1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_OMIT_BUILTIN_TEST 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 if( z==0 ) return 0; 109 return 0x3fffffff & (int)strlen(z); 110 } 111 112 /* 113 ** The string z[] is followed immediately by another string. Return 114 ** a poiner to that other string. 115 */ 116 const char *sqlite3StrNext(const char *z){ 117 return z + strlen(z) + 1; 118 } 119 120 /* 121 ** Set the current error code to err_code and clear any prior error message. 122 */ 123 void sqlite3Error(sqlite3 *db, int err_code){ 124 assert( db!=0 ); 125 db->errCode = err_code; 126 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 127 } 128 129 /* 130 ** Set the most recent error code and error string for the sqlite 131 ** handle "db". The error code is set to "err_code". 132 ** 133 ** If it is not NULL, string zFormat specifies the format of the 134 ** error string in the style of the printf functions: The following 135 ** format characters are allowed: 136 ** 137 ** %s Insert a string 138 ** %z A string that should be freed after use 139 ** %d Insert an integer 140 ** %T Insert a token 141 ** %S Insert the first element of a SrcList 142 ** 143 ** zFormat and any string tokens that follow it are assumed to be 144 ** encoded in UTF-8. 145 ** 146 ** To clear the most recent error for sqlite handle "db", sqlite3Error 147 ** should be called with err_code set to SQLITE_OK and zFormat set 148 ** to NULL. 149 */ 150 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 151 assert( db!=0 ); 152 db->errCode = err_code; 153 if( zFormat==0 ){ 154 sqlite3Error(db, err_code); 155 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 156 char *z; 157 va_list ap; 158 va_start(ap, zFormat); 159 z = sqlite3VMPrintf(db, zFormat, ap); 160 va_end(ap); 161 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 162 } 163 } 164 165 /* 166 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 167 ** The following formatting characters are allowed: 168 ** 169 ** %s Insert a string 170 ** %z A string that should be freed after use 171 ** %d Insert an integer 172 ** %T Insert a token 173 ** %S Insert the first element of a SrcList 174 ** 175 ** This function should be used to report any error that occurs while 176 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 177 ** last thing the sqlite3_prepare() function does is copy the error 178 ** stored by this function into the database handle using sqlite3Error(). 179 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 180 ** during statement execution (sqlite3_step() etc.). 181 */ 182 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 183 char *zMsg; 184 va_list ap; 185 sqlite3 *db = pParse->db; 186 va_start(ap, zFormat); 187 zMsg = sqlite3VMPrintf(db, zFormat, ap); 188 va_end(ap); 189 if( db->suppressErr ){ 190 sqlite3DbFree(db, zMsg); 191 }else{ 192 pParse->nErr++; 193 sqlite3DbFree(db, pParse->zErrMsg); 194 pParse->zErrMsg = zMsg; 195 pParse->rc = SQLITE_ERROR; 196 } 197 } 198 199 /* 200 ** Convert an SQL-style quoted string into a normal string by removing 201 ** the quote characters. The conversion is done in-place. If the 202 ** input does not begin with a quote character, then this routine 203 ** is a no-op. 204 ** 205 ** The input string must be zero-terminated. A new zero-terminator 206 ** is added to the dequoted string. 207 ** 208 ** The return value is -1 if no dequoting occurs or the length of the 209 ** dequoted string, exclusive of the zero terminator, if dequoting does 210 ** occur. 211 ** 212 ** 2002-Feb-14: This routine is extended to remove MS-Access style 213 ** brackets from around identifiers. For example: "[a-b-c]" becomes 214 ** "a-b-c". 215 */ 216 int sqlite3Dequote(char *z){ 217 char quote; 218 int i, j; 219 if( z==0 ) return -1; 220 quote = z[0]; 221 switch( quote ){ 222 case '\'': break; 223 case '"': break; 224 case '`': break; /* For MySQL compatibility */ 225 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 226 default: return -1; 227 } 228 for(i=1, j=0;; i++){ 229 assert( z[i] ); 230 if( z[i]==quote ){ 231 if( z[i+1]==quote ){ 232 z[j++] = quote; 233 i++; 234 }else{ 235 break; 236 } 237 }else{ 238 z[j++] = z[i]; 239 } 240 } 241 z[j] = 0; 242 return j; 243 } 244 245 /* 246 ** Generate a Token object from a string 247 */ 248 void sqlite3TokenInit(Token *p, char *z){ 249 p->z = z; 250 p->n = sqlite3Strlen30(z); 251 } 252 253 /* Convenient short-hand */ 254 #define UpperToLower sqlite3UpperToLower 255 256 /* 257 ** Some systems have stricmp(). Others have strcasecmp(). Because 258 ** there is no consistency, we will define our own. 259 ** 260 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 261 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 262 ** the contents of two buffers containing UTF-8 strings in a 263 ** case-independent fashion, using the same definition of "case 264 ** independence" that SQLite uses internally when comparing identifiers. 265 */ 266 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 267 if( zLeft==0 ){ 268 return zRight ? -1 : 0; 269 }else if( zRight==0 ){ 270 return 1; 271 } 272 return sqlite3StrICmp(zLeft, zRight); 273 } 274 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 275 unsigned char *a, *b; 276 int c; 277 a = (unsigned char *)zLeft; 278 b = (unsigned char *)zRight; 279 for(;;){ 280 c = (int)UpperToLower[*a] - (int)UpperToLower[*b]; 281 if( c || *a==0 ) break; 282 a++; 283 b++; 284 } 285 return c; 286 } 287 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 288 register unsigned char *a, *b; 289 if( zLeft==0 ){ 290 return zRight ? -1 : 0; 291 }else if( zRight==0 ){ 292 return 1; 293 } 294 a = (unsigned char *)zLeft; 295 b = (unsigned char *)zRight; 296 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 297 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 298 } 299 300 /* 301 ** The string z[] is an text representation of a real number. 302 ** Convert this string to a double and write it into *pResult. 303 ** 304 ** The string z[] is length bytes in length (bytes, not characters) and 305 ** uses the encoding enc. The string is not necessarily zero-terminated. 306 ** 307 ** Return TRUE if the result is a valid real number (or integer) and FALSE 308 ** if the string is empty or contains extraneous text. Valid numbers 309 ** are in one of these formats: 310 ** 311 ** [+-]digits[E[+-]digits] 312 ** [+-]digits.[digits][E[+-]digits] 313 ** [+-].digits[E[+-]digits] 314 ** 315 ** Leading and trailing whitespace is ignored for the purpose of determining 316 ** validity. 317 ** 318 ** If some prefix of the input string is a valid number, this routine 319 ** returns FALSE but it still converts the prefix and writes the result 320 ** into *pResult. 321 */ 322 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 323 #ifndef SQLITE_OMIT_FLOATING_POINT 324 int incr; 325 const char *zEnd = z + length; 326 /* sign * significand * (10 ^ (esign * exponent)) */ 327 int sign = 1; /* sign of significand */ 328 i64 s = 0; /* significand */ 329 int d = 0; /* adjust exponent for shifting decimal point */ 330 int esign = 1; /* sign of exponent */ 331 int e = 0; /* exponent */ 332 int eValid = 1; /* True exponent is either not used or is well-formed */ 333 double result; 334 int nDigits = 0; 335 int nonNum = 0; 336 337 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 338 *pResult = 0.0; /* Default return value, in case of an error */ 339 340 if( enc==SQLITE_UTF8 ){ 341 incr = 1; 342 }else{ 343 int i; 344 incr = 2; 345 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 346 for(i=3-enc; i<length && z[i]==0; i+=2){} 347 nonNum = i<length; 348 zEnd = z+i+enc-3; 349 z += (enc&1); 350 } 351 352 /* skip leading spaces */ 353 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 354 if( z>=zEnd ) return 0; 355 356 /* get sign of significand */ 357 if( *z=='-' ){ 358 sign = -1; 359 z+=incr; 360 }else if( *z=='+' ){ 361 z+=incr; 362 } 363 364 /* skip leading zeroes */ 365 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 366 367 /* copy max significant digits to significand */ 368 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 369 s = s*10 + (*z - '0'); 370 z+=incr, nDigits++; 371 } 372 373 /* skip non-significant significand digits 374 ** (increase exponent by d to shift decimal left) */ 375 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 376 if( z>=zEnd ) goto do_atof_calc; 377 378 /* if decimal point is present */ 379 if( *z=='.' ){ 380 z+=incr; 381 /* copy digits from after decimal to significand 382 ** (decrease exponent by d to shift decimal right) */ 383 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 384 s = s*10 + (*z - '0'); 385 z+=incr, nDigits++, d--; 386 } 387 /* skip non-significant digits */ 388 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 389 } 390 if( z>=zEnd ) goto do_atof_calc; 391 392 /* if exponent is present */ 393 if( *z=='e' || *z=='E' ){ 394 z+=incr; 395 eValid = 0; 396 if( z>=zEnd ) goto do_atof_calc; 397 /* get sign of exponent */ 398 if( *z=='-' ){ 399 esign = -1; 400 z+=incr; 401 }else if( *z=='+' ){ 402 z+=incr; 403 } 404 /* copy digits to exponent */ 405 while( z<zEnd && sqlite3Isdigit(*z) ){ 406 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 407 z+=incr; 408 eValid = 1; 409 } 410 } 411 412 /* skip trailing spaces */ 413 if( nDigits && eValid ){ 414 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 415 } 416 417 do_atof_calc: 418 /* adjust exponent by d, and update sign */ 419 e = (e*esign) + d; 420 if( e<0 ) { 421 esign = -1; 422 e *= -1; 423 } else { 424 esign = 1; 425 } 426 427 /* if 0 significand */ 428 if( !s ) { 429 /* In the IEEE 754 standard, zero is signed. 430 ** Add the sign if we've seen at least one digit */ 431 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 432 } else { 433 /* attempt to reduce exponent */ 434 if( esign>0 ){ 435 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 436 }else{ 437 while( !(s%10) && e>0 ) e--,s/=10; 438 } 439 440 /* adjust the sign of significand */ 441 s = sign<0 ? -s : s; 442 443 /* if exponent, scale significand as appropriate 444 ** and store in result. */ 445 if( e ){ 446 LONGDOUBLE_TYPE scale = 1.0; 447 /* attempt to handle extremely small/large numbers better */ 448 if( e>307 && e<342 ){ 449 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 450 if( esign<0 ){ 451 result = s / scale; 452 result /= 1.0e+308; 453 }else{ 454 result = s * scale; 455 result *= 1.0e+308; 456 } 457 }else if( e>=342 ){ 458 if( esign<0 ){ 459 result = 0.0*s; 460 }else{ 461 result = 1e308*1e308*s; /* Infinity */ 462 } 463 }else{ 464 /* 1.0e+22 is the largest power of 10 than can be 465 ** represented exactly. */ 466 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 467 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 468 if( esign<0 ){ 469 result = s / scale; 470 }else{ 471 result = s * scale; 472 } 473 } 474 } else { 475 result = (double)s; 476 } 477 } 478 479 /* store the result */ 480 *pResult = result; 481 482 /* return true if number and no extra non-whitespace chracters after */ 483 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 484 #else 485 return !sqlite3Atoi64(z, pResult, length, enc); 486 #endif /* SQLITE_OMIT_FLOATING_POINT */ 487 } 488 489 /* 490 ** Compare the 19-character string zNum against the text representation 491 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 492 ** if zNum is less than, equal to, or greater than the string. 493 ** Note that zNum must contain exactly 19 characters. 494 ** 495 ** Unlike memcmp() this routine is guaranteed to return the difference 496 ** in the values of the last digit if the only difference is in the 497 ** last digit. So, for example, 498 ** 499 ** compare2pow63("9223372036854775800", 1) 500 ** 501 ** will return -8. 502 */ 503 static int compare2pow63(const char *zNum, int incr){ 504 int c = 0; 505 int i; 506 /* 012345678901234567 */ 507 const char *pow63 = "922337203685477580"; 508 for(i=0; c==0 && i<18; i++){ 509 c = (zNum[i*incr]-pow63[i])*10; 510 } 511 if( c==0 ){ 512 c = zNum[18*incr] - '8'; 513 testcase( c==(-1) ); 514 testcase( c==0 ); 515 testcase( c==(+1) ); 516 } 517 return c; 518 } 519 520 /* 521 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 522 ** routine does *not* accept hexadecimal notation. 523 ** 524 ** If the zNum value is representable as a 64-bit twos-complement 525 ** integer, then write that value into *pNum and return 0. 526 ** 527 ** If zNum is exactly 9223372036854775808, return 2. This special 528 ** case is broken out because while 9223372036854775808 cannot be a 529 ** signed 64-bit integer, its negative -9223372036854775808 can be. 530 ** 531 ** If zNum is too big for a 64-bit integer and is not 532 ** 9223372036854775808 or if zNum contains any non-numeric text, 533 ** then return 1. 534 ** 535 ** length is the number of bytes in the string (bytes, not characters). 536 ** The string is not necessarily zero-terminated. The encoding is 537 ** given by enc. 538 */ 539 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 540 int incr; 541 u64 u = 0; 542 int neg = 0; /* assume positive */ 543 int i; 544 int c = 0; 545 int nonNum = 0; 546 const char *zStart; 547 const char *zEnd = zNum + length; 548 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 549 if( enc==SQLITE_UTF8 ){ 550 incr = 1; 551 }else{ 552 incr = 2; 553 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 554 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 555 nonNum = i<length; 556 zEnd = zNum+i+enc-3; 557 zNum += (enc&1); 558 } 559 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 560 if( zNum<zEnd ){ 561 if( *zNum=='-' ){ 562 neg = 1; 563 zNum+=incr; 564 }else if( *zNum=='+' ){ 565 zNum+=incr; 566 } 567 } 568 zStart = zNum; 569 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 570 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 571 u = u*10 + c - '0'; 572 } 573 if( u>LARGEST_INT64 ){ 574 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 575 }else if( neg ){ 576 *pNum = -(i64)u; 577 }else{ 578 *pNum = (i64)u; 579 } 580 testcase( i==18 ); 581 testcase( i==19 ); 582 testcase( i==20 ); 583 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) 584 || i>19*incr || nonNum ){ 585 /* zNum is empty or contains non-numeric text or is longer 586 ** than 19 digits (thus guaranteeing that it is too large) */ 587 return 1; 588 }else if( i<19*incr ){ 589 /* Less than 19 digits, so we know that it fits in 64 bits */ 590 assert( u<=LARGEST_INT64 ); 591 return 0; 592 }else{ 593 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 594 c = compare2pow63(zNum, incr); 595 if( c<0 ){ 596 /* zNum is less than 9223372036854775808 so it fits */ 597 assert( u<=LARGEST_INT64 ); 598 return 0; 599 }else if( c>0 ){ 600 /* zNum is greater than 9223372036854775808 so it overflows */ 601 return 1; 602 }else{ 603 /* zNum is exactly 9223372036854775808. Fits if negative. The 604 ** special case 2 overflow if positive */ 605 assert( u-1==LARGEST_INT64 ); 606 return neg ? 0 : 2; 607 } 608 } 609 } 610 611 /* 612 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 613 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 614 ** whereas sqlite3Atoi64() does not. 615 ** 616 ** Returns: 617 ** 618 ** 0 Successful transformation. Fits in a 64-bit signed integer. 619 ** 1 Integer too large for a 64-bit signed integer or is malformed 620 ** 2 Special case of 9223372036854775808 621 */ 622 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 623 #ifndef SQLITE_OMIT_HEX_INTEGER 624 if( z[0]=='0' 625 && (z[1]=='x' || z[1]=='X') 626 && sqlite3Isxdigit(z[2]) 627 ){ 628 u64 u = 0; 629 int i, k; 630 for(i=2; z[i]=='0'; i++){} 631 for(k=i; sqlite3Isxdigit(z[k]); k++){ 632 u = u*16 + sqlite3HexToInt(z[k]); 633 } 634 memcpy(pOut, &u, 8); 635 return (z[k]==0 && k-i<=16) ? 0 : 1; 636 }else 637 #endif /* SQLITE_OMIT_HEX_INTEGER */ 638 { 639 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 640 } 641 } 642 643 /* 644 ** If zNum represents an integer that will fit in 32-bits, then set 645 ** *pValue to that integer and return true. Otherwise return false. 646 ** 647 ** This routine accepts both decimal and hexadecimal notation for integers. 648 ** 649 ** Any non-numeric characters that following zNum are ignored. 650 ** This is different from sqlite3Atoi64() which requires the 651 ** input number to be zero-terminated. 652 */ 653 int sqlite3GetInt32(const char *zNum, int *pValue){ 654 sqlite_int64 v = 0; 655 int i, c; 656 int neg = 0; 657 if( zNum[0]=='-' ){ 658 neg = 1; 659 zNum++; 660 }else if( zNum[0]=='+' ){ 661 zNum++; 662 } 663 #ifndef SQLITE_OMIT_HEX_INTEGER 664 else if( zNum[0]=='0' 665 && (zNum[1]=='x' || zNum[1]=='X') 666 && sqlite3Isxdigit(zNum[2]) 667 ){ 668 u32 u = 0; 669 zNum += 2; 670 while( zNum[0]=='0' ) zNum++; 671 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 672 u = u*16 + sqlite3HexToInt(zNum[i]); 673 } 674 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 675 memcpy(pValue, &u, 4); 676 return 1; 677 }else{ 678 return 0; 679 } 680 } 681 #endif 682 while( zNum[0]=='0' ) zNum++; 683 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 684 v = v*10 + c; 685 } 686 687 /* The longest decimal representation of a 32 bit integer is 10 digits: 688 ** 689 ** 1234567890 690 ** 2^31 -> 2147483648 691 */ 692 testcase( i==10 ); 693 if( i>10 ){ 694 return 0; 695 } 696 testcase( v-neg==2147483647 ); 697 if( v-neg>2147483647 ){ 698 return 0; 699 } 700 if( neg ){ 701 v = -v; 702 } 703 *pValue = (int)v; 704 return 1; 705 } 706 707 /* 708 ** Return a 32-bit integer value extracted from a string. If the 709 ** string is not an integer, just return 0. 710 */ 711 int sqlite3Atoi(const char *z){ 712 int x = 0; 713 if( z ) sqlite3GetInt32(z, &x); 714 return x; 715 } 716 717 /* 718 ** The variable-length integer encoding is as follows: 719 ** 720 ** KEY: 721 ** A = 0xxxxxxx 7 bits of data and one flag bit 722 ** B = 1xxxxxxx 7 bits of data and one flag bit 723 ** C = xxxxxxxx 8 bits of data 724 ** 725 ** 7 bits - A 726 ** 14 bits - BA 727 ** 21 bits - BBA 728 ** 28 bits - BBBA 729 ** 35 bits - BBBBA 730 ** 42 bits - BBBBBA 731 ** 49 bits - BBBBBBA 732 ** 56 bits - BBBBBBBA 733 ** 64 bits - BBBBBBBBC 734 */ 735 736 /* 737 ** Write a 64-bit variable-length integer to memory starting at p[0]. 738 ** The length of data write will be between 1 and 9 bytes. The number 739 ** of bytes written is returned. 740 ** 741 ** A variable-length integer consists of the lower 7 bits of each byte 742 ** for all bytes that have the 8th bit set and one byte with the 8th 743 ** bit clear. Except, if we get to the 9th byte, it stores the full 744 ** 8 bits and is the last byte. 745 */ 746 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 747 int i, j, n; 748 u8 buf[10]; 749 if( v & (((u64)0xff000000)<<32) ){ 750 p[8] = (u8)v; 751 v >>= 8; 752 for(i=7; i>=0; i--){ 753 p[i] = (u8)((v & 0x7f) | 0x80); 754 v >>= 7; 755 } 756 return 9; 757 } 758 n = 0; 759 do{ 760 buf[n++] = (u8)((v & 0x7f) | 0x80); 761 v >>= 7; 762 }while( v!=0 ); 763 buf[0] &= 0x7f; 764 assert( n<=9 ); 765 for(i=0, j=n-1; j>=0; j--, i++){ 766 p[i] = buf[j]; 767 } 768 return n; 769 } 770 int sqlite3PutVarint(unsigned char *p, u64 v){ 771 if( v<=0x7f ){ 772 p[0] = v&0x7f; 773 return 1; 774 } 775 if( v<=0x3fff ){ 776 p[0] = ((v>>7)&0x7f)|0x80; 777 p[1] = v&0x7f; 778 return 2; 779 } 780 return putVarint64(p,v); 781 } 782 783 /* 784 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 785 ** are defined here rather than simply putting the constant expressions 786 ** inline in order to work around bugs in the RVT compiler. 787 ** 788 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 789 ** 790 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 791 */ 792 #define SLOT_2_0 0x001fc07f 793 #define SLOT_4_2_0 0xf01fc07f 794 795 796 /* 797 ** Read a 64-bit variable-length integer from memory starting at p[0]. 798 ** Return the number of bytes read. The value is stored in *v. 799 */ 800 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 801 u32 a,b,s; 802 803 a = *p; 804 /* a: p0 (unmasked) */ 805 if (!(a&0x80)) 806 { 807 *v = a; 808 return 1; 809 } 810 811 p++; 812 b = *p; 813 /* b: p1 (unmasked) */ 814 if (!(b&0x80)) 815 { 816 a &= 0x7f; 817 a = a<<7; 818 a |= b; 819 *v = a; 820 return 2; 821 } 822 823 /* Verify that constants are precomputed correctly */ 824 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 825 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 826 827 p++; 828 a = a<<14; 829 a |= *p; 830 /* a: p0<<14 | p2 (unmasked) */ 831 if (!(a&0x80)) 832 { 833 a &= SLOT_2_0; 834 b &= 0x7f; 835 b = b<<7; 836 a |= b; 837 *v = a; 838 return 3; 839 } 840 841 /* CSE1 from below */ 842 a &= SLOT_2_0; 843 p++; 844 b = b<<14; 845 b |= *p; 846 /* b: p1<<14 | p3 (unmasked) */ 847 if (!(b&0x80)) 848 { 849 b &= SLOT_2_0; 850 /* moved CSE1 up */ 851 /* a &= (0x7f<<14)|(0x7f); */ 852 a = a<<7; 853 a |= b; 854 *v = a; 855 return 4; 856 } 857 858 /* a: p0<<14 | p2 (masked) */ 859 /* b: p1<<14 | p3 (unmasked) */ 860 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 861 /* moved CSE1 up */ 862 /* a &= (0x7f<<14)|(0x7f); */ 863 b &= SLOT_2_0; 864 s = a; 865 /* s: p0<<14 | p2 (masked) */ 866 867 p++; 868 a = a<<14; 869 a |= *p; 870 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 871 if (!(a&0x80)) 872 { 873 /* we can skip these cause they were (effectively) done above 874 ** while calculating s */ 875 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 876 /* b &= (0x7f<<14)|(0x7f); */ 877 b = b<<7; 878 a |= b; 879 s = s>>18; 880 *v = ((u64)s)<<32 | a; 881 return 5; 882 } 883 884 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 885 s = s<<7; 886 s |= b; 887 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 888 889 p++; 890 b = b<<14; 891 b |= *p; 892 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 893 if (!(b&0x80)) 894 { 895 /* we can skip this cause it was (effectively) done above in calc'ing s */ 896 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 897 a &= SLOT_2_0; 898 a = a<<7; 899 a |= b; 900 s = s>>18; 901 *v = ((u64)s)<<32 | a; 902 return 6; 903 } 904 905 p++; 906 a = a<<14; 907 a |= *p; 908 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 909 if (!(a&0x80)) 910 { 911 a &= SLOT_4_2_0; 912 b &= SLOT_2_0; 913 b = b<<7; 914 a |= b; 915 s = s>>11; 916 *v = ((u64)s)<<32 | a; 917 return 7; 918 } 919 920 /* CSE2 from below */ 921 a &= SLOT_2_0; 922 p++; 923 b = b<<14; 924 b |= *p; 925 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 926 if (!(b&0x80)) 927 { 928 b &= SLOT_4_2_0; 929 /* moved CSE2 up */ 930 /* a &= (0x7f<<14)|(0x7f); */ 931 a = a<<7; 932 a |= b; 933 s = s>>4; 934 *v = ((u64)s)<<32 | a; 935 return 8; 936 } 937 938 p++; 939 a = a<<15; 940 a |= *p; 941 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 942 943 /* moved CSE2 up */ 944 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 945 b &= SLOT_2_0; 946 b = b<<8; 947 a |= b; 948 949 s = s<<4; 950 b = p[-4]; 951 b &= 0x7f; 952 b = b>>3; 953 s |= b; 954 955 *v = ((u64)s)<<32 | a; 956 957 return 9; 958 } 959 960 /* 961 ** Read a 32-bit variable-length integer from memory starting at p[0]. 962 ** Return the number of bytes read. The value is stored in *v. 963 ** 964 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 965 ** integer, then set *v to 0xffffffff. 966 ** 967 ** A MACRO version, getVarint32, is provided which inlines the 968 ** single-byte case. All code should use the MACRO version as 969 ** this function assumes the single-byte case has already been handled. 970 */ 971 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 972 u32 a,b; 973 974 /* The 1-byte case. Overwhelmingly the most common. Handled inline 975 ** by the getVarin32() macro */ 976 a = *p; 977 /* a: p0 (unmasked) */ 978 #ifndef getVarint32 979 if (!(a&0x80)) 980 { 981 /* Values between 0 and 127 */ 982 *v = a; 983 return 1; 984 } 985 #endif 986 987 /* The 2-byte case */ 988 p++; 989 b = *p; 990 /* b: p1 (unmasked) */ 991 if (!(b&0x80)) 992 { 993 /* Values between 128 and 16383 */ 994 a &= 0x7f; 995 a = a<<7; 996 *v = a | b; 997 return 2; 998 } 999 1000 /* The 3-byte case */ 1001 p++; 1002 a = a<<14; 1003 a |= *p; 1004 /* a: p0<<14 | p2 (unmasked) */ 1005 if (!(a&0x80)) 1006 { 1007 /* Values between 16384 and 2097151 */ 1008 a &= (0x7f<<14)|(0x7f); 1009 b &= 0x7f; 1010 b = b<<7; 1011 *v = a | b; 1012 return 3; 1013 } 1014 1015 /* A 32-bit varint is used to store size information in btrees. 1016 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1017 ** A 3-byte varint is sufficient, for example, to record the size 1018 ** of a 1048569-byte BLOB or string. 1019 ** 1020 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1021 ** rare larger cases can be handled by the slower 64-bit varint 1022 ** routine. 1023 */ 1024 #if 1 1025 { 1026 u64 v64; 1027 u8 n; 1028 1029 p -= 2; 1030 n = sqlite3GetVarint(p, &v64); 1031 assert( n>3 && n<=9 ); 1032 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1033 *v = 0xffffffff; 1034 }else{ 1035 *v = (u32)v64; 1036 } 1037 return n; 1038 } 1039 1040 #else 1041 /* For following code (kept for historical record only) shows an 1042 ** unrolling for the 3- and 4-byte varint cases. This code is 1043 ** slightly faster, but it is also larger and much harder to test. 1044 */ 1045 p++; 1046 b = b<<14; 1047 b |= *p; 1048 /* b: p1<<14 | p3 (unmasked) */ 1049 if (!(b&0x80)) 1050 { 1051 /* Values between 2097152 and 268435455 */ 1052 b &= (0x7f<<14)|(0x7f); 1053 a &= (0x7f<<14)|(0x7f); 1054 a = a<<7; 1055 *v = a | b; 1056 return 4; 1057 } 1058 1059 p++; 1060 a = a<<14; 1061 a |= *p; 1062 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1063 if (!(a&0x80)) 1064 { 1065 /* Values between 268435456 and 34359738367 */ 1066 a &= SLOT_4_2_0; 1067 b &= SLOT_4_2_0; 1068 b = b<<7; 1069 *v = a | b; 1070 return 5; 1071 } 1072 1073 /* We can only reach this point when reading a corrupt database 1074 ** file. In that case we are not in any hurry. Use the (relatively 1075 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1076 ** value. */ 1077 { 1078 u64 v64; 1079 u8 n; 1080 1081 p -= 4; 1082 n = sqlite3GetVarint(p, &v64); 1083 assert( n>5 && n<=9 ); 1084 *v = (u32)v64; 1085 return n; 1086 } 1087 #endif 1088 } 1089 1090 /* 1091 ** Return the number of bytes that will be needed to store the given 1092 ** 64-bit integer. 1093 */ 1094 int sqlite3VarintLen(u64 v){ 1095 int i; 1096 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1097 return i; 1098 } 1099 1100 1101 /* 1102 ** Read or write a four-byte big-endian integer value. 1103 */ 1104 u32 sqlite3Get4byte(const u8 *p){ 1105 #if SQLITE_BYTEORDER==4321 1106 u32 x; 1107 memcpy(&x,p,4); 1108 return x; 1109 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1110 && defined(__GNUC__) && GCC_VERSION>=4003000 1111 u32 x; 1112 memcpy(&x,p,4); 1113 return __builtin_bswap32(x); 1114 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1115 && defined(_MSC_VER) && _MSC_VER>=1300 1116 u32 x; 1117 memcpy(&x,p,4); 1118 return _byteswap_ulong(x); 1119 #else 1120 testcase( p[0]&0x80 ); 1121 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1122 #endif 1123 } 1124 void sqlite3Put4byte(unsigned char *p, u32 v){ 1125 #if SQLITE_BYTEORDER==4321 1126 memcpy(p,&v,4); 1127 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1128 && defined(__GNUC__) && GCC_VERSION>=4003000 1129 u32 x = __builtin_bswap32(v); 1130 memcpy(p,&x,4); 1131 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1132 && defined(_MSC_VER) && _MSC_VER>=1300 1133 u32 x = _byteswap_ulong(v); 1134 memcpy(p,&x,4); 1135 #else 1136 p[0] = (u8)(v>>24); 1137 p[1] = (u8)(v>>16); 1138 p[2] = (u8)(v>>8); 1139 p[3] = (u8)v; 1140 #endif 1141 } 1142 1143 1144 1145 /* 1146 ** Translate a single byte of Hex into an integer. 1147 ** This routine only works if h really is a valid hexadecimal 1148 ** character: 0..9a..fA..F 1149 */ 1150 u8 sqlite3HexToInt(int h){ 1151 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1152 #ifdef SQLITE_ASCII 1153 h += 9*(1&(h>>6)); 1154 #endif 1155 #ifdef SQLITE_EBCDIC 1156 h += 9*(1&~(h>>4)); 1157 #endif 1158 return (u8)(h & 0xf); 1159 } 1160 1161 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1162 /* 1163 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1164 ** value. Return a pointer to its binary value. Space to hold the 1165 ** binary value has been obtained from malloc and must be freed by 1166 ** the calling routine. 1167 */ 1168 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1169 char *zBlob; 1170 int i; 1171 1172 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1173 n--; 1174 if( zBlob ){ 1175 for(i=0; i<n; i+=2){ 1176 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1177 } 1178 zBlob[i/2] = 0; 1179 } 1180 return zBlob; 1181 } 1182 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1183 1184 /* 1185 ** Log an error that is an API call on a connection pointer that should 1186 ** not have been used. The "type" of connection pointer is given as the 1187 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1188 */ 1189 static void logBadConnection(const char *zType){ 1190 sqlite3_log(SQLITE_MISUSE, 1191 "API call with %s database connection pointer", 1192 zType 1193 ); 1194 } 1195 1196 /* 1197 ** Check to make sure we have a valid db pointer. This test is not 1198 ** foolproof but it does provide some measure of protection against 1199 ** misuse of the interface such as passing in db pointers that are 1200 ** NULL or which have been previously closed. If this routine returns 1201 ** 1 it means that the db pointer is valid and 0 if it should not be 1202 ** dereferenced for any reason. The calling function should invoke 1203 ** SQLITE_MISUSE immediately. 1204 ** 1205 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1206 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1207 ** open properly and is not fit for general use but which can be 1208 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1209 */ 1210 int sqlite3SafetyCheckOk(sqlite3 *db){ 1211 u32 magic; 1212 if( db==0 ){ 1213 logBadConnection("NULL"); 1214 return 0; 1215 } 1216 magic = db->magic; 1217 if( magic!=SQLITE_MAGIC_OPEN ){ 1218 if( sqlite3SafetyCheckSickOrOk(db) ){ 1219 testcase( sqlite3GlobalConfig.xLog!=0 ); 1220 logBadConnection("unopened"); 1221 } 1222 return 0; 1223 }else{ 1224 return 1; 1225 } 1226 } 1227 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1228 u32 magic; 1229 magic = db->magic; 1230 if( magic!=SQLITE_MAGIC_SICK && 1231 magic!=SQLITE_MAGIC_OPEN && 1232 magic!=SQLITE_MAGIC_BUSY ){ 1233 testcase( sqlite3GlobalConfig.xLog!=0 ); 1234 logBadConnection("invalid"); 1235 return 0; 1236 }else{ 1237 return 1; 1238 } 1239 } 1240 1241 /* 1242 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1243 ** the other 64-bit signed integer at *pA and store the result in *pA. 1244 ** Return 0 on success. Or if the operation would have resulted in an 1245 ** overflow, leave *pA unchanged and return 1. 1246 */ 1247 int sqlite3AddInt64(i64 *pA, i64 iB){ 1248 i64 iA = *pA; 1249 testcase( iA==0 ); testcase( iA==1 ); 1250 testcase( iB==-1 ); testcase( iB==0 ); 1251 if( iB>=0 ){ 1252 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1253 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1254 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1255 }else{ 1256 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1257 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1258 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1259 } 1260 *pA += iB; 1261 return 0; 1262 } 1263 int sqlite3SubInt64(i64 *pA, i64 iB){ 1264 testcase( iB==SMALLEST_INT64+1 ); 1265 if( iB==SMALLEST_INT64 ){ 1266 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1267 if( (*pA)>=0 ) return 1; 1268 *pA -= iB; 1269 return 0; 1270 }else{ 1271 return sqlite3AddInt64(pA, -iB); 1272 } 1273 } 1274 #define TWOPOWER32 (((i64)1)<<32) 1275 #define TWOPOWER31 (((i64)1)<<31) 1276 int sqlite3MulInt64(i64 *pA, i64 iB){ 1277 i64 iA = *pA; 1278 i64 iA1, iA0, iB1, iB0, r; 1279 1280 iA1 = iA/TWOPOWER32; 1281 iA0 = iA % TWOPOWER32; 1282 iB1 = iB/TWOPOWER32; 1283 iB0 = iB % TWOPOWER32; 1284 if( iA1==0 ){ 1285 if( iB1==0 ){ 1286 *pA *= iB; 1287 return 0; 1288 } 1289 r = iA0*iB1; 1290 }else if( iB1==0 ){ 1291 r = iA1*iB0; 1292 }else{ 1293 /* If both iA1 and iB1 are non-zero, overflow will result */ 1294 return 1; 1295 } 1296 testcase( r==(-TWOPOWER31)-1 ); 1297 testcase( r==(-TWOPOWER31) ); 1298 testcase( r==TWOPOWER31 ); 1299 testcase( r==TWOPOWER31-1 ); 1300 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1301 r *= TWOPOWER32; 1302 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1303 *pA = r; 1304 return 0; 1305 } 1306 1307 /* 1308 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1309 ** if the integer has a value of -2147483648, return +2147483647 1310 */ 1311 int sqlite3AbsInt32(int x){ 1312 if( x>=0 ) return x; 1313 if( x==(int)0x80000000 ) return 0x7fffffff; 1314 return -x; 1315 } 1316 1317 #ifdef SQLITE_ENABLE_8_3_NAMES 1318 /* 1319 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1320 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1321 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1322 ** three characters, then shorten the suffix on z[] to be the last three 1323 ** characters of the original suffix. 1324 ** 1325 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1326 ** do the suffix shortening regardless of URI parameter. 1327 ** 1328 ** Examples: 1329 ** 1330 ** test.db-journal => test.nal 1331 ** test.db-wal => test.wal 1332 ** test.db-shm => test.shm 1333 ** test.db-mj7f3319fa => test.9fa 1334 */ 1335 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1336 #if SQLITE_ENABLE_8_3_NAMES<2 1337 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1338 #endif 1339 { 1340 int i, sz; 1341 sz = sqlite3Strlen30(z); 1342 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1343 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1344 } 1345 } 1346 #endif 1347 1348 /* 1349 ** Find (an approximate) sum of two LogEst values. This computation is 1350 ** not a simple "+" operator because LogEst is stored as a logarithmic 1351 ** value. 1352 ** 1353 */ 1354 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1355 static const unsigned char x[] = { 1356 10, 10, /* 0,1 */ 1357 9, 9, /* 2,3 */ 1358 8, 8, /* 4,5 */ 1359 7, 7, 7, /* 6,7,8 */ 1360 6, 6, 6, /* 9,10,11 */ 1361 5, 5, 5, /* 12-14 */ 1362 4, 4, 4, 4, /* 15-18 */ 1363 3, 3, 3, 3, 3, 3, /* 19-24 */ 1364 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1365 }; 1366 if( a>=b ){ 1367 if( a>b+49 ) return a; 1368 if( a>b+31 ) return a+1; 1369 return a+x[a-b]; 1370 }else{ 1371 if( b>a+49 ) return b; 1372 if( b>a+31 ) return b+1; 1373 return b+x[b-a]; 1374 } 1375 } 1376 1377 /* 1378 ** Convert an integer into a LogEst. In other words, compute an 1379 ** approximation for 10*log2(x). 1380 */ 1381 LogEst sqlite3LogEst(u64 x){ 1382 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1383 LogEst y = 40; 1384 if( x<8 ){ 1385 if( x<2 ) return 0; 1386 while( x<8 ){ y -= 10; x <<= 1; } 1387 }else{ 1388 while( x>255 ){ y += 40; x >>= 4; } 1389 while( x>15 ){ y += 10; x >>= 1; } 1390 } 1391 return a[x&7] + y - 10; 1392 } 1393 1394 #ifndef SQLITE_OMIT_VIRTUALTABLE 1395 /* 1396 ** Convert a double into a LogEst 1397 ** In other words, compute an approximation for 10*log2(x). 1398 */ 1399 LogEst sqlite3LogEstFromDouble(double x){ 1400 u64 a; 1401 LogEst e; 1402 assert( sizeof(x)==8 && sizeof(a)==8 ); 1403 if( x<=1 ) return 0; 1404 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1405 memcpy(&a, &x, 8); 1406 e = (a>>52) - 1022; 1407 return e*10; 1408 } 1409 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1410 1411 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1412 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 1413 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1414 /* 1415 ** Convert a LogEst into an integer. 1416 ** 1417 ** Note that this routine is only used when one or more of various 1418 ** non-standard compile-time options is enabled. 1419 */ 1420 u64 sqlite3LogEstToInt(LogEst x){ 1421 u64 n; 1422 if( x<10 ) return 1; 1423 n = x%10; 1424 x /= 10; 1425 if( n>=5 ) n -= 2; 1426 else if( n>=1 ) n -= 1; 1427 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1428 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1429 if( x>60 ) return (u64)LARGEST_INT64; 1430 #else 1431 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input 1432 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1433 assert( x<=60 ); 1434 #endif 1435 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1436 } 1437 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1438