1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #include <math.h> 21 22 /* 23 ** Routine needed to support the testcase() macro. 24 */ 25 #ifdef SQLITE_COVERAGE_TEST 26 void sqlite3Coverage(int x){ 27 static unsigned dummy = 0; 28 dummy += (unsigned)x; 29 } 30 #endif 31 32 /* 33 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 34 ** or to bypass normal error detection during testing in order to let 35 ** execute proceed futher downstream. 36 ** 37 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 38 ** sqlite3FaultSim() function only returns non-zero during testing. 39 ** 40 ** During testing, if the test harness has set a fault-sim callback using 41 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 42 ** each call to sqlite3FaultSim() is relayed to that application-supplied 43 ** callback and the integer return value form the application-supplied 44 ** callback is returned by sqlite3FaultSim(). 45 ** 46 ** The integer argument to sqlite3FaultSim() is a code to identify which 47 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 48 ** should have a unique code. To prevent legacy testing applications from 49 ** breaking, the codes should not be changed or reused. 50 */ 51 #ifndef SQLITE_UNTESTABLE 52 int sqlite3FaultSim(int iTest){ 53 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 54 return xCallback ? xCallback(iTest) : SQLITE_OK; 55 } 56 #endif 57 58 #ifndef SQLITE_OMIT_FLOATING_POINT 59 /* 60 ** Return true if the floating point value is Not a Number (NaN). 61 */ 62 int sqlite3IsNaN(double x){ 63 u64 y; 64 memcpy(&y,&x,sizeof(y)); 65 return IsNaN(y); 66 } 67 #endif /* SQLITE_OMIT_FLOATING_POINT */ 68 69 /* 70 ** Compute a string length that is limited to what can be stored in 71 ** lower 30 bits of a 32-bit signed integer. 72 ** 73 ** The value returned will never be negative. Nor will it ever be greater 74 ** than the actual length of the string. For very long strings (greater 75 ** than 1GiB) the value returned might be less than the true string length. 76 */ 77 int sqlite3Strlen30(const char *z){ 78 if( z==0 ) return 0; 79 return 0x3fffffff & (int)strlen(z); 80 } 81 82 /* 83 ** Return the declared type of a column. Or return zDflt if the column 84 ** has no declared type. 85 ** 86 ** The column type is an extra string stored after the zero-terminator on 87 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 88 */ 89 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 90 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; 91 return pCol->zName + strlen(pCol->zName) + 1; 92 } 93 94 /* 95 ** Helper function for sqlite3Error() - called rarely. Broken out into 96 ** a separate routine to avoid unnecessary register saves on entry to 97 ** sqlite3Error(). 98 */ 99 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 100 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 101 sqlite3SystemError(db, err_code); 102 } 103 104 /* 105 ** Set the current error code to err_code and clear any prior error message. 106 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 107 ** that would be appropriate. 108 */ 109 void sqlite3Error(sqlite3 *db, int err_code){ 110 assert( db!=0 ); 111 db->errCode = err_code; 112 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 113 } 114 115 /* 116 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 117 ** to do based on the SQLite error code in rc. 118 */ 119 void sqlite3SystemError(sqlite3 *db, int rc){ 120 if( rc==SQLITE_IOERR_NOMEM ) return; 121 rc &= 0xff; 122 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 123 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 124 } 125 } 126 127 /* 128 ** Set the most recent error code and error string for the sqlite 129 ** handle "db". The error code is set to "err_code". 130 ** 131 ** If it is not NULL, string zFormat specifies the format of the 132 ** error string in the style of the printf functions: The following 133 ** format characters are allowed: 134 ** 135 ** %s Insert a string 136 ** %z A string that should be freed after use 137 ** %d Insert an integer 138 ** %T Insert a token 139 ** %S Insert the first element of a SrcList 140 ** 141 ** zFormat and any string tokens that follow it are assumed to be 142 ** encoded in UTF-8. 143 ** 144 ** To clear the most recent error for sqlite handle "db", sqlite3Error 145 ** should be called with err_code set to SQLITE_OK and zFormat set 146 ** to NULL. 147 */ 148 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 149 assert( db!=0 ); 150 db->errCode = err_code; 151 sqlite3SystemError(db, err_code); 152 if( zFormat==0 ){ 153 sqlite3Error(db, err_code); 154 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 155 char *z; 156 va_list ap; 157 va_start(ap, zFormat); 158 z = sqlite3VMPrintf(db, zFormat, ap); 159 va_end(ap); 160 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 161 } 162 } 163 164 /* 165 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 166 ** The following formatting characters are allowed: 167 ** 168 ** %s Insert a string 169 ** %z A string that should be freed after use 170 ** %d Insert an integer 171 ** %T Insert a token 172 ** %S Insert the first element of a SrcList 173 ** 174 ** This function should be used to report any error that occurs while 175 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 176 ** last thing the sqlite3_prepare() function does is copy the error 177 ** stored by this function into the database handle using sqlite3Error(). 178 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 179 ** during statement execution (sqlite3_step() etc.). 180 */ 181 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 182 char *zMsg; 183 va_list ap; 184 sqlite3 *db = pParse->db; 185 va_start(ap, zFormat); 186 zMsg = sqlite3VMPrintf(db, zFormat, ap); 187 va_end(ap); 188 if( db->suppressErr ){ 189 sqlite3DbFree(db, zMsg); 190 }else{ 191 pParse->nErr++; 192 sqlite3DbFree(db, pParse->zErrMsg); 193 pParse->zErrMsg = zMsg; 194 pParse->rc = SQLITE_ERROR; 195 pParse->pWith = 0; 196 } 197 } 198 199 /* 200 ** If database connection db is currently parsing SQL, then transfer 201 ** error code errCode to that parser if the parser has not already 202 ** encountered some other kind of error. 203 */ 204 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 205 Parse *pParse; 206 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 207 pParse->rc = errCode; 208 pParse->nErr++; 209 return errCode; 210 } 211 212 /* 213 ** Convert an SQL-style quoted string into a normal string by removing 214 ** the quote characters. The conversion is done in-place. If the 215 ** input does not begin with a quote character, then this routine 216 ** is a no-op. 217 ** 218 ** The input string must be zero-terminated. A new zero-terminator 219 ** is added to the dequoted string. 220 ** 221 ** The return value is -1 if no dequoting occurs or the length of the 222 ** dequoted string, exclusive of the zero terminator, if dequoting does 223 ** occur. 224 ** 225 ** 2002-02-14: This routine is extended to remove MS-Access style 226 ** brackets from around identifiers. For example: "[a-b-c]" becomes 227 ** "a-b-c". 228 */ 229 void sqlite3Dequote(char *z){ 230 char quote; 231 int i, j; 232 if( z==0 ) return; 233 quote = z[0]; 234 if( !sqlite3Isquote(quote) ) return; 235 if( quote=='[' ) quote = ']'; 236 for(i=1, j=0;; i++){ 237 assert( z[i] ); 238 if( z[i]==quote ){ 239 if( z[i+1]==quote ){ 240 z[j++] = quote; 241 i++; 242 }else{ 243 break; 244 } 245 }else{ 246 z[j++] = z[i]; 247 } 248 } 249 z[j] = 0; 250 } 251 void sqlite3DequoteExpr(Expr *p){ 252 assert( sqlite3Isquote(p->u.zToken[0]) ); 253 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 254 sqlite3Dequote(p->u.zToken); 255 } 256 257 /* 258 ** Generate a Token object from a string 259 */ 260 void sqlite3TokenInit(Token *p, char *z){ 261 p->z = z; 262 p->n = sqlite3Strlen30(z); 263 } 264 265 /* Convenient short-hand */ 266 #define UpperToLower sqlite3UpperToLower 267 268 /* 269 ** Some systems have stricmp(). Others have strcasecmp(). Because 270 ** there is no consistency, we will define our own. 271 ** 272 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 273 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 274 ** the contents of two buffers containing UTF-8 strings in a 275 ** case-independent fashion, using the same definition of "case 276 ** independence" that SQLite uses internally when comparing identifiers. 277 */ 278 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 279 if( zLeft==0 ){ 280 return zRight ? -1 : 0; 281 }else if( zRight==0 ){ 282 return 1; 283 } 284 return sqlite3StrICmp(zLeft, zRight); 285 } 286 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 287 unsigned char *a, *b; 288 int c, x; 289 a = (unsigned char *)zLeft; 290 b = (unsigned char *)zRight; 291 for(;;){ 292 c = *a; 293 x = *b; 294 if( c==x ){ 295 if( c==0 ) break; 296 }else{ 297 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 298 if( c ) break; 299 } 300 a++; 301 b++; 302 } 303 return c; 304 } 305 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 306 register unsigned char *a, *b; 307 if( zLeft==0 ){ 308 return zRight ? -1 : 0; 309 }else if( zRight==0 ){ 310 return 1; 311 } 312 a = (unsigned char *)zLeft; 313 b = (unsigned char *)zRight; 314 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 315 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 316 } 317 318 /* 319 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 320 ** E==2 results in 100. E==50 results in 1.0e50. 321 ** 322 ** This routine only works for values of E between 1 and 341. 323 */ 324 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 325 #if defined(_MSC_VER) 326 static const LONGDOUBLE_TYPE x[] = { 327 1.0e+001L, 328 1.0e+002L, 329 1.0e+004L, 330 1.0e+008L, 331 1.0e+016L, 332 1.0e+032L, 333 1.0e+064L, 334 1.0e+128L, 335 1.0e+256L 336 }; 337 LONGDOUBLE_TYPE r = 1.0; 338 int i; 339 assert( E>=0 && E<=307 ); 340 for(i=0; E!=0; i++, E >>=1){ 341 if( E & 1 ) r *= x[i]; 342 } 343 return r; 344 #else 345 LONGDOUBLE_TYPE x = 10.0; 346 LONGDOUBLE_TYPE r = 1.0; 347 while(1){ 348 if( E & 1 ) r *= x; 349 E >>= 1; 350 if( E==0 ) break; 351 x *= x; 352 } 353 return r; 354 #endif 355 } 356 357 /* 358 ** The string z[] is an text representation of a real number. 359 ** Convert this string to a double and write it into *pResult. 360 ** 361 ** The string z[] is length bytes in length (bytes, not characters) and 362 ** uses the encoding enc. The string is not necessarily zero-terminated. 363 ** 364 ** Return TRUE if the result is a valid real number (or integer) and FALSE 365 ** if the string is empty or contains extraneous text. More specifically 366 ** return 367 ** 1 => The input string is a pure integer 368 ** 2 or more => The input has a decimal point or eNNN clause 369 ** 0 or less => The input string is not a valid number 370 ** -1 => Not a valid number, but has a valid prefix which 371 ** includes a decimal point and/or an eNNN clause 372 ** 373 ** Valid numbers are in one of these formats: 374 ** 375 ** [+-]digits[E[+-]digits] 376 ** [+-]digits.[digits][E[+-]digits] 377 ** [+-].digits[E[+-]digits] 378 ** 379 ** Leading and trailing whitespace is ignored for the purpose of determining 380 ** validity. 381 ** 382 ** If some prefix of the input string is a valid number, this routine 383 ** returns FALSE but it still converts the prefix and writes the result 384 ** into *pResult. 385 */ 386 #if defined(_MSC_VER) 387 #pragma warning(disable : 4756) 388 #endif 389 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 390 #ifndef SQLITE_OMIT_FLOATING_POINT 391 int incr; 392 const char *zEnd = z + length; 393 /* sign * significand * (10 ^ (esign * exponent)) */ 394 int sign = 1; /* sign of significand */ 395 i64 s = 0; /* significand */ 396 int d = 0; /* adjust exponent for shifting decimal point */ 397 int esign = 1; /* sign of exponent */ 398 int e = 0; /* exponent */ 399 int eValid = 1; /* True exponent is either not used or is well-formed */ 400 double result; 401 int nDigit = 0; /* Number of digits processed */ 402 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 403 404 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 405 *pResult = 0.0; /* Default return value, in case of an error */ 406 407 if( enc==SQLITE_UTF8 ){ 408 incr = 1; 409 }else{ 410 int i; 411 incr = 2; 412 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 413 testcase( enc==SQLITE_UTF16LE ); 414 testcase( enc==SQLITE_UTF16BE ); 415 for(i=3-enc; i<length && z[i]==0; i+=2){} 416 if( i<length ) eType = -100; 417 zEnd = &z[i^1]; 418 z += (enc&1); 419 } 420 421 /* skip leading spaces */ 422 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 423 if( z>=zEnd ) return 0; 424 425 /* get sign of significand */ 426 if( *z=='-' ){ 427 sign = -1; 428 z+=incr; 429 }else if( *z=='+' ){ 430 z+=incr; 431 } 432 433 /* copy max significant digits to significand */ 434 while( z<zEnd && sqlite3Isdigit(*z) ){ 435 s = s*10 + (*z - '0'); 436 z+=incr; nDigit++; 437 if( s>=((LARGEST_INT64-9)/10) ){ 438 /* skip non-significant significand digits 439 ** (increase exponent by d to shift decimal left) */ 440 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 441 } 442 } 443 if( z>=zEnd ) goto do_atof_calc; 444 445 /* if decimal point is present */ 446 if( *z=='.' ){ 447 z+=incr; 448 eType++; 449 /* copy digits from after decimal to significand 450 ** (decrease exponent by d to shift decimal right) */ 451 while( z<zEnd && sqlite3Isdigit(*z) ){ 452 if( s<((LARGEST_INT64-9)/10) ){ 453 s = s*10 + (*z - '0'); 454 d--; 455 nDigit++; 456 } 457 z+=incr; 458 } 459 } 460 if( z>=zEnd ) goto do_atof_calc; 461 462 /* if exponent is present */ 463 if( *z=='e' || *z=='E' ){ 464 z+=incr; 465 eValid = 0; 466 eType++; 467 468 /* This branch is needed to avoid a (harmless) buffer overread. The 469 ** special comment alerts the mutation tester that the correct answer 470 ** is obtained even if the branch is omitted */ 471 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 472 473 /* get sign of exponent */ 474 if( *z=='-' ){ 475 esign = -1; 476 z+=incr; 477 }else if( *z=='+' ){ 478 z+=incr; 479 } 480 /* copy digits to exponent */ 481 while( z<zEnd && sqlite3Isdigit(*z) ){ 482 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 483 z+=incr; 484 eValid = 1; 485 } 486 } 487 488 /* skip trailing spaces */ 489 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 490 491 do_atof_calc: 492 /* adjust exponent by d, and update sign */ 493 e = (e*esign) + d; 494 if( e<0 ) { 495 esign = -1; 496 e *= -1; 497 } else { 498 esign = 1; 499 } 500 501 if( s==0 ) { 502 /* In the IEEE 754 standard, zero is signed. */ 503 result = sign<0 ? -(double)0 : (double)0; 504 } else { 505 /* Attempt to reduce exponent. 506 ** 507 ** Branches that are not required for the correct answer but which only 508 ** help to obtain the correct answer faster are marked with special 509 ** comments, as a hint to the mutation tester. 510 */ 511 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 512 if( esign>0 ){ 513 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 514 s *= 10; 515 }else{ 516 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 517 s /= 10; 518 } 519 e--; 520 } 521 522 /* adjust the sign of significand */ 523 s = sign<0 ? -s : s; 524 525 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 526 result = (double)s; 527 }else{ 528 /* attempt to handle extremely small/large numbers better */ 529 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 530 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 531 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 532 if( esign<0 ){ 533 result = s / scale; 534 result /= 1.0e+308; 535 }else{ 536 result = s * scale; 537 result *= 1.0e+308; 538 } 539 }else{ assert( e>=342 ); 540 if( esign<0 ){ 541 result = 0.0*s; 542 }else{ 543 #ifdef INFINITY 544 result = INFINITY*s; 545 #else 546 result = 1e308*1e308*s; /* Infinity */ 547 #endif 548 } 549 } 550 }else{ 551 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 552 if( esign<0 ){ 553 result = s / scale; 554 }else{ 555 result = s * scale; 556 } 557 } 558 } 559 } 560 561 /* store the result */ 562 *pResult = result; 563 564 /* return true if number and no extra non-whitespace chracters after */ 565 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 566 return eType; 567 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 568 return -1; 569 }else{ 570 return 0; 571 } 572 #else 573 return !sqlite3Atoi64(z, pResult, length, enc); 574 #endif /* SQLITE_OMIT_FLOATING_POINT */ 575 } 576 #if defined(_MSC_VER) 577 #pragma warning(default : 4756) 578 #endif 579 580 /* 581 ** Compare the 19-character string zNum against the text representation 582 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 583 ** if zNum is less than, equal to, or greater than the string. 584 ** Note that zNum must contain exactly 19 characters. 585 ** 586 ** Unlike memcmp() this routine is guaranteed to return the difference 587 ** in the values of the last digit if the only difference is in the 588 ** last digit. So, for example, 589 ** 590 ** compare2pow63("9223372036854775800", 1) 591 ** 592 ** will return -8. 593 */ 594 static int compare2pow63(const char *zNum, int incr){ 595 int c = 0; 596 int i; 597 /* 012345678901234567 */ 598 const char *pow63 = "922337203685477580"; 599 for(i=0; c==0 && i<18; i++){ 600 c = (zNum[i*incr]-pow63[i])*10; 601 } 602 if( c==0 ){ 603 c = zNum[18*incr] - '8'; 604 testcase( c==(-1) ); 605 testcase( c==0 ); 606 testcase( c==(+1) ); 607 } 608 return c; 609 } 610 611 /* 612 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 613 ** routine does *not* accept hexadecimal notation. 614 ** 615 ** Returns: 616 ** 617 ** -1 Not even a prefix of the input text looks like an integer 618 ** 0 Successful transformation. Fits in a 64-bit signed integer. 619 ** 1 Excess non-space text after the integer value 620 ** 2 Integer too large for a 64-bit signed integer or is malformed 621 ** 3 Special case of 9223372036854775808 622 ** 623 ** length is the number of bytes in the string (bytes, not characters). 624 ** The string is not necessarily zero-terminated. The encoding is 625 ** given by enc. 626 */ 627 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 628 int incr; 629 u64 u = 0; 630 int neg = 0; /* assume positive */ 631 int i; 632 int c = 0; 633 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 634 int rc; /* Baseline return code */ 635 const char *zStart; 636 const char *zEnd = zNum + length; 637 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 638 if( enc==SQLITE_UTF8 ){ 639 incr = 1; 640 }else{ 641 incr = 2; 642 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 643 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 644 nonNum = i<length; 645 zEnd = &zNum[i^1]; 646 zNum += (enc&1); 647 } 648 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 649 if( zNum<zEnd ){ 650 if( *zNum=='-' ){ 651 neg = 1; 652 zNum+=incr; 653 }else if( *zNum=='+' ){ 654 zNum+=incr; 655 } 656 } 657 zStart = zNum; 658 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 659 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 660 u = u*10 + c - '0'; 661 } 662 testcase( i==18*incr ); 663 testcase( i==19*incr ); 664 testcase( i==20*incr ); 665 if( u>LARGEST_INT64 ){ 666 /* This test and assignment is needed only to suppress UB warnings 667 ** from clang and -fsanitize=undefined. This test and assignment make 668 ** the code a little larger and slower, and no harm comes from omitting 669 ** them, but we must appaise the undefined-behavior pharisees. */ 670 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 671 }else if( neg ){ 672 *pNum = -(i64)u; 673 }else{ 674 *pNum = (i64)u; 675 } 676 rc = 0; 677 if( i==0 && zStart==zNum ){ /* No digits */ 678 rc = -1; 679 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 680 rc = 1; 681 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 682 int jj = i; 683 do{ 684 if( !sqlite3Isspace(zNum[jj]) ){ 685 rc = 1; /* Extra non-space text after the integer */ 686 break; 687 } 688 jj += incr; 689 }while( &zNum[jj]<zEnd ); 690 } 691 if( i<19*incr ){ 692 /* Less than 19 digits, so we know that it fits in 64 bits */ 693 assert( u<=LARGEST_INT64 ); 694 return rc; 695 }else{ 696 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 697 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 698 if( c<0 ){ 699 /* zNum is less than 9223372036854775808 so it fits */ 700 assert( u<=LARGEST_INT64 ); 701 return rc; 702 }else{ 703 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 704 if( c>0 ){ 705 /* zNum is greater than 9223372036854775808 so it overflows */ 706 return 2; 707 }else{ 708 /* zNum is exactly 9223372036854775808. Fits if negative. The 709 ** special case 2 overflow if positive */ 710 assert( u-1==LARGEST_INT64 ); 711 return neg ? rc : 3; 712 } 713 } 714 } 715 } 716 717 /* 718 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 719 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 720 ** whereas sqlite3Atoi64() does not. 721 ** 722 ** Returns: 723 ** 724 ** 0 Successful transformation. Fits in a 64-bit signed integer. 725 ** 1 Excess text after the integer value 726 ** 2 Integer too large for a 64-bit signed integer or is malformed 727 ** 3 Special case of 9223372036854775808 728 */ 729 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 730 #ifndef SQLITE_OMIT_HEX_INTEGER 731 if( z[0]=='0' 732 && (z[1]=='x' || z[1]=='X') 733 ){ 734 u64 u = 0; 735 int i, k; 736 for(i=2; z[i]=='0'; i++){} 737 for(k=i; sqlite3Isxdigit(z[k]); k++){ 738 u = u*16 + sqlite3HexToInt(z[k]); 739 } 740 memcpy(pOut, &u, 8); 741 return (z[k]==0 && k-i<=16) ? 0 : 2; 742 }else 743 #endif /* SQLITE_OMIT_HEX_INTEGER */ 744 { 745 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 746 } 747 } 748 749 /* 750 ** If zNum represents an integer that will fit in 32-bits, then set 751 ** *pValue to that integer and return true. Otherwise return false. 752 ** 753 ** This routine accepts both decimal and hexadecimal notation for integers. 754 ** 755 ** Any non-numeric characters that following zNum are ignored. 756 ** This is different from sqlite3Atoi64() which requires the 757 ** input number to be zero-terminated. 758 */ 759 int sqlite3GetInt32(const char *zNum, int *pValue){ 760 sqlite_int64 v = 0; 761 int i, c; 762 int neg = 0; 763 if( zNum[0]=='-' ){ 764 neg = 1; 765 zNum++; 766 }else if( zNum[0]=='+' ){ 767 zNum++; 768 } 769 #ifndef SQLITE_OMIT_HEX_INTEGER 770 else if( zNum[0]=='0' 771 && (zNum[1]=='x' || zNum[1]=='X') 772 && sqlite3Isxdigit(zNum[2]) 773 ){ 774 u32 u = 0; 775 zNum += 2; 776 while( zNum[0]=='0' ) zNum++; 777 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 778 u = u*16 + sqlite3HexToInt(zNum[i]); 779 } 780 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 781 memcpy(pValue, &u, 4); 782 return 1; 783 }else{ 784 return 0; 785 } 786 } 787 #endif 788 if( !sqlite3Isdigit(zNum[0]) ) return 0; 789 while( zNum[0]=='0' ) zNum++; 790 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 791 v = v*10 + c; 792 } 793 794 /* The longest decimal representation of a 32 bit integer is 10 digits: 795 ** 796 ** 1234567890 797 ** 2^31 -> 2147483648 798 */ 799 testcase( i==10 ); 800 if( i>10 ){ 801 return 0; 802 } 803 testcase( v-neg==2147483647 ); 804 if( v-neg>2147483647 ){ 805 return 0; 806 } 807 if( neg ){ 808 v = -v; 809 } 810 *pValue = (int)v; 811 return 1; 812 } 813 814 /* 815 ** Return a 32-bit integer value extracted from a string. If the 816 ** string is not an integer, just return 0. 817 */ 818 int sqlite3Atoi(const char *z){ 819 int x = 0; 820 if( z ) sqlite3GetInt32(z, &x); 821 return x; 822 } 823 824 /* 825 ** The variable-length integer encoding is as follows: 826 ** 827 ** KEY: 828 ** A = 0xxxxxxx 7 bits of data and one flag bit 829 ** B = 1xxxxxxx 7 bits of data and one flag bit 830 ** C = xxxxxxxx 8 bits of data 831 ** 832 ** 7 bits - A 833 ** 14 bits - BA 834 ** 21 bits - BBA 835 ** 28 bits - BBBA 836 ** 35 bits - BBBBA 837 ** 42 bits - BBBBBA 838 ** 49 bits - BBBBBBA 839 ** 56 bits - BBBBBBBA 840 ** 64 bits - BBBBBBBBC 841 */ 842 843 /* 844 ** Write a 64-bit variable-length integer to memory starting at p[0]. 845 ** The length of data write will be between 1 and 9 bytes. The number 846 ** of bytes written is returned. 847 ** 848 ** A variable-length integer consists of the lower 7 bits of each byte 849 ** for all bytes that have the 8th bit set and one byte with the 8th 850 ** bit clear. Except, if we get to the 9th byte, it stores the full 851 ** 8 bits and is the last byte. 852 */ 853 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 854 int i, j, n; 855 u8 buf[10]; 856 if( v & (((u64)0xff000000)<<32) ){ 857 p[8] = (u8)v; 858 v >>= 8; 859 for(i=7; i>=0; i--){ 860 p[i] = (u8)((v & 0x7f) | 0x80); 861 v >>= 7; 862 } 863 return 9; 864 } 865 n = 0; 866 do{ 867 buf[n++] = (u8)((v & 0x7f) | 0x80); 868 v >>= 7; 869 }while( v!=0 ); 870 buf[0] &= 0x7f; 871 assert( n<=9 ); 872 for(i=0, j=n-1; j>=0; j--, i++){ 873 p[i] = buf[j]; 874 } 875 return n; 876 } 877 int sqlite3PutVarint(unsigned char *p, u64 v){ 878 if( v<=0x7f ){ 879 p[0] = v&0x7f; 880 return 1; 881 } 882 if( v<=0x3fff ){ 883 p[0] = ((v>>7)&0x7f)|0x80; 884 p[1] = v&0x7f; 885 return 2; 886 } 887 return putVarint64(p,v); 888 } 889 890 /* 891 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 892 ** are defined here rather than simply putting the constant expressions 893 ** inline in order to work around bugs in the RVT compiler. 894 ** 895 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 896 ** 897 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 898 */ 899 #define SLOT_2_0 0x001fc07f 900 #define SLOT_4_2_0 0xf01fc07f 901 902 903 /* 904 ** Read a 64-bit variable-length integer from memory starting at p[0]. 905 ** Return the number of bytes read. The value is stored in *v. 906 */ 907 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 908 u32 a,b,s; 909 910 if( ((signed char*)p)[0]>=0 ){ 911 *v = *p; 912 return 1; 913 } 914 if( ((signed char*)p)[1]>=0 ){ 915 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 916 return 2; 917 } 918 919 /* Verify that constants are precomputed correctly */ 920 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 921 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 922 923 a = ((u32)p[0])<<14; 924 b = p[1]; 925 p += 2; 926 a |= *p; 927 /* a: p0<<14 | p2 (unmasked) */ 928 if (!(a&0x80)) 929 { 930 a &= SLOT_2_0; 931 b &= 0x7f; 932 b = b<<7; 933 a |= b; 934 *v = a; 935 return 3; 936 } 937 938 /* CSE1 from below */ 939 a &= SLOT_2_0; 940 p++; 941 b = b<<14; 942 b |= *p; 943 /* b: p1<<14 | p3 (unmasked) */ 944 if (!(b&0x80)) 945 { 946 b &= SLOT_2_0; 947 /* moved CSE1 up */ 948 /* a &= (0x7f<<14)|(0x7f); */ 949 a = a<<7; 950 a |= b; 951 *v = a; 952 return 4; 953 } 954 955 /* a: p0<<14 | p2 (masked) */ 956 /* b: p1<<14 | p3 (unmasked) */ 957 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 958 /* moved CSE1 up */ 959 /* a &= (0x7f<<14)|(0x7f); */ 960 b &= SLOT_2_0; 961 s = a; 962 /* s: p0<<14 | p2 (masked) */ 963 964 p++; 965 a = a<<14; 966 a |= *p; 967 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 968 if (!(a&0x80)) 969 { 970 /* we can skip these cause they were (effectively) done above 971 ** while calculating s */ 972 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 973 /* b &= (0x7f<<14)|(0x7f); */ 974 b = b<<7; 975 a |= b; 976 s = s>>18; 977 *v = ((u64)s)<<32 | a; 978 return 5; 979 } 980 981 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 982 s = s<<7; 983 s |= b; 984 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 985 986 p++; 987 b = b<<14; 988 b |= *p; 989 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 990 if (!(b&0x80)) 991 { 992 /* we can skip this cause it was (effectively) done above in calc'ing s */ 993 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 994 a &= SLOT_2_0; 995 a = a<<7; 996 a |= b; 997 s = s>>18; 998 *v = ((u64)s)<<32 | a; 999 return 6; 1000 } 1001 1002 p++; 1003 a = a<<14; 1004 a |= *p; 1005 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1006 if (!(a&0x80)) 1007 { 1008 a &= SLOT_4_2_0; 1009 b &= SLOT_2_0; 1010 b = b<<7; 1011 a |= b; 1012 s = s>>11; 1013 *v = ((u64)s)<<32 | a; 1014 return 7; 1015 } 1016 1017 /* CSE2 from below */ 1018 a &= SLOT_2_0; 1019 p++; 1020 b = b<<14; 1021 b |= *p; 1022 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1023 if (!(b&0x80)) 1024 { 1025 b &= SLOT_4_2_0; 1026 /* moved CSE2 up */ 1027 /* a &= (0x7f<<14)|(0x7f); */ 1028 a = a<<7; 1029 a |= b; 1030 s = s>>4; 1031 *v = ((u64)s)<<32 | a; 1032 return 8; 1033 } 1034 1035 p++; 1036 a = a<<15; 1037 a |= *p; 1038 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1039 1040 /* moved CSE2 up */ 1041 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1042 b &= SLOT_2_0; 1043 b = b<<8; 1044 a |= b; 1045 1046 s = s<<4; 1047 b = p[-4]; 1048 b &= 0x7f; 1049 b = b>>3; 1050 s |= b; 1051 1052 *v = ((u64)s)<<32 | a; 1053 1054 return 9; 1055 } 1056 1057 /* 1058 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1059 ** Return the number of bytes read. The value is stored in *v. 1060 ** 1061 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1062 ** integer, then set *v to 0xffffffff. 1063 ** 1064 ** A MACRO version, getVarint32, is provided which inlines the 1065 ** single-byte case. All code should use the MACRO version as 1066 ** this function assumes the single-byte case has already been handled. 1067 */ 1068 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1069 u32 a,b; 1070 1071 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1072 ** by the getVarin32() macro */ 1073 a = *p; 1074 /* a: p0 (unmasked) */ 1075 #ifndef getVarint32 1076 if (!(a&0x80)) 1077 { 1078 /* Values between 0 and 127 */ 1079 *v = a; 1080 return 1; 1081 } 1082 #endif 1083 1084 /* The 2-byte case */ 1085 p++; 1086 b = *p; 1087 /* b: p1 (unmasked) */ 1088 if (!(b&0x80)) 1089 { 1090 /* Values between 128 and 16383 */ 1091 a &= 0x7f; 1092 a = a<<7; 1093 *v = a | b; 1094 return 2; 1095 } 1096 1097 /* The 3-byte case */ 1098 p++; 1099 a = a<<14; 1100 a |= *p; 1101 /* a: p0<<14 | p2 (unmasked) */ 1102 if (!(a&0x80)) 1103 { 1104 /* Values between 16384 and 2097151 */ 1105 a &= (0x7f<<14)|(0x7f); 1106 b &= 0x7f; 1107 b = b<<7; 1108 *v = a | b; 1109 return 3; 1110 } 1111 1112 /* A 32-bit varint is used to store size information in btrees. 1113 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1114 ** A 3-byte varint is sufficient, for example, to record the size 1115 ** of a 1048569-byte BLOB or string. 1116 ** 1117 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1118 ** rare larger cases can be handled by the slower 64-bit varint 1119 ** routine. 1120 */ 1121 #if 1 1122 { 1123 u64 v64; 1124 u8 n; 1125 1126 p -= 2; 1127 n = sqlite3GetVarint(p, &v64); 1128 assert( n>3 && n<=9 ); 1129 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1130 *v = 0xffffffff; 1131 }else{ 1132 *v = (u32)v64; 1133 } 1134 return n; 1135 } 1136 1137 #else 1138 /* For following code (kept for historical record only) shows an 1139 ** unrolling for the 3- and 4-byte varint cases. This code is 1140 ** slightly faster, but it is also larger and much harder to test. 1141 */ 1142 p++; 1143 b = b<<14; 1144 b |= *p; 1145 /* b: p1<<14 | p3 (unmasked) */ 1146 if (!(b&0x80)) 1147 { 1148 /* Values between 2097152 and 268435455 */ 1149 b &= (0x7f<<14)|(0x7f); 1150 a &= (0x7f<<14)|(0x7f); 1151 a = a<<7; 1152 *v = a | b; 1153 return 4; 1154 } 1155 1156 p++; 1157 a = a<<14; 1158 a |= *p; 1159 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1160 if (!(a&0x80)) 1161 { 1162 /* Values between 268435456 and 34359738367 */ 1163 a &= SLOT_4_2_0; 1164 b &= SLOT_4_2_0; 1165 b = b<<7; 1166 *v = a | b; 1167 return 5; 1168 } 1169 1170 /* We can only reach this point when reading a corrupt database 1171 ** file. In that case we are not in any hurry. Use the (relatively 1172 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1173 ** value. */ 1174 { 1175 u64 v64; 1176 u8 n; 1177 1178 p -= 4; 1179 n = sqlite3GetVarint(p, &v64); 1180 assert( n>5 && n<=9 ); 1181 *v = (u32)v64; 1182 return n; 1183 } 1184 #endif 1185 } 1186 1187 /* 1188 ** Return the number of bytes that will be needed to store the given 1189 ** 64-bit integer. 1190 */ 1191 int sqlite3VarintLen(u64 v){ 1192 int i; 1193 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1194 return i; 1195 } 1196 1197 1198 /* 1199 ** Read or write a four-byte big-endian integer value. 1200 */ 1201 u32 sqlite3Get4byte(const u8 *p){ 1202 #if SQLITE_BYTEORDER==4321 1203 u32 x; 1204 memcpy(&x,p,4); 1205 return x; 1206 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1207 u32 x; 1208 memcpy(&x,p,4); 1209 return __builtin_bswap32(x); 1210 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1211 u32 x; 1212 memcpy(&x,p,4); 1213 return _byteswap_ulong(x); 1214 #else 1215 testcase( p[0]&0x80 ); 1216 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1217 #endif 1218 } 1219 void sqlite3Put4byte(unsigned char *p, u32 v){ 1220 #if SQLITE_BYTEORDER==4321 1221 memcpy(p,&v,4); 1222 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1223 u32 x = __builtin_bswap32(v); 1224 memcpy(p,&x,4); 1225 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1226 u32 x = _byteswap_ulong(v); 1227 memcpy(p,&x,4); 1228 #else 1229 p[0] = (u8)(v>>24); 1230 p[1] = (u8)(v>>16); 1231 p[2] = (u8)(v>>8); 1232 p[3] = (u8)v; 1233 #endif 1234 } 1235 1236 1237 1238 /* 1239 ** Translate a single byte of Hex into an integer. 1240 ** This routine only works if h really is a valid hexadecimal 1241 ** character: 0..9a..fA..F 1242 */ 1243 u8 sqlite3HexToInt(int h){ 1244 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1245 #ifdef SQLITE_ASCII 1246 h += 9*(1&(h>>6)); 1247 #endif 1248 #ifdef SQLITE_EBCDIC 1249 h += 9*(1&~(h>>4)); 1250 #endif 1251 return (u8)(h & 0xf); 1252 } 1253 1254 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1255 /* 1256 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1257 ** value. Return a pointer to its binary value. Space to hold the 1258 ** binary value has been obtained from malloc and must be freed by 1259 ** the calling routine. 1260 */ 1261 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1262 char *zBlob; 1263 int i; 1264 1265 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1266 n--; 1267 if( zBlob ){ 1268 for(i=0; i<n; i+=2){ 1269 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1270 } 1271 zBlob[i/2] = 0; 1272 } 1273 return zBlob; 1274 } 1275 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1276 1277 /* 1278 ** Log an error that is an API call on a connection pointer that should 1279 ** not have been used. The "type" of connection pointer is given as the 1280 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1281 */ 1282 static void logBadConnection(const char *zType){ 1283 sqlite3_log(SQLITE_MISUSE, 1284 "API call with %s database connection pointer", 1285 zType 1286 ); 1287 } 1288 1289 /* 1290 ** Check to make sure we have a valid db pointer. This test is not 1291 ** foolproof but it does provide some measure of protection against 1292 ** misuse of the interface such as passing in db pointers that are 1293 ** NULL or which have been previously closed. If this routine returns 1294 ** 1 it means that the db pointer is valid and 0 if it should not be 1295 ** dereferenced for any reason. The calling function should invoke 1296 ** SQLITE_MISUSE immediately. 1297 ** 1298 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1299 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1300 ** open properly and is not fit for general use but which can be 1301 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1302 */ 1303 int sqlite3SafetyCheckOk(sqlite3 *db){ 1304 u32 magic; 1305 if( db==0 ){ 1306 logBadConnection("NULL"); 1307 return 0; 1308 } 1309 magic = db->magic; 1310 if( magic!=SQLITE_MAGIC_OPEN ){ 1311 if( sqlite3SafetyCheckSickOrOk(db) ){ 1312 testcase( sqlite3GlobalConfig.xLog!=0 ); 1313 logBadConnection("unopened"); 1314 } 1315 return 0; 1316 }else{ 1317 return 1; 1318 } 1319 } 1320 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1321 u32 magic; 1322 magic = db->magic; 1323 if( magic!=SQLITE_MAGIC_SICK && 1324 magic!=SQLITE_MAGIC_OPEN && 1325 magic!=SQLITE_MAGIC_BUSY ){ 1326 testcase( sqlite3GlobalConfig.xLog!=0 ); 1327 logBadConnection("invalid"); 1328 return 0; 1329 }else{ 1330 return 1; 1331 } 1332 } 1333 1334 /* 1335 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1336 ** the other 64-bit signed integer at *pA and store the result in *pA. 1337 ** Return 0 on success. Or if the operation would have resulted in an 1338 ** overflow, leave *pA unchanged and return 1. 1339 */ 1340 int sqlite3AddInt64(i64 *pA, i64 iB){ 1341 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1342 return __builtin_add_overflow(*pA, iB, pA); 1343 #else 1344 i64 iA = *pA; 1345 testcase( iA==0 ); testcase( iA==1 ); 1346 testcase( iB==-1 ); testcase( iB==0 ); 1347 if( iB>=0 ){ 1348 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1349 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1350 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1351 }else{ 1352 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1353 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1354 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1355 } 1356 *pA += iB; 1357 return 0; 1358 #endif 1359 } 1360 int sqlite3SubInt64(i64 *pA, i64 iB){ 1361 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1362 return __builtin_sub_overflow(*pA, iB, pA); 1363 #else 1364 testcase( iB==SMALLEST_INT64+1 ); 1365 if( iB==SMALLEST_INT64 ){ 1366 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1367 if( (*pA)>=0 ) return 1; 1368 *pA -= iB; 1369 return 0; 1370 }else{ 1371 return sqlite3AddInt64(pA, -iB); 1372 } 1373 #endif 1374 } 1375 int sqlite3MulInt64(i64 *pA, i64 iB){ 1376 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1377 return __builtin_mul_overflow(*pA, iB, pA); 1378 #else 1379 i64 iA = *pA; 1380 if( iB>0 ){ 1381 if( iA>LARGEST_INT64/iB ) return 1; 1382 if( iA<SMALLEST_INT64/iB ) return 1; 1383 }else if( iB<0 ){ 1384 if( iA>0 ){ 1385 if( iB<SMALLEST_INT64/iA ) return 1; 1386 }else if( iA<0 ){ 1387 if( iB==SMALLEST_INT64 ) return 1; 1388 if( iA==SMALLEST_INT64 ) return 1; 1389 if( -iA>LARGEST_INT64/-iB ) return 1; 1390 } 1391 } 1392 *pA = iA*iB; 1393 return 0; 1394 #endif 1395 } 1396 1397 /* 1398 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1399 ** if the integer has a value of -2147483648, return +2147483647 1400 */ 1401 int sqlite3AbsInt32(int x){ 1402 if( x>=0 ) return x; 1403 if( x==(int)0x80000000 ) return 0x7fffffff; 1404 return -x; 1405 } 1406 1407 #ifdef SQLITE_ENABLE_8_3_NAMES 1408 /* 1409 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1410 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1411 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1412 ** three characters, then shorten the suffix on z[] to be the last three 1413 ** characters of the original suffix. 1414 ** 1415 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1416 ** do the suffix shortening regardless of URI parameter. 1417 ** 1418 ** Examples: 1419 ** 1420 ** test.db-journal => test.nal 1421 ** test.db-wal => test.wal 1422 ** test.db-shm => test.shm 1423 ** test.db-mj7f3319fa => test.9fa 1424 */ 1425 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1426 #if SQLITE_ENABLE_8_3_NAMES<2 1427 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1428 #endif 1429 { 1430 int i, sz; 1431 sz = sqlite3Strlen30(z); 1432 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1433 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1434 } 1435 } 1436 #endif 1437 1438 /* 1439 ** Find (an approximate) sum of two LogEst values. This computation is 1440 ** not a simple "+" operator because LogEst is stored as a logarithmic 1441 ** value. 1442 ** 1443 */ 1444 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1445 static const unsigned char x[] = { 1446 10, 10, /* 0,1 */ 1447 9, 9, /* 2,3 */ 1448 8, 8, /* 4,5 */ 1449 7, 7, 7, /* 6,7,8 */ 1450 6, 6, 6, /* 9,10,11 */ 1451 5, 5, 5, /* 12-14 */ 1452 4, 4, 4, 4, /* 15-18 */ 1453 3, 3, 3, 3, 3, 3, /* 19-24 */ 1454 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1455 }; 1456 if( a>=b ){ 1457 if( a>b+49 ) return a; 1458 if( a>b+31 ) return a+1; 1459 return a+x[a-b]; 1460 }else{ 1461 if( b>a+49 ) return b; 1462 if( b>a+31 ) return b+1; 1463 return b+x[b-a]; 1464 } 1465 } 1466 1467 /* 1468 ** Convert an integer into a LogEst. In other words, compute an 1469 ** approximation for 10*log2(x). 1470 */ 1471 LogEst sqlite3LogEst(u64 x){ 1472 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1473 LogEst y = 40; 1474 if( x<8 ){ 1475 if( x<2 ) return 0; 1476 while( x<8 ){ y -= 10; x <<= 1; } 1477 }else{ 1478 #if GCC_VERSION>=5004000 1479 int i = 60 - __builtin_clzll(x); 1480 y += i*10; 1481 x >>= i; 1482 #else 1483 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1484 while( x>15 ){ y += 10; x >>= 1; } 1485 #endif 1486 } 1487 return a[x&7] + y - 10; 1488 } 1489 1490 #ifndef SQLITE_OMIT_VIRTUALTABLE 1491 /* 1492 ** Convert a double into a LogEst 1493 ** In other words, compute an approximation for 10*log2(x). 1494 */ 1495 LogEst sqlite3LogEstFromDouble(double x){ 1496 u64 a; 1497 LogEst e; 1498 assert( sizeof(x)==8 && sizeof(a)==8 ); 1499 if( x<=1 ) return 0; 1500 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1501 memcpy(&a, &x, 8); 1502 e = (a>>52) - 1022; 1503 return e*10; 1504 } 1505 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1506 1507 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1508 defined(SQLITE_ENABLE_STAT4) || \ 1509 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1510 /* 1511 ** Convert a LogEst into an integer. 1512 ** 1513 ** Note that this routine is only used when one or more of various 1514 ** non-standard compile-time options is enabled. 1515 */ 1516 u64 sqlite3LogEstToInt(LogEst x){ 1517 u64 n; 1518 n = x%10; 1519 x /= 10; 1520 if( n>=5 ) n -= 2; 1521 else if( n>=1 ) n -= 1; 1522 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1523 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1524 if( x>60 ) return (u64)LARGEST_INT64; 1525 #else 1526 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input 1527 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1528 assert( x<=60 ); 1529 #endif 1530 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1531 } 1532 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1533 1534 /* 1535 ** Add a new name/number pair to a VList. This might require that the 1536 ** VList object be reallocated, so return the new VList. If an OOM 1537 ** error occurs, the original VList returned and the 1538 ** db->mallocFailed flag is set. 1539 ** 1540 ** A VList is really just an array of integers. To destroy a VList, 1541 ** simply pass it to sqlite3DbFree(). 1542 ** 1543 ** The first integer is the number of integers allocated for the whole 1544 ** VList. The second integer is the number of integers actually used. 1545 ** Each name/number pair is encoded by subsequent groups of 3 or more 1546 ** integers. 1547 ** 1548 ** Each name/number pair starts with two integers which are the numeric 1549 ** value for the pair and the size of the name/number pair, respectively. 1550 ** The text name overlays one or more following integers. The text name 1551 ** is always zero-terminated. 1552 ** 1553 ** Conceptually: 1554 ** 1555 ** struct VList { 1556 ** int nAlloc; // Number of allocated slots 1557 ** int nUsed; // Number of used slots 1558 ** struct VListEntry { 1559 ** int iValue; // Value for this entry 1560 ** int nSlot; // Slots used by this entry 1561 ** // ... variable name goes here 1562 ** } a[0]; 1563 ** } 1564 ** 1565 ** During code generation, pointers to the variable names within the 1566 ** VList are taken. When that happens, nAlloc is set to zero as an 1567 ** indication that the VList may never again be enlarged, since the 1568 ** accompanying realloc() would invalidate the pointers. 1569 */ 1570 VList *sqlite3VListAdd( 1571 sqlite3 *db, /* The database connection used for malloc() */ 1572 VList *pIn, /* The input VList. Might be NULL */ 1573 const char *zName, /* Name of symbol to add */ 1574 int nName, /* Bytes of text in zName */ 1575 int iVal /* Value to associate with zName */ 1576 ){ 1577 int nInt; /* number of sizeof(int) objects needed for zName */ 1578 char *z; /* Pointer to where zName will be stored */ 1579 int i; /* Index in pIn[] where zName is stored */ 1580 1581 nInt = nName/4 + 3; 1582 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1583 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1584 /* Enlarge the allocation */ 1585 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1586 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1587 if( pOut==0 ) return pIn; 1588 if( pIn==0 ) pOut[1] = 2; 1589 pIn = pOut; 1590 pIn[0] = nAlloc; 1591 } 1592 i = pIn[1]; 1593 pIn[i] = iVal; 1594 pIn[i+1] = nInt; 1595 z = (char*)&pIn[i+2]; 1596 pIn[1] = i+nInt; 1597 assert( pIn[1]<=pIn[0] ); 1598 memcpy(z, zName, nName); 1599 z[nName] = 0; 1600 return pIn; 1601 } 1602 1603 /* 1604 ** Return a pointer to the name of a variable in the given VList that 1605 ** has the value iVal. Or return a NULL if there is no such variable in 1606 ** the list 1607 */ 1608 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1609 int i, mx; 1610 if( pIn==0 ) return 0; 1611 mx = pIn[1]; 1612 i = 2; 1613 do{ 1614 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1615 i += pIn[i+1]; 1616 }while( i<mx ); 1617 return 0; 1618 } 1619 1620 /* 1621 ** Return the number of the variable named zName, if it is in VList. 1622 ** or return 0 if there is no such variable. 1623 */ 1624 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1625 int i, mx; 1626 if( pIn==0 ) return 0; 1627 mx = pIn[1]; 1628 i = 2; 1629 do{ 1630 const char *z = (const char*)&pIn[i+2]; 1631 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1632 i += pIn[i+1]; 1633 }while( i<mx ); 1634 return 0; 1635 } 1636