1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_UNTESTABLE 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 if( z==0 ) return 0; 109 return 0x3fffffff & (int)strlen(z); 110 } 111 112 /* 113 ** Return the declared type of a column. Or return zDflt if the column 114 ** has no declared type. 115 ** 116 ** The column type is an extra string stored after the zero-terminator on 117 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 118 */ 119 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; 121 return pCol->zName + strlen(pCol->zName) + 1; 122 } 123 124 /* 125 ** Helper function for sqlite3Error() - called rarely. Broken out into 126 ** a separate routine to avoid unnecessary register saves on entry to 127 ** sqlite3Error(). 128 */ 129 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 130 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 131 sqlite3SystemError(db, err_code); 132 } 133 134 /* 135 ** Set the current error code to err_code and clear any prior error message. 136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 137 ** that would be appropriate. 138 */ 139 void sqlite3Error(sqlite3 *db, int err_code){ 140 assert( db!=0 ); 141 db->errCode = err_code; 142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 143 } 144 145 /* 146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 147 ** to do based on the SQLite error code in rc. 148 */ 149 void sqlite3SystemError(sqlite3 *db, int rc){ 150 if( rc==SQLITE_IOERR_NOMEM ) return; 151 rc &= 0xff; 152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 154 } 155 } 156 157 /* 158 ** Set the most recent error code and error string for the sqlite 159 ** handle "db". The error code is set to "err_code". 160 ** 161 ** If it is not NULL, string zFormat specifies the format of the 162 ** error string in the style of the printf functions: The following 163 ** format characters are allowed: 164 ** 165 ** %s Insert a string 166 ** %z A string that should be freed after use 167 ** %d Insert an integer 168 ** %T Insert a token 169 ** %S Insert the first element of a SrcList 170 ** 171 ** zFormat and any string tokens that follow it are assumed to be 172 ** encoded in UTF-8. 173 ** 174 ** To clear the most recent error for sqlite handle "db", sqlite3Error 175 ** should be called with err_code set to SQLITE_OK and zFormat set 176 ** to NULL. 177 */ 178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 179 assert( db!=0 ); 180 db->errCode = err_code; 181 sqlite3SystemError(db, err_code); 182 if( zFormat==0 ){ 183 sqlite3Error(db, err_code); 184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 185 char *z; 186 va_list ap; 187 va_start(ap, zFormat); 188 z = sqlite3VMPrintf(db, zFormat, ap); 189 va_end(ap); 190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 191 } 192 } 193 194 /* 195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 196 ** The following formatting characters are allowed: 197 ** 198 ** %s Insert a string 199 ** %z A string that should be freed after use 200 ** %d Insert an integer 201 ** %T Insert a token 202 ** %S Insert the first element of a SrcList 203 ** 204 ** This function should be used to report any error that occurs while 205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 206 ** last thing the sqlite3_prepare() function does is copy the error 207 ** stored by this function into the database handle using sqlite3Error(). 208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 209 ** during statement execution (sqlite3_step() etc.). 210 */ 211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 212 char *zMsg; 213 va_list ap; 214 sqlite3 *db = pParse->db; 215 va_start(ap, zFormat); 216 zMsg = sqlite3VMPrintf(db, zFormat, ap); 217 va_end(ap); 218 if( db->suppressErr ){ 219 sqlite3DbFree(db, zMsg); 220 }else{ 221 pParse->nErr++; 222 sqlite3DbFree(db, pParse->zErrMsg); 223 pParse->zErrMsg = zMsg; 224 pParse->rc = SQLITE_ERROR; 225 } 226 } 227 228 /* 229 ** Convert an SQL-style quoted string into a normal string by removing 230 ** the quote characters. The conversion is done in-place. If the 231 ** input does not begin with a quote character, then this routine 232 ** is a no-op. 233 ** 234 ** The input string must be zero-terminated. A new zero-terminator 235 ** is added to the dequoted string. 236 ** 237 ** The return value is -1 if no dequoting occurs or the length of the 238 ** dequoted string, exclusive of the zero terminator, if dequoting does 239 ** occur. 240 ** 241 ** 2002-Feb-14: This routine is extended to remove MS-Access style 242 ** brackets from around identifiers. For example: "[a-b-c]" becomes 243 ** "a-b-c". 244 */ 245 void sqlite3Dequote(char *z){ 246 char quote; 247 int i, j; 248 if( z==0 ) return; 249 quote = z[0]; 250 if( !sqlite3Isquote(quote) ) return; 251 if( quote=='[' ) quote = ']'; 252 for(i=1, j=0;; i++){ 253 assert( z[i] ); 254 if( z[i]==quote ){ 255 if( z[i+1]==quote ){ 256 z[j++] = quote; 257 i++; 258 }else{ 259 break; 260 } 261 }else{ 262 z[j++] = z[i]; 263 } 264 } 265 z[j] = 0; 266 } 267 268 /* 269 ** Generate a Token object from a string 270 */ 271 void sqlite3TokenInit(Token *p, char *z){ 272 p->z = z; 273 p->n = sqlite3Strlen30(z); 274 } 275 276 /* Convenient short-hand */ 277 #define UpperToLower sqlite3UpperToLower 278 279 /* 280 ** Some systems have stricmp(). Others have strcasecmp(). Because 281 ** there is no consistency, we will define our own. 282 ** 283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 285 ** the contents of two buffers containing UTF-8 strings in a 286 ** case-independent fashion, using the same definition of "case 287 ** independence" that SQLite uses internally when comparing identifiers. 288 */ 289 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 290 if( zLeft==0 ){ 291 return zRight ? -1 : 0; 292 }else if( zRight==0 ){ 293 return 1; 294 } 295 return sqlite3StrICmp(zLeft, zRight); 296 } 297 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 298 unsigned char *a, *b; 299 int c; 300 a = (unsigned char *)zLeft; 301 b = (unsigned char *)zRight; 302 for(;;){ 303 c = (int)UpperToLower[*a] - (int)UpperToLower[*b]; 304 if( c || *a==0 ) break; 305 a++; 306 b++; 307 } 308 return c; 309 } 310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 311 register unsigned char *a, *b; 312 if( zLeft==0 ){ 313 return zRight ? -1 : 0; 314 }else if( zRight==0 ){ 315 return 1; 316 } 317 a = (unsigned char *)zLeft; 318 b = (unsigned char *)zRight; 319 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 320 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 321 } 322 323 /* 324 ** The string z[] is an text representation of a real number. 325 ** Convert this string to a double and write it into *pResult. 326 ** 327 ** The string z[] is length bytes in length (bytes, not characters) and 328 ** uses the encoding enc. The string is not necessarily zero-terminated. 329 ** 330 ** Return TRUE if the result is a valid real number (or integer) and FALSE 331 ** if the string is empty or contains extraneous text. Valid numbers 332 ** are in one of these formats: 333 ** 334 ** [+-]digits[E[+-]digits] 335 ** [+-]digits.[digits][E[+-]digits] 336 ** [+-].digits[E[+-]digits] 337 ** 338 ** Leading and trailing whitespace is ignored for the purpose of determining 339 ** validity. 340 ** 341 ** If some prefix of the input string is a valid number, this routine 342 ** returns FALSE but it still converts the prefix and writes the result 343 ** into *pResult. 344 */ 345 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 346 #ifndef SQLITE_OMIT_FLOATING_POINT 347 int incr; 348 const char *zEnd = z + length; 349 /* sign * significand * (10 ^ (esign * exponent)) */ 350 int sign = 1; /* sign of significand */ 351 i64 s = 0; /* significand */ 352 int d = 0; /* adjust exponent for shifting decimal point */ 353 int esign = 1; /* sign of exponent */ 354 int e = 0; /* exponent */ 355 int eValid = 1; /* True exponent is either not used or is well-formed */ 356 double result; 357 int nDigits = 0; 358 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 359 360 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 361 *pResult = 0.0; /* Default return value, in case of an error */ 362 363 if( enc==SQLITE_UTF8 ){ 364 incr = 1; 365 }else{ 366 int i; 367 incr = 2; 368 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 369 for(i=3-enc; i<length && z[i]==0; i+=2){} 370 nonNum = i<length; 371 zEnd = &z[i^1]; 372 z += (enc&1); 373 } 374 375 /* skip leading spaces */ 376 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 377 if( z>=zEnd ) return 0; 378 379 /* get sign of significand */ 380 if( *z=='-' ){ 381 sign = -1; 382 z+=incr; 383 }else if( *z=='+' ){ 384 z+=incr; 385 } 386 387 /* copy max significant digits to significand */ 388 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 389 s = s*10 + (*z - '0'); 390 z+=incr, nDigits++; 391 } 392 393 /* skip non-significant significand digits 394 ** (increase exponent by d to shift decimal left) */ 395 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 396 if( z>=zEnd ) goto do_atof_calc; 397 398 /* if decimal point is present */ 399 if( *z=='.' ){ 400 z+=incr; 401 /* copy digits from after decimal to significand 402 ** (decrease exponent by d to shift decimal right) */ 403 while( z<zEnd && sqlite3Isdigit(*z) ){ 404 if( s<((LARGEST_INT64-9)/10) ){ 405 s = s*10 + (*z - '0'); 406 d--; 407 } 408 z+=incr, nDigits++; 409 } 410 } 411 if( z>=zEnd ) goto do_atof_calc; 412 413 /* if exponent is present */ 414 if( *z=='e' || *z=='E' ){ 415 z+=incr; 416 eValid = 0; 417 418 /* This branch is needed to avoid a (harmless) buffer overread. The 419 ** special comment alerts the mutation tester that the correct answer 420 ** is obtained even if the branch is omitted */ 421 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 422 423 /* get sign of exponent */ 424 if( *z=='-' ){ 425 esign = -1; 426 z+=incr; 427 }else if( *z=='+' ){ 428 z+=incr; 429 } 430 /* copy digits to exponent */ 431 while( z<zEnd && sqlite3Isdigit(*z) ){ 432 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 433 z+=incr; 434 eValid = 1; 435 } 436 } 437 438 /* skip trailing spaces */ 439 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 440 441 do_atof_calc: 442 /* adjust exponent by d, and update sign */ 443 e = (e*esign) + d; 444 if( e<0 ) { 445 esign = -1; 446 e *= -1; 447 } else { 448 esign = 1; 449 } 450 451 if( s==0 ) { 452 /* In the IEEE 754 standard, zero is signed. */ 453 result = sign<0 ? -(double)0 : (double)0; 454 } else { 455 /* Attempt to reduce exponent. 456 ** 457 ** Branches that are not required for the correct answer but which only 458 ** help to obtain the correct answer faster are marked with special 459 ** comments, as a hint to the mutation tester. 460 */ 461 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 462 if( esign>0 ){ 463 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 464 s *= 10; 465 }else{ 466 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 467 s /= 10; 468 } 469 e--; 470 } 471 472 /* adjust the sign of significand */ 473 s = sign<0 ? -s : s; 474 475 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 476 result = (double)s; 477 }else{ 478 LONGDOUBLE_TYPE scale = 1.0; 479 /* attempt to handle extremely small/large numbers better */ 480 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 481 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 482 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 483 if( esign<0 ){ 484 result = s / scale; 485 result /= 1.0e+308; 486 }else{ 487 result = s * scale; 488 result *= 1.0e+308; 489 } 490 }else{ assert( e>=342 ); 491 if( esign<0 ){ 492 result = 0.0*s; 493 }else{ 494 result = 1e308*1e308*s; /* Infinity */ 495 } 496 } 497 }else{ 498 /* 1.0e+22 is the largest power of 10 than can be 499 ** represented exactly. */ 500 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 501 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 502 if( esign<0 ){ 503 result = s / scale; 504 }else{ 505 result = s * scale; 506 } 507 } 508 } 509 } 510 511 /* store the result */ 512 *pResult = result; 513 514 /* return true if number and no extra non-whitespace chracters after */ 515 return z==zEnd && nDigits>0 && eValid && nonNum==0; 516 #else 517 return !sqlite3Atoi64(z, pResult, length, enc); 518 #endif /* SQLITE_OMIT_FLOATING_POINT */ 519 } 520 521 /* 522 ** Compare the 19-character string zNum against the text representation 523 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 524 ** if zNum is less than, equal to, or greater than the string. 525 ** Note that zNum must contain exactly 19 characters. 526 ** 527 ** Unlike memcmp() this routine is guaranteed to return the difference 528 ** in the values of the last digit if the only difference is in the 529 ** last digit. So, for example, 530 ** 531 ** compare2pow63("9223372036854775800", 1) 532 ** 533 ** will return -8. 534 */ 535 static int compare2pow63(const char *zNum, int incr){ 536 int c = 0; 537 int i; 538 /* 012345678901234567 */ 539 const char *pow63 = "922337203685477580"; 540 for(i=0; c==0 && i<18; i++){ 541 c = (zNum[i*incr]-pow63[i])*10; 542 } 543 if( c==0 ){ 544 c = zNum[18*incr] - '8'; 545 testcase( c==(-1) ); 546 testcase( c==0 ); 547 testcase( c==(+1) ); 548 } 549 return c; 550 } 551 552 /* 553 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 554 ** routine does *not* accept hexadecimal notation. 555 ** 556 ** If the zNum value is representable as a 64-bit twos-complement 557 ** integer, then write that value into *pNum and return 0. 558 ** 559 ** If zNum is exactly 9223372036854775808, return 2. This special 560 ** case is broken out because while 9223372036854775808 cannot be a 561 ** signed 64-bit integer, its negative -9223372036854775808 can be. 562 ** 563 ** If zNum is too big for a 64-bit integer and is not 564 ** 9223372036854775808 or if zNum contains any non-numeric text, 565 ** then return 1. 566 ** 567 ** length is the number of bytes in the string (bytes, not characters). 568 ** The string is not necessarily zero-terminated. The encoding is 569 ** given by enc. 570 */ 571 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 572 int incr; 573 u64 u = 0; 574 int neg = 0; /* assume positive */ 575 int i; 576 int c = 0; 577 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 578 const char *zStart; 579 const char *zEnd = zNum + length; 580 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 581 if( enc==SQLITE_UTF8 ){ 582 incr = 1; 583 }else{ 584 incr = 2; 585 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 586 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 587 nonNum = i<length; 588 zEnd = &zNum[i^1]; 589 zNum += (enc&1); 590 } 591 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 592 if( zNum<zEnd ){ 593 if( *zNum=='-' ){ 594 neg = 1; 595 zNum+=incr; 596 }else if( *zNum=='+' ){ 597 zNum+=incr; 598 } 599 } 600 zStart = zNum; 601 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 602 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 603 u = u*10 + c - '0'; 604 } 605 if( u>LARGEST_INT64 ){ 606 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 607 }else if( neg ){ 608 *pNum = -(i64)u; 609 }else{ 610 *pNum = (i64)u; 611 } 612 testcase( i==18 ); 613 testcase( i==19 ); 614 testcase( i==20 ); 615 if( &zNum[i]<zEnd /* Extra bytes at the end */ 616 || (i==0 && zStart==zNum) /* No digits */ 617 || i>19*incr /* Too many digits */ 618 || nonNum /* UTF16 with high-order bytes non-zero */ 619 ){ 620 /* zNum is empty or contains non-numeric text or is longer 621 ** than 19 digits (thus guaranteeing that it is too large) */ 622 return 1; 623 }else if( i<19*incr ){ 624 /* Less than 19 digits, so we know that it fits in 64 bits */ 625 assert( u<=LARGEST_INT64 ); 626 return 0; 627 }else{ 628 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 629 c = compare2pow63(zNum, incr); 630 if( c<0 ){ 631 /* zNum is less than 9223372036854775808 so it fits */ 632 assert( u<=LARGEST_INT64 ); 633 return 0; 634 }else if( c>0 ){ 635 /* zNum is greater than 9223372036854775808 so it overflows */ 636 return 1; 637 }else{ 638 /* zNum is exactly 9223372036854775808. Fits if negative. The 639 ** special case 2 overflow if positive */ 640 assert( u-1==LARGEST_INT64 ); 641 return neg ? 0 : 2; 642 } 643 } 644 } 645 646 /* 647 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 648 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 649 ** whereas sqlite3Atoi64() does not. 650 ** 651 ** Returns: 652 ** 653 ** 0 Successful transformation. Fits in a 64-bit signed integer. 654 ** 1 Integer too large for a 64-bit signed integer or is malformed 655 ** 2 Special case of 9223372036854775808 656 */ 657 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 658 #ifndef SQLITE_OMIT_HEX_INTEGER 659 if( z[0]=='0' 660 && (z[1]=='x' || z[1]=='X') 661 ){ 662 u64 u = 0; 663 int i, k; 664 for(i=2; z[i]=='0'; i++){} 665 for(k=i; sqlite3Isxdigit(z[k]); k++){ 666 u = u*16 + sqlite3HexToInt(z[k]); 667 } 668 memcpy(pOut, &u, 8); 669 return (z[k]==0 && k-i<=16) ? 0 : 1; 670 }else 671 #endif /* SQLITE_OMIT_HEX_INTEGER */ 672 { 673 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 674 } 675 } 676 677 /* 678 ** If zNum represents an integer that will fit in 32-bits, then set 679 ** *pValue to that integer and return true. Otherwise return false. 680 ** 681 ** This routine accepts both decimal and hexadecimal notation for integers. 682 ** 683 ** Any non-numeric characters that following zNum are ignored. 684 ** This is different from sqlite3Atoi64() which requires the 685 ** input number to be zero-terminated. 686 */ 687 int sqlite3GetInt32(const char *zNum, int *pValue){ 688 sqlite_int64 v = 0; 689 int i, c; 690 int neg = 0; 691 if( zNum[0]=='-' ){ 692 neg = 1; 693 zNum++; 694 }else if( zNum[0]=='+' ){ 695 zNum++; 696 } 697 #ifndef SQLITE_OMIT_HEX_INTEGER 698 else if( zNum[0]=='0' 699 && (zNum[1]=='x' || zNum[1]=='X') 700 && sqlite3Isxdigit(zNum[2]) 701 ){ 702 u32 u = 0; 703 zNum += 2; 704 while( zNum[0]=='0' ) zNum++; 705 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 706 u = u*16 + sqlite3HexToInt(zNum[i]); 707 } 708 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 709 memcpy(pValue, &u, 4); 710 return 1; 711 }else{ 712 return 0; 713 } 714 } 715 #endif 716 if( !sqlite3Isdigit(zNum[0]) ) return 0; 717 while( zNum[0]=='0' ) zNum++; 718 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 719 v = v*10 + c; 720 } 721 722 /* The longest decimal representation of a 32 bit integer is 10 digits: 723 ** 724 ** 1234567890 725 ** 2^31 -> 2147483648 726 */ 727 testcase( i==10 ); 728 if( i>10 ){ 729 return 0; 730 } 731 testcase( v-neg==2147483647 ); 732 if( v-neg>2147483647 ){ 733 return 0; 734 } 735 if( neg ){ 736 v = -v; 737 } 738 *pValue = (int)v; 739 return 1; 740 } 741 742 /* 743 ** Return a 32-bit integer value extracted from a string. If the 744 ** string is not an integer, just return 0. 745 */ 746 int sqlite3Atoi(const char *z){ 747 int x = 0; 748 if( z ) sqlite3GetInt32(z, &x); 749 return x; 750 } 751 752 /* 753 ** The variable-length integer encoding is as follows: 754 ** 755 ** KEY: 756 ** A = 0xxxxxxx 7 bits of data and one flag bit 757 ** B = 1xxxxxxx 7 bits of data and one flag bit 758 ** C = xxxxxxxx 8 bits of data 759 ** 760 ** 7 bits - A 761 ** 14 bits - BA 762 ** 21 bits - BBA 763 ** 28 bits - BBBA 764 ** 35 bits - BBBBA 765 ** 42 bits - BBBBBA 766 ** 49 bits - BBBBBBA 767 ** 56 bits - BBBBBBBA 768 ** 64 bits - BBBBBBBBC 769 */ 770 771 /* 772 ** Write a 64-bit variable-length integer to memory starting at p[0]. 773 ** The length of data write will be between 1 and 9 bytes. The number 774 ** of bytes written is returned. 775 ** 776 ** A variable-length integer consists of the lower 7 bits of each byte 777 ** for all bytes that have the 8th bit set and one byte with the 8th 778 ** bit clear. Except, if we get to the 9th byte, it stores the full 779 ** 8 bits and is the last byte. 780 */ 781 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 782 int i, j, n; 783 u8 buf[10]; 784 if( v & (((u64)0xff000000)<<32) ){ 785 p[8] = (u8)v; 786 v >>= 8; 787 for(i=7; i>=0; i--){ 788 p[i] = (u8)((v & 0x7f) | 0x80); 789 v >>= 7; 790 } 791 return 9; 792 } 793 n = 0; 794 do{ 795 buf[n++] = (u8)((v & 0x7f) | 0x80); 796 v >>= 7; 797 }while( v!=0 ); 798 buf[0] &= 0x7f; 799 assert( n<=9 ); 800 for(i=0, j=n-1; j>=0; j--, i++){ 801 p[i] = buf[j]; 802 } 803 return n; 804 } 805 int sqlite3PutVarint(unsigned char *p, u64 v){ 806 if( v<=0x7f ){ 807 p[0] = v&0x7f; 808 return 1; 809 } 810 if( v<=0x3fff ){ 811 p[0] = ((v>>7)&0x7f)|0x80; 812 p[1] = v&0x7f; 813 return 2; 814 } 815 return putVarint64(p,v); 816 } 817 818 /* 819 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 820 ** are defined here rather than simply putting the constant expressions 821 ** inline in order to work around bugs in the RVT compiler. 822 ** 823 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 824 ** 825 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 826 */ 827 #define SLOT_2_0 0x001fc07f 828 #define SLOT_4_2_0 0xf01fc07f 829 830 831 /* 832 ** Read a 64-bit variable-length integer from memory starting at p[0]. 833 ** Return the number of bytes read. The value is stored in *v. 834 */ 835 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 836 u32 a,b,s; 837 838 a = *p; 839 /* a: p0 (unmasked) */ 840 if (!(a&0x80)) 841 { 842 *v = a; 843 return 1; 844 } 845 846 p++; 847 b = *p; 848 /* b: p1 (unmasked) */ 849 if (!(b&0x80)) 850 { 851 a &= 0x7f; 852 a = a<<7; 853 a |= b; 854 *v = a; 855 return 2; 856 } 857 858 /* Verify that constants are precomputed correctly */ 859 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 860 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 861 862 p++; 863 a = a<<14; 864 a |= *p; 865 /* a: p0<<14 | p2 (unmasked) */ 866 if (!(a&0x80)) 867 { 868 a &= SLOT_2_0; 869 b &= 0x7f; 870 b = b<<7; 871 a |= b; 872 *v = a; 873 return 3; 874 } 875 876 /* CSE1 from below */ 877 a &= SLOT_2_0; 878 p++; 879 b = b<<14; 880 b |= *p; 881 /* b: p1<<14 | p3 (unmasked) */ 882 if (!(b&0x80)) 883 { 884 b &= SLOT_2_0; 885 /* moved CSE1 up */ 886 /* a &= (0x7f<<14)|(0x7f); */ 887 a = a<<7; 888 a |= b; 889 *v = a; 890 return 4; 891 } 892 893 /* a: p0<<14 | p2 (masked) */ 894 /* b: p1<<14 | p3 (unmasked) */ 895 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 896 /* moved CSE1 up */ 897 /* a &= (0x7f<<14)|(0x7f); */ 898 b &= SLOT_2_0; 899 s = a; 900 /* s: p0<<14 | p2 (masked) */ 901 902 p++; 903 a = a<<14; 904 a |= *p; 905 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 906 if (!(a&0x80)) 907 { 908 /* we can skip these cause they were (effectively) done above 909 ** while calculating s */ 910 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 911 /* b &= (0x7f<<14)|(0x7f); */ 912 b = b<<7; 913 a |= b; 914 s = s>>18; 915 *v = ((u64)s)<<32 | a; 916 return 5; 917 } 918 919 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 920 s = s<<7; 921 s |= b; 922 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 923 924 p++; 925 b = b<<14; 926 b |= *p; 927 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 928 if (!(b&0x80)) 929 { 930 /* we can skip this cause it was (effectively) done above in calc'ing s */ 931 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 932 a &= SLOT_2_0; 933 a = a<<7; 934 a |= b; 935 s = s>>18; 936 *v = ((u64)s)<<32 | a; 937 return 6; 938 } 939 940 p++; 941 a = a<<14; 942 a |= *p; 943 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 944 if (!(a&0x80)) 945 { 946 a &= SLOT_4_2_0; 947 b &= SLOT_2_0; 948 b = b<<7; 949 a |= b; 950 s = s>>11; 951 *v = ((u64)s)<<32 | a; 952 return 7; 953 } 954 955 /* CSE2 from below */ 956 a &= SLOT_2_0; 957 p++; 958 b = b<<14; 959 b |= *p; 960 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 961 if (!(b&0x80)) 962 { 963 b &= SLOT_4_2_0; 964 /* moved CSE2 up */ 965 /* a &= (0x7f<<14)|(0x7f); */ 966 a = a<<7; 967 a |= b; 968 s = s>>4; 969 *v = ((u64)s)<<32 | a; 970 return 8; 971 } 972 973 p++; 974 a = a<<15; 975 a |= *p; 976 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 977 978 /* moved CSE2 up */ 979 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 980 b &= SLOT_2_0; 981 b = b<<8; 982 a |= b; 983 984 s = s<<4; 985 b = p[-4]; 986 b &= 0x7f; 987 b = b>>3; 988 s |= b; 989 990 *v = ((u64)s)<<32 | a; 991 992 return 9; 993 } 994 995 /* 996 ** Read a 32-bit variable-length integer from memory starting at p[0]. 997 ** Return the number of bytes read. The value is stored in *v. 998 ** 999 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1000 ** integer, then set *v to 0xffffffff. 1001 ** 1002 ** A MACRO version, getVarint32, is provided which inlines the 1003 ** single-byte case. All code should use the MACRO version as 1004 ** this function assumes the single-byte case has already been handled. 1005 */ 1006 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1007 u32 a,b; 1008 1009 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1010 ** by the getVarin32() macro */ 1011 a = *p; 1012 /* a: p0 (unmasked) */ 1013 #ifndef getVarint32 1014 if (!(a&0x80)) 1015 { 1016 /* Values between 0 and 127 */ 1017 *v = a; 1018 return 1; 1019 } 1020 #endif 1021 1022 /* The 2-byte case */ 1023 p++; 1024 b = *p; 1025 /* b: p1 (unmasked) */ 1026 if (!(b&0x80)) 1027 { 1028 /* Values between 128 and 16383 */ 1029 a &= 0x7f; 1030 a = a<<7; 1031 *v = a | b; 1032 return 2; 1033 } 1034 1035 /* The 3-byte case */ 1036 p++; 1037 a = a<<14; 1038 a |= *p; 1039 /* a: p0<<14 | p2 (unmasked) */ 1040 if (!(a&0x80)) 1041 { 1042 /* Values between 16384 and 2097151 */ 1043 a &= (0x7f<<14)|(0x7f); 1044 b &= 0x7f; 1045 b = b<<7; 1046 *v = a | b; 1047 return 3; 1048 } 1049 1050 /* A 32-bit varint is used to store size information in btrees. 1051 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1052 ** A 3-byte varint is sufficient, for example, to record the size 1053 ** of a 1048569-byte BLOB or string. 1054 ** 1055 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1056 ** rare larger cases can be handled by the slower 64-bit varint 1057 ** routine. 1058 */ 1059 #if 1 1060 { 1061 u64 v64; 1062 u8 n; 1063 1064 p -= 2; 1065 n = sqlite3GetVarint(p, &v64); 1066 assert( n>3 && n<=9 ); 1067 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1068 *v = 0xffffffff; 1069 }else{ 1070 *v = (u32)v64; 1071 } 1072 return n; 1073 } 1074 1075 #else 1076 /* For following code (kept for historical record only) shows an 1077 ** unrolling for the 3- and 4-byte varint cases. This code is 1078 ** slightly faster, but it is also larger and much harder to test. 1079 */ 1080 p++; 1081 b = b<<14; 1082 b |= *p; 1083 /* b: p1<<14 | p3 (unmasked) */ 1084 if (!(b&0x80)) 1085 { 1086 /* Values between 2097152 and 268435455 */ 1087 b &= (0x7f<<14)|(0x7f); 1088 a &= (0x7f<<14)|(0x7f); 1089 a = a<<7; 1090 *v = a | b; 1091 return 4; 1092 } 1093 1094 p++; 1095 a = a<<14; 1096 a |= *p; 1097 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1098 if (!(a&0x80)) 1099 { 1100 /* Values between 268435456 and 34359738367 */ 1101 a &= SLOT_4_2_0; 1102 b &= SLOT_4_2_0; 1103 b = b<<7; 1104 *v = a | b; 1105 return 5; 1106 } 1107 1108 /* We can only reach this point when reading a corrupt database 1109 ** file. In that case we are not in any hurry. Use the (relatively 1110 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1111 ** value. */ 1112 { 1113 u64 v64; 1114 u8 n; 1115 1116 p -= 4; 1117 n = sqlite3GetVarint(p, &v64); 1118 assert( n>5 && n<=9 ); 1119 *v = (u32)v64; 1120 return n; 1121 } 1122 #endif 1123 } 1124 1125 /* 1126 ** Return the number of bytes that will be needed to store the given 1127 ** 64-bit integer. 1128 */ 1129 int sqlite3VarintLen(u64 v){ 1130 int i; 1131 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1132 return i; 1133 } 1134 1135 1136 /* 1137 ** Read or write a four-byte big-endian integer value. 1138 */ 1139 u32 sqlite3Get4byte(const u8 *p){ 1140 #if SQLITE_BYTEORDER==4321 1141 u32 x; 1142 memcpy(&x,p,4); 1143 return x; 1144 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1145 u32 x; 1146 memcpy(&x,p,4); 1147 return __builtin_bswap32(x); 1148 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1149 u32 x; 1150 memcpy(&x,p,4); 1151 return _byteswap_ulong(x); 1152 #else 1153 testcase( p[0]&0x80 ); 1154 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1155 #endif 1156 } 1157 void sqlite3Put4byte(unsigned char *p, u32 v){ 1158 #if SQLITE_BYTEORDER==4321 1159 memcpy(p,&v,4); 1160 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1161 u32 x = __builtin_bswap32(v); 1162 memcpy(p,&x,4); 1163 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1164 u32 x = _byteswap_ulong(v); 1165 memcpy(p,&x,4); 1166 #else 1167 p[0] = (u8)(v>>24); 1168 p[1] = (u8)(v>>16); 1169 p[2] = (u8)(v>>8); 1170 p[3] = (u8)v; 1171 #endif 1172 } 1173 1174 1175 1176 /* 1177 ** Translate a single byte of Hex into an integer. 1178 ** This routine only works if h really is a valid hexadecimal 1179 ** character: 0..9a..fA..F 1180 */ 1181 u8 sqlite3HexToInt(int h){ 1182 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1183 #ifdef SQLITE_ASCII 1184 h += 9*(1&(h>>6)); 1185 #endif 1186 #ifdef SQLITE_EBCDIC 1187 h += 9*(1&~(h>>4)); 1188 #endif 1189 return (u8)(h & 0xf); 1190 } 1191 1192 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1193 /* 1194 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1195 ** value. Return a pointer to its binary value. Space to hold the 1196 ** binary value has been obtained from malloc and must be freed by 1197 ** the calling routine. 1198 */ 1199 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1200 char *zBlob; 1201 int i; 1202 1203 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1204 n--; 1205 if( zBlob ){ 1206 for(i=0; i<n; i+=2){ 1207 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1208 } 1209 zBlob[i/2] = 0; 1210 } 1211 return zBlob; 1212 } 1213 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1214 1215 /* 1216 ** Log an error that is an API call on a connection pointer that should 1217 ** not have been used. The "type" of connection pointer is given as the 1218 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1219 */ 1220 static void logBadConnection(const char *zType){ 1221 sqlite3_log(SQLITE_MISUSE, 1222 "API call with %s database connection pointer", 1223 zType 1224 ); 1225 } 1226 1227 /* 1228 ** Check to make sure we have a valid db pointer. This test is not 1229 ** foolproof but it does provide some measure of protection against 1230 ** misuse of the interface such as passing in db pointers that are 1231 ** NULL or which have been previously closed. If this routine returns 1232 ** 1 it means that the db pointer is valid and 0 if it should not be 1233 ** dereferenced for any reason. The calling function should invoke 1234 ** SQLITE_MISUSE immediately. 1235 ** 1236 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1237 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1238 ** open properly and is not fit for general use but which can be 1239 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1240 */ 1241 int sqlite3SafetyCheckOk(sqlite3 *db){ 1242 u32 magic; 1243 if( db==0 ){ 1244 logBadConnection("NULL"); 1245 return 0; 1246 } 1247 magic = db->magic; 1248 if( magic!=SQLITE_MAGIC_OPEN ){ 1249 if( sqlite3SafetyCheckSickOrOk(db) ){ 1250 testcase( sqlite3GlobalConfig.xLog!=0 ); 1251 logBadConnection("unopened"); 1252 } 1253 return 0; 1254 }else{ 1255 return 1; 1256 } 1257 } 1258 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1259 u32 magic; 1260 magic = db->magic; 1261 if( magic!=SQLITE_MAGIC_SICK && 1262 magic!=SQLITE_MAGIC_OPEN && 1263 magic!=SQLITE_MAGIC_BUSY ){ 1264 testcase( sqlite3GlobalConfig.xLog!=0 ); 1265 logBadConnection("invalid"); 1266 return 0; 1267 }else{ 1268 return 1; 1269 } 1270 } 1271 1272 /* 1273 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1274 ** the other 64-bit signed integer at *pA and store the result in *pA. 1275 ** Return 0 on success. Or if the operation would have resulted in an 1276 ** overflow, leave *pA unchanged and return 1. 1277 */ 1278 int sqlite3AddInt64(i64 *pA, i64 iB){ 1279 #if GCC_VERSION>=5004000 1280 return __builtin_add_overflow(*pA, iB, pA); 1281 #else 1282 i64 iA = *pA; 1283 testcase( iA==0 ); testcase( iA==1 ); 1284 testcase( iB==-1 ); testcase( iB==0 ); 1285 if( iB>=0 ){ 1286 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1287 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1288 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1289 }else{ 1290 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1291 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1292 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1293 } 1294 *pA += iB; 1295 return 0; 1296 #endif 1297 } 1298 int sqlite3SubInt64(i64 *pA, i64 iB){ 1299 #if GCC_VERSION>=5004000 1300 return __builtin_sub_overflow(*pA, iB, pA); 1301 #else 1302 testcase( iB==SMALLEST_INT64+1 ); 1303 if( iB==SMALLEST_INT64 ){ 1304 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1305 if( (*pA)>=0 ) return 1; 1306 *pA -= iB; 1307 return 0; 1308 }else{ 1309 return sqlite3AddInt64(pA, -iB); 1310 } 1311 #endif 1312 } 1313 int sqlite3MulInt64(i64 *pA, i64 iB){ 1314 #if GCC_VERSION>=5004000 1315 return __builtin_mul_overflow(*pA, iB, pA); 1316 #else 1317 i64 iA = *pA; 1318 if( iB>0 ){ 1319 if( iA>LARGEST_INT64/iB ) return 1; 1320 if( iA<SMALLEST_INT64/iB ) return 1; 1321 }else if( iB<0 ){ 1322 if( iA>0 ){ 1323 if( iB<SMALLEST_INT64/iA ) return 1; 1324 }else if( iA<0 ){ 1325 if( iB==SMALLEST_INT64 ) return 1; 1326 if( iA==SMALLEST_INT64 ) return 1; 1327 if( -iA>LARGEST_INT64/-iB ) return 1; 1328 } 1329 } 1330 *pA = iA*iB; 1331 return 0; 1332 #endif 1333 } 1334 1335 /* 1336 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1337 ** if the integer has a value of -2147483648, return +2147483647 1338 */ 1339 int sqlite3AbsInt32(int x){ 1340 if( x>=0 ) return x; 1341 if( x==(int)0x80000000 ) return 0x7fffffff; 1342 return -x; 1343 } 1344 1345 #ifdef SQLITE_ENABLE_8_3_NAMES 1346 /* 1347 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1348 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1349 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1350 ** three characters, then shorten the suffix on z[] to be the last three 1351 ** characters of the original suffix. 1352 ** 1353 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1354 ** do the suffix shortening regardless of URI parameter. 1355 ** 1356 ** Examples: 1357 ** 1358 ** test.db-journal => test.nal 1359 ** test.db-wal => test.wal 1360 ** test.db-shm => test.shm 1361 ** test.db-mj7f3319fa => test.9fa 1362 */ 1363 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1364 #if SQLITE_ENABLE_8_3_NAMES<2 1365 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1366 #endif 1367 { 1368 int i, sz; 1369 sz = sqlite3Strlen30(z); 1370 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1371 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1372 } 1373 } 1374 #endif 1375 1376 /* 1377 ** Find (an approximate) sum of two LogEst values. This computation is 1378 ** not a simple "+" operator because LogEst is stored as a logarithmic 1379 ** value. 1380 ** 1381 */ 1382 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1383 static const unsigned char x[] = { 1384 10, 10, /* 0,1 */ 1385 9, 9, /* 2,3 */ 1386 8, 8, /* 4,5 */ 1387 7, 7, 7, /* 6,7,8 */ 1388 6, 6, 6, /* 9,10,11 */ 1389 5, 5, 5, /* 12-14 */ 1390 4, 4, 4, 4, /* 15-18 */ 1391 3, 3, 3, 3, 3, 3, /* 19-24 */ 1392 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1393 }; 1394 if( a>=b ){ 1395 if( a>b+49 ) return a; 1396 if( a>b+31 ) return a+1; 1397 return a+x[a-b]; 1398 }else{ 1399 if( b>a+49 ) return b; 1400 if( b>a+31 ) return b+1; 1401 return b+x[b-a]; 1402 } 1403 } 1404 1405 /* 1406 ** Convert an integer into a LogEst. In other words, compute an 1407 ** approximation for 10*log2(x). 1408 */ 1409 LogEst sqlite3LogEst(u64 x){ 1410 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1411 LogEst y = 40; 1412 if( x<8 ){ 1413 if( x<2 ) return 0; 1414 while( x<8 ){ y -= 10; x <<= 1; } 1415 }else{ 1416 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1417 while( x>15 ){ y += 10; x >>= 1; } 1418 } 1419 return a[x&7] + y - 10; 1420 } 1421 1422 #ifndef SQLITE_OMIT_VIRTUALTABLE 1423 /* 1424 ** Convert a double into a LogEst 1425 ** In other words, compute an approximation for 10*log2(x). 1426 */ 1427 LogEst sqlite3LogEstFromDouble(double x){ 1428 u64 a; 1429 LogEst e; 1430 assert( sizeof(x)==8 && sizeof(a)==8 ); 1431 if( x<=1 ) return 0; 1432 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1433 memcpy(&a, &x, 8); 1434 e = (a>>52) - 1022; 1435 return e*10; 1436 } 1437 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1438 1439 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1440 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 1441 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1442 /* 1443 ** Convert a LogEst into an integer. 1444 ** 1445 ** Note that this routine is only used when one or more of various 1446 ** non-standard compile-time options is enabled. 1447 */ 1448 u64 sqlite3LogEstToInt(LogEst x){ 1449 u64 n; 1450 n = x%10; 1451 x /= 10; 1452 if( n>=5 ) n -= 2; 1453 else if( n>=1 ) n -= 1; 1454 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1455 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1456 if( x>60 ) return (u64)LARGEST_INT64; 1457 #else 1458 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input 1459 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1460 assert( x<=60 ); 1461 #endif 1462 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1463 } 1464 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1465 1466 /* 1467 ** Add a new name/number pair to a VList. This might require that the 1468 ** VList object be reallocated, so return the new VList. If an OOM 1469 ** error occurs, the original VList returned and the 1470 ** db->mallocFailed flag is set. 1471 ** 1472 ** A VList is really just an array of integers. To destroy a VList, 1473 ** simply pass it to sqlite3DbFree(). 1474 ** 1475 ** The first integer is the number of integers allocated for the whole 1476 ** VList. The second integer is the number of integers actually used. 1477 ** Each name/number pair is encoded by subsequent groups of 3 or more 1478 ** integers. 1479 ** 1480 ** Each name/number pair starts with two integers which are the numeric 1481 ** value for the pair and the size of the name/number pair, respectively. 1482 ** The text name overlays one or more following integers. The text name 1483 ** is always zero-terminated. 1484 ** 1485 ** Conceptually: 1486 ** 1487 ** struct VList { 1488 ** int nAlloc; // Number of allocated slots 1489 ** int nUsed; // Number of used slots 1490 ** struct VListEntry { 1491 ** int iValue; // Value for this entry 1492 ** int nSlot; // Slots used by this entry 1493 ** // ... variable name goes here 1494 ** } a[0]; 1495 ** } 1496 ** 1497 ** During code generation, pointers to the variable names within the 1498 ** VList are taken. When that happens, nAlloc is set to zero as an 1499 ** indication that the VList may never again be enlarged, since the 1500 ** accompanying realloc() would invalidate the pointers. 1501 */ 1502 VList *sqlite3VListAdd( 1503 sqlite3 *db, /* The database connection used for malloc() */ 1504 VList *pIn, /* The input VList. Might be NULL */ 1505 const char *zName, /* Name of symbol to add */ 1506 int nName, /* Bytes of text in zName */ 1507 int iVal /* Value to associate with zName */ 1508 ){ 1509 int nInt; /* number of sizeof(int) objects needed for zName */ 1510 char *z; /* Pointer to where zName will be stored */ 1511 int i; /* Index in pIn[] where zName is stored */ 1512 1513 nInt = nName/4 + 3; 1514 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1515 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1516 /* Enlarge the allocation */ 1517 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt; 1518 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1519 if( pOut==0 ) return pIn; 1520 if( pIn==0 ) pOut[1] = 2; 1521 pIn = pOut; 1522 pIn[0] = nAlloc; 1523 } 1524 i = pIn[1]; 1525 pIn[i] = iVal; 1526 pIn[i+1] = nInt; 1527 z = (char*)&pIn[i+2]; 1528 pIn[1] = i+nInt; 1529 assert( pIn[1]<=pIn[0] ); 1530 memcpy(z, zName, nName); 1531 z[nName] = 0; 1532 return pIn; 1533 } 1534 1535 /* 1536 ** Return a pointer to the name of a variable in the given VList that 1537 ** has the value iVal. Or return a NULL if there is no such variable in 1538 ** the list 1539 */ 1540 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1541 int i, mx; 1542 if( pIn==0 ) return 0; 1543 mx = pIn[1]; 1544 i = 2; 1545 do{ 1546 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1547 i += pIn[i+1]; 1548 }while( i<mx ); 1549 return 0; 1550 } 1551 1552 /* 1553 ** Return the number of the variable named zName, if it is in VList. 1554 ** or return 0 if there is no such variable. 1555 */ 1556 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1557 int i, mx; 1558 if( pIn==0 ) return 0; 1559 mx = pIn[1]; 1560 i = 2; 1561 do{ 1562 const char *z = (const char*)&pIn[i+2]; 1563 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1564 i += pIn[i+1]; 1565 }while( i<mx ); 1566 return 0; 1567 } 1568