1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifdef SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_OMIT_BUILTIN_TEST 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !defined(SQLITE_HAVE_ISNAN) 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if defined(SQLITE_HAVE_ISNAN) */ 92 rc = isnan(x); 93 #endif /* SQLITE_HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 const char *z2 = z; 109 if( z==0 ) return 0; 110 while( *z2 ){ z2++; } 111 return 0x3fffffff & (int)(z2 - z); 112 } 113 114 /* 115 ** Set the current error code to err_code and clear any prior error message. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code){ 118 assert( db!=0 ); 119 db->errCode = err_code; 120 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 121 } 122 123 /* 124 ** Set the most recent error code and error string for the sqlite 125 ** handle "db". The error code is set to "err_code". 126 ** 127 ** If it is not NULL, string zFormat specifies the format of the 128 ** error string in the style of the printf functions: The following 129 ** format characters are allowed: 130 ** 131 ** %s Insert a string 132 ** %z A string that should be freed after use 133 ** %d Insert an integer 134 ** %T Insert a token 135 ** %S Insert the first element of a SrcList 136 ** 137 ** zFormat and any string tokens that follow it are assumed to be 138 ** encoded in UTF-8. 139 ** 140 ** To clear the most recent error for sqlite handle "db", sqlite3Error 141 ** should be called with err_code set to SQLITE_OK and zFormat set 142 ** to NULL. 143 */ 144 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 145 assert( db!=0 ); 146 db->errCode = err_code; 147 if( zFormat==0 ){ 148 sqlite3Error(db, err_code); 149 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 150 char *z; 151 va_list ap; 152 va_start(ap, zFormat); 153 z = sqlite3VMPrintf(db, zFormat, ap); 154 va_end(ap); 155 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 156 } 157 } 158 159 /* 160 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 161 ** The following formatting characters are allowed: 162 ** 163 ** %s Insert a string 164 ** %z A string that should be freed after use 165 ** %d Insert an integer 166 ** %T Insert a token 167 ** %S Insert the first element of a SrcList 168 ** 169 ** This function should be used to report any error that occurs while 170 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 171 ** last thing the sqlite3_prepare() function does is copy the error 172 ** stored by this function into the database handle using sqlite3Error(). 173 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 174 ** during statement execution (sqlite3_step() etc.). 175 */ 176 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 177 char *zMsg; 178 va_list ap; 179 sqlite3 *db = pParse->db; 180 va_start(ap, zFormat); 181 zMsg = sqlite3VMPrintf(db, zFormat, ap); 182 va_end(ap); 183 if( db->suppressErr ){ 184 sqlite3DbFree(db, zMsg); 185 }else{ 186 pParse->nErr++; 187 sqlite3DbFree(db, pParse->zErrMsg); 188 pParse->zErrMsg = zMsg; 189 pParse->rc = SQLITE_ERROR; 190 } 191 } 192 193 /* 194 ** Convert an SQL-style quoted string into a normal string by removing 195 ** the quote characters. The conversion is done in-place. If the 196 ** input does not begin with a quote character, then this routine 197 ** is a no-op. 198 ** 199 ** The input string must be zero-terminated. A new zero-terminator 200 ** is added to the dequoted string. 201 ** 202 ** The return value is -1 if no dequoting occurs or the length of the 203 ** dequoted string, exclusive of the zero terminator, if dequoting does 204 ** occur. 205 ** 206 ** 2002-Feb-14: This routine is extended to remove MS-Access style 207 ** brackets from around identifiers. For example: "[a-b-c]" becomes 208 ** "a-b-c". 209 */ 210 int sqlite3Dequote(char *z){ 211 char quote; 212 int i, j; 213 if( z==0 ) return -1; 214 quote = z[0]; 215 switch( quote ){ 216 case '\'': break; 217 case '"': break; 218 case '`': break; /* For MySQL compatibility */ 219 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 220 default: return -1; 221 } 222 for(i=1, j=0;; i++){ 223 assert( z[i] ); 224 if( z[i]==quote ){ 225 if( z[i+1]==quote ){ 226 z[j++] = quote; 227 i++; 228 }else{ 229 break; 230 } 231 }else{ 232 z[j++] = z[i]; 233 } 234 } 235 z[j] = 0; 236 return j; 237 } 238 239 /* Convenient short-hand */ 240 #define UpperToLower sqlite3UpperToLower 241 242 /* 243 ** Some systems have stricmp(). Others have strcasecmp(). Because 244 ** there is no consistency, we will define our own. 245 ** 246 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 247 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 248 ** the contents of two buffers containing UTF-8 strings in a 249 ** case-independent fashion, using the same definition of "case 250 ** independence" that SQLite uses internally when comparing identifiers. 251 */ 252 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 253 register unsigned char *a, *b; 254 if( zLeft==0 ){ 255 return zRight ? -1 : 0; 256 }else if( zRight==0 ){ 257 return 1; 258 } 259 a = (unsigned char *)zLeft; 260 b = (unsigned char *)zRight; 261 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 262 return UpperToLower[*a] - UpperToLower[*b]; 263 } 264 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 265 register unsigned char *a, *b; 266 if( zLeft==0 ){ 267 return zRight ? -1 : 0; 268 }else if( zRight==0 ){ 269 return 1; 270 } 271 a = (unsigned char *)zLeft; 272 b = (unsigned char *)zRight; 273 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 274 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 275 } 276 277 /* 278 ** The string z[] is an text representation of a real number. 279 ** Convert this string to a double and write it into *pResult. 280 ** 281 ** The string z[] is length bytes in length (bytes, not characters) and 282 ** uses the encoding enc. The string is not necessarily zero-terminated. 283 ** 284 ** Return TRUE if the result is a valid real number (or integer) and FALSE 285 ** if the string is empty or contains extraneous text. Valid numbers 286 ** are in one of these formats: 287 ** 288 ** [+-]digits[E[+-]digits] 289 ** [+-]digits.[digits][E[+-]digits] 290 ** [+-].digits[E[+-]digits] 291 ** 292 ** Leading and trailing whitespace is ignored for the purpose of determining 293 ** validity. 294 ** 295 ** If some prefix of the input string is a valid number, this routine 296 ** returns FALSE but it still converts the prefix and writes the result 297 ** into *pResult. 298 */ 299 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 300 #ifndef SQLITE_OMIT_FLOATING_POINT 301 int incr; 302 const char *zEnd = z + length; 303 /* sign * significand * (10 ^ (esign * exponent)) */ 304 int sign = 1; /* sign of significand */ 305 i64 s = 0; /* significand */ 306 int d = 0; /* adjust exponent for shifting decimal point */ 307 int esign = 1; /* sign of exponent */ 308 int e = 0; /* exponent */ 309 int eValid = 1; /* True exponent is either not used or is well-formed */ 310 double result; 311 int nDigits = 0; 312 int nonNum = 0; 313 314 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 315 *pResult = 0.0; /* Default return value, in case of an error */ 316 317 if( enc==SQLITE_UTF8 ){ 318 incr = 1; 319 }else{ 320 int i; 321 incr = 2; 322 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 323 for(i=3-enc; i<length && z[i]==0; i+=2){} 324 nonNum = i<length; 325 zEnd = z+i+enc-3; 326 z += (enc&1); 327 } 328 329 /* skip leading spaces */ 330 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 331 if( z>=zEnd ) return 0; 332 333 /* get sign of significand */ 334 if( *z=='-' ){ 335 sign = -1; 336 z+=incr; 337 }else if( *z=='+' ){ 338 z+=incr; 339 } 340 341 /* skip leading zeroes */ 342 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 343 344 /* copy max significant digits to significand */ 345 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 346 s = s*10 + (*z - '0'); 347 z+=incr, nDigits++; 348 } 349 350 /* skip non-significant significand digits 351 ** (increase exponent by d to shift decimal left) */ 352 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 353 if( z>=zEnd ) goto do_atof_calc; 354 355 /* if decimal point is present */ 356 if( *z=='.' ){ 357 z+=incr; 358 /* copy digits from after decimal to significand 359 ** (decrease exponent by d to shift decimal right) */ 360 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 361 s = s*10 + (*z - '0'); 362 z+=incr, nDigits++, d--; 363 } 364 /* skip non-significant digits */ 365 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 366 } 367 if( z>=zEnd ) goto do_atof_calc; 368 369 /* if exponent is present */ 370 if( *z=='e' || *z=='E' ){ 371 z+=incr; 372 eValid = 0; 373 if( z>=zEnd ) goto do_atof_calc; 374 /* get sign of exponent */ 375 if( *z=='-' ){ 376 esign = -1; 377 z+=incr; 378 }else if( *z=='+' ){ 379 z+=incr; 380 } 381 /* copy digits to exponent */ 382 while( z<zEnd && sqlite3Isdigit(*z) ){ 383 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 384 z+=incr; 385 eValid = 1; 386 } 387 } 388 389 /* skip trailing spaces */ 390 if( nDigits && eValid ){ 391 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 392 } 393 394 do_atof_calc: 395 /* adjust exponent by d, and update sign */ 396 e = (e*esign) + d; 397 if( e<0 ) { 398 esign = -1; 399 e *= -1; 400 } else { 401 esign = 1; 402 } 403 404 /* if 0 significand */ 405 if( !s ) { 406 /* In the IEEE 754 standard, zero is signed. 407 ** Add the sign if we've seen at least one digit */ 408 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 409 } else { 410 /* attempt to reduce exponent */ 411 if( esign>0 ){ 412 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 413 }else{ 414 while( !(s%10) && e>0 ) e--,s/=10; 415 } 416 417 /* adjust the sign of significand */ 418 s = sign<0 ? -s : s; 419 420 /* if exponent, scale significand as appropriate 421 ** and store in result. */ 422 if( e ){ 423 LONGDOUBLE_TYPE scale = 1.0; 424 /* attempt to handle extremely small/large numbers better */ 425 if( e>307 && e<342 ){ 426 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 427 if( esign<0 ){ 428 result = s / scale; 429 result /= 1.0e+308; 430 }else{ 431 result = s * scale; 432 result *= 1.0e+308; 433 } 434 }else if( e>=342 ){ 435 if( esign<0 ){ 436 result = 0.0*s; 437 }else{ 438 result = 1e308*1e308*s; /* Infinity */ 439 } 440 }else{ 441 /* 1.0e+22 is the largest power of 10 than can be 442 ** represented exactly. */ 443 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 444 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 445 if( esign<0 ){ 446 result = s / scale; 447 }else{ 448 result = s * scale; 449 } 450 } 451 } else { 452 result = (double)s; 453 } 454 } 455 456 /* store the result */ 457 *pResult = result; 458 459 /* return true if number and no extra non-whitespace chracters after */ 460 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 461 #else 462 return !sqlite3Atoi64(z, pResult, length, enc); 463 #endif /* SQLITE_OMIT_FLOATING_POINT */ 464 } 465 466 /* 467 ** Compare the 19-character string zNum against the text representation 468 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 469 ** if zNum is less than, equal to, or greater than the string. 470 ** Note that zNum must contain exactly 19 characters. 471 ** 472 ** Unlike memcmp() this routine is guaranteed to return the difference 473 ** in the values of the last digit if the only difference is in the 474 ** last digit. So, for example, 475 ** 476 ** compare2pow63("9223372036854775800", 1) 477 ** 478 ** will return -8. 479 */ 480 static int compare2pow63(const char *zNum, int incr){ 481 int c = 0; 482 int i; 483 /* 012345678901234567 */ 484 const char *pow63 = "922337203685477580"; 485 for(i=0; c==0 && i<18; i++){ 486 c = (zNum[i*incr]-pow63[i])*10; 487 } 488 if( c==0 ){ 489 c = zNum[18*incr] - '8'; 490 testcase( c==(-1) ); 491 testcase( c==0 ); 492 testcase( c==(+1) ); 493 } 494 return c; 495 } 496 497 /* 498 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 499 ** routine does *not* accept hexadecimal notation. 500 ** 501 ** If the zNum value is representable as a 64-bit twos-complement 502 ** integer, then write that value into *pNum and return 0. 503 ** 504 ** If zNum is exactly 9223372036854775808, return 2. This special 505 ** case is broken out because while 9223372036854775808 cannot be a 506 ** signed 64-bit integer, its negative -9223372036854775808 can be. 507 ** 508 ** If zNum is too big for a 64-bit integer and is not 509 ** 9223372036854775808 or if zNum contains any non-numeric text, 510 ** then return 1. 511 ** 512 ** length is the number of bytes in the string (bytes, not characters). 513 ** The string is not necessarily zero-terminated. The encoding is 514 ** given by enc. 515 */ 516 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 517 int incr; 518 u64 u = 0; 519 int neg = 0; /* assume positive */ 520 int i; 521 int c = 0; 522 int nonNum = 0; 523 const char *zStart; 524 const char *zEnd = zNum + length; 525 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 526 if( enc==SQLITE_UTF8 ){ 527 incr = 1; 528 }else{ 529 incr = 2; 530 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 531 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 532 nonNum = i<length; 533 zEnd = zNum+i+enc-3; 534 zNum += (enc&1); 535 } 536 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 537 if( zNum<zEnd ){ 538 if( *zNum=='-' ){ 539 neg = 1; 540 zNum+=incr; 541 }else if( *zNum=='+' ){ 542 zNum+=incr; 543 } 544 } 545 zStart = zNum; 546 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 547 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 548 u = u*10 + c - '0'; 549 } 550 if( u>LARGEST_INT64 ){ 551 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 552 }else if( neg ){ 553 *pNum = -(i64)u; 554 }else{ 555 *pNum = (i64)u; 556 } 557 testcase( i==18 ); 558 testcase( i==19 ); 559 testcase( i==20 ); 560 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){ 561 /* zNum is empty or contains non-numeric text or is longer 562 ** than 19 digits (thus guaranteeing that it is too large) */ 563 return 1; 564 }else if( i<19*incr ){ 565 /* Less than 19 digits, so we know that it fits in 64 bits */ 566 assert( u<=LARGEST_INT64 ); 567 return 0; 568 }else{ 569 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 570 c = compare2pow63(zNum, incr); 571 if( c<0 ){ 572 /* zNum is less than 9223372036854775808 so it fits */ 573 assert( u<=LARGEST_INT64 ); 574 return 0; 575 }else if( c>0 ){ 576 /* zNum is greater than 9223372036854775808 so it overflows */ 577 return 1; 578 }else{ 579 /* zNum is exactly 9223372036854775808. Fits if negative. The 580 ** special case 2 overflow if positive */ 581 assert( u-1==LARGEST_INT64 ); 582 return neg ? 0 : 2; 583 } 584 } 585 } 586 587 /* 588 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 589 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 590 ** whereas sqlite3Atoi64() does not. 591 ** 592 ** Returns: 593 ** 594 ** 0 Successful transformation. Fits in a 64-bit signed integer. 595 ** 1 Integer too large for a 64-bit signed integer or is malformed 596 ** 2 Special case of 9223372036854775808 597 */ 598 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 599 #ifndef SQLITE_OMIT_HEX_INTEGER 600 if( z[0]=='0' 601 && (z[1]=='x' || z[1]=='X') 602 && sqlite3Isxdigit(z[2]) 603 ){ 604 u64 u = 0; 605 int i, k; 606 for(i=2; z[i]=='0'; i++){} 607 for(k=i; sqlite3Isxdigit(z[k]); k++){ 608 u = u*16 + sqlite3HexToInt(z[k]); 609 } 610 memcpy(pOut, &u, 8); 611 return (z[k]==0 && k-i<=16) ? 0 : 1; 612 }else 613 #endif /* SQLITE_OMIT_HEX_INTEGER */ 614 { 615 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 616 } 617 } 618 619 /* 620 ** If zNum represents an integer that will fit in 32-bits, then set 621 ** *pValue to that integer and return true. Otherwise return false. 622 ** 623 ** This routine accepts both decimal and hexadecimal notation for integers. 624 ** 625 ** Any non-numeric characters that following zNum are ignored. 626 ** This is different from sqlite3Atoi64() which requires the 627 ** input number to be zero-terminated. 628 */ 629 int sqlite3GetInt32(const char *zNum, int *pValue){ 630 sqlite_int64 v = 0; 631 int i, c; 632 int neg = 0; 633 if( zNum[0]=='-' ){ 634 neg = 1; 635 zNum++; 636 }else if( zNum[0]=='+' ){ 637 zNum++; 638 } 639 #ifndef SQLITE_OMIT_HEX_INTEGER 640 else if( zNum[0]=='0' 641 && (zNum[1]=='x' || zNum[1]=='X') 642 && sqlite3Isxdigit(zNum[2]) 643 ){ 644 u32 u = 0; 645 zNum += 2; 646 while( zNum[0]=='0' ) zNum++; 647 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 648 u = u*16 + sqlite3HexToInt(zNum[i]); 649 } 650 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 651 memcpy(pValue, &u, 4); 652 return 1; 653 }else{ 654 return 0; 655 } 656 } 657 #endif 658 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 659 v = v*10 + c; 660 } 661 662 /* The longest decimal representation of a 32 bit integer is 10 digits: 663 ** 664 ** 1234567890 665 ** 2^31 -> 2147483648 666 */ 667 testcase( i==10 ); 668 if( i>10 ){ 669 return 0; 670 } 671 testcase( v-neg==2147483647 ); 672 if( v-neg>2147483647 ){ 673 return 0; 674 } 675 if( neg ){ 676 v = -v; 677 } 678 *pValue = (int)v; 679 return 1; 680 } 681 682 /* 683 ** Return a 32-bit integer value extracted from a string. If the 684 ** string is not an integer, just return 0. 685 */ 686 int sqlite3Atoi(const char *z){ 687 int x = 0; 688 if( z ) sqlite3GetInt32(z, &x); 689 return x; 690 } 691 692 /* 693 ** The variable-length integer encoding is as follows: 694 ** 695 ** KEY: 696 ** A = 0xxxxxxx 7 bits of data and one flag bit 697 ** B = 1xxxxxxx 7 bits of data and one flag bit 698 ** C = xxxxxxxx 8 bits of data 699 ** 700 ** 7 bits - A 701 ** 14 bits - BA 702 ** 21 bits - BBA 703 ** 28 bits - BBBA 704 ** 35 bits - BBBBA 705 ** 42 bits - BBBBBA 706 ** 49 bits - BBBBBBA 707 ** 56 bits - BBBBBBBA 708 ** 64 bits - BBBBBBBBC 709 */ 710 711 /* 712 ** Write a 64-bit variable-length integer to memory starting at p[0]. 713 ** The length of data write will be between 1 and 9 bytes. The number 714 ** of bytes written is returned. 715 ** 716 ** A variable-length integer consists of the lower 7 bits of each byte 717 ** for all bytes that have the 8th bit set and one byte with the 8th 718 ** bit clear. Except, if we get to the 9th byte, it stores the full 719 ** 8 bits and is the last byte. 720 */ 721 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 722 int i, j, n; 723 u8 buf[10]; 724 if( v & (((u64)0xff000000)<<32) ){ 725 p[8] = (u8)v; 726 v >>= 8; 727 for(i=7; i>=0; i--){ 728 p[i] = (u8)((v & 0x7f) | 0x80); 729 v >>= 7; 730 } 731 return 9; 732 } 733 n = 0; 734 do{ 735 buf[n++] = (u8)((v & 0x7f) | 0x80); 736 v >>= 7; 737 }while( v!=0 ); 738 buf[0] &= 0x7f; 739 assert( n<=9 ); 740 for(i=0, j=n-1; j>=0; j--, i++){ 741 p[i] = buf[j]; 742 } 743 return n; 744 } 745 int sqlite3PutVarint(unsigned char *p, u64 v){ 746 if( v<=0x7f ){ 747 p[0] = v&0x7f; 748 return 1; 749 } 750 if( v<=0x3fff ){ 751 p[0] = ((v>>7)&0x7f)|0x80; 752 p[1] = v&0x7f; 753 return 2; 754 } 755 return putVarint64(p,v); 756 } 757 758 /* 759 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 760 ** are defined here rather than simply putting the constant expressions 761 ** inline in order to work around bugs in the RVT compiler. 762 ** 763 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 764 ** 765 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 766 */ 767 #define SLOT_2_0 0x001fc07f 768 #define SLOT_4_2_0 0xf01fc07f 769 770 771 /* 772 ** Read a 64-bit variable-length integer from memory starting at p[0]. 773 ** Return the number of bytes read. The value is stored in *v. 774 */ 775 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 776 u32 a,b,s; 777 778 a = *p; 779 /* a: p0 (unmasked) */ 780 if (!(a&0x80)) 781 { 782 *v = a; 783 return 1; 784 } 785 786 p++; 787 b = *p; 788 /* b: p1 (unmasked) */ 789 if (!(b&0x80)) 790 { 791 a &= 0x7f; 792 a = a<<7; 793 a |= b; 794 *v = a; 795 return 2; 796 } 797 798 /* Verify that constants are precomputed correctly */ 799 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 800 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 801 802 p++; 803 a = a<<14; 804 a |= *p; 805 /* a: p0<<14 | p2 (unmasked) */ 806 if (!(a&0x80)) 807 { 808 a &= SLOT_2_0; 809 b &= 0x7f; 810 b = b<<7; 811 a |= b; 812 *v = a; 813 return 3; 814 } 815 816 /* CSE1 from below */ 817 a &= SLOT_2_0; 818 p++; 819 b = b<<14; 820 b |= *p; 821 /* b: p1<<14 | p3 (unmasked) */ 822 if (!(b&0x80)) 823 { 824 b &= SLOT_2_0; 825 /* moved CSE1 up */ 826 /* a &= (0x7f<<14)|(0x7f); */ 827 a = a<<7; 828 a |= b; 829 *v = a; 830 return 4; 831 } 832 833 /* a: p0<<14 | p2 (masked) */ 834 /* b: p1<<14 | p3 (unmasked) */ 835 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 836 /* moved CSE1 up */ 837 /* a &= (0x7f<<14)|(0x7f); */ 838 b &= SLOT_2_0; 839 s = a; 840 /* s: p0<<14 | p2 (masked) */ 841 842 p++; 843 a = a<<14; 844 a |= *p; 845 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 846 if (!(a&0x80)) 847 { 848 /* we can skip these cause they were (effectively) done above in calc'ing s */ 849 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 850 /* b &= (0x7f<<14)|(0x7f); */ 851 b = b<<7; 852 a |= b; 853 s = s>>18; 854 *v = ((u64)s)<<32 | a; 855 return 5; 856 } 857 858 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 859 s = s<<7; 860 s |= b; 861 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 862 863 p++; 864 b = b<<14; 865 b |= *p; 866 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 867 if (!(b&0x80)) 868 { 869 /* we can skip this cause it was (effectively) done above in calc'ing s */ 870 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 871 a &= SLOT_2_0; 872 a = a<<7; 873 a |= b; 874 s = s>>18; 875 *v = ((u64)s)<<32 | a; 876 return 6; 877 } 878 879 p++; 880 a = a<<14; 881 a |= *p; 882 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 883 if (!(a&0x80)) 884 { 885 a &= SLOT_4_2_0; 886 b &= SLOT_2_0; 887 b = b<<7; 888 a |= b; 889 s = s>>11; 890 *v = ((u64)s)<<32 | a; 891 return 7; 892 } 893 894 /* CSE2 from below */ 895 a &= SLOT_2_0; 896 p++; 897 b = b<<14; 898 b |= *p; 899 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 900 if (!(b&0x80)) 901 { 902 b &= SLOT_4_2_0; 903 /* moved CSE2 up */ 904 /* a &= (0x7f<<14)|(0x7f); */ 905 a = a<<7; 906 a |= b; 907 s = s>>4; 908 *v = ((u64)s)<<32 | a; 909 return 8; 910 } 911 912 p++; 913 a = a<<15; 914 a |= *p; 915 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 916 917 /* moved CSE2 up */ 918 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 919 b &= SLOT_2_0; 920 b = b<<8; 921 a |= b; 922 923 s = s<<4; 924 b = p[-4]; 925 b &= 0x7f; 926 b = b>>3; 927 s |= b; 928 929 *v = ((u64)s)<<32 | a; 930 931 return 9; 932 } 933 934 /* 935 ** Read a 32-bit variable-length integer from memory starting at p[0]. 936 ** Return the number of bytes read. The value is stored in *v. 937 ** 938 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 939 ** integer, then set *v to 0xffffffff. 940 ** 941 ** A MACRO version, getVarint32, is provided which inlines the 942 ** single-byte case. All code should use the MACRO version as 943 ** this function assumes the single-byte case has already been handled. 944 */ 945 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 946 u32 a,b; 947 948 /* The 1-byte case. Overwhelmingly the most common. Handled inline 949 ** by the getVarin32() macro */ 950 a = *p; 951 /* a: p0 (unmasked) */ 952 #ifndef getVarint32 953 if (!(a&0x80)) 954 { 955 /* Values between 0 and 127 */ 956 *v = a; 957 return 1; 958 } 959 #endif 960 961 /* The 2-byte case */ 962 p++; 963 b = *p; 964 /* b: p1 (unmasked) */ 965 if (!(b&0x80)) 966 { 967 /* Values between 128 and 16383 */ 968 a &= 0x7f; 969 a = a<<7; 970 *v = a | b; 971 return 2; 972 } 973 974 /* The 3-byte case */ 975 p++; 976 a = a<<14; 977 a |= *p; 978 /* a: p0<<14 | p2 (unmasked) */ 979 if (!(a&0x80)) 980 { 981 /* Values between 16384 and 2097151 */ 982 a &= (0x7f<<14)|(0x7f); 983 b &= 0x7f; 984 b = b<<7; 985 *v = a | b; 986 return 3; 987 } 988 989 /* A 32-bit varint is used to store size information in btrees. 990 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 991 ** A 3-byte varint is sufficient, for example, to record the size 992 ** of a 1048569-byte BLOB or string. 993 ** 994 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 995 ** rare larger cases can be handled by the slower 64-bit varint 996 ** routine. 997 */ 998 #if 1 999 { 1000 u64 v64; 1001 u8 n; 1002 1003 p -= 2; 1004 n = sqlite3GetVarint(p, &v64); 1005 assert( n>3 && n<=9 ); 1006 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1007 *v = 0xffffffff; 1008 }else{ 1009 *v = (u32)v64; 1010 } 1011 return n; 1012 } 1013 1014 #else 1015 /* For following code (kept for historical record only) shows an 1016 ** unrolling for the 3- and 4-byte varint cases. This code is 1017 ** slightly faster, but it is also larger and much harder to test. 1018 */ 1019 p++; 1020 b = b<<14; 1021 b |= *p; 1022 /* b: p1<<14 | p3 (unmasked) */ 1023 if (!(b&0x80)) 1024 { 1025 /* Values between 2097152 and 268435455 */ 1026 b &= (0x7f<<14)|(0x7f); 1027 a &= (0x7f<<14)|(0x7f); 1028 a = a<<7; 1029 *v = a | b; 1030 return 4; 1031 } 1032 1033 p++; 1034 a = a<<14; 1035 a |= *p; 1036 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1037 if (!(a&0x80)) 1038 { 1039 /* Values between 268435456 and 34359738367 */ 1040 a &= SLOT_4_2_0; 1041 b &= SLOT_4_2_0; 1042 b = b<<7; 1043 *v = a | b; 1044 return 5; 1045 } 1046 1047 /* We can only reach this point when reading a corrupt database 1048 ** file. In that case we are not in any hurry. Use the (relatively 1049 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1050 ** value. */ 1051 { 1052 u64 v64; 1053 u8 n; 1054 1055 p -= 4; 1056 n = sqlite3GetVarint(p, &v64); 1057 assert( n>5 && n<=9 ); 1058 *v = (u32)v64; 1059 return n; 1060 } 1061 #endif 1062 } 1063 1064 /* 1065 ** Return the number of bytes that will be needed to store the given 1066 ** 64-bit integer. 1067 */ 1068 int sqlite3VarintLen(u64 v){ 1069 int i = 0; 1070 do{ 1071 i++; 1072 v >>= 7; 1073 }while( v!=0 && ALWAYS(i<9) ); 1074 return i; 1075 } 1076 1077 1078 /* 1079 ** Read or write a four-byte big-endian integer value. 1080 */ 1081 u32 sqlite3Get4byte(const u8 *p){ 1082 testcase( p[0]&0x80 ); 1083 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1084 } 1085 void sqlite3Put4byte(unsigned char *p, u32 v){ 1086 p[0] = (u8)(v>>24); 1087 p[1] = (u8)(v>>16); 1088 p[2] = (u8)(v>>8); 1089 p[3] = (u8)v; 1090 } 1091 1092 1093 1094 /* 1095 ** Translate a single byte of Hex into an integer. 1096 ** This routine only works if h really is a valid hexadecimal 1097 ** character: 0..9a..fA..F 1098 */ 1099 u8 sqlite3HexToInt(int h){ 1100 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1101 #ifdef SQLITE_ASCII 1102 h += 9*(1&(h>>6)); 1103 #endif 1104 #ifdef SQLITE_EBCDIC 1105 h += 9*(1&~(h>>4)); 1106 #endif 1107 return (u8)(h & 0xf); 1108 } 1109 1110 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1111 /* 1112 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1113 ** value. Return a pointer to its binary value. Space to hold the 1114 ** binary value has been obtained from malloc and must be freed by 1115 ** the calling routine. 1116 */ 1117 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1118 char *zBlob; 1119 int i; 1120 1121 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1122 n--; 1123 if( zBlob ){ 1124 for(i=0; i<n; i+=2){ 1125 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1126 } 1127 zBlob[i/2] = 0; 1128 } 1129 return zBlob; 1130 } 1131 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1132 1133 /* 1134 ** Log an error that is an API call on a connection pointer that should 1135 ** not have been used. The "type" of connection pointer is given as the 1136 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1137 */ 1138 static void logBadConnection(const char *zType){ 1139 sqlite3_log(SQLITE_MISUSE, 1140 "API call with %s database connection pointer", 1141 zType 1142 ); 1143 } 1144 1145 /* 1146 ** Check to make sure we have a valid db pointer. This test is not 1147 ** foolproof but it does provide some measure of protection against 1148 ** misuse of the interface such as passing in db pointers that are 1149 ** NULL or which have been previously closed. If this routine returns 1150 ** 1 it means that the db pointer is valid and 0 if it should not be 1151 ** dereferenced for any reason. The calling function should invoke 1152 ** SQLITE_MISUSE immediately. 1153 ** 1154 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1155 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1156 ** open properly and is not fit for general use but which can be 1157 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1158 */ 1159 int sqlite3SafetyCheckOk(sqlite3 *db){ 1160 u32 magic; 1161 if( db==0 ){ 1162 logBadConnection("NULL"); 1163 return 0; 1164 } 1165 magic = db->magic; 1166 if( magic!=SQLITE_MAGIC_OPEN ){ 1167 if( sqlite3SafetyCheckSickOrOk(db) ){ 1168 testcase( sqlite3GlobalConfig.xLog!=0 ); 1169 logBadConnection("unopened"); 1170 } 1171 return 0; 1172 }else{ 1173 return 1; 1174 } 1175 } 1176 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1177 u32 magic; 1178 magic = db->magic; 1179 if( magic!=SQLITE_MAGIC_SICK && 1180 magic!=SQLITE_MAGIC_OPEN && 1181 magic!=SQLITE_MAGIC_BUSY ){ 1182 testcase( sqlite3GlobalConfig.xLog!=0 ); 1183 logBadConnection("invalid"); 1184 return 0; 1185 }else{ 1186 return 1; 1187 } 1188 } 1189 1190 /* 1191 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1192 ** the other 64-bit signed integer at *pA and store the result in *pA. 1193 ** Return 0 on success. Or if the operation would have resulted in an 1194 ** overflow, leave *pA unchanged and return 1. 1195 */ 1196 int sqlite3AddInt64(i64 *pA, i64 iB){ 1197 i64 iA = *pA; 1198 testcase( iA==0 ); testcase( iA==1 ); 1199 testcase( iB==-1 ); testcase( iB==0 ); 1200 if( iB>=0 ){ 1201 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1202 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1203 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1204 }else{ 1205 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1206 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1207 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1208 } 1209 *pA += iB; 1210 return 0; 1211 } 1212 int sqlite3SubInt64(i64 *pA, i64 iB){ 1213 testcase( iB==SMALLEST_INT64+1 ); 1214 if( iB==SMALLEST_INT64 ){ 1215 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1216 if( (*pA)>=0 ) return 1; 1217 *pA -= iB; 1218 return 0; 1219 }else{ 1220 return sqlite3AddInt64(pA, -iB); 1221 } 1222 } 1223 #define TWOPOWER32 (((i64)1)<<32) 1224 #define TWOPOWER31 (((i64)1)<<31) 1225 int sqlite3MulInt64(i64 *pA, i64 iB){ 1226 i64 iA = *pA; 1227 i64 iA1, iA0, iB1, iB0, r; 1228 1229 iA1 = iA/TWOPOWER32; 1230 iA0 = iA % TWOPOWER32; 1231 iB1 = iB/TWOPOWER32; 1232 iB0 = iB % TWOPOWER32; 1233 if( iA1==0 ){ 1234 if( iB1==0 ){ 1235 *pA *= iB; 1236 return 0; 1237 } 1238 r = iA0*iB1; 1239 }else if( iB1==0 ){ 1240 r = iA1*iB0; 1241 }else{ 1242 /* If both iA1 and iB1 are non-zero, overflow will result */ 1243 return 1; 1244 } 1245 testcase( r==(-TWOPOWER31)-1 ); 1246 testcase( r==(-TWOPOWER31) ); 1247 testcase( r==TWOPOWER31 ); 1248 testcase( r==TWOPOWER31-1 ); 1249 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1250 r *= TWOPOWER32; 1251 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1252 *pA = r; 1253 return 0; 1254 } 1255 1256 /* 1257 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1258 ** if the integer has a value of -2147483648, return +2147483647 1259 */ 1260 int sqlite3AbsInt32(int x){ 1261 if( x>=0 ) return x; 1262 if( x==(int)0x80000000 ) return 0x7fffffff; 1263 return -x; 1264 } 1265 1266 #ifdef SQLITE_ENABLE_8_3_NAMES 1267 /* 1268 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1269 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1270 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1271 ** three characters, then shorten the suffix on z[] to be the last three 1272 ** characters of the original suffix. 1273 ** 1274 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1275 ** do the suffix shortening regardless of URI parameter. 1276 ** 1277 ** Examples: 1278 ** 1279 ** test.db-journal => test.nal 1280 ** test.db-wal => test.wal 1281 ** test.db-shm => test.shm 1282 ** test.db-mj7f3319fa => test.9fa 1283 */ 1284 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1285 #if SQLITE_ENABLE_8_3_NAMES<2 1286 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1287 #endif 1288 { 1289 int i, sz; 1290 sz = sqlite3Strlen30(z); 1291 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1292 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1293 } 1294 } 1295 #endif 1296 1297 /* 1298 ** Find (an approximate) sum of two LogEst values. This computation is 1299 ** not a simple "+" operator because LogEst is stored as a logarithmic 1300 ** value. 1301 ** 1302 */ 1303 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1304 static const unsigned char x[] = { 1305 10, 10, /* 0,1 */ 1306 9, 9, /* 2,3 */ 1307 8, 8, /* 4,5 */ 1308 7, 7, 7, /* 6,7,8 */ 1309 6, 6, 6, /* 9,10,11 */ 1310 5, 5, 5, /* 12-14 */ 1311 4, 4, 4, 4, /* 15-18 */ 1312 3, 3, 3, 3, 3, 3, /* 19-24 */ 1313 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1314 }; 1315 if( a>=b ){ 1316 if( a>b+49 ) return a; 1317 if( a>b+31 ) return a+1; 1318 return a+x[a-b]; 1319 }else{ 1320 if( b>a+49 ) return b; 1321 if( b>a+31 ) return b+1; 1322 return b+x[b-a]; 1323 } 1324 } 1325 1326 /* 1327 ** Convert an integer into a LogEst. In other words, compute an 1328 ** approximation for 10*log2(x). 1329 */ 1330 LogEst sqlite3LogEst(u64 x){ 1331 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1332 LogEst y = 40; 1333 if( x<8 ){ 1334 if( x<2 ) return 0; 1335 while( x<8 ){ y -= 10; x <<= 1; } 1336 }else{ 1337 while( x>255 ){ y += 40; x >>= 4; } 1338 while( x>15 ){ y += 10; x >>= 1; } 1339 } 1340 return a[x&7] + y - 10; 1341 } 1342 1343 #ifndef SQLITE_OMIT_VIRTUALTABLE 1344 /* 1345 ** Convert a double into a LogEst 1346 ** In other words, compute an approximation for 10*log2(x). 1347 */ 1348 LogEst sqlite3LogEstFromDouble(double x){ 1349 u64 a; 1350 LogEst e; 1351 assert( sizeof(x)==8 && sizeof(a)==8 ); 1352 if( x<=1 ) return 0; 1353 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1354 memcpy(&a, &x, 8); 1355 e = (a>>52) - 1022; 1356 return e*10; 1357 } 1358 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1359 1360 /* 1361 ** Convert a LogEst into an integer. 1362 */ 1363 u64 sqlite3LogEstToInt(LogEst x){ 1364 u64 n; 1365 if( x<10 ) return 1; 1366 n = x%10; 1367 x /= 10; 1368 if( n>=5 ) n -= 2; 1369 else if( n>=1 ) n -= 1; 1370 if( x>=3 ){ 1371 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); 1372 } 1373 return (n+8)>>(3-x); 1374 } 1375