1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_UNTESTABLE 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 if( z==0 ) return 0; 109 return 0x3fffffff & (int)strlen(z); 110 } 111 112 /* 113 ** Return the declared type of a column. Or return zDflt if the column 114 ** has no declared type. 115 ** 116 ** The column type is an extra string stored after the zero-terminator on 117 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 118 */ 119 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; 121 return pCol->zName + strlen(pCol->zName) + 1; 122 } 123 124 /* 125 ** Helper function for sqlite3Error() - called rarely. Broken out into 126 ** a separate routine to avoid unnecessary register saves on entry to 127 ** sqlite3Error(). 128 */ 129 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 130 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 131 sqlite3SystemError(db, err_code); 132 } 133 134 /* 135 ** Set the current error code to err_code and clear any prior error message. 136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 137 ** that would be appropriate. 138 */ 139 void sqlite3Error(sqlite3 *db, int err_code){ 140 assert( db!=0 ); 141 db->errCode = err_code; 142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 143 } 144 145 /* 146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 147 ** to do based on the SQLite error code in rc. 148 */ 149 void sqlite3SystemError(sqlite3 *db, int rc){ 150 if( rc==SQLITE_IOERR_NOMEM ) return; 151 rc &= 0xff; 152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 154 } 155 } 156 157 /* 158 ** Set the most recent error code and error string for the sqlite 159 ** handle "db". The error code is set to "err_code". 160 ** 161 ** If it is not NULL, string zFormat specifies the format of the 162 ** error string in the style of the printf functions: The following 163 ** format characters are allowed: 164 ** 165 ** %s Insert a string 166 ** %z A string that should be freed after use 167 ** %d Insert an integer 168 ** %T Insert a token 169 ** %S Insert the first element of a SrcList 170 ** 171 ** zFormat and any string tokens that follow it are assumed to be 172 ** encoded in UTF-8. 173 ** 174 ** To clear the most recent error for sqlite handle "db", sqlite3Error 175 ** should be called with err_code set to SQLITE_OK and zFormat set 176 ** to NULL. 177 */ 178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 179 assert( db!=0 ); 180 db->errCode = err_code; 181 sqlite3SystemError(db, err_code); 182 if( zFormat==0 ){ 183 sqlite3Error(db, err_code); 184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 185 char *z; 186 va_list ap; 187 va_start(ap, zFormat); 188 z = sqlite3VMPrintf(db, zFormat, ap); 189 va_end(ap); 190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 191 } 192 } 193 194 /* 195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 196 ** The following formatting characters are allowed: 197 ** 198 ** %s Insert a string 199 ** %z A string that should be freed after use 200 ** %d Insert an integer 201 ** %T Insert a token 202 ** %S Insert the first element of a SrcList 203 ** 204 ** This function should be used to report any error that occurs while 205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 206 ** last thing the sqlite3_prepare() function does is copy the error 207 ** stored by this function into the database handle using sqlite3Error(). 208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 209 ** during statement execution (sqlite3_step() etc.). 210 */ 211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 212 char *zMsg; 213 va_list ap; 214 sqlite3 *db = pParse->db; 215 va_start(ap, zFormat); 216 zMsg = sqlite3VMPrintf(db, zFormat, ap); 217 va_end(ap); 218 if( db->suppressErr ){ 219 sqlite3DbFree(db, zMsg); 220 }else{ 221 pParse->nErr++; 222 sqlite3DbFree(db, pParse->zErrMsg); 223 pParse->zErrMsg = zMsg; 224 pParse->rc = SQLITE_ERROR; 225 } 226 } 227 228 /* 229 ** Convert an SQL-style quoted string into a normal string by removing 230 ** the quote characters. The conversion is done in-place. If the 231 ** input does not begin with a quote character, then this routine 232 ** is a no-op. 233 ** 234 ** The input string must be zero-terminated. A new zero-terminator 235 ** is added to the dequoted string. 236 ** 237 ** The return value is -1 if no dequoting occurs or the length of the 238 ** dequoted string, exclusive of the zero terminator, if dequoting does 239 ** occur. 240 ** 241 ** 2002-02-14: This routine is extended to remove MS-Access style 242 ** brackets from around identifiers. For example: "[a-b-c]" becomes 243 ** "a-b-c". 244 */ 245 void sqlite3Dequote(char *z){ 246 char quote; 247 int i, j; 248 if( z==0 ) return; 249 quote = z[0]; 250 if( !sqlite3Isquote(quote) ) return; 251 if( quote=='[' ) quote = ']'; 252 for(i=1, j=0;; i++){ 253 assert( z[i] ); 254 if( z[i]==quote ){ 255 if( z[i+1]==quote ){ 256 z[j++] = quote; 257 i++; 258 }else{ 259 break; 260 } 261 }else{ 262 z[j++] = z[i]; 263 } 264 } 265 z[j] = 0; 266 } 267 void sqlite3DequoteExpr(Expr *p){ 268 assert( sqlite3Isquote(p->u.zToken[0]) ); 269 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 270 sqlite3Dequote(p->u.zToken); 271 } 272 273 /* 274 ** Generate a Token object from a string 275 */ 276 void sqlite3TokenInit(Token *p, char *z){ 277 p->z = z; 278 p->n = sqlite3Strlen30(z); 279 } 280 281 /* Convenient short-hand */ 282 #define UpperToLower sqlite3UpperToLower 283 284 /* 285 ** Some systems have stricmp(). Others have strcasecmp(). Because 286 ** there is no consistency, we will define our own. 287 ** 288 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 289 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 290 ** the contents of two buffers containing UTF-8 strings in a 291 ** case-independent fashion, using the same definition of "case 292 ** independence" that SQLite uses internally when comparing identifiers. 293 */ 294 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 295 if( zLeft==0 ){ 296 return zRight ? -1 : 0; 297 }else if( zRight==0 ){ 298 return 1; 299 } 300 return sqlite3StrICmp(zLeft, zRight); 301 } 302 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 303 unsigned char *a, *b; 304 int c; 305 a = (unsigned char *)zLeft; 306 b = (unsigned char *)zRight; 307 for(;;){ 308 c = (int)UpperToLower[*a] - (int)UpperToLower[*b]; 309 if( c || *a==0 ) break; 310 a++; 311 b++; 312 } 313 return c; 314 } 315 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 316 register unsigned char *a, *b; 317 if( zLeft==0 ){ 318 return zRight ? -1 : 0; 319 }else if( zRight==0 ){ 320 return 1; 321 } 322 a = (unsigned char *)zLeft; 323 b = (unsigned char *)zRight; 324 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 325 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 326 } 327 328 /* 329 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 330 ** E==2 results in 100. E==50 results in 1.0e50. 331 ** 332 ** This routine only works for values of E between 1 and 341. 333 */ 334 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 335 #if defined(_MSC_VER) 336 static const LONGDOUBLE_TYPE x[] = { 337 1.0e+001, 338 1.0e+002, 339 1.0e+004, 340 1.0e+008, 341 1.0e+016, 342 1.0e+032, 343 1.0e+064, 344 1.0e+128, 345 1.0e+256 346 }; 347 LONGDOUBLE_TYPE r = 1.0; 348 int i; 349 assert( E>=0 && E<=307 ); 350 for(i=0; E!=0; i++, E >>=1){ 351 if( E & 1 ) r *= x[i]; 352 } 353 return r; 354 #else 355 LONGDOUBLE_TYPE x = 10.0; 356 LONGDOUBLE_TYPE r = 1.0; 357 while(1){ 358 if( E & 1 ) r *= x; 359 E >>= 1; 360 if( E==0 ) break; 361 x *= x; 362 } 363 return r; 364 #endif 365 } 366 367 /* 368 ** The string z[] is an text representation of a real number. 369 ** Convert this string to a double and write it into *pResult. 370 ** 371 ** The string z[] is length bytes in length (bytes, not characters) and 372 ** uses the encoding enc. The string is not necessarily zero-terminated. 373 ** 374 ** Return TRUE if the result is a valid real number (or integer) and FALSE 375 ** if the string is empty or contains extraneous text. Valid numbers 376 ** are in one of these formats: 377 ** 378 ** [+-]digits[E[+-]digits] 379 ** [+-]digits.[digits][E[+-]digits] 380 ** [+-].digits[E[+-]digits] 381 ** 382 ** Leading and trailing whitespace is ignored for the purpose of determining 383 ** validity. 384 ** 385 ** If some prefix of the input string is a valid number, this routine 386 ** returns FALSE but it still converts the prefix and writes the result 387 ** into *pResult. 388 */ 389 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 390 #ifndef SQLITE_OMIT_FLOATING_POINT 391 int incr; 392 const char *zEnd = z + length; 393 /* sign * significand * (10 ^ (esign * exponent)) */ 394 int sign = 1; /* sign of significand */ 395 i64 s = 0; /* significand */ 396 int d = 0; /* adjust exponent for shifting decimal point */ 397 int esign = 1; /* sign of exponent */ 398 int e = 0; /* exponent */ 399 int eValid = 1; /* True exponent is either not used or is well-formed */ 400 double result; 401 int nDigits = 0; 402 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 403 404 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 405 *pResult = 0.0; /* Default return value, in case of an error */ 406 407 if( enc==SQLITE_UTF8 ){ 408 incr = 1; 409 }else{ 410 int i; 411 incr = 2; 412 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 413 for(i=3-enc; i<length && z[i]==0; i+=2){} 414 nonNum = i<length; 415 zEnd = &z[i^1]; 416 z += (enc&1); 417 } 418 419 /* skip leading spaces */ 420 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 421 if( z>=zEnd ) return 0; 422 423 /* get sign of significand */ 424 if( *z=='-' ){ 425 sign = -1; 426 z+=incr; 427 }else if( *z=='+' ){ 428 z+=incr; 429 } 430 431 /* copy max significant digits to significand */ 432 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 433 s = s*10 + (*z - '0'); 434 z+=incr; nDigits++; 435 } 436 437 /* skip non-significant significand digits 438 ** (increase exponent by d to shift decimal left) */ 439 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; } 440 if( z>=zEnd ) goto do_atof_calc; 441 442 /* if decimal point is present */ 443 if( *z=='.' ){ 444 z+=incr; 445 /* copy digits from after decimal to significand 446 ** (decrease exponent by d to shift decimal right) */ 447 while( z<zEnd && sqlite3Isdigit(*z) ){ 448 if( s<((LARGEST_INT64-9)/10) ){ 449 s = s*10 + (*z - '0'); 450 d--; 451 } 452 z+=incr; nDigits++; 453 } 454 } 455 if( z>=zEnd ) goto do_atof_calc; 456 457 /* if exponent is present */ 458 if( *z=='e' || *z=='E' ){ 459 z+=incr; 460 eValid = 0; 461 462 /* This branch is needed to avoid a (harmless) buffer overread. The 463 ** special comment alerts the mutation tester that the correct answer 464 ** is obtained even if the branch is omitted */ 465 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 466 467 /* get sign of exponent */ 468 if( *z=='-' ){ 469 esign = -1; 470 z+=incr; 471 }else if( *z=='+' ){ 472 z+=incr; 473 } 474 /* copy digits to exponent */ 475 while( z<zEnd && sqlite3Isdigit(*z) ){ 476 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 477 z+=incr; 478 eValid = 1; 479 } 480 } 481 482 /* skip trailing spaces */ 483 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 484 485 do_atof_calc: 486 /* adjust exponent by d, and update sign */ 487 e = (e*esign) + d; 488 if( e<0 ) { 489 esign = -1; 490 e *= -1; 491 } else { 492 esign = 1; 493 } 494 495 if( s==0 ) { 496 /* In the IEEE 754 standard, zero is signed. */ 497 result = sign<0 ? -(double)0 : (double)0; 498 } else { 499 /* Attempt to reduce exponent. 500 ** 501 ** Branches that are not required for the correct answer but which only 502 ** help to obtain the correct answer faster are marked with special 503 ** comments, as a hint to the mutation tester. 504 */ 505 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 506 if( esign>0 ){ 507 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 508 s *= 10; 509 }else{ 510 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 511 s /= 10; 512 } 513 e--; 514 } 515 516 /* adjust the sign of significand */ 517 s = sign<0 ? -s : s; 518 519 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 520 result = (double)s; 521 }else{ 522 /* attempt to handle extremely small/large numbers better */ 523 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 524 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 525 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 526 if( esign<0 ){ 527 result = s / scale; 528 result /= 1.0e+308; 529 }else{ 530 result = s * scale; 531 result *= 1.0e+308; 532 } 533 }else{ assert( e>=342 ); 534 if( esign<0 ){ 535 result = 0.0*s; 536 }else{ 537 #ifdef INFINITY 538 result = INFINITY*s; 539 #else 540 result = 1e308*1e308*s; /* Infinity */ 541 #endif 542 } 543 } 544 }else{ 545 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 546 if( esign<0 ){ 547 result = s / scale; 548 }else{ 549 result = s * scale; 550 } 551 } 552 } 553 } 554 555 /* store the result */ 556 *pResult = result; 557 558 /* return true if number and no extra non-whitespace chracters after */ 559 return z==zEnd && nDigits>0 && eValid && nonNum==0; 560 #else 561 return !sqlite3Atoi64(z, pResult, length, enc); 562 #endif /* SQLITE_OMIT_FLOATING_POINT */ 563 } 564 565 /* 566 ** Compare the 19-character string zNum against the text representation 567 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 568 ** if zNum is less than, equal to, or greater than the string. 569 ** Note that zNum must contain exactly 19 characters. 570 ** 571 ** Unlike memcmp() this routine is guaranteed to return the difference 572 ** in the values of the last digit if the only difference is in the 573 ** last digit. So, for example, 574 ** 575 ** compare2pow63("9223372036854775800", 1) 576 ** 577 ** will return -8. 578 */ 579 static int compare2pow63(const char *zNum, int incr){ 580 int c = 0; 581 int i; 582 /* 012345678901234567 */ 583 const char *pow63 = "922337203685477580"; 584 for(i=0; c==0 && i<18; i++){ 585 c = (zNum[i*incr]-pow63[i])*10; 586 } 587 if( c==0 ){ 588 c = zNum[18*incr] - '8'; 589 testcase( c==(-1) ); 590 testcase( c==0 ); 591 testcase( c==(+1) ); 592 } 593 return c; 594 } 595 596 /* 597 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 598 ** routine does *not* accept hexadecimal notation. 599 ** 600 ** Returns: 601 ** 602 ** 0 Successful transformation. Fits in a 64-bit signed integer. 603 ** 1 Excess non-space text after the integer value 604 ** 2 Integer too large for a 64-bit signed integer or is malformed 605 ** 3 Special case of 9223372036854775808 606 ** 607 ** length is the number of bytes in the string (bytes, not characters). 608 ** The string is not necessarily zero-terminated. The encoding is 609 ** given by enc. 610 */ 611 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 612 int incr; 613 u64 u = 0; 614 int neg = 0; /* assume positive */ 615 int i; 616 int c = 0; 617 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 618 int rc; /* Baseline return code */ 619 const char *zStart; 620 const char *zEnd = zNum + length; 621 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 622 if( enc==SQLITE_UTF8 ){ 623 incr = 1; 624 }else{ 625 incr = 2; 626 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 627 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 628 nonNum = i<length; 629 zEnd = &zNum[i^1]; 630 zNum += (enc&1); 631 } 632 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 633 if( zNum<zEnd ){ 634 if( *zNum=='-' ){ 635 neg = 1; 636 zNum+=incr; 637 }else if( *zNum=='+' ){ 638 zNum+=incr; 639 } 640 } 641 zStart = zNum; 642 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 643 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 644 u = u*10 + c - '0'; 645 } 646 testcase( i==18*incr ); 647 testcase( i==19*incr ); 648 testcase( i==20*incr ); 649 if( u>LARGEST_INT64 ){ 650 /* This test and assignment is needed only to suppress UB warnings 651 ** from clang and -fsanitize=undefined. This test and assignment make 652 ** the code a little larger and slower, and no harm comes from omitting 653 ** them, but we must appaise the undefined-behavior pharisees. */ 654 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 655 }else if( neg ){ 656 *pNum = -(i64)u; 657 }else{ 658 *pNum = (i64)u; 659 } 660 rc = 0; 661 if( (i==0 && zStart==zNum) /* No digits */ 662 || nonNum /* UTF16 with high-order bytes non-zero */ 663 ){ 664 rc = 1; 665 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 666 int jj = i; 667 do{ 668 if( !sqlite3Isspace(zNum[jj]) ){ 669 rc = 1; /* Extra non-space text after the integer */ 670 break; 671 } 672 jj += incr; 673 }while( &zNum[jj]<zEnd ); 674 } 675 if( i<19*incr ){ 676 /* Less than 19 digits, so we know that it fits in 64 bits */ 677 assert( u<=LARGEST_INT64 ); 678 return rc; 679 }else{ 680 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 681 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 682 if( c<0 ){ 683 /* zNum is less than 9223372036854775808 so it fits */ 684 assert( u<=LARGEST_INT64 ); 685 return rc; 686 }else{ 687 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 688 if( c>0 ){ 689 /* zNum is greater than 9223372036854775808 so it overflows */ 690 return 2; 691 }else{ 692 /* zNum is exactly 9223372036854775808. Fits if negative. The 693 ** special case 2 overflow if positive */ 694 assert( u-1==LARGEST_INT64 ); 695 return neg ? rc : 3; 696 } 697 } 698 } 699 } 700 701 /* 702 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 703 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 704 ** whereas sqlite3Atoi64() does not. 705 ** 706 ** Returns: 707 ** 708 ** 0 Successful transformation. Fits in a 64-bit signed integer. 709 ** 1 Excess text after the integer value 710 ** 2 Integer too large for a 64-bit signed integer or is malformed 711 ** 3 Special case of 9223372036854775808 712 */ 713 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 714 #ifndef SQLITE_OMIT_HEX_INTEGER 715 if( z[0]=='0' 716 && (z[1]=='x' || z[1]=='X') 717 ){ 718 u64 u = 0; 719 int i, k; 720 for(i=2; z[i]=='0'; i++){} 721 for(k=i; sqlite3Isxdigit(z[k]); k++){ 722 u = u*16 + sqlite3HexToInt(z[k]); 723 } 724 memcpy(pOut, &u, 8); 725 return (z[k]==0 && k-i<=16) ? 0 : 2; 726 }else 727 #endif /* SQLITE_OMIT_HEX_INTEGER */ 728 { 729 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 730 } 731 } 732 733 /* 734 ** If zNum represents an integer that will fit in 32-bits, then set 735 ** *pValue to that integer and return true. Otherwise return false. 736 ** 737 ** This routine accepts both decimal and hexadecimal notation for integers. 738 ** 739 ** Any non-numeric characters that following zNum are ignored. 740 ** This is different from sqlite3Atoi64() which requires the 741 ** input number to be zero-terminated. 742 */ 743 int sqlite3GetInt32(const char *zNum, int *pValue){ 744 sqlite_int64 v = 0; 745 int i, c; 746 int neg = 0; 747 if( zNum[0]=='-' ){ 748 neg = 1; 749 zNum++; 750 }else if( zNum[0]=='+' ){ 751 zNum++; 752 } 753 #ifndef SQLITE_OMIT_HEX_INTEGER 754 else if( zNum[0]=='0' 755 && (zNum[1]=='x' || zNum[1]=='X') 756 && sqlite3Isxdigit(zNum[2]) 757 ){ 758 u32 u = 0; 759 zNum += 2; 760 while( zNum[0]=='0' ) zNum++; 761 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 762 u = u*16 + sqlite3HexToInt(zNum[i]); 763 } 764 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 765 memcpy(pValue, &u, 4); 766 return 1; 767 }else{ 768 return 0; 769 } 770 } 771 #endif 772 if( !sqlite3Isdigit(zNum[0]) ) return 0; 773 while( zNum[0]=='0' ) zNum++; 774 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 775 v = v*10 + c; 776 } 777 778 /* The longest decimal representation of a 32 bit integer is 10 digits: 779 ** 780 ** 1234567890 781 ** 2^31 -> 2147483648 782 */ 783 testcase( i==10 ); 784 if( i>10 ){ 785 return 0; 786 } 787 testcase( v-neg==2147483647 ); 788 if( v-neg>2147483647 ){ 789 return 0; 790 } 791 if( neg ){ 792 v = -v; 793 } 794 *pValue = (int)v; 795 return 1; 796 } 797 798 /* 799 ** Return a 32-bit integer value extracted from a string. If the 800 ** string is not an integer, just return 0. 801 */ 802 int sqlite3Atoi(const char *z){ 803 int x = 0; 804 if( z ) sqlite3GetInt32(z, &x); 805 return x; 806 } 807 808 /* 809 ** The variable-length integer encoding is as follows: 810 ** 811 ** KEY: 812 ** A = 0xxxxxxx 7 bits of data and one flag bit 813 ** B = 1xxxxxxx 7 bits of data and one flag bit 814 ** C = xxxxxxxx 8 bits of data 815 ** 816 ** 7 bits - A 817 ** 14 bits - BA 818 ** 21 bits - BBA 819 ** 28 bits - BBBA 820 ** 35 bits - BBBBA 821 ** 42 bits - BBBBBA 822 ** 49 bits - BBBBBBA 823 ** 56 bits - BBBBBBBA 824 ** 64 bits - BBBBBBBBC 825 */ 826 827 /* 828 ** Write a 64-bit variable-length integer to memory starting at p[0]. 829 ** The length of data write will be between 1 and 9 bytes. The number 830 ** of bytes written is returned. 831 ** 832 ** A variable-length integer consists of the lower 7 bits of each byte 833 ** for all bytes that have the 8th bit set and one byte with the 8th 834 ** bit clear. Except, if we get to the 9th byte, it stores the full 835 ** 8 bits and is the last byte. 836 */ 837 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 838 int i, j, n; 839 u8 buf[10]; 840 if( v & (((u64)0xff000000)<<32) ){ 841 p[8] = (u8)v; 842 v >>= 8; 843 for(i=7; i>=0; i--){ 844 p[i] = (u8)((v & 0x7f) | 0x80); 845 v >>= 7; 846 } 847 return 9; 848 } 849 n = 0; 850 do{ 851 buf[n++] = (u8)((v & 0x7f) | 0x80); 852 v >>= 7; 853 }while( v!=0 ); 854 buf[0] &= 0x7f; 855 assert( n<=9 ); 856 for(i=0, j=n-1; j>=0; j--, i++){ 857 p[i] = buf[j]; 858 } 859 return n; 860 } 861 int sqlite3PutVarint(unsigned char *p, u64 v){ 862 if( v<=0x7f ){ 863 p[0] = v&0x7f; 864 return 1; 865 } 866 if( v<=0x3fff ){ 867 p[0] = ((v>>7)&0x7f)|0x80; 868 p[1] = v&0x7f; 869 return 2; 870 } 871 return putVarint64(p,v); 872 } 873 874 /* 875 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 876 ** are defined here rather than simply putting the constant expressions 877 ** inline in order to work around bugs in the RVT compiler. 878 ** 879 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 880 ** 881 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 882 */ 883 #define SLOT_2_0 0x001fc07f 884 #define SLOT_4_2_0 0xf01fc07f 885 886 887 /* 888 ** Read a 64-bit variable-length integer from memory starting at p[0]. 889 ** Return the number of bytes read. The value is stored in *v. 890 */ 891 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 892 u32 a,b,s; 893 894 a = *p; 895 /* a: p0 (unmasked) */ 896 if (!(a&0x80)) 897 { 898 *v = a; 899 return 1; 900 } 901 902 p++; 903 b = *p; 904 /* b: p1 (unmasked) */ 905 if (!(b&0x80)) 906 { 907 a &= 0x7f; 908 a = a<<7; 909 a |= b; 910 *v = a; 911 return 2; 912 } 913 914 /* Verify that constants are precomputed correctly */ 915 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 916 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 917 918 p++; 919 a = a<<14; 920 a |= *p; 921 /* a: p0<<14 | p2 (unmasked) */ 922 if (!(a&0x80)) 923 { 924 a &= SLOT_2_0; 925 b &= 0x7f; 926 b = b<<7; 927 a |= b; 928 *v = a; 929 return 3; 930 } 931 932 /* CSE1 from below */ 933 a &= SLOT_2_0; 934 p++; 935 b = b<<14; 936 b |= *p; 937 /* b: p1<<14 | p3 (unmasked) */ 938 if (!(b&0x80)) 939 { 940 b &= SLOT_2_0; 941 /* moved CSE1 up */ 942 /* a &= (0x7f<<14)|(0x7f); */ 943 a = a<<7; 944 a |= b; 945 *v = a; 946 return 4; 947 } 948 949 /* a: p0<<14 | p2 (masked) */ 950 /* b: p1<<14 | p3 (unmasked) */ 951 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 952 /* moved CSE1 up */ 953 /* a &= (0x7f<<14)|(0x7f); */ 954 b &= SLOT_2_0; 955 s = a; 956 /* s: p0<<14 | p2 (masked) */ 957 958 p++; 959 a = a<<14; 960 a |= *p; 961 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 962 if (!(a&0x80)) 963 { 964 /* we can skip these cause they were (effectively) done above 965 ** while calculating s */ 966 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 967 /* b &= (0x7f<<14)|(0x7f); */ 968 b = b<<7; 969 a |= b; 970 s = s>>18; 971 *v = ((u64)s)<<32 | a; 972 return 5; 973 } 974 975 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 976 s = s<<7; 977 s |= b; 978 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 979 980 p++; 981 b = b<<14; 982 b |= *p; 983 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 984 if (!(b&0x80)) 985 { 986 /* we can skip this cause it was (effectively) done above in calc'ing s */ 987 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 988 a &= SLOT_2_0; 989 a = a<<7; 990 a |= b; 991 s = s>>18; 992 *v = ((u64)s)<<32 | a; 993 return 6; 994 } 995 996 p++; 997 a = a<<14; 998 a |= *p; 999 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1000 if (!(a&0x80)) 1001 { 1002 a &= SLOT_4_2_0; 1003 b &= SLOT_2_0; 1004 b = b<<7; 1005 a |= b; 1006 s = s>>11; 1007 *v = ((u64)s)<<32 | a; 1008 return 7; 1009 } 1010 1011 /* CSE2 from below */ 1012 a &= SLOT_2_0; 1013 p++; 1014 b = b<<14; 1015 b |= *p; 1016 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1017 if (!(b&0x80)) 1018 { 1019 b &= SLOT_4_2_0; 1020 /* moved CSE2 up */ 1021 /* a &= (0x7f<<14)|(0x7f); */ 1022 a = a<<7; 1023 a |= b; 1024 s = s>>4; 1025 *v = ((u64)s)<<32 | a; 1026 return 8; 1027 } 1028 1029 p++; 1030 a = a<<15; 1031 a |= *p; 1032 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1033 1034 /* moved CSE2 up */ 1035 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1036 b &= SLOT_2_0; 1037 b = b<<8; 1038 a |= b; 1039 1040 s = s<<4; 1041 b = p[-4]; 1042 b &= 0x7f; 1043 b = b>>3; 1044 s |= b; 1045 1046 *v = ((u64)s)<<32 | a; 1047 1048 return 9; 1049 } 1050 1051 /* 1052 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1053 ** Return the number of bytes read. The value is stored in *v. 1054 ** 1055 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1056 ** integer, then set *v to 0xffffffff. 1057 ** 1058 ** A MACRO version, getVarint32, is provided which inlines the 1059 ** single-byte case. All code should use the MACRO version as 1060 ** this function assumes the single-byte case has already been handled. 1061 */ 1062 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1063 u32 a,b; 1064 1065 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1066 ** by the getVarin32() macro */ 1067 a = *p; 1068 /* a: p0 (unmasked) */ 1069 #ifndef getVarint32 1070 if (!(a&0x80)) 1071 { 1072 /* Values between 0 and 127 */ 1073 *v = a; 1074 return 1; 1075 } 1076 #endif 1077 1078 /* The 2-byte case */ 1079 p++; 1080 b = *p; 1081 /* b: p1 (unmasked) */ 1082 if (!(b&0x80)) 1083 { 1084 /* Values between 128 and 16383 */ 1085 a &= 0x7f; 1086 a = a<<7; 1087 *v = a | b; 1088 return 2; 1089 } 1090 1091 /* The 3-byte case */ 1092 p++; 1093 a = a<<14; 1094 a |= *p; 1095 /* a: p0<<14 | p2 (unmasked) */ 1096 if (!(a&0x80)) 1097 { 1098 /* Values between 16384 and 2097151 */ 1099 a &= (0x7f<<14)|(0x7f); 1100 b &= 0x7f; 1101 b = b<<7; 1102 *v = a | b; 1103 return 3; 1104 } 1105 1106 /* A 32-bit varint is used to store size information in btrees. 1107 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1108 ** A 3-byte varint is sufficient, for example, to record the size 1109 ** of a 1048569-byte BLOB or string. 1110 ** 1111 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1112 ** rare larger cases can be handled by the slower 64-bit varint 1113 ** routine. 1114 */ 1115 #if 1 1116 { 1117 u64 v64; 1118 u8 n; 1119 1120 p -= 2; 1121 n = sqlite3GetVarint(p, &v64); 1122 assert( n>3 && n<=9 ); 1123 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1124 *v = 0xffffffff; 1125 }else{ 1126 *v = (u32)v64; 1127 } 1128 return n; 1129 } 1130 1131 #else 1132 /* For following code (kept for historical record only) shows an 1133 ** unrolling for the 3- and 4-byte varint cases. This code is 1134 ** slightly faster, but it is also larger and much harder to test. 1135 */ 1136 p++; 1137 b = b<<14; 1138 b |= *p; 1139 /* b: p1<<14 | p3 (unmasked) */ 1140 if (!(b&0x80)) 1141 { 1142 /* Values between 2097152 and 268435455 */ 1143 b &= (0x7f<<14)|(0x7f); 1144 a &= (0x7f<<14)|(0x7f); 1145 a = a<<7; 1146 *v = a | b; 1147 return 4; 1148 } 1149 1150 p++; 1151 a = a<<14; 1152 a |= *p; 1153 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1154 if (!(a&0x80)) 1155 { 1156 /* Values between 268435456 and 34359738367 */ 1157 a &= SLOT_4_2_0; 1158 b &= SLOT_4_2_0; 1159 b = b<<7; 1160 *v = a | b; 1161 return 5; 1162 } 1163 1164 /* We can only reach this point when reading a corrupt database 1165 ** file. In that case we are not in any hurry. Use the (relatively 1166 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1167 ** value. */ 1168 { 1169 u64 v64; 1170 u8 n; 1171 1172 p -= 4; 1173 n = sqlite3GetVarint(p, &v64); 1174 assert( n>5 && n<=9 ); 1175 *v = (u32)v64; 1176 return n; 1177 } 1178 #endif 1179 } 1180 1181 /* 1182 ** Return the number of bytes that will be needed to store the given 1183 ** 64-bit integer. 1184 */ 1185 int sqlite3VarintLen(u64 v){ 1186 int i; 1187 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1188 return i; 1189 } 1190 1191 1192 /* 1193 ** Read or write a four-byte big-endian integer value. 1194 */ 1195 u32 sqlite3Get4byte(const u8 *p){ 1196 #if SQLITE_BYTEORDER==4321 1197 u32 x; 1198 memcpy(&x,p,4); 1199 return x; 1200 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1201 u32 x; 1202 memcpy(&x,p,4); 1203 return __builtin_bswap32(x); 1204 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1205 u32 x; 1206 memcpy(&x,p,4); 1207 return _byteswap_ulong(x); 1208 #else 1209 testcase( p[0]&0x80 ); 1210 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1211 #endif 1212 } 1213 void sqlite3Put4byte(unsigned char *p, u32 v){ 1214 #if SQLITE_BYTEORDER==4321 1215 memcpy(p,&v,4); 1216 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1217 u32 x = __builtin_bswap32(v); 1218 memcpy(p,&x,4); 1219 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1220 u32 x = _byteswap_ulong(v); 1221 memcpy(p,&x,4); 1222 #else 1223 p[0] = (u8)(v>>24); 1224 p[1] = (u8)(v>>16); 1225 p[2] = (u8)(v>>8); 1226 p[3] = (u8)v; 1227 #endif 1228 } 1229 1230 1231 1232 /* 1233 ** Translate a single byte of Hex into an integer. 1234 ** This routine only works if h really is a valid hexadecimal 1235 ** character: 0..9a..fA..F 1236 */ 1237 u8 sqlite3HexToInt(int h){ 1238 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1239 #ifdef SQLITE_ASCII 1240 h += 9*(1&(h>>6)); 1241 #endif 1242 #ifdef SQLITE_EBCDIC 1243 h += 9*(1&~(h>>4)); 1244 #endif 1245 return (u8)(h & 0xf); 1246 } 1247 1248 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1249 /* 1250 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1251 ** value. Return a pointer to its binary value. Space to hold the 1252 ** binary value has been obtained from malloc and must be freed by 1253 ** the calling routine. 1254 */ 1255 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1256 char *zBlob; 1257 int i; 1258 1259 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1260 n--; 1261 if( zBlob ){ 1262 for(i=0; i<n; i+=2){ 1263 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1264 } 1265 zBlob[i/2] = 0; 1266 } 1267 return zBlob; 1268 } 1269 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1270 1271 /* 1272 ** Log an error that is an API call on a connection pointer that should 1273 ** not have been used. The "type" of connection pointer is given as the 1274 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1275 */ 1276 static void logBadConnection(const char *zType){ 1277 sqlite3_log(SQLITE_MISUSE, 1278 "API call with %s database connection pointer", 1279 zType 1280 ); 1281 } 1282 1283 /* 1284 ** Check to make sure we have a valid db pointer. This test is not 1285 ** foolproof but it does provide some measure of protection against 1286 ** misuse of the interface such as passing in db pointers that are 1287 ** NULL or which have been previously closed. If this routine returns 1288 ** 1 it means that the db pointer is valid and 0 if it should not be 1289 ** dereferenced for any reason. The calling function should invoke 1290 ** SQLITE_MISUSE immediately. 1291 ** 1292 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1293 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1294 ** open properly and is not fit for general use but which can be 1295 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1296 */ 1297 int sqlite3SafetyCheckOk(sqlite3 *db){ 1298 u32 magic; 1299 if( db==0 ){ 1300 logBadConnection("NULL"); 1301 return 0; 1302 } 1303 magic = db->magic; 1304 if( magic!=SQLITE_MAGIC_OPEN ){ 1305 if( sqlite3SafetyCheckSickOrOk(db) ){ 1306 testcase( sqlite3GlobalConfig.xLog!=0 ); 1307 logBadConnection("unopened"); 1308 } 1309 return 0; 1310 }else{ 1311 return 1; 1312 } 1313 } 1314 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1315 u32 magic; 1316 magic = db->magic; 1317 if( magic!=SQLITE_MAGIC_SICK && 1318 magic!=SQLITE_MAGIC_OPEN && 1319 magic!=SQLITE_MAGIC_BUSY ){ 1320 testcase( sqlite3GlobalConfig.xLog!=0 ); 1321 logBadConnection("invalid"); 1322 return 0; 1323 }else{ 1324 return 1; 1325 } 1326 } 1327 1328 /* 1329 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1330 ** the other 64-bit signed integer at *pA and store the result in *pA. 1331 ** Return 0 on success. Or if the operation would have resulted in an 1332 ** overflow, leave *pA unchanged and return 1. 1333 */ 1334 int sqlite3AddInt64(i64 *pA, i64 iB){ 1335 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1336 return __builtin_add_overflow(*pA, iB, pA); 1337 #else 1338 i64 iA = *pA; 1339 testcase( iA==0 ); testcase( iA==1 ); 1340 testcase( iB==-1 ); testcase( iB==0 ); 1341 if( iB>=0 ){ 1342 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1343 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1344 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1345 }else{ 1346 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1347 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1348 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1349 } 1350 *pA += iB; 1351 return 0; 1352 #endif 1353 } 1354 int sqlite3SubInt64(i64 *pA, i64 iB){ 1355 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1356 return __builtin_sub_overflow(*pA, iB, pA); 1357 #else 1358 testcase( iB==SMALLEST_INT64+1 ); 1359 if( iB==SMALLEST_INT64 ){ 1360 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1361 if( (*pA)>=0 ) return 1; 1362 *pA -= iB; 1363 return 0; 1364 }else{ 1365 return sqlite3AddInt64(pA, -iB); 1366 } 1367 #endif 1368 } 1369 int sqlite3MulInt64(i64 *pA, i64 iB){ 1370 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1371 return __builtin_mul_overflow(*pA, iB, pA); 1372 #else 1373 i64 iA = *pA; 1374 if( iB>0 ){ 1375 if( iA>LARGEST_INT64/iB ) return 1; 1376 if( iA<SMALLEST_INT64/iB ) return 1; 1377 }else if( iB<0 ){ 1378 if( iA>0 ){ 1379 if( iB<SMALLEST_INT64/iA ) return 1; 1380 }else if( iA<0 ){ 1381 if( iB==SMALLEST_INT64 ) return 1; 1382 if( iA==SMALLEST_INT64 ) return 1; 1383 if( -iA>LARGEST_INT64/-iB ) return 1; 1384 } 1385 } 1386 *pA = iA*iB; 1387 return 0; 1388 #endif 1389 } 1390 1391 /* 1392 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1393 ** if the integer has a value of -2147483648, return +2147483647 1394 */ 1395 int sqlite3AbsInt32(int x){ 1396 if( x>=0 ) return x; 1397 if( x==(int)0x80000000 ) return 0x7fffffff; 1398 return -x; 1399 } 1400 1401 #ifdef SQLITE_ENABLE_8_3_NAMES 1402 /* 1403 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1404 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1405 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1406 ** three characters, then shorten the suffix on z[] to be the last three 1407 ** characters of the original suffix. 1408 ** 1409 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1410 ** do the suffix shortening regardless of URI parameter. 1411 ** 1412 ** Examples: 1413 ** 1414 ** test.db-journal => test.nal 1415 ** test.db-wal => test.wal 1416 ** test.db-shm => test.shm 1417 ** test.db-mj7f3319fa => test.9fa 1418 */ 1419 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1420 #if SQLITE_ENABLE_8_3_NAMES<2 1421 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1422 #endif 1423 { 1424 int i, sz; 1425 sz = sqlite3Strlen30(z); 1426 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1427 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1428 } 1429 } 1430 #endif 1431 1432 /* 1433 ** Find (an approximate) sum of two LogEst values. This computation is 1434 ** not a simple "+" operator because LogEst is stored as a logarithmic 1435 ** value. 1436 ** 1437 */ 1438 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1439 static const unsigned char x[] = { 1440 10, 10, /* 0,1 */ 1441 9, 9, /* 2,3 */ 1442 8, 8, /* 4,5 */ 1443 7, 7, 7, /* 6,7,8 */ 1444 6, 6, 6, /* 9,10,11 */ 1445 5, 5, 5, /* 12-14 */ 1446 4, 4, 4, 4, /* 15-18 */ 1447 3, 3, 3, 3, 3, 3, /* 19-24 */ 1448 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1449 }; 1450 if( a>=b ){ 1451 if( a>b+49 ) return a; 1452 if( a>b+31 ) return a+1; 1453 return a+x[a-b]; 1454 }else{ 1455 if( b>a+49 ) return b; 1456 if( b>a+31 ) return b+1; 1457 return b+x[b-a]; 1458 } 1459 } 1460 1461 /* 1462 ** Convert an integer into a LogEst. In other words, compute an 1463 ** approximation for 10*log2(x). 1464 */ 1465 LogEst sqlite3LogEst(u64 x){ 1466 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1467 LogEst y = 40; 1468 if( x<8 ){ 1469 if( x<2 ) return 0; 1470 while( x<8 ){ y -= 10; x <<= 1; } 1471 }else{ 1472 #if GCC_VERSION>=5004000 1473 int i = 60 - __builtin_clzll(x); 1474 y += i*10; 1475 x >>= i; 1476 #else 1477 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1478 while( x>15 ){ y += 10; x >>= 1; } 1479 #endif 1480 } 1481 return a[x&7] + y - 10; 1482 } 1483 1484 #ifndef SQLITE_OMIT_VIRTUALTABLE 1485 /* 1486 ** Convert a double into a LogEst 1487 ** In other words, compute an approximation for 10*log2(x). 1488 */ 1489 LogEst sqlite3LogEstFromDouble(double x){ 1490 u64 a; 1491 LogEst e; 1492 assert( sizeof(x)==8 && sizeof(a)==8 ); 1493 if( x<=1 ) return 0; 1494 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1495 memcpy(&a, &x, 8); 1496 e = (a>>52) - 1022; 1497 return e*10; 1498 } 1499 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1500 1501 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1502 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ 1503 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1504 /* 1505 ** Convert a LogEst into an integer. 1506 ** 1507 ** Note that this routine is only used when one or more of various 1508 ** non-standard compile-time options is enabled. 1509 */ 1510 u64 sqlite3LogEstToInt(LogEst x){ 1511 u64 n; 1512 n = x%10; 1513 x /= 10; 1514 if( n>=5 ) n -= 2; 1515 else if( n>=1 ) n -= 1; 1516 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1517 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1518 if( x>60 ) return (u64)LARGEST_INT64; 1519 #else 1520 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input 1521 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1522 assert( x<=60 ); 1523 #endif 1524 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1525 } 1526 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1527 1528 /* 1529 ** Add a new name/number pair to a VList. This might require that the 1530 ** VList object be reallocated, so return the new VList. If an OOM 1531 ** error occurs, the original VList returned and the 1532 ** db->mallocFailed flag is set. 1533 ** 1534 ** A VList is really just an array of integers. To destroy a VList, 1535 ** simply pass it to sqlite3DbFree(). 1536 ** 1537 ** The first integer is the number of integers allocated for the whole 1538 ** VList. The second integer is the number of integers actually used. 1539 ** Each name/number pair is encoded by subsequent groups of 3 or more 1540 ** integers. 1541 ** 1542 ** Each name/number pair starts with two integers which are the numeric 1543 ** value for the pair and the size of the name/number pair, respectively. 1544 ** The text name overlays one or more following integers. The text name 1545 ** is always zero-terminated. 1546 ** 1547 ** Conceptually: 1548 ** 1549 ** struct VList { 1550 ** int nAlloc; // Number of allocated slots 1551 ** int nUsed; // Number of used slots 1552 ** struct VListEntry { 1553 ** int iValue; // Value for this entry 1554 ** int nSlot; // Slots used by this entry 1555 ** // ... variable name goes here 1556 ** } a[0]; 1557 ** } 1558 ** 1559 ** During code generation, pointers to the variable names within the 1560 ** VList are taken. When that happens, nAlloc is set to zero as an 1561 ** indication that the VList may never again be enlarged, since the 1562 ** accompanying realloc() would invalidate the pointers. 1563 */ 1564 VList *sqlite3VListAdd( 1565 sqlite3 *db, /* The database connection used for malloc() */ 1566 VList *pIn, /* The input VList. Might be NULL */ 1567 const char *zName, /* Name of symbol to add */ 1568 int nName, /* Bytes of text in zName */ 1569 int iVal /* Value to associate with zName */ 1570 ){ 1571 int nInt; /* number of sizeof(int) objects needed for zName */ 1572 char *z; /* Pointer to where zName will be stored */ 1573 int i; /* Index in pIn[] where zName is stored */ 1574 1575 nInt = nName/4 + 3; 1576 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1577 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1578 /* Enlarge the allocation */ 1579 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt; 1580 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1581 if( pOut==0 ) return pIn; 1582 if( pIn==0 ) pOut[1] = 2; 1583 pIn = pOut; 1584 pIn[0] = nAlloc; 1585 } 1586 i = pIn[1]; 1587 pIn[i] = iVal; 1588 pIn[i+1] = nInt; 1589 z = (char*)&pIn[i+2]; 1590 pIn[1] = i+nInt; 1591 assert( pIn[1]<=pIn[0] ); 1592 memcpy(z, zName, nName); 1593 z[nName] = 0; 1594 return pIn; 1595 } 1596 1597 /* 1598 ** Return a pointer to the name of a variable in the given VList that 1599 ** has the value iVal. Or return a NULL if there is no such variable in 1600 ** the list 1601 */ 1602 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1603 int i, mx; 1604 if( pIn==0 ) return 0; 1605 mx = pIn[1]; 1606 i = 2; 1607 do{ 1608 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1609 i += pIn[i+1]; 1610 }while( i<mx ); 1611 return 0; 1612 } 1613 1614 /* 1615 ** Return the number of the variable named zName, if it is in VList. 1616 ** or return 0 if there is no such variable. 1617 */ 1618 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1619 int i, mx; 1620 if( pIn==0 ) return 0; 1621 mx = pIn[1]; 1622 i = 2; 1623 do{ 1624 const char *z = (const char*)&pIn[i+2]; 1625 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1626 i += pIn[i+1]; 1627 }while( i<mx ); 1628 return 0; 1629 } 1630