xref: /sqlite-3.40.0/src/util.c (revision 8ccdef6b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
38 **
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
41 **
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
44 */
45 #ifndef SQLITE_OMIT_BUILTIN_TEST
46 int sqlite3FaultSim(int iTest){
47   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48   return xCallback ? xCallback(iTest) : SQLITE_OK;
49 }
50 #endif
51 
52 #ifndef SQLITE_OMIT_FLOATING_POINT
53 /*
54 ** Return true if the floating point value is Not a Number (NaN).
55 **
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
58 */
59 int sqlite3IsNaN(double x){
60   int rc;   /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
62   /*
63   ** Systems that support the isnan() library function should probably
64   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
65   ** found that many systems do not have a working isnan() function so
66   ** this implementation is provided as an alternative.
67   **
68   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69   ** On the other hand, the use of -ffast-math comes with the following
70   ** warning:
71   **
72   **      This option [-ffast-math] should never be turned on by any
73   **      -O option since it can result in incorrect output for programs
74   **      which depend on an exact implementation of IEEE or ISO
75   **      rules/specifications for math functions.
76   **
77   ** Under MSVC, this NaN test may fail if compiled with a floating-
78   ** point precision mode other than /fp:precise.  From the MSDN
79   ** documentation:
80   **
81   **      The compiler [with /fp:precise] will properly handle comparisons
82   **      involving NaN. For example, x != x evaluates to true if x is NaN
83   **      ...
84   */
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88   volatile double y = x;
89   volatile double z = y;
90   rc = (y!=z);
91 #else  /* if HAVE_ISNAN */
92   rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94   testcase( rc );
95   return rc;
96 }
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
98 
99 /*
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
102 **
103 ** The value returned will never be negative.  Nor will it ever be greater
104 ** than the actual length of the string.  For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
106 */
107 int sqlite3Strlen30(const char *z){
108   if( z==0 ) return 0;
109   return 0x3fffffff & (int)strlen(z);
110 }
111 
112 /*
113 ** Set the current error code to err_code and clear any prior error message.
114 */
115 void sqlite3Error(sqlite3 *db, int err_code){
116   assert( db!=0 );
117   db->errCode = err_code;
118   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
119 }
120 
121 /*
122 ** Set the most recent error code and error string for the sqlite
123 ** handle "db". The error code is set to "err_code".
124 **
125 ** If it is not NULL, string zFormat specifies the format of the
126 ** error string in the style of the printf functions: The following
127 ** format characters are allowed:
128 **
129 **      %s      Insert a string
130 **      %z      A string that should be freed after use
131 **      %d      Insert an integer
132 **      %T      Insert a token
133 **      %S      Insert the first element of a SrcList
134 **
135 ** zFormat and any string tokens that follow it are assumed to be
136 ** encoded in UTF-8.
137 **
138 ** To clear the most recent error for sqlite handle "db", sqlite3Error
139 ** should be called with err_code set to SQLITE_OK and zFormat set
140 ** to NULL.
141 */
142 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
143   assert( db!=0 );
144   db->errCode = err_code;
145   if( zFormat==0 ){
146     sqlite3Error(db, err_code);
147   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
148     char *z;
149     va_list ap;
150     va_start(ap, zFormat);
151     z = sqlite3VMPrintf(db, zFormat, ap);
152     va_end(ap);
153     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
154   }
155 }
156 
157 /*
158 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
159 ** The following formatting characters are allowed:
160 **
161 **      %s      Insert a string
162 **      %z      A string that should be freed after use
163 **      %d      Insert an integer
164 **      %T      Insert a token
165 **      %S      Insert the first element of a SrcList
166 **
167 ** This function should be used to report any error that occurs while
168 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
169 ** last thing the sqlite3_prepare() function does is copy the error
170 ** stored by this function into the database handle using sqlite3Error().
171 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
172 ** during statement execution (sqlite3_step() etc.).
173 */
174 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
175   char *zMsg;
176   va_list ap;
177   sqlite3 *db = pParse->db;
178   va_start(ap, zFormat);
179   zMsg = sqlite3VMPrintf(db, zFormat, ap);
180   va_end(ap);
181   if( db->suppressErr ){
182     sqlite3DbFree(db, zMsg);
183   }else{
184     pParse->nErr++;
185     sqlite3DbFree(db, pParse->zErrMsg);
186     pParse->zErrMsg = zMsg;
187     pParse->rc = SQLITE_ERROR;
188   }
189 }
190 
191 /*
192 ** Convert an SQL-style quoted string into a normal string by removing
193 ** the quote characters.  The conversion is done in-place.  If the
194 ** input does not begin with a quote character, then this routine
195 ** is a no-op.
196 **
197 ** The input string must be zero-terminated.  A new zero-terminator
198 ** is added to the dequoted string.
199 **
200 ** The return value is -1 if no dequoting occurs or the length of the
201 ** dequoted string, exclusive of the zero terminator, if dequoting does
202 ** occur.
203 **
204 ** 2002-Feb-14: This routine is extended to remove MS-Access style
205 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
206 ** "a-b-c".
207 */
208 int sqlite3Dequote(char *z){
209   char quote;
210   int i, j;
211   if( z==0 ) return -1;
212   quote = z[0];
213   switch( quote ){
214     case '\'':  break;
215     case '"':   break;
216     case '`':   break;                /* For MySQL compatibility */
217     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
218     default:    return -1;
219   }
220   for(i=1, j=0;; i++){
221     assert( z[i] );
222     if( z[i]==quote ){
223       if( z[i+1]==quote ){
224         z[j++] = quote;
225         i++;
226       }else{
227         break;
228       }
229     }else{
230       z[j++] = z[i];
231     }
232   }
233   z[j] = 0;
234   return j;
235 }
236 
237 /* Convenient short-hand */
238 #define UpperToLower sqlite3UpperToLower
239 
240 /*
241 ** Some systems have stricmp().  Others have strcasecmp().  Because
242 ** there is no consistency, we will define our own.
243 **
244 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
245 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
246 ** the contents of two buffers containing UTF-8 strings in a
247 ** case-independent fashion, using the same definition of "case
248 ** independence" that SQLite uses internally when comparing identifiers.
249 */
250 int sqlite3_stricmp(const char *zLeft, const char *zRight){
251   register unsigned char *a, *b;
252   if( zLeft==0 ){
253     return zRight ? -1 : 0;
254   }else if( zRight==0 ){
255     return 1;
256   }
257   a = (unsigned char *)zLeft;
258   b = (unsigned char *)zRight;
259   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
260   return UpperToLower[*a] - UpperToLower[*b];
261 }
262 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
263   register unsigned char *a, *b;
264   if( zLeft==0 ){
265     return zRight ? -1 : 0;
266   }else if( zRight==0 ){
267     return 1;
268   }
269   a = (unsigned char *)zLeft;
270   b = (unsigned char *)zRight;
271   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
272   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
273 }
274 
275 /*
276 ** The string z[] is an text representation of a real number.
277 ** Convert this string to a double and write it into *pResult.
278 **
279 ** The string z[] is length bytes in length (bytes, not characters) and
280 ** uses the encoding enc.  The string is not necessarily zero-terminated.
281 **
282 ** Return TRUE if the result is a valid real number (or integer) and FALSE
283 ** if the string is empty or contains extraneous text.  Valid numbers
284 ** are in one of these formats:
285 **
286 **    [+-]digits[E[+-]digits]
287 **    [+-]digits.[digits][E[+-]digits]
288 **    [+-].digits[E[+-]digits]
289 **
290 ** Leading and trailing whitespace is ignored for the purpose of determining
291 ** validity.
292 **
293 ** If some prefix of the input string is a valid number, this routine
294 ** returns FALSE but it still converts the prefix and writes the result
295 ** into *pResult.
296 */
297 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
298 #ifndef SQLITE_OMIT_FLOATING_POINT
299   int incr;
300   const char *zEnd = z + length;
301   /* sign * significand * (10 ^ (esign * exponent)) */
302   int sign = 1;    /* sign of significand */
303   i64 s = 0;       /* significand */
304   int d = 0;       /* adjust exponent for shifting decimal point */
305   int esign = 1;   /* sign of exponent */
306   int e = 0;       /* exponent */
307   int eValid = 1;  /* True exponent is either not used or is well-formed */
308   double result;
309   int nDigits = 0;
310   int nonNum = 0;
311 
312   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
313   *pResult = 0.0;   /* Default return value, in case of an error */
314 
315   if( enc==SQLITE_UTF8 ){
316     incr = 1;
317   }else{
318     int i;
319     incr = 2;
320     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
321     for(i=3-enc; i<length && z[i]==0; i+=2){}
322     nonNum = i<length;
323     zEnd = z+i+enc-3;
324     z += (enc&1);
325   }
326 
327   /* skip leading spaces */
328   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
329   if( z>=zEnd ) return 0;
330 
331   /* get sign of significand */
332   if( *z=='-' ){
333     sign = -1;
334     z+=incr;
335   }else if( *z=='+' ){
336     z+=incr;
337   }
338 
339   /* skip leading zeroes */
340   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
341 
342   /* copy max significant digits to significand */
343   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
344     s = s*10 + (*z - '0');
345     z+=incr, nDigits++;
346   }
347 
348   /* skip non-significant significand digits
349   ** (increase exponent by d to shift decimal left) */
350   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
351   if( z>=zEnd ) goto do_atof_calc;
352 
353   /* if decimal point is present */
354   if( *z=='.' ){
355     z+=incr;
356     /* copy digits from after decimal to significand
357     ** (decrease exponent by d to shift decimal right) */
358     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
359       s = s*10 + (*z - '0');
360       z+=incr, nDigits++, d--;
361     }
362     /* skip non-significant digits */
363     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
364   }
365   if( z>=zEnd ) goto do_atof_calc;
366 
367   /* if exponent is present */
368   if( *z=='e' || *z=='E' ){
369     z+=incr;
370     eValid = 0;
371     if( z>=zEnd ) goto do_atof_calc;
372     /* get sign of exponent */
373     if( *z=='-' ){
374       esign = -1;
375       z+=incr;
376     }else if( *z=='+' ){
377       z+=incr;
378     }
379     /* copy digits to exponent */
380     while( z<zEnd && sqlite3Isdigit(*z) ){
381       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
382       z+=incr;
383       eValid = 1;
384     }
385   }
386 
387   /* skip trailing spaces */
388   if( nDigits && eValid ){
389     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
390   }
391 
392 do_atof_calc:
393   /* adjust exponent by d, and update sign */
394   e = (e*esign) + d;
395   if( e<0 ) {
396     esign = -1;
397     e *= -1;
398   } else {
399     esign = 1;
400   }
401 
402   /* if 0 significand */
403   if( !s ) {
404     /* In the IEEE 754 standard, zero is signed.
405     ** Add the sign if we've seen at least one digit */
406     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
407   } else {
408     /* attempt to reduce exponent */
409     if( esign>0 ){
410       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
411     }else{
412       while( !(s%10) && e>0 ) e--,s/=10;
413     }
414 
415     /* adjust the sign of significand */
416     s = sign<0 ? -s : s;
417 
418     /* if exponent, scale significand as appropriate
419     ** and store in result. */
420     if( e ){
421       LONGDOUBLE_TYPE scale = 1.0;
422       /* attempt to handle extremely small/large numbers better */
423       if( e>307 && e<342 ){
424         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
425         if( esign<0 ){
426           result = s / scale;
427           result /= 1.0e+308;
428         }else{
429           result = s * scale;
430           result *= 1.0e+308;
431         }
432       }else if( e>=342 ){
433         if( esign<0 ){
434           result = 0.0*s;
435         }else{
436           result = 1e308*1e308*s;  /* Infinity */
437         }
438       }else{
439         /* 1.0e+22 is the largest power of 10 than can be
440         ** represented exactly. */
441         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
442         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
443         if( esign<0 ){
444           result = s / scale;
445         }else{
446           result = s * scale;
447         }
448       }
449     } else {
450       result = (double)s;
451     }
452   }
453 
454   /* store the result */
455   *pResult = result;
456 
457   /* return true if number and no extra non-whitespace chracters after */
458   return z>=zEnd && nDigits>0 && eValid && nonNum==0;
459 #else
460   return !sqlite3Atoi64(z, pResult, length, enc);
461 #endif /* SQLITE_OMIT_FLOATING_POINT */
462 }
463 
464 /*
465 ** Compare the 19-character string zNum against the text representation
466 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
467 ** if zNum is less than, equal to, or greater than the string.
468 ** Note that zNum must contain exactly 19 characters.
469 **
470 ** Unlike memcmp() this routine is guaranteed to return the difference
471 ** in the values of the last digit if the only difference is in the
472 ** last digit.  So, for example,
473 **
474 **      compare2pow63("9223372036854775800", 1)
475 **
476 ** will return -8.
477 */
478 static int compare2pow63(const char *zNum, int incr){
479   int c = 0;
480   int i;
481                     /* 012345678901234567 */
482   const char *pow63 = "922337203685477580";
483   for(i=0; c==0 && i<18; i++){
484     c = (zNum[i*incr]-pow63[i])*10;
485   }
486   if( c==0 ){
487     c = zNum[18*incr] - '8';
488     testcase( c==(-1) );
489     testcase( c==0 );
490     testcase( c==(+1) );
491   }
492   return c;
493 }
494 
495 /*
496 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
497 ** routine does *not* accept hexadecimal notation.
498 **
499 ** If the zNum value is representable as a 64-bit twos-complement
500 ** integer, then write that value into *pNum and return 0.
501 **
502 ** If zNum is exactly 9223372036854775808, return 2.  This special
503 ** case is broken out because while 9223372036854775808 cannot be a
504 ** signed 64-bit integer, its negative -9223372036854775808 can be.
505 **
506 ** If zNum is too big for a 64-bit integer and is not
507 ** 9223372036854775808  or if zNum contains any non-numeric text,
508 ** then return 1.
509 **
510 ** length is the number of bytes in the string (bytes, not characters).
511 ** The string is not necessarily zero-terminated.  The encoding is
512 ** given by enc.
513 */
514 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
515   int incr;
516   u64 u = 0;
517   int neg = 0; /* assume positive */
518   int i;
519   int c = 0;
520   int nonNum = 0;
521   const char *zStart;
522   const char *zEnd = zNum + length;
523   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
524   if( enc==SQLITE_UTF8 ){
525     incr = 1;
526   }else{
527     incr = 2;
528     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
529     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
530     nonNum = i<length;
531     zEnd = zNum+i+enc-3;
532     zNum += (enc&1);
533   }
534   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
535   if( zNum<zEnd ){
536     if( *zNum=='-' ){
537       neg = 1;
538       zNum+=incr;
539     }else if( *zNum=='+' ){
540       zNum+=incr;
541     }
542   }
543   zStart = zNum;
544   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
545   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
546     u = u*10 + c - '0';
547   }
548   if( u>LARGEST_INT64 ){
549     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
550   }else if( neg ){
551     *pNum = -(i64)u;
552   }else{
553     *pNum = (i64)u;
554   }
555   testcase( i==18 );
556   testcase( i==19 );
557   testcase( i==20 );
558   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum)
559        || i>19*incr || nonNum ){
560     /* zNum is empty or contains non-numeric text or is longer
561     ** than 19 digits (thus guaranteeing that it is too large) */
562     return 1;
563   }else if( i<19*incr ){
564     /* Less than 19 digits, so we know that it fits in 64 bits */
565     assert( u<=LARGEST_INT64 );
566     return 0;
567   }else{
568     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
569     c = compare2pow63(zNum, incr);
570     if( c<0 ){
571       /* zNum is less than 9223372036854775808 so it fits */
572       assert( u<=LARGEST_INT64 );
573       return 0;
574     }else if( c>0 ){
575       /* zNum is greater than 9223372036854775808 so it overflows */
576       return 1;
577     }else{
578       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
579       ** special case 2 overflow if positive */
580       assert( u-1==LARGEST_INT64 );
581       return neg ? 0 : 2;
582     }
583   }
584 }
585 
586 /*
587 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
588 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
589 ** whereas sqlite3Atoi64() does not.
590 **
591 ** Returns:
592 **
593 **     0    Successful transformation.  Fits in a 64-bit signed integer.
594 **     1    Integer too large for a 64-bit signed integer or is malformed
595 **     2    Special case of 9223372036854775808
596 */
597 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
598 #ifndef SQLITE_OMIT_HEX_INTEGER
599   if( z[0]=='0'
600    && (z[1]=='x' || z[1]=='X')
601    && sqlite3Isxdigit(z[2])
602   ){
603     u64 u = 0;
604     int i, k;
605     for(i=2; z[i]=='0'; i++){}
606     for(k=i; sqlite3Isxdigit(z[k]); k++){
607       u = u*16 + sqlite3HexToInt(z[k]);
608     }
609     memcpy(pOut, &u, 8);
610     return (z[k]==0 && k-i<=16) ? 0 : 1;
611   }else
612 #endif /* SQLITE_OMIT_HEX_INTEGER */
613   {
614     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
615   }
616 }
617 
618 /*
619 ** If zNum represents an integer that will fit in 32-bits, then set
620 ** *pValue to that integer and return true.  Otherwise return false.
621 **
622 ** This routine accepts both decimal and hexadecimal notation for integers.
623 **
624 ** Any non-numeric characters that following zNum are ignored.
625 ** This is different from sqlite3Atoi64() which requires the
626 ** input number to be zero-terminated.
627 */
628 int sqlite3GetInt32(const char *zNum, int *pValue){
629   sqlite_int64 v = 0;
630   int i, c;
631   int neg = 0;
632   if( zNum[0]=='-' ){
633     neg = 1;
634     zNum++;
635   }else if( zNum[0]=='+' ){
636     zNum++;
637   }
638 #ifndef SQLITE_OMIT_HEX_INTEGER
639   else if( zNum[0]=='0'
640         && (zNum[1]=='x' || zNum[1]=='X')
641         && sqlite3Isxdigit(zNum[2])
642   ){
643     u32 u = 0;
644     zNum += 2;
645     while( zNum[0]=='0' ) zNum++;
646     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
647       u = u*16 + sqlite3HexToInt(zNum[i]);
648     }
649     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
650       memcpy(pValue, &u, 4);
651       return 1;
652     }else{
653       return 0;
654     }
655   }
656 #endif
657   while( zNum[0]=='0' ) zNum++;
658   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
659     v = v*10 + c;
660   }
661 
662   /* The longest decimal representation of a 32 bit integer is 10 digits:
663   **
664   **             1234567890
665   **     2^31 -> 2147483648
666   */
667   testcase( i==10 );
668   if( i>10 ){
669     return 0;
670   }
671   testcase( v-neg==2147483647 );
672   if( v-neg>2147483647 ){
673     return 0;
674   }
675   if( neg ){
676     v = -v;
677   }
678   *pValue = (int)v;
679   return 1;
680 }
681 
682 /*
683 ** Return a 32-bit integer value extracted from a string.  If the
684 ** string is not an integer, just return 0.
685 */
686 int sqlite3Atoi(const char *z){
687   int x = 0;
688   if( z ) sqlite3GetInt32(z, &x);
689   return x;
690 }
691 
692 /*
693 ** The variable-length integer encoding is as follows:
694 **
695 ** KEY:
696 **         A = 0xxxxxxx    7 bits of data and one flag bit
697 **         B = 1xxxxxxx    7 bits of data and one flag bit
698 **         C = xxxxxxxx    8 bits of data
699 **
700 **  7 bits - A
701 ** 14 bits - BA
702 ** 21 bits - BBA
703 ** 28 bits - BBBA
704 ** 35 bits - BBBBA
705 ** 42 bits - BBBBBA
706 ** 49 bits - BBBBBBA
707 ** 56 bits - BBBBBBBA
708 ** 64 bits - BBBBBBBBC
709 */
710 
711 /*
712 ** Write a 64-bit variable-length integer to memory starting at p[0].
713 ** The length of data write will be between 1 and 9 bytes.  The number
714 ** of bytes written is returned.
715 **
716 ** A variable-length integer consists of the lower 7 bits of each byte
717 ** for all bytes that have the 8th bit set and one byte with the 8th
718 ** bit clear.  Except, if we get to the 9th byte, it stores the full
719 ** 8 bits and is the last byte.
720 */
721 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
722   int i, j, n;
723   u8 buf[10];
724   if( v & (((u64)0xff000000)<<32) ){
725     p[8] = (u8)v;
726     v >>= 8;
727     for(i=7; i>=0; i--){
728       p[i] = (u8)((v & 0x7f) | 0x80);
729       v >>= 7;
730     }
731     return 9;
732   }
733   n = 0;
734   do{
735     buf[n++] = (u8)((v & 0x7f) | 0x80);
736     v >>= 7;
737   }while( v!=0 );
738   buf[0] &= 0x7f;
739   assert( n<=9 );
740   for(i=0, j=n-1; j>=0; j--, i++){
741     p[i] = buf[j];
742   }
743   return n;
744 }
745 int sqlite3PutVarint(unsigned char *p, u64 v){
746   if( v<=0x7f ){
747     p[0] = v&0x7f;
748     return 1;
749   }
750   if( v<=0x3fff ){
751     p[0] = ((v>>7)&0x7f)|0x80;
752     p[1] = v&0x7f;
753     return 2;
754   }
755   return putVarint64(p,v);
756 }
757 
758 /*
759 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
760 ** are defined here rather than simply putting the constant expressions
761 ** inline in order to work around bugs in the RVT compiler.
762 **
763 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
764 **
765 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
766 */
767 #define SLOT_2_0     0x001fc07f
768 #define SLOT_4_2_0   0xf01fc07f
769 
770 
771 /*
772 ** Read a 64-bit variable-length integer from memory starting at p[0].
773 ** Return the number of bytes read.  The value is stored in *v.
774 */
775 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
776   u32 a,b,s;
777 
778   a = *p;
779   /* a: p0 (unmasked) */
780   if (!(a&0x80))
781   {
782     *v = a;
783     return 1;
784   }
785 
786   p++;
787   b = *p;
788   /* b: p1 (unmasked) */
789   if (!(b&0x80))
790   {
791     a &= 0x7f;
792     a = a<<7;
793     a |= b;
794     *v = a;
795     return 2;
796   }
797 
798   /* Verify that constants are precomputed correctly */
799   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
800   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
801 
802   p++;
803   a = a<<14;
804   a |= *p;
805   /* a: p0<<14 | p2 (unmasked) */
806   if (!(a&0x80))
807   {
808     a &= SLOT_2_0;
809     b &= 0x7f;
810     b = b<<7;
811     a |= b;
812     *v = a;
813     return 3;
814   }
815 
816   /* CSE1 from below */
817   a &= SLOT_2_0;
818   p++;
819   b = b<<14;
820   b |= *p;
821   /* b: p1<<14 | p3 (unmasked) */
822   if (!(b&0x80))
823   {
824     b &= SLOT_2_0;
825     /* moved CSE1 up */
826     /* a &= (0x7f<<14)|(0x7f); */
827     a = a<<7;
828     a |= b;
829     *v = a;
830     return 4;
831   }
832 
833   /* a: p0<<14 | p2 (masked) */
834   /* b: p1<<14 | p3 (unmasked) */
835   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
836   /* moved CSE1 up */
837   /* a &= (0x7f<<14)|(0x7f); */
838   b &= SLOT_2_0;
839   s = a;
840   /* s: p0<<14 | p2 (masked) */
841 
842   p++;
843   a = a<<14;
844   a |= *p;
845   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
846   if (!(a&0x80))
847   {
848     /* we can skip these cause they were (effectively) done above
849     ** while calculating s */
850     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
851     /* b &= (0x7f<<14)|(0x7f); */
852     b = b<<7;
853     a |= b;
854     s = s>>18;
855     *v = ((u64)s)<<32 | a;
856     return 5;
857   }
858 
859   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
860   s = s<<7;
861   s |= b;
862   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
863 
864   p++;
865   b = b<<14;
866   b |= *p;
867   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
868   if (!(b&0x80))
869   {
870     /* we can skip this cause it was (effectively) done above in calc'ing s */
871     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
872     a &= SLOT_2_0;
873     a = a<<7;
874     a |= b;
875     s = s>>18;
876     *v = ((u64)s)<<32 | a;
877     return 6;
878   }
879 
880   p++;
881   a = a<<14;
882   a |= *p;
883   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
884   if (!(a&0x80))
885   {
886     a &= SLOT_4_2_0;
887     b &= SLOT_2_0;
888     b = b<<7;
889     a |= b;
890     s = s>>11;
891     *v = ((u64)s)<<32 | a;
892     return 7;
893   }
894 
895   /* CSE2 from below */
896   a &= SLOT_2_0;
897   p++;
898   b = b<<14;
899   b |= *p;
900   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
901   if (!(b&0x80))
902   {
903     b &= SLOT_4_2_0;
904     /* moved CSE2 up */
905     /* a &= (0x7f<<14)|(0x7f); */
906     a = a<<7;
907     a |= b;
908     s = s>>4;
909     *v = ((u64)s)<<32 | a;
910     return 8;
911   }
912 
913   p++;
914   a = a<<15;
915   a |= *p;
916   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
917 
918   /* moved CSE2 up */
919   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
920   b &= SLOT_2_0;
921   b = b<<8;
922   a |= b;
923 
924   s = s<<4;
925   b = p[-4];
926   b &= 0x7f;
927   b = b>>3;
928   s |= b;
929 
930   *v = ((u64)s)<<32 | a;
931 
932   return 9;
933 }
934 
935 /*
936 ** Read a 32-bit variable-length integer from memory starting at p[0].
937 ** Return the number of bytes read.  The value is stored in *v.
938 **
939 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
940 ** integer, then set *v to 0xffffffff.
941 **
942 ** A MACRO version, getVarint32, is provided which inlines the
943 ** single-byte case.  All code should use the MACRO version as
944 ** this function assumes the single-byte case has already been handled.
945 */
946 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
947   u32 a,b;
948 
949   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
950   ** by the getVarin32() macro */
951   a = *p;
952   /* a: p0 (unmasked) */
953 #ifndef getVarint32
954   if (!(a&0x80))
955   {
956     /* Values between 0 and 127 */
957     *v = a;
958     return 1;
959   }
960 #endif
961 
962   /* The 2-byte case */
963   p++;
964   b = *p;
965   /* b: p1 (unmasked) */
966   if (!(b&0x80))
967   {
968     /* Values between 128 and 16383 */
969     a &= 0x7f;
970     a = a<<7;
971     *v = a | b;
972     return 2;
973   }
974 
975   /* The 3-byte case */
976   p++;
977   a = a<<14;
978   a |= *p;
979   /* a: p0<<14 | p2 (unmasked) */
980   if (!(a&0x80))
981   {
982     /* Values between 16384 and 2097151 */
983     a &= (0x7f<<14)|(0x7f);
984     b &= 0x7f;
985     b = b<<7;
986     *v = a | b;
987     return 3;
988   }
989 
990   /* A 32-bit varint is used to store size information in btrees.
991   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
992   ** A 3-byte varint is sufficient, for example, to record the size
993   ** of a 1048569-byte BLOB or string.
994   **
995   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
996   ** rare larger cases can be handled by the slower 64-bit varint
997   ** routine.
998   */
999 #if 1
1000   {
1001     u64 v64;
1002     u8 n;
1003 
1004     p -= 2;
1005     n = sqlite3GetVarint(p, &v64);
1006     assert( n>3 && n<=9 );
1007     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1008       *v = 0xffffffff;
1009     }else{
1010       *v = (u32)v64;
1011     }
1012     return n;
1013   }
1014 
1015 #else
1016   /* For following code (kept for historical record only) shows an
1017   ** unrolling for the 3- and 4-byte varint cases.  This code is
1018   ** slightly faster, but it is also larger and much harder to test.
1019   */
1020   p++;
1021   b = b<<14;
1022   b |= *p;
1023   /* b: p1<<14 | p3 (unmasked) */
1024   if (!(b&0x80))
1025   {
1026     /* Values between 2097152 and 268435455 */
1027     b &= (0x7f<<14)|(0x7f);
1028     a &= (0x7f<<14)|(0x7f);
1029     a = a<<7;
1030     *v = a | b;
1031     return 4;
1032   }
1033 
1034   p++;
1035   a = a<<14;
1036   a |= *p;
1037   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1038   if (!(a&0x80))
1039   {
1040     /* Values  between 268435456 and 34359738367 */
1041     a &= SLOT_4_2_0;
1042     b &= SLOT_4_2_0;
1043     b = b<<7;
1044     *v = a | b;
1045     return 5;
1046   }
1047 
1048   /* We can only reach this point when reading a corrupt database
1049   ** file.  In that case we are not in any hurry.  Use the (relatively
1050   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1051   ** value. */
1052   {
1053     u64 v64;
1054     u8 n;
1055 
1056     p -= 4;
1057     n = sqlite3GetVarint(p, &v64);
1058     assert( n>5 && n<=9 );
1059     *v = (u32)v64;
1060     return n;
1061   }
1062 #endif
1063 }
1064 
1065 /*
1066 ** Return the number of bytes that will be needed to store the given
1067 ** 64-bit integer.
1068 */
1069 int sqlite3VarintLen(u64 v){
1070   int i;
1071   for(i=1; (v >>= 7)!=0; i++){ assert( i<9 ); }
1072   return i;
1073 }
1074 
1075 
1076 /*
1077 ** Read or write a four-byte big-endian integer value.
1078 */
1079 u32 sqlite3Get4byte(const u8 *p){
1080 #if SQLITE_BYTEORDER==4321
1081   u32 x;
1082   memcpy(&x,p,4);
1083   return x;
1084 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1085     && defined(__GNUC__) && GCC_VERSION>=4003000
1086   u32 x;
1087   memcpy(&x,p,4);
1088   return __builtin_bswap32(x);
1089 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
1090     && defined(_MSC_VER) && _MSC_VER>=1300
1091   u32 x;
1092   memcpy(&x,p,4);
1093   return _byteswap_ulong(x);
1094 #else
1095   testcase( p[0]&0x80 );
1096   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1097 #endif
1098 }
1099 void sqlite3Put4byte(unsigned char *p, u32 v){
1100 #if SQLITE_BYTEORDER==4321
1101   memcpy(p,&v,4);
1102 #elif SQLITE_BYTEORDER==1234 && defined(__GNUC__) && GCC_VERSION>=4003000
1103   u32 x = __builtin_bswap32(v);
1104   memcpy(p,&x,4);
1105 #elif SQLITE_BYTEORDER==1234 && defined(_MSC_VER) && _MSC_VER>=1300
1106   u32 x = _byteswap_ulong(v);
1107   memcpy(p,&x,4);
1108 #else
1109   p[0] = (u8)(v>>24);
1110   p[1] = (u8)(v>>16);
1111   p[2] = (u8)(v>>8);
1112   p[3] = (u8)v;
1113 #endif
1114 }
1115 
1116 
1117 
1118 /*
1119 ** Translate a single byte of Hex into an integer.
1120 ** This routine only works if h really is a valid hexadecimal
1121 ** character:  0..9a..fA..F
1122 */
1123 u8 sqlite3HexToInt(int h){
1124   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1125 #ifdef SQLITE_ASCII
1126   h += 9*(1&(h>>6));
1127 #endif
1128 #ifdef SQLITE_EBCDIC
1129   h += 9*(1&~(h>>4));
1130 #endif
1131   return (u8)(h & 0xf);
1132 }
1133 
1134 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1135 /*
1136 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1137 ** value.  Return a pointer to its binary value.  Space to hold the
1138 ** binary value has been obtained from malloc and must be freed by
1139 ** the calling routine.
1140 */
1141 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1142   char *zBlob;
1143   int i;
1144 
1145   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1146   n--;
1147   if( zBlob ){
1148     for(i=0; i<n; i+=2){
1149       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1150     }
1151     zBlob[i/2] = 0;
1152   }
1153   return zBlob;
1154 }
1155 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1156 
1157 /*
1158 ** Log an error that is an API call on a connection pointer that should
1159 ** not have been used.  The "type" of connection pointer is given as the
1160 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1161 */
1162 static void logBadConnection(const char *zType){
1163   sqlite3_log(SQLITE_MISUSE,
1164      "API call with %s database connection pointer",
1165      zType
1166   );
1167 }
1168 
1169 /*
1170 ** Check to make sure we have a valid db pointer.  This test is not
1171 ** foolproof but it does provide some measure of protection against
1172 ** misuse of the interface such as passing in db pointers that are
1173 ** NULL or which have been previously closed.  If this routine returns
1174 ** 1 it means that the db pointer is valid and 0 if it should not be
1175 ** dereferenced for any reason.  The calling function should invoke
1176 ** SQLITE_MISUSE immediately.
1177 **
1178 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1179 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1180 ** open properly and is not fit for general use but which can be
1181 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1182 */
1183 int sqlite3SafetyCheckOk(sqlite3 *db){
1184   u32 magic;
1185   if( db==0 ){
1186     logBadConnection("NULL");
1187     return 0;
1188   }
1189   magic = db->magic;
1190   if( magic!=SQLITE_MAGIC_OPEN ){
1191     if( sqlite3SafetyCheckSickOrOk(db) ){
1192       testcase( sqlite3GlobalConfig.xLog!=0 );
1193       logBadConnection("unopened");
1194     }
1195     return 0;
1196   }else{
1197     return 1;
1198   }
1199 }
1200 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1201   u32 magic;
1202   magic = db->magic;
1203   if( magic!=SQLITE_MAGIC_SICK &&
1204       magic!=SQLITE_MAGIC_OPEN &&
1205       magic!=SQLITE_MAGIC_BUSY ){
1206     testcase( sqlite3GlobalConfig.xLog!=0 );
1207     logBadConnection("invalid");
1208     return 0;
1209   }else{
1210     return 1;
1211   }
1212 }
1213 
1214 /*
1215 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1216 ** the other 64-bit signed integer at *pA and store the result in *pA.
1217 ** Return 0 on success.  Or if the operation would have resulted in an
1218 ** overflow, leave *pA unchanged and return 1.
1219 */
1220 int sqlite3AddInt64(i64 *pA, i64 iB){
1221   i64 iA = *pA;
1222   testcase( iA==0 ); testcase( iA==1 );
1223   testcase( iB==-1 ); testcase( iB==0 );
1224   if( iB>=0 ){
1225     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1226     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1227     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1228   }else{
1229     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1230     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1231     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1232   }
1233   *pA += iB;
1234   return 0;
1235 }
1236 int sqlite3SubInt64(i64 *pA, i64 iB){
1237   testcase( iB==SMALLEST_INT64+1 );
1238   if( iB==SMALLEST_INT64 ){
1239     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1240     if( (*pA)>=0 ) return 1;
1241     *pA -= iB;
1242     return 0;
1243   }else{
1244     return sqlite3AddInt64(pA, -iB);
1245   }
1246 }
1247 #define TWOPOWER32 (((i64)1)<<32)
1248 #define TWOPOWER31 (((i64)1)<<31)
1249 int sqlite3MulInt64(i64 *pA, i64 iB){
1250   i64 iA = *pA;
1251   i64 iA1, iA0, iB1, iB0, r;
1252 
1253   iA1 = iA/TWOPOWER32;
1254   iA0 = iA % TWOPOWER32;
1255   iB1 = iB/TWOPOWER32;
1256   iB0 = iB % TWOPOWER32;
1257   if( iA1==0 ){
1258     if( iB1==0 ){
1259       *pA *= iB;
1260       return 0;
1261     }
1262     r = iA0*iB1;
1263   }else if( iB1==0 ){
1264     r = iA1*iB0;
1265   }else{
1266     /* If both iA1 and iB1 are non-zero, overflow will result */
1267     return 1;
1268   }
1269   testcase( r==(-TWOPOWER31)-1 );
1270   testcase( r==(-TWOPOWER31) );
1271   testcase( r==TWOPOWER31 );
1272   testcase( r==TWOPOWER31-1 );
1273   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1274   r *= TWOPOWER32;
1275   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1276   *pA = r;
1277   return 0;
1278 }
1279 
1280 /*
1281 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1282 ** if the integer has a value of -2147483648, return +2147483647
1283 */
1284 int sqlite3AbsInt32(int x){
1285   if( x>=0 ) return x;
1286   if( x==(int)0x80000000 ) return 0x7fffffff;
1287   return -x;
1288 }
1289 
1290 #ifdef SQLITE_ENABLE_8_3_NAMES
1291 /*
1292 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1293 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1294 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1295 ** three characters, then shorten the suffix on z[] to be the last three
1296 ** characters of the original suffix.
1297 **
1298 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1299 ** do the suffix shortening regardless of URI parameter.
1300 **
1301 ** Examples:
1302 **
1303 **     test.db-journal    =>   test.nal
1304 **     test.db-wal        =>   test.wal
1305 **     test.db-shm        =>   test.shm
1306 **     test.db-mj7f3319fa =>   test.9fa
1307 */
1308 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1309 #if SQLITE_ENABLE_8_3_NAMES<2
1310   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1311 #endif
1312   {
1313     int i, sz;
1314     sz = sqlite3Strlen30(z);
1315     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1316     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1317   }
1318 }
1319 #endif
1320 
1321 /*
1322 ** Find (an approximate) sum of two LogEst values.  This computation is
1323 ** not a simple "+" operator because LogEst is stored as a logarithmic
1324 ** value.
1325 **
1326 */
1327 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1328   static const unsigned char x[] = {
1329      10, 10,                         /* 0,1 */
1330       9, 9,                          /* 2,3 */
1331       8, 8,                          /* 4,5 */
1332       7, 7, 7,                       /* 6,7,8 */
1333       6, 6, 6,                       /* 9,10,11 */
1334       5, 5, 5,                       /* 12-14 */
1335       4, 4, 4, 4,                    /* 15-18 */
1336       3, 3, 3, 3, 3, 3,              /* 19-24 */
1337       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1338   };
1339   if( a>=b ){
1340     if( a>b+49 ) return a;
1341     if( a>b+31 ) return a+1;
1342     return a+x[a-b];
1343   }else{
1344     if( b>a+49 ) return b;
1345     if( b>a+31 ) return b+1;
1346     return b+x[b-a];
1347   }
1348 }
1349 
1350 /*
1351 ** Convert an integer into a LogEst.  In other words, compute an
1352 ** approximation for 10*log2(x).
1353 */
1354 LogEst sqlite3LogEst(u64 x){
1355   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1356   LogEst y = 40;
1357   if( x<8 ){
1358     if( x<2 ) return 0;
1359     while( x<8 ){  y -= 10; x <<= 1; }
1360   }else{
1361     while( x>255 ){ y += 40; x >>= 4; }
1362     while( x>15 ){  y += 10; x >>= 1; }
1363   }
1364   return a[x&7] + y - 10;
1365 }
1366 
1367 #ifndef SQLITE_OMIT_VIRTUALTABLE
1368 /*
1369 ** Convert a double into a LogEst
1370 ** In other words, compute an approximation for 10*log2(x).
1371 */
1372 LogEst sqlite3LogEstFromDouble(double x){
1373   u64 a;
1374   LogEst e;
1375   assert( sizeof(x)==8 && sizeof(a)==8 );
1376   if( x<=1 ) return 0;
1377   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1378   memcpy(&a, &x, 8);
1379   e = (a>>52) - 1022;
1380   return e*10;
1381 }
1382 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1383 
1384 /*
1385 ** Convert a LogEst into an integer.
1386 */
1387 u64 sqlite3LogEstToInt(LogEst x){
1388   u64 n;
1389   if( x<10 ) return 1;
1390   n = x%10;
1391   x /= 10;
1392   if( n>=5 ) n -= 2;
1393   else if( n>=1 ) n -= 1;
1394   if( x>=3 ){
1395     return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1396   }
1397   return (n+8)>>(3-x);
1398 }
1399