant significand digits 506 ** (increase exponent by d to shift decimal left) */ 507 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 508 } 509 } 510 if( z>=zEnd ) goto do_atof_calc; 511 512 /* if decimal point is present */ 513 if( *z=='.' ){ 514 z+=incr; 515 eType++; 516 /* copy digits from after decimal to significand 517 ** (decrease exponent by d to shift decimal right) */ 518 while( z<zEnd && sqlite3Isdigit(*z) ){ 519 if( s<((LARGEST_INT64-9)/10) ){ 520 s = s*10 + (*z - '0'); 521 d--; 522 nDigit++; 523 } 524 z+=incr; 525 } 526 } 527 if( z>=zEnd ) goto do_atof_calc; 528 529 /* if exponent is present */ 530 if( *z=='e' || *z=='E' ){ 531 z+=incr; 532 eValid = 0; 533 eType++; 534 535 /* This branch is needed to avoid a (harmless) buffer overread. The 536 ** special comment alerts the mutation tester that the correct answer 537 ** is obtained even if the branch is omitted */ 538 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 539 540 /* get sign of exponent */ 541 if( *z=='-' ){ 542 esign = -1; 543 z+=incr; 544 }else if( *z=='+' ){ 545 z+=incr; 546 } 547 /* copy digits to exponent */ 548 while( z<zEnd && sqlite3Isdigit(*z) ){ 549 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 550 z+=incr; 551 eValid = 1; 552 } 553 } 554 555 /* skip trailing spaces */ 556 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 557 558 do_atof_calc: 559 /* adjust exponent by d, and update sign */ 560 e = (e*esign) + d; 561 if( e<0 ) { 562 esign = -1; 563 e *= -1; 564 } else { 565 esign = 1; 566 } 567 568 if( s==0 ) { 569 /* In the IEEE 754 standard, zero is signed. */ 570 result = sign<0 ? -(double)0 : (double)0; 571 } else { 572 /* Attempt to reduce exponent. 573 ** 574 ** Branches that are not required for the correct answer but which only 575 ** help to obtain the correct answer faster are marked with special 576 ** comments, as a hint to the mutation tester. 577 */ 578 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 579 if( esign>0 ){ 580 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 581 s *= 10; 582 }else{ 583 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 584 s /= 10; 585 } 586 e--; 587 } 588 589 /* adjust the sign of significand */ 590 s = sign<0 ? -s : s; 591 592 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 593 result = (double)s; 594 }else{ 595 /* attempt to handle extremely small/large numbers better */ 596 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 597 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 598 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 599 if( esign<0 ){ 600 result = s / scale; 601 result /= 1.0e+308; 602 }else{ 603 result = s * scale; 604 result *= 1.0e+308; 605 } 606 }else{ assert( e>=342 ); 607 if( esign<0 ){ 608 result = 0.0*s; 609 }else{ 610 #ifdef INFINITY 611 result = INFINITY*s; 612 #else 613 result = 1e308*1e308*s; /* Infinity */ 614 #endif 615 } 616 } 617 }else{ 618 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 619 if( esign<0 ){ 620 result = s / scale; 621 }else{ 622 result = s * scale; 623 } 624 } 625 } 626 } 627 628 /* store the result */ 629 *pResult = result; 630 631 /* return true if number and no extra non-whitespace chracters after */ 632 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 633 return eType; 634 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 635 return -1; 636 }else{ 637 return 0; 638 } 639 #else 640 return !sqlite3Atoi64(z, pResult, length, enc); 641 #endif /* SQLITE_OMIT_FLOATING_POINT */ 642 } 643 #if defined(_MSC_VER) 644 #pragma warning(default : 4756) 645 #endif 646 647 /* 648 ** Render an signed 64-bit integer as text. Store the result in zOut[]. 649 ** 650 ** The caller must ensure that zOut[] is at least 21 bytes in size. 651 */ 652 void sqlite3Int64ToText(i64 v, char *zOut){ 653 int i; 654 u64 x; 655 char zTemp[22]; 656 if( v<0 ){ 657 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; 658 }else{ 659 x = v; 660 } 661 i = sizeof(zTemp)-2; 662 zTemp[sizeof(zTemp)-1] = 0; 663 do{ 664 zTemp[i--] = (x%10) + '0'; 665 x = x/10; 666 }while( x ); 667 if( v<0 ) zTemp[i--] = '-'; 668 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); 669 } 670 671 /* 672 ** Compare the 19-character string zNum against the text representation 673 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 674 ** if zNum is less than, equal to, or greater than the string. 675 ** Note that zNum must contain exactly 19 characters. 676 ** 677 ** Unlike memcmp() this routine is guaranteed to return the difference 678 ** in the values of the last digit if the only difference is in the 679 ** last digit. So, for example, 680 ** 681 ** compare2pow63("9223372036854775800", 1) 682 ** 683 ** will return -8. 684 */ 685 static int compare2pow63(const char *zNum, int incr){ 686 int c = 0; 687 int i; 688 /* 012345678901234567 */ 689 const char *pow63 = "922337203685477580"; 690 for(i=0; c==0 && i<18; i++){ 691 c = (zNum[i*incr]-pow63[i])*10; 692 } 693 if( c==0 ){ 694 c = zNum[18*incr] - '8'; 695 testcase( c==(-1) ); 696 testcase( c==0 ); 697 testcase( c==(+1) ); 698 } 699 return c; 700 } 701 702 /* 703 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 704 ** routine does *not* accept hexadecimal notation. 705 ** 706 ** Returns: 707 ** 708 ** -1 Not even a prefix of the input text looks like an integer 709 ** 0 Successful transformation. Fits in a 64-bit signed integer. 710 ** 1 Excess non-space text after the integer value 711 ** 2 Integer too large for a 64-bit signed integer or is malformed 712 ** 3 Special case of 9223372036854775808 713 ** 714 ** length is the number of bytes in the string (bytes, not characters). 715 ** The string is not necessarily zero-terminated. The encoding is 716 ** given by enc. 717 */ 718 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 719 int incr; 720 u64 u = 0; 721 int neg = 0; /* assume positive */ 722 int i; 723 int c = 0; 724 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 725 int rc; /* Baseline return code */ 726 const char *zStart; 727 const char *zEnd = zNum + length; 728 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 729 if( enc==SQLITE_UTF8 ){ 730 incr = 1; 731 }else{ 732 incr = 2; 733 length &= ~1; 734 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 735 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 736 nonNum = i<length; 737 zEnd = &zNum[i^1]; 738 zNum += (enc&1); 739 } 740 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 741 if( zNum<zEnd ){ 742 if( *zNum=='-' ){ 743 neg = 1; 744 zNum+=incr; 745 }else if( *zNum=='+' ){ 746 zNum+=incr; 747 } 748 } 749 zStart = zNum; 750 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 751 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 752 u = u*10 + c - '0'; 753 } 754 testcase( i==18*incr ); 755 testcase( i==19*incr ); 756 testcase( i==20*incr ); 757 if( u>LARGEST_INT64 ){ 758 /* This test and assignment is needed only to suppress UB warnings 759 ** from clang and -fsanitize=undefined. This test and assignment make 760 ** the code a little larger and slower, and no harm comes from omitting 761 ** them, but we must appaise the undefined-behavior pharisees. */ 762 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 763 }else if( neg ){ 764 *pNum = -(i64)u; 765 }else{ 766 *pNum = (i64)u; 767 } 768 rc = 0; 769 if( i==0 && zStart==zNum ){ /* No digits */ 770 rc = -1; 771 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 772 rc = 1; 773 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 774 int jj = i; 775 do{ 776 if( !sqlite3Isspace(zNum[jj]) ){ 777 rc = 1; /* Extra non-space text after the integer */ 778 break; 779 } 780 jj += incr; 781 }while( &zNum[jj]<zEnd ); 782 } 783 if( i<19*incr ){ 784 /* Less than 19 digits, so we know that it fits in 64 bits */ 785 assert( u<=LARGEST_INT64 ); 786 return rc; 787 }else{ 788 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 789 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 790 if( c<0 ){ 791 /* zNum is less than 9223372036854775808 so it fits */ 792 assert( u<=LARGEST_INT64 ); 793 return rc; 794 }else{ 795 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 796 if( c>0 ){ 797 /* zNum is greater than 9223372036854775808 so it overflows */ 798 return 2; 799 }else{ 800 /* zNum is exactly 9223372036854775808. Fits if negative. The 801 ** special case 2 overflow if positive */ 802 assert( u-1==LARGEST_INT64 ); 803 return neg ? rc : 3; 804 } 805 } 806 } 807 } 808 809 /* 810 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 811 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 812 ** whereas sqlite3Atoi64() does not. 813 ** 814 ** Returns: 815 ** 816 ** 0 Successful transformation. Fits in a 64-bit signed integer. 817 ** 1 Excess text after the integer value 818 ** 2 Integer too large for a 64-bit signed integer or is malformed 819 ** 3 Special case of 9223372036854775808 820 */ 821 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 822 #ifndef SQLITE_OMIT_HEX_INTEGER 823 if( z[0]=='0' 824 && (z[1]=='x' || z[1]=='X') 825 ){ 826 u64 u = 0; 827 int i, k; 828 for(i=2; z[i]=='0'; i++){} 829 for(k=i; sqlite3Isxdigit(z[k]); k++){ 830 u = u*16 + sqlite3HexToInt(z[k]); 831 } 832 memcpy(pOut, &u, 8); 833 return (z[k]==0 && k-i<=16) ? 0 : 2; 834 }else 835 #endif /* SQLITE_OMIT_HEX_INTEGER */ 836 { 837 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 838 } 839 } 840 841 /* 842 ** If zNum represents an integer that will fit in 32-bits, then set 843 ** *pValue to that integer and return true. Otherwise return false. 844 ** 845 ** This routine accepts both decimal and hexadecimal notation for integers. 846 ** 847 ** Any non-numeric characters that following zNum are ignored. 848 ** This is different from sqlite3Atoi64() which requires the 849 ** input number to be zero-terminated. 850 */ 851 int sqlite3GetInt32(const char *zNum, int *pValue){ 852 sqlite_int64 v = 0; 853 int i, c; 854 int neg = 0; 855 if( zNum[0]=='-' ){ 856 neg = 1; 857 zNum++; 858 }else if( zNum[0]=='+' ){ 859 zNum++; 860 } 861 #ifndef SQLITE_OMIT_HEX_INTEGER 862 else if( zNum[0]=='0' 863 && (zNum[1]=='x' || zNum[1]=='X') 864 && sqlite3Isxdigit(zNum[2]) 865 ){ 866 u32 u = 0; 867 zNum += 2; 868 while( zNum[0]=='0' ) zNum++; 869 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 870 u = u*16 + sqlite3HexToInt(zNum[i]); 871 } 872 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 873 memcpy(pValue, &u, 4); 874 return 1; 875 }else{ 876 return 0; 877 } 878 } 879 #endif 880 if( !sqlite3Isdigit(zNum[0]) ) return 0; 881 while( zNum[0]=='0' ) zNum++; 882 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 883 v = v*10 + c; 884 } 885 886 /* The longest decimal representation of a 32 bit integer is 10 digits: 887 ** 888 ** 1234567890 889 ** 2^31 -> 2147483648 890 */ 891 testcase( i==10 ); 892 if( i>10 ){ 893 return 0; 894 } 895 testcase( v-neg==2147483647 ); 896 if( v-neg>2147483647 ){ 897 return 0; 898 } 899 if( neg ){ 900 v = -v; 901 } 902 *pValue = (int)v; 903 return 1; 904 } 905 906 /* 907 ** Return a 32-bit integer value extracted from a string. If the 908 ** string is not an integer, just return 0. 909 */ 910 int sqlite3Atoi(const char *z){ 911 int x = 0; 912 sqlite3GetInt32(z, &x); 913 return x; 914 } 915 916 /* 917 ** Try to convert z into an unsigned 32-bit integer. Return true on 918 ** success and false if there is an error. 919 ** 920 ** Only decimal notation is accepted. 921 */ 922 int sqlite3GetUInt32(const char *z, u32 *pI){ 923 u64 v = 0; 924 int i; 925 for(i=0; sqlite3Isdigit(z[i]); i++){ 926 v = v*10 + z[i] - '0'; 927 if( v>4294967296LL ){ *pI = 0; return 0; } 928 } 929 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } 930 *pI = (u32)v; 931 return 1; 932 } 933 934 /* 935 ** The variable-length integer encoding is as follows: 936 ** 937 ** KEY: 938 ** A = 0xxxxxxx 7 bits of data and one flag bit 939 ** B = 1xxxxxxx 7 bits of data and one flag bit 940 ** C = xxxxxxxx 8 bits of data 941 ** 942 ** 7 bits - A 943 ** 14 bits - BA 944 ** 21 bits - BBA 945 ** 28 bits - BBBA 946 ** 35 bits - BBBBA 947 ** 42 bits - BBBBBA 948 ** 49 bits - BBBBBBA 949 ** 56 bits - BBBBBBBA 950 ** 64 bits - BBBBBBBBC 951 */ 952 953 /* 954 ** Write a 64-bit variable-length integer to memory starting at p[0]. 955 ** The length of data write will be between 1 and 9 bytes. The number 956 ** of bytes written is returned. 957 ** 958 ** A variable-length integer consists of the lower 7 bits of each byte 959 ** for all bytes that have the 8th bit set and one byte with the 8th 960 ** bit clear. Except, if we get to the 9th byte, it stores the full 961 ** 8 bits and is the last byte. 962 */ 963 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 964 int i, j, n; 965 u8 buf[10]; 966 if( v & (((u64)0xff000000)<<32) ){ 967 p[8] = (u8)v; 968 v >>= 8; 969 for(i=7; i>=0; i--){ 970 p[i] = (u8)((v & 0x7f) | 0x80); 971 v >>= 7; 972 } 973 return 9; 974 } 975 n = 0; 976 do{ 977 buf[n++] = (u8)((v & 0x7f) | 0x80); 978 v >>= 7; 979 }while( v!=0 ); 980 buf[0] &= 0x7f; 981 assert( n<=9 ); 982 for(i=0, j=n-1; j>=0; j--, i++){ 983 p[i] = buf[j]; 984 } 985 return n; 986 } 987 int sqlite3PutVarint(unsigned char *p, u64 v){ 988 if( v<=0x7f ){ 989 p[0] = v&0x7f; 990 return 1; 991 } 992 if( v<=0x3fff ){ 993 p[0] = ((v>>7)&0x7f)|0x80; 994 p[1] = v&0x7f; 995 return 2; 996 } 997 return putVarint64(p,v); 998 } 999 1000 /* 1001 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 1002 ** are defined here rather than simply putting the constant expressions 1003 ** inline in order to work around bugs in the RVT compiler. 1004 ** 1005 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 1006 ** 1007 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 1008 */ 1009 #define SLOT_2_0 0x001fc07f 1010 #define SLOT_4_2_0 0xf01fc07f 1011 1012 1013 /* 1014 ** Read a 64-bit variable-length integer from memory starting at p[0]. 1015 ** Return the number of bytes read. The value is stored in *v. 1016 */ 1017 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 1018 u32 a,b,s; 1019 1020 if( ((signed char*)p)[0]>=0 ){ 1021 *v = *p; 1022 return 1; 1023 } 1024 if( ((signed char*)p)[1]>=0 ){ 1025 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 1026 return 2; 1027 } 1028 1029 /* Verify that constants are precomputed correctly */ 1030 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 1031 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 1032 1033 a = ((u32)p[0])<<14; 1034 b = p[1]; 1035 p += 2; 1036 a |= *p; 1037 /* a: p0<<14 | p2 (unmasked) */ 1038 if (!(a&0x80)) 1039 { 1040 a &= SLOT_2_0; 1041 b &= 0x7f; 1042 b = b<<7; 1043 a |= b; 1044 *v = a; 1045 return 3; 1046 } 1047 1048 /* CSE1 from below */ 1049 a &= SLOT_2_0; 1050 p++; 1051 b = b<<14; 1052 b |= *p; 1053 /* b: p1<<14 | p3 (unmasked) */ 1054 if (!(b&0x80)) 1055 { 1056 b &= SLOT_2_0; 1057 /* moved CSE1 up */ 1058 /* a &= (0x7f<<14)|(0x7f); */ 1059 a = a<<7; 1060 a |= b; 1061 *v = a; 1062 return 4; 1063 } 1064 1065 /* a: p0<<14 | p2 (masked) */ 1066 /* b: p1<<14 | p3 (unmasked) */ 1067 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1068 /* moved CSE1 up */ 1069 /* a &= (0x7f<<14)|(0x7f); */ 1070 b &= SLOT_2_0; 1071 s = a; 1072 /* s: p0<<14 | p2 (masked) */ 1073 1074 p++; 1075 a = a<<14; 1076 a |= *p; 1077 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1078 if (!(a&0x80)) 1079 { 1080 /* we can skip these cause they were (effectively) done above 1081 ** while calculating s */ 1082 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1083 /* b &= (0x7f<<14)|(0x7f); */ 1084 b = b<<7; 1085 a |= b; 1086 s = s>>18; 1087 *v = ((u64)s)<<32 | a; 1088 return 5; 1089 } 1090 1091 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1092 s = s<<7; 1093 s |= b; 1094 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1095 1096 p++; 1097 b = b<<14; 1098 b |= *p; 1099 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 1100 if (!(b&0x80)) 1101 { 1102 /* we can skip this cause it was (effectively) done above in calc'ing s */ 1103 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1104 a &= SLOT_2_0; 1105 a = a<<7; 1106 a |= b; 1107 s = s>>18; 1108 *v = ((u64)s)<<32 | a; 1109 return 6; 1110 } 1111 1112 p++; 1113 a = a<<14; 1114 a |= *p; 1115 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1116 if (!(a&0x80)) 1117 { 1118 a &= SLOT_4_2_0; 1119 b &= SLOT_2_0; 1120 b = b<<7; 1121 a |= b; 1122 s = s>>11; 1123 *v = ((u64)s)<<32 | a; 1124 return 7; 1125 } 1126 1127 /* CSE2 from below */ 1128 a &= SLOT_2_0; 1129 p++; 1130 b = b<<14; 1131 b |= *p; 1132 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1133 if (!(b&0x80)) 1134 { 1135 b &= SLOT_4_2_0; 1136 /* moved CSE2 up */ 1137 /* a &= (0x7f<<14)|(0x7f); */ 1138 a = a<<7; 1139 a |= b; 1140 s = s>>4; 1141 *v = ((u64)s)<<32 | a; 1142 return 8; 1143 } 1144 1145 p++; 1146 a = a<<15; 1147 a |= *p; 1148 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1149 1150 /* moved CSE2 up */ 1151 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1152 b &= SLOT_2_0; 1153 b = b<<8; 1154 a |= b; 1155 1156 s = s<<4; 1157 b = p[-4]; 1158 b &= 0x7f; 1159 b = b>>3; 1160 s |= b; 1161 1162 *v = ((u64)s)<<32 | a; 1163 1164 return 9; 1165 } 1166 1167 /* 1168 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1169 ** Return the number of bytes read. The value is stored in *v. 1170 ** 1171 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1172 ** integer, then set *v to 0xffffffff. 1173 ** 1174 ** A MACRO version, getVarint32, is provided which inlines the 1175 ** single-byte case. All code should use the MACRO version as 1176 ** this function assumes the single-byte case has already been handled. 1177 */ 1178 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1179 u32 a,b; 1180 1181 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1182 ** by the getVarin32() macro */ 1183 a = *p; 1184 /* a: p0 (unmasked) */ 1185 #ifndef getVarint32 1186 if (!(a&0x80)) 1187 { 1188 /* Values between 0 and 127 */ 1189 *v = a; 1190 return 1; 1191 } 1192 #endif 1193 1194 /* The 2-byte case */ 1195 p++; 1196 b = *p; 1197 /* b: p1 (unmasked) */ 1198 if (!(b&0x80)) 1199 { 1200 /* Values between 128 and 16383 */ 1201 a &= 0x7f; 1202 a = a<<7; 1203 *v = a | b; 1204 return 2; 1205 } 1206 1207 /* The 3-byte case */ 1208 p++; 1209 a = a<<14; 1210 a |= *p; 1211 /* a: p0<<14 | p2 (unmasked) */ 1212 if (!(a&0x80)) 1213 { 1214 /* Values between 16384 and 2097151 */ 1215 a &= (0x7f<<14)|(0x7f); 1216 b &= 0x7f; 1217 b = b<<7; 1218 *v = a | b; 1219 return 3; 1220 } 1221 1222 /* A 32-bit varint is used to store size information in btrees. 1223 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1224 ** A 3-byte varint is sufficient, for example, to record the size 1225 ** of a 1048569-byte BLOB or string. 1226 ** 1227 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1228 ** rare larger cases can be handled by the slower 64-bit varint 1229 ** routine. 1230 */ 1231 #if 1 1232 { 1233 u64 v64; 1234 u8 n; 1235 1236 n = sqlite3GetVarint(p-2, &v64); 1237 assert( n>3 && n<=9 ); 1238 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1239 *v = 0xffffffff; 1240 }else{ 1241 *v = (u32)v64; 1242 } 1243 return n; 1244 } 1245 1246 #else 1247 /* For following code (kept for historical record only) shows an 1248 ** unrolling for the 3- and 4-byte varint cases. This code is 1249 ** slightly faster, but it is also larger and much harder to test. 1250 */ 1251 p++; 1252 b = b<<14; 1253 b |= *p; 1254 /* b: p1<<14 | p3 (unmasked) */ 1255 if (!(b&0x80)) 1256 { 1257 /* Values between 2097152 and 268435455 */ 1258 b &= (0x7f<<14)|(0x7f); 1259 a &= (0x7f<<14)|(0x7f); 1260 a = a<<7; 1261 *v = a | b; 1262 return 4; 1263 } 1264 1265 p++; 1266 a = a<<14; 1267 a |= *p; 1268 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1269 if (!(a&0x80)) 1270 { 1271 /* Values between 268435456 and 34359738367 */ 1272 a &= SLOT_4_2_0; 1273 b &= SLOT_4_2_0; 1274 b = b<<7; 1275 *v = a | b; 1276 return 5; 1277 } 1278 1279 /* We can only reach this point when reading a corrupt database 1280 ** file. In that case we are not in any hurry. Use the (relatively 1281 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1282 ** value. */ 1283 { 1284 u64 v64; 1285 u8 n; 1286 1287 p -= 4; 1288 n = sqlite3GetVarint(p, &v64); 1289 assert( n>5 && n<=9 ); 1290 *v = (u32)v64; 1291 return n; 1292 } 1293 #endif 1294 } 1295 1296 /* 1297 ** Return the number of bytes that will be needed to store the given 1298 ** 64-bit integer. 1299 */ 1300 int sqlite3VarintLen(u64 v){ 1301 int i; 1302 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1303 return i; 1304 } 1305 1306 1307 /* 1308 ** Read or write a four-byte big-endian integer value. 1309 */ 1310 u32 sqlite3Get4byte(const u8 *p){ 1311 #if SQLITE_BYTEORDER==4321 1312 u32 x; 1313 memcpy(&x,p,4); 1314 return x; 1315 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1316 u32 x; 1317 memcpy(&x,p,4); 1318 return __builtin_bswap32(x); 1319 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1320 u32 x; 1321 memcpy(&x,p,4); 1322 return _byteswap_ulong(x); 1323 #else 1324 testcase( p[0]&0x80 ); 1325 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1326 #endif 1327 } 1328 void sqlite3Put4byte(unsigned char *p, u32 v){ 1329 #if SQLITE_BYTEORDER==4321 1330 memcpy(p,&v,4); 1331 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1332 u32 x = __builtin_bswap32(v); 1333 memcpy(p,&x,4); 1334 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1335 u32 x = _byteswap_ulong(v); 1336 memcpy(p,&x,4); 1337 #else 1338 p[0] = (u8)(v>>24); 1339 p[1] = (u8)(v>>16); 1340 p[2] = (u8)(v>>8); 1341 p[3] = (u8)v; 1342 #endif 1343 } 1344 1345 1346 1347 /* 1348 ** Translate a single byte of Hex into an integer. 1349 ** This routine only works if h really is a valid hexadecimal 1350 ** character: 0..9a..fA..F 1351 */ 1352 u8 sqlite3HexToInt(int h){ 1353 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1354 #ifdef SQLITE_ASCII 1355 h += 9*(1&(h>>6)); 1356 #endif 1357 #ifdef SQLITE_EBCDIC 1358 h += 9*(1&~(h>>4)); 1359 #endif 1360 return (u8)(h & 0xf); 1361 } 1362 1363 #if !defined(SQLITE_OMIT_BLOB_LITERAL) 1364 /* 1365 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1366 ** value. Return a pointer to its binary value. Space to hold the 1367 ** binary value has been obtained from malloc and must be freed by 1368 ** the calling routine. 1369 */ 1370 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1371 char *zBlob; 1372 int i; 1373 1374 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1375 n--; 1376 if( zBlob ){ 1377 for(i=0; i<n; i+=2){ 1378 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1379 } 1380 zBlob[i/2] = 0; 1381 } 1382 return zBlob; 1383 } 1384 #endif /* !SQLITE_OMIT_BLOB_LITERAL */ 1385 1386 /* 1387 ** Log an error that is an API call on a connection pointer that should 1388 ** not have been used. The "type" of connection pointer is given as the 1389 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1390 */ 1391 static void logBadConnection(const char *zType){ 1392 sqlite3_log(SQLITE_MISUSE, 1393 "API call with %s database connection pointer", 1394 zType 1395 ); 1396 } 1397 1398 /* 1399 ** Check to make sure we have a valid db pointer. This test is not 1400 ** foolproof but it does provide some measure of protection against 1401 ** misuse of the interface such as passing in db pointers that are 1402 ** NULL or which have been previously closed. If this routine returns 1403 ** 1 it means that the db pointer is valid and 0 if it should not be 1404 ** dereferenced for any reason. The calling function should invoke 1405 ** SQLITE_MISUSE immediately. 1406 ** 1407 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1408 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1409 ** open properly and is not fit for general use but which can be 1410 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1411 */ 1412 int sqlite3SafetyCheckOk(sqlite3 *db){ 1413 u8 eOpenState; 1414 if( db==0 ){ 1415 logBadConnection("NULL"); 1416 return 0; 1417 } 1418 eOpenState = db->eOpenState; 1419 if( eOpenState!=SQLITE_STATE_OPEN ){ 1420 if( sqlite3SafetyCheckSickOrOk(db) ){ 1421 testcase( sqlite3GlobalConfig.xLog!=0 ); 1422 logBadConnection("unopened"); 1423 } 1424 return 0; 1425 }else{ 1426 return 1; 1427 } 1428 } 1429 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1430 u8 eOpenState; 1431 eOpenState = db->eOpenState; 1432 if( eOpenState!=SQLITE_STATE_SICK && 1433 eOpenState!=SQLITE_STATE_OPEN && 1434 eOpenState!=SQLITE_STATE_BUSY ){ 1435 testcase( sqlite3GlobalConfig.xLog!=0 ); 1436 logBadConnection("invalid"); 1437 return 0; 1438 }else{ 1439 return 1; 1440 } 1441 } 1442 1443 /* 1444 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1445 ** the other 64-bit signed integer at *pA and store the result in *pA. 1446 ** Return 0 on success. Or if the operation would have resulted in an 1447 ** overflow, leave *pA unchanged and return 1. 1448 */ 1449 int sqlite3AddInt64(i64 *pA, i64 iB){ 1450 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1451 return __builtin_add_overflow(*pA, iB, pA); 1452 #else 1453 i64 iA = *pA; 1454 testcase( iA==0 ); testcase( iA==1 ); 1455 testcase( iB==-1 ); testcase( iB==0 ); 1456 if( iB>=0 ){ 1457 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1458 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1459 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1460 }else{ 1461 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1462 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1463 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1464 } 1465 *pA += iB; 1466 return 0; 1467 #endif 1468 } 1469 int sqlite3SubInt64(i64 *pA, i64 iB){ 1470 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1471 return __builtin_sub_overflow(*pA, iB, pA); 1472 #else 1473 testcase( iB==SMALLEST_INT64+1 ); 1474 if( iB==SMALLEST_INT64 ){ 1475 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1476 if( (*pA)>=0 ) return 1; 1477 *pA -= iB; 1478 return 0; 1479 }else{ 1480 return sqlite3AddInt64(pA, -iB); 1481 } 1482 #endif 1483 } 1484 int sqlite3MulInt64(i64 *pA, i64 iB){ 1485 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1486 return __builtin_mul_overflow(*pA, iB, pA); 1487 #else 1488 i64 iA = *pA; 1489 if( iB>0 ){ 1490 if( iA>LARGEST_INT64/iB ) return 1; 1491 if( iA<SMALLEST_INT64/iB ) return 1; 1492 }else if( iB<0 ){ 1493 if( iA>0 ){ 1494 if( iB<SMALLEST_INT64/iA ) return 1; 1495 }else if( iA<0 ){ 1496 if( iB==SMALLEST_INT64 ) return 1; 1497 if( iA==SMALLEST_INT64 ) return 1; 1498 if( -iA>LARGEST_INT64/-iB ) return 1; 1499 } 1500 } 1501 *pA = iA*iB; 1502 return 0; 1503 #endif 1504 } 1505 1506 /* 1507 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1508 ** if the integer has a value of -2147483648, return +2147483647 1509 */ 1510 int sqlite3AbsInt32(int x){ 1511 if( x>=0 ) return x; 1512 if( x==(int)0x80000000 ) return 0x7fffffff; 1513 return -x; 1514 } 1515 1516 #ifdef SQLITE_ENABLE_8_3_NAMES 1517 /* 1518 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1519 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1520 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1521 ** three characters, then shorten the suffix on z[] to be the last three 1522 ** characters of the original suffix. 1523 ** 1524 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1525 ** do the suffix shortening regardless of URI parameter. 1526 ** 1527 ** Examples: 1528 ** 1529 ** test.db-journal => test.nal 1530 ** test.db-wal => test.wal 1531 ** test.db-shm => test.shm 1532 ** test.db-mj7f3319fa => test.9fa 1533 */ 1534 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1535 #if SQLITE_ENABLE_8_3_NAMES<2 1536 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1537 #endif 1538 { 1539 int i, sz; 1540 sz = sqlite3Strlen30(z); 1541 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1542 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1543 } 1544 } 1545 #endif 1546 1547 /* 1548 ** Find (an approximate) sum of two LogEst values. This computation is 1549 ** not a simple "+" operator because LogEst is stored as a logarithmic 1550 ** value. 1551 ** 1552 */ 1553 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1554 static const unsigned char x[] = { 1555 10, 10, /* 0,1 */ 1556 9, 9, /* 2,3 */ 1557 8, 8, /* 4,5 */ 1558 7, 7, 7, /* 6,7,8 */ 1559 6, 6, 6, /* 9,10,11 */ 1560 5, 5, 5, /* 12-14 */ 1561 4, 4, 4, 4, /* 15-18 */ 1562 3, 3, 3, 3, 3, 3, /* 19-24 */ 1563 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1564 }; 1565 if( a>=b ){ 1566 if( a>b+49 ) return a; 1567 if( a>b+31 ) return a+1; 1568 return a+x[a-b]; 1569 }else{ 1570 if( b>a+49 ) return b; 1571 if( b>a+31 ) return b+1; 1572 return b+x[b-a]; 1573 } 1574 } 1575 1576 /* 1577 ** Convert an integer into a LogEst. In other words, compute an 1578 ** approximation for 10*log2(x). 1579 */ 1580 LogEst sqlite3LogEst(u64 x){ 1581 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1582 LogEst y = 40; 1583 if( x<8 ){ 1584 if( x<2 ) return 0; 1585 while( x<8 ){ y -= 10; x <<= 1; } 1586 }else{ 1587 #if GCC_VERSION>=5004000 1588 int i = 60 - __builtin_clzll(x); 1589 y += i*10; 1590 x >>= i; 1591 #else 1592 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1593 while( x>15 ){ y += 10; x >>= 1; } 1594 #endif 1595 } 1596 return a[x&7] + y - 10; 1597 } 1598 1599 #ifndef SQLITE_OMIT_VIRTUALTABLE 1600 /* 1601 ** Convert a double into a LogEst 1602 ** In other words, compute an approximation for 10*log2(x). 1603 */ 1604 LogEst sqlite3LogEstFromDouble(double x){ 1605 u64 a; 1606 LogEst e; 1607 assert( sizeof(x)==8 && sizeof(a)==8 ); 1608 if( x<=1 ) return 0; 1609 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1610 memcpy(&a, &x, 8); 1611 e = (a>>52) - 1022; 1612 return e*10; 1613 } 1614 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1615 1616 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1617 defined(SQLITE_ENABLE_STAT4) || \ 1618 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1619 /* 1620 ** Convert a LogEst into an integer. 1621 ** 1622 ** Note that this routine is only used when one or more of various 1623 ** non-standard compile-time options is enabled. 1624 */ 1625 u64 sqlite3LogEstToInt(LogEst x){ 1626 u64 n; 1627 n = x%10; 1628 x /= 10; 1629 if( n>=5 ) n -= 2; 1630 else if( n>=1 ) n -= 1; 1631 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1632 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1633 if( x>60 ) return (u64)LARGEST_INT64; 1634 #else 1635 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input 1636 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1637 assert( x<=60 ); 1638 #endif 1639 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1640 } 1641 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1642 1643 /* 1644 ** Add a new name/number pair to a VList. This might require that the 1645 ** VList object be reallocated, so return the new VList. If an OOM 1646 ** error occurs, the original VList returned and the 1647 ** db->mallocFailed flag is set. 1648 ** 1649 ** A VList is really just an array of integers. To destroy a VList, 1650 ** simply pass it to sqlite3DbFree(). 1651 ** 1652 ** The first integer is the number of integers allocated for the whole 1653 ** VList. The second integer is the number of integers actually used. 1654 ** Each name/number pair is encoded by subsequent groups of 3 or more 1655 ** integers. 1656 ** 1657 ** Each name/number pair starts with two integers which are the numeric 1658 ** value for the pair and the size of the name/number pair, respectively. 1659 ** The text name overlays one or more following integers. The text name 1660 ** is always zero-terminated. 1661 ** 1662 ** Conceptually: 1663 ** 1664 ** struct VList { 1665 ** int nAlloc; // Number of allocated slots 1666 ** int nUsed; // Number of used slots 1667 ** struct VListEntry { 1668 ** int iValue; // Value for this entry 1669 ** int nSlot; // Slots used by this entry 1670 ** // ... variable name goes here 1671 ** } a[0]; 1672 ** } 1673 ** 1674 ** During code generation, pointers to the variable names within the 1675 ** VList are taken. When that happens, nAlloc is set to zero as an 1676 ** indication that the VList may never again be enlarged, since the 1677 ** accompanying realloc() would invalidate the pointers. 1678 */ 1679 VList *sqlite3VListAdd( 1680 sqlite3 *db, /* The database connection used for malloc() */ 1681 VList *pIn, /* The input VList. Might be NULL */ 1682 const char *zName, /* Name of symbol to add */ 1683 int nName, /* Bytes of text in zName */ 1684 int iVal /* Value to associate with zName */ 1685 ){ 1686 int nInt; /* number of sizeof(int) objects needed for zName */ 1687 char *z; /* Pointer to where zName will be stored */ 1688 int i; /* Index in pIn[] where zName is stored */ 1689 1690 nInt = nName/4 + 3; 1691 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1692 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1693 /* Enlarge the allocation */ 1694 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1695 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1696 if( pOut==0 ) return pIn; 1697 if( pIn==0 ) pOut[1] = 2; 1698 pIn = pOut; 1699 pIn[0] = nAlloc; 1700 } 1701 i = pIn[1]; 1702 pIn[i] = iVal; 1703 pIn[i+1] = nInt; 1704 z = (char*)&pIn[i+2]; 1705 pIn[1] = i+nInt; 1706 assert( pIn[1]<=pIn[0] ); 1707 memcpy(z, zName, nName); 1708 z[nName] = 0; 1709 return pIn; 1710 } 1711 1712 /* 1713 ** Return a pointer to the name of a variable in the given VList that 1714 ** has the value iVal. Or return a NULL if there is no such variable in 1715 ** the list 1716 */ 1717 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1718 int i, mx; 1719 if( pIn==0 ) return 0; 1720 mx = pIn[1]; 1721 i = 2; 1722 do{ 1723 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1724 i += pIn[i+1]; 1725 }while( i<mx ); 1726 return 0; 1727 } 1728 1729 /* 1730 ** Return the number of the variable named zName, if it is in VList. 1731 ** or return 0 if there is no such variable. 1732 */ 1733 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1734 int i, mx; 1735 if( pIn==0 ) return 0; 1736 mx = pIn[1]; 1737 i = 2; 1738 do{ 1739 const char *z = (const char*)&pIn[i+2]; 1740 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1741 i += pIn[i+1]; 1742 }while( i<mx ); 1743 return 0; 1744 } 1745