xref: /sqlite-3.40.0/src/util.c (revision b565bee6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36 ** or to bypass normal error detection during testing in order to let
37 ** execute proceed futher downstream.
38 **
39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
40 ** sqlite3FaultSim() function only returns non-zero during testing.
41 **
42 ** During testing, if the test harness has set a fault-sim callback using
43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44 ** each call to sqlite3FaultSim() is relayed to that application-supplied
45 ** callback and the integer return value form the application-supplied
46 ** callback is returned by sqlite3FaultSim().
47 **
48 ** The integer argument to sqlite3FaultSim() is a code to identify which
49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50 ** should have a unique code.  To prevent legacy testing applications from
51 ** breaking, the codes should not be changed or reused.
52 */
53 #ifndef SQLITE_UNTESTABLE
54 int sqlite3FaultSim(int iTest){
55   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56   return xCallback ? xCallback(iTest) : SQLITE_OK;
57 }
58 #endif
59 
60 #ifndef SQLITE_OMIT_FLOATING_POINT
61 /*
62 ** Return true if the floating point value is Not a Number (NaN).
63 **
64 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
65 ** Otherwise, we have our own implementation that works on most systems.
66 */
67 int sqlite3IsNaN(double x){
68   int rc;   /* The value return */
69 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
70   u64 y;
71   memcpy(&y,&x,sizeof(y));
72   rc = IsNaN(y);
73 #else
74   rc = isnan(x);
75 #endif /* HAVE_ISNAN */
76   testcase( rc );
77   return rc;
78 }
79 #endif /* SQLITE_OMIT_FLOATING_POINT */
80 
81 /*
82 ** Compute a string length that is limited to what can be stored in
83 ** lower 30 bits of a 32-bit signed integer.
84 **
85 ** The value returned will never be negative.  Nor will it ever be greater
86 ** than the actual length of the string.  For very long strings (greater
87 ** than 1GiB) the value returned might be less than the true string length.
88 */
89 int sqlite3Strlen30(const char *z){
90   if( z==0 ) return 0;
91   return 0x3fffffff & (int)strlen(z);
92 }
93 
94 /*
95 ** Return the declared type of a column.  Or return zDflt if the column
96 ** has no declared type.
97 **
98 ** The column type is an extra string stored after the zero-terminator on
99 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
100 */
101 char *sqlite3ColumnType(Column *pCol, char *zDflt){
102   if( pCol->colFlags & COLFLAG_HASTYPE ){
103     return pCol->zCnName + strlen(pCol->zCnName) + 1;
104   }else if( pCol->eCType ){
105     assert( pCol->eCType<=SQLITE_N_STDTYPE );
106     return (char*)sqlite3StdType[pCol->eCType-1];
107   }else{
108     return zDflt;
109   }
110 }
111 
112 /*
113 ** Helper function for sqlite3Error() - called rarely.  Broken out into
114 ** a separate routine to avoid unnecessary register saves on entry to
115 ** sqlite3Error().
116 */
117 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
118   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
119   sqlite3SystemError(db, err_code);
120 }
121 
122 /*
123 ** Set the current error code to err_code and clear any prior error message.
124 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
125 ** that would be appropriate.
126 */
127 void sqlite3Error(sqlite3 *db, int err_code){
128   assert( db!=0 );
129   db->errCode = err_code;
130   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
131 }
132 
133 /*
134 ** The equivalent of sqlite3Error(db, SQLITE_OK).  Clear the error state
135 ** and error message.
136 */
137 void sqlite3ErrorClear(sqlite3 *db){
138   assert( db!=0 );
139   db->errCode = SQLITE_OK;
140   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
141 }
142 
143 /*
144 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
145 ** to do based on the SQLite error code in rc.
146 */
147 void sqlite3SystemError(sqlite3 *db, int rc){
148   if( rc==SQLITE_IOERR_NOMEM ) return;
149   rc &= 0xff;
150   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
151     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
152   }
153 }
154 
155 /*
156 ** Set the most recent error code and error string for the sqlite
157 ** handle "db". The error code is set to "err_code".
158 **
159 ** If it is not NULL, string zFormat specifies the format of the
160 ** error string in the style of the printf functions: The following
161 ** format characters are allowed:
162 **
163 **      %s      Insert a string
164 **      %z      A string that should be freed after use
165 **      %d      Insert an integer
166 **      %T      Insert a token
167 **      %S      Insert the first element of a SrcList
168 **
169 ** zFormat and any string tokens that follow it are assumed to be
170 ** encoded in UTF-8.
171 **
172 ** To clear the most recent error for sqlite handle "db", sqlite3Error
173 ** should be called with err_code set to SQLITE_OK and zFormat set
174 ** to NULL.
175 */
176 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
177   assert( db!=0 );
178   db->errCode = err_code;
179   sqlite3SystemError(db, err_code);
180   if( zFormat==0 ){
181     sqlite3Error(db, err_code);
182   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
183     char *z;
184     va_list ap;
185     va_start(ap, zFormat);
186     z = sqlite3VMPrintf(db, zFormat, ap);
187     va_end(ap);
188     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
189   }
190 }
191 
192 /*
193 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
194 ** The following formatting characters are allowed:
195 **
196 **      %s      Insert a string
197 **      %z      A string that should be freed after use
198 **      %d      Insert an integer
199 **      %T      Insert a token
200 **      %S      Insert the first element of a SrcList
201 **
202 ** This function should be used to report any error that occurs while
203 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
204 ** last thing the sqlite3_prepare() function does is copy the error
205 ** stored by this function into the database handle using sqlite3Error().
206 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
207 ** during statement execution (sqlite3_step() etc.).
208 */
209 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
210   char *zMsg;
211   va_list ap;
212   sqlite3 *db = pParse->db;
213   va_start(ap, zFormat);
214   zMsg = sqlite3VMPrintf(db, zFormat, ap);
215   va_end(ap);
216   if( db->suppressErr ){
217     sqlite3DbFree(db, zMsg);
218   }else{
219     pParse->nErr++;
220     sqlite3DbFree(db, pParse->zErrMsg);
221     pParse->zErrMsg = zMsg;
222     pParse->rc = SQLITE_ERROR;
223     pParse->pWith = 0;
224   }
225 }
226 
227 /*
228 ** If database connection db is currently parsing SQL, then transfer
229 ** error code errCode to that parser if the parser has not already
230 ** encountered some other kind of error.
231 */
232 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
233   Parse *pParse;
234   if( db==0 || (pParse = db->pParse)==0 ) return errCode;
235   pParse->rc = errCode;
236   pParse->nErr++;
237   return errCode;
238 }
239 
240 /*
241 ** Convert an SQL-style quoted string into a normal string by removing
242 ** the quote characters.  The conversion is done in-place.  If the
243 ** input does not begin with a quote character, then this routine
244 ** is a no-op.
245 **
246 ** The input string must be zero-terminated.  A new zero-terminator
247 ** is added to the dequoted string.
248 **
249 ** The return value is -1 if no dequoting occurs or the length of the
250 ** dequoted string, exclusive of the zero terminator, if dequoting does
251 ** occur.
252 **
253 ** 2002-02-14: This routine is extended to remove MS-Access style
254 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
255 ** "a-b-c".
256 */
257 void sqlite3Dequote(char *z){
258   char quote;
259   int i, j;
260   if( z==0 ) return;
261   quote = z[0];
262   if( !sqlite3Isquote(quote) ) return;
263   if( quote=='[' ) quote = ']';
264   for(i=1, j=0;; i++){
265     assert( z[i] );
266     if( z[i]==quote ){
267       if( z[i+1]==quote ){
268         z[j++] = quote;
269         i++;
270       }else{
271         break;
272       }
273     }else{
274       z[j++] = z[i];
275     }
276   }
277   z[j] = 0;
278 }
279 void sqlite3DequoteExpr(Expr *p){
280   assert( sqlite3Isquote(p->u.zToken[0]) );
281   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
282   sqlite3Dequote(p->u.zToken);
283 }
284 
285 /*
286 ** If the input token p is quoted, try to adjust the token to remove
287 ** the quotes.  This is not always possible:
288 **
289 **     "abc"     ->   abc
290 **     "ab""cd"  ->   (not possible because of the interior "")
291 **
292 ** Remove the quotes if possible.  This is a optimization.  The overall
293 ** system should still return the correct answer even if this routine
294 ** is always a no-op.
295 */
296 void sqlite3DequoteToken(Token *p){
297   unsigned int i;
298   if( p->n<2 ) return;
299   if( !sqlite3Isquote(p->z[0]) ) return;
300   for(i=1; i<p->n-1; i++){
301     if( sqlite3Isquote(p->z[i]) ) return;
302   }
303   p->n -= 2;
304   p->z++;
305 }
306 
307 /*
308 ** Generate a Token object from a string
309 */
310 void sqlite3TokenInit(Token *p, char *z){
311   p->z = z;
312   p->n = sqlite3Strlen30(z);
313 }
314 
315 /* Convenient short-hand */
316 #define UpperToLower sqlite3UpperToLower
317 
318 /*
319 ** Some systems have stricmp().  Others have strcasecmp().  Because
320 ** there is no consistency, we will define our own.
321 **
322 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
323 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
324 ** the contents of two buffers containing UTF-8 strings in a
325 ** case-independent fashion, using the same definition of "case
326 ** independence" that SQLite uses internally when comparing identifiers.
327 */
328 int sqlite3_stricmp(const char *zLeft, const char *zRight){
329   if( zLeft==0 ){
330     return zRight ? -1 : 0;
331   }else if( zRight==0 ){
332     return 1;
333   }
334   return sqlite3StrICmp(zLeft, zRight);
335 }
336 int sqlite3StrICmp(const char *zLeft, const char *zRight){
337   unsigned char *a, *b;
338   int c, x;
339   a = (unsigned char *)zLeft;
340   b = (unsigned char *)zRight;
341   for(;;){
342     c = *a;
343     x = *b;
344     if( c==x ){
345       if( c==0 ) break;
346     }else{
347       c = (int)UpperToLower[c] - (int)UpperToLower[x];
348       if( c ) break;
349     }
350     a++;
351     b++;
352   }
353   return c;
354 }
355 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
356   register unsigned char *a, *b;
357   if( zLeft==0 ){
358     return zRight ? -1 : 0;
359   }else if( zRight==0 ){
360     return 1;
361   }
362   a = (unsigned char *)zLeft;
363   b = (unsigned char *)zRight;
364   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
365   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
366 }
367 
368 /*
369 ** Compute an 8-bit hash on a string that is insensitive to case differences
370 */
371 u8 sqlite3StrIHash(const char *z){
372   u8 h = 0;
373   if( z==0 ) return 0;
374   while( z[0] ){
375     h += UpperToLower[(unsigned char)z[0]];
376     z++;
377   }
378   return h;
379 }
380 
381 /*
382 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
383 ** E==2 results in 100.  E==50 results in 1.0e50.
384 **
385 ** This routine only works for values of E between 1 and 341.
386 */
387 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
388 #if defined(_MSC_VER)
389   static const LONGDOUBLE_TYPE x[] = {
390     1.0e+001L,
391     1.0e+002L,
392     1.0e+004L,
393     1.0e+008L,
394     1.0e+016L,
395     1.0e+032L,
396     1.0e+064L,
397     1.0e+128L,
398     1.0e+256L
399   };
400   LONGDOUBLE_TYPE r = 1.0;
401   int i;
402   assert( E>=0 && E<=307 );
403   for(i=0; E!=0; i++, E >>=1){
404     if( E & 1 ) r *= x[i];
405   }
406   return r;
407 #else
408   LONGDOUBLE_TYPE x = 10.0;
409   LONGDOUBLE_TYPE r = 1.0;
410   while(1){
411     if( E & 1 ) r *= x;
412     E >>= 1;
413     if( E==0 ) break;
414     x *= x;
415   }
416   return r;
417 #endif
418 }
419 
420 /*
421 ** The string z[] is an text representation of a real number.
422 ** Convert this string to a double and write it into *pResult.
423 **
424 ** The string z[] is length bytes in length (bytes, not characters) and
425 ** uses the encoding enc.  The string is not necessarily zero-terminated.
426 **
427 ** Return TRUE if the result is a valid real number (or integer) and FALSE
428 ** if the string is empty or contains extraneous text.  More specifically
429 ** return
430 **      1          =>  The input string is a pure integer
431 **      2 or more  =>  The input has a decimal point or eNNN clause
432 **      0 or less  =>  The input string is not a valid number
433 **     -1          =>  Not a valid number, but has a valid prefix which
434 **                     includes a decimal point and/or an eNNN clause
435 **
436 ** Valid numbers are in one of these formats:
437 **
438 **    [+-]digits[E[+-]digits]
439 **    [+-]digits.[digits][E[+-]digits]
440 **    [+-].digits[E[+-]digits]
441 **
442 ** Leading and trailing whitespace is ignored for the purpose of determining
443 ** validity.
444 **
445 ** If some prefix of the input string is a valid number, this routine
446 ** returns FALSE but it still converts the prefix and writes the result
447 ** into *pResult.
448 */
449 #if defined(_MSC_VER)
450 #pragma warning(disable : 4756)
451 #endif
452 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
453 #ifndef SQLITE_OMIT_FLOATING_POINT
454   int incr;
455   const char *zEnd;
456   /* sign * significand * (10 ^ (esign * exponent)) */
457   int sign = 1;    /* sign of significand */
458   i64 s = 0;       /* significand */
459   int d = 0;       /* adjust exponent for shifting decimal point */
460   int esign = 1;   /* sign of exponent */
461   int e = 0;       /* exponent */
462   int eValid = 1;  /* True exponent is either not used or is well-formed */
463   double result;
464   int nDigit = 0;  /* Number of digits processed */
465   int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
466 
467   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
468   *pResult = 0.0;   /* Default return value, in case of an error */
469   if( length==0 ) return 0;
470 
471   if( enc==SQLITE_UTF8 ){
472     incr = 1;
473     zEnd = z + length;
474   }else{
475     int i;
476     incr = 2;
477     length &= ~1;
478     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
479     testcase( enc==SQLITE_UTF16LE );
480     testcase( enc==SQLITE_UTF16BE );
481     for(i=3-enc; i<length && z[i]==0; i+=2){}
482     if( i<length ) eType = -100;
483     zEnd = &z[i^1];
484     z += (enc&1);
485   }
486 
487   /* skip leading spaces */
488   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
489   if( z>=zEnd ) return 0;
490 
491   /* get sign of significand */
492   if( *z=='-' ){
493     sign = -1;
494     z+=incr;
495   }else if( *z=='+' ){
496     z+=incr;
497   }
498 
499   /* copy max significant digits to significand */
500   while( z<zEnd && sqlite3Isdigit(*z) ){
501     s = s*10 + (*z - '0');
502     z+=incr; nDigit++;
503     if( s>=((LARGEST_INT64-9)/10) ){
504       /* skip non-significant significand digits
505       ** (increase exponent by d to shift decimal left) */
506       while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
507     }
508   }
509   if( z>=zEnd ) goto do_atof_calc;
510 
511   /* if decimal point is present */
512   if( *z=='.' ){
513     z+=incr;
514     eType++;
515     /* copy digits from after decimal to significand
516     ** (decrease exponent by d to shift decimal right) */
517     while( z<zEnd && sqlite3Isdigit(*z) ){
518       if( s<((LARGEST_INT64-9)/10) ){
519         s = s*10 + (*z - '0');
520         d--;
521         nDigit++;
522       }
523       z+=incr;
524     }
525   }
526   if( z>=zEnd ) goto do_atof_calc;
527 
528   /* if exponent is present */
529   if( *z=='e' || *z=='E' ){
530     z+=incr;
531     eValid = 0;
532     eType++;
533 
534     /* This branch is needed to avoid a (harmless) buffer overread.  The
535     ** special comment alerts the mutation tester that the correct answer
536     ** is obtained even if the branch is omitted */
537     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
538 
539     /* get sign of exponent */
540     if( *z=='-' ){
541       esign = -1;
542       z+=incr;
543     }else if( *z=='+' ){
544       z+=incr;
545     }
546     /* copy digits to exponent */
547     while( z<zEnd && sqlite3Isdigit(*z) ){
548       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
549       z+=incr;
550       eValid = 1;
551     }
552   }
553 
554   /* skip trailing spaces */
555   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
556 
557 do_atof_calc:
558   /* adjust exponent by d, and update sign */
559   e = (e*esign) + d;
560   if( e<0 ) {
561     esign = -1;
562     e *= -1;
563   } else {
564     esign = 1;
565   }
566 
567   if( s==0 ) {
568     /* In the IEEE 754 standard, zero is signed. */
569     result = sign<0 ? -(double)0 : (double)0;
570   } else {
571     /* Attempt to reduce exponent.
572     **
573     ** Branches that are not required for the correct answer but which only
574     ** help to obtain the correct answer faster are marked with special
575     ** comments, as a hint to the mutation tester.
576     */
577     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
578       if( esign>0 ){
579         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
580         s *= 10;
581       }else{
582         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
583         s /= 10;
584       }
585       e--;
586     }
587 
588     /* adjust the sign of significand */
589     s = sign<0 ? -s : s;
590 
591     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
592       result = (double)s;
593     }else{
594       /* attempt to handle extremely small/large numbers better */
595       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
596         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
597           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
598           if( esign<0 ){
599             result = s / scale;
600             result /= 1.0e+308;
601           }else{
602             result = s * scale;
603             result *= 1.0e+308;
604           }
605         }else{ assert( e>=342 );
606           if( esign<0 ){
607             result = 0.0*s;
608           }else{
609 #ifdef INFINITY
610             result = INFINITY*s;
611 #else
612             result = 1e308*1e308*s;  /* Infinity */
613 #endif
614           }
615         }
616       }else{
617         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
618         if( esign<0 ){
619           result = s / scale;
620         }else{
621           result = s * scale;
622         }
623       }
624     }
625   }
626 
627   /* store the result */
628   *pResult = result;
629 
630   /* return true if number and no extra non-whitespace chracters after */
631   if( z==zEnd && nDigit>0 && eValid && eType>0 ){
632     return eType;
633   }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
634     return -1;
635   }else{
636     return 0;
637   }
638 #else
639   return !sqlite3Atoi64(z, pResult, length, enc);
640 #endif /* SQLITE_OMIT_FLOATING_POINT */
641 }
642 #if defined(_MSC_VER)
643 #pragma warning(default : 4756)
644 #endif
645 
646 /*
647 ** Render an signed 64-bit integer as text.  Store the result in zOut[].
648 **
649 ** The caller must ensure that zOut[] is at least 21 bytes in size.
650 */
651 void sqlite3Int64ToText(i64 v, char *zOut){
652   int i;
653   u64 x;
654   char zTemp[22];
655   if( v<0 ){
656     x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
657   }else{
658     x = v;
659   }
660   i = sizeof(zTemp)-2;
661   zTemp[sizeof(zTemp)-1] = 0;
662   do{
663     zTemp[i--] = (x%10) + '0';
664     x = x/10;
665   }while( x );
666   if( v<0 ) zTemp[i--] = '-';
667   memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
668 }
669 
670 /*
671 ** Compare the 19-character string zNum against the text representation
672 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
673 ** if zNum is less than, equal to, or greater than the string.
674 ** Note that zNum must contain exactly 19 characters.
675 **
676 ** Unlike memcmp() this routine is guaranteed to return the difference
677 ** in the values of the last digit if the only difference is in the
678 ** last digit.  So, for example,
679 **
680 **      compare2pow63("9223372036854775800", 1)
681 **
682 ** will return -8.
683 */
684 static int compare2pow63(const char *zNum, int incr){
685   int c = 0;
686   int i;
687                     /* 012345678901234567 */
688   const char *pow63 = "922337203685477580";
689   for(i=0; c==0 && i<18; i++){
690     c = (zNum[i*incr]-pow63[i])*10;
691   }
692   if( c==0 ){
693     c = zNum[18*incr] - '8';
694     testcase( c==(-1) );
695     testcase( c==0 );
696     testcase( c==(+1) );
697   }
698   return c;
699 }
700 
701 /*
702 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
703 ** routine does *not* accept hexadecimal notation.
704 **
705 ** Returns:
706 **
707 **    -1    Not even a prefix of the input text looks like an integer
708 **     0    Successful transformation.  Fits in a 64-bit signed integer.
709 **     1    Excess non-space text after the integer value
710 **     2    Integer too large for a 64-bit signed integer or is malformed
711 **     3    Special case of 9223372036854775808
712 **
713 ** length is the number of bytes in the string (bytes, not characters).
714 ** The string is not necessarily zero-terminated.  The encoding is
715 ** given by enc.
716 */
717 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
718   int incr;
719   u64 u = 0;
720   int neg = 0; /* assume positive */
721   int i;
722   int c = 0;
723   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
724   int rc;          /* Baseline return code */
725   const char *zStart;
726   const char *zEnd = zNum + length;
727   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
728   if( enc==SQLITE_UTF8 ){
729     incr = 1;
730   }else{
731     incr = 2;
732     length &= ~1;
733     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
734     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
735     nonNum = i<length;
736     zEnd = &zNum[i^1];
737     zNum += (enc&1);
738   }
739   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
740   if( zNum<zEnd ){
741     if( *zNum=='-' ){
742       neg = 1;
743       zNum+=incr;
744     }else if( *zNum=='+' ){
745       zNum+=incr;
746     }
747   }
748   zStart = zNum;
749   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
750   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
751     u = u*10 + c - '0';
752   }
753   testcase( i==18*incr );
754   testcase( i==19*incr );
755   testcase( i==20*incr );
756   if( u>LARGEST_INT64 ){
757     /* This test and assignment is needed only to suppress UB warnings
758     ** from clang and -fsanitize=undefined.  This test and assignment make
759     ** the code a little larger and slower, and no harm comes from omitting
760     ** them, but we must appaise the undefined-behavior pharisees. */
761     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
762   }else if( neg ){
763     *pNum = -(i64)u;
764   }else{
765     *pNum = (i64)u;
766   }
767   rc = 0;
768   if( i==0 && zStart==zNum ){    /* No digits */
769     rc = -1;
770   }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
771     rc = 1;
772   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
773     int jj = i;
774     do{
775       if( !sqlite3Isspace(zNum[jj]) ){
776         rc = 1;          /* Extra non-space text after the integer */
777         break;
778       }
779       jj += incr;
780     }while( &zNum[jj]<zEnd );
781   }
782   if( i<19*incr ){
783     /* Less than 19 digits, so we know that it fits in 64 bits */
784     assert( u<=LARGEST_INT64 );
785     return rc;
786   }else{
787     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
788     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
789     if( c<0 ){
790       /* zNum is less than 9223372036854775808 so it fits */
791       assert( u<=LARGEST_INT64 );
792       return rc;
793     }else{
794       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
795       if( c>0 ){
796         /* zNum is greater than 9223372036854775808 so it overflows */
797         return 2;
798       }else{
799         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
800         ** special case 2 overflow if positive */
801         assert( u-1==LARGEST_INT64 );
802         return neg ? rc : 3;
803       }
804     }
805   }
806 }
807 
808 /*
809 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
810 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
811 ** whereas sqlite3Atoi64() does not.
812 **
813 ** Returns:
814 **
815 **     0    Successful transformation.  Fits in a 64-bit signed integer.
816 **     1    Excess text after the integer value
817 **     2    Integer too large for a 64-bit signed integer or is malformed
818 **     3    Special case of 9223372036854775808
819 */
820 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
821 #ifndef SQLITE_OMIT_HEX_INTEGER
822   if( z[0]=='0'
823    && (z[1]=='x' || z[1]=='X')
824   ){
825     u64 u = 0;
826     int i, k;
827     for(i=2; z[i]=='0'; i++){}
828     for(k=i; sqlite3Isxdigit(z[k]); k++){
829       u = u*16 + sqlite3HexToInt(z[k]);
830     }
831     memcpy(pOut, &u, 8);
832     return (z[k]==0 && k-i<=16) ? 0 : 2;
833   }else
834 #endif /* SQLITE_OMIT_HEX_INTEGER */
835   {
836     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
837   }
838 }
839 
840 /*
841 ** If zNum represents an integer that will fit in 32-bits, then set
842 ** *pValue to that integer and return true.  Otherwise return false.
843 **
844 ** This routine accepts both decimal and hexadecimal notation for integers.
845 **
846 ** Any non-numeric characters that following zNum are ignored.
847 ** This is different from sqlite3Atoi64() which requires the
848 ** input number to be zero-terminated.
849 */
850 int sqlite3GetInt32(const char *zNum, int *pValue){
851   sqlite_int64 v = 0;
852   int i, c;
853   int neg = 0;
854   if( zNum[0]=='-' ){
855     neg = 1;
856     zNum++;
857   }else if( zNum[0]=='+' ){
858     zNum++;
859   }
860 #ifndef SQLITE_OMIT_HEX_INTEGER
861   else if( zNum[0]=='0'
862         && (zNum[1]=='x' || zNum[1]=='X')
863         && sqlite3Isxdigit(zNum[2])
864   ){
865     u32 u = 0;
866     zNum += 2;
867     while( zNum[0]=='0' ) zNum++;
868     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
869       u = u*16 + sqlite3HexToInt(zNum[i]);
870     }
871     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
872       memcpy(pValue, &u, 4);
873       return 1;
874     }else{
875       return 0;
876     }
877   }
878 #endif
879   if( !sqlite3Isdigit(zNum[0]) ) return 0;
880   while( zNum[0]=='0' ) zNum++;
881   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
882     v = v*10 + c;
883   }
884 
885   /* The longest decimal representation of a 32 bit integer is 10 digits:
886   **
887   **             1234567890
888   **     2^31 -> 2147483648
889   */
890   testcase( i==10 );
891   if( i>10 ){
892     return 0;
893   }
894   testcase( v-neg==2147483647 );
895   if( v-neg>2147483647 ){
896     return 0;
897   }
898   if( neg ){
899     v = -v;
900   }
901   *pValue = (int)v;
902   return 1;
903 }
904 
905 /*
906 ** Return a 32-bit integer value extracted from a string.  If the
907 ** string is not an integer, just return 0.
908 */
909 int sqlite3Atoi(const char *z){
910   int x = 0;
911   sqlite3GetInt32(z, &x);
912   return x;
913 }
914 
915 /*
916 ** Try to convert z into an unsigned 32-bit integer.  Return true on
917 ** success and false if there is an error.
918 **
919 ** Only decimal notation is accepted.
920 */
921 int sqlite3GetUInt32(const char *z, u32 *pI){
922   u64 v = 0;
923   int i;
924   for(i=0; sqlite3Isdigit(z[i]); i++){
925     v = v*10 + z[i] - '0';
926     if( v>4294967296LL ){ *pI = 0; return 0; }
927   }
928   if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
929   *pI = (u32)v;
930   return 1;
931 }
932 
933 /*
934 ** The variable-length integer encoding is as follows:
935 **
936 ** KEY:
937 **         A = 0xxxxxxx    7 bits of data and one flag bit
938 **         B = 1xxxxxxx    7 bits of data and one flag bit
939 **         C = xxxxxxxx    8 bits of data
940 **
941 **  7 bits - A
942 ** 14 bits - BA
943 ** 21 bits - BBA
944 ** 28 bits - BBBA
945 ** 35 bits - BBBBA
946 ** 42 bits - BBBBBA
947 ** 49 bits - BBBBBBA
948 ** 56 bits - BBBBBBBA
949 ** 64 bits - BBBBBBBBC
950 */
951 
952 /*
953 ** Write a 64-bit variable-length integer to memory starting at p[0].
954 ** The length of data write will be between 1 and 9 bytes.  The number
955 ** of bytes written is returned.
956 **
957 ** A variable-length integer consists of the lower 7 bits of each byte
958 ** for all bytes that have the 8th bit set and one byte with the 8th
959 ** bit clear.  Except, if we get to the 9th byte, it stores the full
960 ** 8 bits and is the last byte.
961 */
962 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
963   int i, j, n;
964   u8 buf[10];
965   if( v & (((u64)0xff000000)<<32) ){
966     p[8] = (u8)v;
967     v >>= 8;
968     for(i=7; i>=0; i--){
969       p[i] = (u8)((v & 0x7f) | 0x80);
970       v >>= 7;
971     }
972     return 9;
973   }
974   n = 0;
975   do{
976     buf[n++] = (u8)((v & 0x7f) | 0x80);
977     v >>= 7;
978   }while( v!=0 );
979   buf[0] &= 0x7f;
980   assert( n<=9 );
981   for(i=0, j=n-1; j>=0; j--, i++){
982     p[i] = buf[j];
983   }
984   return n;
985 }
986 int sqlite3PutVarint(unsigned char *p, u64 v){
987   if( v<=0x7f ){
988     p[0] = v&0x7f;
989     return 1;
990   }
991   if( v<=0x3fff ){
992     p[0] = ((v>>7)&0x7f)|0x80;
993     p[1] = v&0x7f;
994     return 2;
995   }
996   return putVarint64(p,v);
997 }
998 
999 /*
1000 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
1001 ** are defined here rather than simply putting the constant expressions
1002 ** inline in order to work around bugs in the RVT compiler.
1003 **
1004 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
1005 **
1006 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
1007 */
1008 #define SLOT_2_0     0x001fc07f
1009 #define SLOT_4_2_0   0xf01fc07f
1010 
1011 
1012 /*
1013 ** Read a 64-bit variable-length integer from memory starting at p[0].
1014 ** Return the number of bytes read.  The value is stored in *v.
1015 */
1016 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
1017   u32 a,b,s;
1018 
1019   if( ((signed char*)p)[0]>=0 ){
1020     *v = *p;
1021     return 1;
1022   }
1023   if( ((signed char*)p)[1]>=0 ){
1024     *v = ((u32)(p[0]&0x7f)<<7) | p[1];
1025     return 2;
1026   }
1027 
1028   /* Verify that constants are precomputed correctly */
1029   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
1030   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
1031 
1032   a = ((u32)p[0])<<14;
1033   b = p[1];
1034   p += 2;
1035   a |= *p;
1036   /* a: p0<<14 | p2 (unmasked) */
1037   if (!(a&0x80))
1038   {
1039     a &= SLOT_2_0;
1040     b &= 0x7f;
1041     b = b<<7;
1042     a |= b;
1043     *v = a;
1044     return 3;
1045   }
1046 
1047   /* CSE1 from below */
1048   a &= SLOT_2_0;
1049   p++;
1050   b = b<<14;
1051   b |= *p;
1052   /* b: p1<<14 | p3 (unmasked) */
1053   if (!(b&0x80))
1054   {
1055     b &= SLOT_2_0;
1056     /* moved CSE1 up */
1057     /* a &= (0x7f<<14)|(0x7f); */
1058     a = a<<7;
1059     a |= b;
1060     *v = a;
1061     return 4;
1062   }
1063 
1064   /* a: p0<<14 | p2 (masked) */
1065   /* b: p1<<14 | p3 (unmasked) */
1066   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1067   /* moved CSE1 up */
1068   /* a &= (0x7f<<14)|(0x7f); */
1069   b &= SLOT_2_0;
1070   s = a;
1071   /* s: p0<<14 | p2 (masked) */
1072 
1073   p++;
1074   a = a<<14;
1075   a |= *p;
1076   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1077   if (!(a&0x80))
1078   {
1079     /* we can skip these cause they were (effectively) done above
1080     ** while calculating s */
1081     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1082     /* b &= (0x7f<<14)|(0x7f); */
1083     b = b<<7;
1084     a |= b;
1085     s = s>>18;
1086     *v = ((u64)s)<<32 | a;
1087     return 5;
1088   }
1089 
1090   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1091   s = s<<7;
1092   s |= b;
1093   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1094 
1095   p++;
1096   b = b<<14;
1097   b |= *p;
1098   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1099   if (!(b&0x80))
1100   {
1101     /* we can skip this cause it was (effectively) done above in calc'ing s */
1102     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1103     a &= SLOT_2_0;
1104     a = a<<7;
1105     a |= b;
1106     s = s>>18;
1107     *v = ((u64)s)<<32 | a;
1108     return 6;
1109   }
1110 
1111   p++;
1112   a = a<<14;
1113   a |= *p;
1114   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1115   if (!(a&0x80))
1116   {
1117     a &= SLOT_4_2_0;
1118     b &= SLOT_2_0;
1119     b = b<<7;
1120     a |= b;
1121     s = s>>11;
1122     *v = ((u64)s)<<32 | a;
1123     return 7;
1124   }
1125 
1126   /* CSE2 from below */
1127   a &= SLOT_2_0;
1128   p++;
1129   b = b<<14;
1130   b |= *p;
1131   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1132   if (!(b&0x80))
1133   {
1134     b &= SLOT_4_2_0;
1135     /* moved CSE2 up */
1136     /* a &= (0x7f<<14)|(0x7f); */
1137     a = a<<7;
1138     a |= b;
1139     s = s>>4;
1140     *v = ((u64)s)<<32 | a;
1141     return 8;
1142   }
1143 
1144   p++;
1145   a = a<<15;
1146   a |= *p;
1147   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1148 
1149   /* moved CSE2 up */
1150   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1151   b &= SLOT_2_0;
1152   b = b<<8;
1153   a |= b;
1154 
1155   s = s<<4;
1156   b = p[-4];
1157   b &= 0x7f;
1158   b = b>>3;
1159   s |= b;
1160 
1161   *v = ((u64)s)<<32 | a;
1162 
1163   return 9;
1164 }
1165 
1166 /*
1167 ** Read a 32-bit variable-length integer from memory starting at p[0].
1168 ** Return the number of bytes read.  The value is stored in *v.
1169 **
1170 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1171 ** integer, then set *v to 0xffffffff.
1172 **
1173 ** A MACRO version, getVarint32, is provided which inlines the
1174 ** single-byte case.  All code should use the MACRO version as
1175 ** this function assumes the single-byte case has already been handled.
1176 */
1177 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1178   u32 a,b;
1179 
1180   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1181   ** by the getVarin32() macro */
1182   a = *p;
1183   /* a: p0 (unmasked) */
1184 #ifndef getVarint32
1185   if (!(a&0x80))
1186   {
1187     /* Values between 0 and 127 */
1188     *v = a;
1189     return 1;
1190   }
1191 #endif
1192 
1193   /* The 2-byte case */
1194   p++;
1195   b = *p;
1196   /* b: p1 (unmasked) */
1197   if (!(b&0x80))
1198   {
1199     /* Values between 128 and 16383 */
1200     a &= 0x7f;
1201     a = a<<7;
1202     *v = a | b;
1203     return 2;
1204   }
1205 
1206   /* The 3-byte case */
1207   p++;
1208   a = a<<14;
1209   a |= *p;
1210   /* a: p0<<14 | p2 (unmasked) */
1211   if (!(a&0x80))
1212   {
1213     /* Values between 16384 and 2097151 */
1214     a &= (0x7f<<14)|(0x7f);
1215     b &= 0x7f;
1216     b = b<<7;
1217     *v = a | b;
1218     return 3;
1219   }
1220 
1221   /* A 32-bit varint is used to store size information in btrees.
1222   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1223   ** A 3-byte varint is sufficient, for example, to record the size
1224   ** of a 1048569-byte BLOB or string.
1225   **
1226   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1227   ** rare larger cases can be handled by the slower 64-bit varint
1228   ** routine.
1229   */
1230 #if 1
1231   {
1232     u64 v64;
1233     u8 n;
1234 
1235     n = sqlite3GetVarint(p-2, &v64);
1236     assert( n>3 && n<=9 );
1237     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1238       *v = 0xffffffff;
1239     }else{
1240       *v = (u32)v64;
1241     }
1242     return n;
1243   }
1244 
1245 #else
1246   /* For following code (kept for historical record only) shows an
1247   ** unrolling for the 3- and 4-byte varint cases.  This code is
1248   ** slightly faster, but it is also larger and much harder to test.
1249   */
1250   p++;
1251   b = b<<14;
1252   b |= *p;
1253   /* b: p1<<14 | p3 (unmasked) */
1254   if (!(b&0x80))
1255   {
1256     /* Values between 2097152 and 268435455 */
1257     b &= (0x7f<<14)|(0x7f);
1258     a &= (0x7f<<14)|(0x7f);
1259     a = a<<7;
1260     *v = a | b;
1261     return 4;
1262   }
1263 
1264   p++;
1265   a = a<<14;
1266   a |= *p;
1267   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1268   if (!(a&0x80))
1269   {
1270     /* Values  between 268435456 and 34359738367 */
1271     a &= SLOT_4_2_0;
1272     b &= SLOT_4_2_0;
1273     b = b<<7;
1274     *v = a | b;
1275     return 5;
1276   }
1277 
1278   /* We can only reach this point when reading a corrupt database
1279   ** file.  In that case we are not in any hurry.  Use the (relatively
1280   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1281   ** value. */
1282   {
1283     u64 v64;
1284     u8 n;
1285 
1286     p -= 4;
1287     n = sqlite3GetVarint(p, &v64);
1288     assert( n>5 && n<=9 );
1289     *v = (u32)v64;
1290     return n;
1291   }
1292 #endif
1293 }
1294 
1295 /*
1296 ** Return the number of bytes that will be needed to store the given
1297 ** 64-bit integer.
1298 */
1299 int sqlite3VarintLen(u64 v){
1300   int i;
1301   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1302   return i;
1303 }
1304 
1305 
1306 /*
1307 ** Read or write a four-byte big-endian integer value.
1308 */
1309 u32 sqlite3Get4byte(const u8 *p){
1310 #if SQLITE_BYTEORDER==4321
1311   u32 x;
1312   memcpy(&x,p,4);
1313   return x;
1314 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1315   u32 x;
1316   memcpy(&x,p,4);
1317   return __builtin_bswap32(x);
1318 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1319   u32 x;
1320   memcpy(&x,p,4);
1321   return _byteswap_ulong(x);
1322 #else
1323   testcase( p[0]&0x80 );
1324   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1325 #endif
1326 }
1327 void sqlite3Put4byte(unsigned char *p, u32 v){
1328 #if SQLITE_BYTEORDER==4321
1329   memcpy(p,&v,4);
1330 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1331   u32 x = __builtin_bswap32(v);
1332   memcpy(p,&x,4);
1333 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1334   u32 x = _byteswap_ulong(v);
1335   memcpy(p,&x,4);
1336 #else
1337   p[0] = (u8)(v>>24);
1338   p[1] = (u8)(v>>16);
1339   p[2] = (u8)(v>>8);
1340   p[3] = (u8)v;
1341 #endif
1342 }
1343 
1344 
1345 
1346 /*
1347 ** Translate a single byte of Hex into an integer.
1348 ** This routine only works if h really is a valid hexadecimal
1349 ** character:  0..9a..fA..F
1350 */
1351 u8 sqlite3HexToInt(int h){
1352   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1353 #ifdef SQLITE_ASCII
1354   h += 9*(1&(h>>6));
1355 #endif
1356 #ifdef SQLITE_EBCDIC
1357   h += 9*(1&~(h>>4));
1358 #endif
1359   return (u8)(h & 0xf);
1360 }
1361 
1362 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1363 /*
1364 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1365 ** value.  Return a pointer to its binary value.  Space to hold the
1366 ** binary value has been obtained from malloc and must be freed by
1367 ** the calling routine.
1368 */
1369 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1370   char *zBlob;
1371   int i;
1372 
1373   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1374   n--;
1375   if( zBlob ){
1376     for(i=0; i<n; i+=2){
1377       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1378     }
1379     zBlob[i/2] = 0;
1380   }
1381   return zBlob;
1382 }
1383 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1384 
1385 /*
1386 ** Log an error that is an API call on a connection pointer that should
1387 ** not have been used.  The "type" of connection pointer is given as the
1388 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1389 */
1390 static void logBadConnection(const char *zType){
1391   sqlite3_log(SQLITE_MISUSE,
1392      "API call with %s database connection pointer",
1393      zType
1394   );
1395 }
1396 
1397 /*
1398 ** Check to make sure we have a valid db pointer.  This test is not
1399 ** foolproof but it does provide some measure of protection against
1400 ** misuse of the interface such as passing in db pointers that are
1401 ** NULL or which have been previously closed.  If this routine returns
1402 ** 1 it means that the db pointer is valid and 0 if it should not be
1403 ** dereferenced for any reason.  The calling function should invoke
1404 ** SQLITE_MISUSE immediately.
1405 **
1406 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1407 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1408 ** open properly and is not fit for general use but which can be
1409 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1410 */
1411 int sqlite3SafetyCheckOk(sqlite3 *db){
1412   u8 eOpenState;
1413   if( db==0 ){
1414     logBadConnection("NULL");
1415     return 0;
1416   }
1417   eOpenState = db->eOpenState;
1418   if( eOpenState!=SQLITE_STATE_OPEN ){
1419     if( sqlite3SafetyCheckSickOrOk(db) ){
1420       testcase( sqlite3GlobalConfig.xLog!=0 );
1421       logBadConnection("unopened");
1422     }
1423     return 0;
1424   }else{
1425     return 1;
1426   }
1427 }
1428 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1429   u8 eOpenState;
1430   eOpenState = db->eOpenState;
1431   if( eOpenState!=SQLITE_STATE_SICK &&
1432       eOpenState!=SQLITE_STATE_OPEN &&
1433       eOpenState!=SQLITE_STATE_BUSY ){
1434     testcase( sqlite3GlobalConfig.xLog!=0 );
1435     logBadConnection("invalid");
1436     return 0;
1437   }else{
1438     return 1;
1439   }
1440 }
1441 
1442 /*
1443 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1444 ** the other 64-bit signed integer at *pA and store the result in *pA.
1445 ** Return 0 on success.  Or if the operation would have resulted in an
1446 ** overflow, leave *pA unchanged and return 1.
1447 */
1448 int sqlite3AddInt64(i64 *pA, i64 iB){
1449 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1450   return __builtin_add_overflow(*pA, iB, pA);
1451 #else
1452   i64 iA = *pA;
1453   testcase( iA==0 ); testcase( iA==1 );
1454   testcase( iB==-1 ); testcase( iB==0 );
1455   if( iB>=0 ){
1456     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1457     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1458     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1459   }else{
1460     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1461     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1462     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1463   }
1464   *pA += iB;
1465   return 0;
1466 #endif
1467 }
1468 int sqlite3SubInt64(i64 *pA, i64 iB){
1469 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1470   return __builtin_sub_overflow(*pA, iB, pA);
1471 #else
1472   testcase( iB==SMALLEST_INT64+1 );
1473   if( iB==SMALLEST_INT64 ){
1474     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1475     if( (*pA)>=0 ) return 1;
1476     *pA -= iB;
1477     return 0;
1478   }else{
1479     return sqlite3AddInt64(pA, -iB);
1480   }
1481 #endif
1482 }
1483 int sqlite3MulInt64(i64 *pA, i64 iB){
1484 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1485   return __builtin_mul_overflow(*pA, iB, pA);
1486 #else
1487   i64 iA = *pA;
1488   if( iB>0 ){
1489     if( iA>LARGEST_INT64/iB ) return 1;
1490     if( iA<SMALLEST_INT64/iB ) return 1;
1491   }else if( iB<0 ){
1492     if( iA>0 ){
1493       if( iB<SMALLEST_INT64/iA ) return 1;
1494     }else if( iA<0 ){
1495       if( iB==SMALLEST_INT64 ) return 1;
1496       if( iA==SMALLEST_INT64 ) return 1;
1497       if( -iA>LARGEST_INT64/-iB ) return 1;
1498     }
1499   }
1500   *pA = iA*iB;
1501   return 0;
1502 #endif
1503 }
1504 
1505 /*
1506 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1507 ** if the integer has a value of -2147483648, return +2147483647
1508 */
1509 int sqlite3AbsInt32(int x){
1510   if( x>=0 ) return x;
1511   if( x==(int)0x80000000 ) return 0x7fffffff;
1512   return -x;
1513 }
1514 
1515 #ifdef SQLITE_ENABLE_8_3_NAMES
1516 /*
1517 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1518 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1519 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1520 ** three characters, then shorten the suffix on z[] to be the last three
1521 ** characters of the original suffix.
1522 **
1523 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1524 ** do the suffix shortening regardless of URI parameter.
1525 **
1526 ** Examples:
1527 **
1528 **     test.db-journal    =>   test.nal
1529 **     test.db-wal        =>   test.wal
1530 **     test.db-shm        =>   test.shm
1531 **     test.db-mj7f3319fa =>   test.9fa
1532 */
1533 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1534 #if SQLITE_ENABLE_8_3_NAMES<2
1535   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1536 #endif
1537   {
1538     int i, sz;
1539     sz = sqlite3Strlen30(z);
1540     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1541     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1542   }
1543 }
1544 #endif
1545 
1546 /*
1547 ** Find (an approximate) sum of two LogEst values.  This computation is
1548 ** not a simple "+" operator because LogEst is stored as a logarithmic
1549 ** value.
1550 **
1551 */
1552 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1553   static const unsigned char x[] = {
1554      10, 10,                         /* 0,1 */
1555       9, 9,                          /* 2,3 */
1556       8, 8,                          /* 4,5 */
1557       7, 7, 7,                       /* 6,7,8 */
1558       6, 6, 6,                       /* 9,10,11 */
1559       5, 5, 5,                       /* 12-14 */
1560       4, 4, 4, 4,                    /* 15-18 */
1561       3, 3, 3, 3, 3, 3,              /* 19-24 */
1562       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1563   };
1564   if( a>=b ){
1565     if( a>b+49 ) return a;
1566     if( a>b+31 ) return a+1;
1567     return a+x[a-b];
1568   }else{
1569     if( b>a+49 ) return b;
1570     if( b>a+31 ) return b+1;
1571     return b+x[b-a];
1572   }
1573 }
1574 
1575 /*
1576 ** Convert an integer into a LogEst.  In other words, compute an
1577 ** approximation for 10*log2(x).
1578 */
1579 LogEst sqlite3LogEst(u64 x){
1580   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1581   LogEst y = 40;
1582   if( x<8 ){
1583     if( x<2 ) return 0;
1584     while( x<8 ){  y -= 10; x <<= 1; }
1585   }else{
1586 #if GCC_VERSION>=5004000
1587     int i = 60 - __builtin_clzll(x);
1588     y += i*10;
1589     x >>= i;
1590 #else
1591     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1592     while( x>15 ){  y += 10; x >>= 1; }
1593 #endif
1594   }
1595   return a[x&7] + y - 10;
1596 }
1597 
1598 #ifndef SQLITE_OMIT_VIRTUALTABLE
1599 /*
1600 ** Convert a double into a LogEst
1601 ** In other words, compute an approximation for 10*log2(x).
1602 */
1603 LogEst sqlite3LogEstFromDouble(double x){
1604   u64 a;
1605   LogEst e;
1606   assert( sizeof(x)==8 && sizeof(a)==8 );
1607   if( x<=1 ) return 0;
1608   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1609   memcpy(&a, &x, 8);
1610   e = (a>>52) - 1022;
1611   return e*10;
1612 }
1613 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1614 
1615 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1616     defined(SQLITE_ENABLE_STAT4) || \
1617     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1618 /*
1619 ** Convert a LogEst into an integer.
1620 **
1621 ** Note that this routine is only used when one or more of various
1622 ** non-standard compile-time options is enabled.
1623 */
1624 u64 sqlite3LogEstToInt(LogEst x){
1625   u64 n;
1626   n = x%10;
1627   x /= 10;
1628   if( n>=5 ) n -= 2;
1629   else if( n>=1 ) n -= 1;
1630 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1631     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1632   if( x>60 ) return (u64)LARGEST_INT64;
1633 #else
1634   /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
1635   ** possible to this routine is 310, resulting in a maximum x of 31 */
1636   assert( x<=60 );
1637 #endif
1638   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1639 }
1640 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1641 
1642 /*
1643 ** Add a new name/number pair to a VList.  This might require that the
1644 ** VList object be reallocated, so return the new VList.  If an OOM
1645 ** error occurs, the original VList returned and the
1646 ** db->mallocFailed flag is set.
1647 **
1648 ** A VList is really just an array of integers.  To destroy a VList,
1649 ** simply pass it to sqlite3DbFree().
1650 **
1651 ** The first integer is the number of integers allocated for the whole
1652 ** VList.  The second integer is the number of integers actually used.
1653 ** Each name/number pair is encoded by subsequent groups of 3 or more
1654 ** integers.
1655 **
1656 ** Each name/number pair starts with two integers which are the numeric
1657 ** value for the pair and the size of the name/number pair, respectively.
1658 ** The text name overlays one or more following integers.  The text name
1659 ** is always zero-terminated.
1660 **
1661 ** Conceptually:
1662 **
1663 **    struct VList {
1664 **      int nAlloc;   // Number of allocated slots
1665 **      int nUsed;    // Number of used slots
1666 **      struct VListEntry {
1667 **        int iValue;    // Value for this entry
1668 **        int nSlot;     // Slots used by this entry
1669 **        // ... variable name goes here
1670 **      } a[0];
1671 **    }
1672 **
1673 ** During code generation, pointers to the variable names within the
1674 ** VList are taken.  When that happens, nAlloc is set to zero as an
1675 ** indication that the VList may never again be enlarged, since the
1676 ** accompanying realloc() would invalidate the pointers.
1677 */
1678 VList *sqlite3VListAdd(
1679   sqlite3 *db,           /* The database connection used for malloc() */
1680   VList *pIn,            /* The input VList.  Might be NULL */
1681   const char *zName,     /* Name of symbol to add */
1682   int nName,             /* Bytes of text in zName */
1683   int iVal               /* Value to associate with zName */
1684 ){
1685   int nInt;              /* number of sizeof(int) objects needed for zName */
1686   char *z;               /* Pointer to where zName will be stored */
1687   int i;                 /* Index in pIn[] where zName is stored */
1688 
1689   nInt = nName/4 + 3;
1690   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1691   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1692     /* Enlarge the allocation */
1693     sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1694     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1695     if( pOut==0 ) return pIn;
1696     if( pIn==0 ) pOut[1] = 2;
1697     pIn = pOut;
1698     pIn[0] = nAlloc;
1699   }
1700   i = pIn[1];
1701   pIn[i] = iVal;
1702   pIn[i+1] = nInt;
1703   z = (char*)&pIn[i+2];
1704   pIn[1] = i+nInt;
1705   assert( pIn[1]<=pIn[0] );
1706   memcpy(z, zName, nName);
1707   z[nName] = 0;
1708   return pIn;
1709 }
1710 
1711 /*
1712 ** Return a pointer to the name of a variable in the given VList that
1713 ** has the value iVal.  Or return a NULL if there is no such variable in
1714 ** the list
1715 */
1716 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1717   int i, mx;
1718   if( pIn==0 ) return 0;
1719   mx = pIn[1];
1720   i = 2;
1721   do{
1722     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1723     i += pIn[i+1];
1724   }while( i<mx );
1725   return 0;
1726 }
1727 
1728 /*
1729 ** Return the number of the variable named zName, if it is in VList.
1730 ** or return 0 if there is no such variable.
1731 */
1732 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1733   int i, mx;
1734   if( pIn==0 ) return 0;
1735   mx = pIn[1];
1736   i = 2;
1737   do{
1738     const char *z = (const char*)&pIn[i+2];
1739     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1740     i += pIn[i+1];
1741   }while( i<mx );
1742   return 0;
1743 }
1744