xref: /sqlite-3.40.0/src/util.c (revision cb6acda9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
38 **
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
41 **
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
44 */
45 #ifndef SQLITE_UNTESTABLE
46 int sqlite3FaultSim(int iTest){
47   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48   return xCallback ? xCallback(iTest) : SQLITE_OK;
49 }
50 #endif
51 
52 #ifndef SQLITE_OMIT_FLOATING_POINT
53 /*
54 ** Return true if the floating point value is Not a Number (NaN).
55 **
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
58 */
59 int sqlite3IsNaN(double x){
60   int rc;   /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
62   /*
63   ** Systems that support the isnan() library function should probably
64   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
65   ** found that many systems do not have a working isnan() function so
66   ** this implementation is provided as an alternative.
67   **
68   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69   ** On the other hand, the use of -ffast-math comes with the following
70   ** warning:
71   **
72   **      This option [-ffast-math] should never be turned on by any
73   **      -O option since it can result in incorrect output for programs
74   **      which depend on an exact implementation of IEEE or ISO
75   **      rules/specifications for math functions.
76   **
77   ** Under MSVC, this NaN test may fail if compiled with a floating-
78   ** point precision mode other than /fp:precise.  From the MSDN
79   ** documentation:
80   **
81   **      The compiler [with /fp:precise] will properly handle comparisons
82   **      involving NaN. For example, x != x evaluates to true if x is NaN
83   **      ...
84   */
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88   volatile double y = x;
89   volatile double z = y;
90   rc = (y!=z);
91 #else  /* if HAVE_ISNAN */
92   rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94   testcase( rc );
95   return rc;
96 }
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
98 
99 /*
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
102 **
103 ** The value returned will never be negative.  Nor will it ever be greater
104 ** than the actual length of the string.  For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
106 */
107 int sqlite3Strlen30(const char *z){
108   if( z==0 ) return 0;
109   return 0x3fffffff & (int)strlen(z);
110 }
111 
112 /*
113 ** Return the declared type of a column.  Or return zDflt if the column
114 ** has no declared type.
115 **
116 ** The column type is an extra string stored after the zero-terminator on
117 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
118 */
119 char *sqlite3ColumnType(Column *pCol, char *zDflt){
120   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121   return pCol->zName + strlen(pCol->zName) + 1;
122 }
123 
124 /*
125 ** Helper function for sqlite3Error() - called rarely.  Broken out into
126 ** a separate routine to avoid unnecessary register saves on entry to
127 ** sqlite3Error().
128 */
129 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
130   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131   sqlite3SystemError(db, err_code);
132 }
133 
134 /*
135 ** Set the current error code to err_code and clear any prior error message.
136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137 ** that would be appropriate.
138 */
139 void sqlite3Error(sqlite3 *db, int err_code){
140   assert( db!=0 );
141   db->errCode = err_code;
142   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
143 }
144 
145 /*
146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
147 ** to do based on the SQLite error code in rc.
148 */
149 void sqlite3SystemError(sqlite3 *db, int rc){
150   if( rc==SQLITE_IOERR_NOMEM ) return;
151   rc &= 0xff;
152   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
154   }
155 }
156 
157 /*
158 ** Set the most recent error code and error string for the sqlite
159 ** handle "db". The error code is set to "err_code".
160 **
161 ** If it is not NULL, string zFormat specifies the format of the
162 ** error string in the style of the printf functions: The following
163 ** format characters are allowed:
164 **
165 **      %s      Insert a string
166 **      %z      A string that should be freed after use
167 **      %d      Insert an integer
168 **      %T      Insert a token
169 **      %S      Insert the first element of a SrcList
170 **
171 ** zFormat and any string tokens that follow it are assumed to be
172 ** encoded in UTF-8.
173 **
174 ** To clear the most recent error for sqlite handle "db", sqlite3Error
175 ** should be called with err_code set to SQLITE_OK and zFormat set
176 ** to NULL.
177 */
178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
179   assert( db!=0 );
180   db->errCode = err_code;
181   sqlite3SystemError(db, err_code);
182   if( zFormat==0 ){
183     sqlite3Error(db, err_code);
184   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
185     char *z;
186     va_list ap;
187     va_start(ap, zFormat);
188     z = sqlite3VMPrintf(db, zFormat, ap);
189     va_end(ap);
190     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
191   }
192 }
193 
194 /*
195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196 ** The following formatting characters are allowed:
197 **
198 **      %s      Insert a string
199 **      %z      A string that should be freed after use
200 **      %d      Insert an integer
201 **      %T      Insert a token
202 **      %S      Insert the first element of a SrcList
203 **
204 ** This function should be used to report any error that occurs while
205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206 ** last thing the sqlite3_prepare() function does is copy the error
207 ** stored by this function into the database handle using sqlite3Error().
208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209 ** during statement execution (sqlite3_step() etc.).
210 */
211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
212   char *zMsg;
213   va_list ap;
214   sqlite3 *db = pParse->db;
215   va_start(ap, zFormat);
216   zMsg = sqlite3VMPrintf(db, zFormat, ap);
217   va_end(ap);
218   if( db->suppressErr ){
219     sqlite3DbFree(db, zMsg);
220   }else{
221     pParse->nErr++;
222     sqlite3DbFree(db, pParse->zErrMsg);
223     pParse->zErrMsg = zMsg;
224     pParse->rc = SQLITE_ERROR;
225   }
226 }
227 
228 /*
229 ** Convert an SQL-style quoted string into a normal string by removing
230 ** the quote characters.  The conversion is done in-place.  If the
231 ** input does not begin with a quote character, then this routine
232 ** is a no-op.
233 **
234 ** The input string must be zero-terminated.  A new zero-terminator
235 ** is added to the dequoted string.
236 **
237 ** The return value is -1 if no dequoting occurs or the length of the
238 ** dequoted string, exclusive of the zero terminator, if dequoting does
239 ** occur.
240 **
241 ** 2002-Feb-14: This routine is extended to remove MS-Access style
242 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
243 ** "a-b-c".
244 */
245 void sqlite3Dequote(char *z){
246   char quote;
247   int i, j;
248   if( z==0 ) return;
249   quote = z[0];
250   if( !sqlite3Isquote(quote) ) return;
251   if( quote=='[' ) quote = ']';
252   for(i=1, j=0;; i++){
253     assert( z[i] );
254     if( z[i]==quote ){
255       if( z[i+1]==quote ){
256         z[j++] = quote;
257         i++;
258       }else{
259         break;
260       }
261     }else{
262       z[j++] = z[i];
263     }
264   }
265   z[j] = 0;
266 }
267 
268 /*
269 ** Generate a Token object from a string
270 */
271 void sqlite3TokenInit(Token *p, char *z){
272   p->z = z;
273   p->n = sqlite3Strlen30(z);
274 }
275 
276 /* Convenient short-hand */
277 #define UpperToLower sqlite3UpperToLower
278 
279 /*
280 ** Some systems have stricmp().  Others have strcasecmp().  Because
281 ** there is no consistency, we will define our own.
282 **
283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
285 ** the contents of two buffers containing UTF-8 strings in a
286 ** case-independent fashion, using the same definition of "case
287 ** independence" that SQLite uses internally when comparing identifiers.
288 */
289 int sqlite3_stricmp(const char *zLeft, const char *zRight){
290   if( zLeft==0 ){
291     return zRight ? -1 : 0;
292   }else if( zRight==0 ){
293     return 1;
294   }
295   return sqlite3StrICmp(zLeft, zRight);
296 }
297 int sqlite3StrICmp(const char *zLeft, const char *zRight){
298   unsigned char *a, *b;
299   int c;
300   a = (unsigned char *)zLeft;
301   b = (unsigned char *)zRight;
302   for(;;){
303     c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
304     if( c || *a==0 ) break;
305     a++;
306     b++;
307   }
308   return c;
309 }
310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
311   register unsigned char *a, *b;
312   if( zLeft==0 ){
313     return zRight ? -1 : 0;
314   }else if( zRight==0 ){
315     return 1;
316   }
317   a = (unsigned char *)zLeft;
318   b = (unsigned char *)zRight;
319   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
320   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
321 }
322 
323 /*
324 ** The string z[] is an text representation of a real number.
325 ** Convert this string to a double and write it into *pResult.
326 **
327 ** The string z[] is length bytes in length (bytes, not characters) and
328 ** uses the encoding enc.  The string is not necessarily zero-terminated.
329 **
330 ** Return TRUE if the result is a valid real number (or integer) and FALSE
331 ** if the string is empty or contains extraneous text.  Valid numbers
332 ** are in one of these formats:
333 **
334 **    [+-]digits[E[+-]digits]
335 **    [+-]digits.[digits][E[+-]digits]
336 **    [+-].digits[E[+-]digits]
337 **
338 ** Leading and trailing whitespace is ignored for the purpose of determining
339 ** validity.
340 **
341 ** If some prefix of the input string is a valid number, this routine
342 ** returns FALSE but it still converts the prefix and writes the result
343 ** into *pResult.
344 */
345 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
346 #ifndef SQLITE_OMIT_FLOATING_POINT
347   int incr;
348   const char *zEnd = z + length;
349   /* sign * significand * (10 ^ (esign * exponent)) */
350   int sign = 1;    /* sign of significand */
351   i64 s = 0;       /* significand */
352   int d = 0;       /* adjust exponent for shifting decimal point */
353   int esign = 1;   /* sign of exponent */
354   int e = 0;       /* exponent */
355   int eValid = 1;  /* True exponent is either not used or is well-formed */
356   double result;
357   int nDigits = 0;
358   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
359 
360   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
361   *pResult = 0.0;   /* Default return value, in case of an error */
362 
363   if( enc==SQLITE_UTF8 ){
364     incr = 1;
365   }else{
366     int i;
367     incr = 2;
368     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
369     for(i=3-enc; i<length && z[i]==0; i+=2){}
370     nonNum = i<length;
371     zEnd = &z[i^1];
372     z += (enc&1);
373   }
374 
375   /* skip leading spaces */
376   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
377   if( z>=zEnd ) return 0;
378 
379   /* get sign of significand */
380   if( *z=='-' ){
381     sign = -1;
382     z+=incr;
383   }else if( *z=='+' ){
384     z+=incr;
385   }
386 
387   /* copy max significant digits to significand */
388   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
389     s = s*10 + (*z - '0');
390     z+=incr; nDigits++;
391   }
392 
393   /* skip non-significant significand digits
394   ** (increase exponent by d to shift decimal left) */
395   while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; }
396   if( z>=zEnd ) goto do_atof_calc;
397 
398   /* if decimal point is present */
399   if( *z=='.' ){
400     z+=incr;
401     /* copy digits from after decimal to significand
402     ** (decrease exponent by d to shift decimal right) */
403     while( z<zEnd && sqlite3Isdigit(*z) ){
404       if( s<((LARGEST_INT64-9)/10) ){
405         s = s*10 + (*z - '0');
406         d--;
407       }
408       z+=incr; nDigits++;
409     }
410   }
411   if( z>=zEnd ) goto do_atof_calc;
412 
413   /* if exponent is present */
414   if( *z=='e' || *z=='E' ){
415     z+=incr;
416     eValid = 0;
417 
418     /* This branch is needed to avoid a (harmless) buffer overread.  The
419     ** special comment alerts the mutation tester that the correct answer
420     ** is obtained even if the branch is omitted */
421     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
422 
423     /* get sign of exponent */
424     if( *z=='-' ){
425       esign = -1;
426       z+=incr;
427     }else if( *z=='+' ){
428       z+=incr;
429     }
430     /* copy digits to exponent */
431     while( z<zEnd && sqlite3Isdigit(*z) ){
432       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
433       z+=incr;
434       eValid = 1;
435     }
436   }
437 
438   /* skip trailing spaces */
439   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
440 
441 do_atof_calc:
442   /* adjust exponent by d, and update sign */
443   e = (e*esign) + d;
444   if( e<0 ) {
445     esign = -1;
446     e *= -1;
447   } else {
448     esign = 1;
449   }
450 
451   if( s==0 ) {
452     /* In the IEEE 754 standard, zero is signed. */
453     result = sign<0 ? -(double)0 : (double)0;
454   } else {
455     /* Attempt to reduce exponent.
456     **
457     ** Branches that are not required for the correct answer but which only
458     ** help to obtain the correct answer faster are marked with special
459     ** comments, as a hint to the mutation tester.
460     */
461     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
462       if( esign>0 ){
463         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
464         s *= 10;
465       }else{
466         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
467         s /= 10;
468       }
469       e--;
470     }
471 
472     /* adjust the sign of significand */
473     s = sign<0 ? -s : s;
474 
475     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
476       result = (double)s;
477     }else{
478       LONGDOUBLE_TYPE scale = 1.0;
479       /* attempt to handle extremely small/large numbers better */
480       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
481         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
482           while( e%308 ) { scale *= 1.0e+1; e -= 1; }
483           if( esign<0 ){
484             result = s / scale;
485             result /= 1.0e+308;
486           }else{
487             result = s * scale;
488             result *= 1.0e+308;
489           }
490         }else{ assert( e>=342 );
491           if( esign<0 ){
492             result = 0.0*s;
493           }else{
494 #ifdef INFINITY
495             result = INFINITY*s;
496 #else
497             result = 1e308*1e308*s;  /* Infinity */
498 #endif
499           }
500         }
501       }else{
502         /* 1.0e+22 is the largest power of 10 than can be
503         ** represented exactly. */
504         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
505         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
506         if( esign<0 ){
507           result = s / scale;
508         }else{
509           result = s * scale;
510         }
511       }
512     }
513   }
514 
515   /* store the result */
516   *pResult = result;
517 
518   /* return true if number and no extra non-whitespace chracters after */
519   return z==zEnd && nDigits>0 && eValid && nonNum==0;
520 #else
521   return !sqlite3Atoi64(z, pResult, length, enc);
522 #endif /* SQLITE_OMIT_FLOATING_POINT */
523 }
524 
525 /*
526 ** Compare the 19-character string zNum against the text representation
527 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
528 ** if zNum is less than, equal to, or greater than the string.
529 ** Note that zNum must contain exactly 19 characters.
530 **
531 ** Unlike memcmp() this routine is guaranteed to return the difference
532 ** in the values of the last digit if the only difference is in the
533 ** last digit.  So, for example,
534 **
535 **      compare2pow63("9223372036854775800", 1)
536 **
537 ** will return -8.
538 */
539 static int compare2pow63(const char *zNum, int incr){
540   int c = 0;
541   int i;
542                     /* 012345678901234567 */
543   const char *pow63 = "922337203685477580";
544   for(i=0; c==0 && i<18; i++){
545     c = (zNum[i*incr]-pow63[i])*10;
546   }
547   if( c==0 ){
548     c = zNum[18*incr] - '8';
549     testcase( c==(-1) );
550     testcase( c==0 );
551     testcase( c==(+1) );
552   }
553   return c;
554 }
555 
556 /*
557 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
558 ** routine does *not* accept hexadecimal notation.
559 **
560 ** Returns:
561 **
562 **     0    Successful transformation.  Fits in a 64-bit signed integer.
563 **     1    Excess text after the integer value
564 **     2    Integer too large for a 64-bit signed integer or is malformed
565 **     3    Special case of 9223372036854775808
566 **
567 ** length is the number of bytes in the string (bytes, not characters).
568 ** The string is not necessarily zero-terminated.  The encoding is
569 ** given by enc.
570 */
571 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
572   int incr;
573   u64 u = 0;
574   int neg = 0; /* assume positive */
575   int i;
576   int c = 0;
577   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
578   int rc;          /* Baseline return code */
579   const char *zStart;
580   const char *zEnd = zNum + length;
581   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
582   if( enc==SQLITE_UTF8 ){
583     incr = 1;
584   }else{
585     incr = 2;
586     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
587     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
588     nonNum = i<length;
589     zEnd = &zNum[i^1];
590     zNum += (enc&1);
591   }
592   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
593   if( zNum<zEnd ){
594     if( *zNum=='-' ){
595       neg = 1;
596       zNum+=incr;
597     }else if( *zNum=='+' ){
598       zNum+=incr;
599     }
600   }
601   zStart = zNum;
602   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
603   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
604     u = u*10 + c - '0';
605   }
606   if( u>LARGEST_INT64 ){
607     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
608   }else if( neg ){
609     *pNum = -(i64)u;
610   }else{
611     *pNum = (i64)u;
612   }
613   testcase( i==18 );
614   testcase( i==19 );
615   testcase( i==20 );
616   if( &zNum[i]<zEnd              /* Extra bytes at the end */
617    || (i==0 && zStart==zNum)     /* No digits */
618    || nonNum                     /* UTF16 with high-order bytes non-zero */
619   ){
620     rc = 1;
621   }else{
622     rc = 0;
623   }
624   if( i>19*incr ){                /* Too many digits */
625     /* zNum is empty or contains non-numeric text or is longer
626     ** than 19 digits (thus guaranteeing that it is too large) */
627     return 2;
628   }else if( i<19*incr ){
629     /* Less than 19 digits, so we know that it fits in 64 bits */
630     assert( u<=LARGEST_INT64 );
631     return rc;
632   }else{
633     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
634     c = compare2pow63(zNum, incr);
635     if( c<0 ){
636       /* zNum is less than 9223372036854775808 so it fits */
637       assert( u<=LARGEST_INT64 );
638       return rc;
639     }else if( c>0 ){
640       /* zNum is greater than 9223372036854775808 so it overflows */
641       return 2;
642     }else{
643       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
644       ** special case 2 overflow if positive */
645       assert( u-1==LARGEST_INT64 );
646       return neg ? rc : 3;
647     }
648   }
649 }
650 
651 /*
652 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
653 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
654 ** whereas sqlite3Atoi64() does not.
655 **
656 ** Returns:
657 **
658 **     0    Successful transformation.  Fits in a 64-bit signed integer.
659 **     1    Excess text after the integer value
660 **     2    Integer too large for a 64-bit signed integer or is malformed
661 **     3    Special case of 9223372036854775808
662 */
663 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
664 #ifndef SQLITE_OMIT_HEX_INTEGER
665   if( z[0]=='0'
666    && (z[1]=='x' || z[1]=='X')
667   ){
668     u64 u = 0;
669     int i, k;
670     for(i=2; z[i]=='0'; i++){}
671     for(k=i; sqlite3Isxdigit(z[k]); k++){
672       u = u*16 + sqlite3HexToInt(z[k]);
673     }
674     memcpy(pOut, &u, 8);
675     return (z[k]==0 && k-i<=16) ? 0 : 2;
676   }else
677 #endif /* SQLITE_OMIT_HEX_INTEGER */
678   {
679     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
680   }
681 }
682 
683 /*
684 ** If zNum represents an integer that will fit in 32-bits, then set
685 ** *pValue to that integer and return true.  Otherwise return false.
686 **
687 ** This routine accepts both decimal and hexadecimal notation for integers.
688 **
689 ** Any non-numeric characters that following zNum are ignored.
690 ** This is different from sqlite3Atoi64() which requires the
691 ** input number to be zero-terminated.
692 */
693 int sqlite3GetInt32(const char *zNum, int *pValue){
694   sqlite_int64 v = 0;
695   int i, c;
696   int neg = 0;
697   if( zNum[0]=='-' ){
698     neg = 1;
699     zNum++;
700   }else if( zNum[0]=='+' ){
701     zNum++;
702   }
703 #ifndef SQLITE_OMIT_HEX_INTEGER
704   else if( zNum[0]=='0'
705         && (zNum[1]=='x' || zNum[1]=='X')
706         && sqlite3Isxdigit(zNum[2])
707   ){
708     u32 u = 0;
709     zNum += 2;
710     while( zNum[0]=='0' ) zNum++;
711     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
712       u = u*16 + sqlite3HexToInt(zNum[i]);
713     }
714     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
715       memcpy(pValue, &u, 4);
716       return 1;
717     }else{
718       return 0;
719     }
720   }
721 #endif
722   if( !sqlite3Isdigit(zNum[0]) ) return 0;
723   while( zNum[0]=='0' ) zNum++;
724   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
725     v = v*10 + c;
726   }
727 
728   /* The longest decimal representation of a 32 bit integer is 10 digits:
729   **
730   **             1234567890
731   **     2^31 -> 2147483648
732   */
733   testcase( i==10 );
734   if( i>10 ){
735     return 0;
736   }
737   testcase( v-neg==2147483647 );
738   if( v-neg>2147483647 ){
739     return 0;
740   }
741   if( neg ){
742     v = -v;
743   }
744   *pValue = (int)v;
745   return 1;
746 }
747 
748 /*
749 ** Return a 32-bit integer value extracted from a string.  If the
750 ** string is not an integer, just return 0.
751 */
752 int sqlite3Atoi(const char *z){
753   int x = 0;
754   if( z ) sqlite3GetInt32(z, &x);
755   return x;
756 }
757 
758 /*
759 ** The variable-length integer encoding is as follows:
760 **
761 ** KEY:
762 **         A = 0xxxxxxx    7 bits of data and one flag bit
763 **         B = 1xxxxxxx    7 bits of data and one flag bit
764 **         C = xxxxxxxx    8 bits of data
765 **
766 **  7 bits - A
767 ** 14 bits - BA
768 ** 21 bits - BBA
769 ** 28 bits - BBBA
770 ** 35 bits - BBBBA
771 ** 42 bits - BBBBBA
772 ** 49 bits - BBBBBBA
773 ** 56 bits - BBBBBBBA
774 ** 64 bits - BBBBBBBBC
775 */
776 
777 /*
778 ** Write a 64-bit variable-length integer to memory starting at p[0].
779 ** The length of data write will be between 1 and 9 bytes.  The number
780 ** of bytes written is returned.
781 **
782 ** A variable-length integer consists of the lower 7 bits of each byte
783 ** for all bytes that have the 8th bit set and one byte with the 8th
784 ** bit clear.  Except, if we get to the 9th byte, it stores the full
785 ** 8 bits and is the last byte.
786 */
787 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
788   int i, j, n;
789   u8 buf[10];
790   if( v & (((u64)0xff000000)<<32) ){
791     p[8] = (u8)v;
792     v >>= 8;
793     for(i=7; i>=0; i--){
794       p[i] = (u8)((v & 0x7f) | 0x80);
795       v >>= 7;
796     }
797     return 9;
798   }
799   n = 0;
800   do{
801     buf[n++] = (u8)((v & 0x7f) | 0x80);
802     v >>= 7;
803   }while( v!=0 );
804   buf[0] &= 0x7f;
805   assert( n<=9 );
806   for(i=0, j=n-1; j>=0; j--, i++){
807     p[i] = buf[j];
808   }
809   return n;
810 }
811 int sqlite3PutVarint(unsigned char *p, u64 v){
812   if( v<=0x7f ){
813     p[0] = v&0x7f;
814     return 1;
815   }
816   if( v<=0x3fff ){
817     p[0] = ((v>>7)&0x7f)|0x80;
818     p[1] = v&0x7f;
819     return 2;
820   }
821   return putVarint64(p,v);
822 }
823 
824 /*
825 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
826 ** are defined here rather than simply putting the constant expressions
827 ** inline in order to work around bugs in the RVT compiler.
828 **
829 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
830 **
831 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
832 */
833 #define SLOT_2_0     0x001fc07f
834 #define SLOT_4_2_0   0xf01fc07f
835 
836 
837 /*
838 ** Read a 64-bit variable-length integer from memory starting at p[0].
839 ** Return the number of bytes read.  The value is stored in *v.
840 */
841 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
842   u32 a,b,s;
843 
844   a = *p;
845   /* a: p0 (unmasked) */
846   if (!(a&0x80))
847   {
848     *v = a;
849     return 1;
850   }
851 
852   p++;
853   b = *p;
854   /* b: p1 (unmasked) */
855   if (!(b&0x80))
856   {
857     a &= 0x7f;
858     a = a<<7;
859     a |= b;
860     *v = a;
861     return 2;
862   }
863 
864   /* Verify that constants are precomputed correctly */
865   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
866   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
867 
868   p++;
869   a = a<<14;
870   a |= *p;
871   /* a: p0<<14 | p2 (unmasked) */
872   if (!(a&0x80))
873   {
874     a &= SLOT_2_0;
875     b &= 0x7f;
876     b = b<<7;
877     a |= b;
878     *v = a;
879     return 3;
880   }
881 
882   /* CSE1 from below */
883   a &= SLOT_2_0;
884   p++;
885   b = b<<14;
886   b |= *p;
887   /* b: p1<<14 | p3 (unmasked) */
888   if (!(b&0x80))
889   {
890     b &= SLOT_2_0;
891     /* moved CSE1 up */
892     /* a &= (0x7f<<14)|(0x7f); */
893     a = a<<7;
894     a |= b;
895     *v = a;
896     return 4;
897   }
898 
899   /* a: p0<<14 | p2 (masked) */
900   /* b: p1<<14 | p3 (unmasked) */
901   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
902   /* moved CSE1 up */
903   /* a &= (0x7f<<14)|(0x7f); */
904   b &= SLOT_2_0;
905   s = a;
906   /* s: p0<<14 | p2 (masked) */
907 
908   p++;
909   a = a<<14;
910   a |= *p;
911   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
912   if (!(a&0x80))
913   {
914     /* we can skip these cause they were (effectively) done above
915     ** while calculating s */
916     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
917     /* b &= (0x7f<<14)|(0x7f); */
918     b = b<<7;
919     a |= b;
920     s = s>>18;
921     *v = ((u64)s)<<32 | a;
922     return 5;
923   }
924 
925   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
926   s = s<<7;
927   s |= b;
928   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
929 
930   p++;
931   b = b<<14;
932   b |= *p;
933   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
934   if (!(b&0x80))
935   {
936     /* we can skip this cause it was (effectively) done above in calc'ing s */
937     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
938     a &= SLOT_2_0;
939     a = a<<7;
940     a |= b;
941     s = s>>18;
942     *v = ((u64)s)<<32 | a;
943     return 6;
944   }
945 
946   p++;
947   a = a<<14;
948   a |= *p;
949   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
950   if (!(a&0x80))
951   {
952     a &= SLOT_4_2_0;
953     b &= SLOT_2_0;
954     b = b<<7;
955     a |= b;
956     s = s>>11;
957     *v = ((u64)s)<<32 | a;
958     return 7;
959   }
960 
961   /* CSE2 from below */
962   a &= SLOT_2_0;
963   p++;
964   b = b<<14;
965   b |= *p;
966   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
967   if (!(b&0x80))
968   {
969     b &= SLOT_4_2_0;
970     /* moved CSE2 up */
971     /* a &= (0x7f<<14)|(0x7f); */
972     a = a<<7;
973     a |= b;
974     s = s>>4;
975     *v = ((u64)s)<<32 | a;
976     return 8;
977   }
978 
979   p++;
980   a = a<<15;
981   a |= *p;
982   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
983 
984   /* moved CSE2 up */
985   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
986   b &= SLOT_2_0;
987   b = b<<8;
988   a |= b;
989 
990   s = s<<4;
991   b = p[-4];
992   b &= 0x7f;
993   b = b>>3;
994   s |= b;
995 
996   *v = ((u64)s)<<32 | a;
997 
998   return 9;
999 }
1000 
1001 /*
1002 ** Read a 32-bit variable-length integer from memory starting at p[0].
1003 ** Return the number of bytes read.  The value is stored in *v.
1004 **
1005 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1006 ** integer, then set *v to 0xffffffff.
1007 **
1008 ** A MACRO version, getVarint32, is provided which inlines the
1009 ** single-byte case.  All code should use the MACRO version as
1010 ** this function assumes the single-byte case has already been handled.
1011 */
1012 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1013   u32 a,b;
1014 
1015   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1016   ** by the getVarin32() macro */
1017   a = *p;
1018   /* a: p0 (unmasked) */
1019 #ifndef getVarint32
1020   if (!(a&0x80))
1021   {
1022     /* Values between 0 and 127 */
1023     *v = a;
1024     return 1;
1025   }
1026 #endif
1027 
1028   /* The 2-byte case */
1029   p++;
1030   b = *p;
1031   /* b: p1 (unmasked) */
1032   if (!(b&0x80))
1033   {
1034     /* Values between 128 and 16383 */
1035     a &= 0x7f;
1036     a = a<<7;
1037     *v = a | b;
1038     return 2;
1039   }
1040 
1041   /* The 3-byte case */
1042   p++;
1043   a = a<<14;
1044   a |= *p;
1045   /* a: p0<<14 | p2 (unmasked) */
1046   if (!(a&0x80))
1047   {
1048     /* Values between 16384 and 2097151 */
1049     a &= (0x7f<<14)|(0x7f);
1050     b &= 0x7f;
1051     b = b<<7;
1052     *v = a | b;
1053     return 3;
1054   }
1055 
1056   /* A 32-bit varint is used to store size information in btrees.
1057   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1058   ** A 3-byte varint is sufficient, for example, to record the size
1059   ** of a 1048569-byte BLOB or string.
1060   **
1061   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1062   ** rare larger cases can be handled by the slower 64-bit varint
1063   ** routine.
1064   */
1065 #if 1
1066   {
1067     u64 v64;
1068     u8 n;
1069 
1070     p -= 2;
1071     n = sqlite3GetVarint(p, &v64);
1072     assert( n>3 && n<=9 );
1073     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1074       *v = 0xffffffff;
1075     }else{
1076       *v = (u32)v64;
1077     }
1078     return n;
1079   }
1080 
1081 #else
1082   /* For following code (kept for historical record only) shows an
1083   ** unrolling for the 3- and 4-byte varint cases.  This code is
1084   ** slightly faster, but it is also larger and much harder to test.
1085   */
1086   p++;
1087   b = b<<14;
1088   b |= *p;
1089   /* b: p1<<14 | p3 (unmasked) */
1090   if (!(b&0x80))
1091   {
1092     /* Values between 2097152 and 268435455 */
1093     b &= (0x7f<<14)|(0x7f);
1094     a &= (0x7f<<14)|(0x7f);
1095     a = a<<7;
1096     *v = a | b;
1097     return 4;
1098   }
1099 
1100   p++;
1101   a = a<<14;
1102   a |= *p;
1103   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1104   if (!(a&0x80))
1105   {
1106     /* Values  between 268435456 and 34359738367 */
1107     a &= SLOT_4_2_0;
1108     b &= SLOT_4_2_0;
1109     b = b<<7;
1110     *v = a | b;
1111     return 5;
1112   }
1113 
1114   /* We can only reach this point when reading a corrupt database
1115   ** file.  In that case we are not in any hurry.  Use the (relatively
1116   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1117   ** value. */
1118   {
1119     u64 v64;
1120     u8 n;
1121 
1122     p -= 4;
1123     n = sqlite3GetVarint(p, &v64);
1124     assert( n>5 && n<=9 );
1125     *v = (u32)v64;
1126     return n;
1127   }
1128 #endif
1129 }
1130 
1131 /*
1132 ** Return the number of bytes that will be needed to store the given
1133 ** 64-bit integer.
1134 */
1135 int sqlite3VarintLen(u64 v){
1136   int i;
1137   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1138   return i;
1139 }
1140 
1141 
1142 /*
1143 ** Read or write a four-byte big-endian integer value.
1144 */
1145 u32 sqlite3Get4byte(const u8 *p){
1146 #if SQLITE_BYTEORDER==4321
1147   u32 x;
1148   memcpy(&x,p,4);
1149   return x;
1150 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1151   u32 x;
1152   memcpy(&x,p,4);
1153   return __builtin_bswap32(x);
1154 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1155   u32 x;
1156   memcpy(&x,p,4);
1157   return _byteswap_ulong(x);
1158 #else
1159   testcase( p[0]&0x80 );
1160   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1161 #endif
1162 }
1163 void sqlite3Put4byte(unsigned char *p, u32 v){
1164 #if SQLITE_BYTEORDER==4321
1165   memcpy(p,&v,4);
1166 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1167   u32 x = __builtin_bswap32(v);
1168   memcpy(p,&x,4);
1169 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1170   u32 x = _byteswap_ulong(v);
1171   memcpy(p,&x,4);
1172 #else
1173   p[0] = (u8)(v>>24);
1174   p[1] = (u8)(v>>16);
1175   p[2] = (u8)(v>>8);
1176   p[3] = (u8)v;
1177 #endif
1178 }
1179 
1180 
1181 
1182 /*
1183 ** Translate a single byte of Hex into an integer.
1184 ** This routine only works if h really is a valid hexadecimal
1185 ** character:  0..9a..fA..F
1186 */
1187 u8 sqlite3HexToInt(int h){
1188   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1189 #ifdef SQLITE_ASCII
1190   h += 9*(1&(h>>6));
1191 #endif
1192 #ifdef SQLITE_EBCDIC
1193   h += 9*(1&~(h>>4));
1194 #endif
1195   return (u8)(h & 0xf);
1196 }
1197 
1198 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1199 /*
1200 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1201 ** value.  Return a pointer to its binary value.  Space to hold the
1202 ** binary value has been obtained from malloc and must be freed by
1203 ** the calling routine.
1204 */
1205 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1206   char *zBlob;
1207   int i;
1208 
1209   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1210   n--;
1211   if( zBlob ){
1212     for(i=0; i<n; i+=2){
1213       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1214     }
1215     zBlob[i/2] = 0;
1216   }
1217   return zBlob;
1218 }
1219 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1220 
1221 /*
1222 ** Log an error that is an API call on a connection pointer that should
1223 ** not have been used.  The "type" of connection pointer is given as the
1224 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1225 */
1226 static void logBadConnection(const char *zType){
1227   sqlite3_log(SQLITE_MISUSE,
1228      "API call with %s database connection pointer",
1229      zType
1230   );
1231 }
1232 
1233 /*
1234 ** Check to make sure we have a valid db pointer.  This test is not
1235 ** foolproof but it does provide some measure of protection against
1236 ** misuse of the interface such as passing in db pointers that are
1237 ** NULL or which have been previously closed.  If this routine returns
1238 ** 1 it means that the db pointer is valid and 0 if it should not be
1239 ** dereferenced for any reason.  The calling function should invoke
1240 ** SQLITE_MISUSE immediately.
1241 **
1242 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1243 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1244 ** open properly and is not fit for general use but which can be
1245 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1246 */
1247 int sqlite3SafetyCheckOk(sqlite3 *db){
1248   u32 magic;
1249   if( db==0 ){
1250     logBadConnection("NULL");
1251     return 0;
1252   }
1253   magic = db->magic;
1254   if( magic!=SQLITE_MAGIC_OPEN ){
1255     if( sqlite3SafetyCheckSickOrOk(db) ){
1256       testcase( sqlite3GlobalConfig.xLog!=0 );
1257       logBadConnection("unopened");
1258     }
1259     return 0;
1260   }else{
1261     return 1;
1262   }
1263 }
1264 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1265   u32 magic;
1266   magic = db->magic;
1267   if( magic!=SQLITE_MAGIC_SICK &&
1268       magic!=SQLITE_MAGIC_OPEN &&
1269       magic!=SQLITE_MAGIC_BUSY ){
1270     testcase( sqlite3GlobalConfig.xLog!=0 );
1271     logBadConnection("invalid");
1272     return 0;
1273   }else{
1274     return 1;
1275   }
1276 }
1277 
1278 /*
1279 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1280 ** the other 64-bit signed integer at *pA and store the result in *pA.
1281 ** Return 0 on success.  Or if the operation would have resulted in an
1282 ** overflow, leave *pA unchanged and return 1.
1283 */
1284 int sqlite3AddInt64(i64 *pA, i64 iB){
1285 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1286   return __builtin_add_overflow(*pA, iB, pA);
1287 #else
1288   i64 iA = *pA;
1289   testcase( iA==0 ); testcase( iA==1 );
1290   testcase( iB==-1 ); testcase( iB==0 );
1291   if( iB>=0 ){
1292     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1293     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1294     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1295   }else{
1296     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1297     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1298     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1299   }
1300   *pA += iB;
1301   return 0;
1302 #endif
1303 }
1304 int sqlite3SubInt64(i64 *pA, i64 iB){
1305 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1306   return __builtin_sub_overflow(*pA, iB, pA);
1307 #else
1308   testcase( iB==SMALLEST_INT64+1 );
1309   if( iB==SMALLEST_INT64 ){
1310     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1311     if( (*pA)>=0 ) return 1;
1312     *pA -= iB;
1313     return 0;
1314   }else{
1315     return sqlite3AddInt64(pA, -iB);
1316   }
1317 #endif
1318 }
1319 int sqlite3MulInt64(i64 *pA, i64 iB){
1320 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1321   return __builtin_mul_overflow(*pA, iB, pA);
1322 #else
1323   i64 iA = *pA;
1324   if( iB>0 ){
1325     if( iA>LARGEST_INT64/iB ) return 1;
1326     if( iA<SMALLEST_INT64/iB ) return 1;
1327   }else if( iB<0 ){
1328     if( iA>0 ){
1329       if( iB<SMALLEST_INT64/iA ) return 1;
1330     }else if( iA<0 ){
1331       if( iB==SMALLEST_INT64 ) return 1;
1332       if( iA==SMALLEST_INT64 ) return 1;
1333       if( -iA>LARGEST_INT64/-iB ) return 1;
1334     }
1335   }
1336   *pA = iA*iB;
1337   return 0;
1338 #endif
1339 }
1340 
1341 /*
1342 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1343 ** if the integer has a value of -2147483648, return +2147483647
1344 */
1345 int sqlite3AbsInt32(int x){
1346   if( x>=0 ) return x;
1347   if( x==(int)0x80000000 ) return 0x7fffffff;
1348   return -x;
1349 }
1350 
1351 #ifdef SQLITE_ENABLE_8_3_NAMES
1352 /*
1353 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1354 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1355 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1356 ** three characters, then shorten the suffix on z[] to be the last three
1357 ** characters of the original suffix.
1358 **
1359 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1360 ** do the suffix shortening regardless of URI parameter.
1361 **
1362 ** Examples:
1363 **
1364 **     test.db-journal    =>   test.nal
1365 **     test.db-wal        =>   test.wal
1366 **     test.db-shm        =>   test.shm
1367 **     test.db-mj7f3319fa =>   test.9fa
1368 */
1369 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1370 #if SQLITE_ENABLE_8_3_NAMES<2
1371   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1372 #endif
1373   {
1374     int i, sz;
1375     sz = sqlite3Strlen30(z);
1376     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1377     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1378   }
1379 }
1380 #endif
1381 
1382 /*
1383 ** Find (an approximate) sum of two LogEst values.  This computation is
1384 ** not a simple "+" operator because LogEst is stored as a logarithmic
1385 ** value.
1386 **
1387 */
1388 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1389   static const unsigned char x[] = {
1390      10, 10,                         /* 0,1 */
1391       9, 9,                          /* 2,3 */
1392       8, 8,                          /* 4,5 */
1393       7, 7, 7,                       /* 6,7,8 */
1394       6, 6, 6,                       /* 9,10,11 */
1395       5, 5, 5,                       /* 12-14 */
1396       4, 4, 4, 4,                    /* 15-18 */
1397       3, 3, 3, 3, 3, 3,              /* 19-24 */
1398       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1399   };
1400   if( a>=b ){
1401     if( a>b+49 ) return a;
1402     if( a>b+31 ) return a+1;
1403     return a+x[a-b];
1404   }else{
1405     if( b>a+49 ) return b;
1406     if( b>a+31 ) return b+1;
1407     return b+x[b-a];
1408   }
1409 }
1410 
1411 /*
1412 ** Convert an integer into a LogEst.  In other words, compute an
1413 ** approximation for 10*log2(x).
1414 */
1415 LogEst sqlite3LogEst(u64 x){
1416   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1417   LogEst y = 40;
1418   if( x<8 ){
1419     if( x<2 ) return 0;
1420     while( x<8 ){  y -= 10; x <<= 1; }
1421   }else{
1422 #if GCC_VERSION>=5004000
1423     int i = 60 - __builtin_clzll(x);
1424     y += i*10;
1425     x >>= i;
1426 #else
1427     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1428     while( x>15 ){  y += 10; x >>= 1; }
1429 #endif
1430   }
1431   return a[x&7] + y - 10;
1432 }
1433 
1434 #ifndef SQLITE_OMIT_VIRTUALTABLE
1435 /*
1436 ** Convert a double into a LogEst
1437 ** In other words, compute an approximation for 10*log2(x).
1438 */
1439 LogEst sqlite3LogEstFromDouble(double x){
1440   u64 a;
1441   LogEst e;
1442   assert( sizeof(x)==8 && sizeof(a)==8 );
1443   if( x<=1 ) return 0;
1444   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1445   memcpy(&a, &x, 8);
1446   e = (a>>52) - 1022;
1447   return e*10;
1448 }
1449 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1450 
1451 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1452     defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1453     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1454 /*
1455 ** Convert a LogEst into an integer.
1456 **
1457 ** Note that this routine is only used when one or more of various
1458 ** non-standard compile-time options is enabled.
1459 */
1460 u64 sqlite3LogEstToInt(LogEst x){
1461   u64 n;
1462   n = x%10;
1463   x /= 10;
1464   if( n>=5 ) n -= 2;
1465   else if( n>=1 ) n -= 1;
1466 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1467     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1468   if( x>60 ) return (u64)LARGEST_INT64;
1469 #else
1470   /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1471   ** possible to this routine is 310, resulting in a maximum x of 31 */
1472   assert( x<=60 );
1473 #endif
1474   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1475 }
1476 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1477 
1478 /*
1479 ** Add a new name/number pair to a VList.  This might require that the
1480 ** VList object be reallocated, so return the new VList.  If an OOM
1481 ** error occurs, the original VList returned and the
1482 ** db->mallocFailed flag is set.
1483 **
1484 ** A VList is really just an array of integers.  To destroy a VList,
1485 ** simply pass it to sqlite3DbFree().
1486 **
1487 ** The first integer is the number of integers allocated for the whole
1488 ** VList.  The second integer is the number of integers actually used.
1489 ** Each name/number pair is encoded by subsequent groups of 3 or more
1490 ** integers.
1491 **
1492 ** Each name/number pair starts with two integers which are the numeric
1493 ** value for the pair and the size of the name/number pair, respectively.
1494 ** The text name overlays one or more following integers.  The text name
1495 ** is always zero-terminated.
1496 **
1497 ** Conceptually:
1498 **
1499 **    struct VList {
1500 **      int nAlloc;   // Number of allocated slots
1501 **      int nUsed;    // Number of used slots
1502 **      struct VListEntry {
1503 **        int iValue;    // Value for this entry
1504 **        int nSlot;     // Slots used by this entry
1505 **        // ... variable name goes here
1506 **      } a[0];
1507 **    }
1508 **
1509 ** During code generation, pointers to the variable names within the
1510 ** VList are taken.  When that happens, nAlloc is set to zero as an
1511 ** indication that the VList may never again be enlarged, since the
1512 ** accompanying realloc() would invalidate the pointers.
1513 */
1514 VList *sqlite3VListAdd(
1515   sqlite3 *db,           /* The database connection used for malloc() */
1516   VList *pIn,            /* The input VList.  Might be NULL */
1517   const char *zName,     /* Name of symbol to add */
1518   int nName,             /* Bytes of text in zName */
1519   int iVal               /* Value to associate with zName */
1520 ){
1521   int nInt;              /* number of sizeof(int) objects needed for zName */
1522   char *z;               /* Pointer to where zName will be stored */
1523   int i;                 /* Index in pIn[] where zName is stored */
1524 
1525   nInt = nName/4 + 3;
1526   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1527   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1528     /* Enlarge the allocation */
1529     int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt;
1530     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1531     if( pOut==0 ) return pIn;
1532     if( pIn==0 ) pOut[1] = 2;
1533     pIn = pOut;
1534     pIn[0] = nAlloc;
1535   }
1536   i = pIn[1];
1537   pIn[i] = iVal;
1538   pIn[i+1] = nInt;
1539   z = (char*)&pIn[i+2];
1540   pIn[1] = i+nInt;
1541   assert( pIn[1]<=pIn[0] );
1542   memcpy(z, zName, nName);
1543   z[nName] = 0;
1544   return pIn;
1545 }
1546 
1547 /*
1548 ** Return a pointer to the name of a variable in the given VList that
1549 ** has the value iVal.  Or return a NULL if there is no such variable in
1550 ** the list
1551 */
1552 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1553   int i, mx;
1554   if( pIn==0 ) return 0;
1555   mx = pIn[1];
1556   i = 2;
1557   do{
1558     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1559     i += pIn[i+1];
1560   }while( i<mx );
1561   return 0;
1562 }
1563 
1564 /*
1565 ** Return the number of the variable named zName, if it is in VList.
1566 ** or return 0 if there is no such variable.
1567 */
1568 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1569   int i, mx;
1570   if( pIn==0 ) return 0;
1571   mx = pIn[1];
1572   i = 2;
1573   do{
1574     const char *z = (const char*)&pIn[i+2];
1575     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1576     i += pIn[i+1];
1577   }while( i<mx );
1578   return 0;
1579 }
1580