1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifndef SQLITE_OMIT_FLOATING_POINT 21 #include <math.h> 22 #endif 23 24 /* 25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 26 ** or to bypass normal error detection during testing in order to let 27 ** execute proceed futher downstream. 28 ** 29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 30 ** sqlite3FaultSim() function only returns non-zero during testing. 31 ** 32 ** During testing, if the test harness has set a fault-sim callback using 33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 34 ** each call to sqlite3FaultSim() is relayed to that application-supplied 35 ** callback and the integer return value form the application-supplied 36 ** callback is returned by sqlite3FaultSim(). 37 ** 38 ** The integer argument to sqlite3FaultSim() is a code to identify which 39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 40 ** should have a unique code. To prevent legacy testing applications from 41 ** breaking, the codes should not be changed or reused. 42 */ 43 #ifndef SQLITE_UNTESTABLE 44 int sqlite3FaultSim(int iTest){ 45 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 46 return xCallback ? xCallback(iTest) : SQLITE_OK; 47 } 48 #endif 49 50 #ifndef SQLITE_OMIT_FLOATING_POINT 51 /* 52 ** Return true if the floating point value is Not a Number (NaN). 53 ** 54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 55 ** Otherwise, we have our own implementation that works on most systems. 56 */ 57 int sqlite3IsNaN(double x){ 58 int rc; /* The value return */ 59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 60 u64 y; 61 memcpy(&y,&x,sizeof(y)); 62 rc = IsNaN(y); 63 #else 64 rc = isnan(x); 65 #endif /* HAVE_ISNAN */ 66 testcase( rc ); 67 return rc; 68 } 69 #endif /* SQLITE_OMIT_FLOATING_POINT */ 70 71 /* 72 ** Compute a string length that is limited to what can be stored in 73 ** lower 30 bits of a 32-bit signed integer. 74 ** 75 ** The value returned will never be negative. Nor will it ever be greater 76 ** than the actual length of the string. For very long strings (greater 77 ** than 1GiB) the value returned might be less than the true string length. 78 */ 79 int sqlite3Strlen30(const char *z){ 80 if( z==0 ) return 0; 81 return 0x3fffffff & (int)strlen(z); 82 } 83 84 /* 85 ** Return the declared type of a column. Or return zDflt if the column 86 ** has no declared type. 87 ** 88 ** The column type is an extra string stored after the zero-terminator on 89 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 90 */ 91 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 92 if( pCol->colFlags & COLFLAG_HASTYPE ){ 93 return pCol->zCnName + strlen(pCol->zCnName) + 1; 94 }else if( pCol->eCType ){ 95 assert( pCol->eCType<=SQLITE_N_STDTYPE ); 96 return (char*)sqlite3StdType[pCol->eCType-1]; 97 }else{ 98 return zDflt; 99 } 100 } 101 102 /* 103 ** Helper function for sqlite3Error() - called rarely. Broken out into 104 ** a separate routine to avoid unnecessary register saves on entry to 105 ** sqlite3Error(). 106 */ 107 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 108 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 109 sqlite3SystemError(db, err_code); 110 } 111 112 /* 113 ** Set the current error code to err_code and clear any prior error message. 114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 115 ** that would be appropriate. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code){ 118 assert( db!=0 ); 119 db->errCode = err_code; 120 if( err_code || db->pErr ){ 121 sqlite3ErrorFinish(db, err_code); 122 }else{ 123 db->errByteOffset = -1; 124 } 125 } 126 127 /* 128 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state 129 ** and error message. 130 */ 131 void sqlite3ErrorClear(sqlite3 *db){ 132 assert( db!=0 ); 133 db->errCode = SQLITE_OK; 134 db->errByteOffset = -1; 135 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 136 } 137 138 /* 139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 140 ** to do based on the SQLite error code in rc. 141 */ 142 void sqlite3SystemError(sqlite3 *db, int rc){ 143 if( rc==SQLITE_IOERR_NOMEM ) return; 144 rc &= 0xff; 145 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 146 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 147 } 148 } 149 150 /* 151 ** Set the most recent error code and error string for the sqlite 152 ** handle "db". The error code is set to "err_code". 153 ** 154 ** If it is not NULL, string zFormat specifies the format of the 155 ** error string. zFormat and any string tokens that follow it are 156 ** assumed to be encoded in UTF-8. 157 ** 158 ** To clear the most recent error for sqlite handle "db", sqlite3Error 159 ** should be called with err_code set to SQLITE_OK and zFormat set 160 ** to NULL. 161 */ 162 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 163 assert( db!=0 ); 164 db->errCode = err_code; 165 sqlite3SystemError(db, err_code); 166 if( zFormat==0 ){ 167 sqlite3Error(db, err_code); 168 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 169 char *z; 170 va_list ap; 171 va_start(ap, zFormat); 172 z = sqlite3VMPrintf(db, zFormat, ap); 173 va_end(ap); 174 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 175 } 176 } 177 178 /* 179 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 180 ** 181 ** This function should be used to report any error that occurs while 182 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 183 ** last thing the sqlite3_prepare() function does is copy the error 184 ** stored by this function into the database handle using sqlite3Error(). 185 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 186 ** during statement execution (sqlite3_step() etc.). 187 */ 188 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 189 char *zMsg; 190 va_list ap; 191 sqlite3 *db = pParse->db; 192 assert( db!=0 ); 193 assert( db->pParse==pParse ); 194 db->errByteOffset = -2; 195 va_start(ap, zFormat); 196 zMsg = sqlite3VMPrintf(db, zFormat, ap); 197 va_end(ap); 198 if( db->errByteOffset<-1 ) db->errByteOffset = -1; 199 if( db->suppressErr ){ 200 sqlite3DbFree(db, zMsg); 201 }else{ 202 pParse->nErr++; 203 sqlite3DbFree(db, pParse->zErrMsg); 204 pParse->zErrMsg = zMsg; 205 pParse->rc = SQLITE_ERROR; 206 pParse->pWith = 0; 207 } 208 } 209 210 /* 211 ** If database connection db is currently parsing SQL, then transfer 212 ** error code errCode to that parser if the parser has not already 213 ** encountered some other kind of error. 214 */ 215 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 216 Parse *pParse; 217 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 218 pParse->rc = errCode; 219 pParse->nErr++; 220 return errCode; 221 } 222 223 /* 224 ** Convert an SQL-style quoted string into a normal string by removing 225 ** the quote characters. The conversion is done in-place. If the 226 ** input does not begin with a quote character, then this routine 227 ** is a no-op. 228 ** 229 ** The input string must be zero-terminated. A new zero-terminator 230 ** is added to the dequoted string. 231 ** 232 ** The return value is -1 if no dequoting occurs or the length of the 233 ** dequoted string, exclusive of the zero terminator, if dequoting does 234 ** occur. 235 ** 236 ** 2002-02-14: This routine is extended to remove MS-Access style 237 ** brackets from around identifiers. For example: "[a-b-c]" becomes 238 ** "a-b-c". 239 */ 240 void sqlite3Dequote(char *z){ 241 char quote; 242 int i, j; 243 if( z==0 ) return; 244 quote = z[0]; 245 if( !sqlite3Isquote(quote) ) return; 246 if( quote=='[' ) quote = ']'; 247 for(i=1, j=0;; i++){ 248 assert( z[i] ); 249 if( z[i]==quote ){ 250 if( z[i+1]==quote ){ 251 z[j++] = quote; 252 i++; 253 }else{ 254 break; 255 } 256 }else{ 257 z[j++] = z[i]; 258 } 259 } 260 z[j] = 0; 261 } 262 void sqlite3DequoteExpr(Expr *p){ 263 assert( !ExprHasProperty(p, EP_IntValue) ); 264 assert( sqlite3Isquote(p->u.zToken[0]) ); 265 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 266 sqlite3Dequote(p->u.zToken); 267 } 268 269 /* 270 ** If the input token p is quoted, try to adjust the token to remove 271 ** the quotes. This is not always possible: 272 ** 273 ** "abc" -> abc 274 ** "ab""cd" -> (not possible because of the interior "") 275 ** 276 ** Remove the quotes if possible. This is a optimization. The overall 277 ** system should still return the correct answer even if this routine 278 ** is always a no-op. 279 */ 280 void sqlite3DequoteToken(Token *p){ 281 unsigned int i; 282 if( p->n<2 ) return; 283 if( !sqlite3Isquote(p->z[0]) ) return; 284 for(i=1; i<p->n-1; i++){ 285 if( sqlite3Isquote(p->z[i]) ) return; 286 } 287 p->n -= 2; 288 p->z++; 289 } 290 291 /* 292 ** Generate a Token object from a string 293 */ 294 void sqlite3TokenInit(Token *p, char *z){ 295 p->z = z; 296 p->n = sqlite3Strlen30(z); 297 } 298 299 /* Convenient short-hand */ 300 #define UpperToLower sqlite3UpperToLower 301 302 /* 303 ** Some systems have stricmp(). Others have strcasecmp(). Because 304 ** there is no consistency, we will define our own. 305 ** 306 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 307 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 308 ** the contents of two buffers containing UTF-8 strings in a 309 ** case-independent fashion, using the same definition of "case 310 ** independence" that SQLite uses internally when comparing identifiers. 311 */ 312 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 313 if( zLeft==0 ){ 314 return zRight ? -1 : 0; 315 }else if( zRight==0 ){ 316 return 1; 317 } 318 return sqlite3StrICmp(zLeft, zRight); 319 } 320 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 321 unsigned char *a, *b; 322 int c, x; 323 a = (unsigned char *)zLeft; 324 b = (unsigned char *)zRight; 325 for(;;){ 326 c = *a; 327 x = *b; 328 if( c==x ){ 329 if( c==0 ) break; 330 }else{ 331 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 332 if( c ) break; 333 } 334 a++; 335 b++; 336 } 337 return c; 338 } 339 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 340 register unsigned char *a, *b; 341 if( zLeft==0 ){ 342 return zRight ? -1 : 0; 343 }else if( zRight==0 ){ 344 return 1; 345 } 346 a = (unsigned char *)zLeft; 347 b = (unsigned char *)zRight; 348 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 349 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 350 } 351 352 /* 353 ** Compute an 8-bit hash on a string that is insensitive to case differences 354 */ 355 u8 sqlite3StrIHash(const char *z){ 356 u8 h = 0; 357 if( z==0 ) return 0; 358 while( z[0] ){ 359 h += UpperToLower[(unsigned char)z[0]]; 360 z++; 361 } 362 return h; 363 } 364 365 /* 366 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 367 ** E==2 results in 100. E==50 results in 1.0e50. 368 ** 369 ** This routine only works for values of E between 1 and 341. 370 */ 371 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 372 #if defined(_MSC_VER) 373 static const LONGDOUBLE_TYPE x[] = { 374 1.0e+001L, 375 1.0e+002L, 376 1.0e+004L, 377 1.0e+008L, 378 1.0e+016L, 379 1.0e+032L, 380 1.0e+064L, 381 1.0e+128L, 382 1.0e+256L 383 }; 384 LONGDOUBLE_TYPE r = 1.0; 385 int i; 386 assert( E>=0 && E<=307 ); 387 for(i=0; E!=0; i++, E >>=1){ 388 if( E & 1 ) r *= x[i]; 389 } 390 return r; 391 #else 392 LONGDOUBLE_TYPE x = 10.0; 393 LONGDOUBLE_TYPE r = 1.0; 394 while(1){ 395 if( E & 1 ) r *= x; 396 E >>= 1; 397 if( E==0 ) break; 398 x *= x; 399 } 400 return r; 401 #endif 402 } 403 404 /* 405 ** The string z[] is an text representation of a real number. 406 ** Convert this string to a double and write it into *pResult. 407 ** 408 ** The string z[] is length bytes in length (bytes, not characters) and 409 ** uses the encoding enc. The string is not necessarily zero-terminated. 410 ** 411 ** Return TRUE if the result is a valid real number (or integer) and FALSE 412 ** if the string is empty or contains extraneous text. More specifically 413 ** return 414 ** 1 => The input string is a pure integer 415 ** 2 or more => The input has a decimal point or eNNN clause 416 ** 0 or less => The input string is not a valid number 417 ** -1 => Not a valid number, but has a valid prefix which 418 ** includes a decimal point and/or an eNNN clause 419 ** 420 ** Valid numbers are in one of these formats: 421 ** 422 ** [+-]digits[E[+-]digits] 423 ** [+-]digits.[digits][E[+-]digits] 424 ** [+-].digits[E[+-]digits] 425 ** 426 ** Leading and trailing whitespace is ignored for the purpose of determining 427 ** validity. 428 ** 429 ** If some prefix of the input string is a valid number, this routine 430 ** returns FALSE but it still converts the prefix and writes the result 431 ** into *pResult. 432 */ 433 #if defined(_MSC_VER) 434 #pragma warning(disable : 4756) 435 #endif 436 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 437 #ifndef SQLITE_OMIT_FLOATING_POINT 438 int incr; 439 const char *zEnd; 440 /* sign * significand * (10 ^ (esign * exponent)) */ 441 int sign = 1; /* sign of significand */ 442 i64 s = 0; /* significand */ 443 int d = 0; /* adjust exponent for shifting decimal point */ 444 int esign = 1; /* sign of exponent */ 445 int e = 0; /* exponent */ 446 int eValid = 1; /* True exponent is either not used or is well-formed */ 447 double result; 448 int nDigit = 0; /* Number of digits processed */ 449 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 450 451 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 452 *pResult = 0.0; /* Default return value, in case of an error */ 453 if( length==0 ) return 0; 454 455 if( enc==SQLITE_UTF8 ){ 456 incr = 1; 457 zEnd = z + length; 458 }else{ 459 int i; 460 incr = 2; 461 length &= ~1; 462 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 463 testcase( enc==SQLITE_UTF16LE ); 464 testcase( enc==SQLITE_UTF16BE ); 465 for(i=3-enc; i<length && z[i]==0; i+=2){} 466 if( i<length ) eType = -100; 467 zEnd = &z[i^1]; 468 z += (enc&1); 469 } 470 471 /* skip leading spaces */ 472 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 473 if( z>=zEnd ) return 0; 474 475 /* get sign of significand */ 476 if( *z=='-' ){ 477 sign = -1; 478 z+=incr; 479 }else if( *z=='+' ){ 480 z+=incr; 481 } 482 483 /* copy max significant digits to significand */ 484 while( z<zEnd && sqlite3Isdigit(*z) ){ 485 s = s*10 + (*z - '0'); 486 z+=incr; nDigit++; 487 if( s>=((LARGEST_INT64-9)/10) ){ 488 /* skip non-significant significand digits 489 ** (increase exponent by d to shift decimal left) */ 490 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 491 } 492 } 493 if( z>=zEnd ) goto do_atof_calc; 494 495 /* if decimal point is present */ 496 if( *z=='.' ){ 497 z+=incr; 498 eType++; 499 /* copy digits from after decimal to significand 500 ** (decrease exponent by d to shift decimal right) */ 501 while( z<zEnd && sqlite3Isdigit(*z) ){ 502 if( s<((LARGEST_INT64-9)/10) ){ 503 s = s*10 + (*z - '0'); 504 d--; 505 nDigit++; 506 } 507 z+=incr; 508 } 509 } 510 if( z>=zEnd ) goto do_atof_calc; 511 512 /* if exponent is present */ 513 if( *z=='e' || *z=='E' ){ 514 z+=incr; 515 eValid = 0; 516 eType++; 517 518 /* This branch is needed to avoid a (harmless) buffer overread. The 519 ** special comment alerts the mutation tester that the correct answer 520 ** is obtained even if the branch is omitted */ 521 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 522 523 /* get sign of exponent */ 524 if( *z=='-' ){ 525 esign = -1; 526 z+=incr; 527 }else if( *z=='+' ){ 528 z+=incr; 529 } 530 /* copy digits to exponent */ 531 while( z<zEnd && sqlite3Isdigit(*z) ){ 532 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 533 z+=incr; 534 eValid = 1; 535 } 536 } 537 538 /* skip trailing spaces */ 539 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 540 541 do_atof_calc: 542 /* adjust exponent by d, and update sign */ 543 e = (e*esign) + d; 544 if( e<0 ) { 545 esign = -1; 546 e *= -1; 547 } else { 548 esign = 1; 549 } 550 551 if( s==0 ) { 552 /* In the IEEE 754 standard, zero is signed. */ 553 result = sign<0 ? -(double)0 : (double)0; 554 } else { 555 /* Attempt to reduce exponent. 556 ** 557 ** Branches that are not required for the correct answer but which only 558 ** help to obtain the correct answer faster are marked with special 559 ** comments, as a hint to the mutation tester. 560 */ 561 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 562 if( esign>0 ){ 563 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 564 s *= 10; 565 }else{ 566 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 567 s /= 10; 568 } 569 e--; 570 } 571 572 /* adjust the sign of significand */ 573 s = sign<0 ? -s : s; 574 575 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 576 result = (double)s; 577 }else{ 578 /* attempt to handle extremely small/large numbers better */ 579 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 580 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 581 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 582 if( esign<0 ){ 583 result = s / scale; 584 result /= 1.0e+308; 585 }else{ 586 result = s * scale; 587 result *= 1.0e+308; 588 } 589 }else{ assert( e>=342 ); 590 if( esign<0 ){ 591 result = 0.0*s; 592 }else{ 593 #ifdef INFINITY 594 result = INFINITY*s; 595 #else 596 result = 1e308*1e308*s; /* Infinity */ 597 #endif 598 } 599 } 600 }else{ 601 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 602 if( esign<0 ){ 603 result = s / scale; 604 }else{ 605 result = s * scale; 606 } 607 } 608 } 609 } 610 611 /* store the result */ 612 *pResult = result; 613 614 /* return true if number and no extra non-whitespace chracters after */ 615 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 616 return eType; 617 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 618 return -1; 619 }else{ 620 return 0; 621 } 622 #else 623 return !sqlite3Atoi64(z, pResult, length, enc); 624 #endif /* SQLITE_OMIT_FLOATING_POINT */ 625 } 626 #if defined(_MSC_VER) 627 #pragma warning(default : 4756) 628 #endif 629 630 /* 631 ** Render an signed 64-bit integer as text. Store the result in zOut[]. 632 ** 633 ** The caller must ensure that zOut[] is at least 21 bytes in size. 634 */ 635 void sqlite3Int64ToText(i64 v, char *zOut){ 636 int i; 637 u64 x; 638 char zTemp[22]; 639 if( v<0 ){ 640 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; 641 }else{ 642 x = v; 643 } 644 i = sizeof(zTemp)-2; 645 zTemp[sizeof(zTemp)-1] = 0; 646 do{ 647 zTemp[i--] = (x%10) + '0'; 648 x = x/10; 649 }while( x ); 650 if( v<0 ) zTemp[i--] = '-'; 651 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); 652 } 653 654 /* 655 ** Compare the 19-character string zNum against the text representation 656 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 657 ** if zNum is less than, equal to, or greater than the string. 658 ** Note that zNum must contain exactly 19 characters. 659 ** 660 ** Unlike memcmp() this routine is guaranteed to return the difference 661 ** in the values of the last digit if the only difference is in the 662 ** last digit. So, for example, 663 ** 664 ** compare2pow63("9223372036854775800", 1) 665 ** 666 ** will return -8. 667 */ 668 static int compare2pow63(const char *zNum, int incr){ 669 int c = 0; 670 int i; 671 /* 012345678901234567 */ 672 const char *pow63 = "922337203685477580"; 673 for(i=0; c==0 && i<18; i++){ 674 c = (zNum[i*incr]-pow63[i])*10; 675 } 676 if( c==0 ){ 677 c = zNum[18*incr] - '8'; 678 testcase( c==(-1) ); 679 testcase( c==0 ); 680 testcase( c==(+1) ); 681 } 682 return c; 683 } 684 685 /* 686 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 687 ** routine does *not* accept hexadecimal notation. 688 ** 689 ** Returns: 690 ** 691 ** -1 Not even a prefix of the input text looks like an integer 692 ** 0 Successful transformation. Fits in a 64-bit signed integer. 693 ** 1 Excess non-space text after the integer value 694 ** 2 Integer too large for a 64-bit signed integer or is malformed 695 ** 3 Special case of 9223372036854775808 696 ** 697 ** length is the number of bytes in the string (bytes, not characters). 698 ** The string is not necessarily zero-terminated. The encoding is 699 ** given by enc. 700 */ 701 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 702 int incr; 703 u64 u = 0; 704 int neg = 0; /* assume positive */ 705 int i; 706 int c = 0; 707 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 708 int rc; /* Baseline return code */ 709 const char *zStart; 710 const char *zEnd = zNum + length; 711 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 712 if( enc==SQLITE_UTF8 ){ 713 incr = 1; 714 }else{ 715 incr = 2; 716 length &= ~1; 717 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 718 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 719 nonNum = i<length; 720 zEnd = &zNum[i^1]; 721 zNum += (enc&1); 722 } 723 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 724 if( zNum<zEnd ){ 725 if( *zNum=='-' ){ 726 neg = 1; 727 zNum+=incr; 728 }else if( *zNum=='+' ){ 729 zNum+=incr; 730 } 731 } 732 zStart = zNum; 733 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 734 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 735 u = u*10 + c - '0'; 736 } 737 testcase( i==18*incr ); 738 testcase( i==19*incr ); 739 testcase( i==20*incr ); 740 if( u>LARGEST_INT64 ){ 741 /* This test and assignment is needed only to suppress UB warnings 742 ** from clang and -fsanitize=undefined. This test and assignment make 743 ** the code a little larger and slower, and no harm comes from omitting 744 ** them, but we must appaise the undefined-behavior pharisees. */ 745 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 746 }else if( neg ){ 747 *pNum = -(i64)u; 748 }else{ 749 *pNum = (i64)u; 750 } 751 rc = 0; 752 if( i==0 && zStart==zNum ){ /* No digits */ 753 rc = -1; 754 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 755 rc = 1; 756 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 757 int jj = i; 758 do{ 759 if( !sqlite3Isspace(zNum[jj]) ){ 760 rc = 1; /* Extra non-space text after the integer */ 761 break; 762 } 763 jj += incr; 764 }while( &zNum[jj]<zEnd ); 765 } 766 if( i<19*incr ){ 767 /* Less than 19 digits, so we know that it fits in 64 bits */ 768 assert( u<=LARGEST_INT64 ); 769 return rc; 770 }else{ 771 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 772 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 773 if( c<0 ){ 774 /* zNum is less than 9223372036854775808 so it fits */ 775 assert( u<=LARGEST_INT64 ); 776 return rc; 777 }else{ 778 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 779 if( c>0 ){ 780 /* zNum is greater than 9223372036854775808 so it overflows */ 781 return 2; 782 }else{ 783 /* zNum is exactly 9223372036854775808. Fits if negative. The 784 ** special case 2 overflow if positive */ 785 assert( u-1==LARGEST_INT64 ); 786 return neg ? rc : 3; 787 } 788 } 789 } 790 } 791 792 /* 793 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 794 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 795 ** whereas sqlite3Atoi64() does not. 796 ** 797 ** Returns: 798 ** 799 ** 0 Successful transformation. Fits in a 64-bit signed integer. 800 ** 1 Excess text after the integer value 801 ** 2 Integer too large for a 64-bit signed integer or is malformed 802 ** 3 Special case of 9223372036854775808 803 */ 804 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 805 #ifndef SQLITE_OMIT_HEX_INTEGER 806 if( z[0]=='0' 807 && (z[1]=='x' || z[1]=='X') 808 ){ 809 u64 u = 0; 810 int i, k; 811 for(i=2; z[i]=='0'; i++){} 812 for(k=i; sqlite3Isxdigit(z[k]); k++){ 813 u = u*16 + sqlite3HexToInt(z[k]); 814 } 815 memcpy(pOut, &u, 8); 816 return (z[k]==0 && k-i<=16) ? 0 : 2; 817 }else 818 #endif /* SQLITE_OMIT_HEX_INTEGER */ 819 { 820 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 821 } 822 } 823 824 /* 825 ** If zNum represents an integer that will fit in 32-bits, then set 826 ** *pValue to that integer and return true. Otherwise return false. 827 ** 828 ** This routine accepts both decimal and hexadecimal notation for integers. 829 ** 830 ** Any non-numeric characters that following zNum are ignored. 831 ** This is different from sqlite3Atoi64() which requires the 832 ** input number to be zero-terminated. 833 */ 834 int sqlite3GetInt32(const char *zNum, int *pValue){ 835 sqlite_int64 v = 0; 836 int i, c; 837 int neg = 0; 838 if( zNum[0]=='-' ){ 839 neg = 1; 840 zNum++; 841 }else if( zNum[0]=='+' ){ 842 zNum++; 843 } 844 #ifndef SQLITE_OMIT_HEX_INTEGER 845 else if( zNum[0]=='0' 846 && (zNum[1]=='x' || zNum[1]=='X') 847 && sqlite3Isxdigit(zNum[2]) 848 ){ 849 u32 u = 0; 850 zNum += 2; 851 while( zNum[0]=='0' ) zNum++; 852 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 853 u = u*16 + sqlite3HexToInt(zNum[i]); 854 } 855 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 856 memcpy(pValue, &u, 4); 857 return 1; 858 }else{ 859 return 0; 860 } 861 } 862 #endif 863 if( !sqlite3Isdigit(zNum[0]) ) return 0; 864 while( zNum[0]=='0' ) zNum++; 865 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 866 v = v*10 + c; 867 } 868 869 /* The longest decimal representation of a 32 bit integer is 10 digits: 870 ** 871 ** 1234567890 872 ** 2^31 -> 2147483648 873 */ 874 testcase( i==10 ); 875 if( i>10 ){ 876 return 0; 877 } 878 testcase( v-neg==2147483647 ); 879 if( v-neg>2147483647 ){ 880 return 0; 881 } 882 if( neg ){ 883 v = -v; 884 } 885 *pValue = (int)v; 886 return 1; 887 } 888 889 /* 890 ** Return a 32-bit integer value extracted from a string. If the 891 ** string is not an integer, just return 0. 892 */ 893 int sqlite3Atoi(const char *z){ 894 int x = 0; 895 sqlite3GetInt32(z, &x); 896 return x; 897 } 898 899 /* 900 ** Try to convert z into an unsigned 32-bit integer. Return true on 901 ** success and false if there is an error. 902 ** 903 ** Only decimal notation is accepted. 904 */ 905 int sqlite3GetUInt32(const char *z, u32 *pI){ 906 u64 v = 0; 907 int i; 908 for(i=0; sqlite3Isdigit(z[i]); i++){ 909 v = v*10 + z[i] - '0'; 910 if( v>4294967296LL ){ *pI = 0; return 0; } 911 } 912 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } 913 *pI = (u32)v; 914 return 1; 915 } 916 917 /* 918 ** The variable-length integer encoding is as follows: 919 ** 920 ** KEY: 921 ** A = 0xxxxxxx 7 bits of data and one flag bit 922 ** B = 1xxxxxxx 7 bits of data and one flag bit 923 ** C = xxxxxxxx 8 bits of data 924 ** 925 ** 7 bits - A 926 ** 14 bits - BA 927 ** 21 bits - BBA 928 ** 28 bits - BBBA 929 ** 35 bits - BBBBA 930 ** 42 bits - BBBBBA 931 ** 49 bits - BBBBBBA 932 ** 56 bits - BBBBBBBA 933 ** 64 bits - BBBBBBBBC 934 */ 935 936 /* 937 ** Write a 64-bit variable-length integer to memory starting at p[0]. 938 ** The length of data write will be between 1 and 9 bytes. The number 939 ** of bytes written is returned. 940 ** 941 ** A variable-length integer consists of the lower 7 bits of each byte 942 ** for all bytes that have the 8th bit set and one byte with the 8th 943 ** bit clear. Except, if we get to the 9th byte, it stores the full 944 ** 8 bits and is the last byte. 945 */ 946 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 947 int i, j, n; 948 u8 buf[10]; 949 if( v & (((u64)0xff000000)<<32) ){ 950 p[8] = (u8)v; 951 v >>= 8; 952 for(i=7; i>=0; i--){ 953 p[i] = (u8)((v & 0x7f) | 0x80); 954 v >>= 7; 955 } 956 return 9; 957 } 958 n = 0; 959 do{ 960 buf[n++] = (u8)((v & 0x7f) | 0x80); 961 v >>= 7; 962 }while( v!=0 ); 963 buf[0] &= 0x7f; 964 assert( n<=9 ); 965 for(i=0, j=n-1; j>=0; j--, i++){ 966 p[i] = buf[j]; 967 } 968 return n; 969 } 970 int sqlite3PutVarint(unsigned char *p, u64 v){ 971 if( v<=0x7f ){ 972 p[0] = v&0x7f; 973 return 1; 974 } 975 if( v<=0x3fff ){ 976 p[0] = ((v>>7)&0x7f)|0x80; 977 p[1] = v&0x7f; 978 return 2; 979 } 980 return putVarint64(p,v); 981 } 982 983 /* 984 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 985 ** are defined here rather than simply putting the constant expressions 986 ** inline in order to work around bugs in the RVT compiler. 987 ** 988 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 989 ** 990 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 991 */ 992 #define SLOT_2_0 0x001fc07f 993 #define SLOT_4_2_0 0xf01fc07f 994 995 996 /* 997 ** Read a 64-bit variable-length integer from memory starting at p[0]. 998 ** Return the number of bytes read. The value is stored in *v. 999 */ 1000 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 1001 u32 a,b,s; 1002 1003 if( ((signed char*)p)[0]>=0 ){ 1004 *v = *p; 1005 return 1; 1006 } 1007 if( ((signed char*)p)[1]>=0 ){ 1008 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 1009 return 2; 1010 } 1011 1012 /* Verify that constants are precomputed correctly */ 1013 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 1014 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 1015 1016 a = ((u32)p[0])<<14; 1017 b = p[1]; 1018 p += 2; 1019 a |= *p; 1020 /* a: p0<<14 | p2 (unmasked) */ 1021 if (!(a&0x80)) 1022 { 1023 a &= SLOT_2_0; 1024 b &= 0x7f; 1025 b = b<<7; 1026 a |= b; 1027 *v = a; 1028 return 3; 1029 } 1030 1031 /* CSE1 from below */ 1032 a &= SLOT_2_0; 1033 p++; 1034 b = b<<14; 1035 b |= *p; 1036 /* b: p1<<14 | p3 (unmasked) */ 1037 if (!(b&0x80)) 1038 { 1039 b &= SLOT_2_0; 1040 /* moved CSE1 up */ 1041 /* a &= (0x7f<<14)|(0x7f); */ 1042 a = a<<7; 1043 a |= b; 1044 *v = a; 1045 return 4; 1046 } 1047 1048 /* a: p0<<14 | p2 (masked) */ 1049 /* b: p1<<14 | p3 (unmasked) */ 1050 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1051 /* moved CSE1 up */ 1052 /* a &= (0x7f<<14)|(0x7f); */ 1053 b &= SLOT_2_0; 1054 s = a; 1055 /* s: p0<<14 | p2 (masked) */ 1056 1057 p++; 1058 a = a<<14; 1059 a |= *p; 1060 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1061 if (!(a&0x80)) 1062 { 1063 /* we can skip these cause they were (effectively) done above 1064 ** while calculating s */ 1065 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1066 /* b &= (0x7f<<14)|(0x7f); */ 1067 b = b<<7; 1068 a |= b; 1069 s = s>>18; 1070 *v = ((u64)s)<<32 | a; 1071 return 5; 1072 } 1073 1074 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1075 s = s<<7; 1076 s |= b; 1077 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1078 1079 p++; 1080 b = b<<14; 1081 b |= *p; 1082 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 1083 if (!(b&0x80)) 1084 { 1085 /* we can skip this cause it was (effectively) done above in calc'ing s */ 1086 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1087 a &= SLOT_2_0; 1088 a = a<<7; 1089 a |= b; 1090 s = s>>18; 1091 *v = ((u64)s)<<32 | a; 1092 return 6; 1093 } 1094 1095 p++; 1096 a = a<<14; 1097 a |= *p; 1098 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1099 if (!(a&0x80)) 1100 { 1101 a &= SLOT_4_2_0; 1102 b &= SLOT_2_0; 1103 b = b<<7; 1104 a |= b; 1105 s = s>>11; 1106 *v = ((u64)s)<<32 | a; 1107 return 7; 1108 } 1109 1110 /* CSE2 from below */ 1111 a &= SLOT_2_0; 1112 p++; 1113 b = b<<14; 1114 b |= *p; 1115 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1116 if (!(b&0x80)) 1117 { 1118 b &= SLOT_4_2_0; 1119 /* moved CSE2 up */ 1120 /* a &= (0x7f<<14)|(0x7f); */ 1121 a = a<<7; 1122 a |= b; 1123 s = s>>4; 1124 *v = ((u64)s)<<32 | a; 1125 return 8; 1126 } 1127 1128 p++; 1129 a = a<<15; 1130 a |= *p; 1131 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1132 1133 /* moved CSE2 up */ 1134 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1135 b &= SLOT_2_0; 1136 b = b<<8; 1137 a |= b; 1138 1139 s = s<<4; 1140 b = p[-4]; 1141 b &= 0x7f; 1142 b = b>>3; 1143 s |= b; 1144 1145 *v = ((u64)s)<<32 | a; 1146 1147 return 9; 1148 } 1149 1150 /* 1151 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1152 ** Return the number of bytes read. The value is stored in *v. 1153 ** 1154 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1155 ** integer, then set *v to 0xffffffff. 1156 ** 1157 ** A MACRO version, getVarint32, is provided which inlines the 1158 ** single-byte case. All code should use the MACRO version as 1159 ** this function assumes the single-byte case has already been handled. 1160 */ 1161 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1162 u32 a,b; 1163 1164 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1165 ** by the getVarin32() macro */ 1166 a = *p; 1167 /* a: p0 (unmasked) */ 1168 #ifndef getVarint32 1169 if (!(a&0x80)) 1170 { 1171 /* Values between 0 and 127 */ 1172 *v = a; 1173 return 1; 1174 } 1175 #endif 1176 1177 /* The 2-byte case */ 1178 p++; 1179 b = *p; 1180 /* b: p1 (unmasked) */ 1181 if (!(b&0x80)) 1182 { 1183 /* Values between 128 and 16383 */ 1184 a &= 0x7f; 1185 a = a<<7; 1186 *v = a | b; 1187 return 2; 1188 } 1189 1190 /* The 3-byte case */ 1191 p++; 1192 a = a<<14; 1193 a |= *p; 1194 /* a: p0<<14 | p2 (unmasked) */ 1195 if (!(a&0x80)) 1196 { 1197 /* Values between 16384 and 2097151 */ 1198 a &= (0x7f<<14)|(0x7f); 1199 b &= 0x7f; 1200 b = b<<7; 1201 *v = a | b; 1202 return 3; 1203 } 1204 1205 /* A 32-bit varint is used to store size information in btrees. 1206 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1207 ** A 3-byte varint is sufficient, for example, to record the size 1208 ** of a 1048569-byte BLOB or string. 1209 ** 1210 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1211 ** rare larger cases can be handled by the slower 64-bit varint 1212 ** routine. 1213 */ 1214 #if 1 1215 { 1216 u64 v64; 1217 u8 n; 1218 1219 n = sqlite3GetVarint(p-2, &v64); 1220 assert( n>3 && n<=9 ); 1221 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1222 *v = 0xffffffff; 1223 }else{ 1224 *v = (u32)v64; 1225 } 1226 return n; 1227 } 1228 1229 #else 1230 /* For following code (kept for historical record only) shows an 1231 ** unrolling for the 3- and 4-byte varint cases. This code is 1232 ** slightly faster, but it is also larger and much harder to test. 1233 */ 1234 p++; 1235 b = b<<14; 1236 b |= *p; 1237 /* b: p1<<14 | p3 (unmasked) */ 1238 if (!(b&0x80)) 1239 { 1240 /* Values between 2097152 and 268435455 */ 1241 b &= (0x7f<<14)|(0x7f); 1242 a &= (0x7f<<14)|(0x7f); 1243 a = a<<7; 1244 *v = a | b; 1245 return 4; 1246 } 1247 1248 p++; 1249 a = a<<14; 1250 a |= *p; 1251 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1252 if (!(a&0x80)) 1253 { 1254 /* Values between 268435456 and 34359738367 */ 1255 a &= SLOT_4_2_0; 1256 b &= SLOT_4_2_0; 1257 b = b<<7; 1258 *v = a | b; 1259 return 5; 1260 } 1261 1262 /* We can only reach this point when reading a corrupt database 1263 ** file. In that case we are not in any hurry. Use the (relatively 1264 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1265 ** value. */ 1266 { 1267 u64 v64; 1268 u8 n; 1269 1270 p -= 4; 1271 n = sqlite3GetVarint(p, &v64); 1272 assert( n>5 && n<=9 ); 1273 *v = (u32)v64; 1274 return n; 1275 } 1276 #endif 1277 } 1278 1279 /* 1280 ** Return the number of bytes that will be needed to store the given 1281 ** 64-bit integer. 1282 */ 1283 int sqlite3VarintLen(u64 v){ 1284 int i; 1285 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1286 return i; 1287 } 1288 1289 1290 /* 1291 ** Read or write a four-byte big-endian integer value. 1292 */ 1293 u32 sqlite3Get4byte(const u8 *p){ 1294 #if SQLITE_BYTEORDER==4321 1295 u32 x; 1296 memcpy(&x,p,4); 1297 return x; 1298 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1299 u32 x; 1300 memcpy(&x,p,4); 1301 return __builtin_bswap32(x); 1302 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1303 u32 x; 1304 memcpy(&x,p,4); 1305 return _byteswap_ulong(x); 1306 #else 1307 testcase( p[0]&0x80 ); 1308 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1309 #endif 1310 } 1311 void sqlite3Put4byte(unsigned char *p, u32 v){ 1312 #if SQLITE_BYTEORDER==4321 1313 memcpy(p,&v,4); 1314 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1315 u32 x = __builtin_bswap32(v); 1316 memcpy(p,&x,4); 1317 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1318 u32 x = _byteswap_ulong(v); 1319 memcpy(p,&x,4); 1320 #else 1321 p[0] = (u8)(v>>24); 1322 p[1] = (u8)(v>>16); 1323 p[2] = (u8)(v>>8); 1324 p[3] = (u8)v; 1325 #endif 1326 } 1327 1328 1329 1330 /* 1331 ** Translate a single byte of Hex into an integer. 1332 ** This routine only works if h really is a valid hexadecimal 1333 ** character: 0..9a..fA..F 1334 */ 1335 u8 sqlite3HexToInt(int h){ 1336 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1337 #ifdef SQLITE_ASCII 1338 h += 9*(1&(h>>6)); 1339 #endif 1340 #ifdef SQLITE_EBCDIC 1341 h += 9*(1&~(h>>4)); 1342 #endif 1343 return (u8)(h & 0xf); 1344 } 1345 1346 #if !defined(SQLITE_OMIT_BLOB_LITERAL) 1347 /* 1348 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1349 ** value. Return a pointer to its binary value. Space to hold the 1350 ** binary value has been obtained from malloc and must be freed by 1351 ** the calling routine. 1352 */ 1353 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1354 char *zBlob; 1355 int i; 1356 1357 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1358 n--; 1359 if( zBlob ){ 1360 for(i=0; i<n; i+=2){ 1361 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1362 } 1363 zBlob[i/2] = 0; 1364 } 1365 return zBlob; 1366 } 1367 #endif /* !SQLITE_OMIT_BLOB_LITERAL */ 1368 1369 /* 1370 ** Log an error that is an API call on a connection pointer that should 1371 ** not have been used. The "type" of connection pointer is given as the 1372 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1373 */ 1374 static void logBadConnection(const char *zType){ 1375 sqlite3_log(SQLITE_MISUSE, 1376 "API call with %s database connection pointer", 1377 zType 1378 ); 1379 } 1380 1381 /* 1382 ** Check to make sure we have a valid db pointer. This test is not 1383 ** foolproof but it does provide some measure of protection against 1384 ** misuse of the interface such as passing in db pointers that are 1385 ** NULL or which have been previously closed. If this routine returns 1386 ** 1 it means that the db pointer is valid and 0 if it should not be 1387 ** dereferenced for any reason. The calling function should invoke 1388 ** SQLITE_MISUSE immediately. 1389 ** 1390 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1391 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1392 ** open properly and is not fit for general use but which can be 1393 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1394 */ 1395 int sqlite3SafetyCheckOk(sqlite3 *db){ 1396 u8 eOpenState; 1397 if( db==0 ){ 1398 logBadConnection("NULL"); 1399 return 0; 1400 } 1401 eOpenState = db->eOpenState; 1402 if( eOpenState!=SQLITE_STATE_OPEN ){ 1403 if( sqlite3SafetyCheckSickOrOk(db) ){ 1404 testcase( sqlite3GlobalConfig.xLog!=0 ); 1405 logBadConnection("unopened"); 1406 } 1407 return 0; 1408 }else{ 1409 return 1; 1410 } 1411 } 1412 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1413 u8 eOpenState; 1414 eOpenState = db->eOpenState; 1415 if( eOpenState!=SQLITE_STATE_SICK && 1416 eOpenState!=SQLITE_STATE_OPEN && 1417 eOpenState!=SQLITE_STATE_BUSY ){ 1418 testcase( sqlite3GlobalConfig.xLog!=0 ); 1419 logBadConnection("invalid"); 1420 return 0; 1421 }else{ 1422 return 1; 1423 } 1424 } 1425 1426 /* 1427 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1428 ** the other 64-bit signed integer at *pA and store the result in *pA. 1429 ** Return 0 on success. Or if the operation would have resulted in an 1430 ** overflow, leave *pA unchanged and return 1. 1431 */ 1432 int sqlite3AddInt64(i64 *pA, i64 iB){ 1433 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1434 return __builtin_add_overflow(*pA, iB, pA); 1435 #else 1436 i64 iA = *pA; 1437 testcase( iA==0 ); testcase( iA==1 ); 1438 testcase( iB==-1 ); testcase( iB==0 ); 1439 if( iB>=0 ){ 1440 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1441 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1442 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1443 }else{ 1444 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1445 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1446 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1447 } 1448 *pA += iB; 1449 return 0; 1450 #endif 1451 } 1452 int sqlite3SubInt64(i64 *pA, i64 iB){ 1453 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1454 return __builtin_sub_overflow(*pA, iB, pA); 1455 #else 1456 testcase( iB==SMALLEST_INT64+1 ); 1457 if( iB==SMALLEST_INT64 ){ 1458 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1459 if( (*pA)>=0 ) return 1; 1460 *pA -= iB; 1461 return 0; 1462 }else{ 1463 return sqlite3AddInt64(pA, -iB); 1464 } 1465 #endif 1466 } 1467 int sqlite3MulInt64(i64 *pA, i64 iB){ 1468 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1469 return __builtin_mul_overflow(*pA, iB, pA); 1470 #else 1471 i64 iA = *pA; 1472 if( iB>0 ){ 1473 if( iA>LARGEST_INT64/iB ) return 1; 1474 if( iA<SMALLEST_INT64/iB ) return 1; 1475 }else if( iB<0 ){ 1476 if( iA>0 ){ 1477 if( iB<SMALLEST_INT64/iA ) return 1; 1478 }else if( iA<0 ){ 1479 if( iB==SMALLEST_INT64 ) return 1; 1480 if( iA==SMALLEST_INT64 ) return 1; 1481 if( -iA>LARGEST_INT64/-iB ) return 1; 1482 } 1483 } 1484 *pA = iA*iB; 1485 return 0; 1486 #endif 1487 } 1488 1489 /* 1490 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1491 ** if the integer has a value of -2147483648, return +2147483647 1492 */ 1493 int sqlite3AbsInt32(int x){ 1494 if( x>=0 ) return x; 1495 if( x==(int)0x80000000 ) return 0x7fffffff; 1496 return -x; 1497 } 1498 1499 #ifdef SQLITE_ENABLE_8_3_NAMES 1500 /* 1501 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1502 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1503 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1504 ** three characters, then shorten the suffix on z[] to be the last three 1505 ** characters of the original suffix. 1506 ** 1507 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1508 ** do the suffix shortening regardless of URI parameter. 1509 ** 1510 ** Examples: 1511 ** 1512 ** test.db-journal => test.nal 1513 ** test.db-wal => test.wal 1514 ** test.db-shm => test.shm 1515 ** test.db-mj7f3319fa => test.9fa 1516 */ 1517 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1518 #if SQLITE_ENABLE_8_3_NAMES<2 1519 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1520 #endif 1521 { 1522 int i, sz; 1523 sz = sqlite3Strlen30(z); 1524 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1525 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1526 } 1527 } 1528 #endif 1529 1530 /* 1531 ** Find (an approximate) sum of two LogEst values. This computation is 1532 ** not a simple "+" operator because LogEst is stored as a logarithmic 1533 ** value. 1534 ** 1535 */ 1536 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1537 static const unsigned char x[] = { 1538 10, 10, /* 0,1 */ 1539 9, 9, /* 2,3 */ 1540 8, 8, /* 4,5 */ 1541 7, 7, 7, /* 6,7,8 */ 1542 6, 6, 6, /* 9,10,11 */ 1543 5, 5, 5, /* 12-14 */ 1544 4, 4, 4, 4, /* 15-18 */ 1545 3, 3, 3, 3, 3, 3, /* 19-24 */ 1546 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1547 }; 1548 if( a>=b ){ 1549 if( a>b+49 ) return a; 1550 if( a>b+31 ) return a+1; 1551 return a+x[a-b]; 1552 }else{ 1553 if( b>a+49 ) return b; 1554 if( b>a+31 ) return b+1; 1555 return b+x[b-a]; 1556 } 1557 } 1558 1559 /* 1560 ** Convert an integer into a LogEst. In other words, compute an 1561 ** approximation for 10*log2(x). 1562 */ 1563 LogEst sqlite3LogEst(u64 x){ 1564 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1565 LogEst y = 40; 1566 if( x<8 ){ 1567 if( x<2 ) return 0; 1568 while( x<8 ){ y -= 10; x <<= 1; } 1569 }else{ 1570 #if GCC_VERSION>=5004000 1571 int i = 60 - __builtin_clzll(x); 1572 y += i*10; 1573 x >>= i; 1574 #else 1575 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1576 while( x>15 ){ y += 10; x >>= 1; } 1577 #endif 1578 } 1579 return a[x&7] + y - 10; 1580 } 1581 1582 /* 1583 ** Convert a double into a LogEst 1584 ** In other words, compute an approximation for 10*log2(x). 1585 */ 1586 LogEst sqlite3LogEstFromDouble(double x){ 1587 u64 a; 1588 LogEst e; 1589 assert( sizeof(x)==8 && sizeof(a)==8 ); 1590 if( x<=1 ) return 0; 1591 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1592 memcpy(&a, &x, 8); 1593 e = (a>>52) - 1022; 1594 return e*10; 1595 } 1596 1597 /* 1598 ** Convert a LogEst into an integer. 1599 */ 1600 u64 sqlite3LogEstToInt(LogEst x){ 1601 u64 n; 1602 n = x%10; 1603 x /= 10; 1604 if( n>=5 ) n -= 2; 1605 else if( n>=1 ) n -= 1; 1606 if( x>60 ) return (u64)LARGEST_INT64; 1607 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1608 } 1609 1610 /* 1611 ** Add a new name/number pair to a VList. This might require that the 1612 ** VList object be reallocated, so return the new VList. If an OOM 1613 ** error occurs, the original VList returned and the 1614 ** db->mallocFailed flag is set. 1615 ** 1616 ** A VList is really just an array of integers. To destroy a VList, 1617 ** simply pass it to sqlite3DbFree(). 1618 ** 1619 ** The first integer is the number of integers allocated for the whole 1620 ** VList. The second integer is the number of integers actually used. 1621 ** Each name/number pair is encoded by subsequent groups of 3 or more 1622 ** integers. 1623 ** 1624 ** Each name/number pair starts with two integers which are the numeric 1625 ** value for the pair and the size of the name/number pair, respectively. 1626 ** The text name overlays one or more following integers. The text name 1627 ** is always zero-terminated. 1628 ** 1629 ** Conceptually: 1630 ** 1631 ** struct VList { 1632 ** int nAlloc; // Number of allocated slots 1633 ** int nUsed; // Number of used slots 1634 ** struct VListEntry { 1635 ** int iValue; // Value for this entry 1636 ** int nSlot; // Slots used by this entry 1637 ** // ... variable name goes here 1638 ** } a[0]; 1639 ** } 1640 ** 1641 ** During code generation, pointers to the variable names within the 1642 ** VList are taken. When that happens, nAlloc is set to zero as an 1643 ** indication that the VList may never again be enlarged, since the 1644 ** accompanying realloc() would invalidate the pointers. 1645 */ 1646 VList *sqlite3VListAdd( 1647 sqlite3 *db, /* The database connection used for malloc() */ 1648 VList *pIn, /* The input VList. Might be NULL */ 1649 const char *zName, /* Name of symbol to add */ 1650 int nName, /* Bytes of text in zName */ 1651 int iVal /* Value to associate with zName */ 1652 ){ 1653 int nInt; /* number of sizeof(int) objects needed for zName */ 1654 char *z; /* Pointer to where zName will be stored */ 1655 int i; /* Index in pIn[] where zName is stored */ 1656 1657 nInt = nName/4 + 3; 1658 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1659 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1660 /* Enlarge the allocation */ 1661 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1662 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1663 if( pOut==0 ) return pIn; 1664 if( pIn==0 ) pOut[1] = 2; 1665 pIn = pOut; 1666 pIn[0] = nAlloc; 1667 } 1668 i = pIn[1]; 1669 pIn[i] = iVal; 1670 pIn[i+1] = nInt; 1671 z = (char*)&pIn[i+2]; 1672 pIn[1] = i+nInt; 1673 assert( pIn[1]<=pIn[0] ); 1674 memcpy(z, zName, nName); 1675 z[nName] = 0; 1676 return pIn; 1677 } 1678 1679 /* 1680 ** Return a pointer to the name of a variable in the given VList that 1681 ** has the value iVal. Or return a NULL if there is no such variable in 1682 ** the list 1683 */ 1684 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1685 int i, mx; 1686 if( pIn==0 ) return 0; 1687 mx = pIn[1]; 1688 i = 2; 1689 do{ 1690 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1691 i += pIn[i+1]; 1692 }while( i<mx ); 1693 return 0; 1694 } 1695 1696 /* 1697 ** Return the number of the variable named zName, if it is in VList. 1698 ** or return 0 if there is no such variable. 1699 */ 1700 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1701 int i, mx; 1702 if( pIn==0 ) return 0; 1703 mx = pIn[1]; 1704 i = 2; 1705 do{ 1706 const char *z = (const char*)&pIn[i+2]; 1707 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1708 i += pIn[i+1]; 1709 }while( i<mx ); 1710 return 0; 1711 } 1712