1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifndef SQLITE_OMIT_FLOATING_POINT 21 #include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 36 ** or to bypass normal error detection during testing in order to let 37 ** execute proceed futher downstream. 38 ** 39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 40 ** sqlite3FaultSim() function only returns non-zero during testing. 41 ** 42 ** During testing, if the test harness has set a fault-sim callback using 43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 44 ** each call to sqlite3FaultSim() is relayed to that application-supplied 45 ** callback and the integer return value form the application-supplied 46 ** callback is returned by sqlite3FaultSim(). 47 ** 48 ** The integer argument to sqlite3FaultSim() is a code to identify which 49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 50 ** should have a unique code. To prevent legacy testing applications from 51 ** breaking, the codes should not be changed or reused. 52 */ 53 #ifndef SQLITE_UNTESTABLE 54 int sqlite3FaultSim(int iTest){ 55 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 56 return xCallback ? xCallback(iTest) : SQLITE_OK; 57 } 58 #endif 59 60 #ifndef SQLITE_OMIT_FLOATING_POINT 61 /* 62 ** Return true if the floating point value is Not a Number (NaN). 63 */ 64 int sqlite3IsNaN(double x){ 65 u64 y; 66 memcpy(&y,&x,sizeof(y)); 67 return IsNaN(y); 68 } 69 #endif /* SQLITE_OMIT_FLOATING_POINT */ 70 71 /* 72 ** Compute a string length that is limited to what can be stored in 73 ** lower 30 bits of a 32-bit signed integer. 74 ** 75 ** The value returned will never be negative. Nor will it ever be greater 76 ** than the actual length of the string. For very long strings (greater 77 ** than 1GiB) the value returned might be less than the true string length. 78 */ 79 int sqlite3Strlen30(const char *z){ 80 if( z==0 ) return 0; 81 return 0x3fffffff & (int)strlen(z); 82 } 83 84 /* 85 ** Return the declared type of a column. Or return zDflt if the column 86 ** has no declared type. 87 ** 88 ** The column type is an extra string stored after the zero-terminator on 89 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 90 */ 91 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 92 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; 93 return pCol->zName + strlen(pCol->zName) + 1; 94 } 95 96 /* 97 ** Helper function for sqlite3Error() - called rarely. Broken out into 98 ** a separate routine to avoid unnecessary register saves on entry to 99 ** sqlite3Error(). 100 */ 101 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 102 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 103 sqlite3SystemError(db, err_code); 104 } 105 106 /* 107 ** Set the current error code to err_code and clear any prior error message. 108 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 109 ** that would be appropriate. 110 */ 111 void sqlite3Error(sqlite3 *db, int err_code){ 112 assert( db!=0 ); 113 db->errCode = err_code; 114 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 115 } 116 117 /* 118 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 119 ** to do based on the SQLite error code in rc. 120 */ 121 void sqlite3SystemError(sqlite3 *db, int rc){ 122 if( rc==SQLITE_IOERR_NOMEM ) return; 123 rc &= 0xff; 124 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 125 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 126 } 127 } 128 129 /* 130 ** Set the most recent error code and error string for the sqlite 131 ** handle "db". The error code is set to "err_code". 132 ** 133 ** If it is not NULL, string zFormat specifies the format of the 134 ** error string in the style of the printf functions: The following 135 ** format characters are allowed: 136 ** 137 ** %s Insert a string 138 ** %z A string that should be freed after use 139 ** %d Insert an integer 140 ** %T Insert a token 141 ** %S Insert the first element of a SrcList 142 ** 143 ** zFormat and any string tokens that follow it are assumed to be 144 ** encoded in UTF-8. 145 ** 146 ** To clear the most recent error for sqlite handle "db", sqlite3Error 147 ** should be called with err_code set to SQLITE_OK and zFormat set 148 ** to NULL. 149 */ 150 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 151 assert( db!=0 ); 152 db->errCode = err_code; 153 sqlite3SystemError(db, err_code); 154 if( zFormat==0 ){ 155 sqlite3Error(db, err_code); 156 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 157 char *z; 158 va_list ap; 159 va_start(ap, zFormat); 160 z = sqlite3VMPrintf(db, zFormat, ap); 161 va_end(ap); 162 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 163 } 164 } 165 166 /* 167 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 168 ** The following formatting characters are allowed: 169 ** 170 ** %s Insert a string 171 ** %z A string that should be freed after use 172 ** %d Insert an integer 173 ** %T Insert a token 174 ** %S Insert the first element of a SrcList 175 ** 176 ** This function should be used to report any error that occurs while 177 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 178 ** last thing the sqlite3_prepare() function does is copy the error 179 ** stored by this function into the database handle using sqlite3Error(). 180 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 181 ** during statement execution (sqlite3_step() etc.). 182 */ 183 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 184 char *zMsg; 185 va_list ap; 186 sqlite3 *db = pParse->db; 187 va_start(ap, zFormat); 188 zMsg = sqlite3VMPrintf(db, zFormat, ap); 189 va_end(ap); 190 if( db->suppressErr ){ 191 sqlite3DbFree(db, zMsg); 192 }else{ 193 pParse->nErr++; 194 sqlite3DbFree(db, pParse->zErrMsg); 195 pParse->zErrMsg = zMsg; 196 pParse->rc = SQLITE_ERROR; 197 pParse->pWith = 0; 198 } 199 } 200 201 /* 202 ** If database connection db is currently parsing SQL, then transfer 203 ** error code errCode to that parser if the parser has not already 204 ** encountered some other kind of error. 205 */ 206 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 207 Parse *pParse; 208 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 209 pParse->rc = errCode; 210 pParse->nErr++; 211 return errCode; 212 } 213 214 /* 215 ** Convert an SQL-style quoted string into a normal string by removing 216 ** the quote characters. The conversion is done in-place. If the 217 ** input does not begin with a quote character, then this routine 218 ** is a no-op. 219 ** 220 ** The input string must be zero-terminated. A new zero-terminator 221 ** is added to the dequoted string. 222 ** 223 ** The return value is -1 if no dequoting occurs or the length of the 224 ** dequoted string, exclusive of the zero terminator, if dequoting does 225 ** occur. 226 ** 227 ** 2002-02-14: This routine is extended to remove MS-Access style 228 ** brackets from around identifiers. For example: "[a-b-c]" becomes 229 ** "a-b-c". 230 */ 231 void sqlite3Dequote(char *z){ 232 char quote; 233 int i, j; 234 if( z==0 ) return; 235 quote = z[0]; 236 if( !sqlite3Isquote(quote) ) return; 237 if( quote=='[' ) quote = ']'; 238 for(i=1, j=0;; i++){ 239 assert( z[i] ); 240 if( z[i]==quote ){ 241 if( z[i+1]==quote ){ 242 z[j++] = quote; 243 i++; 244 }else{ 245 break; 246 } 247 }else{ 248 z[j++] = z[i]; 249 } 250 } 251 z[j] = 0; 252 } 253 void sqlite3DequoteExpr(Expr *p){ 254 assert( sqlite3Isquote(p->u.zToken[0]) ); 255 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 256 sqlite3Dequote(p->u.zToken); 257 } 258 259 /* 260 ** Generate a Token object from a string 261 */ 262 void sqlite3TokenInit(Token *p, char *z){ 263 p->z = z; 264 p->n = sqlite3Strlen30(z); 265 } 266 267 /* Convenient short-hand */ 268 #define UpperToLower sqlite3UpperToLower 269 270 /* 271 ** Some systems have stricmp(). Others have strcasecmp(). Because 272 ** there is no consistency, we will define our own. 273 ** 274 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 275 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 276 ** the contents of two buffers containing UTF-8 strings in a 277 ** case-independent fashion, using the same definition of "case 278 ** independence" that SQLite uses internally when comparing identifiers. 279 */ 280 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 281 if( zLeft==0 ){ 282 return zRight ? -1 : 0; 283 }else if( zRight==0 ){ 284 return 1; 285 } 286 return sqlite3StrICmp(zLeft, zRight); 287 } 288 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 289 unsigned char *a, *b; 290 int c, x; 291 a = (unsigned char *)zLeft; 292 b = (unsigned char *)zRight; 293 for(;;){ 294 c = *a; 295 x = *b; 296 if( c==x ){ 297 if( c==0 ) break; 298 }else{ 299 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 300 if( c ) break; 301 } 302 a++; 303 b++; 304 } 305 return c; 306 } 307 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 308 register unsigned char *a, *b; 309 if( zLeft==0 ){ 310 return zRight ? -1 : 0; 311 }else if( zRight==0 ){ 312 return 1; 313 } 314 a = (unsigned char *)zLeft; 315 b = (unsigned char *)zRight; 316 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 317 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 318 } 319 320 /* 321 ** Compute an 8-bit hash on a string that is insensitive to case differences 322 */ 323 u8 sqlite3StrIHash(const char *z){ 324 u8 h = 0; 325 if( z==0 ) return 0; 326 while( z[0] ){ 327 h += UpperToLower[(unsigned char)z[0]]; 328 z++; 329 } 330 return h; 331 } 332 333 /* 334 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 335 ** E==2 results in 100. E==50 results in 1.0e50. 336 ** 337 ** This routine only works for values of E between 1 and 341. 338 */ 339 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 340 #if defined(_MSC_VER) 341 static const LONGDOUBLE_TYPE x[] = { 342 1.0e+001L, 343 1.0e+002L, 344 1.0e+004L, 345 1.0e+008L, 346 1.0e+016L, 347 1.0e+032L, 348 1.0e+064L, 349 1.0e+128L, 350 1.0e+256L 351 }; 352 LONGDOUBLE_TYPE r = 1.0; 353 int i; 354 assert( E>=0 && E<=307 ); 355 for(i=0; E!=0; i++, E >>=1){ 356 if( E & 1 ) r *= x[i]; 357 } 358 return r; 359 #else 360 LONGDOUBLE_TYPE x = 10.0; 361 LONGDOUBLE_TYPE r = 1.0; 362 while(1){ 363 if( E & 1 ) r *= x; 364 E >>= 1; 365 if( E==0 ) break; 366 x *= x; 367 } 368 return r; 369 #endif 370 } 371 372 /* 373 ** The string z[] is an text representation of a real number. 374 ** Convert this string to a double and write it into *pResult. 375 ** 376 ** The string z[] is length bytes in length (bytes, not characters) and 377 ** uses the encoding enc. The string is not necessarily zero-terminated. 378 ** 379 ** Return TRUE if the result is a valid real number (or integer) and FALSE 380 ** if the string is empty or contains extraneous text. More specifically 381 ** return 382 ** 1 => The input string is a pure integer 383 ** 2 or more => The input has a decimal point or eNNN clause 384 ** 0 or less => The input string is not a valid number 385 ** -1 => Not a valid number, but has a valid prefix which 386 ** includes a decimal point and/or an eNNN clause 387 ** 388 ** Valid numbers are in one of these formats: 389 ** 390 ** [+-]digits[E[+-]digits] 391 ** [+-]digits.[digits][E[+-]digits] 392 ** [+-].digits[E[+-]digits] 393 ** 394 ** Leading and trailing whitespace is ignored for the purpose of determining 395 ** validity. 396 ** 397 ** If some prefix of the input string is a valid number, this routine 398 ** returns FALSE but it still converts the prefix and writes the result 399 ** into *pResult. 400 */ 401 #if defined(_MSC_VER) 402 #pragma warning(disable : 4756) 403 #endif 404 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 405 #ifndef SQLITE_OMIT_FLOATING_POINT 406 int incr; 407 const char *zEnd; 408 /* sign * significand * (10 ^ (esign * exponent)) */ 409 int sign = 1; /* sign of significand */ 410 i64 s = 0; /* significand */ 411 int d = 0; /* adjust exponent for shifting decimal point */ 412 int esign = 1; /* sign of exponent */ 413 int e = 0; /* exponent */ 414 int eValid = 1; /* True exponent is either not used or is well-formed */ 415 double result; 416 int nDigit = 0; /* Number of digits processed */ 417 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 418 419 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 420 *pResult = 0.0; /* Default return value, in case of an error */ 421 if( length==0 ) return 0; 422 423 if( enc==SQLITE_UTF8 ){ 424 incr = 1; 425 zEnd = z + length; 426 }else{ 427 int i; 428 incr = 2; 429 length &= ~1; 430 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 431 testcase( enc==SQLITE_UTF16LE ); 432 testcase( enc==SQLITE_UTF16BE ); 433 for(i=3-enc; i<length && z[i]==0; i+=2){} 434 if( i<length ) eType = -100; 435 zEnd = &z[i^1]; 436 z += (enc&1); 437 } 438 439 /* skip leading spaces */ 440 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 441 if( z>=zEnd ) return 0; 442 443 /* get sign of significand */ 444 if( *z=='-' ){ 445 sign = -1; 446 z+=incr; 447 }else if( *z=='+' ){ 448 z+=incr; 449 } 450 451 /* copy max significant digits to significand */ 452 while( z<zEnd && sqlite3Isdigit(*z) ){ 453 s = s*10 + (*z - '0'); 454 z+=incr; nDigit++; 455 if( s>=((LARGEST_INT64-9)/10) ){ 456 /* skip non-significant significand digits 457 ** (increase exponent by d to shift decimal left) */ 458 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 459 } 460 } 461 if( z>=zEnd ) goto do_atof_calc; 462 463 /* if decimal point is present */ 464 if( *z=='.' ){ 465 z+=incr; 466 eType++; 467 /* copy digits from after decimal to significand 468 ** (decrease exponent by d to shift decimal right) */ 469 while( z<zEnd && sqlite3Isdigit(*z) ){ 470 if( s<((LARGEST_INT64-9)/10) ){ 471 s = s*10 + (*z - '0'); 472 d--; 473 nDigit++; 474 } 475 z+=incr; 476 } 477 } 478 if( z>=zEnd ) goto do_atof_calc; 479 480 /* if exponent is present */ 481 if( *z=='e' || *z=='E' ){ 482 z+=incr; 483 eValid = 0; 484 eType++; 485 486 /* This branch is needed to avoid a (harmless) buffer overread. The 487 ** special comment alerts the mutation tester that the correct answer 488 ** is obtained even if the branch is omitted */ 489 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 490 491 /* get sign of exponent */ 492 if( *z=='-' ){ 493 esign = -1; 494 z+=incr; 495 }else if( *z=='+' ){ 496 z+=incr; 497 } 498 /* copy digits to exponent */ 499 while( z<zEnd && sqlite3Isdigit(*z) ){ 500 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 501 z+=incr; 502 eValid = 1; 503 } 504 } 505 506 /* skip trailing spaces */ 507 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 508 509 do_atof_calc: 510 /* adjust exponent by d, and update sign */ 511 e = (e*esign) + d; 512 if( e<0 ) { 513 esign = -1; 514 e *= -1; 515 } else { 516 esign = 1; 517 } 518 519 if( s==0 ) { 520 /* In the IEEE 754 standard, zero is signed. */ 521 result = sign<0 ? -(double)0 : (double)0; 522 } else { 523 /* Attempt to reduce exponent. 524 ** 525 ** Branches that are not required for the correct answer but which only 526 ** help to obtain the correct answer faster are marked with special 527 ** comments, as a hint to the mutation tester. 528 */ 529 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 530 if( esign>0 ){ 531 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 532 s *= 10; 533 }else{ 534 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 535 s /= 10; 536 } 537 e--; 538 } 539 540 /* adjust the sign of significand */ 541 s = sign<0 ? -s : s; 542 543 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 544 result = (double)s; 545 }else{ 546 /* attempt to handle extremely small/large numbers better */ 547 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 548 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 549 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 550 if( esign<0 ){ 551 result = s / scale; 552 result /= 1.0e+308; 553 }else{ 554 result = s * scale; 555 result *= 1.0e+308; 556 } 557 }else{ assert( e>=342 ); 558 if( esign<0 ){ 559 result = 0.0*s; 560 }else{ 561 #ifdef INFINITY 562 result = INFINITY*s; 563 #else 564 result = 1e308*1e308*s; /* Infinity */ 565 #endif 566 } 567 } 568 }else{ 569 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 570 if( esign<0 ){ 571 result = s / scale; 572 }else{ 573 result = s * scale; 574 } 575 } 576 } 577 } 578 579 /* store the result */ 580 *pResult = result; 581 582 /* return true if number and no extra non-whitespace chracters after */ 583 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 584 return eType; 585 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 586 return -1; 587 }else{ 588 return 0; 589 } 590 #else 591 return !sqlite3Atoi64(z, pResult, length, enc); 592 #endif /* SQLITE_OMIT_FLOATING_POINT */ 593 } 594 #if defined(_MSC_VER) 595 #pragma warning(default : 4756) 596 #endif 597 598 /* 599 ** Render an signed 64-bit integer as text. Store the result in zOut[]. 600 ** 601 ** The caller must ensure that zOut[] is at least 21 bytes in size. 602 */ 603 void sqlite3Int64ToText(i64 v, char *zOut){ 604 int i; 605 u64 x; 606 char zTemp[22]; 607 if( v<0 ){ 608 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; 609 }else{ 610 x = v; 611 } 612 i = sizeof(zTemp)-2; 613 zTemp[sizeof(zTemp)-1] = 0; 614 do{ 615 zTemp[i--] = (x%10) + '0'; 616 x = x/10; 617 }while( x ); 618 if( v<0 ) zTemp[i--] = '-'; 619 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); 620 } 621 622 /* 623 ** Compare the 19-character string zNum against the text representation 624 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 625 ** if zNum is less than, equal to, or greater than the string. 626 ** Note that zNum must contain exactly 19 characters. 627 ** 628 ** Unlike memcmp() this routine is guaranteed to return the difference 629 ** in the values of the last digit if the only difference is in the 630 ** last digit. So, for example, 631 ** 632 ** compare2pow63("9223372036854775800", 1) 633 ** 634 ** will return -8. 635 */ 636 static int compare2pow63(const char *zNum, int incr){ 637 int c = 0; 638 int i; 639 /* 012345678901234567 */ 640 const char *pow63 = "922337203685477580"; 641 for(i=0; c==0 && i<18; i++){ 642 c = (zNum[i*incr]-pow63[i])*10; 643 } 644 if( c==0 ){ 645 c = zNum[18*incr] - '8'; 646 testcase( c==(-1) ); 647 testcase( c==0 ); 648 testcase( c==(+1) ); 649 } 650 return c; 651 } 652 653 /* 654 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 655 ** routine does *not* accept hexadecimal notation. 656 ** 657 ** Returns: 658 ** 659 ** -1 Not even a prefix of the input text looks like an integer 660 ** 0 Successful transformation. Fits in a 64-bit signed integer. 661 ** 1 Excess non-space text after the integer value 662 ** 2 Integer too large for a 64-bit signed integer or is malformed 663 ** 3 Special case of 9223372036854775808 664 ** 665 ** length is the number of bytes in the string (bytes, not characters). 666 ** The string is not necessarily zero-terminated. The encoding is 667 ** given by enc. 668 */ 669 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 670 int incr; 671 u64 u = 0; 672 int neg = 0; /* assume positive */ 673 int i; 674 int c = 0; 675 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 676 int rc; /* Baseline return code */ 677 const char *zStart; 678 const char *zEnd = zNum + length; 679 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 680 if( enc==SQLITE_UTF8 ){ 681 incr = 1; 682 }else{ 683 incr = 2; 684 length &= ~1; 685 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 686 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 687 nonNum = i<length; 688 zEnd = &zNum[i^1]; 689 zNum += (enc&1); 690 } 691 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 692 if( zNum<zEnd ){ 693 if( *zNum=='-' ){ 694 neg = 1; 695 zNum+=incr; 696 }else if( *zNum=='+' ){ 697 zNum+=incr; 698 } 699 } 700 zStart = zNum; 701 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 702 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 703 u = u*10 + c - '0'; 704 } 705 testcase( i==18*incr ); 706 testcase( i==19*incr ); 707 testcase( i==20*incr ); 708 if( u>LARGEST_INT64 ){ 709 /* This test and assignment is needed only to suppress UB warnings 710 ** from clang and -fsanitize=undefined. This test and assignment make 711 ** the code a little larger and slower, and no harm comes from omitting 712 ** them, but we must appaise the undefined-behavior pharisees. */ 713 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 714 }else if( neg ){ 715 *pNum = -(i64)u; 716 }else{ 717 *pNum = (i64)u; 718 } 719 rc = 0; 720 if( i==0 && zStart==zNum ){ /* No digits */ 721 rc = -1; 722 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 723 rc = 1; 724 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 725 int jj = i; 726 do{ 727 if( !sqlite3Isspace(zNum[jj]) ){ 728 rc = 1; /* Extra non-space text after the integer */ 729 break; 730 } 731 jj += incr; 732 }while( &zNum[jj]<zEnd ); 733 } 734 if( i<19*incr ){ 735 /* Less than 19 digits, so we know that it fits in 64 bits */ 736 assert( u<=LARGEST_INT64 ); 737 return rc; 738 }else{ 739 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 740 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 741 if( c<0 ){ 742 /* zNum is less than 9223372036854775808 so it fits */ 743 assert( u<=LARGEST_INT64 ); 744 return rc; 745 }else{ 746 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 747 if( c>0 ){ 748 /* zNum is greater than 9223372036854775808 so it overflows */ 749 return 2; 750 }else{ 751 /* zNum is exactly 9223372036854775808. Fits if negative. The 752 ** special case 2 overflow if positive */ 753 assert( u-1==LARGEST_INT64 ); 754 return neg ? rc : 3; 755 } 756 } 757 } 758 } 759 760 /* 761 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 762 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 763 ** whereas sqlite3Atoi64() does not. 764 ** 765 ** Returns: 766 ** 767 ** 0 Successful transformation. Fits in a 64-bit signed integer. 768 ** 1 Excess text after the integer value 769 ** 2 Integer too large for a 64-bit signed integer or is malformed 770 ** 3 Special case of 9223372036854775808 771 */ 772 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 773 #ifndef SQLITE_OMIT_HEX_INTEGER 774 if( z[0]=='0' 775 && (z[1]=='x' || z[1]=='X') 776 ){ 777 u64 u = 0; 778 int i, k; 779 for(i=2; z[i]=='0'; i++){} 780 for(k=i; sqlite3Isxdigit(z[k]); k++){ 781 u = u*16 + sqlite3HexToInt(z[k]); 782 } 783 memcpy(pOut, &u, 8); 784 return (z[k]==0 && k-i<=16) ? 0 : 2; 785 }else 786 #endif /* SQLITE_OMIT_HEX_INTEGER */ 787 { 788 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 789 } 790 } 791 792 /* 793 ** If zNum represents an integer that will fit in 32-bits, then set 794 ** *pValue to that integer and return true. Otherwise return false. 795 ** 796 ** This routine accepts both decimal and hexadecimal notation for integers. 797 ** 798 ** Any non-numeric characters that following zNum are ignored. 799 ** This is different from sqlite3Atoi64() which requires the 800 ** input number to be zero-terminated. 801 */ 802 int sqlite3GetInt32(const char *zNum, int *pValue){ 803 sqlite_int64 v = 0; 804 int i, c; 805 int neg = 0; 806 if( zNum[0]=='-' ){ 807 neg = 1; 808 zNum++; 809 }else if( zNum[0]=='+' ){ 810 zNum++; 811 } 812 #ifndef SQLITE_OMIT_HEX_INTEGER 813 else if( zNum[0]=='0' 814 && (zNum[1]=='x' || zNum[1]=='X') 815 && sqlite3Isxdigit(zNum[2]) 816 ){ 817 u32 u = 0; 818 zNum += 2; 819 while( zNum[0]=='0' ) zNum++; 820 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 821 u = u*16 + sqlite3HexToInt(zNum[i]); 822 } 823 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 824 memcpy(pValue, &u, 4); 825 return 1; 826 }else{ 827 return 0; 828 } 829 } 830 #endif 831 if( !sqlite3Isdigit(zNum[0]) ) return 0; 832 while( zNum[0]=='0' ) zNum++; 833 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 834 v = v*10 + c; 835 } 836 837 /* The longest decimal representation of a 32 bit integer is 10 digits: 838 ** 839 ** 1234567890 840 ** 2^31 -> 2147483648 841 */ 842 testcase( i==10 ); 843 if( i>10 ){ 844 return 0; 845 } 846 testcase( v-neg==2147483647 ); 847 if( v-neg>2147483647 ){ 848 return 0; 849 } 850 if( neg ){ 851 v = -v; 852 } 853 *pValue = (int)v; 854 return 1; 855 } 856 857 /* 858 ** Return a 32-bit integer value extracted from a string. If the 859 ** string is not an integer, just return 0. 860 */ 861 int sqlite3Atoi(const char *z){ 862 int x = 0; 863 sqlite3GetInt32(z, &x); 864 return x; 865 } 866 867 /* 868 ** Try to convert z into an unsigned 32-bit integer. Return true on 869 ** success and false if there is an error. 870 ** 871 ** Only decimal notation is accepted. 872 */ 873 int sqlite3GetUInt32(const char *z, u32 *pI){ 874 u64 v = 0; 875 int i; 876 for(i=0; sqlite3Isdigit(z[i]); i++){ 877 v = v*10 + z[i] - '0'; 878 if( v>4294967296LL ){ *pI = 0; return 0; } 879 } 880 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } 881 *pI = (u32)v; 882 return 1; 883 } 884 885 /* 886 ** The variable-length integer encoding is as follows: 887 ** 888 ** KEY: 889 ** A = 0xxxxxxx 7 bits of data and one flag bit 890 ** B = 1xxxxxxx 7 bits of data and one flag bit 891 ** C = xxxxxxxx 8 bits of data 892 ** 893 ** 7 bits - A 894 ** 14 bits - BA 895 ** 21 bits - BBA 896 ** 28 bits - BBBA 897 ** 35 bits - BBBBA 898 ** 42 bits - BBBBBA 899 ** 49 bits - BBBBBBA 900 ** 56 bits - BBBBBBBA 901 ** 64 bits - BBBBBBBBC 902 */ 903 904 /* 905 ** Write a 64-bit variable-length integer to memory starting at p[0]. 906 ** The length of data write will be between 1 and 9 bytes. The number 907 ** of bytes written is returned. 908 ** 909 ** A variable-length integer consists of the lower 7 bits of each byte 910 ** for all bytes that have the 8th bit set and one byte with the 8th 911 ** bit clear. Except, if we get to the 9th byte, it stores the full 912 ** 8 bits and is the last byte. 913 */ 914 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 915 int i, j, n; 916 u8 buf[10]; 917 if( v & (((u64)0xff000000)<<32) ){ 918 p[8] = (u8)v; 919 v >>= 8; 920 for(i=7; i>=0; i--){ 921 p[i] = (u8)((v & 0x7f) | 0x80); 922 v >>= 7; 923 } 924 return 9; 925 } 926 n = 0; 927 do{ 928 buf[n++] = (u8)((v & 0x7f) | 0x80); 929 v >>= 7; 930 }while( v!=0 ); 931 buf[0] &= 0x7f; 932 assert( n<=9 ); 933 for(i=0, j=n-1; j>=0; j--, i++){ 934 p[i] = buf[j]; 935 } 936 return n; 937 } 938 int sqlite3PutVarint(unsigned char *p, u64 v){ 939 if( v<=0x7f ){ 940 p[0] = v&0x7f; 941 return 1; 942 } 943 if( v<=0x3fff ){ 944 p[0] = ((v>>7)&0x7f)|0x80; 945 p[1] = v&0x7f; 946 return 2; 947 } 948 return putVarint64(p,v); 949 } 950 951 /* 952 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 953 ** are defined here rather than simply putting the constant expressions 954 ** inline in order to work around bugs in the RVT compiler. 955 ** 956 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 957 ** 958 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 959 */ 960 #define SLOT_2_0 0x001fc07f 961 #define SLOT_4_2_0 0xf01fc07f 962 963 964 /* 965 ** Read a 64-bit variable-length integer from memory starting at p[0]. 966 ** Return the number of bytes read. The value is stored in *v. 967 */ 968 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 969 u32 a,b,s; 970 971 if( ((signed char*)p)[0]>=0 ){ 972 *v = *p; 973 return 1; 974 } 975 if( ((signed char*)p)[1]>=0 ){ 976 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 977 return 2; 978 } 979 980 /* Verify that constants are precomputed correctly */ 981 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 982 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 983 984 a = ((u32)p[0])<<14; 985 b = p[1]; 986 p += 2; 987 a |= *p; 988 /* a: p0<<14 | p2 (unmasked) */ 989 if (!(a&0x80)) 990 { 991 a &= SLOT_2_0; 992 b &= 0x7f; 993 b = b<<7; 994 a |= b; 995 *v = a; 996 return 3; 997 } 998 999 /* CSE1 from below */ 1000 a &= SLOT_2_0; 1001 p++; 1002 b = b<<14; 1003 b |= *p; 1004 /* b: p1<<14 | p3 (unmasked) */ 1005 if (!(b&0x80)) 1006 { 1007 b &= SLOT_2_0; 1008 /* moved CSE1 up */ 1009 /* a &= (0x7f<<14)|(0x7f); */ 1010 a = a<<7; 1011 a |= b; 1012 *v = a; 1013 return 4; 1014 } 1015 1016 /* a: p0<<14 | p2 (masked) */ 1017 /* b: p1<<14 | p3 (unmasked) */ 1018 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1019 /* moved CSE1 up */ 1020 /* a &= (0x7f<<14)|(0x7f); */ 1021 b &= SLOT_2_0; 1022 s = a; 1023 /* s: p0<<14 | p2 (masked) */ 1024 1025 p++; 1026 a = a<<14; 1027 a |= *p; 1028 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1029 if (!(a&0x80)) 1030 { 1031 /* we can skip these cause they were (effectively) done above 1032 ** while calculating s */ 1033 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1034 /* b &= (0x7f<<14)|(0x7f); */ 1035 b = b<<7; 1036 a |= b; 1037 s = s>>18; 1038 *v = ((u64)s)<<32 | a; 1039 return 5; 1040 } 1041 1042 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1043 s = s<<7; 1044 s |= b; 1045 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1046 1047 p++; 1048 b = b<<14; 1049 b |= *p; 1050 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 1051 if (!(b&0x80)) 1052 { 1053 /* we can skip this cause it was (effectively) done above in calc'ing s */ 1054 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1055 a &= SLOT_2_0; 1056 a = a<<7; 1057 a |= b; 1058 s = s>>18; 1059 *v = ((u64)s)<<32 | a; 1060 return 6; 1061 } 1062 1063 p++; 1064 a = a<<14; 1065 a |= *p; 1066 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1067 if (!(a&0x80)) 1068 { 1069 a &= SLOT_4_2_0; 1070 b &= SLOT_2_0; 1071 b = b<<7; 1072 a |= b; 1073 s = s>>11; 1074 *v = ((u64)s)<<32 | a; 1075 return 7; 1076 } 1077 1078 /* CSE2 from below */ 1079 a &= SLOT_2_0; 1080 p++; 1081 b = b<<14; 1082 b |= *p; 1083 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1084 if (!(b&0x80)) 1085 { 1086 b &= SLOT_4_2_0; 1087 /* moved CSE2 up */ 1088 /* a &= (0x7f<<14)|(0x7f); */ 1089 a = a<<7; 1090 a |= b; 1091 s = s>>4; 1092 *v = ((u64)s)<<32 | a; 1093 return 8; 1094 } 1095 1096 p++; 1097 a = a<<15; 1098 a |= *p; 1099 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1100 1101 /* moved CSE2 up */ 1102 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1103 b &= SLOT_2_0; 1104 b = b<<8; 1105 a |= b; 1106 1107 s = s<<4; 1108 b = p[-4]; 1109 b &= 0x7f; 1110 b = b>>3; 1111 s |= b; 1112 1113 *v = ((u64)s)<<32 | a; 1114 1115 return 9; 1116 } 1117 1118 /* 1119 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1120 ** Return the number of bytes read. The value is stored in *v. 1121 ** 1122 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1123 ** integer, then set *v to 0xffffffff. 1124 ** 1125 ** A MACRO version, getVarint32, is provided which inlines the 1126 ** single-byte case. All code should use the MACRO version as 1127 ** this function assumes the single-byte case has already been handled. 1128 */ 1129 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1130 u32 a,b; 1131 1132 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1133 ** by the getVarin32() macro */ 1134 a = *p; 1135 /* a: p0 (unmasked) */ 1136 #ifndef getVarint32 1137 if (!(a&0x80)) 1138 { 1139 /* Values between 0 and 127 */ 1140 *v = a; 1141 return 1; 1142 } 1143 #endif 1144 1145 /* The 2-byte case */ 1146 p++; 1147 b = *p; 1148 /* b: p1 (unmasked) */ 1149 if (!(b&0x80)) 1150 { 1151 /* Values between 128 and 16383 */ 1152 a &= 0x7f; 1153 a = a<<7; 1154 *v = a | b; 1155 return 2; 1156 } 1157 1158 /* The 3-byte case */ 1159 p++; 1160 a = a<<14; 1161 a |= *p; 1162 /* a: p0<<14 | p2 (unmasked) */ 1163 if (!(a&0x80)) 1164 { 1165 /* Values between 16384 and 2097151 */ 1166 a &= (0x7f<<14)|(0x7f); 1167 b &= 0x7f; 1168 b = b<<7; 1169 *v = a | b; 1170 return 3; 1171 } 1172 1173 /* A 32-bit varint is used to store size information in btrees. 1174 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1175 ** A 3-byte varint is sufficient, for example, to record the size 1176 ** of a 1048569-byte BLOB or string. 1177 ** 1178 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1179 ** rare larger cases can be handled by the slower 64-bit varint 1180 ** routine. 1181 */ 1182 #if 1 1183 { 1184 u64 v64; 1185 u8 n; 1186 1187 n = sqlite3GetVarint(p-2, &v64); 1188 assert( n>3 && n<=9 ); 1189 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1190 *v = 0xffffffff; 1191 }else{ 1192 *v = (u32)v64; 1193 } 1194 return n; 1195 } 1196 1197 #else 1198 /* For following code (kept for historical record only) shows an 1199 ** unrolling for the 3- and 4-byte varint cases. This code is 1200 ** slightly faster, but it is also larger and much harder to test. 1201 */ 1202 p++; 1203 b = b<<14; 1204 b |= *p; 1205 /* b: p1<<14 | p3 (unmasked) */ 1206 if (!(b&0x80)) 1207 { 1208 /* Values between 2097152 and 268435455 */ 1209 b &= (0x7f<<14)|(0x7f); 1210 a &= (0x7f<<14)|(0x7f); 1211 a = a<<7; 1212 *v = a | b; 1213 return 4; 1214 } 1215 1216 p++; 1217 a = a<<14; 1218 a |= *p; 1219 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1220 if (!(a&0x80)) 1221 { 1222 /* Values between 268435456 and 34359738367 */ 1223 a &= SLOT_4_2_0; 1224 b &= SLOT_4_2_0; 1225 b = b<<7; 1226 *v = a | b; 1227 return 5; 1228 } 1229 1230 /* We can only reach this point when reading a corrupt database 1231 ** file. In that case we are not in any hurry. Use the (relatively 1232 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1233 ** value. */ 1234 { 1235 u64 v64; 1236 u8 n; 1237 1238 p -= 4; 1239 n = sqlite3GetVarint(p, &v64); 1240 assert( n>5 && n<=9 ); 1241 *v = (u32)v64; 1242 return n; 1243 } 1244 #endif 1245 } 1246 1247 /* 1248 ** Return the number of bytes that will be needed to store the given 1249 ** 64-bit integer. 1250 */ 1251 int sqlite3VarintLen(u64 v){ 1252 int i; 1253 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1254 return i; 1255 } 1256 1257 1258 /* 1259 ** Read or write a four-byte big-endian integer value. 1260 */ 1261 u32 sqlite3Get4byte(const u8 *p){ 1262 #if SQLITE_BYTEORDER==4321 1263 u32 x; 1264 memcpy(&x,p,4); 1265 return x; 1266 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1267 u32 x; 1268 memcpy(&x,p,4); 1269 return __builtin_bswap32(x); 1270 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1271 u32 x; 1272 memcpy(&x,p,4); 1273 return _byteswap_ulong(x); 1274 #else 1275 testcase( p[0]&0x80 ); 1276 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1277 #endif 1278 } 1279 void sqlite3Put4byte(unsigned char *p, u32 v){ 1280 #if SQLITE_BYTEORDER==4321 1281 memcpy(p,&v,4); 1282 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1283 u32 x = __builtin_bswap32(v); 1284 memcpy(p,&x,4); 1285 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1286 u32 x = _byteswap_ulong(v); 1287 memcpy(p,&x,4); 1288 #else 1289 p[0] = (u8)(v>>24); 1290 p[1] = (u8)(v>>16); 1291 p[2] = (u8)(v>>8); 1292 p[3] = (u8)v; 1293 #endif 1294 } 1295 1296 1297 1298 /* 1299 ** Translate a single byte of Hex into an integer. 1300 ** This routine only works if h really is a valid hexadecimal 1301 ** character: 0..9a..fA..F 1302 */ 1303 u8 sqlite3HexToInt(int h){ 1304 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1305 #ifdef SQLITE_ASCII 1306 h += 9*(1&(h>>6)); 1307 #endif 1308 #ifdef SQLITE_EBCDIC 1309 h += 9*(1&~(h>>4)); 1310 #endif 1311 return (u8)(h & 0xf); 1312 } 1313 1314 #if !defined(SQLITE_OMIT_BLOB_LITERAL) 1315 /* 1316 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1317 ** value. Return a pointer to its binary value. Space to hold the 1318 ** binary value has been obtained from malloc and must be freed by 1319 ** the calling routine. 1320 */ 1321 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1322 char *zBlob; 1323 int i; 1324 1325 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1326 n--; 1327 if( zBlob ){ 1328 for(i=0; i<n; i+=2){ 1329 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1330 } 1331 zBlob[i/2] = 0; 1332 } 1333 return zBlob; 1334 } 1335 #endif /* !SQLITE_OMIT_BLOB_LITERAL */ 1336 1337 /* 1338 ** Log an error that is an API call on a connection pointer that should 1339 ** not have been used. The "type" of connection pointer is given as the 1340 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1341 */ 1342 static void logBadConnection(const char *zType){ 1343 sqlite3_log(SQLITE_MISUSE, 1344 "API call with %s database connection pointer", 1345 zType 1346 ); 1347 } 1348 1349 /* 1350 ** Check to make sure we have a valid db pointer. This test is not 1351 ** foolproof but it does provide some measure of protection against 1352 ** misuse of the interface such as passing in db pointers that are 1353 ** NULL or which have been previously closed. If this routine returns 1354 ** 1 it means that the db pointer is valid and 0 if it should not be 1355 ** dereferenced for any reason. The calling function should invoke 1356 ** SQLITE_MISUSE immediately. 1357 ** 1358 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1359 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1360 ** open properly and is not fit for general use but which can be 1361 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1362 */ 1363 int sqlite3SafetyCheckOk(sqlite3 *db){ 1364 u32 magic; 1365 if( db==0 ){ 1366 logBadConnection("NULL"); 1367 return 0; 1368 } 1369 magic = db->magic; 1370 if( magic!=SQLITE_MAGIC_OPEN ){ 1371 if( sqlite3SafetyCheckSickOrOk(db) ){ 1372 testcase( sqlite3GlobalConfig.xLog!=0 ); 1373 logBadConnection("unopened"); 1374 } 1375 return 0; 1376 }else{ 1377 return 1; 1378 } 1379 } 1380 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1381 u32 magic; 1382 magic = db->magic; 1383 if( magic!=SQLITE_MAGIC_SICK && 1384 magic!=SQLITE_MAGIC_OPEN && 1385 magic!=SQLITE_MAGIC_BUSY ){ 1386 testcase( sqlite3GlobalConfig.xLog!=0 ); 1387 logBadConnection("invalid"); 1388 return 0; 1389 }else{ 1390 return 1; 1391 } 1392 } 1393 1394 /* 1395 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1396 ** the other 64-bit signed integer at *pA and store the result in *pA. 1397 ** Return 0 on success. Or if the operation would have resulted in an 1398 ** overflow, leave *pA unchanged and return 1. 1399 */ 1400 int sqlite3AddInt64(i64 *pA, i64 iB){ 1401 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1402 return __builtin_add_overflow(*pA, iB, pA); 1403 #else 1404 i64 iA = *pA; 1405 testcase( iA==0 ); testcase( iA==1 ); 1406 testcase( iB==-1 ); testcase( iB==0 ); 1407 if( iB>=0 ){ 1408 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1409 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1410 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1411 }else{ 1412 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1413 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1414 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1415 } 1416 *pA += iB; 1417 return 0; 1418 #endif 1419 } 1420 int sqlite3SubInt64(i64 *pA, i64 iB){ 1421 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1422 return __builtin_sub_overflow(*pA, iB, pA); 1423 #else 1424 testcase( iB==SMALLEST_INT64+1 ); 1425 if( iB==SMALLEST_INT64 ){ 1426 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1427 if( (*pA)>=0 ) return 1; 1428 *pA -= iB; 1429 return 0; 1430 }else{ 1431 return sqlite3AddInt64(pA, -iB); 1432 } 1433 #endif 1434 } 1435 int sqlite3MulInt64(i64 *pA, i64 iB){ 1436 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1437 return __builtin_mul_overflow(*pA, iB, pA); 1438 #else 1439 i64 iA = *pA; 1440 if( iB>0 ){ 1441 if( iA>LARGEST_INT64/iB ) return 1; 1442 if( iA<SMALLEST_INT64/iB ) return 1; 1443 }else if( iB<0 ){ 1444 if( iA>0 ){ 1445 if( iB<SMALLEST_INT64/iA ) return 1; 1446 }else if( iA<0 ){ 1447 if( iB==SMALLEST_INT64 ) return 1; 1448 if( iA==SMALLEST_INT64 ) return 1; 1449 if( -iA>LARGEST_INT64/-iB ) return 1; 1450 } 1451 } 1452 *pA = iA*iB; 1453 return 0; 1454 #endif 1455 } 1456 1457 /* 1458 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1459 ** if the integer has a value of -2147483648, return +2147483647 1460 */ 1461 int sqlite3AbsInt32(int x){ 1462 if( x>=0 ) return x; 1463 if( x==(int)0x80000000 ) return 0x7fffffff; 1464 return -x; 1465 } 1466 1467 #ifdef SQLITE_ENABLE_8_3_NAMES 1468 /* 1469 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1470 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1471 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1472 ** three characters, then shorten the suffix on z[] to be the last three 1473 ** characters of the original suffix. 1474 ** 1475 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1476 ** do the suffix shortening regardless of URI parameter. 1477 ** 1478 ** Examples: 1479 ** 1480 ** test.db-journal => test.nal 1481 ** test.db-wal => test.wal 1482 ** test.db-shm => test.shm 1483 ** test.db-mj7f3319fa => test.9fa 1484 */ 1485 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1486 #if SQLITE_ENABLE_8_3_NAMES<2 1487 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1488 #endif 1489 { 1490 int i, sz; 1491 sz = sqlite3Strlen30(z); 1492 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1493 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1494 } 1495 } 1496 #endif 1497 1498 /* 1499 ** Find (an approximate) sum of two LogEst values. This computation is 1500 ** not a simple "+" operator because LogEst is stored as a logarithmic 1501 ** value. 1502 ** 1503 */ 1504 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1505 static const unsigned char x[] = { 1506 10, 10, /* 0,1 */ 1507 9, 9, /* 2,3 */ 1508 8, 8, /* 4,5 */ 1509 7, 7, 7, /* 6,7,8 */ 1510 6, 6, 6, /* 9,10,11 */ 1511 5, 5, 5, /* 12-14 */ 1512 4, 4, 4, 4, /* 15-18 */ 1513 3, 3, 3, 3, 3, 3, /* 19-24 */ 1514 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1515 }; 1516 if( a>=b ){ 1517 if( a>b+49 ) return a; 1518 if( a>b+31 ) return a+1; 1519 return a+x[a-b]; 1520 }else{ 1521 if( b>a+49 ) return b; 1522 if( b>a+31 ) return b+1; 1523 return b+x[b-a]; 1524 } 1525 } 1526 1527 /* 1528 ** Convert an integer into a LogEst. In other words, compute an 1529 ** approximation for 10*log2(x). 1530 */ 1531 LogEst sqlite3LogEst(u64 x){ 1532 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1533 LogEst y = 40; 1534 if( x<8 ){ 1535 if( x<2 ) return 0; 1536 while( x<8 ){ y -= 10; x <<= 1; } 1537 }else{ 1538 #if GCC_VERSION>=5004000 1539 int i = 60 - __builtin_clzll(x); 1540 y += i*10; 1541 x >>= i; 1542 #else 1543 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1544 while( x>15 ){ y += 10; x >>= 1; } 1545 #endif 1546 } 1547 return a[x&7] + y - 10; 1548 } 1549 1550 #ifndef SQLITE_OMIT_VIRTUALTABLE 1551 /* 1552 ** Convert a double into a LogEst 1553 ** In other words, compute an approximation for 10*log2(x). 1554 */ 1555 LogEst sqlite3LogEstFromDouble(double x){ 1556 u64 a; 1557 LogEst e; 1558 assert( sizeof(x)==8 && sizeof(a)==8 ); 1559 if( x<=1 ) return 0; 1560 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1561 memcpy(&a, &x, 8); 1562 e = (a>>52) - 1022; 1563 return e*10; 1564 } 1565 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1566 1567 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1568 defined(SQLITE_ENABLE_STAT4) || \ 1569 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1570 /* 1571 ** Convert a LogEst into an integer. 1572 ** 1573 ** Note that this routine is only used when one or more of various 1574 ** non-standard compile-time options is enabled. 1575 */ 1576 u64 sqlite3LogEstToInt(LogEst x){ 1577 u64 n; 1578 n = x%10; 1579 x /= 10; 1580 if( n>=5 ) n -= 2; 1581 else if( n>=1 ) n -= 1; 1582 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1583 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1584 if( x>60 ) return (u64)LARGEST_INT64; 1585 #else 1586 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input 1587 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1588 assert( x<=60 ); 1589 #endif 1590 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1591 } 1592 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1593 1594 /* 1595 ** Add a new name/number pair to a VList. This might require that the 1596 ** VList object be reallocated, so return the new VList. If an OOM 1597 ** error occurs, the original VList returned and the 1598 ** db->mallocFailed flag is set. 1599 ** 1600 ** A VList is really just an array of integers. To destroy a VList, 1601 ** simply pass it to sqlite3DbFree(). 1602 ** 1603 ** The first integer is the number of integers allocated for the whole 1604 ** VList. The second integer is the number of integers actually used. 1605 ** Each name/number pair is encoded by subsequent groups of 3 or more 1606 ** integers. 1607 ** 1608 ** Each name/number pair starts with two integers which are the numeric 1609 ** value for the pair and the size of the name/number pair, respectively. 1610 ** The text name overlays one or more following integers. The text name 1611 ** is always zero-terminated. 1612 ** 1613 ** Conceptually: 1614 ** 1615 ** struct VList { 1616 ** int nAlloc; // Number of allocated slots 1617 ** int nUsed; // Number of used slots 1618 ** struct VListEntry { 1619 ** int iValue; // Value for this entry 1620 ** int nSlot; // Slots used by this entry 1621 ** // ... variable name goes here 1622 ** } a[0]; 1623 ** } 1624 ** 1625 ** During code generation, pointers to the variable names within the 1626 ** VList are taken. When that happens, nAlloc is set to zero as an 1627 ** indication that the VList may never again be enlarged, since the 1628 ** accompanying realloc() would invalidate the pointers. 1629 */ 1630 VList *sqlite3VListAdd( 1631 sqlite3 *db, /* The database connection used for malloc() */ 1632 VList *pIn, /* The input VList. Might be NULL */ 1633 const char *zName, /* Name of symbol to add */ 1634 int nName, /* Bytes of text in zName */ 1635 int iVal /* Value to associate with zName */ 1636 ){ 1637 int nInt; /* number of sizeof(int) objects needed for zName */ 1638 char *z; /* Pointer to where zName will be stored */ 1639 int i; /* Index in pIn[] where zName is stored */ 1640 1641 nInt = nName/4 + 3; 1642 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1643 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1644 /* Enlarge the allocation */ 1645 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1646 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1647 if( pOut==0 ) return pIn; 1648 if( pIn==0 ) pOut[1] = 2; 1649 pIn = pOut; 1650 pIn[0] = nAlloc; 1651 } 1652 i = pIn[1]; 1653 pIn[i] = iVal; 1654 pIn[i+1] = nInt; 1655 z = (char*)&pIn[i+2]; 1656 pIn[1] = i+nInt; 1657 assert( pIn[1]<=pIn[0] ); 1658 memcpy(z, zName, nName); 1659 z[nName] = 0; 1660 return pIn; 1661 } 1662 1663 /* 1664 ** Return a pointer to the name of a variable in the given VList that 1665 ** has the value iVal. Or return a NULL if there is no such variable in 1666 ** the list 1667 */ 1668 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1669 int i, mx; 1670 if( pIn==0 ) return 0; 1671 mx = pIn[1]; 1672 i = 2; 1673 do{ 1674 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1675 i += pIn[i+1]; 1676 }while( i<mx ); 1677 return 0; 1678 } 1679 1680 /* 1681 ** Return the number of the variable named zName, if it is in VList. 1682 ** or return 0 if there is no such variable. 1683 */ 1684 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1685 int i, mx; 1686 if( pIn==0 ) return 0; 1687 mx = pIn[1]; 1688 i = 2; 1689 do{ 1690 const char *z = (const char*)&pIn[i+2]; 1691 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1692 i += pIn[i+1]; 1693 }while( i<mx ); 1694 return 0; 1695 } 1696