1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 ** $Id: util.c,v 1.249 2009/03/01 22:29:20 drh Exp $ 18 */ 19 #include "sqliteInt.h" 20 #include <stdarg.h> 21 22 /* 23 ** Routine needed to support the testcase() macro. 24 */ 25 #ifdef SQLITE_COVERAGE_TEST 26 void sqlite3Coverage(int x){ 27 static int dummy = 0; 28 dummy += x; 29 } 30 #endif 31 32 /* 33 ** Routine needed to support the ALWAYS() and NEVER() macros. 34 ** 35 ** The argument to ALWAYS() should always be true and the argument 36 ** to NEVER() should always be false. If either is not the case 37 ** then this routine is called in order to throw an error. 38 ** 39 ** This routine only exists if assert() is operational. It always 40 ** throws an assert on its first invocation. The variable has a long 41 ** name to help the assert() message be more readable. The variable 42 ** is used to prevent a too-clever optimizer from optimizing out the 43 ** entire call. 44 */ 45 #ifndef NDEBUG 46 int sqlite3Assert(void){ 47 static volatile int ALWAYS_was_false_or_NEVER_was_true = 0; 48 assert( ALWAYS_was_false_or_NEVER_was_true ); /* Always fails */ 49 return ALWAYS_was_false_or_NEVER_was_true++; /* Not Reached */ 50 } 51 #endif 52 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 */ 56 int sqlite3IsNaN(double x){ 57 /* This NaN test sometimes fails if compiled on GCC with -ffast-math. 58 ** On the other hand, the use of -ffast-math comes with the following 59 ** warning: 60 ** 61 ** This option [-ffast-math] should never be turned on by any 62 ** -O option since it can result in incorrect output for programs 63 ** which depend on an exact implementation of IEEE or ISO 64 ** rules/specifications for math functions. 65 ** 66 ** Under MSVC, this NaN test may fail if compiled with a floating- 67 ** point precision mode other than /fp:precise. From the MSDN 68 ** documentation: 69 ** 70 ** The compiler [with /fp:precise] will properly handle comparisons 71 ** involving NaN. For example, x != x evaluates to true if x is NaN 72 ** ... 73 */ 74 #ifdef __FAST_MATH__ 75 # error SQLite will not work correctly with the -ffast-math option of GCC. 76 #endif 77 volatile double y = x; 78 volatile double z = y; 79 return y!=z; 80 } 81 82 /* 83 ** Compute a string length that is limited to what can be stored in 84 ** lower 30 bits of a 32-bit signed integer. 85 */ 86 int sqlite3Strlen30(const char *z){ 87 const char *z2 = z; 88 while( *z2 ){ z2++; } 89 return 0x3fffffff & (int)(z2 - z); 90 } 91 92 /* 93 ** Return the length of a string, except do not allow the string length 94 ** to exceed the SQLITE_LIMIT_LENGTH setting. 95 */ 96 int sqlite3Strlen(sqlite3 *db, const char *z){ 97 const char *z2 = z; 98 int len; 99 int x; 100 while( *z2 ){ z2++; } 101 x = (int)(z2 - z); 102 len = 0x7fffffff & x; 103 if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){ 104 return db->aLimit[SQLITE_LIMIT_LENGTH]; 105 }else{ 106 return len; 107 } 108 } 109 110 /* 111 ** Set the most recent error code and error string for the sqlite 112 ** handle "db". The error code is set to "err_code". 113 ** 114 ** If it is not NULL, string zFormat specifies the format of the 115 ** error string in the style of the printf functions: The following 116 ** format characters are allowed: 117 ** 118 ** %s Insert a string 119 ** %z A string that should be freed after use 120 ** %d Insert an integer 121 ** %T Insert a token 122 ** %S Insert the first element of a SrcList 123 ** 124 ** zFormat and any string tokens that follow it are assumed to be 125 ** encoded in UTF-8. 126 ** 127 ** To clear the most recent error for sqlite handle "db", sqlite3Error 128 ** should be called with err_code set to SQLITE_OK and zFormat set 129 ** to NULL. 130 */ 131 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 132 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 133 db->errCode = err_code; 134 if( zFormat ){ 135 char *z; 136 va_list ap; 137 va_start(ap, zFormat); 138 z = sqlite3VMPrintf(db, zFormat, ap); 139 va_end(ap); 140 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 141 }else{ 142 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 143 } 144 } 145 } 146 147 /* 148 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 149 ** The following formatting characters are allowed: 150 ** 151 ** %s Insert a string 152 ** %z A string that should be freed after use 153 ** %d Insert an integer 154 ** %T Insert a token 155 ** %S Insert the first element of a SrcList 156 ** 157 ** This function should be used to report any error that occurs whilst 158 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 159 ** last thing the sqlite3_prepare() function does is copy the error 160 ** stored by this function into the database handle using sqlite3Error(). 161 ** Function sqlite3Error() should be used during statement execution 162 ** (sqlite3_step() etc.). 163 */ 164 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 165 va_list ap; 166 sqlite3 *db = pParse->db; 167 pParse->nErr++; 168 sqlite3DbFree(db, pParse->zErrMsg); 169 va_start(ap, zFormat); 170 pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); 171 va_end(ap); 172 if( pParse->rc==SQLITE_OK ){ 173 pParse->rc = SQLITE_ERROR; 174 } 175 } 176 177 /* 178 ** Clear the error message in pParse, if any 179 */ 180 void sqlite3ErrorClear(Parse *pParse){ 181 sqlite3DbFree(pParse->db, pParse->zErrMsg); 182 pParse->zErrMsg = 0; 183 pParse->nErr = 0; 184 } 185 186 /* 187 ** Convert an SQL-style quoted string into a normal string by removing 188 ** the quote characters. The conversion is done in-place. If the 189 ** input does not begin with a quote character, then this routine 190 ** is a no-op. 191 ** 192 ** 2002-Feb-14: This routine is extended to remove MS-Access style 193 ** brackets from around identifers. For example: "[a-b-c]" becomes 194 ** "a-b-c". 195 */ 196 void sqlite3Dequote(char *z){ 197 char quote; 198 int i, j; 199 if( z==0 ) return; 200 quote = z[0]; 201 switch( quote ){ 202 case '\'': break; 203 case '"': break; 204 case '`': break; /* For MySQL compatibility */ 205 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 206 default: return; 207 } 208 for(i=1, j=0; z[i]; i++){ 209 if( z[i]==quote ){ 210 if( z[i+1]==quote ){ 211 z[j++] = quote; 212 i++; 213 }else{ 214 z[j++] = 0; 215 break; 216 } 217 }else{ 218 z[j++] = z[i]; 219 } 220 } 221 } 222 223 /* Convenient short-hand */ 224 #define UpperToLower sqlite3UpperToLower 225 226 /* 227 ** Some systems have stricmp(). Others have strcasecmp(). Because 228 ** there is no consistency, we will define our own. 229 */ 230 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 231 register unsigned char *a, *b; 232 a = (unsigned char *)zLeft; 233 b = (unsigned char *)zRight; 234 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 235 return UpperToLower[*a] - UpperToLower[*b]; 236 } 237 int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ 238 register unsigned char *a, *b; 239 a = (unsigned char *)zLeft; 240 b = (unsigned char *)zRight; 241 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 242 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 243 } 244 245 /* 246 ** Return TRUE if z is a pure numeric string. Return FALSE if the 247 ** string contains any character which is not part of a number. If 248 ** the string is numeric and contains the '.' character, set *realnum 249 ** to TRUE (otherwise FALSE). 250 ** 251 ** An empty string is considered non-numeric. 252 */ 253 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ 254 int incr = (enc==SQLITE_UTF8?1:2); 255 if( enc==SQLITE_UTF16BE ) z++; 256 if( *z=='-' || *z=='+' ) z += incr; 257 if( !sqlite3Isdigit(*z) ){ 258 return 0; 259 } 260 z += incr; 261 if( realnum ) *realnum = 0; 262 while( sqlite3Isdigit(*z) ){ z += incr; } 263 if( *z=='.' ){ 264 z += incr; 265 if( !sqlite3Isdigit(*z) ) return 0; 266 while( sqlite3Isdigit(*z) ){ z += incr; } 267 if( realnum ) *realnum = 1; 268 } 269 if( *z=='e' || *z=='E' ){ 270 z += incr; 271 if( *z=='+' || *z=='-' ) z += incr; 272 if( !sqlite3Isdigit(*z) ) return 0; 273 while( sqlite3Isdigit(*z) ){ z += incr; } 274 if( realnum ) *realnum = 1; 275 } 276 return *z==0; 277 } 278 279 /* 280 ** The string z[] is an ascii representation of a real number. 281 ** Convert this string to a double. 282 ** 283 ** This routine assumes that z[] really is a valid number. If it 284 ** is not, the result is undefined. 285 ** 286 ** This routine is used instead of the library atof() function because 287 ** the library atof() might want to use "," as the decimal point instead 288 ** of "." depending on how locale is set. But that would cause problems 289 ** for SQL. So this routine always uses "." regardless of locale. 290 */ 291 int sqlite3AtoF(const char *z, double *pResult){ 292 #ifndef SQLITE_OMIT_FLOATING_POINT 293 int sign = 1; 294 const char *zBegin = z; 295 LONGDOUBLE_TYPE v1 = 0.0; 296 int nSignificant = 0; 297 while( sqlite3Isspace(*z) ) z++; 298 if( *z=='-' ){ 299 sign = -1; 300 z++; 301 }else if( *z=='+' ){ 302 z++; 303 } 304 while( z[0]=='0' ){ 305 z++; 306 } 307 while( sqlite3Isdigit(*z) ){ 308 v1 = v1*10.0 + (*z - '0'); 309 z++; 310 nSignificant++; 311 } 312 if( *z=='.' ){ 313 LONGDOUBLE_TYPE divisor = 1.0; 314 z++; 315 if( nSignificant==0 ){ 316 while( z[0]=='0' ){ 317 divisor *= 10.0; 318 z++; 319 } 320 } 321 while( sqlite3Isdigit(*z) ){ 322 if( nSignificant<18 ){ 323 v1 = v1*10.0 + (*z - '0'); 324 divisor *= 10.0; 325 nSignificant++; 326 } 327 z++; 328 } 329 v1 /= divisor; 330 } 331 if( *z=='e' || *z=='E' ){ 332 int esign = 1; 333 int eval = 0; 334 LONGDOUBLE_TYPE scale = 1.0; 335 z++; 336 if( *z=='-' ){ 337 esign = -1; 338 z++; 339 }else if( *z=='+' ){ 340 z++; 341 } 342 while( sqlite3Isdigit(*z) ){ 343 eval = eval*10 + *z - '0'; 344 z++; 345 } 346 while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } 347 while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } 348 while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } 349 while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } 350 if( esign<0 ){ 351 v1 /= scale; 352 }else{ 353 v1 *= scale; 354 } 355 } 356 *pResult = (double)(sign<0 ? -v1 : v1); 357 return (int)(z - zBegin); 358 #else 359 return sqlite3Atoi64(z, pResult); 360 #endif /* SQLITE_OMIT_FLOATING_POINT */ 361 } 362 363 /* 364 ** Compare the 19-character string zNum against the text representation 365 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 366 ** if zNum is less than, equal to, or greater than the string. 367 ** 368 ** Unlike memcmp() this routine is guaranteed to return the difference 369 ** in the values of the last digit if the only difference is in the 370 ** last digit. So, for example, 371 ** 372 ** compare2pow63("9223372036854775800") 373 ** 374 ** will return -8. 375 */ 376 static int compare2pow63(const char *zNum){ 377 int c; 378 c = memcmp(zNum,"922337203685477580",18); 379 if( c==0 ){ 380 c = zNum[18] - '8'; 381 } 382 return c; 383 } 384 385 386 /* 387 ** Return TRUE if zNum is a 64-bit signed integer and write 388 ** the value of the integer into *pNum. If zNum is not an integer 389 ** or is an integer that is too large to be expressed with 64 bits, 390 ** then return false. 391 ** 392 ** When this routine was originally written it dealt with only 393 ** 32-bit numbers. At that time, it was much faster than the 394 ** atoi() library routine in RedHat 7.2. 395 */ 396 int sqlite3Atoi64(const char *zNum, i64 *pNum){ 397 i64 v = 0; 398 int neg; 399 int i, c; 400 const char *zStart; 401 while( sqlite3Isspace(*zNum) ) zNum++; 402 if( *zNum=='-' ){ 403 neg = 1; 404 zNum++; 405 }else if( *zNum=='+' ){ 406 neg = 0; 407 zNum++; 408 }else{ 409 neg = 0; 410 } 411 zStart = zNum; 412 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ 413 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ 414 v = v*10 + c - '0'; 415 } 416 *pNum = neg ? -v : v; 417 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ 418 /* zNum is empty or contains non-numeric text or is longer 419 ** than 19 digits (thus guaranting that it is too large) */ 420 return 0; 421 }else if( i<19 ){ 422 /* Less than 19 digits, so we know that it fits in 64 bits */ 423 return 1; 424 }else{ 425 /* 19-digit numbers must be no larger than 9223372036854775807 if positive 426 ** or 9223372036854775808 if negative. Note that 9223372036854665808 427 ** is 2^63. */ 428 return compare2pow63(zNum)<neg; 429 } 430 } 431 432 /* 433 ** The string zNum represents an integer. There might be some other 434 ** information following the integer too, but that part is ignored. 435 ** If the integer that the prefix of zNum represents will fit in a 436 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. 437 ** 438 ** This routine returns FALSE for the string -9223372036854775808 even that 439 ** that number will, in theory fit in a 64-bit integer. Positive 440 ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return 441 ** false. 442 */ 443 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ 444 int i, c; 445 int neg = 0; 446 if( *zNum=='-' ){ 447 neg = 1; 448 zNum++; 449 }else if( *zNum=='+' ){ 450 zNum++; 451 } 452 if( negFlag ) neg = 1-neg; 453 while( *zNum=='0' ){ 454 zNum++; /* Skip leading zeros. Ticket #2454 */ 455 } 456 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} 457 if( i<19 ){ 458 /* Guaranteed to fit if less than 19 digits */ 459 return 1; 460 }else if( i>19 ){ 461 /* Guaranteed to be too big if greater than 19 digits */ 462 return 0; 463 }else{ 464 /* Compare against 2^63. */ 465 return compare2pow63(zNum)<neg; 466 } 467 } 468 469 /* 470 ** If zNum represents an integer that will fit in 32-bits, then set 471 ** *pValue to that integer and return true. Otherwise return false. 472 ** 473 ** Any non-numeric characters that following zNum are ignored. 474 ** This is different from sqlite3Atoi64() which requires the 475 ** input number to be zero-terminated. 476 */ 477 int sqlite3GetInt32(const char *zNum, int *pValue){ 478 sqlite_int64 v = 0; 479 int i, c; 480 int neg = 0; 481 if( zNum[0]=='-' ){ 482 neg = 1; 483 zNum++; 484 }else if( zNum[0]=='+' ){ 485 zNum++; 486 } 487 while( zNum[0]=='0' ) zNum++; 488 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 489 v = v*10 + c; 490 } 491 492 /* The longest decimal representation of a 32 bit integer is 10 digits: 493 ** 494 ** 1234567890 495 ** 2^31 -> 2147483648 496 */ 497 if( i>10 ){ 498 return 0; 499 } 500 if( v-neg>2147483647 ){ 501 return 0; 502 } 503 if( neg ){ 504 v = -v; 505 } 506 *pValue = (int)v; 507 return 1; 508 } 509 510 /* 511 ** The variable-length integer encoding is as follows: 512 ** 513 ** KEY: 514 ** A = 0xxxxxxx 7 bits of data and one flag bit 515 ** B = 1xxxxxxx 7 bits of data and one flag bit 516 ** C = xxxxxxxx 8 bits of data 517 ** 518 ** 7 bits - A 519 ** 14 bits - BA 520 ** 21 bits - BBA 521 ** 28 bits - BBBA 522 ** 35 bits - BBBBA 523 ** 42 bits - BBBBBA 524 ** 49 bits - BBBBBBA 525 ** 56 bits - BBBBBBBA 526 ** 64 bits - BBBBBBBBC 527 */ 528 529 /* 530 ** Write a 64-bit variable-length integer to memory starting at p[0]. 531 ** The length of data write will be between 1 and 9 bytes. The number 532 ** of bytes written is returned. 533 ** 534 ** A variable-length integer consists of the lower 7 bits of each byte 535 ** for all bytes that have the 8th bit set and one byte with the 8th 536 ** bit clear. Except, if we get to the 9th byte, it stores the full 537 ** 8 bits and is the last byte. 538 */ 539 int sqlite3PutVarint(unsigned char *p, u64 v){ 540 int i, j, n; 541 u8 buf[10]; 542 if( v & (((u64)0xff000000)<<32) ){ 543 p[8] = (u8)v; 544 v >>= 8; 545 for(i=7; i>=0; i--){ 546 p[i] = (u8)((v & 0x7f) | 0x80); 547 v >>= 7; 548 } 549 return 9; 550 } 551 n = 0; 552 do{ 553 buf[n++] = (u8)((v & 0x7f) | 0x80); 554 v >>= 7; 555 }while( v!=0 ); 556 buf[0] &= 0x7f; 557 assert( n<=9 ); 558 for(i=0, j=n-1; j>=0; j--, i++){ 559 p[i] = buf[j]; 560 } 561 return n; 562 } 563 564 /* 565 ** This routine is a faster version of sqlite3PutVarint() that only 566 ** works for 32-bit positive integers and which is optimized for 567 ** the common case of small integers. A MACRO version, putVarint32, 568 ** is provided which inlines the single-byte case. All code should use 569 ** the MACRO version as this function assumes the single-byte case has 570 ** already been handled. 571 */ 572 int sqlite3PutVarint32(unsigned char *p, u32 v){ 573 #ifndef putVarint32 574 if( (v & ~0x7f)==0 ){ 575 p[0] = v; 576 return 1; 577 } 578 #endif 579 if( (v & ~0x3fff)==0 ){ 580 p[0] = (u8)((v>>7) | 0x80); 581 p[1] = (u8)(v & 0x7f); 582 return 2; 583 } 584 return sqlite3PutVarint(p, v); 585 } 586 587 /* 588 ** Read a 64-bit variable-length integer from memory starting at p[0]. 589 ** Return the number of bytes read. The value is stored in *v. 590 */ 591 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 592 u32 a,b,s; 593 594 a = *p; 595 /* a: p0 (unmasked) */ 596 if (!(a&0x80)) 597 { 598 *v = a; 599 return 1; 600 } 601 602 p++; 603 b = *p; 604 /* b: p1 (unmasked) */ 605 if (!(b&0x80)) 606 { 607 a &= 0x7f; 608 a = a<<7; 609 a |= b; 610 *v = a; 611 return 2; 612 } 613 614 p++; 615 a = a<<14; 616 a |= *p; 617 /* a: p0<<14 | p2 (unmasked) */ 618 if (!(a&0x80)) 619 { 620 a &= (0x7f<<14)|(0x7f); 621 b &= 0x7f; 622 b = b<<7; 623 a |= b; 624 *v = a; 625 return 3; 626 } 627 628 /* CSE1 from below */ 629 a &= (0x7f<<14)|(0x7f); 630 p++; 631 b = b<<14; 632 b |= *p; 633 /* b: p1<<14 | p3 (unmasked) */ 634 if (!(b&0x80)) 635 { 636 b &= (0x7f<<14)|(0x7f); 637 /* moved CSE1 up */ 638 /* a &= (0x7f<<14)|(0x7f); */ 639 a = a<<7; 640 a |= b; 641 *v = a; 642 return 4; 643 } 644 645 /* a: p0<<14 | p2 (masked) */ 646 /* b: p1<<14 | p3 (unmasked) */ 647 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 648 /* moved CSE1 up */ 649 /* a &= (0x7f<<14)|(0x7f); */ 650 b &= (0x7f<<14)|(0x7f); 651 s = a; 652 /* s: p0<<14 | p2 (masked) */ 653 654 p++; 655 a = a<<14; 656 a |= *p; 657 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 658 if (!(a&0x80)) 659 { 660 /* we can skip these cause they were (effectively) done above in calc'ing s */ 661 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 662 /* b &= (0x7f<<14)|(0x7f); */ 663 b = b<<7; 664 a |= b; 665 s = s>>18; 666 *v = ((u64)s)<<32 | a; 667 return 5; 668 } 669 670 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 671 s = s<<7; 672 s |= b; 673 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 674 675 p++; 676 b = b<<14; 677 b |= *p; 678 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 679 if (!(b&0x80)) 680 { 681 /* we can skip this cause it was (effectively) done above in calc'ing s */ 682 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 683 a &= (0x7f<<14)|(0x7f); 684 a = a<<7; 685 a |= b; 686 s = s>>18; 687 *v = ((u64)s)<<32 | a; 688 return 6; 689 } 690 691 p++; 692 a = a<<14; 693 a |= *p; 694 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 695 if (!(a&0x80)) 696 { 697 a &= (0x1f<<28)|(0x7f<<14)|(0x7f); 698 b &= (0x7f<<14)|(0x7f); 699 b = b<<7; 700 a |= b; 701 s = s>>11; 702 *v = ((u64)s)<<32 | a; 703 return 7; 704 } 705 706 /* CSE2 from below */ 707 a &= (0x7f<<14)|(0x7f); 708 p++; 709 b = b<<14; 710 b |= *p; 711 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 712 if (!(b&0x80)) 713 { 714 b &= (0x1f<<28)|(0x7f<<14)|(0x7f); 715 /* moved CSE2 up */ 716 /* a &= (0x7f<<14)|(0x7f); */ 717 a = a<<7; 718 a |= b; 719 s = s>>4; 720 *v = ((u64)s)<<32 | a; 721 return 8; 722 } 723 724 p++; 725 a = a<<15; 726 a |= *p; 727 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 728 729 /* moved CSE2 up */ 730 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 731 b &= (0x7f<<14)|(0x7f); 732 b = b<<8; 733 a |= b; 734 735 s = s<<4; 736 b = p[-4]; 737 b &= 0x7f; 738 b = b>>3; 739 s |= b; 740 741 *v = ((u64)s)<<32 | a; 742 743 return 9; 744 } 745 746 /* 747 ** Read a 32-bit variable-length integer from memory starting at p[0]. 748 ** Return the number of bytes read. The value is stored in *v. 749 ** A MACRO version, getVarint32, is provided which inlines the 750 ** single-byte case. All code should use the MACRO version as 751 ** this function assumes the single-byte case has already been handled. 752 */ 753 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 754 u32 a,b; 755 756 a = *p; 757 /* a: p0 (unmasked) */ 758 #ifndef getVarint32 759 if (!(a&0x80)) 760 { 761 *v = a; 762 return 1; 763 } 764 #endif 765 766 p++; 767 b = *p; 768 /* b: p1 (unmasked) */ 769 if (!(b&0x80)) 770 { 771 a &= 0x7f; 772 a = a<<7; 773 *v = a | b; 774 return 2; 775 } 776 777 p++; 778 a = a<<14; 779 a |= *p; 780 /* a: p0<<14 | p2 (unmasked) */ 781 if (!(a&0x80)) 782 { 783 a &= (0x7f<<14)|(0x7f); 784 b &= 0x7f; 785 b = b<<7; 786 *v = a | b; 787 return 3; 788 } 789 790 p++; 791 b = b<<14; 792 b |= *p; 793 /* b: p1<<14 | p3 (unmasked) */ 794 if (!(b&0x80)) 795 { 796 b &= (0x7f<<14)|(0x7f); 797 a &= (0x7f<<14)|(0x7f); 798 a = a<<7; 799 *v = a | b; 800 return 4; 801 } 802 803 p++; 804 a = a<<14; 805 a |= *p; 806 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 807 if (!(a&0x80)) 808 { 809 a &= (0x1f<<28)|(0x7f<<14)|(0x7f); 810 b &= (0x1f<<28)|(0x7f<<14)|(0x7f); 811 b = b<<7; 812 *v = a | b; 813 return 5; 814 } 815 816 /* We can only reach this point when reading a corrupt database 817 ** file. In that case we are not in any hurry. Use the (relatively 818 ** slow) general-purpose sqlite3GetVarint() routine to extract the 819 ** value. */ 820 { 821 u64 v64; 822 u8 n; 823 824 p -= 4; 825 n = sqlite3GetVarint(p, &v64); 826 assert( n>5 && n<=9 ); 827 *v = (u32)v64; 828 return n; 829 } 830 } 831 832 /* 833 ** Return the number of bytes that will be needed to store the given 834 ** 64-bit integer. 835 */ 836 int sqlite3VarintLen(u64 v){ 837 int i = 0; 838 do{ 839 i++; 840 v >>= 7; 841 }while( v!=0 && i<9 ); 842 return i; 843 } 844 845 846 /* 847 ** Read or write a four-byte big-endian integer value. 848 */ 849 u32 sqlite3Get4byte(const u8 *p){ 850 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 851 } 852 void sqlite3Put4byte(unsigned char *p, u32 v){ 853 p[0] = (u8)(v>>24); 854 p[1] = (u8)(v>>16); 855 p[2] = (u8)(v>>8); 856 p[3] = (u8)v; 857 } 858 859 860 861 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 862 /* 863 ** Translate a single byte of Hex into an integer. 864 ** This routinen only works if h really is a valid hexadecimal 865 ** character: 0..9a..fA..F 866 */ 867 static u8 hexToInt(int h){ 868 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 869 #ifdef SQLITE_ASCII 870 h += 9*(1&(h>>6)); 871 #endif 872 #ifdef SQLITE_EBCDIC 873 h += 9*(1&~(h>>4)); 874 #endif 875 return (u8)(h & 0xf); 876 } 877 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 878 879 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 880 /* 881 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 882 ** value. Return a pointer to its binary value. Space to hold the 883 ** binary value has been obtained from malloc and must be freed by 884 ** the calling routine. 885 */ 886 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 887 char *zBlob; 888 int i; 889 890 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 891 n--; 892 if( zBlob ){ 893 for(i=0; i<n; i+=2){ 894 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 895 } 896 zBlob[i/2] = 0; 897 } 898 return zBlob; 899 } 900 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 901 902 903 /* 904 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. 905 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN 906 ** when this routine is called. 907 ** 908 ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN 909 ** value indicates that the database connection passed into the API is 910 ** open and is not being used by another thread. By changing the value 911 ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. 912 ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN 913 ** when the API exits. 914 ** 915 ** This routine is a attempt to detect if two threads use the 916 ** same sqlite* pointer at the same time. There is a race 917 ** condition so it is possible that the error is not detected. 918 ** But usually the problem will be seen. The result will be an 919 ** error which can be used to debug the application that is 920 ** using SQLite incorrectly. 921 ** 922 ** Ticket #202: If db->magic is not a valid open value, take care not 923 ** to modify the db structure at all. It could be that db is a stale 924 ** pointer. In other words, it could be that there has been a prior 925 ** call to sqlite3_close(db) and db has been deallocated. And we do 926 ** not want to write into deallocated memory. 927 */ 928 #ifdef SQLITE_DEBUG 929 int sqlite3SafetyOn(sqlite3 *db){ 930 if( db->magic==SQLITE_MAGIC_OPEN ){ 931 db->magic = SQLITE_MAGIC_BUSY; 932 assert( sqlite3_mutex_held(db->mutex) ); 933 return 0; 934 }else if( db->magic==SQLITE_MAGIC_BUSY ){ 935 db->magic = SQLITE_MAGIC_ERROR; 936 db->u1.isInterrupted = 1; 937 } 938 return 1; 939 } 940 #endif 941 942 /* 943 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. 944 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY 945 ** when this routine is called. 946 */ 947 #ifdef SQLITE_DEBUG 948 int sqlite3SafetyOff(sqlite3 *db){ 949 if( db->magic==SQLITE_MAGIC_BUSY ){ 950 db->magic = SQLITE_MAGIC_OPEN; 951 assert( sqlite3_mutex_held(db->mutex) ); 952 return 0; 953 }else{ 954 db->magic = SQLITE_MAGIC_ERROR; 955 db->u1.isInterrupted = 1; 956 return 1; 957 } 958 } 959 #endif 960 961 /* 962 ** Check to make sure we have a valid db pointer. This test is not 963 ** foolproof but it does provide some measure of protection against 964 ** misuse of the interface such as passing in db pointers that are 965 ** NULL or which have been previously closed. If this routine returns 966 ** 1 it means that the db pointer is valid and 0 if it should not be 967 ** dereferenced for any reason. The calling function should invoke 968 ** SQLITE_MISUSE immediately. 969 ** 970 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 971 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 972 ** open properly and is not fit for general use but which can be 973 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 974 */ 975 int sqlite3SafetyCheckOk(sqlite3 *db){ 976 u32 magic; 977 if( db==0 ) return 0; 978 magic = db->magic; 979 if( magic!=SQLITE_MAGIC_OPEN && 980 magic!=SQLITE_MAGIC_BUSY ) return 0; 981 return 1; 982 } 983 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 984 u32 magic; 985 if( db==0 ) return 0; 986 magic = db->magic; 987 if( magic!=SQLITE_MAGIC_SICK && 988 magic!=SQLITE_MAGIC_OPEN && 989 magic!=SQLITE_MAGIC_BUSY ) return 0; 990 return 1; 991 } 992