1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifdef SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 #ifndef SQLITE_OMIT_FLOATING_POINT 35 /* 36 ** Return true if the floating point value is Not a Number (NaN). 37 ** 38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 39 ** Otherwise, we have our own implementation that works on most systems. 40 */ 41 int sqlite3IsNaN(double x){ 42 int rc; /* The value return */ 43 #if !defined(SQLITE_HAVE_ISNAN) 44 /* 45 ** Systems that support the isnan() library function should probably 46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 47 ** found that many systems do not have a working isnan() function so 48 ** this implementation is provided as an alternative. 49 ** 50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 51 ** On the other hand, the use of -ffast-math comes with the following 52 ** warning: 53 ** 54 ** This option [-ffast-math] should never be turned on by any 55 ** -O option since it can result in incorrect output for programs 56 ** which depend on an exact implementation of IEEE or ISO 57 ** rules/specifications for math functions. 58 ** 59 ** Under MSVC, this NaN test may fail if compiled with a floating- 60 ** point precision mode other than /fp:precise. From the MSDN 61 ** documentation: 62 ** 63 ** The compiler [with /fp:precise] will properly handle comparisons 64 ** involving NaN. For example, x != x evaluates to true if x is NaN 65 ** ... 66 */ 67 #ifdef __FAST_MATH__ 68 # error SQLite will not work correctly with the -ffast-math option of GCC. 69 #endif 70 volatile double y = x; 71 volatile double z = y; 72 rc = (y!=z); 73 #else /* if defined(SQLITE_HAVE_ISNAN) */ 74 rc = isnan(x); 75 #endif /* SQLITE_HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 #endif /* SQLITE_OMIT_FLOATING_POINT */ 80 81 /* 82 ** Compute a string length that is limited to what can be stored in 83 ** lower 30 bits of a 32-bit signed integer. 84 ** 85 ** The value returned will never be negative. Nor will it ever be greater 86 ** than the actual length of the string. For very long strings (greater 87 ** than 1GiB) the value returned might be less than the true string length. 88 */ 89 int sqlite3Strlen30(const char *z){ 90 const char *z2 = z; 91 if( z==0 ) return 0; 92 while( *z2 ){ z2++; } 93 return 0x3fffffff & (int)(z2 - z); 94 } 95 96 /* 97 ** Set the most recent error code and error string for the sqlite 98 ** handle "db". The error code is set to "err_code". 99 ** 100 ** If it is not NULL, string zFormat specifies the format of the 101 ** error string in the style of the printf functions: The following 102 ** format characters are allowed: 103 ** 104 ** %s Insert a string 105 ** %z A string that should be freed after use 106 ** %d Insert an integer 107 ** %T Insert a token 108 ** %S Insert the first element of a SrcList 109 ** 110 ** zFormat and any string tokens that follow it are assumed to be 111 ** encoded in UTF-8. 112 ** 113 ** To clear the most recent error for sqlite handle "db", sqlite3Error 114 ** should be called with err_code set to SQLITE_OK and zFormat set 115 ** to NULL. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 118 assert( db!=0 ); 119 db->errCode = err_code; 120 if( zFormat && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 121 char *z; 122 va_list ap; 123 va_start(ap, zFormat); 124 z = sqlite3VMPrintf(db, zFormat, ap); 125 va_end(ap); 126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 127 }else if( db->pErr ){ 128 sqlite3ValueSetNull(db->pErr); 129 } 130 } 131 132 /* 133 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 134 ** The following formatting characters are allowed: 135 ** 136 ** %s Insert a string 137 ** %z A string that should be freed after use 138 ** %d Insert an integer 139 ** %T Insert a token 140 ** %S Insert the first element of a SrcList 141 ** 142 ** This function should be used to report any error that occurs whilst 143 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 144 ** last thing the sqlite3_prepare() function does is copy the error 145 ** stored by this function into the database handle using sqlite3Error(). 146 ** Function sqlite3Error() should be used during statement execution 147 ** (sqlite3_step() etc.). 148 */ 149 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 150 char *zMsg; 151 va_list ap; 152 sqlite3 *db = pParse->db; 153 va_start(ap, zFormat); 154 zMsg = sqlite3VMPrintf(db, zFormat, ap); 155 va_end(ap); 156 if( db->suppressErr ){ 157 sqlite3DbFree(db, zMsg); 158 }else{ 159 pParse->nErr++; 160 sqlite3DbFree(db, pParse->zErrMsg); 161 pParse->zErrMsg = zMsg; 162 pParse->rc = SQLITE_ERROR; 163 } 164 } 165 166 /* 167 ** Convert an SQL-style quoted string into a normal string by removing 168 ** the quote characters. The conversion is done in-place. If the 169 ** input does not begin with a quote character, then this routine 170 ** is a no-op. 171 ** 172 ** The input string must be zero-terminated. A new zero-terminator 173 ** is added to the dequoted string. 174 ** 175 ** The return value is -1 if no dequoting occurs or the length of the 176 ** dequoted string, exclusive of the zero terminator, if dequoting does 177 ** occur. 178 ** 179 ** 2002-Feb-14: This routine is extended to remove MS-Access style 180 ** brackets from around identifers. For example: "[a-b-c]" becomes 181 ** "a-b-c". 182 */ 183 int sqlite3Dequote(char *z){ 184 char quote; 185 int i, j; 186 if( z==0 ) return -1; 187 quote = z[0]; 188 switch( quote ){ 189 case '\'': break; 190 case '"': break; 191 case '`': break; /* For MySQL compatibility */ 192 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 193 default: return -1; 194 } 195 for(i=1, j=0;; i++){ 196 assert( z[i] ); 197 if( z[i]==quote ){ 198 if( z[i+1]==quote ){ 199 z[j++] = quote; 200 i++; 201 }else{ 202 break; 203 } 204 }else{ 205 z[j++] = z[i]; 206 } 207 } 208 z[j] = 0; 209 return j; 210 } 211 212 /* Convenient short-hand */ 213 #define UpperToLower sqlite3UpperToLower 214 215 /* 216 ** Some systems have stricmp(). Others have strcasecmp(). Because 217 ** there is no consistency, we will define our own. 218 ** 219 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 220 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 221 ** the contents of two buffers containing UTF-8 strings in a 222 ** case-independent fashion, using the same definition of "case 223 ** independence" that SQLite uses internally when comparing identifiers. 224 */ 225 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 226 register unsigned char *a, *b; 227 a = (unsigned char *)zLeft; 228 b = (unsigned char *)zRight; 229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 230 return UpperToLower[*a] - UpperToLower[*b]; 231 } 232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 233 register unsigned char *a, *b; 234 a = (unsigned char *)zLeft; 235 b = (unsigned char *)zRight; 236 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 237 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 238 } 239 240 /* 241 ** The string z[] is an text representation of a real number. 242 ** Convert this string to a double and write it into *pResult. 243 ** 244 ** The string z[] is length bytes in length (bytes, not characters) and 245 ** uses the encoding enc. The string is not necessarily zero-terminated. 246 ** 247 ** Return TRUE if the result is a valid real number (or integer) and FALSE 248 ** if the string is empty or contains extraneous text. Valid numbers 249 ** are in one of these formats: 250 ** 251 ** [+-]digits[E[+-]digits] 252 ** [+-]digits.[digits][E[+-]digits] 253 ** [+-].digits[E[+-]digits] 254 ** 255 ** Leading and trailing whitespace is ignored for the purpose of determining 256 ** validity. 257 ** 258 ** If some prefix of the input string is a valid number, this routine 259 ** returns FALSE but it still converts the prefix and writes the result 260 ** into *pResult. 261 */ 262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 263 #ifndef SQLITE_OMIT_FLOATING_POINT 264 int incr; 265 const char *zEnd = z + length; 266 /* sign * significand * (10 ^ (esign * exponent)) */ 267 int sign = 1; /* sign of significand */ 268 i64 s = 0; /* significand */ 269 int d = 0; /* adjust exponent for shifting decimal point */ 270 int esign = 1; /* sign of exponent */ 271 int e = 0; /* exponent */ 272 int eValid = 1; /* True exponent is either not used or is well-formed */ 273 double result; 274 int nDigits = 0; 275 int nonNum = 0; 276 277 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 278 *pResult = 0.0; /* Default return value, in case of an error */ 279 280 if( enc==SQLITE_UTF8 ){ 281 incr = 1; 282 }else{ 283 int i; 284 incr = 2; 285 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 286 for(i=3-enc; i<length && z[i]==0; i+=2){} 287 nonNum = i<length; 288 zEnd = z+i+enc-3; 289 z += (enc&1); 290 } 291 292 /* skip leading spaces */ 293 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 294 if( z>=zEnd ) return 0; 295 296 /* get sign of significand */ 297 if( *z=='-' ){ 298 sign = -1; 299 z+=incr; 300 }else if( *z=='+' ){ 301 z+=incr; 302 } 303 304 /* skip leading zeroes */ 305 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 306 307 /* copy max significant digits to significand */ 308 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 309 s = s*10 + (*z - '0'); 310 z+=incr, nDigits++; 311 } 312 313 /* skip non-significant significand digits 314 ** (increase exponent by d to shift decimal left) */ 315 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 316 if( z>=zEnd ) goto do_atof_calc; 317 318 /* if decimal point is present */ 319 if( *z=='.' ){ 320 z+=incr; 321 /* copy digits from after decimal to significand 322 ** (decrease exponent by d to shift decimal right) */ 323 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 324 s = s*10 + (*z - '0'); 325 z+=incr, nDigits++, d--; 326 } 327 /* skip non-significant digits */ 328 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 329 } 330 if( z>=zEnd ) goto do_atof_calc; 331 332 /* if exponent is present */ 333 if( *z=='e' || *z=='E' ){ 334 z+=incr; 335 eValid = 0; 336 if( z>=zEnd ) goto do_atof_calc; 337 /* get sign of exponent */ 338 if( *z=='-' ){ 339 esign = -1; 340 z+=incr; 341 }else if( *z=='+' ){ 342 z+=incr; 343 } 344 /* copy digits to exponent */ 345 while( z<zEnd && sqlite3Isdigit(*z) ){ 346 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 347 z+=incr; 348 eValid = 1; 349 } 350 } 351 352 /* skip trailing spaces */ 353 if( nDigits && eValid ){ 354 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 355 } 356 357 do_atof_calc: 358 /* adjust exponent by d, and update sign */ 359 e = (e*esign) + d; 360 if( e<0 ) { 361 esign = -1; 362 e *= -1; 363 } else { 364 esign = 1; 365 } 366 367 /* if 0 significand */ 368 if( !s ) { 369 /* In the IEEE 754 standard, zero is signed. 370 ** Add the sign if we've seen at least one digit */ 371 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 372 } else { 373 /* attempt to reduce exponent */ 374 if( esign>0 ){ 375 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 376 }else{ 377 while( !(s%10) && e>0 ) e--,s/=10; 378 } 379 380 /* adjust the sign of significand */ 381 s = sign<0 ? -s : s; 382 383 /* if exponent, scale significand as appropriate 384 ** and store in result. */ 385 if( e ){ 386 LONGDOUBLE_TYPE scale = 1.0; 387 /* attempt to handle extremely small/large numbers better */ 388 if( e>307 && e<342 ){ 389 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 390 if( esign<0 ){ 391 result = s / scale; 392 result /= 1.0e+308; 393 }else{ 394 result = s * scale; 395 result *= 1.0e+308; 396 } 397 }else if( e>=342 ){ 398 if( esign<0 ){ 399 result = 0.0*s; 400 }else{ 401 result = 1e308*1e308*s; /* Infinity */ 402 } 403 }else{ 404 /* 1.0e+22 is the largest power of 10 than can be 405 ** represented exactly. */ 406 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 407 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 408 if( esign<0 ){ 409 result = s / scale; 410 }else{ 411 result = s * scale; 412 } 413 } 414 } else { 415 result = (double)s; 416 } 417 } 418 419 /* store the result */ 420 *pResult = result; 421 422 /* return true if number and no extra non-whitespace chracters after */ 423 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 424 #else 425 return !sqlite3Atoi64(z, pResult, length, enc); 426 #endif /* SQLITE_OMIT_FLOATING_POINT */ 427 } 428 429 /* 430 ** Compare the 19-character string zNum against the text representation 431 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 432 ** if zNum is less than, equal to, or greater than the string. 433 ** Note that zNum must contain exactly 19 characters. 434 ** 435 ** Unlike memcmp() this routine is guaranteed to return the difference 436 ** in the values of the last digit if the only difference is in the 437 ** last digit. So, for example, 438 ** 439 ** compare2pow63("9223372036854775800", 1) 440 ** 441 ** will return -8. 442 */ 443 static int compare2pow63(const char *zNum, int incr){ 444 int c = 0; 445 int i; 446 /* 012345678901234567 */ 447 const char *pow63 = "922337203685477580"; 448 for(i=0; c==0 && i<18; i++){ 449 c = (zNum[i*incr]-pow63[i])*10; 450 } 451 if( c==0 ){ 452 c = zNum[18*incr] - '8'; 453 testcase( c==(-1) ); 454 testcase( c==0 ); 455 testcase( c==(+1) ); 456 } 457 return c; 458 } 459 460 461 /* 462 ** Convert zNum to a 64-bit signed integer. 463 ** 464 ** If the zNum value is representable as a 64-bit twos-complement 465 ** integer, then write that value into *pNum and return 0. 466 ** 467 ** If zNum is exactly 9223372036854775808, return 2. This special 468 ** case is broken out because while 9223372036854775808 cannot be a 469 ** signed 64-bit integer, its negative -9223372036854775808 can be. 470 ** 471 ** If zNum is too big for a 64-bit integer and is not 472 ** 9223372036854775808 or if zNum contains any non-numeric text, 473 ** then return 1. 474 ** 475 ** length is the number of bytes in the string (bytes, not characters). 476 ** The string is not necessarily zero-terminated. The encoding is 477 ** given by enc. 478 */ 479 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 480 int incr; 481 u64 u = 0; 482 int neg = 0; /* assume positive */ 483 int i; 484 int c = 0; 485 int nonNum = 0; 486 const char *zStart; 487 const char *zEnd = zNum + length; 488 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 489 if( enc==SQLITE_UTF8 ){ 490 incr = 1; 491 }else{ 492 incr = 2; 493 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 494 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 495 nonNum = i<length; 496 zEnd = zNum+i+enc-3; 497 zNum += (enc&1); 498 } 499 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 500 if( zNum<zEnd ){ 501 if( *zNum=='-' ){ 502 neg = 1; 503 zNum+=incr; 504 }else if( *zNum=='+' ){ 505 zNum+=incr; 506 } 507 } 508 zStart = zNum; 509 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 510 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 511 u = u*10 + c - '0'; 512 } 513 if( u>LARGEST_INT64 ){ 514 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 515 }else if( neg ){ 516 *pNum = -(i64)u; 517 }else{ 518 *pNum = (i64)u; 519 } 520 testcase( i==18 ); 521 testcase( i==19 ); 522 testcase( i==20 ); 523 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){ 524 /* zNum is empty or contains non-numeric text or is longer 525 ** than 19 digits (thus guaranteeing that it is too large) */ 526 return 1; 527 }else if( i<19*incr ){ 528 /* Less than 19 digits, so we know that it fits in 64 bits */ 529 assert( u<=LARGEST_INT64 ); 530 return 0; 531 }else{ 532 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 533 c = compare2pow63(zNum, incr); 534 if( c<0 ){ 535 /* zNum is less than 9223372036854775808 so it fits */ 536 assert( u<=LARGEST_INT64 ); 537 return 0; 538 }else if( c>0 ){ 539 /* zNum is greater than 9223372036854775808 so it overflows */ 540 return 1; 541 }else{ 542 /* zNum is exactly 9223372036854775808. Fits if negative. The 543 ** special case 2 overflow if positive */ 544 assert( u-1==LARGEST_INT64 ); 545 return neg ? 0 : 2; 546 } 547 } 548 } 549 550 /* 551 ** If zNum represents an integer that will fit in 32-bits, then set 552 ** *pValue to that integer and return true. Otherwise return false. 553 ** 554 ** Any non-numeric characters that following zNum are ignored. 555 ** This is different from sqlite3Atoi64() which requires the 556 ** input number to be zero-terminated. 557 */ 558 int sqlite3GetInt32(const char *zNum, int *pValue){ 559 sqlite_int64 v = 0; 560 int i, c; 561 int neg = 0; 562 if( zNum[0]=='-' ){ 563 neg = 1; 564 zNum++; 565 }else if( zNum[0]=='+' ){ 566 zNum++; 567 } 568 while( zNum[0]=='0' ) zNum++; 569 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 570 v = v*10 + c; 571 } 572 573 /* The longest decimal representation of a 32 bit integer is 10 digits: 574 ** 575 ** 1234567890 576 ** 2^31 -> 2147483648 577 */ 578 testcase( i==10 ); 579 if( i>10 ){ 580 return 0; 581 } 582 testcase( v-neg==2147483647 ); 583 if( v-neg>2147483647 ){ 584 return 0; 585 } 586 if( neg ){ 587 v = -v; 588 } 589 *pValue = (int)v; 590 return 1; 591 } 592 593 /* 594 ** Return a 32-bit integer value extracted from a string. If the 595 ** string is not an integer, just return 0. 596 */ 597 int sqlite3Atoi(const char *z){ 598 int x = 0; 599 if( z ) sqlite3GetInt32(z, &x); 600 return x; 601 } 602 603 /* 604 ** The variable-length integer encoding is as follows: 605 ** 606 ** KEY: 607 ** A = 0xxxxxxx 7 bits of data and one flag bit 608 ** B = 1xxxxxxx 7 bits of data and one flag bit 609 ** C = xxxxxxxx 8 bits of data 610 ** 611 ** 7 bits - A 612 ** 14 bits - BA 613 ** 21 bits - BBA 614 ** 28 bits - BBBA 615 ** 35 bits - BBBBA 616 ** 42 bits - BBBBBA 617 ** 49 bits - BBBBBBA 618 ** 56 bits - BBBBBBBA 619 ** 64 bits - BBBBBBBBC 620 */ 621 622 /* 623 ** Write a 64-bit variable-length integer to memory starting at p[0]. 624 ** The length of data write will be between 1 and 9 bytes. The number 625 ** of bytes written is returned. 626 ** 627 ** A variable-length integer consists of the lower 7 bits of each byte 628 ** for all bytes that have the 8th bit set and one byte with the 8th 629 ** bit clear. Except, if we get to the 9th byte, it stores the full 630 ** 8 bits and is the last byte. 631 */ 632 int sqlite3PutVarint(unsigned char *p, u64 v){ 633 int i, j, n; 634 u8 buf[10]; 635 if( v & (((u64)0xff000000)<<32) ){ 636 p[8] = (u8)v; 637 v >>= 8; 638 for(i=7; i>=0; i--){ 639 p[i] = (u8)((v & 0x7f) | 0x80); 640 v >>= 7; 641 } 642 return 9; 643 } 644 n = 0; 645 do{ 646 buf[n++] = (u8)((v & 0x7f) | 0x80); 647 v >>= 7; 648 }while( v!=0 ); 649 buf[0] &= 0x7f; 650 assert( n<=9 ); 651 for(i=0, j=n-1; j>=0; j--, i++){ 652 p[i] = buf[j]; 653 } 654 return n; 655 } 656 657 /* 658 ** This routine is a faster version of sqlite3PutVarint() that only 659 ** works for 32-bit positive integers and which is optimized for 660 ** the common case of small integers. A MACRO version, putVarint32, 661 ** is provided which inlines the single-byte case. All code should use 662 ** the MACRO version as this function assumes the single-byte case has 663 ** already been handled. 664 */ 665 int sqlite3PutVarint32(unsigned char *p, u32 v){ 666 #ifndef putVarint32 667 if( (v & ~0x7f)==0 ){ 668 p[0] = v; 669 return 1; 670 } 671 #endif 672 if( (v & ~0x3fff)==0 ){ 673 p[0] = (u8)((v>>7) | 0x80); 674 p[1] = (u8)(v & 0x7f); 675 return 2; 676 } 677 return sqlite3PutVarint(p, v); 678 } 679 680 /* 681 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 682 ** are defined here rather than simply putting the constant expressions 683 ** inline in order to work around bugs in the RVT compiler. 684 ** 685 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 686 ** 687 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 688 */ 689 #define SLOT_2_0 0x001fc07f 690 #define SLOT_4_2_0 0xf01fc07f 691 692 693 /* 694 ** Read a 64-bit variable-length integer from memory starting at p[0]. 695 ** Return the number of bytes read. The value is stored in *v. 696 */ 697 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 698 u32 a,b,s; 699 700 a = *p; 701 /* a: p0 (unmasked) */ 702 if (!(a&0x80)) 703 { 704 *v = a; 705 return 1; 706 } 707 708 p++; 709 b = *p; 710 /* b: p1 (unmasked) */ 711 if (!(b&0x80)) 712 { 713 a &= 0x7f; 714 a = a<<7; 715 a |= b; 716 *v = a; 717 return 2; 718 } 719 720 /* Verify that constants are precomputed correctly */ 721 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 722 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 723 724 p++; 725 a = a<<14; 726 a |= *p; 727 /* a: p0<<14 | p2 (unmasked) */ 728 if (!(a&0x80)) 729 { 730 a &= SLOT_2_0; 731 b &= 0x7f; 732 b = b<<7; 733 a |= b; 734 *v = a; 735 return 3; 736 } 737 738 /* CSE1 from below */ 739 a &= SLOT_2_0; 740 p++; 741 b = b<<14; 742 b |= *p; 743 /* b: p1<<14 | p3 (unmasked) */ 744 if (!(b&0x80)) 745 { 746 b &= SLOT_2_0; 747 /* moved CSE1 up */ 748 /* a &= (0x7f<<14)|(0x7f); */ 749 a = a<<7; 750 a |= b; 751 *v = a; 752 return 4; 753 } 754 755 /* a: p0<<14 | p2 (masked) */ 756 /* b: p1<<14 | p3 (unmasked) */ 757 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 758 /* moved CSE1 up */ 759 /* a &= (0x7f<<14)|(0x7f); */ 760 b &= SLOT_2_0; 761 s = a; 762 /* s: p0<<14 | p2 (masked) */ 763 764 p++; 765 a = a<<14; 766 a |= *p; 767 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 768 if (!(a&0x80)) 769 { 770 /* we can skip these cause they were (effectively) done above in calc'ing s */ 771 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 772 /* b &= (0x7f<<14)|(0x7f); */ 773 b = b<<7; 774 a |= b; 775 s = s>>18; 776 *v = ((u64)s)<<32 | a; 777 return 5; 778 } 779 780 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 781 s = s<<7; 782 s |= b; 783 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 784 785 p++; 786 b = b<<14; 787 b |= *p; 788 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 789 if (!(b&0x80)) 790 { 791 /* we can skip this cause it was (effectively) done above in calc'ing s */ 792 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 793 a &= SLOT_2_0; 794 a = a<<7; 795 a |= b; 796 s = s>>18; 797 *v = ((u64)s)<<32 | a; 798 return 6; 799 } 800 801 p++; 802 a = a<<14; 803 a |= *p; 804 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 805 if (!(a&0x80)) 806 { 807 a &= SLOT_4_2_0; 808 b &= SLOT_2_0; 809 b = b<<7; 810 a |= b; 811 s = s>>11; 812 *v = ((u64)s)<<32 | a; 813 return 7; 814 } 815 816 /* CSE2 from below */ 817 a &= SLOT_2_0; 818 p++; 819 b = b<<14; 820 b |= *p; 821 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 822 if (!(b&0x80)) 823 { 824 b &= SLOT_4_2_0; 825 /* moved CSE2 up */ 826 /* a &= (0x7f<<14)|(0x7f); */ 827 a = a<<7; 828 a |= b; 829 s = s>>4; 830 *v = ((u64)s)<<32 | a; 831 return 8; 832 } 833 834 p++; 835 a = a<<15; 836 a |= *p; 837 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 838 839 /* moved CSE2 up */ 840 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 841 b &= SLOT_2_0; 842 b = b<<8; 843 a |= b; 844 845 s = s<<4; 846 b = p[-4]; 847 b &= 0x7f; 848 b = b>>3; 849 s |= b; 850 851 *v = ((u64)s)<<32 | a; 852 853 return 9; 854 } 855 856 /* 857 ** Read a 32-bit variable-length integer from memory starting at p[0]. 858 ** Return the number of bytes read. The value is stored in *v. 859 ** 860 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 861 ** integer, then set *v to 0xffffffff. 862 ** 863 ** A MACRO version, getVarint32, is provided which inlines the 864 ** single-byte case. All code should use the MACRO version as 865 ** this function assumes the single-byte case has already been handled. 866 */ 867 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 868 u32 a,b; 869 870 /* The 1-byte case. Overwhelmingly the most common. Handled inline 871 ** by the getVarin32() macro */ 872 a = *p; 873 /* a: p0 (unmasked) */ 874 #ifndef getVarint32 875 if (!(a&0x80)) 876 { 877 /* Values between 0 and 127 */ 878 *v = a; 879 return 1; 880 } 881 #endif 882 883 /* The 2-byte case */ 884 p++; 885 b = *p; 886 /* b: p1 (unmasked) */ 887 if (!(b&0x80)) 888 { 889 /* Values between 128 and 16383 */ 890 a &= 0x7f; 891 a = a<<7; 892 *v = a | b; 893 return 2; 894 } 895 896 /* The 3-byte case */ 897 p++; 898 a = a<<14; 899 a |= *p; 900 /* a: p0<<14 | p2 (unmasked) */ 901 if (!(a&0x80)) 902 { 903 /* Values between 16384 and 2097151 */ 904 a &= (0x7f<<14)|(0x7f); 905 b &= 0x7f; 906 b = b<<7; 907 *v = a | b; 908 return 3; 909 } 910 911 /* A 32-bit varint is used to store size information in btrees. 912 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 913 ** A 3-byte varint is sufficient, for example, to record the size 914 ** of a 1048569-byte BLOB or string. 915 ** 916 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 917 ** rare larger cases can be handled by the slower 64-bit varint 918 ** routine. 919 */ 920 #if 1 921 { 922 u64 v64; 923 u8 n; 924 925 p -= 2; 926 n = sqlite3GetVarint(p, &v64); 927 assert( n>3 && n<=9 ); 928 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 929 *v = 0xffffffff; 930 }else{ 931 *v = (u32)v64; 932 } 933 return n; 934 } 935 936 #else 937 /* For following code (kept for historical record only) shows an 938 ** unrolling for the 3- and 4-byte varint cases. This code is 939 ** slightly faster, but it is also larger and much harder to test. 940 */ 941 p++; 942 b = b<<14; 943 b |= *p; 944 /* b: p1<<14 | p3 (unmasked) */ 945 if (!(b&0x80)) 946 { 947 /* Values between 2097152 and 268435455 */ 948 b &= (0x7f<<14)|(0x7f); 949 a &= (0x7f<<14)|(0x7f); 950 a = a<<7; 951 *v = a | b; 952 return 4; 953 } 954 955 p++; 956 a = a<<14; 957 a |= *p; 958 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 959 if (!(a&0x80)) 960 { 961 /* Values between 268435456 and 34359738367 */ 962 a &= SLOT_4_2_0; 963 b &= SLOT_4_2_0; 964 b = b<<7; 965 *v = a | b; 966 return 5; 967 } 968 969 /* We can only reach this point when reading a corrupt database 970 ** file. In that case we are not in any hurry. Use the (relatively 971 ** slow) general-purpose sqlite3GetVarint() routine to extract the 972 ** value. */ 973 { 974 u64 v64; 975 u8 n; 976 977 p -= 4; 978 n = sqlite3GetVarint(p, &v64); 979 assert( n>5 && n<=9 ); 980 *v = (u32)v64; 981 return n; 982 } 983 #endif 984 } 985 986 /* 987 ** Return the number of bytes that will be needed to store the given 988 ** 64-bit integer. 989 */ 990 int sqlite3VarintLen(u64 v){ 991 int i = 0; 992 do{ 993 i++; 994 v >>= 7; 995 }while( v!=0 && ALWAYS(i<9) ); 996 return i; 997 } 998 999 1000 /* 1001 ** Read or write a four-byte big-endian integer value. 1002 */ 1003 u32 sqlite3Get4byte(const u8 *p){ 1004 testcase( p[0]&0x80 ); 1005 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1006 } 1007 void sqlite3Put4byte(unsigned char *p, u32 v){ 1008 p[0] = (u8)(v>>24); 1009 p[1] = (u8)(v>>16); 1010 p[2] = (u8)(v>>8); 1011 p[3] = (u8)v; 1012 } 1013 1014 1015 1016 /* 1017 ** Translate a single byte of Hex into an integer. 1018 ** This routine only works if h really is a valid hexadecimal 1019 ** character: 0..9a..fA..F 1020 */ 1021 u8 sqlite3HexToInt(int h){ 1022 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1023 #ifdef SQLITE_ASCII 1024 h += 9*(1&(h>>6)); 1025 #endif 1026 #ifdef SQLITE_EBCDIC 1027 h += 9*(1&~(h>>4)); 1028 #endif 1029 return (u8)(h & 0xf); 1030 } 1031 1032 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1033 /* 1034 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1035 ** value. Return a pointer to its binary value. Space to hold the 1036 ** binary value has been obtained from malloc and must be freed by 1037 ** the calling routine. 1038 */ 1039 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1040 char *zBlob; 1041 int i; 1042 1043 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1044 n--; 1045 if( zBlob ){ 1046 for(i=0; i<n; i+=2){ 1047 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1048 } 1049 zBlob[i/2] = 0; 1050 } 1051 return zBlob; 1052 } 1053 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1054 1055 /* 1056 ** Log an error that is an API call on a connection pointer that should 1057 ** not have been used. The "type" of connection pointer is given as the 1058 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1059 */ 1060 static void logBadConnection(const char *zType){ 1061 sqlite3_log(SQLITE_MISUSE, 1062 "API call with %s database connection pointer", 1063 zType 1064 ); 1065 } 1066 1067 /* 1068 ** Check to make sure we have a valid db pointer. This test is not 1069 ** foolproof but it does provide some measure of protection against 1070 ** misuse of the interface such as passing in db pointers that are 1071 ** NULL or which have been previously closed. If this routine returns 1072 ** 1 it means that the db pointer is valid and 0 if it should not be 1073 ** dereferenced for any reason. The calling function should invoke 1074 ** SQLITE_MISUSE immediately. 1075 ** 1076 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1077 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1078 ** open properly and is not fit for general use but which can be 1079 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1080 */ 1081 int sqlite3SafetyCheckOk(sqlite3 *db){ 1082 u32 magic; 1083 if( db==0 ){ 1084 logBadConnection("NULL"); 1085 return 0; 1086 } 1087 magic = db->magic; 1088 if( magic!=SQLITE_MAGIC_OPEN ){ 1089 if( sqlite3SafetyCheckSickOrOk(db) ){ 1090 testcase( sqlite3GlobalConfig.xLog!=0 ); 1091 logBadConnection("unopened"); 1092 } 1093 return 0; 1094 }else{ 1095 return 1; 1096 } 1097 } 1098 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1099 u32 magic; 1100 magic = db->magic; 1101 if( magic!=SQLITE_MAGIC_SICK && 1102 magic!=SQLITE_MAGIC_OPEN && 1103 magic!=SQLITE_MAGIC_BUSY ){ 1104 testcase( sqlite3GlobalConfig.xLog!=0 ); 1105 logBadConnection("invalid"); 1106 return 0; 1107 }else{ 1108 return 1; 1109 } 1110 } 1111 1112 /* 1113 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1114 ** the other 64-bit signed integer at *pA and store the result in *pA. 1115 ** Return 0 on success. Or if the operation would have resulted in an 1116 ** overflow, leave *pA unchanged and return 1. 1117 */ 1118 int sqlite3AddInt64(i64 *pA, i64 iB){ 1119 i64 iA = *pA; 1120 testcase( iA==0 ); testcase( iA==1 ); 1121 testcase( iB==-1 ); testcase( iB==0 ); 1122 if( iB>=0 ){ 1123 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1124 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1125 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1126 }else{ 1127 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1128 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1129 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1130 } 1131 *pA += iB; 1132 return 0; 1133 } 1134 int sqlite3SubInt64(i64 *pA, i64 iB){ 1135 testcase( iB==SMALLEST_INT64+1 ); 1136 if( iB==SMALLEST_INT64 ){ 1137 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1138 if( (*pA)>=0 ) return 1; 1139 *pA -= iB; 1140 return 0; 1141 }else{ 1142 return sqlite3AddInt64(pA, -iB); 1143 } 1144 } 1145 #define TWOPOWER32 (((i64)1)<<32) 1146 #define TWOPOWER31 (((i64)1)<<31) 1147 int sqlite3MulInt64(i64 *pA, i64 iB){ 1148 i64 iA = *pA; 1149 i64 iA1, iA0, iB1, iB0, r; 1150 1151 iA1 = iA/TWOPOWER32; 1152 iA0 = iA % TWOPOWER32; 1153 iB1 = iB/TWOPOWER32; 1154 iB0 = iB % TWOPOWER32; 1155 if( iA1==0 ){ 1156 if( iB1==0 ){ 1157 *pA *= iB; 1158 return 0; 1159 } 1160 r = iA0*iB1; 1161 }else if( iB1==0 ){ 1162 r = iA1*iB0; 1163 }else{ 1164 /* If both iA1 and iB1 are non-zero, overflow will result */ 1165 return 1; 1166 } 1167 testcase( r==(-TWOPOWER31)-1 ); 1168 testcase( r==(-TWOPOWER31) ); 1169 testcase( r==TWOPOWER31 ); 1170 testcase( r==TWOPOWER31-1 ); 1171 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1172 r *= TWOPOWER32; 1173 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1174 *pA = r; 1175 return 0; 1176 } 1177 1178 /* 1179 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1180 ** if the integer has a value of -2147483648, return +2147483647 1181 */ 1182 int sqlite3AbsInt32(int x){ 1183 if( x>=0 ) return x; 1184 if( x==(int)0x80000000 ) return 0x7fffffff; 1185 return -x; 1186 } 1187 1188 #ifdef SQLITE_ENABLE_8_3_NAMES 1189 /* 1190 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1191 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1192 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1193 ** three characters, then shorten the suffix on z[] to be the last three 1194 ** characters of the original suffix. 1195 ** 1196 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1197 ** do the suffix shortening regardless of URI parameter. 1198 ** 1199 ** Examples: 1200 ** 1201 ** test.db-journal => test.nal 1202 ** test.db-wal => test.wal 1203 ** test.db-shm => test.shm 1204 ** test.db-mj7f3319fa => test.9fa 1205 */ 1206 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1207 #if SQLITE_ENABLE_8_3_NAMES<2 1208 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1209 #endif 1210 { 1211 int i, sz; 1212 sz = sqlite3Strlen30(z); 1213 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1214 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1215 } 1216 } 1217 #endif 1218 1219 /* 1220 ** Find (an approximate) sum of two LogEst values. This computation is 1221 ** not a simple "+" operator because LogEst is stored as a logarithmic 1222 ** value. 1223 ** 1224 */ 1225 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1226 static const unsigned char x[] = { 1227 10, 10, /* 0,1 */ 1228 9, 9, /* 2,3 */ 1229 8, 8, /* 4,5 */ 1230 7, 7, 7, /* 6,7,8 */ 1231 6, 6, 6, /* 9,10,11 */ 1232 5, 5, 5, /* 12-14 */ 1233 4, 4, 4, 4, /* 15-18 */ 1234 3, 3, 3, 3, 3, 3, /* 19-24 */ 1235 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1236 }; 1237 if( a>=b ){ 1238 if( a>b+49 ) return a; 1239 if( a>b+31 ) return a+1; 1240 return a+x[a-b]; 1241 }else{ 1242 if( b>a+49 ) return b; 1243 if( b>a+31 ) return b+1; 1244 return b+x[b-a]; 1245 } 1246 } 1247 1248 /* 1249 ** Convert an integer into a LogEst. In other words, compute a 1250 ** good approximatation for 10*log2(x). 1251 */ 1252 LogEst sqlite3LogEst(u64 x){ 1253 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1254 LogEst y = 40; 1255 if( x<8 ){ 1256 if( x<2 ) return 0; 1257 while( x<8 ){ y -= 10; x <<= 1; } 1258 }else{ 1259 while( x>255 ){ y += 40; x >>= 4; } 1260 while( x>15 ){ y += 10; x >>= 1; } 1261 } 1262 return a[x&7] + y - 10; 1263 } 1264 1265 #ifndef SQLITE_OMIT_VIRTUALTABLE 1266 /* 1267 ** Convert a double into a LogEst 1268 ** In other words, compute an approximation for 10*log2(x). 1269 */ 1270 LogEst sqlite3LogEstFromDouble(double x){ 1271 u64 a; 1272 LogEst e; 1273 assert( sizeof(x)==8 && sizeof(a)==8 ); 1274 if( x<=1 ) return 0; 1275 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1276 memcpy(&a, &x, 8); 1277 e = (a>>52) - 1022; 1278 return e*10; 1279 } 1280 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1281 1282 /* 1283 ** Convert a LogEst into an integer. 1284 */ 1285 u64 sqlite3LogEstToInt(LogEst x){ 1286 u64 n; 1287 if( x<10 ) return 1; 1288 n = x%10; 1289 x /= 10; 1290 if( n>=5 ) n -= 2; 1291 else if( n>=1 ) n -= 1; 1292 if( x>=3 ){ 1293 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); 1294 } 1295 return (n+8)>>(3-x); 1296 } 1297