xref: /sqlite-3.40.0/src/util.c (revision 7b852416)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36 ** or to bypass normal error detection during testing in order to let
37 ** execute proceed futher downstream.
38 **
39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
40 ** sqlite3FaultSim() function only returns non-zero during testing.
41 **
42 ** During testing, if the test harness has set a fault-sim callback using
43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44 ** each call to sqlite3FaultSim() is relayed to that application-supplied
45 ** callback and the integer return value form the application-supplied
46 ** callback is returned by sqlite3FaultSim().
47 **
48 ** The integer argument to sqlite3FaultSim() is a code to identify which
49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50 ** should have a unique code.  To prevent legacy testing applications from
51 ** breaking, the codes should not be changed or reused.
52 */
53 #ifndef SQLITE_UNTESTABLE
54 int sqlite3FaultSim(int iTest){
55   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56   return xCallback ? xCallback(iTest) : SQLITE_OK;
57 }
58 #endif
59 
60 #ifndef SQLITE_OMIT_FLOATING_POINT
61 /*
62 ** Return true if the floating point value is Not a Number (NaN).
63 */
64 int sqlite3IsNaN(double x){
65   u64 y;
66   memcpy(&y,&x,sizeof(y));
67   return IsNaN(y);
68 }
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
70 
71 /*
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
74 **
75 ** The value returned will never be negative.  Nor will it ever be greater
76 ** than the actual length of the string.  For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
78 */
79 int sqlite3Strlen30(const char *z){
80   if( z==0 ) return 0;
81   return 0x3fffffff & (int)strlen(z);
82 }
83 
84 /*
85 ** Return the declared type of a column.  Or return zDflt if the column
86 ** has no declared type.
87 **
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
90 */
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
93   return pCol->zName + strlen(pCol->zName) + 1;
94 }
95 
96 /*
97 ** Helper function for sqlite3Error() - called rarely.  Broken out into
98 ** a separate routine to avoid unnecessary register saves on entry to
99 ** sqlite3Error().
100 */
101 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
102   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
103   sqlite3SystemError(db, err_code);
104 }
105 
106 /*
107 ** Set the current error code to err_code and clear any prior error message.
108 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
109 ** that would be appropriate.
110 */
111 void sqlite3Error(sqlite3 *db, int err_code){
112   assert( db!=0 );
113   db->errCode = err_code;
114   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
115 }
116 
117 /*
118 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
119 ** to do based on the SQLite error code in rc.
120 */
121 void sqlite3SystemError(sqlite3 *db, int rc){
122   if( rc==SQLITE_IOERR_NOMEM ) return;
123   rc &= 0xff;
124   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
125     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
126   }
127 }
128 
129 /*
130 ** Set the most recent error code and error string for the sqlite
131 ** handle "db". The error code is set to "err_code".
132 **
133 ** If it is not NULL, string zFormat specifies the format of the
134 ** error string in the style of the printf functions: The following
135 ** format characters are allowed:
136 **
137 **      %s      Insert a string
138 **      %z      A string that should be freed after use
139 **      %d      Insert an integer
140 **      %T      Insert a token
141 **      %S      Insert the first element of a SrcList
142 **
143 ** zFormat and any string tokens that follow it are assumed to be
144 ** encoded in UTF-8.
145 **
146 ** To clear the most recent error for sqlite handle "db", sqlite3Error
147 ** should be called with err_code set to SQLITE_OK and zFormat set
148 ** to NULL.
149 */
150 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
151   assert( db!=0 );
152   db->errCode = err_code;
153   sqlite3SystemError(db, err_code);
154   if( zFormat==0 ){
155     sqlite3Error(db, err_code);
156   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
157     char *z;
158     va_list ap;
159     va_start(ap, zFormat);
160     z = sqlite3VMPrintf(db, zFormat, ap);
161     va_end(ap);
162     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
163   }
164 }
165 
166 /*
167 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
168 ** The following formatting characters are allowed:
169 **
170 **      %s      Insert a string
171 **      %z      A string that should be freed after use
172 **      %d      Insert an integer
173 **      %T      Insert a token
174 **      %S      Insert the first element of a SrcList
175 **
176 ** This function should be used to report any error that occurs while
177 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
178 ** last thing the sqlite3_prepare() function does is copy the error
179 ** stored by this function into the database handle using sqlite3Error().
180 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
181 ** during statement execution (sqlite3_step() etc.).
182 */
183 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
184   char *zMsg;
185   va_list ap;
186   sqlite3 *db = pParse->db;
187   va_start(ap, zFormat);
188   zMsg = sqlite3VMPrintf(db, zFormat, ap);
189   va_end(ap);
190   if( db->suppressErr ){
191     sqlite3DbFree(db, zMsg);
192   }else{
193     pParse->nErr++;
194     sqlite3DbFree(db, pParse->zErrMsg);
195     pParse->zErrMsg = zMsg;
196     pParse->rc = SQLITE_ERROR;
197     pParse->pWith = 0;
198   }
199 }
200 
201 /*
202 ** If database connection db is currently parsing SQL, then transfer
203 ** error code errCode to that parser if the parser has not already
204 ** encountered some other kind of error.
205 */
206 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
207   Parse *pParse;
208   if( db==0 || (pParse = db->pParse)==0 ) return errCode;
209   pParse->rc = errCode;
210   pParse->nErr++;
211   return errCode;
212 }
213 
214 /*
215 ** Convert an SQL-style quoted string into a normal string by removing
216 ** the quote characters.  The conversion is done in-place.  If the
217 ** input does not begin with a quote character, then this routine
218 ** is a no-op.
219 **
220 ** The input string must be zero-terminated.  A new zero-terminator
221 ** is added to the dequoted string.
222 **
223 ** The return value is -1 if no dequoting occurs or the length of the
224 ** dequoted string, exclusive of the zero terminator, if dequoting does
225 ** occur.
226 **
227 ** 2002-02-14: This routine is extended to remove MS-Access style
228 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
229 ** "a-b-c".
230 */
231 void sqlite3Dequote(char *z){
232   char quote;
233   int i, j;
234   if( z==0 ) return;
235   quote = z[0];
236   if( !sqlite3Isquote(quote) ) return;
237   if( quote=='[' ) quote = ']';
238   for(i=1, j=0;; i++){
239     assert( z[i] );
240     if( z[i]==quote ){
241       if( z[i+1]==quote ){
242         z[j++] = quote;
243         i++;
244       }else{
245         break;
246       }
247     }else{
248       z[j++] = z[i];
249     }
250   }
251   z[j] = 0;
252 }
253 void sqlite3DequoteExpr(Expr *p){
254   assert( sqlite3Isquote(p->u.zToken[0]) );
255   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
256   sqlite3Dequote(p->u.zToken);
257 }
258 
259 /*
260 ** Generate a Token object from a string
261 */
262 void sqlite3TokenInit(Token *p, char *z){
263   p->z = z;
264   p->n = sqlite3Strlen30(z);
265 }
266 
267 /* Convenient short-hand */
268 #define UpperToLower sqlite3UpperToLower
269 
270 /*
271 ** Some systems have stricmp().  Others have strcasecmp().  Because
272 ** there is no consistency, we will define our own.
273 **
274 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
275 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
276 ** the contents of two buffers containing UTF-8 strings in a
277 ** case-independent fashion, using the same definition of "case
278 ** independence" that SQLite uses internally when comparing identifiers.
279 */
280 int sqlite3_stricmp(const char *zLeft, const char *zRight){
281   if( zLeft==0 ){
282     return zRight ? -1 : 0;
283   }else if( zRight==0 ){
284     return 1;
285   }
286   return sqlite3StrICmp(zLeft, zRight);
287 }
288 int sqlite3StrICmp(const char *zLeft, const char *zRight){
289   unsigned char *a, *b;
290   int c, x;
291   a = (unsigned char *)zLeft;
292   b = (unsigned char *)zRight;
293   for(;;){
294     c = *a;
295     x = *b;
296     if( c==x ){
297       if( c==0 ) break;
298     }else{
299       c = (int)UpperToLower[c] - (int)UpperToLower[x];
300       if( c ) break;
301     }
302     a++;
303     b++;
304   }
305   return c;
306 }
307 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
308   register unsigned char *a, *b;
309   if( zLeft==0 ){
310     return zRight ? -1 : 0;
311   }else if( zRight==0 ){
312     return 1;
313   }
314   a = (unsigned char *)zLeft;
315   b = (unsigned char *)zRight;
316   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
317   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
318 }
319 
320 /*
321 ** Compute an 8-bit hash on a string that is insensitive to case differences
322 */
323 u8 sqlite3StrIHash(const char *z){
324   u8 h = 0;
325   if( z==0 ) return 0;
326   while( z[0] ){
327     h += UpperToLower[(unsigned char)z[0]];
328     z++;
329   }
330   return h;
331 }
332 
333 /*
334 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
335 ** E==2 results in 100.  E==50 results in 1.0e50.
336 **
337 ** This routine only works for values of E between 1 and 341.
338 */
339 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
340 #if defined(_MSC_VER)
341   static const LONGDOUBLE_TYPE x[] = {
342     1.0e+001L,
343     1.0e+002L,
344     1.0e+004L,
345     1.0e+008L,
346     1.0e+016L,
347     1.0e+032L,
348     1.0e+064L,
349     1.0e+128L,
350     1.0e+256L
351   };
352   LONGDOUBLE_TYPE r = 1.0;
353   int i;
354   assert( E>=0 && E<=307 );
355   for(i=0; E!=0; i++, E >>=1){
356     if( E & 1 ) r *= x[i];
357   }
358   return r;
359 #else
360   LONGDOUBLE_TYPE x = 10.0;
361   LONGDOUBLE_TYPE r = 1.0;
362   while(1){
363     if( E & 1 ) r *= x;
364     E >>= 1;
365     if( E==0 ) break;
366     x *= x;
367   }
368   return r;
369 #endif
370 }
371 
372 /*
373 ** The string z[] is an text representation of a real number.
374 ** Convert this string to a double and write it into *pResult.
375 **
376 ** The string z[] is length bytes in length (bytes, not characters) and
377 ** uses the encoding enc.  The string is not necessarily zero-terminated.
378 **
379 ** Return TRUE if the result is a valid real number (or integer) and FALSE
380 ** if the string is empty or contains extraneous text.  More specifically
381 ** return
382 **      1          =>  The input string is a pure integer
383 **      2 or more  =>  The input has a decimal point or eNNN clause
384 **      0 or less  =>  The input string is not a valid number
385 **     -1          =>  Not a valid number, but has a valid prefix which
386 **                     includes a decimal point and/or an eNNN clause
387 **
388 ** Valid numbers are in one of these formats:
389 **
390 **    [+-]digits[E[+-]digits]
391 **    [+-]digits.[digits][E[+-]digits]
392 **    [+-].digits[E[+-]digits]
393 **
394 ** Leading and trailing whitespace is ignored for the purpose of determining
395 ** validity.
396 **
397 ** If some prefix of the input string is a valid number, this routine
398 ** returns FALSE but it still converts the prefix and writes the result
399 ** into *pResult.
400 */
401 #if defined(_MSC_VER)
402 #pragma warning(disable : 4756)
403 #endif
404 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
405 #ifndef SQLITE_OMIT_FLOATING_POINT
406   int incr;
407   const char *zEnd;
408   /* sign * significand * (10 ^ (esign * exponent)) */
409   int sign = 1;    /* sign of significand */
410   i64 s = 0;       /* significand */
411   int d = 0;       /* adjust exponent for shifting decimal point */
412   int esign = 1;   /* sign of exponent */
413   int e = 0;       /* exponent */
414   int eValid = 1;  /* True exponent is either not used or is well-formed */
415   double result;
416   int nDigit = 0;  /* Number of digits processed */
417   int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
418 
419   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
420   *pResult = 0.0;   /* Default return value, in case of an error */
421   if( length==0 ) return 0;
422 
423   if( enc==SQLITE_UTF8 ){
424     incr = 1;
425     zEnd = z + length;
426   }else{
427     int i;
428     incr = 2;
429     length &= ~1;
430     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
431     testcase( enc==SQLITE_UTF16LE );
432     testcase( enc==SQLITE_UTF16BE );
433     for(i=3-enc; i<length && z[i]==0; i+=2){}
434     if( i<length ) eType = -100;
435     zEnd = &z[i^1];
436     z += (enc&1);
437   }
438 
439   /* skip leading spaces */
440   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
441   if( z>=zEnd ) return 0;
442 
443   /* get sign of significand */
444   if( *z=='-' ){
445     sign = -1;
446     z+=incr;
447   }else if( *z=='+' ){
448     z+=incr;
449   }
450 
451   /* copy max significant digits to significand */
452   while( z<zEnd && sqlite3Isdigit(*z) ){
453     s = s*10 + (*z - '0');
454     z+=incr; nDigit++;
455     if( s>=((LARGEST_INT64-9)/10) ){
456       /* skip non-significant significand digits
457       ** (increase exponent by d to shift decimal left) */
458       while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
459     }
460   }
461   if( z>=zEnd ) goto do_atof_calc;
462 
463   /* if decimal point is present */
464   if( *z=='.' ){
465     z+=incr;
466     eType++;
467     /* copy digits from after decimal to significand
468     ** (decrease exponent by d to shift decimal right) */
469     while( z<zEnd && sqlite3Isdigit(*z) ){
470       if( s<((LARGEST_INT64-9)/10) ){
471         s = s*10 + (*z - '0');
472         d--;
473         nDigit++;
474       }
475       z+=incr;
476     }
477   }
478   if( z>=zEnd ) goto do_atof_calc;
479 
480   /* if exponent is present */
481   if( *z=='e' || *z=='E' ){
482     z+=incr;
483     eValid = 0;
484     eType++;
485 
486     /* This branch is needed to avoid a (harmless) buffer overread.  The
487     ** special comment alerts the mutation tester that the correct answer
488     ** is obtained even if the branch is omitted */
489     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
490 
491     /* get sign of exponent */
492     if( *z=='-' ){
493       esign = -1;
494       z+=incr;
495     }else if( *z=='+' ){
496       z+=incr;
497     }
498     /* copy digits to exponent */
499     while( z<zEnd && sqlite3Isdigit(*z) ){
500       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
501       z+=incr;
502       eValid = 1;
503     }
504   }
505 
506   /* skip trailing spaces */
507   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
508 
509 do_atof_calc:
510   /* adjust exponent by d, and update sign */
511   e = (e*esign) + d;
512   if( e<0 ) {
513     esign = -1;
514     e *= -1;
515   } else {
516     esign = 1;
517   }
518 
519   if( s==0 ) {
520     /* In the IEEE 754 standard, zero is signed. */
521     result = sign<0 ? -(double)0 : (double)0;
522   } else {
523     /* Attempt to reduce exponent.
524     **
525     ** Branches that are not required for the correct answer but which only
526     ** help to obtain the correct answer faster are marked with special
527     ** comments, as a hint to the mutation tester.
528     */
529     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
530       if( esign>0 ){
531         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
532         s *= 10;
533       }else{
534         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
535         s /= 10;
536       }
537       e--;
538     }
539 
540     /* adjust the sign of significand */
541     s = sign<0 ? -s : s;
542 
543     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
544       result = (double)s;
545     }else{
546       /* attempt to handle extremely small/large numbers better */
547       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
548         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
549           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
550           if( esign<0 ){
551             result = s / scale;
552             result /= 1.0e+308;
553           }else{
554             result = s * scale;
555             result *= 1.0e+308;
556           }
557         }else{ assert( e>=342 );
558           if( esign<0 ){
559             result = 0.0*s;
560           }else{
561 #ifdef INFINITY
562             result = INFINITY*s;
563 #else
564             result = 1e308*1e308*s;  /* Infinity */
565 #endif
566           }
567         }
568       }else{
569         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
570         if( esign<0 ){
571           result = s / scale;
572         }else{
573           result = s * scale;
574         }
575       }
576     }
577   }
578 
579   /* store the result */
580   *pResult = result;
581 
582   /* return true if number and no extra non-whitespace chracters after */
583   if( z==zEnd && nDigit>0 && eValid && eType>0 ){
584     return eType;
585   }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
586     return -1;
587   }else{
588     return 0;
589   }
590 #else
591   return !sqlite3Atoi64(z, pResult, length, enc);
592 #endif /* SQLITE_OMIT_FLOATING_POINT */
593 }
594 #if defined(_MSC_VER)
595 #pragma warning(default : 4756)
596 #endif
597 
598 /*
599 ** Render an signed 64-bit integer as text.  Store the result in zOut[].
600 **
601 ** The caller must ensure that zOut[] is at least 21 bytes in size.
602 */
603 void sqlite3Int64ToText(i64 v, char *zOut){
604   int i;
605   u64 x;
606   char zTemp[22];
607   if( v<0 ){
608     x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
609   }else{
610     x = v;
611   }
612   i = sizeof(zTemp)-2;
613   zTemp[sizeof(zTemp)-1] = 0;
614   do{
615     zTemp[i--] = (x%10) + '0';
616     x = x/10;
617   }while( x );
618   if( v<0 ) zTemp[i--] = '-';
619   memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
620 }
621 
622 /*
623 ** Compare the 19-character string zNum against the text representation
624 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
625 ** if zNum is less than, equal to, or greater than the string.
626 ** Note that zNum must contain exactly 19 characters.
627 **
628 ** Unlike memcmp() this routine is guaranteed to return the difference
629 ** in the values of the last digit if the only difference is in the
630 ** last digit.  So, for example,
631 **
632 **      compare2pow63("9223372036854775800", 1)
633 **
634 ** will return -8.
635 */
636 static int compare2pow63(const char *zNum, int incr){
637   int c = 0;
638   int i;
639                     /* 012345678901234567 */
640   const char *pow63 = "922337203685477580";
641   for(i=0; c==0 && i<18; i++){
642     c = (zNum[i*incr]-pow63[i])*10;
643   }
644   if( c==0 ){
645     c = zNum[18*incr] - '8';
646     testcase( c==(-1) );
647     testcase( c==0 );
648     testcase( c==(+1) );
649   }
650   return c;
651 }
652 
653 /*
654 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
655 ** routine does *not* accept hexadecimal notation.
656 **
657 ** Returns:
658 **
659 **    -1    Not even a prefix of the input text looks like an integer
660 **     0    Successful transformation.  Fits in a 64-bit signed integer.
661 **     1    Excess non-space text after the integer value
662 **     2    Integer too large for a 64-bit signed integer or is malformed
663 **     3    Special case of 9223372036854775808
664 **
665 ** length is the number of bytes in the string (bytes, not characters).
666 ** The string is not necessarily zero-terminated.  The encoding is
667 ** given by enc.
668 */
669 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
670   int incr;
671   u64 u = 0;
672   int neg = 0; /* assume positive */
673   int i;
674   int c = 0;
675   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
676   int rc;          /* Baseline return code */
677   const char *zStart;
678   const char *zEnd = zNum + length;
679   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
680   if( enc==SQLITE_UTF8 ){
681     incr = 1;
682   }else{
683     incr = 2;
684     length &= ~1;
685     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
686     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
687     nonNum = i<length;
688     zEnd = &zNum[i^1];
689     zNum += (enc&1);
690   }
691   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
692   if( zNum<zEnd ){
693     if( *zNum=='-' ){
694       neg = 1;
695       zNum+=incr;
696     }else if( *zNum=='+' ){
697       zNum+=incr;
698     }
699   }
700   zStart = zNum;
701   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
702   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
703     u = u*10 + c - '0';
704   }
705   testcase( i==18*incr );
706   testcase( i==19*incr );
707   testcase( i==20*incr );
708   if( u>LARGEST_INT64 ){
709     /* This test and assignment is needed only to suppress UB warnings
710     ** from clang and -fsanitize=undefined.  This test and assignment make
711     ** the code a little larger and slower, and no harm comes from omitting
712     ** them, but we must appaise the undefined-behavior pharisees. */
713     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
714   }else if( neg ){
715     *pNum = -(i64)u;
716   }else{
717     *pNum = (i64)u;
718   }
719   rc = 0;
720   if( i==0 && zStart==zNum ){    /* No digits */
721     rc = -1;
722   }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
723     rc = 1;
724   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
725     int jj = i;
726     do{
727       if( !sqlite3Isspace(zNum[jj]) ){
728         rc = 1;          /* Extra non-space text after the integer */
729         break;
730       }
731       jj += incr;
732     }while( &zNum[jj]<zEnd );
733   }
734   if( i<19*incr ){
735     /* Less than 19 digits, so we know that it fits in 64 bits */
736     assert( u<=LARGEST_INT64 );
737     return rc;
738   }else{
739     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
740     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
741     if( c<0 ){
742       /* zNum is less than 9223372036854775808 so it fits */
743       assert( u<=LARGEST_INT64 );
744       return rc;
745     }else{
746       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
747       if( c>0 ){
748         /* zNum is greater than 9223372036854775808 so it overflows */
749         return 2;
750       }else{
751         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
752         ** special case 2 overflow if positive */
753         assert( u-1==LARGEST_INT64 );
754         return neg ? rc : 3;
755       }
756     }
757   }
758 }
759 
760 /*
761 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
762 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
763 ** whereas sqlite3Atoi64() does not.
764 **
765 ** Returns:
766 **
767 **     0    Successful transformation.  Fits in a 64-bit signed integer.
768 **     1    Excess text after the integer value
769 **     2    Integer too large for a 64-bit signed integer or is malformed
770 **     3    Special case of 9223372036854775808
771 */
772 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
773 #ifndef SQLITE_OMIT_HEX_INTEGER
774   if( z[0]=='0'
775    && (z[1]=='x' || z[1]=='X')
776   ){
777     u64 u = 0;
778     int i, k;
779     for(i=2; z[i]=='0'; i++){}
780     for(k=i; sqlite3Isxdigit(z[k]); k++){
781       u = u*16 + sqlite3HexToInt(z[k]);
782     }
783     memcpy(pOut, &u, 8);
784     return (z[k]==0 && k-i<=16) ? 0 : 2;
785   }else
786 #endif /* SQLITE_OMIT_HEX_INTEGER */
787   {
788     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
789   }
790 }
791 
792 /*
793 ** If zNum represents an integer that will fit in 32-bits, then set
794 ** *pValue to that integer and return true.  Otherwise return false.
795 **
796 ** This routine accepts both decimal and hexadecimal notation for integers.
797 **
798 ** Any non-numeric characters that following zNum are ignored.
799 ** This is different from sqlite3Atoi64() which requires the
800 ** input number to be zero-terminated.
801 */
802 int sqlite3GetInt32(const char *zNum, int *pValue){
803   sqlite_int64 v = 0;
804   int i, c;
805   int neg = 0;
806   if( zNum[0]=='-' ){
807     neg = 1;
808     zNum++;
809   }else if( zNum[0]=='+' ){
810     zNum++;
811   }
812 #ifndef SQLITE_OMIT_HEX_INTEGER
813   else if( zNum[0]=='0'
814         && (zNum[1]=='x' || zNum[1]=='X')
815         && sqlite3Isxdigit(zNum[2])
816   ){
817     u32 u = 0;
818     zNum += 2;
819     while( zNum[0]=='0' ) zNum++;
820     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
821       u = u*16 + sqlite3HexToInt(zNum[i]);
822     }
823     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
824       memcpy(pValue, &u, 4);
825       return 1;
826     }else{
827       return 0;
828     }
829   }
830 #endif
831   if( !sqlite3Isdigit(zNum[0]) ) return 0;
832   while( zNum[0]=='0' ) zNum++;
833   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
834     v = v*10 + c;
835   }
836 
837   /* The longest decimal representation of a 32 bit integer is 10 digits:
838   **
839   **             1234567890
840   **     2^31 -> 2147483648
841   */
842   testcase( i==10 );
843   if( i>10 ){
844     return 0;
845   }
846   testcase( v-neg==2147483647 );
847   if( v-neg>2147483647 ){
848     return 0;
849   }
850   if( neg ){
851     v = -v;
852   }
853   *pValue = (int)v;
854   return 1;
855 }
856 
857 /*
858 ** Return a 32-bit integer value extracted from a string.  If the
859 ** string is not an integer, just return 0.
860 */
861 int sqlite3Atoi(const char *z){
862   int x = 0;
863   sqlite3GetInt32(z, &x);
864   return x;
865 }
866 
867 /*
868 ** Try to convert z into an unsigned 32-bit integer.  Return true on
869 ** success and false if there is an error.
870 **
871 ** Only decimal notation is accepted.
872 */
873 int sqlite3GetUInt32(const char *z, u32 *pI){
874   u64 v = 0;
875   int i;
876   for(i=0; sqlite3Isdigit(z[i]); i++){
877     v = v*10 + z[i] - '0';
878     if( v>4294967296LL ){ *pI = 0; return 0; }
879   }
880   if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
881   *pI = (u32)v;
882   return 1;
883 }
884 
885 /*
886 ** The variable-length integer encoding is as follows:
887 **
888 ** KEY:
889 **         A = 0xxxxxxx    7 bits of data and one flag bit
890 **         B = 1xxxxxxx    7 bits of data and one flag bit
891 **         C = xxxxxxxx    8 bits of data
892 **
893 **  7 bits - A
894 ** 14 bits - BA
895 ** 21 bits - BBA
896 ** 28 bits - BBBA
897 ** 35 bits - BBBBA
898 ** 42 bits - BBBBBA
899 ** 49 bits - BBBBBBA
900 ** 56 bits - BBBBBBBA
901 ** 64 bits - BBBBBBBBC
902 */
903 
904 /*
905 ** Write a 64-bit variable-length integer to memory starting at p[0].
906 ** The length of data write will be between 1 and 9 bytes.  The number
907 ** of bytes written is returned.
908 **
909 ** A variable-length integer consists of the lower 7 bits of each byte
910 ** for all bytes that have the 8th bit set and one byte with the 8th
911 ** bit clear.  Except, if we get to the 9th byte, it stores the full
912 ** 8 bits and is the last byte.
913 */
914 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
915   int i, j, n;
916   u8 buf[10];
917   if( v & (((u64)0xff000000)<<32) ){
918     p[8] = (u8)v;
919     v >>= 8;
920     for(i=7; i>=0; i--){
921       p[i] = (u8)((v & 0x7f) | 0x80);
922       v >>= 7;
923     }
924     return 9;
925   }
926   n = 0;
927   do{
928     buf[n++] = (u8)((v & 0x7f) | 0x80);
929     v >>= 7;
930   }while( v!=0 );
931   buf[0] &= 0x7f;
932   assert( n<=9 );
933   for(i=0, j=n-1; j>=0; j--, i++){
934     p[i] = buf[j];
935   }
936   return n;
937 }
938 int sqlite3PutVarint(unsigned char *p, u64 v){
939   if( v<=0x7f ){
940     p[0] = v&0x7f;
941     return 1;
942   }
943   if( v<=0x3fff ){
944     p[0] = ((v>>7)&0x7f)|0x80;
945     p[1] = v&0x7f;
946     return 2;
947   }
948   return putVarint64(p,v);
949 }
950 
951 /*
952 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
953 ** are defined here rather than simply putting the constant expressions
954 ** inline in order to work around bugs in the RVT compiler.
955 **
956 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
957 **
958 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
959 */
960 #define SLOT_2_0     0x001fc07f
961 #define SLOT_4_2_0   0xf01fc07f
962 
963 
964 /*
965 ** Read a 64-bit variable-length integer from memory starting at p[0].
966 ** Return the number of bytes read.  The value is stored in *v.
967 */
968 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
969   u32 a,b,s;
970 
971   if( ((signed char*)p)[0]>=0 ){
972     *v = *p;
973     return 1;
974   }
975   if( ((signed char*)p)[1]>=0 ){
976     *v = ((u32)(p[0]&0x7f)<<7) | p[1];
977     return 2;
978   }
979 
980   /* Verify that constants are precomputed correctly */
981   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
982   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
983 
984   a = ((u32)p[0])<<14;
985   b = p[1];
986   p += 2;
987   a |= *p;
988   /* a: p0<<14 | p2 (unmasked) */
989   if (!(a&0x80))
990   {
991     a &= SLOT_2_0;
992     b &= 0x7f;
993     b = b<<7;
994     a |= b;
995     *v = a;
996     return 3;
997   }
998 
999   /* CSE1 from below */
1000   a &= SLOT_2_0;
1001   p++;
1002   b = b<<14;
1003   b |= *p;
1004   /* b: p1<<14 | p3 (unmasked) */
1005   if (!(b&0x80))
1006   {
1007     b &= SLOT_2_0;
1008     /* moved CSE1 up */
1009     /* a &= (0x7f<<14)|(0x7f); */
1010     a = a<<7;
1011     a |= b;
1012     *v = a;
1013     return 4;
1014   }
1015 
1016   /* a: p0<<14 | p2 (masked) */
1017   /* b: p1<<14 | p3 (unmasked) */
1018   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1019   /* moved CSE1 up */
1020   /* a &= (0x7f<<14)|(0x7f); */
1021   b &= SLOT_2_0;
1022   s = a;
1023   /* s: p0<<14 | p2 (masked) */
1024 
1025   p++;
1026   a = a<<14;
1027   a |= *p;
1028   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1029   if (!(a&0x80))
1030   {
1031     /* we can skip these cause they were (effectively) done above
1032     ** while calculating s */
1033     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1034     /* b &= (0x7f<<14)|(0x7f); */
1035     b = b<<7;
1036     a |= b;
1037     s = s>>18;
1038     *v = ((u64)s)<<32 | a;
1039     return 5;
1040   }
1041 
1042   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1043   s = s<<7;
1044   s |= b;
1045   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1046 
1047   p++;
1048   b = b<<14;
1049   b |= *p;
1050   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1051   if (!(b&0x80))
1052   {
1053     /* we can skip this cause it was (effectively) done above in calc'ing s */
1054     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1055     a &= SLOT_2_0;
1056     a = a<<7;
1057     a |= b;
1058     s = s>>18;
1059     *v = ((u64)s)<<32 | a;
1060     return 6;
1061   }
1062 
1063   p++;
1064   a = a<<14;
1065   a |= *p;
1066   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1067   if (!(a&0x80))
1068   {
1069     a &= SLOT_4_2_0;
1070     b &= SLOT_2_0;
1071     b = b<<7;
1072     a |= b;
1073     s = s>>11;
1074     *v = ((u64)s)<<32 | a;
1075     return 7;
1076   }
1077 
1078   /* CSE2 from below */
1079   a &= SLOT_2_0;
1080   p++;
1081   b = b<<14;
1082   b |= *p;
1083   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1084   if (!(b&0x80))
1085   {
1086     b &= SLOT_4_2_0;
1087     /* moved CSE2 up */
1088     /* a &= (0x7f<<14)|(0x7f); */
1089     a = a<<7;
1090     a |= b;
1091     s = s>>4;
1092     *v = ((u64)s)<<32 | a;
1093     return 8;
1094   }
1095 
1096   p++;
1097   a = a<<15;
1098   a |= *p;
1099   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1100 
1101   /* moved CSE2 up */
1102   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1103   b &= SLOT_2_0;
1104   b = b<<8;
1105   a |= b;
1106 
1107   s = s<<4;
1108   b = p[-4];
1109   b &= 0x7f;
1110   b = b>>3;
1111   s |= b;
1112 
1113   *v = ((u64)s)<<32 | a;
1114 
1115   return 9;
1116 }
1117 
1118 /*
1119 ** Read a 32-bit variable-length integer from memory starting at p[0].
1120 ** Return the number of bytes read.  The value is stored in *v.
1121 **
1122 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1123 ** integer, then set *v to 0xffffffff.
1124 **
1125 ** A MACRO version, getVarint32, is provided which inlines the
1126 ** single-byte case.  All code should use the MACRO version as
1127 ** this function assumes the single-byte case has already been handled.
1128 */
1129 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1130   u32 a,b;
1131 
1132   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1133   ** by the getVarin32() macro */
1134   a = *p;
1135   /* a: p0 (unmasked) */
1136 #ifndef getVarint32
1137   if (!(a&0x80))
1138   {
1139     /* Values between 0 and 127 */
1140     *v = a;
1141     return 1;
1142   }
1143 #endif
1144 
1145   /* The 2-byte case */
1146   p++;
1147   b = *p;
1148   /* b: p1 (unmasked) */
1149   if (!(b&0x80))
1150   {
1151     /* Values between 128 and 16383 */
1152     a &= 0x7f;
1153     a = a<<7;
1154     *v = a | b;
1155     return 2;
1156   }
1157 
1158   /* The 3-byte case */
1159   p++;
1160   a = a<<14;
1161   a |= *p;
1162   /* a: p0<<14 | p2 (unmasked) */
1163   if (!(a&0x80))
1164   {
1165     /* Values between 16384 and 2097151 */
1166     a &= (0x7f<<14)|(0x7f);
1167     b &= 0x7f;
1168     b = b<<7;
1169     *v = a | b;
1170     return 3;
1171   }
1172 
1173   /* A 32-bit varint is used to store size information in btrees.
1174   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1175   ** A 3-byte varint is sufficient, for example, to record the size
1176   ** of a 1048569-byte BLOB or string.
1177   **
1178   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1179   ** rare larger cases can be handled by the slower 64-bit varint
1180   ** routine.
1181   */
1182 #if 1
1183   {
1184     u64 v64;
1185     u8 n;
1186 
1187     n = sqlite3GetVarint(p-2, &v64);
1188     assert( n>3 && n<=9 );
1189     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1190       *v = 0xffffffff;
1191     }else{
1192       *v = (u32)v64;
1193     }
1194     return n;
1195   }
1196 
1197 #else
1198   /* For following code (kept for historical record only) shows an
1199   ** unrolling for the 3- and 4-byte varint cases.  This code is
1200   ** slightly faster, but it is also larger and much harder to test.
1201   */
1202   p++;
1203   b = b<<14;
1204   b |= *p;
1205   /* b: p1<<14 | p3 (unmasked) */
1206   if (!(b&0x80))
1207   {
1208     /* Values between 2097152 and 268435455 */
1209     b &= (0x7f<<14)|(0x7f);
1210     a &= (0x7f<<14)|(0x7f);
1211     a = a<<7;
1212     *v = a | b;
1213     return 4;
1214   }
1215 
1216   p++;
1217   a = a<<14;
1218   a |= *p;
1219   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1220   if (!(a&0x80))
1221   {
1222     /* Values  between 268435456 and 34359738367 */
1223     a &= SLOT_4_2_0;
1224     b &= SLOT_4_2_0;
1225     b = b<<7;
1226     *v = a | b;
1227     return 5;
1228   }
1229 
1230   /* We can only reach this point when reading a corrupt database
1231   ** file.  In that case we are not in any hurry.  Use the (relatively
1232   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1233   ** value. */
1234   {
1235     u64 v64;
1236     u8 n;
1237 
1238     p -= 4;
1239     n = sqlite3GetVarint(p, &v64);
1240     assert( n>5 && n<=9 );
1241     *v = (u32)v64;
1242     return n;
1243   }
1244 #endif
1245 }
1246 
1247 /*
1248 ** Return the number of bytes that will be needed to store the given
1249 ** 64-bit integer.
1250 */
1251 int sqlite3VarintLen(u64 v){
1252   int i;
1253   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1254   return i;
1255 }
1256 
1257 
1258 /*
1259 ** Read or write a four-byte big-endian integer value.
1260 */
1261 u32 sqlite3Get4byte(const u8 *p){
1262 #if SQLITE_BYTEORDER==4321
1263   u32 x;
1264   memcpy(&x,p,4);
1265   return x;
1266 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1267   u32 x;
1268   memcpy(&x,p,4);
1269   return __builtin_bswap32(x);
1270 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1271   u32 x;
1272   memcpy(&x,p,4);
1273   return _byteswap_ulong(x);
1274 #else
1275   testcase( p[0]&0x80 );
1276   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1277 #endif
1278 }
1279 void sqlite3Put4byte(unsigned char *p, u32 v){
1280 #if SQLITE_BYTEORDER==4321
1281   memcpy(p,&v,4);
1282 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1283   u32 x = __builtin_bswap32(v);
1284   memcpy(p,&x,4);
1285 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1286   u32 x = _byteswap_ulong(v);
1287   memcpy(p,&x,4);
1288 #else
1289   p[0] = (u8)(v>>24);
1290   p[1] = (u8)(v>>16);
1291   p[2] = (u8)(v>>8);
1292   p[3] = (u8)v;
1293 #endif
1294 }
1295 
1296 
1297 
1298 /*
1299 ** Translate a single byte of Hex into an integer.
1300 ** This routine only works if h really is a valid hexadecimal
1301 ** character:  0..9a..fA..F
1302 */
1303 u8 sqlite3HexToInt(int h){
1304   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1305 #ifdef SQLITE_ASCII
1306   h += 9*(1&(h>>6));
1307 #endif
1308 #ifdef SQLITE_EBCDIC
1309   h += 9*(1&~(h>>4));
1310 #endif
1311   return (u8)(h & 0xf);
1312 }
1313 
1314 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1315 /*
1316 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1317 ** value.  Return a pointer to its binary value.  Space to hold the
1318 ** binary value has been obtained from malloc and must be freed by
1319 ** the calling routine.
1320 */
1321 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1322   char *zBlob;
1323   int i;
1324 
1325   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1326   n--;
1327   if( zBlob ){
1328     for(i=0; i<n; i+=2){
1329       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1330     }
1331     zBlob[i/2] = 0;
1332   }
1333   return zBlob;
1334 }
1335 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1336 
1337 /*
1338 ** Log an error that is an API call on a connection pointer that should
1339 ** not have been used.  The "type" of connection pointer is given as the
1340 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1341 */
1342 static void logBadConnection(const char *zType){
1343   sqlite3_log(SQLITE_MISUSE,
1344      "API call with %s database connection pointer",
1345      zType
1346   );
1347 }
1348 
1349 /*
1350 ** Check to make sure we have a valid db pointer.  This test is not
1351 ** foolproof but it does provide some measure of protection against
1352 ** misuse of the interface such as passing in db pointers that are
1353 ** NULL or which have been previously closed.  If this routine returns
1354 ** 1 it means that the db pointer is valid and 0 if it should not be
1355 ** dereferenced for any reason.  The calling function should invoke
1356 ** SQLITE_MISUSE immediately.
1357 **
1358 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1359 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1360 ** open properly and is not fit for general use but which can be
1361 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1362 */
1363 int sqlite3SafetyCheckOk(sqlite3 *db){
1364   u32 magic;
1365   if( db==0 ){
1366     logBadConnection("NULL");
1367     return 0;
1368   }
1369   magic = db->magic;
1370   if( magic!=SQLITE_MAGIC_OPEN ){
1371     if( sqlite3SafetyCheckSickOrOk(db) ){
1372       testcase( sqlite3GlobalConfig.xLog!=0 );
1373       logBadConnection("unopened");
1374     }
1375     return 0;
1376   }else{
1377     return 1;
1378   }
1379 }
1380 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1381   u32 magic;
1382   magic = db->magic;
1383   if( magic!=SQLITE_MAGIC_SICK &&
1384       magic!=SQLITE_MAGIC_OPEN &&
1385       magic!=SQLITE_MAGIC_BUSY ){
1386     testcase( sqlite3GlobalConfig.xLog!=0 );
1387     logBadConnection("invalid");
1388     return 0;
1389   }else{
1390     return 1;
1391   }
1392 }
1393 
1394 /*
1395 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1396 ** the other 64-bit signed integer at *pA and store the result in *pA.
1397 ** Return 0 on success.  Or if the operation would have resulted in an
1398 ** overflow, leave *pA unchanged and return 1.
1399 */
1400 int sqlite3AddInt64(i64 *pA, i64 iB){
1401 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1402   return __builtin_add_overflow(*pA, iB, pA);
1403 #else
1404   i64 iA = *pA;
1405   testcase( iA==0 ); testcase( iA==1 );
1406   testcase( iB==-1 ); testcase( iB==0 );
1407   if( iB>=0 ){
1408     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1409     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1410     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1411   }else{
1412     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1413     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1414     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1415   }
1416   *pA += iB;
1417   return 0;
1418 #endif
1419 }
1420 int sqlite3SubInt64(i64 *pA, i64 iB){
1421 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1422   return __builtin_sub_overflow(*pA, iB, pA);
1423 #else
1424   testcase( iB==SMALLEST_INT64+1 );
1425   if( iB==SMALLEST_INT64 ){
1426     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1427     if( (*pA)>=0 ) return 1;
1428     *pA -= iB;
1429     return 0;
1430   }else{
1431     return sqlite3AddInt64(pA, -iB);
1432   }
1433 #endif
1434 }
1435 int sqlite3MulInt64(i64 *pA, i64 iB){
1436 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1437   return __builtin_mul_overflow(*pA, iB, pA);
1438 #else
1439   i64 iA = *pA;
1440   if( iB>0 ){
1441     if( iA>LARGEST_INT64/iB ) return 1;
1442     if( iA<SMALLEST_INT64/iB ) return 1;
1443   }else if( iB<0 ){
1444     if( iA>0 ){
1445       if( iB<SMALLEST_INT64/iA ) return 1;
1446     }else if( iA<0 ){
1447       if( iB==SMALLEST_INT64 ) return 1;
1448       if( iA==SMALLEST_INT64 ) return 1;
1449       if( -iA>LARGEST_INT64/-iB ) return 1;
1450     }
1451   }
1452   *pA = iA*iB;
1453   return 0;
1454 #endif
1455 }
1456 
1457 /*
1458 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1459 ** if the integer has a value of -2147483648, return +2147483647
1460 */
1461 int sqlite3AbsInt32(int x){
1462   if( x>=0 ) return x;
1463   if( x==(int)0x80000000 ) return 0x7fffffff;
1464   return -x;
1465 }
1466 
1467 #ifdef SQLITE_ENABLE_8_3_NAMES
1468 /*
1469 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1470 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1471 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1472 ** three characters, then shorten the suffix on z[] to be the last three
1473 ** characters of the original suffix.
1474 **
1475 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1476 ** do the suffix shortening regardless of URI parameter.
1477 **
1478 ** Examples:
1479 **
1480 **     test.db-journal    =>   test.nal
1481 **     test.db-wal        =>   test.wal
1482 **     test.db-shm        =>   test.shm
1483 **     test.db-mj7f3319fa =>   test.9fa
1484 */
1485 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1486 #if SQLITE_ENABLE_8_3_NAMES<2
1487   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1488 #endif
1489   {
1490     int i, sz;
1491     sz = sqlite3Strlen30(z);
1492     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1493     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1494   }
1495 }
1496 #endif
1497 
1498 /*
1499 ** Find (an approximate) sum of two LogEst values.  This computation is
1500 ** not a simple "+" operator because LogEst is stored as a logarithmic
1501 ** value.
1502 **
1503 */
1504 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1505   static const unsigned char x[] = {
1506      10, 10,                         /* 0,1 */
1507       9, 9,                          /* 2,3 */
1508       8, 8,                          /* 4,5 */
1509       7, 7, 7,                       /* 6,7,8 */
1510       6, 6, 6,                       /* 9,10,11 */
1511       5, 5, 5,                       /* 12-14 */
1512       4, 4, 4, 4,                    /* 15-18 */
1513       3, 3, 3, 3, 3, 3,              /* 19-24 */
1514       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1515   };
1516   if( a>=b ){
1517     if( a>b+49 ) return a;
1518     if( a>b+31 ) return a+1;
1519     return a+x[a-b];
1520   }else{
1521     if( b>a+49 ) return b;
1522     if( b>a+31 ) return b+1;
1523     return b+x[b-a];
1524   }
1525 }
1526 
1527 /*
1528 ** Convert an integer into a LogEst.  In other words, compute an
1529 ** approximation for 10*log2(x).
1530 */
1531 LogEst sqlite3LogEst(u64 x){
1532   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1533   LogEst y = 40;
1534   if( x<8 ){
1535     if( x<2 ) return 0;
1536     while( x<8 ){  y -= 10; x <<= 1; }
1537   }else{
1538 #if GCC_VERSION>=5004000
1539     int i = 60 - __builtin_clzll(x);
1540     y += i*10;
1541     x >>= i;
1542 #else
1543     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1544     while( x>15 ){  y += 10; x >>= 1; }
1545 #endif
1546   }
1547   return a[x&7] + y - 10;
1548 }
1549 
1550 #ifndef SQLITE_OMIT_VIRTUALTABLE
1551 /*
1552 ** Convert a double into a LogEst
1553 ** In other words, compute an approximation for 10*log2(x).
1554 */
1555 LogEst sqlite3LogEstFromDouble(double x){
1556   u64 a;
1557   LogEst e;
1558   assert( sizeof(x)==8 && sizeof(a)==8 );
1559   if( x<=1 ) return 0;
1560   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1561   memcpy(&a, &x, 8);
1562   e = (a>>52) - 1022;
1563   return e*10;
1564 }
1565 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1566 
1567 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1568     defined(SQLITE_ENABLE_STAT4) || \
1569     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1570 /*
1571 ** Convert a LogEst into an integer.
1572 **
1573 ** Note that this routine is only used when one or more of various
1574 ** non-standard compile-time options is enabled.
1575 */
1576 u64 sqlite3LogEstToInt(LogEst x){
1577   u64 n;
1578   n = x%10;
1579   x /= 10;
1580   if( n>=5 ) n -= 2;
1581   else if( n>=1 ) n -= 1;
1582 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1583     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1584   if( x>60 ) return (u64)LARGEST_INT64;
1585 #else
1586   /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
1587   ** possible to this routine is 310, resulting in a maximum x of 31 */
1588   assert( x<=60 );
1589 #endif
1590   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1591 }
1592 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1593 
1594 /*
1595 ** Add a new name/number pair to a VList.  This might require that the
1596 ** VList object be reallocated, so return the new VList.  If an OOM
1597 ** error occurs, the original VList returned and the
1598 ** db->mallocFailed flag is set.
1599 **
1600 ** A VList is really just an array of integers.  To destroy a VList,
1601 ** simply pass it to sqlite3DbFree().
1602 **
1603 ** The first integer is the number of integers allocated for the whole
1604 ** VList.  The second integer is the number of integers actually used.
1605 ** Each name/number pair is encoded by subsequent groups of 3 or more
1606 ** integers.
1607 **
1608 ** Each name/number pair starts with two integers which are the numeric
1609 ** value for the pair and the size of the name/number pair, respectively.
1610 ** The text name overlays one or more following integers.  The text name
1611 ** is always zero-terminated.
1612 **
1613 ** Conceptually:
1614 **
1615 **    struct VList {
1616 **      int nAlloc;   // Number of allocated slots
1617 **      int nUsed;    // Number of used slots
1618 **      struct VListEntry {
1619 **        int iValue;    // Value for this entry
1620 **        int nSlot;     // Slots used by this entry
1621 **        // ... variable name goes here
1622 **      } a[0];
1623 **    }
1624 **
1625 ** During code generation, pointers to the variable names within the
1626 ** VList are taken.  When that happens, nAlloc is set to zero as an
1627 ** indication that the VList may never again be enlarged, since the
1628 ** accompanying realloc() would invalidate the pointers.
1629 */
1630 VList *sqlite3VListAdd(
1631   sqlite3 *db,           /* The database connection used for malloc() */
1632   VList *pIn,            /* The input VList.  Might be NULL */
1633   const char *zName,     /* Name of symbol to add */
1634   int nName,             /* Bytes of text in zName */
1635   int iVal               /* Value to associate with zName */
1636 ){
1637   int nInt;              /* number of sizeof(int) objects needed for zName */
1638   char *z;               /* Pointer to where zName will be stored */
1639   int i;                 /* Index in pIn[] where zName is stored */
1640 
1641   nInt = nName/4 + 3;
1642   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1643   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1644     /* Enlarge the allocation */
1645     sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1646     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1647     if( pOut==0 ) return pIn;
1648     if( pIn==0 ) pOut[1] = 2;
1649     pIn = pOut;
1650     pIn[0] = nAlloc;
1651   }
1652   i = pIn[1];
1653   pIn[i] = iVal;
1654   pIn[i+1] = nInt;
1655   z = (char*)&pIn[i+2];
1656   pIn[1] = i+nInt;
1657   assert( pIn[1]<=pIn[0] );
1658   memcpy(z, zName, nName);
1659   z[nName] = 0;
1660   return pIn;
1661 }
1662 
1663 /*
1664 ** Return a pointer to the name of a variable in the given VList that
1665 ** has the value iVal.  Or return a NULL if there is no such variable in
1666 ** the list
1667 */
1668 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1669   int i, mx;
1670   if( pIn==0 ) return 0;
1671   mx = pIn[1];
1672   i = 2;
1673   do{
1674     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1675     i += pIn[i+1];
1676   }while( i<mx );
1677   return 0;
1678 }
1679 
1680 /*
1681 ** Return the number of the variable named zName, if it is in VList.
1682 ** or return 0 if there is no such variable.
1683 */
1684 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1685   int i, mx;
1686   if( pIn==0 ) return 0;
1687   mx = pIn[1];
1688   i = 2;
1689   do{
1690     const char *z = (const char*)&pIn[i+2];
1691     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1692     i += pIn[i+1];
1693   }while( i<mx );
1694   return 0;
1695 }
1696