1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_OMIT_BUILTIN_TEST 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 if( z==0 ) return 0; 109 return 0x3fffffff & (int)strlen(z); 110 } 111 112 /* 113 ** Set the current error code to err_code and clear any prior error message. 114 */ 115 void sqlite3Error(sqlite3 *db, int err_code){ 116 assert( db!=0 ); 117 db->errCode = err_code; 118 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 119 } 120 121 /* 122 ** Set the most recent error code and error string for the sqlite 123 ** handle "db". The error code is set to "err_code". 124 ** 125 ** If it is not NULL, string zFormat specifies the format of the 126 ** error string in the style of the printf functions: The following 127 ** format characters are allowed: 128 ** 129 ** %s Insert a string 130 ** %z A string that should be freed after use 131 ** %d Insert an integer 132 ** %T Insert a token 133 ** %S Insert the first element of a SrcList 134 ** 135 ** zFormat and any string tokens that follow it are assumed to be 136 ** encoded in UTF-8. 137 ** 138 ** To clear the most recent error for sqlite handle "db", sqlite3Error 139 ** should be called with err_code set to SQLITE_OK and zFormat set 140 ** to NULL. 141 */ 142 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 143 assert( db!=0 ); 144 db->errCode = err_code; 145 if( zFormat==0 ){ 146 sqlite3Error(db, err_code); 147 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 148 char *z; 149 va_list ap; 150 va_start(ap, zFormat); 151 z = sqlite3VMPrintf(db, zFormat, ap); 152 va_end(ap); 153 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 154 } 155 } 156 157 /* 158 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 159 ** The following formatting characters are allowed: 160 ** 161 ** %s Insert a string 162 ** %z A string that should be freed after use 163 ** %d Insert an integer 164 ** %T Insert a token 165 ** %S Insert the first element of a SrcList 166 ** 167 ** This function should be used to report any error that occurs while 168 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 169 ** last thing the sqlite3_prepare() function does is copy the error 170 ** stored by this function into the database handle using sqlite3Error(). 171 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 172 ** during statement execution (sqlite3_step() etc.). 173 */ 174 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 175 char *zMsg; 176 va_list ap; 177 sqlite3 *db = pParse->db; 178 va_start(ap, zFormat); 179 zMsg = sqlite3VMPrintf(db, zFormat, ap); 180 va_end(ap); 181 if( db->suppressErr ){ 182 sqlite3DbFree(db, zMsg); 183 }else{ 184 pParse->nErr++; 185 sqlite3DbFree(db, pParse->zErrMsg); 186 pParse->zErrMsg = zMsg; 187 pParse->rc = SQLITE_ERROR; 188 } 189 } 190 191 /* 192 ** Convert an SQL-style quoted string into a normal string by removing 193 ** the quote characters. The conversion is done in-place. If the 194 ** input does not begin with a quote character, then this routine 195 ** is a no-op. 196 ** 197 ** The input string must be zero-terminated. A new zero-terminator 198 ** is added to the dequoted string. 199 ** 200 ** The return value is -1 if no dequoting occurs or the length of the 201 ** dequoted string, exclusive of the zero terminator, if dequoting does 202 ** occur. 203 ** 204 ** 2002-Feb-14: This routine is extended to remove MS-Access style 205 ** brackets from around identifiers. For example: "[a-b-c]" becomes 206 ** "a-b-c". 207 */ 208 int sqlite3Dequote(char *z){ 209 char quote; 210 int i, j; 211 if( z==0 ) return -1; 212 quote = z[0]; 213 switch( quote ){ 214 case '\'': break; 215 case '"': break; 216 case '`': break; /* For MySQL compatibility */ 217 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 218 default: return -1; 219 } 220 for(i=1, j=0;; i++){ 221 assert( z[i] ); 222 if( z[i]==quote ){ 223 if( z[i+1]==quote ){ 224 z[j++] = quote; 225 i++; 226 }else{ 227 break; 228 } 229 }else{ 230 z[j++] = z[i]; 231 } 232 } 233 z[j] = 0; 234 return j; 235 } 236 237 /* 238 ** Generate a Token object from a string 239 */ 240 void sqlite3TokenInit(Token *p, char *z){ 241 p->z = z; 242 p->n = sqlite3Strlen30(z); 243 } 244 245 /* Convenient short-hand */ 246 #define UpperToLower sqlite3UpperToLower 247 248 /* 249 ** Some systems have stricmp(). Others have strcasecmp(). Because 250 ** there is no consistency, we will define our own. 251 ** 252 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 253 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 254 ** the contents of two buffers containing UTF-8 strings in a 255 ** case-independent fashion, using the same definition of "case 256 ** independence" that SQLite uses internally when comparing identifiers. 257 */ 258 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 259 register unsigned char *a, *b; 260 if( zLeft==0 ){ 261 return zRight ? -1 : 0; 262 }else if( zRight==0 ){ 263 return 1; 264 } 265 a = (unsigned char *)zLeft; 266 b = (unsigned char *)zRight; 267 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 268 return UpperToLower[*a] - UpperToLower[*b]; 269 } 270 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 271 register unsigned char *a, *b; 272 if( zLeft==0 ){ 273 return zRight ? -1 : 0; 274 }else if( zRight==0 ){ 275 return 1; 276 } 277 a = (unsigned char *)zLeft; 278 b = (unsigned char *)zRight; 279 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 280 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 281 } 282 283 /* 284 ** The string z[] is an text representation of a real number. 285 ** Convert this string to a double and write it into *pResult. 286 ** 287 ** The string z[] is length bytes in length (bytes, not characters) and 288 ** uses the encoding enc. The string is not necessarily zero-terminated. 289 ** 290 ** Return TRUE if the result is a valid real number (or integer) and FALSE 291 ** if the string is empty or contains extraneous text. Valid numbers 292 ** are in one of these formats: 293 ** 294 ** [+-]digits[E[+-]digits] 295 ** [+-]digits.[digits][E[+-]digits] 296 ** [+-].digits[E[+-]digits] 297 ** 298 ** Leading and trailing whitespace is ignored for the purpose of determining 299 ** validity. 300 ** 301 ** If some prefix of the input string is a valid number, this routine 302 ** returns FALSE but it still converts the prefix and writes the result 303 ** into *pResult. 304 */ 305 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 306 #ifndef SQLITE_OMIT_FLOATING_POINT 307 int incr; 308 const char *zEnd = z + length; 309 /* sign * significand * (10 ^ (esign * exponent)) */ 310 int sign = 1; /* sign of significand */ 311 i64 s = 0; /* significand */ 312 int d = 0; /* adjust exponent for shifting decimal point */ 313 int esign = 1; /* sign of exponent */ 314 int e = 0; /* exponent */ 315 int eValid = 1; /* True exponent is either not used or is well-formed */ 316 double result; 317 int nDigits = 0; 318 int nonNum = 0; 319 320 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 321 *pResult = 0.0; /* Default return value, in case of an error */ 322 323 if( enc==SQLITE_UTF8 ){ 324 incr = 1; 325 }else{ 326 int i; 327 incr = 2; 328 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 329 for(i=3-enc; i<length && z[i]==0; i+=2){} 330 nonNum = i<length; 331 zEnd = z+i+enc-3; 332 z += (enc&1); 333 } 334 335 /* skip leading spaces */ 336 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 337 if( z>=zEnd ) return 0; 338 339 /* get sign of significand */ 340 if( *z=='-' ){ 341 sign = -1; 342 z+=incr; 343 }else if( *z=='+' ){ 344 z+=incr; 345 } 346 347 /* skip leading zeroes */ 348 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 349 350 /* copy max significant digits to significand */ 351 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 352 s = s*10 + (*z - '0'); 353 z+=incr, nDigits++; 354 } 355 356 /* skip non-significant significand digits 357 ** (increase exponent by d to shift decimal left) */ 358 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 359 if( z>=zEnd ) goto do_atof_calc; 360 361 /* if decimal point is present */ 362 if( *z=='.' ){ 363 z+=incr; 364 /* copy digits from after decimal to significand 365 ** (decrease exponent by d to shift decimal right) */ 366 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 367 s = s*10 + (*z - '0'); 368 z+=incr, nDigits++, d--; 369 } 370 /* skip non-significant digits */ 371 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 372 } 373 if( z>=zEnd ) goto do_atof_calc; 374 375 /* if exponent is present */ 376 if( *z=='e' || *z=='E' ){ 377 z+=incr; 378 eValid = 0; 379 if( z>=zEnd ) goto do_atof_calc; 380 /* get sign of exponent */ 381 if( *z=='-' ){ 382 esign = -1; 383 z+=incr; 384 }else if( *z=='+' ){ 385 z+=incr; 386 } 387 /* copy digits to exponent */ 388 while( z<zEnd && sqlite3Isdigit(*z) ){ 389 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 390 z+=incr; 391 eValid = 1; 392 } 393 } 394 395 /* skip trailing spaces */ 396 if( nDigits && eValid ){ 397 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 398 } 399 400 do_atof_calc: 401 /* adjust exponent by d, and update sign */ 402 e = (e*esign) + d; 403 if( e<0 ) { 404 esign = -1; 405 e *= -1; 406 } else { 407 esign = 1; 408 } 409 410 /* if 0 significand */ 411 if( !s ) { 412 /* In the IEEE 754 standard, zero is signed. 413 ** Add the sign if we've seen at least one digit */ 414 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 415 } else { 416 /* attempt to reduce exponent */ 417 if( esign>0 ){ 418 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 419 }else{ 420 while( !(s%10) && e>0 ) e--,s/=10; 421 } 422 423 /* adjust the sign of significand */ 424 s = sign<0 ? -s : s; 425 426 /* if exponent, scale significand as appropriate 427 ** and store in result. */ 428 if( e ){ 429 LONGDOUBLE_TYPE scale = 1.0; 430 /* attempt to handle extremely small/large numbers better */ 431 if( e>307 && e<342 ){ 432 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 433 if( esign<0 ){ 434 result = s / scale; 435 result /= 1.0e+308; 436 }else{ 437 result = s * scale; 438 result *= 1.0e+308; 439 } 440 }else if( e>=342 ){ 441 if( esign<0 ){ 442 result = 0.0*s; 443 }else{ 444 result = 1e308*1e308*s; /* Infinity */ 445 } 446 }else{ 447 /* 1.0e+22 is the largest power of 10 than can be 448 ** represented exactly. */ 449 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 450 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 451 if( esign<0 ){ 452 result = s / scale; 453 }else{ 454 result = s * scale; 455 } 456 } 457 } else { 458 result = (double)s; 459 } 460 } 461 462 /* store the result */ 463 *pResult = result; 464 465 /* return true if number and no extra non-whitespace chracters after */ 466 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 467 #else 468 return !sqlite3Atoi64(z, pResult, length, enc); 469 #endif /* SQLITE_OMIT_FLOATING_POINT */ 470 } 471 472 /* 473 ** Compare the 19-character string zNum against the text representation 474 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 475 ** if zNum is less than, equal to, or greater than the string. 476 ** Note that zNum must contain exactly 19 characters. 477 ** 478 ** Unlike memcmp() this routine is guaranteed to return the difference 479 ** in the values of the last digit if the only difference is in the 480 ** last digit. So, for example, 481 ** 482 ** compare2pow63("9223372036854775800", 1) 483 ** 484 ** will return -8. 485 */ 486 static int compare2pow63(const char *zNum, int incr){ 487 int c = 0; 488 int i; 489 /* 012345678901234567 */ 490 const char *pow63 = "922337203685477580"; 491 for(i=0; c==0 && i<18; i++){ 492 c = (zNum[i*incr]-pow63[i])*10; 493 } 494 if( c==0 ){ 495 c = zNum[18*incr] - '8'; 496 testcase( c==(-1) ); 497 testcase( c==0 ); 498 testcase( c==(+1) ); 499 } 500 return c; 501 } 502 503 /* 504 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 505 ** routine does *not* accept hexadecimal notation. 506 ** 507 ** If the zNum value is representable as a 64-bit twos-complement 508 ** integer, then write that value into *pNum and return 0. 509 ** 510 ** If zNum is exactly 9223372036854775808, return 2. This special 511 ** case is broken out because while 9223372036854775808 cannot be a 512 ** signed 64-bit integer, its negative -9223372036854775808 can be. 513 ** 514 ** If zNum is too big for a 64-bit integer and is not 515 ** 9223372036854775808 or if zNum contains any non-numeric text, 516 ** then return 1. 517 ** 518 ** length is the number of bytes in the string (bytes, not characters). 519 ** The string is not necessarily zero-terminated. The encoding is 520 ** given by enc. 521 */ 522 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 523 int incr; 524 u64 u = 0; 525 int neg = 0; /* assume positive */ 526 int i; 527 int c = 0; 528 int nonNum = 0; 529 const char *zStart; 530 const char *zEnd = zNum + length; 531 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 532 if( enc==SQLITE_UTF8 ){ 533 incr = 1; 534 }else{ 535 incr = 2; 536 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 537 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 538 nonNum = i<length; 539 zEnd = zNum+i+enc-3; 540 zNum += (enc&1); 541 } 542 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 543 if( zNum<zEnd ){ 544 if( *zNum=='-' ){ 545 neg = 1; 546 zNum+=incr; 547 }else if( *zNum=='+' ){ 548 zNum+=incr; 549 } 550 } 551 zStart = zNum; 552 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 553 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 554 u = u*10 + c - '0'; 555 } 556 if( u>LARGEST_INT64 ){ 557 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 558 }else if( neg ){ 559 *pNum = -(i64)u; 560 }else{ 561 *pNum = (i64)u; 562 } 563 testcase( i==18 ); 564 testcase( i==19 ); 565 testcase( i==20 ); 566 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) 567 || i>19*incr || nonNum ){ 568 /* zNum is empty or contains non-numeric text or is longer 569 ** than 19 digits (thus guaranteeing that it is too large) */ 570 return 1; 571 }else if( i<19*incr ){ 572 /* Less than 19 digits, so we know that it fits in 64 bits */ 573 assert( u<=LARGEST_INT64 ); 574 return 0; 575 }else{ 576 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 577 c = compare2pow63(zNum, incr); 578 if( c<0 ){ 579 /* zNum is less than 9223372036854775808 so it fits */ 580 assert( u<=LARGEST_INT64 ); 581 return 0; 582 }else if( c>0 ){ 583 /* zNum is greater than 9223372036854775808 so it overflows */ 584 return 1; 585 }else{ 586 /* zNum is exactly 9223372036854775808. Fits if negative. The 587 ** special case 2 overflow if positive */ 588 assert( u-1==LARGEST_INT64 ); 589 return neg ? 0 : 2; 590 } 591 } 592 } 593 594 /* 595 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 596 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 597 ** whereas sqlite3Atoi64() does not. 598 ** 599 ** Returns: 600 ** 601 ** 0 Successful transformation. Fits in a 64-bit signed integer. 602 ** 1 Integer too large for a 64-bit signed integer or is malformed 603 ** 2 Special case of 9223372036854775808 604 */ 605 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 606 #ifndef SQLITE_OMIT_HEX_INTEGER 607 if( z[0]=='0' 608 && (z[1]=='x' || z[1]=='X') 609 && sqlite3Isxdigit(z[2]) 610 ){ 611 u64 u = 0; 612 int i, k; 613 for(i=2; z[i]=='0'; i++){} 614 for(k=i; sqlite3Isxdigit(z[k]); k++){ 615 u = u*16 + sqlite3HexToInt(z[k]); 616 } 617 memcpy(pOut, &u, 8); 618 return (z[k]==0 && k-i<=16) ? 0 : 1; 619 }else 620 #endif /* SQLITE_OMIT_HEX_INTEGER */ 621 { 622 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 623 } 624 } 625 626 /* 627 ** If zNum represents an integer that will fit in 32-bits, then set 628 ** *pValue to that integer and return true. Otherwise return false. 629 ** 630 ** This routine accepts both decimal and hexadecimal notation for integers. 631 ** 632 ** Any non-numeric characters that following zNum are ignored. 633 ** This is different from sqlite3Atoi64() which requires the 634 ** input number to be zero-terminated. 635 */ 636 int sqlite3GetInt32(const char *zNum, int *pValue){ 637 sqlite_int64 v = 0; 638 int i, c; 639 int neg = 0; 640 if( zNum[0]=='-' ){ 641 neg = 1; 642 zNum++; 643 }else if( zNum[0]=='+' ){ 644 zNum++; 645 } 646 #ifndef SQLITE_OMIT_HEX_INTEGER 647 else if( zNum[0]=='0' 648 && (zNum[1]=='x' || zNum[1]=='X') 649 && sqlite3Isxdigit(zNum[2]) 650 ){ 651 u32 u = 0; 652 zNum += 2; 653 while( zNum[0]=='0' ) zNum++; 654 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 655 u = u*16 + sqlite3HexToInt(zNum[i]); 656 } 657 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 658 memcpy(pValue, &u, 4); 659 return 1; 660 }else{ 661 return 0; 662 } 663 } 664 #endif 665 while( zNum[0]=='0' ) zNum++; 666 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 667 v = v*10 + c; 668 } 669 670 /* The longest decimal representation of a 32 bit integer is 10 digits: 671 ** 672 ** 1234567890 673 ** 2^31 -> 2147483648 674 */ 675 testcase( i==10 ); 676 if( i>10 ){ 677 return 0; 678 } 679 testcase( v-neg==2147483647 ); 680 if( v-neg>2147483647 ){ 681 return 0; 682 } 683 if( neg ){ 684 v = -v; 685 } 686 *pValue = (int)v; 687 return 1; 688 } 689 690 /* 691 ** Return a 32-bit integer value extracted from a string. If the 692 ** string is not an integer, just return 0. 693 */ 694 int sqlite3Atoi(const char *z){ 695 int x = 0; 696 if( z ) sqlite3GetInt32(z, &x); 697 return x; 698 } 699 700 /* 701 ** The variable-length integer encoding is as follows: 702 ** 703 ** KEY: 704 ** A = 0xxxxxxx 7 bits of data and one flag bit 705 ** B = 1xxxxxxx 7 bits of data and one flag bit 706 ** C = xxxxxxxx 8 bits of data 707 ** 708 ** 7 bits - A 709 ** 14 bits - BA 710 ** 21 bits - BBA 711 ** 28 bits - BBBA 712 ** 35 bits - BBBBA 713 ** 42 bits - BBBBBA 714 ** 49 bits - BBBBBBA 715 ** 56 bits - BBBBBBBA 716 ** 64 bits - BBBBBBBBC 717 */ 718 719 /* 720 ** Write a 64-bit variable-length integer to memory starting at p[0]. 721 ** The length of data write will be between 1 and 9 bytes. The number 722 ** of bytes written is returned. 723 ** 724 ** A variable-length integer consists of the lower 7 bits of each byte 725 ** for all bytes that have the 8th bit set and one byte with the 8th 726 ** bit clear. Except, if we get to the 9th byte, it stores the full 727 ** 8 bits and is the last byte. 728 */ 729 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 730 int i, j, n; 731 u8 buf[10]; 732 if( v & (((u64)0xff000000)<<32) ){ 733 p[8] = (u8)v; 734 v >>= 8; 735 for(i=7; i>=0; i--){ 736 p[i] = (u8)((v & 0x7f) | 0x80); 737 v >>= 7; 738 } 739 return 9; 740 } 741 n = 0; 742 do{ 743 buf[n++] = (u8)((v & 0x7f) | 0x80); 744 v >>= 7; 745 }while( v!=0 ); 746 buf[0] &= 0x7f; 747 assert( n<=9 ); 748 for(i=0, j=n-1; j>=0; j--, i++){ 749 p[i] = buf[j]; 750 } 751 return n; 752 } 753 int sqlite3PutVarint(unsigned char *p, u64 v){ 754 if( v<=0x7f ){ 755 p[0] = v&0x7f; 756 return 1; 757 } 758 if( v<=0x3fff ){ 759 p[0] = ((v>>7)&0x7f)|0x80; 760 p[1] = v&0x7f; 761 return 2; 762 } 763 return putVarint64(p,v); 764 } 765 766 /* 767 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 768 ** are defined here rather than simply putting the constant expressions 769 ** inline in order to work around bugs in the RVT compiler. 770 ** 771 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 772 ** 773 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 774 */ 775 #define SLOT_2_0 0x001fc07f 776 #define SLOT_4_2_0 0xf01fc07f 777 778 779 /* 780 ** Read a 64-bit variable-length integer from memory starting at p[0]. 781 ** Return the number of bytes read. The value is stored in *v. 782 */ 783 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 784 u32 a,b,s; 785 786 a = *p; 787 /* a: p0 (unmasked) */ 788 if (!(a&0x80)) 789 { 790 *v = a; 791 return 1; 792 } 793 794 p++; 795 b = *p; 796 /* b: p1 (unmasked) */ 797 if (!(b&0x80)) 798 { 799 a &= 0x7f; 800 a = a<<7; 801 a |= b; 802 *v = a; 803 return 2; 804 } 805 806 /* Verify that constants are precomputed correctly */ 807 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 808 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 809 810 p++; 811 a = a<<14; 812 a |= *p; 813 /* a: p0<<14 | p2 (unmasked) */ 814 if (!(a&0x80)) 815 { 816 a &= SLOT_2_0; 817 b &= 0x7f; 818 b = b<<7; 819 a |= b; 820 *v = a; 821 return 3; 822 } 823 824 /* CSE1 from below */ 825 a &= SLOT_2_0; 826 p++; 827 b = b<<14; 828 b |= *p; 829 /* b: p1<<14 | p3 (unmasked) */ 830 if (!(b&0x80)) 831 { 832 b &= SLOT_2_0; 833 /* moved CSE1 up */ 834 /* a &= (0x7f<<14)|(0x7f); */ 835 a = a<<7; 836 a |= b; 837 *v = a; 838 return 4; 839 } 840 841 /* a: p0<<14 | p2 (masked) */ 842 /* b: p1<<14 | p3 (unmasked) */ 843 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 844 /* moved CSE1 up */ 845 /* a &= (0x7f<<14)|(0x7f); */ 846 b &= SLOT_2_0; 847 s = a; 848 /* s: p0<<14 | p2 (masked) */ 849 850 p++; 851 a = a<<14; 852 a |= *p; 853 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 854 if (!(a&0x80)) 855 { 856 /* we can skip these cause they were (effectively) done above 857 ** while calculating s */ 858 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 859 /* b &= (0x7f<<14)|(0x7f); */ 860 b = b<<7; 861 a |= b; 862 s = s>>18; 863 *v = ((u64)s)<<32 | a; 864 return 5; 865 } 866 867 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 868 s = s<<7; 869 s |= b; 870 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 871 872 p++; 873 b = b<<14; 874 b |= *p; 875 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 876 if (!(b&0x80)) 877 { 878 /* we can skip this cause it was (effectively) done above in calc'ing s */ 879 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 880 a &= SLOT_2_0; 881 a = a<<7; 882 a |= b; 883 s = s>>18; 884 *v = ((u64)s)<<32 | a; 885 return 6; 886 } 887 888 p++; 889 a = a<<14; 890 a |= *p; 891 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 892 if (!(a&0x80)) 893 { 894 a &= SLOT_4_2_0; 895 b &= SLOT_2_0; 896 b = b<<7; 897 a |= b; 898 s = s>>11; 899 *v = ((u64)s)<<32 | a; 900 return 7; 901 } 902 903 /* CSE2 from below */ 904 a &= SLOT_2_0; 905 p++; 906 b = b<<14; 907 b |= *p; 908 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 909 if (!(b&0x80)) 910 { 911 b &= SLOT_4_2_0; 912 /* moved CSE2 up */ 913 /* a &= (0x7f<<14)|(0x7f); */ 914 a = a<<7; 915 a |= b; 916 s = s>>4; 917 *v = ((u64)s)<<32 | a; 918 return 8; 919 } 920 921 p++; 922 a = a<<15; 923 a |= *p; 924 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 925 926 /* moved CSE2 up */ 927 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 928 b &= SLOT_2_0; 929 b = b<<8; 930 a |= b; 931 932 s = s<<4; 933 b = p[-4]; 934 b &= 0x7f; 935 b = b>>3; 936 s |= b; 937 938 *v = ((u64)s)<<32 | a; 939 940 return 9; 941 } 942 943 /* 944 ** Read a 32-bit variable-length integer from memory starting at p[0]. 945 ** Return the number of bytes read. The value is stored in *v. 946 ** 947 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 948 ** integer, then set *v to 0xffffffff. 949 ** 950 ** A MACRO version, getVarint32, is provided which inlines the 951 ** single-byte case. All code should use the MACRO version as 952 ** this function assumes the single-byte case has already been handled. 953 */ 954 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 955 u32 a,b; 956 957 /* The 1-byte case. Overwhelmingly the most common. Handled inline 958 ** by the getVarin32() macro */ 959 a = *p; 960 /* a: p0 (unmasked) */ 961 #ifndef getVarint32 962 if (!(a&0x80)) 963 { 964 /* Values between 0 and 127 */ 965 *v = a; 966 return 1; 967 } 968 #endif 969 970 /* The 2-byte case */ 971 p++; 972 b = *p; 973 /* b: p1 (unmasked) */ 974 if (!(b&0x80)) 975 { 976 /* Values between 128 and 16383 */ 977 a &= 0x7f; 978 a = a<<7; 979 *v = a | b; 980 return 2; 981 } 982 983 /* The 3-byte case */ 984 p++; 985 a = a<<14; 986 a |= *p; 987 /* a: p0<<14 | p2 (unmasked) */ 988 if (!(a&0x80)) 989 { 990 /* Values between 16384 and 2097151 */ 991 a &= (0x7f<<14)|(0x7f); 992 b &= 0x7f; 993 b = b<<7; 994 *v = a | b; 995 return 3; 996 } 997 998 /* A 32-bit varint is used to store size information in btrees. 999 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1000 ** A 3-byte varint is sufficient, for example, to record the size 1001 ** of a 1048569-byte BLOB or string. 1002 ** 1003 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1004 ** rare larger cases can be handled by the slower 64-bit varint 1005 ** routine. 1006 */ 1007 #if 1 1008 { 1009 u64 v64; 1010 u8 n; 1011 1012 p -= 2; 1013 n = sqlite3GetVarint(p, &v64); 1014 assert( n>3 && n<=9 ); 1015 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1016 *v = 0xffffffff; 1017 }else{ 1018 *v = (u32)v64; 1019 } 1020 return n; 1021 } 1022 1023 #else 1024 /* For following code (kept for historical record only) shows an 1025 ** unrolling for the 3- and 4-byte varint cases. This code is 1026 ** slightly faster, but it is also larger and much harder to test. 1027 */ 1028 p++; 1029 b = b<<14; 1030 b |= *p; 1031 /* b: p1<<14 | p3 (unmasked) */ 1032 if (!(b&0x80)) 1033 { 1034 /* Values between 2097152 and 268435455 */ 1035 b &= (0x7f<<14)|(0x7f); 1036 a &= (0x7f<<14)|(0x7f); 1037 a = a<<7; 1038 *v = a | b; 1039 return 4; 1040 } 1041 1042 p++; 1043 a = a<<14; 1044 a |= *p; 1045 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1046 if (!(a&0x80)) 1047 { 1048 /* Values between 268435456 and 34359738367 */ 1049 a &= SLOT_4_2_0; 1050 b &= SLOT_4_2_0; 1051 b = b<<7; 1052 *v = a | b; 1053 return 5; 1054 } 1055 1056 /* We can only reach this point when reading a corrupt database 1057 ** file. In that case we are not in any hurry. Use the (relatively 1058 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1059 ** value. */ 1060 { 1061 u64 v64; 1062 u8 n; 1063 1064 p -= 4; 1065 n = sqlite3GetVarint(p, &v64); 1066 assert( n>5 && n<=9 ); 1067 *v = (u32)v64; 1068 return n; 1069 } 1070 #endif 1071 } 1072 1073 /* 1074 ** Return the number of bytes that will be needed to store the given 1075 ** 64-bit integer. 1076 */ 1077 int sqlite3VarintLen(u64 v){ 1078 int i; 1079 for(i=1; (v >>= 7)!=0; i++){ assert( i<9 ); } 1080 return i; 1081 } 1082 1083 1084 /* 1085 ** Read or write a four-byte big-endian integer value. 1086 */ 1087 u32 sqlite3Get4byte(const u8 *p){ 1088 #if SQLITE_BYTEORDER==4321 1089 u32 x; 1090 memcpy(&x,p,4); 1091 return x; 1092 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1093 && defined(__GNUC__) && GCC_VERSION>=4003000 1094 u32 x; 1095 memcpy(&x,p,4); 1096 return __builtin_bswap32(x); 1097 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1098 && defined(_MSC_VER) && _MSC_VER>=1300 1099 u32 x; 1100 memcpy(&x,p,4); 1101 return _byteswap_ulong(x); 1102 #else 1103 testcase( p[0]&0x80 ); 1104 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1105 #endif 1106 } 1107 void sqlite3Put4byte(unsigned char *p, u32 v){ 1108 #if SQLITE_BYTEORDER==4321 1109 memcpy(p,&v,4); 1110 #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) && GCC_VERSION>=4003000 1111 u32 x = __builtin_bswap32(v); 1112 memcpy(p,&x,4); 1113 #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300 1114 u32 x = _byteswap_ulong(v); 1115 memcpy(p,&x,4); 1116 #else 1117 p[0] = (u8)(v>>24); 1118 p[1] = (u8)(v>>16); 1119 p[2] = (u8)(v>>8); 1120 p[3] = (u8)v; 1121 #endif 1122 } 1123 1124 1125 1126 /* 1127 ** Translate a single byte of Hex into an integer. 1128 ** This routine only works if h really is a valid hexadecimal 1129 ** character: 0..9a..fA..F 1130 */ 1131 u8 sqlite3HexToInt(int h){ 1132 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1133 #ifdef SQLITE_ASCII 1134 h += 9*(1&(h>>6)); 1135 #endif 1136 #ifdef SQLITE_EBCDIC 1137 h += 9*(1&~(h>>4)); 1138 #endif 1139 return (u8)(h & 0xf); 1140 } 1141 1142 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1143 /* 1144 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1145 ** value. Return a pointer to its binary value. Space to hold the 1146 ** binary value has been obtained from malloc and must be freed by 1147 ** the calling routine. 1148 */ 1149 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1150 char *zBlob; 1151 int i; 1152 1153 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1154 n--; 1155 if( zBlob ){ 1156 for(i=0; i<n; i+=2){ 1157 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1158 } 1159 zBlob[i/2] = 0; 1160 } 1161 return zBlob; 1162 } 1163 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1164 1165 /* 1166 ** Log an error that is an API call on a connection pointer that should 1167 ** not have been used. The "type" of connection pointer is given as the 1168 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1169 */ 1170 static void logBadConnection(const char *zType){ 1171 sqlite3_log(SQLITE_MISUSE, 1172 "API call with %s database connection pointer", 1173 zType 1174 ); 1175 } 1176 1177 /* 1178 ** Check to make sure we have a valid db pointer. This test is not 1179 ** foolproof but it does provide some measure of protection against 1180 ** misuse of the interface such as passing in db pointers that are 1181 ** NULL or which have been previously closed. If this routine returns 1182 ** 1 it means that the db pointer is valid and 0 if it should not be 1183 ** dereferenced for any reason. The calling function should invoke 1184 ** SQLITE_MISUSE immediately. 1185 ** 1186 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1187 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1188 ** open properly and is not fit for general use but which can be 1189 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1190 */ 1191 int sqlite3SafetyCheckOk(sqlite3 *db){ 1192 u32 magic; 1193 if( db==0 ){ 1194 logBadConnection("NULL"); 1195 return 0; 1196 } 1197 magic = db->magic; 1198 if( magic!=SQLITE_MAGIC_OPEN ){ 1199 if( sqlite3SafetyCheckSickOrOk(db) ){ 1200 testcase( sqlite3GlobalConfig.xLog!=0 ); 1201 logBadConnection("unopened"); 1202 } 1203 return 0; 1204 }else{ 1205 return 1; 1206 } 1207 } 1208 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1209 u32 magic; 1210 magic = db->magic; 1211 if( magic!=SQLITE_MAGIC_SICK && 1212 magic!=SQLITE_MAGIC_OPEN && 1213 magic!=SQLITE_MAGIC_BUSY ){ 1214 testcase( sqlite3GlobalConfig.xLog!=0 ); 1215 logBadConnection("invalid"); 1216 return 0; 1217 }else{ 1218 return 1; 1219 } 1220 } 1221 1222 /* 1223 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1224 ** the other 64-bit signed integer at *pA and store the result in *pA. 1225 ** Return 0 on success. Or if the operation would have resulted in an 1226 ** overflow, leave *pA unchanged and return 1. 1227 */ 1228 int sqlite3AddInt64(i64 *pA, i64 iB){ 1229 i64 iA = *pA; 1230 testcase( iA==0 ); testcase( iA==1 ); 1231 testcase( iB==-1 ); testcase( iB==0 ); 1232 if( iB>=0 ){ 1233 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1234 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1235 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1236 }else{ 1237 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1238 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1239 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1240 } 1241 *pA += iB; 1242 return 0; 1243 } 1244 int sqlite3SubInt64(i64 *pA, i64 iB){ 1245 testcase( iB==SMALLEST_INT64+1 ); 1246 if( iB==SMALLEST_INT64 ){ 1247 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1248 if( (*pA)>=0 ) return 1; 1249 *pA -= iB; 1250 return 0; 1251 }else{ 1252 return sqlite3AddInt64(pA, -iB); 1253 } 1254 } 1255 #define TWOPOWER32 (((i64)1)<<32) 1256 #define TWOPOWER31 (((i64)1)<<31) 1257 int sqlite3MulInt64(i64 *pA, i64 iB){ 1258 i64 iA = *pA; 1259 i64 iA1, iA0, iB1, iB0, r; 1260 1261 iA1 = iA/TWOPOWER32; 1262 iA0 = iA % TWOPOWER32; 1263 iB1 = iB/TWOPOWER32; 1264 iB0 = iB % TWOPOWER32; 1265 if( iA1==0 ){ 1266 if( iB1==0 ){ 1267 *pA *= iB; 1268 return 0; 1269 } 1270 r = iA0*iB1; 1271 }else if( iB1==0 ){ 1272 r = iA1*iB0; 1273 }else{ 1274 /* If both iA1 and iB1 are non-zero, overflow will result */ 1275 return 1; 1276 } 1277 testcase( r==(-TWOPOWER31)-1 ); 1278 testcase( r==(-TWOPOWER31) ); 1279 testcase( r==TWOPOWER31 ); 1280 testcase( r==TWOPOWER31-1 ); 1281 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1282 r *= TWOPOWER32; 1283 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1284 *pA = r; 1285 return 0; 1286 } 1287 1288 /* 1289 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1290 ** if the integer has a value of -2147483648, return +2147483647 1291 */ 1292 int sqlite3AbsInt32(int x){ 1293 if( x>=0 ) return x; 1294 if( x==(int)0x80000000 ) return 0x7fffffff; 1295 return -x; 1296 } 1297 1298 #ifdef SQLITE_ENABLE_8_3_NAMES 1299 /* 1300 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1301 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1302 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1303 ** three characters, then shorten the suffix on z[] to be the last three 1304 ** characters of the original suffix. 1305 ** 1306 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1307 ** do the suffix shortening regardless of URI parameter. 1308 ** 1309 ** Examples: 1310 ** 1311 ** test.db-journal => test.nal 1312 ** test.db-wal => test.wal 1313 ** test.db-shm => test.shm 1314 ** test.db-mj7f3319fa => test.9fa 1315 */ 1316 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1317 #if SQLITE_ENABLE_8_3_NAMES<2 1318 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1319 #endif 1320 { 1321 int i, sz; 1322 sz = sqlite3Strlen30(z); 1323 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1324 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1325 } 1326 } 1327 #endif 1328 1329 /* 1330 ** Find (an approximate) sum of two LogEst values. This computation is 1331 ** not a simple "+" operator because LogEst is stored as a logarithmic 1332 ** value. 1333 ** 1334 */ 1335 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1336 static const unsigned char x[] = { 1337 10, 10, /* 0,1 */ 1338 9, 9, /* 2,3 */ 1339 8, 8, /* 4,5 */ 1340 7, 7, 7, /* 6,7,8 */ 1341 6, 6, 6, /* 9,10,11 */ 1342 5, 5, 5, /* 12-14 */ 1343 4, 4, 4, 4, /* 15-18 */ 1344 3, 3, 3, 3, 3, 3, /* 19-24 */ 1345 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1346 }; 1347 if( a>=b ){ 1348 if( a>b+49 ) return a; 1349 if( a>b+31 ) return a+1; 1350 return a+x[a-b]; 1351 }else{ 1352 if( b>a+49 ) return b; 1353 if( b>a+31 ) return b+1; 1354 return b+x[b-a]; 1355 } 1356 } 1357 1358 /* 1359 ** Convert an integer into a LogEst. In other words, compute an 1360 ** approximation for 10*log2(x). 1361 */ 1362 LogEst sqlite3LogEst(u64 x){ 1363 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1364 LogEst y = 40; 1365 if( x<8 ){ 1366 if( x<2 ) return 0; 1367 while( x<8 ){ y -= 10; x <<= 1; } 1368 }else{ 1369 while( x>255 ){ y += 40; x >>= 4; } 1370 while( x>15 ){ y += 10; x >>= 1; } 1371 } 1372 return a[x&7] + y - 10; 1373 } 1374 1375 #ifndef SQLITE_OMIT_VIRTUALTABLE 1376 /* 1377 ** Convert a double into a LogEst 1378 ** In other words, compute an approximation for 10*log2(x). 1379 */ 1380 LogEst sqlite3LogEstFromDouble(double x){ 1381 u64 a; 1382 LogEst e; 1383 assert( sizeof(x)==8 && sizeof(a)==8 ); 1384 if( x<=1 ) return 0; 1385 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1386 memcpy(&a, &x, 8); 1387 e = (a>>52) - 1022; 1388 return e*10; 1389 } 1390 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1391 1392 /* 1393 ** Convert a LogEst into an integer. 1394 */ 1395 u64 sqlite3LogEstToInt(LogEst x){ 1396 u64 n; 1397 if( x<10 ) return 1; 1398 n = x%10; 1399 x /= 10; 1400 if( n>=5 ) n -= 2; 1401 else if( n>=1 ) n -= 1; 1402 if( x>=3 ){ 1403 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); 1404 } 1405 return (n+8)>>(3-x); 1406 } 1407