1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifndef SQLITE_OMIT_FLOATING_POINT 21 #include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 36 ** or to bypass normal error detection during testing in order to let 37 ** execute proceed futher downstream. 38 ** 39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 40 ** sqlite3FaultSim() function only returns non-zero during testing. 41 ** 42 ** During testing, if the test harness has set a fault-sim callback using 43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 44 ** each call to sqlite3FaultSim() is relayed to that application-supplied 45 ** callback and the integer return value form the application-supplied 46 ** callback is returned by sqlite3FaultSim(). 47 ** 48 ** The integer argument to sqlite3FaultSim() is a code to identify which 49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 50 ** should have a unique code. To prevent legacy testing applications from 51 ** breaking, the codes should not be changed or reused. 52 */ 53 #ifndef SQLITE_UNTESTABLE 54 int sqlite3FaultSim(int iTest){ 55 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 56 return xCallback ? xCallback(iTest) : SQLITE_OK; 57 } 58 #endif 59 60 #ifndef SQLITE_OMIT_FLOATING_POINT 61 /* 62 ** Return true if the floating point value is Not a Number (NaN). 63 ** 64 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 65 ** Otherwise, we have our own implementation that works on most systems. 66 */ 67 int sqlite3IsNaN(double x){ 68 int rc; /* The value return */ 69 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 70 u64 y; 71 memcpy(&y,&x,sizeof(y)); 72 rc = IsNaN(y); 73 #else 74 rc = isnan(x); 75 #endif /* HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 #endif /* SQLITE_OMIT_FLOATING_POINT */ 80 81 /* 82 ** Compute a string length that is limited to what can be stored in 83 ** lower 30 bits of a 32-bit signed integer. 84 ** 85 ** The value returned will never be negative. Nor will it ever be greater 86 ** than the actual length of the string. For very long strings (greater 87 ** than 1GiB) the value returned might be less than the true string length. 88 */ 89 int sqlite3Strlen30(const char *z){ 90 if( z==0 ) return 0; 91 return 0x3fffffff & (int)strlen(z); 92 } 93 94 /* 95 ** Return the declared type of a column. Or return zDflt if the column 96 ** has no declared type. 97 ** 98 ** The column type is an extra string stored after the zero-terminator on 99 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 100 */ 101 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 102 if( pCol->colFlags & COLFLAG_HASTYPE ){ 103 return pCol->zCnName + strlen(pCol->zCnName) + 1; 104 }else if( pCol->eCType ){ 105 assert( pCol->eCType<=SQLITE_N_STDTYPE ); 106 return (char*)sqlite3StdType[pCol->eCType-1]; 107 }else{ 108 return zDflt; 109 } 110 } 111 112 /* 113 ** Helper function for sqlite3Error() - called rarely. Broken out into 114 ** a separate routine to avoid unnecessary register saves on entry to 115 ** sqlite3Error(). 116 */ 117 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 118 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 119 sqlite3SystemError(db, err_code); 120 } 121 122 /* 123 ** Set the current error code to err_code and clear any prior error message. 124 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 125 ** that would be appropriate. 126 */ 127 void sqlite3Error(sqlite3 *db, int err_code){ 128 assert( db!=0 ); 129 db->errCode = err_code; 130 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 131 } 132 133 /* 134 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state 135 ** and error message. 136 */ 137 void sqlite3ErrorClear(sqlite3 *db){ 138 assert( db!=0 ); 139 db->errCode = SQLITE_OK; 140 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 141 } 142 143 /* 144 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 145 ** to do based on the SQLite error code in rc. 146 */ 147 void sqlite3SystemError(sqlite3 *db, int rc){ 148 if( rc==SQLITE_IOERR_NOMEM ) return; 149 rc &= 0xff; 150 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 151 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 152 } 153 } 154 155 /* 156 ** Set the most recent error code and error string for the sqlite 157 ** handle "db". The error code is set to "err_code". 158 ** 159 ** If it is not NULL, string zFormat specifies the format of the 160 ** error string in the style of the printf functions: The following 161 ** format characters are allowed: 162 ** 163 ** %s Insert a string 164 ** %z A string that should be freed after use 165 ** %d Insert an integer 166 ** %T Insert a token 167 ** %S Insert the first element of a SrcList 168 ** 169 ** zFormat and any string tokens that follow it are assumed to be 170 ** encoded in UTF-8. 171 ** 172 ** To clear the most recent error for sqlite handle "db", sqlite3Error 173 ** should be called with err_code set to SQLITE_OK and zFormat set 174 ** to NULL. 175 */ 176 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 177 assert( db!=0 ); 178 db->errCode = err_code; 179 sqlite3SystemError(db, err_code); 180 if( zFormat==0 ){ 181 sqlite3Error(db, err_code); 182 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 183 char *z; 184 va_list ap; 185 va_start(ap, zFormat); 186 z = sqlite3VMPrintf(db, zFormat, ap); 187 va_end(ap); 188 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 189 } 190 } 191 192 /* 193 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 194 ** The following formatting characters are allowed: 195 ** 196 ** %s Insert a string 197 ** %z A string that should be freed after use 198 ** %d Insert an integer 199 ** %T Insert a token 200 ** %S Insert the first element of a SrcList 201 ** 202 ** This function should be used to report any error that occurs while 203 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 204 ** last thing the sqlite3_prepare() function does is copy the error 205 ** stored by this function into the database handle using sqlite3Error(). 206 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 207 ** during statement execution (sqlite3_step() etc.). 208 */ 209 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 210 char *zMsg; 211 va_list ap; 212 sqlite3 *db = pParse->db; 213 va_start(ap, zFormat); 214 zMsg = sqlite3VMPrintf(db, zFormat, ap); 215 va_end(ap); 216 if( db->suppressErr ){ 217 sqlite3DbFree(db, zMsg); 218 }else{ 219 pParse->nErr++; 220 sqlite3DbFree(db, pParse->zErrMsg); 221 pParse->zErrMsg = zMsg; 222 pParse->rc = SQLITE_ERROR; 223 pParse->pWith = 0; 224 } 225 } 226 227 /* 228 ** If database connection db is currently parsing SQL, then transfer 229 ** error code errCode to that parser if the parser has not already 230 ** encountered some other kind of error. 231 */ 232 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 233 Parse *pParse; 234 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 235 pParse->rc = errCode; 236 pParse->nErr++; 237 return errCode; 238 } 239 240 /* 241 ** Convert an SQL-style quoted string into a normal string by removing 242 ** the quote characters. The conversion is done in-place. If the 243 ** input does not begin with a quote character, then this routine 244 ** is a no-op. 245 ** 246 ** The input string must be zero-terminated. A new zero-terminator 247 ** is added to the dequoted string. 248 ** 249 ** The return value is -1 if no dequoting occurs or the length of the 250 ** dequoted string, exclusive of the zero terminator, if dequoting does 251 ** occur. 252 ** 253 ** 2002-02-14: This routine is extended to remove MS-Access style 254 ** brackets from around identifiers. For example: "[a-b-c]" becomes 255 ** "a-b-c". 256 */ 257 void sqlite3Dequote(char *z){ 258 char quote; 259 int i, j; 260 if( z==0 ) return; 261 quote = z[0]; 262 if( !sqlite3Isquote(quote) ) return; 263 if( quote=='[' ) quote = ']'; 264 for(i=1, j=0;; i++){ 265 assert( z[i] ); 266 if( z[i]==quote ){ 267 if( z[i+1]==quote ){ 268 z[j++] = quote; 269 i++; 270 }else{ 271 break; 272 } 273 }else{ 274 z[j++] = z[i]; 275 } 276 } 277 z[j] = 0; 278 } 279 void sqlite3DequoteExpr(Expr *p){ 280 assert( sqlite3Isquote(p->u.zToken[0]) ); 281 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 282 sqlite3Dequote(p->u.zToken); 283 } 284 285 /* 286 ** If the input token p is quoted, try to adjust the token to remove 287 ** the quotes. This is not always possible: 288 ** 289 ** "abc" -> abc 290 ** "ab""cd" -> (not possible because of the interior "") 291 ** 292 ** Remove the quotes if possible. This is a optimization. The overall 293 ** system should still return the correct answer even if this routine 294 ** is always a no-op. 295 */ 296 void sqlite3DequoteToken(Token *p){ 297 unsigned int i; 298 if( p->n<2 ) return; 299 if( !sqlite3Isquote(p->z[0]) ) return; 300 for(i=1; i<p->n-1; i++){ 301 if( sqlite3Isquote(p->z[i]) ) return; 302 } 303 p->n -= 2; 304 p->z++; 305 } 306 307 /* 308 ** Generate a Token object from a string 309 */ 310 void sqlite3TokenInit(Token *p, char *z){ 311 p->z = z; 312 p->n = sqlite3Strlen30(z); 313 } 314 315 /* Convenient short-hand */ 316 #define UpperToLower sqlite3UpperToLower 317 318 /* 319 ** Some systems have stricmp(). Others have strcasecmp(). Because 320 ** there is no consistency, we will define our own. 321 ** 322 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 323 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 324 ** the contents of two buffers containing UTF-8 strings in a 325 ** case-independent fashion, using the same definition of "case 326 ** independence" that SQLite uses internally when comparing identifiers. 327 */ 328 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 329 if( zLeft==0 ){ 330 return zRight ? -1 : 0; 331 }else if( zRight==0 ){ 332 return 1; 333 } 334 return sqlite3StrICmp(zLeft, zRight); 335 } 336 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 337 unsigned char *a, *b; 338 int c, x; 339 a = (unsigned char *)zLeft; 340 b = (unsigned char *)zRight; 341 for(;;){ 342 c = *a; 343 x = *b; 344 if( c==x ){ 345 if( c==0 ) break; 346 }else{ 347 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 348 if( c ) break; 349 } 350 a++; 351 b++; 352 } 353 return c; 354 } 355 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 356 register unsigned char *a, *b; 357 if( zLeft==0 ){ 358 return zRight ? -1 : 0; 359 }else if( zRight==0 ){ 360 return 1; 361 } 362 a = (unsigned char *)zLeft; 363 b = (unsigned char *)zRight; 364 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 365 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 366 } 367 368 /* 369 ** Compute an 8-bit hash on a string that is insensitive to case differences 370 */ 371 u8 sqlite3StrIHash(const char *z){ 372 u8 h = 0; 373 if( z==0 ) return 0; 374 while( z[0] ){ 375 h += UpperToLower[(unsigned char)z[0]]; 376 z++; 377 } 378 return h; 379 } 380 381 /* 382 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 383 ** E==2 results in 100. E==50 results in 1.0e50. 384 ** 385 ** This routine only works for values of E between 1 and 341. 386 */ 387 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 388 #if defined(_MSC_VER) 389 static const LONGDOUBLE_TYPE x[] = { 390 1.0e+001L, 391 1.0e+002L, 392 1.0e+004L, 393 1.0e+008L, 394 1.0e+016L, 395 1.0e+032L, 396 1.0e+064L, 397 1.0e+128L, 398 1.0e+256L 399 }; 400 LONGDOUBLE_TYPE r = 1.0; 401 int i; 402 assert( E>=0 && E<=307 ); 403 for(i=0; E!=0; i++, E >>=1){ 404 if( E & 1 ) r *= x[i]; 405 } 406 return r; 407 #else 408 LONGDOUBLE_TYPE x = 10.0; 409 LONGDOUBLE_TYPE r = 1.0; 410 while(1){ 411 if( E & 1 ) r *= x; 412 E >>= 1; 413 if( E==0 ) break; 414 x *= x; 415 } 416 return r; 417 #endif 418 } 419 420 /* 421 ** The string z[] is an text representation of a real number. 422 ** Convert this string to a double and write it into *pResult. 423 ** 424 ** The string z[] is length bytes in length (bytes, not characters) and 425 ** uses the encoding enc. The string is not necessarily zero-terminated. 426 ** 427 ** Return TRUE if the result is a valid real number (or integer) and FALSE 428 ** if the string is empty or contains extraneous text. More specifically 429 ** return 430 ** 1 => The input string is a pure integer 431 ** 2 or more => The input has a decimal point or eNNN clause 432 ** 0 or less => The input string is not a valid number 433 ** -1 => Not a valid number, but has a valid prefix which 434 ** includes a decimal point and/or an eNNN clause 435 ** 436 ** Valid numbers are in one of these formats: 437 ** 438 ** [+-]digits[E[+-]digits] 439 ** [+-]digits.[digits][E[+-]digits] 440 ** [+-].digits[E[+-]digits] 441 ** 442 ** Leading and trailing whitespace is ignored for the purpose of determining 443 ** validity. 444 ** 445 ** If some prefix of the input string is a valid number, this routine 446 ** returns FALSE but it still converts the prefix and writes the result 447 ** into *pResult. 448 */ 449 #if defined(_MSC_VER) 450 #pragma warning(disable : 4756) 451 #endif 452 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 453 #ifndef SQLITE_OMIT_FLOATING_POINT 454 int incr; 455 const char *zEnd; 456 /* sign * significand * (10 ^ (esign * exponent)) */ 457 int sign = 1; /* sign of significand */ 458 i64 s = 0; /* significand */ 459 int d = 0; /* adjust exponent for shifting decimal point */ 460 int esign = 1; /* sign of exponent */ 461 int e = 0; /* exponent */ 462 int eValid = 1; /* True exponent is either not used or is well-formed */ 463 double result; 464 int nDigit = 0; /* Number of digits processed */ 465 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 466 467 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 468 *pResult = 0.0; /* Default return value, in case of an error */ 469 if( length==0 ) return 0; 470 471 if( enc==SQLITE_UTF8 ){ 472 incr = 1; 473 zEnd = z + length; 474 }else{ 475 int i; 476 incr = 2; 477 length &= ~1; 478 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 479 testcase( enc==SQLITE_UTF16LE ); 480 testcase( enc==SQLITE_UTF16BE ); 481 for(i=3-enc; i<length && z[i]==0; i+=2){} 482 if( i<length ) eType = -100; 483 zEnd = &z[i^1]; 484 z += (enc&1); 485 } 486 487 /* skip leading spaces */ 488 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 489 if( z>=zEnd ) return 0; 490 491 /* get sign of significand */ 492 if( *z=='-' ){ 493 sign = -1; 494 z+=incr; 495 }else if( *z=='+' ){ 496 z+=incr; 497 } 498 499 /* copy max significant digits to significand */ 500 while( z<zEnd && sqlite3Isdigit(*z) ){ 501 s = s*10 + (*z - '0'); 502 z+=incr; nDigit++; 503 if( s>=((LARGEST_INT64-9)/10) ){ 504 /* skip non-significant significand digits 505 ** (increase exponent by d to shift decimal left) */ 506 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 507 } 508 } 509 if( z>=zEnd ) goto do_atof_calc; 510 511 /* if decimal point is present */ 512 if( *z=='.' ){ 513 z+=incr; 514 eType++; 515 /* copy digits from after decimal to significand 516 ** (decrease exponent by d to shift decimal right) */ 517 while( z<zEnd && sqlite3Isdigit(*z) ){ 518 if( s<((LARGEST_INT64-9)/10) ){ 519 s = s*10 + (*z - '0'); 520 d--; 521 nDigit++; 522 } 523 z+=incr; 524 } 525 } 526 if( z>=zEnd ) goto do_atof_calc; 527 528 /* if exponent is present */ 529 if( *z=='e' || *z=='E' ){ 530 z+=incr; 531 eValid = 0; 532 eType++; 533 534 /* This branch is needed to avoid a (harmless) buffer overread. The 535 ** special comment alerts the mutation tester that the correct answer 536 ** is obtained even if the branch is omitted */ 537 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 538 539 /* get sign of exponent */ 540 if( *z=='-' ){ 541 esign = -1; 542 z+=incr; 543 }else if( *z=='+' ){ 544 z+=incr; 545 } 546 /* copy digits to exponent */ 547 while( z<zEnd && sqlite3Isdigit(*z) ){ 548 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 549 z+=incr; 550 eValid = 1; 551 } 552 } 553 554 /* skip trailing spaces */ 555 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 556 557 do_atof_calc: 558 /* adjust exponent by d, and update sign */ 559 e = (e*esign) + d; 560 if( e<0 ) { 561 esign = -1; 562 e *= -1; 563 } else { 564 esign = 1; 565 } 566 567 if( s==0 ) { 568 /* In the IEEE 754 standard, zero is signed. */ 569 result = sign<0 ? -(double)0 : (double)0; 570 } else { 571 /* Attempt to reduce exponent. 572 ** 573 ** Branches that are not required for the correct answer but which only 574 ** help to obtain the correct answer faster are marked with special 575 ** comments, as a hint to the mutation tester. 576 */ 577 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 578 if( esign>0 ){ 579 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 580 s *= 10; 581 }else{ 582 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 583 s /= 10; 584 } 585 e--; 586 } 587 588 /* adjust the sign of significand */ 589 s = sign<0 ? -s : s; 590 591 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 592 result = (double)s; 593 }else{ 594 /* attempt to handle extremely small/large numbers better */ 595 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 596 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 597 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 598 if( esign<0 ){ 599 result = s / scale; 600 result /= 1.0e+308; 601 }else{ 602 result = s * scale; 603 result *= 1.0e+308; 604 } 605 }else{ assert( e>=342 ); 606 if( esign<0 ){ 607 result = 0.0*s; 608 }else{ 609 #ifdef INFINITY 610 result = INFINITY*s; 611 #else 612 result = 1e308*1e308*s; /* Infinity */ 613 #endif 614 } 615 } 616 }else{ 617 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 618 if( esign<0 ){ 619 result = s / scale; 620 }else{ 621 result = s * scale; 622 } 623 } 624 } 625 } 626 627 /* store the result */ 628 *pResult = result; 629 630 /* return true if number and no extra non-whitespace chracters after */ 631 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 632 return eType; 633 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 634 return -1; 635 }else{ 636 return 0; 637 } 638 #else 639 return !sqlite3Atoi64(z, pResult, length, enc); 640 #endif /* SQLITE_OMIT_FLOATING_POINT */ 641 } 642 #if defined(_MSC_VER) 643 #pragma warning(default : 4756) 644 #endif 645 646 /* 647 ** Render an signed 64-bit integer as text. Store the result in zOut[]. 648 ** 649 ** The caller must ensure that zOut[] is at least 21 bytes in size. 650 */ 651 void sqlite3Int64ToText(i64 v, char *zOut){ 652 int i; 653 u64 x; 654 char zTemp[22]; 655 if( v<0 ){ 656 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; 657 }else{ 658 x = v; 659 } 660 i = sizeof(zTemp)-2; 661 zTemp[sizeof(zTemp)-1] = 0; 662 do{ 663 zTemp[i--] = (x%10) + '0'; 664 x = x/10; 665 }while( x ); 666 if( v<0 ) zTemp[i--] = '-'; 667 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); 668 } 669 670 /* 671 ** Compare the 19-character string zNum against the text representation 672 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 673 ** if zNum is less than, equal to, or greater than the string. 674 ** Note that zNum must contain exactly 19 characters. 675 ** 676 ** Unlike memcmp() this routine is guaranteed to return the difference 677 ** in the values of the last digit if the only difference is in the 678 ** last digit. So, for example, 679 ** 680 ** compare2pow63("9223372036854775800", 1) 681 ** 682 ** will return -8. 683 */ 684 static int compare2pow63(const char *zNum, int incr){ 685 int c = 0; 686 int i; 687 /* 012345678901234567 */ 688 const char *pow63 = "922337203685477580"; 689 for(i=0; c==0 && i<18; i++){ 690 c = (zNum[i*incr]-pow63[i])*10; 691 } 692 if( c==0 ){ 693 c = zNum[18*incr] - '8'; 694 testcase( c==(-1) ); 695 testcase( c==0 ); 696 testcase( c==(+1) ); 697 } 698 return c; 699 } 700 701 /* 702 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 703 ** routine does *not* accept hexadecimal notation. 704 ** 705 ** Returns: 706 ** 707 ** -1 Not even a prefix of the input text looks like an integer 708 ** 0 Successful transformation. Fits in a 64-bit signed integer. 709 ** 1 Excess non-space text after the integer value 710 ** 2 Integer too large for a 64-bit signed integer or is malformed 711 ** 3 Special case of 9223372036854775808 712 ** 713 ** length is the number of bytes in the string (bytes, not characters). 714 ** The string is not necessarily zero-terminated. The encoding is 715 ** given by enc. 716 */ 717 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 718 int incr; 719 u64 u = 0; 720 int neg = 0; /* assume positive */ 721 int i; 722 int c = 0; 723 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 724 int rc; /* Baseline return code */ 725 const char *zStart; 726 const char *zEnd = zNum + length; 727 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 728 if( enc==SQLITE_UTF8 ){ 729 incr = 1; 730 }else{ 731 incr = 2; 732 length &= ~1; 733 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 734 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 735 nonNum = i<length; 736 zEnd = &zNum[i^1]; 737 zNum += (enc&1); 738 } 739 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 740 if( zNum<zEnd ){ 741 if( *zNum=='-' ){ 742 neg = 1; 743 zNum+=incr; 744 }else if( *zNum=='+' ){ 745 zNum+=incr; 746 } 747 } 748 zStart = zNum; 749 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 750 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 751 u = u*10 + c - '0'; 752 } 753 testcase( i==18*incr ); 754 testcase( i==19*incr ); 755 testcase( i==20*incr ); 756 if( u>LARGEST_INT64 ){ 757 /* This test and assignment is needed only to suppress UB warnings 758 ** from clang and -fsanitize=undefined. This test and assignment make 759 ** the code a little larger and slower, and no harm comes from omitting 760 ** them, but we must appaise the undefined-behavior pharisees. */ 761 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 762 }else if( neg ){ 763 *pNum = -(i64)u; 764 }else{ 765 *pNum = (i64)u; 766 } 767 rc = 0; 768 if( i==0 && zStart==zNum ){ /* No digits */ 769 rc = -1; 770 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 771 rc = 1; 772 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 773 int jj = i; 774 do{ 775 if( !sqlite3Isspace(zNum[jj]) ){ 776 rc = 1; /* Extra non-space text after the integer */ 777 break; 778 } 779 jj += incr; 780 }while( &zNum[jj]<zEnd ); 781 } 782 if( i<19*incr ){ 783 /* Less than 19 digits, so we know that it fits in 64 bits */ 784 assert( u<=LARGEST_INT64 ); 785 return rc; 786 }else{ 787 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 788 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 789 if( c<0 ){ 790 /* zNum is less than 9223372036854775808 so it fits */ 791 assert( u<=LARGEST_INT64 ); 792 return rc; 793 }else{ 794 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 795 if( c>0 ){ 796 /* zNum is greater than 9223372036854775808 so it overflows */ 797 return 2; 798 }else{ 799 /* zNum is exactly 9223372036854775808. Fits if negative. The 800 ** special case 2 overflow if positive */ 801 assert( u-1==LARGEST_INT64 ); 802 return neg ? rc : 3; 803 } 804 } 805 } 806 } 807 808 /* 809 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 810 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 811 ** whereas sqlite3Atoi64() does not. 812 ** 813 ** Returns: 814 ** 815 ** 0 Successful transformation. Fits in a 64-bit signed integer. 816 ** 1 Excess text after the integer value 817 ** 2 Integer too large for a 64-bit signed integer or is malformed 818 ** 3 Special case of 9223372036854775808 819 */ 820 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 821 #ifndef SQLITE_OMIT_HEX_INTEGER 822 if( z[0]=='0' 823 && (z[1]=='x' || z[1]=='X') 824 ){ 825 u64 u = 0; 826 int i, k; 827 for(i=2; z[i]=='0'; i++){} 828 for(k=i; sqlite3Isxdigit(z[k]); k++){ 829 u = u*16 + sqlite3HexToInt(z[k]); 830 } 831 memcpy(pOut, &u, 8); 832 return (z[k]==0 && k-i<=16) ? 0 : 2; 833 }else 834 #endif /* SQLITE_OMIT_HEX_INTEGER */ 835 { 836 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 837 } 838 } 839 840 /* 841 ** If zNum represents an integer that will fit in 32-bits, then set 842 ** *pValue to that integer and return true. Otherwise return false. 843 ** 844 ** This routine accepts both decimal and hexadecimal notation for integers. 845 ** 846 ** Any non-numeric characters that following zNum are ignored. 847 ** This is different from sqlite3Atoi64() which requires the 848 ** input number to be zero-terminated. 849 */ 850 int sqlite3GetInt32(const char *zNum, int *pValue){ 851 sqlite_int64 v = 0; 852 int i, c; 853 int neg = 0; 854 if( zNum[0]=='-' ){ 855 neg = 1; 856 zNum++; 857 }else if( zNum[0]=='+' ){ 858 zNum++; 859 } 860 #ifndef SQLITE_OMIT_HEX_INTEGER 861 else if( zNum[0]=='0' 862 && (zNum[1]=='x' || zNum[1]=='X') 863 && sqlite3Isxdigit(zNum[2]) 864 ){ 865 u32 u = 0; 866 zNum += 2; 867 while( zNum[0]=='0' ) zNum++; 868 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 869 u = u*16 + sqlite3HexToInt(zNum[i]); 870 } 871 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 872 memcpy(pValue, &u, 4); 873 return 1; 874 }else{ 875 return 0; 876 } 877 } 878 #endif 879 if( !sqlite3Isdigit(zNum[0]) ) return 0; 880 while( zNum[0]=='0' ) zNum++; 881 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 882 v = v*10 + c; 883 } 884 885 /* The longest decimal representation of a 32 bit integer is 10 digits: 886 ** 887 ** 1234567890 888 ** 2^31 -> 2147483648 889 */ 890 testcase( i==10 ); 891 if( i>10 ){ 892 return 0; 893 } 894 testcase( v-neg==2147483647 ); 895 if( v-neg>2147483647 ){ 896 return 0; 897 } 898 if( neg ){ 899 v = -v; 900 } 901 *pValue = (int)v; 902 return 1; 903 } 904 905 /* 906 ** Return a 32-bit integer value extracted from a string. If the 907 ** string is not an integer, just return 0. 908 */ 909 int sqlite3Atoi(const char *z){ 910 int x = 0; 911 sqlite3GetInt32(z, &x); 912 return x; 913 } 914 915 /* 916 ** Try to convert z into an unsigned 32-bit integer. Return true on 917 ** success and false if there is an error. 918 ** 919 ** Only decimal notation is accepted. 920 */ 921 int sqlite3GetUInt32(const char *z, u32 *pI){ 922 u64 v = 0; 923 int i; 924 for(i=0; sqlite3Isdigit(z[i]); i++){ 925 v = v*10 + z[i] - '0'; 926 if( v>4294967296LL ){ *pI = 0; return 0; } 927 } 928 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } 929 *pI = (u32)v; 930 return 1; 931 } 932 933 /* 934 ** The variable-length integer encoding is as follows: 935 ** 936 ** KEY: 937 ** A = 0xxxxxxx 7 bits of data and one flag bit 938 ** B = 1xxxxxxx 7 bits of data and one flag bit 939 ** C = xxxxxxxx 8 bits of data 940 ** 941 ** 7 bits - A 942 ** 14 bits - BA 943 ** 21 bits - BBA 944 ** 28 bits - BBBA 945 ** 35 bits - BBBBA 946 ** 42 bits - BBBBBA 947 ** 49 bits - BBBBBBA 948 ** 56 bits - BBBBBBBA 949 ** 64 bits - BBBBBBBBC 950 */ 951 952 /* 953 ** Write a 64-bit variable-length integer to memory starting at p[0]. 954 ** The length of data write will be between 1 and 9 bytes. The number 955 ** of bytes written is returned. 956 ** 957 ** A variable-length integer consists of the lower 7 bits of each byte 958 ** for all bytes that have the 8th bit set and one byte with the 8th 959 ** bit clear. Except, if we get to the 9th byte, it stores the full 960 ** 8 bits and is the last byte. 961 */ 962 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 963 int i, j, n; 964 u8 buf[10]; 965 if( v & (((u64)0xff000000)<<32) ){ 966 p[8] = (u8)v; 967 v >>= 8; 968 for(i=7; i>=0; i--){ 969 p[i] = (u8)((v & 0x7f) | 0x80); 970 v >>= 7; 971 } 972 return 9; 973 } 974 n = 0; 975 do{ 976 buf[n++] = (u8)((v & 0x7f) | 0x80); 977 v >>= 7; 978 }while( v!=0 ); 979 buf[0] &= 0x7f; 980 assert( n<=9 ); 981 for(i=0, j=n-1; j>=0; j--, i++){ 982 p[i] = buf[j]; 983 } 984 return n; 985 } 986 int sqlite3PutVarint(unsigned char *p, u64 v){ 987 if( v<=0x7f ){ 988 p[0] = v&0x7f; 989 return 1; 990 } 991 if( v<=0x3fff ){ 992 p[0] = ((v>>7)&0x7f)|0x80; 993 p[1] = v&0x7f; 994 return 2; 995 } 996 return putVarint64(p,v); 997 } 998 999 /* 1000 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 1001 ** are defined here rather than simply putting the constant expressions 1002 ** inline in order to work around bugs in the RVT compiler. 1003 ** 1004 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 1005 ** 1006 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 1007 */ 1008 #define SLOT_2_0 0x001fc07f 1009 #define SLOT_4_2_0 0xf01fc07f 1010 1011 1012 /* 1013 ** Read a 64-bit variable-length integer from memory starting at p[0]. 1014 ** Return the number of bytes read. The value is stored in *v. 1015 */ 1016 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 1017 u32 a,b,s; 1018 1019 if( ((signed char*)p)[0]>=0 ){ 1020 *v = *p; 1021 return 1; 1022 } 1023 if( ((signed char*)p)[1]>=0 ){ 1024 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 1025 return 2; 1026 } 1027 1028 /* Verify that constants are precomputed correctly */ 1029 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 1030 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 1031 1032 a = ((u32)p[0])<<14; 1033 b = p[1]; 1034 p += 2; 1035 a |= *p; 1036 /* a: p0<<14 | p2 (unmasked) */ 1037 if (!(a&0x80)) 1038 { 1039 a &= SLOT_2_0; 1040 b &= 0x7f; 1041 b = b<<7; 1042 a |= b; 1043 *v = a; 1044 return 3; 1045 } 1046 1047 /* CSE1 from below */ 1048 a &= SLOT_2_0; 1049 p++; 1050 b = b<<14; 1051 b |= *p; 1052 /* b: p1<<14 | p3 (unmasked) */ 1053 if (!(b&0x80)) 1054 { 1055 b &= SLOT_2_0; 1056 /* moved CSE1 up */ 1057 /* a &= (0x7f<<14)|(0x7f); */ 1058 a = a<<7; 1059 a |= b; 1060 *v = a; 1061 return 4; 1062 } 1063 1064 /* a: p0<<14 | p2 (masked) */ 1065 /* b: p1<<14 | p3 (unmasked) */ 1066 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1067 /* moved CSE1 up */ 1068 /* a &= (0x7f<<14)|(0x7f); */ 1069 b &= SLOT_2_0; 1070 s = a; 1071 /* s: p0<<14 | p2 (masked) */ 1072 1073 p++; 1074 a = a<<14; 1075 a |= *p; 1076 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1077 if (!(a&0x80)) 1078 { 1079 /* we can skip these cause they were (effectively) done above 1080 ** while calculating s */ 1081 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1082 /* b &= (0x7f<<14)|(0x7f); */ 1083 b = b<<7; 1084 a |= b; 1085 s = s>>18; 1086 *v = ((u64)s)<<32 | a; 1087 return 5; 1088 } 1089 1090 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1091 s = s<<7; 1092 s |= b; 1093 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1094 1095 p++; 1096 b = b<<14; 1097 b |= *p; 1098 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 1099 if (!(b&0x80)) 1100 { 1101 /* we can skip this cause it was (effectively) done above in calc'ing s */ 1102 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1103 a &= SLOT_2_0; 1104 a = a<<7; 1105 a |= b; 1106 s = s>>18; 1107 *v = ((u64)s)<<32 | a; 1108 return 6; 1109 } 1110 1111 p++; 1112 a = a<<14; 1113 a |= *p; 1114 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1115 if (!(a&0x80)) 1116 { 1117 a &= SLOT_4_2_0; 1118 b &= SLOT_2_0; 1119 b = b<<7; 1120 a |= b; 1121 s = s>>11; 1122 *v = ((u64)s)<<32 | a; 1123 return 7; 1124 } 1125 1126 /* CSE2 from below */ 1127 a &= SLOT_2_0; 1128 p++; 1129 b = b<<14; 1130 b |= *p; 1131 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1132 if (!(b&0x80)) 1133 { 1134 b &= SLOT_4_2_0; 1135 /* moved CSE2 up */ 1136 /* a &= (0x7f<<14)|(0x7f); */ 1137 a = a<<7; 1138 a |= b; 1139 s = s>>4; 1140 *v = ((u64)s)<<32 | a; 1141 return 8; 1142 } 1143 1144 p++; 1145 a = a<<15; 1146 a |= *p; 1147 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1148 1149 /* moved CSE2 up */ 1150 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1151 b &= SLOT_2_0; 1152 b = b<<8; 1153 a |= b; 1154 1155 s = s<<4; 1156 b = p[-4]; 1157 b &= 0x7f; 1158 b = b>>3; 1159 s |= b; 1160 1161 *v = ((u64)s)<<32 | a; 1162 1163 return 9; 1164 } 1165 1166 /* 1167 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1168 ** Return the number of bytes read. The value is stored in *v. 1169 ** 1170 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1171 ** integer, then set *v to 0xffffffff. 1172 ** 1173 ** A MACRO version, getVarint32, is provided which inlines the 1174 ** single-byte case. All code should use the MACRO version as 1175 ** this function assumes the single-byte case has already been handled. 1176 */ 1177 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1178 u32 a,b; 1179 1180 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1181 ** by the getVarin32() macro */ 1182 a = *p; 1183 /* a: p0 (unmasked) */ 1184 #ifndef getVarint32 1185 if (!(a&0x80)) 1186 { 1187 /* Values between 0 and 127 */ 1188 *v = a; 1189 return 1; 1190 } 1191 #endif 1192 1193 /* The 2-byte case */ 1194 p++; 1195 b = *p; 1196 /* b: p1 (unmasked) */ 1197 if (!(b&0x80)) 1198 { 1199 /* Values between 128 and 16383 */ 1200 a &= 0x7f; 1201 a = a<<7; 1202 *v = a | b; 1203 return 2; 1204 } 1205 1206 /* The 3-byte case */ 1207 p++; 1208 a = a<<14; 1209 a |= *p; 1210 /* a: p0<<14 | p2 (unmasked) */ 1211 if (!(a&0x80)) 1212 { 1213 /* Values between 16384 and 2097151 */ 1214 a &= (0x7f<<14)|(0x7f); 1215 b &= 0x7f; 1216 b = b<<7; 1217 *v = a | b; 1218 return 3; 1219 } 1220 1221 /* A 32-bit varint is used to store size information in btrees. 1222 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1223 ** A 3-byte varint is sufficient, for example, to record the size 1224 ** of a 1048569-byte BLOB or string. 1225 ** 1226 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1227 ** rare larger cases can be handled by the slower 64-bit varint 1228 ** routine. 1229 */ 1230 #if 1 1231 { 1232 u64 v64; 1233 u8 n; 1234 1235 n = sqlite3GetVarint(p-2, &v64); 1236 assert( n>3 && n<=9 ); 1237 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1238 *v = 0xffffffff; 1239 }else{ 1240 *v = (u32)v64; 1241 } 1242 return n; 1243 } 1244 1245 #else 1246 /* For following code (kept for historical record only) shows an 1247 ** unrolling for the 3- and 4-byte varint cases. This code is 1248 ** slightly faster, but it is also larger and much harder to test. 1249 */ 1250 p++; 1251 b = b<<14; 1252 b |= *p; 1253 /* b: p1<<14 | p3 (unmasked) */ 1254 if (!(b&0x80)) 1255 { 1256 /* Values between 2097152 and 268435455 */ 1257 b &= (0x7f<<14)|(0x7f); 1258 a &= (0x7f<<14)|(0x7f); 1259 a = a<<7; 1260 *v = a | b; 1261 return 4; 1262 } 1263 1264 p++; 1265 a = a<<14; 1266 a |= *p; 1267 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1268 if (!(a&0x80)) 1269 { 1270 /* Values between 268435456 and 34359738367 */ 1271 a &= SLOT_4_2_0; 1272 b &= SLOT_4_2_0; 1273 b = b<<7; 1274 *v = a | b; 1275 return 5; 1276 } 1277 1278 /* We can only reach this point when reading a corrupt database 1279 ** file. In that case we are not in any hurry. Use the (relatively 1280 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1281 ** value. */ 1282 { 1283 u64 v64; 1284 u8 n; 1285 1286 p -= 4; 1287 n = sqlite3GetVarint(p, &v64); 1288 assert( n>5 && n<=9 ); 1289 *v = (u32)v64; 1290 return n; 1291 } 1292 #endif 1293 } 1294 1295 /* 1296 ** Return the number of bytes that will be needed to store the given 1297 ** 64-bit integer. 1298 */ 1299 int sqlite3VarintLen(u64 v){ 1300 int i; 1301 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1302 return i; 1303 } 1304 1305 1306 /* 1307 ** Read or write a four-byte big-endian integer value. 1308 */ 1309 u32 sqlite3Get4byte(const u8 *p){ 1310 #if SQLITE_BYTEORDER==4321 1311 u32 x; 1312 memcpy(&x,p,4); 1313 return x; 1314 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1315 u32 x; 1316 memcpy(&x,p,4); 1317 return __builtin_bswap32(x); 1318 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1319 u32 x; 1320 memcpy(&x,p,4); 1321 return _byteswap_ulong(x); 1322 #else 1323 testcase( p[0]&0x80 ); 1324 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1325 #endif 1326 } 1327 void sqlite3Put4byte(unsigned char *p, u32 v){ 1328 #if SQLITE_BYTEORDER==4321 1329 memcpy(p,&v,4); 1330 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1331 u32 x = __builtin_bswap32(v); 1332 memcpy(p,&x,4); 1333 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1334 u32 x = _byteswap_ulong(v); 1335 memcpy(p,&x,4); 1336 #else 1337 p[0] = (u8)(v>>24); 1338 p[1] = (u8)(v>>16); 1339 p[2] = (u8)(v>>8); 1340 p[3] = (u8)v; 1341 #endif 1342 } 1343 1344 1345 1346 /* 1347 ** Translate a single byte of Hex into an integer. 1348 ** This routine only works if h really is a valid hexadecimal 1349 ** character: 0..9a..fA..F 1350 */ 1351 u8 sqlite3HexToInt(int h){ 1352 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1353 #ifdef SQLITE_ASCII 1354 h += 9*(1&(h>>6)); 1355 #endif 1356 #ifdef SQLITE_EBCDIC 1357 h += 9*(1&~(h>>4)); 1358 #endif 1359 return (u8)(h & 0xf); 1360 } 1361 1362 #if !defined(SQLITE_OMIT_BLOB_LITERAL) 1363 /* 1364 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1365 ** value. Return a pointer to its binary value. Space to hold the 1366 ** binary value has been obtained from malloc and must be freed by 1367 ** the calling routine. 1368 */ 1369 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1370 char *zBlob; 1371 int i; 1372 1373 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1374 n--; 1375 if( zBlob ){ 1376 for(i=0; i<n; i+=2){ 1377 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1378 } 1379 zBlob[i/2] = 0; 1380 } 1381 return zBlob; 1382 } 1383 #endif /* !SQLITE_OMIT_BLOB_LITERAL */ 1384 1385 /* 1386 ** Log an error that is an API call on a connection pointer that should 1387 ** not have been used. The "type" of connection pointer is given as the 1388 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1389 */ 1390 static void logBadConnection(const char *zType){ 1391 sqlite3_log(SQLITE_MISUSE, 1392 "API call with %s database connection pointer", 1393 zType 1394 ); 1395 } 1396 1397 /* 1398 ** Check to make sure we have a valid db pointer. This test is not 1399 ** foolproof but it does provide some measure of protection against 1400 ** misuse of the interface such as passing in db pointers that are 1401 ** NULL or which have been previously closed. If this routine returns 1402 ** 1 it means that the db pointer is valid and 0 if it should not be 1403 ** dereferenced for any reason. The calling function should invoke 1404 ** SQLITE_MISUSE immediately. 1405 ** 1406 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1407 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1408 ** open properly and is not fit for general use but which can be 1409 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1410 */ 1411 int sqlite3SafetyCheckOk(sqlite3 *db){ 1412 u8 eOpenState; 1413 if( db==0 ){ 1414 logBadConnection("NULL"); 1415 return 0; 1416 } 1417 eOpenState = db->eOpenState; 1418 if( eOpenState!=SQLITE_STATE_OPEN ){ 1419 if( sqlite3SafetyCheckSickOrOk(db) ){ 1420 testcase( sqlite3GlobalConfig.xLog!=0 ); 1421 logBadConnection("unopened"); 1422 } 1423 return 0; 1424 }else{ 1425 return 1; 1426 } 1427 } 1428 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1429 u8 eOpenState; 1430 eOpenState = db->eOpenState; 1431 if( eOpenState!=SQLITE_STATE_SICK && 1432 eOpenState!=SQLITE_STATE_OPEN && 1433 eOpenState!=SQLITE_STATE_BUSY ){ 1434 testcase( sqlite3GlobalConfig.xLog!=0 ); 1435 logBadConnection("invalid"); 1436 return 0; 1437 }else{ 1438 return 1; 1439 } 1440 } 1441 1442 /* 1443 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1444 ** the other 64-bit signed integer at *pA and store the result in *pA. 1445 ** Return 0 on success. Or if the operation would have resulted in an 1446 ** overflow, leave *pA unchanged and return 1. 1447 */ 1448 int sqlite3AddInt64(i64 *pA, i64 iB){ 1449 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1450 return __builtin_add_overflow(*pA, iB, pA); 1451 #else 1452 i64 iA = *pA; 1453 testcase( iA==0 ); testcase( iA==1 ); 1454 testcase( iB==-1 ); testcase( iB==0 ); 1455 if( iB>=0 ){ 1456 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1457 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1458 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1459 }else{ 1460 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1461 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1462 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1463 } 1464 *pA += iB; 1465 return 0; 1466 #endif 1467 } 1468 int sqlite3SubInt64(i64 *pA, i64 iB){ 1469 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1470 return __builtin_sub_overflow(*pA, iB, pA); 1471 #else 1472 testcase( iB==SMALLEST_INT64+1 ); 1473 if( iB==SMALLEST_INT64 ){ 1474 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1475 if( (*pA)>=0 ) return 1; 1476 *pA -= iB; 1477 return 0; 1478 }else{ 1479 return sqlite3AddInt64(pA, -iB); 1480 } 1481 #endif 1482 } 1483 int sqlite3MulInt64(i64 *pA, i64 iB){ 1484 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1485 return __builtin_mul_overflow(*pA, iB, pA); 1486 #else 1487 i64 iA = *pA; 1488 if( iB>0 ){ 1489 if( iA>LARGEST_INT64/iB ) return 1; 1490 if( iA<SMALLEST_INT64/iB ) return 1; 1491 }else if( iB<0 ){ 1492 if( iA>0 ){ 1493 if( iB<SMALLEST_INT64/iA ) return 1; 1494 }else if( iA<0 ){ 1495 if( iB==SMALLEST_INT64 ) return 1; 1496 if( iA==SMALLEST_INT64 ) return 1; 1497 if( -iA>LARGEST_INT64/-iB ) return 1; 1498 } 1499 } 1500 *pA = iA*iB; 1501 return 0; 1502 #endif 1503 } 1504 1505 /* 1506 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1507 ** if the integer has a value of -2147483648, return +2147483647 1508 */ 1509 int sqlite3AbsInt32(int x){ 1510 if( x>=0 ) return x; 1511 if( x==(int)0x80000000 ) return 0x7fffffff; 1512 return -x; 1513 } 1514 1515 #ifdef SQLITE_ENABLE_8_3_NAMES 1516 /* 1517 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1518 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1519 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1520 ** three characters, then shorten the suffix on z[] to be the last three 1521 ** characters of the original suffix. 1522 ** 1523 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1524 ** do the suffix shortening regardless of URI parameter. 1525 ** 1526 ** Examples: 1527 ** 1528 ** test.db-journal => test.nal 1529 ** test.db-wal => test.wal 1530 ** test.db-shm => test.shm 1531 ** test.db-mj7f3319fa => test.9fa 1532 */ 1533 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1534 #if SQLITE_ENABLE_8_3_NAMES<2 1535 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1536 #endif 1537 { 1538 int i, sz; 1539 sz = sqlite3Strlen30(z); 1540 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1541 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1542 } 1543 } 1544 #endif 1545 1546 /* 1547 ** Find (an approximate) sum of two LogEst values. This computation is 1548 ** not a simple "+" operator because LogEst is stored as a logarithmic 1549 ** value. 1550 ** 1551 */ 1552 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1553 static const unsigned char x[] = { 1554 10, 10, /* 0,1 */ 1555 9, 9, /* 2,3 */ 1556 8, 8, /* 4,5 */ 1557 7, 7, 7, /* 6,7,8 */ 1558 6, 6, 6, /* 9,10,11 */ 1559 5, 5, 5, /* 12-14 */ 1560 4, 4, 4, 4, /* 15-18 */ 1561 3, 3, 3, 3, 3, 3, /* 19-24 */ 1562 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1563 }; 1564 if( a>=b ){ 1565 if( a>b+49 ) return a; 1566 if( a>b+31 ) return a+1; 1567 return a+x[a-b]; 1568 }else{ 1569 if( b>a+49 ) return b; 1570 if( b>a+31 ) return b+1; 1571 return b+x[b-a]; 1572 } 1573 } 1574 1575 /* 1576 ** Convert an integer into a LogEst. In other words, compute an 1577 ** approximation for 10*log2(x). 1578 */ 1579 LogEst sqlite3LogEst(u64 x){ 1580 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1581 LogEst y = 40; 1582 if( x<8 ){ 1583 if( x<2 ) return 0; 1584 while( x<8 ){ y -= 10; x <<= 1; } 1585 }else{ 1586 #if GCC_VERSION>=5004000 1587 int i = 60 - __builtin_clzll(x); 1588 y += i*10; 1589 x >>= i; 1590 #else 1591 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1592 while( x>15 ){ y += 10; x >>= 1; } 1593 #endif 1594 } 1595 return a[x&7] + y - 10; 1596 } 1597 1598 #ifndef SQLITE_OMIT_VIRTUALTABLE 1599 /* 1600 ** Convert a double into a LogEst 1601 ** In other words, compute an approximation for 10*log2(x). 1602 */ 1603 LogEst sqlite3LogEstFromDouble(double x){ 1604 u64 a; 1605 LogEst e; 1606 assert( sizeof(x)==8 && sizeof(a)==8 ); 1607 if( x<=1 ) return 0; 1608 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1609 memcpy(&a, &x, 8); 1610 e = (a>>52) - 1022; 1611 return e*10; 1612 } 1613 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1614 1615 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1616 defined(SQLITE_ENABLE_STAT4) || \ 1617 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1618 /* 1619 ** Convert a LogEst into an integer. 1620 ** 1621 ** Note that this routine is only used when one or more of various 1622 ** non-standard compile-time options is enabled. 1623 */ 1624 u64 sqlite3LogEstToInt(LogEst x){ 1625 u64 n; 1626 n = x%10; 1627 x /= 10; 1628 if( n>=5 ) n -= 2; 1629 else if( n>=1 ) n -= 1; 1630 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1631 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1632 if( x>60 ) return (u64)LARGEST_INT64; 1633 #else 1634 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input 1635 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1636 assert( x<=60 ); 1637 #endif 1638 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1639 } 1640 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1641 1642 /* 1643 ** Add a new name/number pair to a VList. This might require that the 1644 ** VList object be reallocated, so return the new VList. If an OOM 1645 ** error occurs, the original VList returned and the 1646 ** db->mallocFailed flag is set. 1647 ** 1648 ** A VList is really just an array of integers. To destroy a VList, 1649 ** simply pass it to sqlite3DbFree(). 1650 ** 1651 ** The first integer is the number of integers allocated for the whole 1652 ** VList. The second integer is the number of integers actually used. 1653 ** Each name/number pair is encoded by subsequent groups of 3 or more 1654 ** integers. 1655 ** 1656 ** Each name/number pair starts with two integers which are the numeric 1657 ** value for the pair and the size of the name/number pair, respectively. 1658 ** The text name overlays one or more following integers. The text name 1659 ** is always zero-terminated. 1660 ** 1661 ** Conceptually: 1662 ** 1663 ** struct VList { 1664 ** int nAlloc; // Number of allocated slots 1665 ** int nUsed; // Number of used slots 1666 ** struct VListEntry { 1667 ** int iValue; // Value for this entry 1668 ** int nSlot; // Slots used by this entry 1669 ** // ... variable name goes here 1670 ** } a[0]; 1671 ** } 1672 ** 1673 ** During code generation, pointers to the variable names within the 1674 ** VList are taken. When that happens, nAlloc is set to zero as an 1675 ** indication that the VList may never again be enlarged, since the 1676 ** accompanying realloc() would invalidate the pointers. 1677 */ 1678 VList *sqlite3VListAdd( 1679 sqlite3 *db, /* The database connection used for malloc() */ 1680 VList *pIn, /* The input VList. Might be NULL */ 1681 const char *zName, /* Name of symbol to add */ 1682 int nName, /* Bytes of text in zName */ 1683 int iVal /* Value to associate with zName */ 1684 ){ 1685 int nInt; /* number of sizeof(int) objects needed for zName */ 1686 char *z; /* Pointer to where zName will be stored */ 1687 int i; /* Index in pIn[] where zName is stored */ 1688 1689 nInt = nName/4 + 3; 1690 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1691 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1692 /* Enlarge the allocation */ 1693 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1694 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1695 if( pOut==0 ) return pIn; 1696 if( pIn==0 ) pOut[1] = 2; 1697 pIn = pOut; 1698 pIn[0] = nAlloc; 1699 } 1700 i = pIn[1]; 1701 pIn[i] = iVal; 1702 pIn[i+1] = nInt; 1703 z = (char*)&pIn[i+2]; 1704 pIn[1] = i+nInt; 1705 assert( pIn[1]<=pIn[0] ); 1706 memcpy(z, zName, nName); 1707 z[nName] = 0; 1708 return pIn; 1709 } 1710 1711 /* 1712 ** Return a pointer to the name of a variable in the given VList that 1713 ** has the value iVal. Or return a NULL if there is no such variable in 1714 ** the list 1715 */ 1716 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1717 int i, mx; 1718 if( pIn==0 ) return 0; 1719 mx = pIn[1]; 1720 i = 2; 1721 do{ 1722 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1723 i += pIn[i+1]; 1724 }while( i<mx ); 1725 return 0; 1726 } 1727 1728 /* 1729 ** Return the number of the variable named zName, if it is in VList. 1730 ** or return 0 if there is no such variable. 1731 */ 1732 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1733 int i, mx; 1734 if( pIn==0 ) return 0; 1735 mx = pIn[1]; 1736 i = 2; 1737 do{ 1738 const char *z = (const char*)&pIn[i+2]; 1739 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1740 i += pIn[i+1]; 1741 }while( i<mx ); 1742 return 0; 1743 } 1744