1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 ** $Id: util.c,v 1.251 2009/04/17 15:18:48 drh Exp $ 18 */ 19 #include "sqliteInt.h" 20 #include <stdarg.h> 21 #include <math.h> 22 23 /* 24 ** Routine needed to support the testcase() macro. 25 */ 26 #ifdef SQLITE_COVERAGE_TEST 27 void sqlite3Coverage(int x){ 28 static int dummy = 0; 29 dummy += x; 30 } 31 #endif 32 33 /* 34 ** Routine needed to support the ALWAYS() and NEVER() macros. 35 ** 36 ** The argument to ALWAYS() should always be true and the argument 37 ** to NEVER() should always be false. If either is not the case 38 ** then this routine is called in order to throw an error. 39 ** 40 ** This routine only exists if assert() is operational. It always 41 ** throws an assert on its first invocation. The variable has a long 42 ** name to help the assert() message be more readable. The variable 43 ** is used to prevent a too-clever optimizer from optimizing out the 44 ** entire call. 45 */ 46 #ifndef NDEBUG 47 int sqlite3Assert(void){ 48 static volatile int ALWAYS_was_false_or_NEVER_was_true = 0; 49 assert( ALWAYS_was_false_or_NEVER_was_true ); /* Always fails */ 50 return ALWAYS_was_false_or_NEVER_was_true++; /* Not Reached */ 51 } 52 #endif 53 54 /* 55 ** Return true if the floating point value is Not a Number (NaN). 56 ** 57 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 58 ** Otherwise, we have our own implementation that works on most systems. 59 */ 60 int sqlite3IsNaN(double x){ 61 #if !defined(SQLITE_HAVE_ISNAN) 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 return y!=z; 91 #else /* if defined(SQLITE_HAVE_ISNAN) */ 92 return isnan(x); 93 #endif /* SQLITE_HAVE_ISNAN */ 94 } 95 96 /* 97 ** Compute a string length that is limited to what can be stored in 98 ** lower 30 bits of a 32-bit signed integer. 99 */ 100 int sqlite3Strlen30(const char *z){ 101 const char *z2 = z; 102 while( *z2 ){ z2++; } 103 return 0x3fffffff & (int)(z2 - z); 104 } 105 106 /* 107 ** Return the length of a string, except do not allow the string length 108 ** to exceed the SQLITE_LIMIT_LENGTH setting. 109 */ 110 int sqlite3Strlen(sqlite3 *db, const char *z){ 111 const char *z2 = z; 112 int len; 113 int x; 114 while( *z2 ){ z2++; } 115 x = (int)(z2 - z); 116 len = 0x7fffffff & x; 117 if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){ 118 return db->aLimit[SQLITE_LIMIT_LENGTH]; 119 }else{ 120 return len; 121 } 122 } 123 124 /* 125 ** Set the most recent error code and error string for the sqlite 126 ** handle "db". The error code is set to "err_code". 127 ** 128 ** If it is not NULL, string zFormat specifies the format of the 129 ** error string in the style of the printf functions: The following 130 ** format characters are allowed: 131 ** 132 ** %s Insert a string 133 ** %z A string that should be freed after use 134 ** %d Insert an integer 135 ** %T Insert a token 136 ** %S Insert the first element of a SrcList 137 ** 138 ** zFormat and any string tokens that follow it are assumed to be 139 ** encoded in UTF-8. 140 ** 141 ** To clear the most recent error for sqlite handle "db", sqlite3Error 142 ** should be called with err_code set to SQLITE_OK and zFormat set 143 ** to NULL. 144 */ 145 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 146 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 147 db->errCode = err_code; 148 if( zFormat ){ 149 char *z; 150 va_list ap; 151 va_start(ap, zFormat); 152 z = sqlite3VMPrintf(db, zFormat, ap); 153 va_end(ap); 154 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 155 }else{ 156 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 157 } 158 } 159 } 160 161 /* 162 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 163 ** The following formatting characters are allowed: 164 ** 165 ** %s Insert a string 166 ** %z A string that should be freed after use 167 ** %d Insert an integer 168 ** %T Insert a token 169 ** %S Insert the first element of a SrcList 170 ** 171 ** This function should be used to report any error that occurs whilst 172 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 173 ** last thing the sqlite3_prepare() function does is copy the error 174 ** stored by this function into the database handle using sqlite3Error(). 175 ** Function sqlite3Error() should be used during statement execution 176 ** (sqlite3_step() etc.). 177 */ 178 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 179 va_list ap; 180 sqlite3 *db = pParse->db; 181 pParse->nErr++; 182 sqlite3DbFree(db, pParse->zErrMsg); 183 va_start(ap, zFormat); 184 pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); 185 va_end(ap); 186 if( pParse->rc==SQLITE_OK ){ 187 pParse->rc = SQLITE_ERROR; 188 } 189 } 190 191 /* 192 ** Clear the error message in pParse, if any 193 */ 194 void sqlite3ErrorClear(Parse *pParse){ 195 sqlite3DbFree(pParse->db, pParse->zErrMsg); 196 pParse->zErrMsg = 0; 197 pParse->nErr = 0; 198 } 199 200 /* 201 ** Convert an SQL-style quoted string into a normal string by removing 202 ** the quote characters. The conversion is done in-place. If the 203 ** input does not begin with a quote character, then this routine 204 ** is a no-op. 205 ** 206 ** 2002-Feb-14: This routine is extended to remove MS-Access style 207 ** brackets from around identifers. For example: "[a-b-c]" becomes 208 ** "a-b-c". 209 */ 210 void sqlite3Dequote(char *z){ 211 char quote; 212 int i, j; 213 if( z==0 ) return; 214 quote = z[0]; 215 switch( quote ){ 216 case '\'': break; 217 case '"': break; 218 case '`': break; /* For MySQL compatibility */ 219 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 220 default: return; 221 } 222 for(i=1, j=0; z[i]; i++){ 223 if( z[i]==quote ){ 224 if( z[i+1]==quote ){ 225 z[j++] = quote; 226 i++; 227 }else{ 228 z[j++] = 0; 229 break; 230 } 231 }else{ 232 z[j++] = z[i]; 233 } 234 } 235 } 236 237 /* Convenient short-hand */ 238 #define UpperToLower sqlite3UpperToLower 239 240 /* 241 ** Some systems have stricmp(). Others have strcasecmp(). Because 242 ** there is no consistency, we will define our own. 243 */ 244 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 245 register unsigned char *a, *b; 246 a = (unsigned char *)zLeft; 247 b = (unsigned char *)zRight; 248 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 249 return UpperToLower[*a] - UpperToLower[*b]; 250 } 251 int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ 252 register unsigned char *a, *b; 253 a = (unsigned char *)zLeft; 254 b = (unsigned char *)zRight; 255 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 256 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 257 } 258 259 /* 260 ** Return TRUE if z is a pure numeric string. Return FALSE if the 261 ** string contains any character which is not part of a number. If 262 ** the string is numeric and contains the '.' character, set *realnum 263 ** to TRUE (otherwise FALSE). 264 ** 265 ** An empty string is considered non-numeric. 266 */ 267 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ 268 int incr = (enc==SQLITE_UTF8?1:2); 269 if( enc==SQLITE_UTF16BE ) z++; 270 if( *z=='-' || *z=='+' ) z += incr; 271 if( !sqlite3Isdigit(*z) ){ 272 return 0; 273 } 274 z += incr; 275 if( realnum ) *realnum = 0; 276 while( sqlite3Isdigit(*z) ){ z += incr; } 277 if( *z=='.' ){ 278 z += incr; 279 if( !sqlite3Isdigit(*z) ) return 0; 280 while( sqlite3Isdigit(*z) ){ z += incr; } 281 if( realnum ) *realnum = 1; 282 } 283 if( *z=='e' || *z=='E' ){ 284 z += incr; 285 if( *z=='+' || *z=='-' ) z += incr; 286 if( !sqlite3Isdigit(*z) ) return 0; 287 while( sqlite3Isdigit(*z) ){ z += incr; } 288 if( realnum ) *realnum = 1; 289 } 290 return *z==0; 291 } 292 293 /* 294 ** The string z[] is an ascii representation of a real number. 295 ** Convert this string to a double. 296 ** 297 ** This routine assumes that z[] really is a valid number. If it 298 ** is not, the result is undefined. 299 ** 300 ** This routine is used instead of the library atof() function because 301 ** the library atof() might want to use "," as the decimal point instead 302 ** of "." depending on how locale is set. But that would cause problems 303 ** for SQL. So this routine always uses "." regardless of locale. 304 */ 305 int sqlite3AtoF(const char *z, double *pResult){ 306 #ifndef SQLITE_OMIT_FLOATING_POINT 307 int sign = 1; 308 const char *zBegin = z; 309 LONGDOUBLE_TYPE v1 = 0.0; 310 int nSignificant = 0; 311 while( sqlite3Isspace(*z) ) z++; 312 if( *z=='-' ){ 313 sign = -1; 314 z++; 315 }else if( *z=='+' ){ 316 z++; 317 } 318 while( z[0]=='0' ){ 319 z++; 320 } 321 while( sqlite3Isdigit(*z) ){ 322 v1 = v1*10.0 + (*z - '0'); 323 z++; 324 nSignificant++; 325 } 326 if( *z=='.' ){ 327 LONGDOUBLE_TYPE divisor = 1.0; 328 z++; 329 if( nSignificant==0 ){ 330 while( z[0]=='0' ){ 331 divisor *= 10.0; 332 z++; 333 } 334 } 335 while( sqlite3Isdigit(*z) ){ 336 if( nSignificant<18 ){ 337 v1 = v1*10.0 + (*z - '0'); 338 divisor *= 10.0; 339 nSignificant++; 340 } 341 z++; 342 } 343 v1 /= divisor; 344 } 345 if( *z=='e' || *z=='E' ){ 346 int esign = 1; 347 int eval = 0; 348 LONGDOUBLE_TYPE scale = 1.0; 349 z++; 350 if( *z=='-' ){ 351 esign = -1; 352 z++; 353 }else if( *z=='+' ){ 354 z++; 355 } 356 while( sqlite3Isdigit(*z) ){ 357 eval = eval*10 + *z - '0'; 358 z++; 359 } 360 while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } 361 while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } 362 while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } 363 while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } 364 if( esign<0 ){ 365 v1 /= scale; 366 }else{ 367 v1 *= scale; 368 } 369 } 370 *pResult = (double)(sign<0 ? -v1 : v1); 371 return (int)(z - zBegin); 372 #else 373 return sqlite3Atoi64(z, pResult); 374 #endif /* SQLITE_OMIT_FLOATING_POINT */ 375 } 376 377 /* 378 ** Compare the 19-character string zNum against the text representation 379 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 380 ** if zNum is less than, equal to, or greater than the string. 381 ** 382 ** Unlike memcmp() this routine is guaranteed to return the difference 383 ** in the values of the last digit if the only difference is in the 384 ** last digit. So, for example, 385 ** 386 ** compare2pow63("9223372036854775800") 387 ** 388 ** will return -8. 389 */ 390 static int compare2pow63(const char *zNum){ 391 int c; 392 c = memcmp(zNum,"922337203685477580",18); 393 if( c==0 ){ 394 c = zNum[18] - '8'; 395 } 396 return c; 397 } 398 399 400 /* 401 ** Return TRUE if zNum is a 64-bit signed integer and write 402 ** the value of the integer into *pNum. If zNum is not an integer 403 ** or is an integer that is too large to be expressed with 64 bits, 404 ** then return false. 405 ** 406 ** When this routine was originally written it dealt with only 407 ** 32-bit numbers. At that time, it was much faster than the 408 ** atoi() library routine in RedHat 7.2. 409 */ 410 int sqlite3Atoi64(const char *zNum, i64 *pNum){ 411 i64 v = 0; 412 int neg; 413 int i, c; 414 const char *zStart; 415 while( sqlite3Isspace(*zNum) ) zNum++; 416 if( *zNum=='-' ){ 417 neg = 1; 418 zNum++; 419 }else if( *zNum=='+' ){ 420 neg = 0; 421 zNum++; 422 }else{ 423 neg = 0; 424 } 425 zStart = zNum; 426 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ 427 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ 428 v = v*10 + c - '0'; 429 } 430 *pNum = neg ? -v : v; 431 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ 432 /* zNum is empty or contains non-numeric text or is longer 433 ** than 19 digits (thus guaranting that it is too large) */ 434 return 0; 435 }else if( i<19 ){ 436 /* Less than 19 digits, so we know that it fits in 64 bits */ 437 return 1; 438 }else{ 439 /* 19-digit numbers must be no larger than 9223372036854775807 if positive 440 ** or 9223372036854775808 if negative. Note that 9223372036854665808 441 ** is 2^63. */ 442 return compare2pow63(zNum)<neg; 443 } 444 } 445 446 /* 447 ** The string zNum represents an integer. There might be some other 448 ** information following the integer too, but that part is ignored. 449 ** If the integer that the prefix of zNum represents will fit in a 450 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. 451 ** 452 ** This routine returns FALSE for the string -9223372036854775808 even that 453 ** that number will, in theory fit in a 64-bit integer. Positive 454 ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return 455 ** false. 456 */ 457 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ 458 int i, c; 459 int neg = 0; 460 if( *zNum=='-' ){ 461 neg = 1; 462 zNum++; 463 }else if( *zNum=='+' ){ 464 zNum++; 465 } 466 if( negFlag ) neg = 1-neg; 467 while( *zNum=='0' ){ 468 zNum++; /* Skip leading zeros. Ticket #2454 */ 469 } 470 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} 471 if( i<19 ){ 472 /* Guaranteed to fit if less than 19 digits */ 473 return 1; 474 }else if( i>19 ){ 475 /* Guaranteed to be too big if greater than 19 digits */ 476 return 0; 477 }else{ 478 /* Compare against 2^63. */ 479 return compare2pow63(zNum)<neg; 480 } 481 } 482 483 /* 484 ** If zNum represents an integer that will fit in 32-bits, then set 485 ** *pValue to that integer and return true. Otherwise return false. 486 ** 487 ** Any non-numeric characters that following zNum are ignored. 488 ** This is different from sqlite3Atoi64() which requires the 489 ** input number to be zero-terminated. 490 */ 491 int sqlite3GetInt32(const char *zNum, int *pValue){ 492 sqlite_int64 v = 0; 493 int i, c; 494 int neg = 0; 495 if( zNum[0]=='-' ){ 496 neg = 1; 497 zNum++; 498 }else if( zNum[0]=='+' ){ 499 zNum++; 500 } 501 while( zNum[0]=='0' ) zNum++; 502 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 503 v = v*10 + c; 504 } 505 506 /* The longest decimal representation of a 32 bit integer is 10 digits: 507 ** 508 ** 1234567890 509 ** 2^31 -> 2147483648 510 */ 511 if( i>10 ){ 512 return 0; 513 } 514 if( v-neg>2147483647 ){ 515 return 0; 516 } 517 if( neg ){ 518 v = -v; 519 } 520 *pValue = (int)v; 521 return 1; 522 } 523 524 /* 525 ** The variable-length integer encoding is as follows: 526 ** 527 ** KEY: 528 ** A = 0xxxxxxx 7 bits of data and one flag bit 529 ** B = 1xxxxxxx 7 bits of data and one flag bit 530 ** C = xxxxxxxx 8 bits of data 531 ** 532 ** 7 bits - A 533 ** 14 bits - BA 534 ** 21 bits - BBA 535 ** 28 bits - BBBA 536 ** 35 bits - BBBBA 537 ** 42 bits - BBBBBA 538 ** 49 bits - BBBBBBA 539 ** 56 bits - BBBBBBBA 540 ** 64 bits - BBBBBBBBC 541 */ 542 543 /* 544 ** Write a 64-bit variable-length integer to memory starting at p[0]. 545 ** The length of data write will be between 1 and 9 bytes. The number 546 ** of bytes written is returned. 547 ** 548 ** A variable-length integer consists of the lower 7 bits of each byte 549 ** for all bytes that have the 8th bit set and one byte with the 8th 550 ** bit clear. Except, if we get to the 9th byte, it stores the full 551 ** 8 bits and is the last byte. 552 */ 553 int sqlite3PutVarint(unsigned char *p, u64 v){ 554 int i, j, n; 555 u8 buf[10]; 556 if( v & (((u64)0xff000000)<<32) ){ 557 p[8] = (u8)v; 558 v >>= 8; 559 for(i=7; i>=0; i--){ 560 p[i] = (u8)((v & 0x7f) | 0x80); 561 v >>= 7; 562 } 563 return 9; 564 } 565 n = 0; 566 do{ 567 buf[n++] = (u8)((v & 0x7f) | 0x80); 568 v >>= 7; 569 }while( v!=0 ); 570 buf[0] &= 0x7f; 571 assert( n<=9 ); 572 for(i=0, j=n-1; j>=0; j--, i++){ 573 p[i] = buf[j]; 574 } 575 return n; 576 } 577 578 /* 579 ** This routine is a faster version of sqlite3PutVarint() that only 580 ** works for 32-bit positive integers and which is optimized for 581 ** the common case of small integers. A MACRO version, putVarint32, 582 ** is provided which inlines the single-byte case. All code should use 583 ** the MACRO version as this function assumes the single-byte case has 584 ** already been handled. 585 */ 586 int sqlite3PutVarint32(unsigned char *p, u32 v){ 587 #ifndef putVarint32 588 if( (v & ~0x7f)==0 ){ 589 p[0] = v; 590 return 1; 591 } 592 #endif 593 if( (v & ~0x3fff)==0 ){ 594 p[0] = (u8)((v>>7) | 0x80); 595 p[1] = (u8)(v & 0x7f); 596 return 2; 597 } 598 return sqlite3PutVarint(p, v); 599 } 600 601 /* 602 ** Read a 64-bit variable-length integer from memory starting at p[0]. 603 ** Return the number of bytes read. The value is stored in *v. 604 */ 605 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 606 u32 a,b,s; 607 608 a = *p; 609 /* a: p0 (unmasked) */ 610 if (!(a&0x80)) 611 { 612 *v = a; 613 return 1; 614 } 615 616 p++; 617 b = *p; 618 /* b: p1 (unmasked) */ 619 if (!(b&0x80)) 620 { 621 a &= 0x7f; 622 a = a<<7; 623 a |= b; 624 *v = a; 625 return 2; 626 } 627 628 p++; 629 a = a<<14; 630 a |= *p; 631 /* a: p0<<14 | p2 (unmasked) */ 632 if (!(a&0x80)) 633 { 634 a &= (0x7f<<14)|(0x7f); 635 b &= 0x7f; 636 b = b<<7; 637 a |= b; 638 *v = a; 639 return 3; 640 } 641 642 /* CSE1 from below */ 643 a &= (0x7f<<14)|(0x7f); 644 p++; 645 b = b<<14; 646 b |= *p; 647 /* b: p1<<14 | p3 (unmasked) */ 648 if (!(b&0x80)) 649 { 650 b &= (0x7f<<14)|(0x7f); 651 /* moved CSE1 up */ 652 /* a &= (0x7f<<14)|(0x7f); */ 653 a = a<<7; 654 a |= b; 655 *v = a; 656 return 4; 657 } 658 659 /* a: p0<<14 | p2 (masked) */ 660 /* b: p1<<14 | p3 (unmasked) */ 661 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 662 /* moved CSE1 up */ 663 /* a &= (0x7f<<14)|(0x7f); */ 664 b &= (0x7f<<14)|(0x7f); 665 s = a; 666 /* s: p0<<14 | p2 (masked) */ 667 668 p++; 669 a = a<<14; 670 a |= *p; 671 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 672 if (!(a&0x80)) 673 { 674 /* we can skip these cause they were (effectively) done above in calc'ing s */ 675 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 676 /* b &= (0x7f<<14)|(0x7f); */ 677 b = b<<7; 678 a |= b; 679 s = s>>18; 680 *v = ((u64)s)<<32 | a; 681 return 5; 682 } 683 684 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 685 s = s<<7; 686 s |= b; 687 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 688 689 p++; 690 b = b<<14; 691 b |= *p; 692 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 693 if (!(b&0x80)) 694 { 695 /* we can skip this cause it was (effectively) done above in calc'ing s */ 696 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 697 a &= (0x7f<<14)|(0x7f); 698 a = a<<7; 699 a |= b; 700 s = s>>18; 701 *v = ((u64)s)<<32 | a; 702 return 6; 703 } 704 705 p++; 706 a = a<<14; 707 a |= *p; 708 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 709 if (!(a&0x80)) 710 { 711 a &= (0x1f<<28)|(0x7f<<14)|(0x7f); 712 b &= (0x7f<<14)|(0x7f); 713 b = b<<7; 714 a |= b; 715 s = s>>11; 716 *v = ((u64)s)<<32 | a; 717 return 7; 718 } 719 720 /* CSE2 from below */ 721 a &= (0x7f<<14)|(0x7f); 722 p++; 723 b = b<<14; 724 b |= *p; 725 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 726 if (!(b&0x80)) 727 { 728 b &= (0x1f<<28)|(0x7f<<14)|(0x7f); 729 /* moved CSE2 up */ 730 /* a &= (0x7f<<14)|(0x7f); */ 731 a = a<<7; 732 a |= b; 733 s = s>>4; 734 *v = ((u64)s)<<32 | a; 735 return 8; 736 } 737 738 p++; 739 a = a<<15; 740 a |= *p; 741 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 742 743 /* moved CSE2 up */ 744 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 745 b &= (0x7f<<14)|(0x7f); 746 b = b<<8; 747 a |= b; 748 749 s = s<<4; 750 b = p[-4]; 751 b &= 0x7f; 752 b = b>>3; 753 s |= b; 754 755 *v = ((u64)s)<<32 | a; 756 757 return 9; 758 } 759 760 /* 761 ** Read a 32-bit variable-length integer from memory starting at p[0]. 762 ** Return the number of bytes read. The value is stored in *v. 763 ** A MACRO version, getVarint32, is provided which inlines the 764 ** single-byte case. All code should use the MACRO version as 765 ** this function assumes the single-byte case has already been handled. 766 */ 767 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 768 u32 a,b; 769 770 a = *p; 771 /* a: p0 (unmasked) */ 772 #ifndef getVarint32 773 if (!(a&0x80)) 774 { 775 *v = a; 776 return 1; 777 } 778 #endif 779 780 p++; 781 b = *p; 782 /* b: p1 (unmasked) */ 783 if (!(b&0x80)) 784 { 785 a &= 0x7f; 786 a = a<<7; 787 *v = a | b; 788 return 2; 789 } 790 791 p++; 792 a = a<<14; 793 a |= *p; 794 /* a: p0<<14 | p2 (unmasked) */ 795 if (!(a&0x80)) 796 { 797 a &= (0x7f<<14)|(0x7f); 798 b &= 0x7f; 799 b = b<<7; 800 *v = a | b; 801 return 3; 802 } 803 804 p++; 805 b = b<<14; 806 b |= *p; 807 /* b: p1<<14 | p3 (unmasked) */ 808 if (!(b&0x80)) 809 { 810 b &= (0x7f<<14)|(0x7f); 811 a &= (0x7f<<14)|(0x7f); 812 a = a<<7; 813 *v = a | b; 814 return 4; 815 } 816 817 p++; 818 a = a<<14; 819 a |= *p; 820 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 821 if (!(a&0x80)) 822 { 823 a &= (0x1f<<28)|(0x7f<<14)|(0x7f); 824 b &= (0x1f<<28)|(0x7f<<14)|(0x7f); 825 b = b<<7; 826 *v = a | b; 827 return 5; 828 } 829 830 /* We can only reach this point when reading a corrupt database 831 ** file. In that case we are not in any hurry. Use the (relatively 832 ** slow) general-purpose sqlite3GetVarint() routine to extract the 833 ** value. */ 834 { 835 u64 v64; 836 u8 n; 837 838 p -= 4; 839 n = sqlite3GetVarint(p, &v64); 840 assert( n>5 && n<=9 ); 841 *v = (u32)v64; 842 return n; 843 } 844 } 845 846 /* 847 ** Return the number of bytes that will be needed to store the given 848 ** 64-bit integer. 849 */ 850 int sqlite3VarintLen(u64 v){ 851 int i = 0; 852 do{ 853 i++; 854 v >>= 7; 855 }while( v!=0 && i<9 ); 856 return i; 857 } 858 859 860 /* 861 ** Read or write a four-byte big-endian integer value. 862 */ 863 u32 sqlite3Get4byte(const u8 *p){ 864 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 865 } 866 void sqlite3Put4byte(unsigned char *p, u32 v){ 867 p[0] = (u8)(v>>24); 868 p[1] = (u8)(v>>16); 869 p[2] = (u8)(v>>8); 870 p[3] = (u8)v; 871 } 872 873 874 875 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 876 /* 877 ** Translate a single byte of Hex into an integer. 878 ** This routinen only works if h really is a valid hexadecimal 879 ** character: 0..9a..fA..F 880 */ 881 static u8 hexToInt(int h){ 882 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 883 #ifdef SQLITE_ASCII 884 h += 9*(1&(h>>6)); 885 #endif 886 #ifdef SQLITE_EBCDIC 887 h += 9*(1&~(h>>4)); 888 #endif 889 return (u8)(h & 0xf); 890 } 891 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 892 893 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 894 /* 895 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 896 ** value. Return a pointer to its binary value. Space to hold the 897 ** binary value has been obtained from malloc and must be freed by 898 ** the calling routine. 899 */ 900 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 901 char *zBlob; 902 int i; 903 904 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 905 n--; 906 if( zBlob ){ 907 for(i=0; i<n; i+=2){ 908 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 909 } 910 zBlob[i/2] = 0; 911 } 912 return zBlob; 913 } 914 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 915 916 917 /* 918 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. 919 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN 920 ** when this routine is called. 921 ** 922 ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN 923 ** value indicates that the database connection passed into the API is 924 ** open and is not being used by another thread. By changing the value 925 ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. 926 ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN 927 ** when the API exits. 928 ** 929 ** This routine is a attempt to detect if two threads use the 930 ** same sqlite* pointer at the same time. There is a race 931 ** condition so it is possible that the error is not detected. 932 ** But usually the problem will be seen. The result will be an 933 ** error which can be used to debug the application that is 934 ** using SQLite incorrectly. 935 ** 936 ** Ticket #202: If db->magic is not a valid open value, take care not 937 ** to modify the db structure at all. It could be that db is a stale 938 ** pointer. In other words, it could be that there has been a prior 939 ** call to sqlite3_close(db) and db has been deallocated. And we do 940 ** not want to write into deallocated memory. 941 */ 942 #ifdef SQLITE_DEBUG 943 int sqlite3SafetyOn(sqlite3 *db){ 944 if( db->magic==SQLITE_MAGIC_OPEN ){ 945 db->magic = SQLITE_MAGIC_BUSY; 946 assert( sqlite3_mutex_held(db->mutex) ); 947 return 0; 948 }else if( db->magic==SQLITE_MAGIC_BUSY ){ 949 db->magic = SQLITE_MAGIC_ERROR; 950 db->u1.isInterrupted = 1; 951 } 952 return 1; 953 } 954 #endif 955 956 /* 957 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. 958 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY 959 ** when this routine is called. 960 */ 961 #ifdef SQLITE_DEBUG 962 int sqlite3SafetyOff(sqlite3 *db){ 963 if( db->magic==SQLITE_MAGIC_BUSY ){ 964 db->magic = SQLITE_MAGIC_OPEN; 965 assert( sqlite3_mutex_held(db->mutex) ); 966 return 0; 967 }else{ 968 db->magic = SQLITE_MAGIC_ERROR; 969 db->u1.isInterrupted = 1; 970 return 1; 971 } 972 } 973 #endif 974 975 /* 976 ** Check to make sure we have a valid db pointer. This test is not 977 ** foolproof but it does provide some measure of protection against 978 ** misuse of the interface such as passing in db pointers that are 979 ** NULL or which have been previously closed. If this routine returns 980 ** 1 it means that the db pointer is valid and 0 if it should not be 981 ** dereferenced for any reason. The calling function should invoke 982 ** SQLITE_MISUSE immediately. 983 ** 984 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 985 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 986 ** open properly and is not fit for general use but which can be 987 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 988 */ 989 int sqlite3SafetyCheckOk(sqlite3 *db){ 990 u32 magic; 991 if( db==0 ) return 0; 992 magic = db->magic; 993 if( magic!=SQLITE_MAGIC_OPEN && 994 magic!=SQLITE_MAGIC_BUSY ) return 0; 995 return 1; 996 } 997 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 998 u32 magic; 999 if( db==0 ) return 0; 1000 magic = db->magic; 1001 if( magic!=SQLITE_MAGIC_SICK && 1002 magic!=SQLITE_MAGIC_OPEN && 1003 magic!=SQLITE_MAGIC_BUSY ) return 0; 1004 return 1; 1005 } 1006