xref: /sqlite-3.40.0/src/util.c (revision cc285c5a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
38 **
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
41 **
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
44 */
45 #ifndef SQLITE_OMIT_BUILTIN_TEST
46 int sqlite3FaultSim(int iTest){
47   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48   return xCallback ? xCallback(iTest) : SQLITE_OK;
49 }
50 #endif
51 
52 #ifndef SQLITE_OMIT_FLOATING_POINT
53 /*
54 ** Return true if the floating point value is Not a Number (NaN).
55 **
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
58 */
59 int sqlite3IsNaN(double x){
60   int rc;   /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
62   /*
63   ** Systems that support the isnan() library function should probably
64   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
65   ** found that many systems do not have a working isnan() function so
66   ** this implementation is provided as an alternative.
67   **
68   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69   ** On the other hand, the use of -ffast-math comes with the following
70   ** warning:
71   **
72   **      This option [-ffast-math] should never be turned on by any
73   **      -O option since it can result in incorrect output for programs
74   **      which depend on an exact implementation of IEEE or ISO
75   **      rules/specifications for math functions.
76   **
77   ** Under MSVC, this NaN test may fail if compiled with a floating-
78   ** point precision mode other than /fp:precise.  From the MSDN
79   ** documentation:
80   **
81   **      The compiler [with /fp:precise] will properly handle comparisons
82   **      involving NaN. For example, x != x evaluates to true if x is NaN
83   **      ...
84   */
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88   volatile double y = x;
89   volatile double z = y;
90   rc = (y!=z);
91 #else  /* if HAVE_ISNAN */
92   rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94   testcase( rc );
95   return rc;
96 }
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
98 
99 /*
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
102 **
103 ** The value returned will never be negative.  Nor will it ever be greater
104 ** than the actual length of the string.  For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
106 */
107 int sqlite3Strlen30(const char *z){
108   const char *z2 = z;
109   if( z==0 ) return 0;
110   while( *z2 ){ z2++; }
111   return 0x3fffffff & (int)(z2 - z);
112 }
113 
114 /*
115 ** Set the current error code to err_code and clear any prior error message.
116 */
117 void sqlite3Error(sqlite3 *db, int err_code){
118   assert( db!=0 );
119   db->errCode = err_code;
120   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
121 }
122 
123 /*
124 ** Set the most recent error code and error string for the sqlite
125 ** handle "db". The error code is set to "err_code".
126 **
127 ** If it is not NULL, string zFormat specifies the format of the
128 ** error string in the style of the printf functions: The following
129 ** format characters are allowed:
130 **
131 **      %s      Insert a string
132 **      %z      A string that should be freed after use
133 **      %d      Insert an integer
134 **      %T      Insert a token
135 **      %S      Insert the first element of a SrcList
136 **
137 ** zFormat and any string tokens that follow it are assumed to be
138 ** encoded in UTF-8.
139 **
140 ** To clear the most recent error for sqlite handle "db", sqlite3Error
141 ** should be called with err_code set to SQLITE_OK and zFormat set
142 ** to NULL.
143 */
144 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
145   assert( db!=0 );
146   db->errCode = err_code;
147   if( zFormat==0 ){
148     sqlite3Error(db, err_code);
149   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
150     char *z;
151     va_list ap;
152     va_start(ap, zFormat);
153     z = sqlite3VMPrintf(db, zFormat, ap);
154     va_end(ap);
155     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
156   }
157 }
158 
159 /*
160 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
161 ** The following formatting characters are allowed:
162 **
163 **      %s      Insert a string
164 **      %z      A string that should be freed after use
165 **      %d      Insert an integer
166 **      %T      Insert a token
167 **      %S      Insert the first element of a SrcList
168 **
169 ** This function should be used to report any error that occurs while
170 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
171 ** last thing the sqlite3_prepare() function does is copy the error
172 ** stored by this function into the database handle using sqlite3Error().
173 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
174 ** during statement execution (sqlite3_step() etc.).
175 */
176 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
177   char *zMsg;
178   va_list ap;
179   sqlite3 *db = pParse->db;
180   va_start(ap, zFormat);
181   zMsg = sqlite3VMPrintf(db, zFormat, ap);
182   va_end(ap);
183   if( db->suppressErr ){
184     sqlite3DbFree(db, zMsg);
185   }else{
186     pParse->nErr++;
187     sqlite3DbFree(db, pParse->zErrMsg);
188     pParse->zErrMsg = zMsg;
189     pParse->rc = SQLITE_ERROR;
190   }
191 }
192 
193 /*
194 ** Convert an SQL-style quoted string into a normal string by removing
195 ** the quote characters.  The conversion is done in-place.  If the
196 ** input does not begin with a quote character, then this routine
197 ** is a no-op.
198 **
199 ** The input string must be zero-terminated.  A new zero-terminator
200 ** is added to the dequoted string.
201 **
202 ** The return value is -1 if no dequoting occurs or the length of the
203 ** dequoted string, exclusive of the zero terminator, if dequoting does
204 ** occur.
205 **
206 ** 2002-Feb-14: This routine is extended to remove MS-Access style
207 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
208 ** "a-b-c".
209 */
210 int sqlite3Dequote(char *z){
211   char quote;
212   int i, j;
213   if( z==0 ) return -1;
214   quote = z[0];
215   switch( quote ){
216     case '\'':  break;
217     case '"':   break;
218     case '`':   break;                /* For MySQL compatibility */
219     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
220     default:    return -1;
221   }
222   for(i=1, j=0;; i++){
223     assert( z[i] );
224     if( z[i]==quote ){
225       if( z[i+1]==quote ){
226         z[j++] = quote;
227         i++;
228       }else{
229         break;
230       }
231     }else{
232       z[j++] = z[i];
233     }
234   }
235   z[j] = 0;
236   return j;
237 }
238 
239 /* Convenient short-hand */
240 #define UpperToLower sqlite3UpperToLower
241 
242 /*
243 ** Some systems have stricmp().  Others have strcasecmp().  Because
244 ** there is no consistency, we will define our own.
245 **
246 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
247 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
248 ** the contents of two buffers containing UTF-8 strings in a
249 ** case-independent fashion, using the same definition of "case
250 ** independence" that SQLite uses internally when comparing identifiers.
251 */
252 int sqlite3_stricmp(const char *zLeft, const char *zRight){
253   register unsigned char *a, *b;
254   if( zLeft==0 ){
255     return zRight ? -1 : 0;
256   }else if( zRight==0 ){
257     return 1;
258   }
259   a = (unsigned char *)zLeft;
260   b = (unsigned char *)zRight;
261   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
262   return UpperToLower[*a] - UpperToLower[*b];
263 }
264 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
265   register unsigned char *a, *b;
266   if( zLeft==0 ){
267     return zRight ? -1 : 0;
268   }else if( zRight==0 ){
269     return 1;
270   }
271   a = (unsigned char *)zLeft;
272   b = (unsigned char *)zRight;
273   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
274   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
275 }
276 
277 /*
278 ** The string z[] is an text representation of a real number.
279 ** Convert this string to a double and write it into *pResult.
280 **
281 ** The string z[] is length bytes in length (bytes, not characters) and
282 ** uses the encoding enc.  The string is not necessarily zero-terminated.
283 **
284 ** Return TRUE if the result is a valid real number (or integer) and FALSE
285 ** if the string is empty or contains extraneous text.  Valid numbers
286 ** are in one of these formats:
287 **
288 **    [+-]digits[E[+-]digits]
289 **    [+-]digits.[digits][E[+-]digits]
290 **    [+-].digits[E[+-]digits]
291 **
292 ** Leading and trailing whitespace is ignored for the purpose of determining
293 ** validity.
294 **
295 ** If some prefix of the input string is a valid number, this routine
296 ** returns FALSE but it still converts the prefix and writes the result
297 ** into *pResult.
298 */
299 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
300 #ifndef SQLITE_OMIT_FLOATING_POINT
301   int incr;
302   const char *zEnd = z + length;
303   /* sign * significand * (10 ^ (esign * exponent)) */
304   int sign = 1;    /* sign of significand */
305   i64 s = 0;       /* significand */
306   int d = 0;       /* adjust exponent for shifting decimal point */
307   int esign = 1;   /* sign of exponent */
308   int e = 0;       /* exponent */
309   int eValid = 1;  /* True exponent is either not used or is well-formed */
310   double result;
311   int nDigits = 0;
312   int nonNum = 0;
313 
314   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
315   *pResult = 0.0;   /* Default return value, in case of an error */
316 
317   if( enc==SQLITE_UTF8 ){
318     incr = 1;
319   }else{
320     int i;
321     incr = 2;
322     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
323     for(i=3-enc; i<length && z[i]==0; i+=2){}
324     nonNum = i<length;
325     zEnd = z+i+enc-3;
326     z += (enc&1);
327   }
328 
329   /* skip leading spaces */
330   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
331   if( z>=zEnd ) return 0;
332 
333   /* get sign of significand */
334   if( *z=='-' ){
335     sign = -1;
336     z+=incr;
337   }else if( *z=='+' ){
338     z+=incr;
339   }
340 
341   /* skip leading zeroes */
342   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
343 
344   /* copy max significant digits to significand */
345   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
346     s = s*10 + (*z - '0');
347     z+=incr, nDigits++;
348   }
349 
350   /* skip non-significant significand digits
351   ** (increase exponent by d to shift decimal left) */
352   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
353   if( z>=zEnd ) goto do_atof_calc;
354 
355   /* if decimal point is present */
356   if( *z=='.' ){
357     z+=incr;
358     /* copy digits from after decimal to significand
359     ** (decrease exponent by d to shift decimal right) */
360     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
361       s = s*10 + (*z - '0');
362       z+=incr, nDigits++, d--;
363     }
364     /* skip non-significant digits */
365     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
366   }
367   if( z>=zEnd ) goto do_atof_calc;
368 
369   /* if exponent is present */
370   if( *z=='e' || *z=='E' ){
371     z+=incr;
372     eValid = 0;
373     if( z>=zEnd ) goto do_atof_calc;
374     /* get sign of exponent */
375     if( *z=='-' ){
376       esign = -1;
377       z+=incr;
378     }else if( *z=='+' ){
379       z+=incr;
380     }
381     /* copy digits to exponent */
382     while( z<zEnd && sqlite3Isdigit(*z) ){
383       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
384       z+=incr;
385       eValid = 1;
386     }
387   }
388 
389   /* skip trailing spaces */
390   if( nDigits && eValid ){
391     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
392   }
393 
394 do_atof_calc:
395   /* adjust exponent by d, and update sign */
396   e = (e*esign) + d;
397   if( e<0 ) {
398     esign = -1;
399     e *= -1;
400   } else {
401     esign = 1;
402   }
403 
404   /* if 0 significand */
405   if( !s ) {
406     /* In the IEEE 754 standard, zero is signed.
407     ** Add the sign if we've seen at least one digit */
408     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
409   } else {
410     /* attempt to reduce exponent */
411     if( esign>0 ){
412       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
413     }else{
414       while( !(s%10) && e>0 ) e--,s/=10;
415     }
416 
417     /* adjust the sign of significand */
418     s = sign<0 ? -s : s;
419 
420     /* if exponent, scale significand as appropriate
421     ** and store in result. */
422     if( e ){
423       LONGDOUBLE_TYPE scale = 1.0;
424       /* attempt to handle extremely small/large numbers better */
425       if( e>307 && e<342 ){
426         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
427         if( esign<0 ){
428           result = s / scale;
429           result /= 1.0e+308;
430         }else{
431           result = s * scale;
432           result *= 1.0e+308;
433         }
434       }else if( e>=342 ){
435         if( esign<0 ){
436           result = 0.0*s;
437         }else{
438           result = 1e308*1e308*s;  /* Infinity */
439         }
440       }else{
441         /* 1.0e+22 is the largest power of 10 than can be
442         ** represented exactly. */
443         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
444         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
445         if( esign<0 ){
446           result = s / scale;
447         }else{
448           result = s * scale;
449         }
450       }
451     } else {
452       result = (double)s;
453     }
454   }
455 
456   /* store the result */
457   *pResult = result;
458 
459   /* return true if number and no extra non-whitespace chracters after */
460   return z>=zEnd && nDigits>0 && eValid && nonNum==0;
461 #else
462   return !sqlite3Atoi64(z, pResult, length, enc);
463 #endif /* SQLITE_OMIT_FLOATING_POINT */
464 }
465 
466 /*
467 ** Compare the 19-character string zNum against the text representation
468 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
469 ** if zNum is less than, equal to, or greater than the string.
470 ** Note that zNum must contain exactly 19 characters.
471 **
472 ** Unlike memcmp() this routine is guaranteed to return the difference
473 ** in the values of the last digit if the only difference is in the
474 ** last digit.  So, for example,
475 **
476 **      compare2pow63("9223372036854775800", 1)
477 **
478 ** will return -8.
479 */
480 static int compare2pow63(const char *zNum, int incr){
481   int c = 0;
482   int i;
483                     /* 012345678901234567 */
484   const char *pow63 = "922337203685477580";
485   for(i=0; c==0 && i<18; i++){
486     c = (zNum[i*incr]-pow63[i])*10;
487   }
488   if( c==0 ){
489     c = zNum[18*incr] - '8';
490     testcase( c==(-1) );
491     testcase( c==0 );
492     testcase( c==(+1) );
493   }
494   return c;
495 }
496 
497 /*
498 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
499 ** routine does *not* accept hexadecimal notation.
500 **
501 ** If the zNum value is representable as a 64-bit twos-complement
502 ** integer, then write that value into *pNum and return 0.
503 **
504 ** If zNum is exactly 9223372036854775808, return 2.  This special
505 ** case is broken out because while 9223372036854775808 cannot be a
506 ** signed 64-bit integer, its negative -9223372036854775808 can be.
507 **
508 ** If zNum is too big for a 64-bit integer and is not
509 ** 9223372036854775808  or if zNum contains any non-numeric text,
510 ** then return 1.
511 **
512 ** length is the number of bytes in the string (bytes, not characters).
513 ** The string is not necessarily zero-terminated.  The encoding is
514 ** given by enc.
515 */
516 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
517   int incr;
518   u64 u = 0;
519   int neg = 0; /* assume positive */
520   int i;
521   int c = 0;
522   int nonNum = 0;
523   const char *zStart;
524   const char *zEnd = zNum + length;
525   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
526   if( enc==SQLITE_UTF8 ){
527     incr = 1;
528   }else{
529     incr = 2;
530     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
531     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
532     nonNum = i<length;
533     zEnd = zNum+i+enc-3;
534     zNum += (enc&1);
535   }
536   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
537   if( zNum<zEnd ){
538     if( *zNum=='-' ){
539       neg = 1;
540       zNum+=incr;
541     }else if( *zNum=='+' ){
542       zNum+=incr;
543     }
544   }
545   zStart = zNum;
546   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
547   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
548     u = u*10 + c - '0';
549   }
550   if( u>LARGEST_INT64 ){
551     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
552   }else if( neg ){
553     *pNum = -(i64)u;
554   }else{
555     *pNum = (i64)u;
556   }
557   testcase( i==18 );
558   testcase( i==19 );
559   testcase( i==20 );
560   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){
561     /* zNum is empty or contains non-numeric text or is longer
562     ** than 19 digits (thus guaranteeing that it is too large) */
563     return 1;
564   }else if( i<19*incr ){
565     /* Less than 19 digits, so we know that it fits in 64 bits */
566     assert( u<=LARGEST_INT64 );
567     return 0;
568   }else{
569     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
570     c = compare2pow63(zNum, incr);
571     if( c<0 ){
572       /* zNum is less than 9223372036854775808 so it fits */
573       assert( u<=LARGEST_INT64 );
574       return 0;
575     }else if( c>0 ){
576       /* zNum is greater than 9223372036854775808 so it overflows */
577       return 1;
578     }else{
579       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
580       ** special case 2 overflow if positive */
581       assert( u-1==LARGEST_INT64 );
582       return neg ? 0 : 2;
583     }
584   }
585 }
586 
587 /*
588 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
589 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
590 ** whereas sqlite3Atoi64() does not.
591 **
592 ** Returns:
593 **
594 **     0    Successful transformation.  Fits in a 64-bit signed integer.
595 **     1    Integer too large for a 64-bit signed integer or is malformed
596 **     2    Special case of 9223372036854775808
597 */
598 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
599 #ifndef SQLITE_OMIT_HEX_INTEGER
600   if( z[0]=='0'
601    && (z[1]=='x' || z[1]=='X')
602    && sqlite3Isxdigit(z[2])
603   ){
604     u64 u = 0;
605     int i, k;
606     for(i=2; z[i]=='0'; i++){}
607     for(k=i; sqlite3Isxdigit(z[k]); k++){
608       u = u*16 + sqlite3HexToInt(z[k]);
609     }
610     memcpy(pOut, &u, 8);
611     return (z[k]==0 && k-i<=16) ? 0 : 1;
612   }else
613 #endif /* SQLITE_OMIT_HEX_INTEGER */
614   {
615     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
616   }
617 }
618 
619 /*
620 ** If zNum represents an integer that will fit in 32-bits, then set
621 ** *pValue to that integer and return true.  Otherwise return false.
622 **
623 ** This routine accepts both decimal and hexadecimal notation for integers.
624 **
625 ** Any non-numeric characters that following zNum are ignored.
626 ** This is different from sqlite3Atoi64() which requires the
627 ** input number to be zero-terminated.
628 */
629 int sqlite3GetInt32(const char *zNum, int *pValue){
630   sqlite_int64 v = 0;
631   int i, c;
632   int neg = 0;
633   if( zNum[0]=='-' ){
634     neg = 1;
635     zNum++;
636   }else if( zNum[0]=='+' ){
637     zNum++;
638   }
639 #ifndef SQLITE_OMIT_HEX_INTEGER
640   else if( zNum[0]=='0'
641         && (zNum[1]=='x' || zNum[1]=='X')
642         && sqlite3Isxdigit(zNum[2])
643   ){
644     u32 u = 0;
645     zNum += 2;
646     while( zNum[0]=='0' ) zNum++;
647     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
648       u = u*16 + sqlite3HexToInt(zNum[i]);
649     }
650     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
651       memcpy(pValue, &u, 4);
652       return 1;
653     }else{
654       return 0;
655     }
656   }
657 #endif
658   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
659     v = v*10 + c;
660   }
661 
662   /* The longest decimal representation of a 32 bit integer is 10 digits:
663   **
664   **             1234567890
665   **     2^31 -> 2147483648
666   */
667   testcase( i==10 );
668   if( i>10 ){
669     return 0;
670   }
671   testcase( v-neg==2147483647 );
672   if( v-neg>2147483647 ){
673     return 0;
674   }
675   if( neg ){
676     v = -v;
677   }
678   *pValue = (int)v;
679   return 1;
680 }
681 
682 /*
683 ** Return a 32-bit integer value extracted from a string.  If the
684 ** string is not an integer, just return 0.
685 */
686 int sqlite3Atoi(const char *z){
687   int x = 0;
688   if( z ) sqlite3GetInt32(z, &x);
689   return x;
690 }
691 
692 /*
693 ** The variable-length integer encoding is as follows:
694 **
695 ** KEY:
696 **         A = 0xxxxxxx    7 bits of data and one flag bit
697 **         B = 1xxxxxxx    7 bits of data and one flag bit
698 **         C = xxxxxxxx    8 bits of data
699 **
700 **  7 bits - A
701 ** 14 bits - BA
702 ** 21 bits - BBA
703 ** 28 bits - BBBA
704 ** 35 bits - BBBBA
705 ** 42 bits - BBBBBA
706 ** 49 bits - BBBBBBA
707 ** 56 bits - BBBBBBBA
708 ** 64 bits - BBBBBBBBC
709 */
710 
711 /*
712 ** Write a 64-bit variable-length integer to memory starting at p[0].
713 ** The length of data write will be between 1 and 9 bytes.  The number
714 ** of bytes written is returned.
715 **
716 ** A variable-length integer consists of the lower 7 bits of each byte
717 ** for all bytes that have the 8th bit set and one byte with the 8th
718 ** bit clear.  Except, if we get to the 9th byte, it stores the full
719 ** 8 bits and is the last byte.
720 */
721 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
722   int i, j, n;
723   u8 buf[10];
724   if( v & (((u64)0xff000000)<<32) ){
725     p[8] = (u8)v;
726     v >>= 8;
727     for(i=7; i>=0; i--){
728       p[i] = (u8)((v & 0x7f) | 0x80);
729       v >>= 7;
730     }
731     return 9;
732   }
733   n = 0;
734   do{
735     buf[n++] = (u8)((v & 0x7f) | 0x80);
736     v >>= 7;
737   }while( v!=0 );
738   buf[0] &= 0x7f;
739   assert( n<=9 );
740   for(i=0, j=n-1; j>=0; j--, i++){
741     p[i] = buf[j];
742   }
743   return n;
744 }
745 int sqlite3PutVarint(unsigned char *p, u64 v){
746   if( v<=0x7f ){
747     p[0] = v&0x7f;
748     return 1;
749   }
750   if( v<=0x3fff ){
751     p[0] = ((v>>7)&0x7f)|0x80;
752     p[1] = v&0x7f;
753     return 2;
754   }
755   return putVarint64(p,v);
756 }
757 
758 /*
759 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
760 ** are defined here rather than simply putting the constant expressions
761 ** inline in order to work around bugs in the RVT compiler.
762 **
763 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
764 **
765 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
766 */
767 #define SLOT_2_0     0x001fc07f
768 #define SLOT_4_2_0   0xf01fc07f
769 
770 
771 /*
772 ** Read a 64-bit variable-length integer from memory starting at p[0].
773 ** Return the number of bytes read.  The value is stored in *v.
774 */
775 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
776   u32 a,b,s;
777 
778   a = *p;
779   /* a: p0 (unmasked) */
780   if (!(a&0x80))
781   {
782     *v = a;
783     return 1;
784   }
785 
786   p++;
787   b = *p;
788   /* b: p1 (unmasked) */
789   if (!(b&0x80))
790   {
791     a &= 0x7f;
792     a = a<<7;
793     a |= b;
794     *v = a;
795     return 2;
796   }
797 
798   /* Verify that constants are precomputed correctly */
799   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
800   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
801 
802   p++;
803   a = a<<14;
804   a |= *p;
805   /* a: p0<<14 | p2 (unmasked) */
806   if (!(a&0x80))
807   {
808     a &= SLOT_2_0;
809     b &= 0x7f;
810     b = b<<7;
811     a |= b;
812     *v = a;
813     return 3;
814   }
815 
816   /* CSE1 from below */
817   a &= SLOT_2_0;
818   p++;
819   b = b<<14;
820   b |= *p;
821   /* b: p1<<14 | p3 (unmasked) */
822   if (!(b&0x80))
823   {
824     b &= SLOT_2_0;
825     /* moved CSE1 up */
826     /* a &= (0x7f<<14)|(0x7f); */
827     a = a<<7;
828     a |= b;
829     *v = a;
830     return 4;
831   }
832 
833   /* a: p0<<14 | p2 (masked) */
834   /* b: p1<<14 | p3 (unmasked) */
835   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
836   /* moved CSE1 up */
837   /* a &= (0x7f<<14)|(0x7f); */
838   b &= SLOT_2_0;
839   s = a;
840   /* s: p0<<14 | p2 (masked) */
841 
842   p++;
843   a = a<<14;
844   a |= *p;
845   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
846   if (!(a&0x80))
847   {
848     /* we can skip these cause they were (effectively) done above in calc'ing s */
849     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
850     /* b &= (0x7f<<14)|(0x7f); */
851     b = b<<7;
852     a |= b;
853     s = s>>18;
854     *v = ((u64)s)<<32 | a;
855     return 5;
856   }
857 
858   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
859   s = s<<7;
860   s |= b;
861   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
862 
863   p++;
864   b = b<<14;
865   b |= *p;
866   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
867   if (!(b&0x80))
868   {
869     /* we can skip this cause it was (effectively) done above in calc'ing s */
870     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
871     a &= SLOT_2_0;
872     a = a<<7;
873     a |= b;
874     s = s>>18;
875     *v = ((u64)s)<<32 | a;
876     return 6;
877   }
878 
879   p++;
880   a = a<<14;
881   a |= *p;
882   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
883   if (!(a&0x80))
884   {
885     a &= SLOT_4_2_0;
886     b &= SLOT_2_0;
887     b = b<<7;
888     a |= b;
889     s = s>>11;
890     *v = ((u64)s)<<32 | a;
891     return 7;
892   }
893 
894   /* CSE2 from below */
895   a &= SLOT_2_0;
896   p++;
897   b = b<<14;
898   b |= *p;
899   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
900   if (!(b&0x80))
901   {
902     b &= SLOT_4_2_0;
903     /* moved CSE2 up */
904     /* a &= (0x7f<<14)|(0x7f); */
905     a = a<<7;
906     a |= b;
907     s = s>>4;
908     *v = ((u64)s)<<32 | a;
909     return 8;
910   }
911 
912   p++;
913   a = a<<15;
914   a |= *p;
915   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
916 
917   /* moved CSE2 up */
918   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
919   b &= SLOT_2_0;
920   b = b<<8;
921   a |= b;
922 
923   s = s<<4;
924   b = p[-4];
925   b &= 0x7f;
926   b = b>>3;
927   s |= b;
928 
929   *v = ((u64)s)<<32 | a;
930 
931   return 9;
932 }
933 
934 /*
935 ** Read a 32-bit variable-length integer from memory starting at p[0].
936 ** Return the number of bytes read.  The value is stored in *v.
937 **
938 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
939 ** integer, then set *v to 0xffffffff.
940 **
941 ** A MACRO version, getVarint32, is provided which inlines the
942 ** single-byte case.  All code should use the MACRO version as
943 ** this function assumes the single-byte case has already been handled.
944 */
945 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
946   u32 a,b;
947 
948   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
949   ** by the getVarin32() macro */
950   a = *p;
951   /* a: p0 (unmasked) */
952 #ifndef getVarint32
953   if (!(a&0x80))
954   {
955     /* Values between 0 and 127 */
956     *v = a;
957     return 1;
958   }
959 #endif
960 
961   /* The 2-byte case */
962   p++;
963   b = *p;
964   /* b: p1 (unmasked) */
965   if (!(b&0x80))
966   {
967     /* Values between 128 and 16383 */
968     a &= 0x7f;
969     a = a<<7;
970     *v = a | b;
971     return 2;
972   }
973 
974   /* The 3-byte case */
975   p++;
976   a = a<<14;
977   a |= *p;
978   /* a: p0<<14 | p2 (unmasked) */
979   if (!(a&0x80))
980   {
981     /* Values between 16384 and 2097151 */
982     a &= (0x7f<<14)|(0x7f);
983     b &= 0x7f;
984     b = b<<7;
985     *v = a | b;
986     return 3;
987   }
988 
989   /* A 32-bit varint is used to store size information in btrees.
990   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
991   ** A 3-byte varint is sufficient, for example, to record the size
992   ** of a 1048569-byte BLOB or string.
993   **
994   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
995   ** rare larger cases can be handled by the slower 64-bit varint
996   ** routine.
997   */
998 #if 1
999   {
1000     u64 v64;
1001     u8 n;
1002 
1003     p -= 2;
1004     n = sqlite3GetVarint(p, &v64);
1005     assert( n>3 && n<=9 );
1006     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1007       *v = 0xffffffff;
1008     }else{
1009       *v = (u32)v64;
1010     }
1011     return n;
1012   }
1013 
1014 #else
1015   /* For following code (kept for historical record only) shows an
1016   ** unrolling for the 3- and 4-byte varint cases.  This code is
1017   ** slightly faster, but it is also larger and much harder to test.
1018   */
1019   p++;
1020   b = b<<14;
1021   b |= *p;
1022   /* b: p1<<14 | p3 (unmasked) */
1023   if (!(b&0x80))
1024   {
1025     /* Values between 2097152 and 268435455 */
1026     b &= (0x7f<<14)|(0x7f);
1027     a &= (0x7f<<14)|(0x7f);
1028     a = a<<7;
1029     *v = a | b;
1030     return 4;
1031   }
1032 
1033   p++;
1034   a = a<<14;
1035   a |= *p;
1036   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1037   if (!(a&0x80))
1038   {
1039     /* Values  between 268435456 and 34359738367 */
1040     a &= SLOT_4_2_0;
1041     b &= SLOT_4_2_0;
1042     b = b<<7;
1043     *v = a | b;
1044     return 5;
1045   }
1046 
1047   /* We can only reach this point when reading a corrupt database
1048   ** file.  In that case we are not in any hurry.  Use the (relatively
1049   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1050   ** value. */
1051   {
1052     u64 v64;
1053     u8 n;
1054 
1055     p -= 4;
1056     n = sqlite3GetVarint(p, &v64);
1057     assert( n>5 && n<=9 );
1058     *v = (u32)v64;
1059     return n;
1060   }
1061 #endif
1062 }
1063 
1064 /*
1065 ** Return the number of bytes that will be needed to store the given
1066 ** 64-bit integer.
1067 */
1068 int sqlite3VarintLen(u64 v){
1069   int i = 0;
1070   do{
1071     i++;
1072     v >>= 7;
1073   }while( v!=0 && ALWAYS(i<9) );
1074   return i;
1075 }
1076 
1077 
1078 /*
1079 ** Read or write a four-byte big-endian integer value.
1080 */
1081 u32 sqlite3Get4byte(const u8 *p){
1082   testcase( p[0]&0x80 );
1083   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1084 }
1085 void sqlite3Put4byte(unsigned char *p, u32 v){
1086   p[0] = (u8)(v>>24);
1087   p[1] = (u8)(v>>16);
1088   p[2] = (u8)(v>>8);
1089   p[3] = (u8)v;
1090 }
1091 
1092 
1093 
1094 /*
1095 ** Translate a single byte of Hex into an integer.
1096 ** This routine only works if h really is a valid hexadecimal
1097 ** character:  0..9a..fA..F
1098 */
1099 u8 sqlite3HexToInt(int h){
1100   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1101 #ifdef SQLITE_ASCII
1102   h += 9*(1&(h>>6));
1103 #endif
1104 #ifdef SQLITE_EBCDIC
1105   h += 9*(1&~(h>>4));
1106 #endif
1107   return (u8)(h & 0xf);
1108 }
1109 
1110 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1111 /*
1112 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1113 ** value.  Return a pointer to its binary value.  Space to hold the
1114 ** binary value has been obtained from malloc and must be freed by
1115 ** the calling routine.
1116 */
1117 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1118   char *zBlob;
1119   int i;
1120 
1121   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1122   n--;
1123   if( zBlob ){
1124     for(i=0; i<n; i+=2){
1125       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1126     }
1127     zBlob[i/2] = 0;
1128   }
1129   return zBlob;
1130 }
1131 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1132 
1133 /*
1134 ** Log an error that is an API call on a connection pointer that should
1135 ** not have been used.  The "type" of connection pointer is given as the
1136 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1137 */
1138 static void logBadConnection(const char *zType){
1139   sqlite3_log(SQLITE_MISUSE,
1140      "API call with %s database connection pointer",
1141      zType
1142   );
1143 }
1144 
1145 /*
1146 ** Check to make sure we have a valid db pointer.  This test is not
1147 ** foolproof but it does provide some measure of protection against
1148 ** misuse of the interface such as passing in db pointers that are
1149 ** NULL or which have been previously closed.  If this routine returns
1150 ** 1 it means that the db pointer is valid and 0 if it should not be
1151 ** dereferenced for any reason.  The calling function should invoke
1152 ** SQLITE_MISUSE immediately.
1153 **
1154 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1155 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1156 ** open properly and is not fit for general use but which can be
1157 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1158 */
1159 int sqlite3SafetyCheckOk(sqlite3 *db){
1160   u32 magic;
1161   if( db==0 ){
1162     logBadConnection("NULL");
1163     return 0;
1164   }
1165   magic = db->magic;
1166   if( magic!=SQLITE_MAGIC_OPEN ){
1167     if( sqlite3SafetyCheckSickOrOk(db) ){
1168       testcase( sqlite3GlobalConfig.xLog!=0 );
1169       logBadConnection("unopened");
1170     }
1171     return 0;
1172   }else{
1173     return 1;
1174   }
1175 }
1176 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1177   u32 magic;
1178   magic = db->magic;
1179   if( magic!=SQLITE_MAGIC_SICK &&
1180       magic!=SQLITE_MAGIC_OPEN &&
1181       magic!=SQLITE_MAGIC_BUSY ){
1182     testcase( sqlite3GlobalConfig.xLog!=0 );
1183     logBadConnection("invalid");
1184     return 0;
1185   }else{
1186     return 1;
1187   }
1188 }
1189 
1190 /*
1191 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1192 ** the other 64-bit signed integer at *pA and store the result in *pA.
1193 ** Return 0 on success.  Or if the operation would have resulted in an
1194 ** overflow, leave *pA unchanged and return 1.
1195 */
1196 int sqlite3AddInt64(i64 *pA, i64 iB){
1197   i64 iA = *pA;
1198   testcase( iA==0 ); testcase( iA==1 );
1199   testcase( iB==-1 ); testcase( iB==0 );
1200   if( iB>=0 ){
1201     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1202     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1203     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1204   }else{
1205     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1206     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1207     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1208   }
1209   *pA += iB;
1210   return 0;
1211 }
1212 int sqlite3SubInt64(i64 *pA, i64 iB){
1213   testcase( iB==SMALLEST_INT64+1 );
1214   if( iB==SMALLEST_INT64 ){
1215     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1216     if( (*pA)>=0 ) return 1;
1217     *pA -= iB;
1218     return 0;
1219   }else{
1220     return sqlite3AddInt64(pA, -iB);
1221   }
1222 }
1223 #define TWOPOWER32 (((i64)1)<<32)
1224 #define TWOPOWER31 (((i64)1)<<31)
1225 int sqlite3MulInt64(i64 *pA, i64 iB){
1226   i64 iA = *pA;
1227   i64 iA1, iA0, iB1, iB0, r;
1228 
1229   iA1 = iA/TWOPOWER32;
1230   iA0 = iA % TWOPOWER32;
1231   iB1 = iB/TWOPOWER32;
1232   iB0 = iB % TWOPOWER32;
1233   if( iA1==0 ){
1234     if( iB1==0 ){
1235       *pA *= iB;
1236       return 0;
1237     }
1238     r = iA0*iB1;
1239   }else if( iB1==0 ){
1240     r = iA1*iB0;
1241   }else{
1242     /* If both iA1 and iB1 are non-zero, overflow will result */
1243     return 1;
1244   }
1245   testcase( r==(-TWOPOWER31)-1 );
1246   testcase( r==(-TWOPOWER31) );
1247   testcase( r==TWOPOWER31 );
1248   testcase( r==TWOPOWER31-1 );
1249   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1250   r *= TWOPOWER32;
1251   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1252   *pA = r;
1253   return 0;
1254 }
1255 
1256 /*
1257 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1258 ** if the integer has a value of -2147483648, return +2147483647
1259 */
1260 int sqlite3AbsInt32(int x){
1261   if( x>=0 ) return x;
1262   if( x==(int)0x80000000 ) return 0x7fffffff;
1263   return -x;
1264 }
1265 
1266 #ifdef SQLITE_ENABLE_8_3_NAMES
1267 /*
1268 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1269 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1270 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1271 ** three characters, then shorten the suffix on z[] to be the last three
1272 ** characters of the original suffix.
1273 **
1274 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1275 ** do the suffix shortening regardless of URI parameter.
1276 **
1277 ** Examples:
1278 **
1279 **     test.db-journal    =>   test.nal
1280 **     test.db-wal        =>   test.wal
1281 **     test.db-shm        =>   test.shm
1282 **     test.db-mj7f3319fa =>   test.9fa
1283 */
1284 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1285 #if SQLITE_ENABLE_8_3_NAMES<2
1286   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1287 #endif
1288   {
1289     int i, sz;
1290     sz = sqlite3Strlen30(z);
1291     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1292     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1293   }
1294 }
1295 #endif
1296 
1297 /*
1298 ** Find (an approximate) sum of two LogEst values.  This computation is
1299 ** not a simple "+" operator because LogEst is stored as a logarithmic
1300 ** value.
1301 **
1302 */
1303 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1304   static const unsigned char x[] = {
1305      10, 10,                         /* 0,1 */
1306       9, 9,                          /* 2,3 */
1307       8, 8,                          /* 4,5 */
1308       7, 7, 7,                       /* 6,7,8 */
1309       6, 6, 6,                       /* 9,10,11 */
1310       5, 5, 5,                       /* 12-14 */
1311       4, 4, 4, 4,                    /* 15-18 */
1312       3, 3, 3, 3, 3, 3,              /* 19-24 */
1313       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1314   };
1315   if( a>=b ){
1316     if( a>b+49 ) return a;
1317     if( a>b+31 ) return a+1;
1318     return a+x[a-b];
1319   }else{
1320     if( b>a+49 ) return b;
1321     if( b>a+31 ) return b+1;
1322     return b+x[b-a];
1323   }
1324 }
1325 
1326 /*
1327 ** Convert an integer into a LogEst.  In other words, compute an
1328 ** approximation for 10*log2(x).
1329 */
1330 LogEst sqlite3LogEst(u64 x){
1331   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1332   LogEst y = 40;
1333   if( x<8 ){
1334     if( x<2 ) return 0;
1335     while( x<8 ){  y -= 10; x <<= 1; }
1336   }else{
1337     while( x>255 ){ y += 40; x >>= 4; }
1338     while( x>15 ){  y += 10; x >>= 1; }
1339   }
1340   return a[x&7] + y - 10;
1341 }
1342 
1343 #ifndef SQLITE_OMIT_VIRTUALTABLE
1344 /*
1345 ** Convert a double into a LogEst
1346 ** In other words, compute an approximation for 10*log2(x).
1347 */
1348 LogEst sqlite3LogEstFromDouble(double x){
1349   u64 a;
1350   LogEst e;
1351   assert( sizeof(x)==8 && sizeof(a)==8 );
1352   if( x<=1 ) return 0;
1353   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1354   memcpy(&a, &x, 8);
1355   e = (a>>52) - 1022;
1356   return e*10;
1357 }
1358 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1359 
1360 /*
1361 ** Convert a LogEst into an integer.
1362 */
1363 u64 sqlite3LogEstToInt(LogEst x){
1364   u64 n;
1365   if( x<10 ) return 1;
1366   n = x%10;
1367   x /= 10;
1368   if( n>=5 ) n -= 2;
1369   else if( n>=1 ) n -= 1;
1370   if( x>=3 ){
1371     return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1372   }
1373   return (n+8)>>(3-x);
1374 }
1375