xref: /sqlite-3.40.0/src/util.c (revision 7ac2ee0a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
38 **
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
41 **
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
44 */
45 #ifndef SQLITE_UNTESTABLE
46 int sqlite3FaultSim(int iTest){
47   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48   return xCallback ? xCallback(iTest) : SQLITE_OK;
49 }
50 #endif
51 
52 #ifndef SQLITE_OMIT_FLOATING_POINT
53 /*
54 ** Return true if the floating point value is Not a Number (NaN).
55 **
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
58 */
59 int sqlite3IsNaN(double x){
60   int rc;   /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
62   /*
63   ** Systems that support the isnan() library function should probably
64   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
65   ** found that many systems do not have a working isnan() function so
66   ** this implementation is provided as an alternative.
67   **
68   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69   ** On the other hand, the use of -ffast-math comes with the following
70   ** warning:
71   **
72   **      This option [-ffast-math] should never be turned on by any
73   **      -O option since it can result in incorrect output for programs
74   **      which depend on an exact implementation of IEEE or ISO
75   **      rules/specifications for math functions.
76   **
77   ** Under MSVC, this NaN test may fail if compiled with a floating-
78   ** point precision mode other than /fp:precise.  From the MSDN
79   ** documentation:
80   **
81   **      The compiler [with /fp:precise] will properly handle comparisons
82   **      involving NaN. For example, x != x evaluates to true if x is NaN
83   **      ...
84   */
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88   volatile double y = x;
89   volatile double z = y;
90   rc = (y!=z);
91 #else  /* if HAVE_ISNAN */
92   rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94   testcase( rc );
95   return rc;
96 }
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
98 
99 /*
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
102 **
103 ** The value returned will never be negative.  Nor will it ever be greater
104 ** than the actual length of the string.  For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
106 */
107 int sqlite3Strlen30(const char *z){
108   if( z==0 ) return 0;
109   return 0x3fffffff & (int)strlen(z);
110 }
111 
112 /*
113 ** Return the declared type of a column.  Or return zDflt if the column
114 ** has no declared type.
115 **
116 ** The column type is an extra string stored after the zero-terminator on
117 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
118 */
119 char *sqlite3ColumnType(Column *pCol, char *zDflt){
120   if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121   return pCol->zName + strlen(pCol->zName) + 1;
122 }
123 
124 /*
125 ** Helper function for sqlite3Error() - called rarely.  Broken out into
126 ** a separate routine to avoid unnecessary register saves on entry to
127 ** sqlite3Error().
128 */
129 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
130   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131   sqlite3SystemError(db, err_code);
132 }
133 
134 /*
135 ** Set the current error code to err_code and clear any prior error message.
136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137 ** that would be appropriate.
138 */
139 void sqlite3Error(sqlite3 *db, int err_code){
140   assert( db!=0 );
141   db->errCode = err_code;
142   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
143 }
144 
145 /*
146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
147 ** to do based on the SQLite error code in rc.
148 */
149 void sqlite3SystemError(sqlite3 *db, int rc){
150   if( rc==SQLITE_IOERR_NOMEM ) return;
151   rc &= 0xff;
152   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
154   }
155 }
156 
157 /*
158 ** Set the most recent error code and error string for the sqlite
159 ** handle "db". The error code is set to "err_code".
160 **
161 ** If it is not NULL, string zFormat specifies the format of the
162 ** error string in the style of the printf functions: The following
163 ** format characters are allowed:
164 **
165 **      %s      Insert a string
166 **      %z      A string that should be freed after use
167 **      %d      Insert an integer
168 **      %T      Insert a token
169 **      %S      Insert the first element of a SrcList
170 **
171 ** zFormat and any string tokens that follow it are assumed to be
172 ** encoded in UTF-8.
173 **
174 ** To clear the most recent error for sqlite handle "db", sqlite3Error
175 ** should be called with err_code set to SQLITE_OK and zFormat set
176 ** to NULL.
177 */
178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
179   assert( db!=0 );
180   db->errCode = err_code;
181   sqlite3SystemError(db, err_code);
182   if( zFormat==0 ){
183     sqlite3Error(db, err_code);
184   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
185     char *z;
186     va_list ap;
187     va_start(ap, zFormat);
188     z = sqlite3VMPrintf(db, zFormat, ap);
189     va_end(ap);
190     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
191   }
192 }
193 
194 /*
195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196 ** The following formatting characters are allowed:
197 **
198 **      %s      Insert a string
199 **      %z      A string that should be freed after use
200 **      %d      Insert an integer
201 **      %T      Insert a token
202 **      %S      Insert the first element of a SrcList
203 **
204 ** This function should be used to report any error that occurs while
205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206 ** last thing the sqlite3_prepare() function does is copy the error
207 ** stored by this function into the database handle using sqlite3Error().
208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209 ** during statement execution (sqlite3_step() etc.).
210 */
211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
212   char *zMsg;
213   va_list ap;
214   sqlite3 *db = pParse->db;
215   va_start(ap, zFormat);
216   zMsg = sqlite3VMPrintf(db, zFormat, ap);
217   va_end(ap);
218   if( db->suppressErr ){
219     sqlite3DbFree(db, zMsg);
220   }else{
221     pParse->nErr++;
222     sqlite3DbFree(db, pParse->zErrMsg);
223     pParse->zErrMsg = zMsg;
224     pParse->rc = SQLITE_ERROR;
225   }
226 }
227 
228 /*
229 ** Convert an SQL-style quoted string into a normal string by removing
230 ** the quote characters.  The conversion is done in-place.  If the
231 ** input does not begin with a quote character, then this routine
232 ** is a no-op.
233 **
234 ** The input string must be zero-terminated.  A new zero-terminator
235 ** is added to the dequoted string.
236 **
237 ** The return value is -1 if no dequoting occurs or the length of the
238 ** dequoted string, exclusive of the zero terminator, if dequoting does
239 ** occur.
240 **
241 ** 2002-02-14: This routine is extended to remove MS-Access style
242 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
243 ** "a-b-c".
244 */
245 void sqlite3Dequote(char *z){
246   char quote;
247   int i, j;
248   if( z==0 ) return;
249   quote = z[0];
250   if( !sqlite3Isquote(quote) ) return;
251   if( quote=='[' ) quote = ']';
252   for(i=1, j=0;; i++){
253     assert( z[i] );
254     if( z[i]==quote ){
255       if( z[i+1]==quote ){
256         z[j++] = quote;
257         i++;
258       }else{
259         break;
260       }
261     }else{
262       z[j++] = z[i];
263     }
264   }
265   z[j] = 0;
266 }
267 void sqlite3DequoteExpr(Expr *p){
268   assert( sqlite3Isquote(p->u.zToken[0]) );
269   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
270   sqlite3Dequote(p->u.zToken);
271 }
272 
273 /*
274 ** Generate a Token object from a string
275 */
276 void sqlite3TokenInit(Token *p, char *z){
277   p->z = z;
278   p->n = sqlite3Strlen30(z);
279 }
280 
281 /* Convenient short-hand */
282 #define UpperToLower sqlite3UpperToLower
283 
284 /*
285 ** Some systems have stricmp().  Others have strcasecmp().  Because
286 ** there is no consistency, we will define our own.
287 **
288 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
289 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
290 ** the contents of two buffers containing UTF-8 strings in a
291 ** case-independent fashion, using the same definition of "case
292 ** independence" that SQLite uses internally when comparing identifiers.
293 */
294 int sqlite3_stricmp(const char *zLeft, const char *zRight){
295   if( zLeft==0 ){
296     return zRight ? -1 : 0;
297   }else if( zRight==0 ){
298     return 1;
299   }
300   return sqlite3StrICmp(zLeft, zRight);
301 }
302 int sqlite3StrICmp(const char *zLeft, const char *zRight){
303   unsigned char *a, *b;
304   int c;
305   a = (unsigned char *)zLeft;
306   b = (unsigned char *)zRight;
307   for(;;){
308     c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
309     if( c || *a==0 ) break;
310     a++;
311     b++;
312   }
313   return c;
314 }
315 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
316   register unsigned char *a, *b;
317   if( zLeft==0 ){
318     return zRight ? -1 : 0;
319   }else if( zRight==0 ){
320     return 1;
321   }
322   a = (unsigned char *)zLeft;
323   b = (unsigned char *)zRight;
324   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
325   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
326 }
327 
328 /*
329 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
330 ** E==2 results in 100.  E==50 results in 1.0e50.
331 **
332 ** This routine only works for values of E between 1 and 341.
333 */
334 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
335 #if defined(_MSC_VER)
336   static const LONGDOUBLE_TYPE x[] = {
337     1.0e+001,
338     1.0e+002,
339     1.0e+004,
340     1.0e+008,
341     1.0e+016,
342     1.0e+032,
343     1.0e+064,
344     1.0e+128,
345     1.0e+256
346   };
347   LONGDOUBLE_TYPE r = 1.0;
348   int i;
349   assert( E>=0 && E<=307 );
350   for(i=0; E!=0; i++, E >>=1){
351     if( E & 1 ) r *= x[i];
352   }
353   return r;
354 #else
355   LONGDOUBLE_TYPE x = 10.0;
356   LONGDOUBLE_TYPE r = 1.0;
357   while(1){
358     if( E & 1 ) r *= x;
359     E >>= 1;
360     if( E==0 ) break;
361     x *= x;
362   }
363   return r;
364 #endif
365 }
366 
367 /*
368 ** The string z[] is an text representation of a real number.
369 ** Convert this string to a double and write it into *pResult.
370 **
371 ** The string z[] is length bytes in length (bytes, not characters) and
372 ** uses the encoding enc.  The string is not necessarily zero-terminated.
373 **
374 ** Return TRUE if the result is a valid real number (or integer) and FALSE
375 ** if the string is empty or contains extraneous text.  Valid numbers
376 ** are in one of these formats:
377 **
378 **    [+-]digits[E[+-]digits]
379 **    [+-]digits.[digits][E[+-]digits]
380 **    [+-].digits[E[+-]digits]
381 **
382 ** Leading and trailing whitespace is ignored for the purpose of determining
383 ** validity.
384 **
385 ** If some prefix of the input string is a valid number, this routine
386 ** returns FALSE but it still converts the prefix and writes the result
387 ** into *pResult.
388 */
389 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
390 #ifndef SQLITE_OMIT_FLOATING_POINT
391   int incr;
392   const char *zEnd = z + length;
393   /* sign * significand * (10 ^ (esign * exponent)) */
394   int sign = 1;    /* sign of significand */
395   i64 s = 0;       /* significand */
396   int d = 0;       /* adjust exponent for shifting decimal point */
397   int esign = 1;   /* sign of exponent */
398   int e = 0;       /* exponent */
399   int eValid = 1;  /* True exponent is either not used or is well-formed */
400   double result;
401   int nDigits = 0;
402   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
403 
404   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
405   *pResult = 0.0;   /* Default return value, in case of an error */
406 
407   if( enc==SQLITE_UTF8 ){
408     incr = 1;
409   }else{
410     int i;
411     incr = 2;
412     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
413     for(i=3-enc; i<length && z[i]==0; i+=2){}
414     nonNum = i<length;
415     zEnd = &z[i^1];
416     z += (enc&1);
417   }
418 
419   /* skip leading spaces */
420   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
421   if( z>=zEnd ) return 0;
422 
423   /* get sign of significand */
424   if( *z=='-' ){
425     sign = -1;
426     z+=incr;
427   }else if( *z=='+' ){
428     z+=incr;
429   }
430 
431   /* copy max significant digits to significand */
432   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
433     s = s*10 + (*z - '0');
434     z+=incr; nDigits++;
435   }
436 
437   /* skip non-significant significand digits
438   ** (increase exponent by d to shift decimal left) */
439   while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; }
440   if( z>=zEnd ) goto do_atof_calc;
441 
442   /* if decimal point is present */
443   if( *z=='.' ){
444     z+=incr;
445     /* copy digits from after decimal to significand
446     ** (decrease exponent by d to shift decimal right) */
447     while( z<zEnd && sqlite3Isdigit(*z) ){
448       if( s<((LARGEST_INT64-9)/10) ){
449         s = s*10 + (*z - '0');
450         d--;
451       }
452       z+=incr; nDigits++;
453     }
454   }
455   if( z>=zEnd ) goto do_atof_calc;
456 
457   /* if exponent is present */
458   if( *z=='e' || *z=='E' ){
459     z+=incr;
460     eValid = 0;
461 
462     /* This branch is needed to avoid a (harmless) buffer overread.  The
463     ** special comment alerts the mutation tester that the correct answer
464     ** is obtained even if the branch is omitted */
465     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
466 
467     /* get sign of exponent */
468     if( *z=='-' ){
469       esign = -1;
470       z+=incr;
471     }else if( *z=='+' ){
472       z+=incr;
473     }
474     /* copy digits to exponent */
475     while( z<zEnd && sqlite3Isdigit(*z) ){
476       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
477       z+=incr;
478       eValid = 1;
479     }
480   }
481 
482   /* skip trailing spaces */
483   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
484 
485 do_atof_calc:
486   /* adjust exponent by d, and update sign */
487   e = (e*esign) + d;
488   if( e<0 ) {
489     esign = -1;
490     e *= -1;
491   } else {
492     esign = 1;
493   }
494 
495   if( s==0 ) {
496     /* In the IEEE 754 standard, zero is signed. */
497     result = sign<0 ? -(double)0 : (double)0;
498   } else {
499     /* Attempt to reduce exponent.
500     **
501     ** Branches that are not required for the correct answer but which only
502     ** help to obtain the correct answer faster are marked with special
503     ** comments, as a hint to the mutation tester.
504     */
505     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
506       if( esign>0 ){
507         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
508         s *= 10;
509       }else{
510         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
511         s /= 10;
512       }
513       e--;
514     }
515 
516     /* adjust the sign of significand */
517     s = sign<0 ? -s : s;
518 
519     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
520       result = (double)s;
521     }else{
522       /* attempt to handle extremely small/large numbers better */
523       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
524         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
525           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
526           if( esign<0 ){
527             result = s / scale;
528             result /= 1.0e+308;
529           }else{
530             result = s * scale;
531             result *= 1.0e+308;
532           }
533         }else{ assert( e>=342 );
534           if( esign<0 ){
535             result = 0.0*s;
536           }else{
537 #ifdef INFINITY
538             result = INFINITY*s;
539 #else
540             result = 1e308*1e308*s;  /* Infinity */
541 #endif
542           }
543         }
544       }else{
545         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
546         if( esign<0 ){
547           result = s / scale;
548         }else{
549           result = s * scale;
550         }
551       }
552     }
553   }
554 
555   /* store the result */
556   *pResult = result;
557 
558   /* return true if number and no extra non-whitespace chracters after */
559   return z==zEnd && nDigits>0 && eValid && nonNum==0;
560 #else
561   return !sqlite3Atoi64(z, pResult, length, enc);
562 #endif /* SQLITE_OMIT_FLOATING_POINT */
563 }
564 
565 /*
566 ** Compare the 19-character string zNum against the text representation
567 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
568 ** if zNum is less than, equal to, or greater than the string.
569 ** Note that zNum must contain exactly 19 characters.
570 **
571 ** Unlike memcmp() this routine is guaranteed to return the difference
572 ** in the values of the last digit if the only difference is in the
573 ** last digit.  So, for example,
574 **
575 **      compare2pow63("9223372036854775800", 1)
576 **
577 ** will return -8.
578 */
579 static int compare2pow63(const char *zNum, int incr){
580   int c = 0;
581   int i;
582                     /* 012345678901234567 */
583   const char *pow63 = "922337203685477580";
584   for(i=0; c==0 && i<18; i++){
585     c = (zNum[i*incr]-pow63[i])*10;
586   }
587   if( c==0 ){
588     c = zNum[18*incr] - '8';
589     testcase( c==(-1) );
590     testcase( c==0 );
591     testcase( c==(+1) );
592   }
593   return c;
594 }
595 
596 /*
597 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
598 ** routine does *not* accept hexadecimal notation.
599 **
600 ** Returns:
601 **
602 **     0    Successful transformation.  Fits in a 64-bit signed integer.
603 **     1    Excess non-space text after the integer value
604 **     2    Integer too large for a 64-bit signed integer or is malformed
605 **     3    Special case of 9223372036854775808
606 **
607 ** length is the number of bytes in the string (bytes, not characters).
608 ** The string is not necessarily zero-terminated.  The encoding is
609 ** given by enc.
610 */
611 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
612   int incr;
613   u64 u = 0;
614   int neg = 0; /* assume positive */
615   int i;
616   int c = 0;
617   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
618   int rc;          /* Baseline return code */
619   const char *zStart;
620   const char *zEnd = zNum + length;
621   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
622   if( enc==SQLITE_UTF8 ){
623     incr = 1;
624   }else{
625     incr = 2;
626     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
627     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
628     nonNum = i<length;
629     zEnd = &zNum[i^1];
630     zNum += (enc&1);
631   }
632   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
633   if( zNum<zEnd ){
634     if( *zNum=='-' ){
635       neg = 1;
636       zNum+=incr;
637     }else if( *zNum=='+' ){
638       zNum+=incr;
639     }
640   }
641   zStart = zNum;
642   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
643   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
644     u = u*10 + c - '0';
645   }
646   testcase( i==18*incr );
647   testcase( i==19*incr );
648   testcase( i==20*incr );
649   if( u>LARGEST_INT64 ){
650     /* This test and assignment is needed only to suppress UB warnings
651     ** from clang and -fsanitize=undefined.  This test and assignment make
652     ** the code a little larger and slower, and no harm comes from omitting
653     ** them, but we must appaise the undefined-behavior pharisees. */
654     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
655   }else if( neg ){
656     *pNum = -(i64)u;
657   }else{
658     *pNum = (i64)u;
659   }
660   rc = 0;
661   if( (i==0 && zStart==zNum)     /* No digits */
662    || nonNum                     /* UTF16 with high-order bytes non-zero */
663   ){
664     rc = 1;
665   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
666     int jj = i;
667     do{
668       if( !sqlite3Isspace(zNum[jj]) ){
669         rc = 1;          /* Extra non-space text after the integer */
670         break;
671       }
672       jj += incr;
673     }while( &zNum[jj]<zEnd );
674   }
675   if( i<19*incr ){
676     /* Less than 19 digits, so we know that it fits in 64 bits */
677     assert( u<=LARGEST_INT64 );
678     return rc;
679   }else{
680     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
681     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
682     if( c<0 ){
683       /* zNum is less than 9223372036854775808 so it fits */
684       assert( u<=LARGEST_INT64 );
685       return rc;
686     }else{
687       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
688       if( c>0 ){
689         /* zNum is greater than 9223372036854775808 so it overflows */
690         return 2;
691       }else{
692         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
693         ** special case 2 overflow if positive */
694         assert( u-1==LARGEST_INT64 );
695         return neg ? rc : 3;
696       }
697     }
698   }
699 }
700 
701 /*
702 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
703 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
704 ** whereas sqlite3Atoi64() does not.
705 **
706 ** Returns:
707 **
708 **     0    Successful transformation.  Fits in a 64-bit signed integer.
709 **     1    Excess text after the integer value
710 **     2    Integer too large for a 64-bit signed integer or is malformed
711 **     3    Special case of 9223372036854775808
712 */
713 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
714 #ifndef SQLITE_OMIT_HEX_INTEGER
715   if( z[0]=='0'
716    && (z[1]=='x' || z[1]=='X')
717   ){
718     u64 u = 0;
719     int i, k;
720     for(i=2; z[i]=='0'; i++){}
721     for(k=i; sqlite3Isxdigit(z[k]); k++){
722       u = u*16 + sqlite3HexToInt(z[k]);
723     }
724     memcpy(pOut, &u, 8);
725     return (z[k]==0 && k-i<=16) ? 0 : 2;
726   }else
727 #endif /* SQLITE_OMIT_HEX_INTEGER */
728   {
729     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
730   }
731 }
732 
733 /*
734 ** If zNum represents an integer that will fit in 32-bits, then set
735 ** *pValue to that integer and return true.  Otherwise return false.
736 **
737 ** This routine accepts both decimal and hexadecimal notation for integers.
738 **
739 ** Any non-numeric characters that following zNum are ignored.
740 ** This is different from sqlite3Atoi64() which requires the
741 ** input number to be zero-terminated.
742 */
743 int sqlite3GetInt32(const char *zNum, int *pValue){
744   sqlite_int64 v = 0;
745   int i, c;
746   int neg = 0;
747   if( zNum[0]=='-' ){
748     neg = 1;
749     zNum++;
750   }else if( zNum[0]=='+' ){
751     zNum++;
752   }
753 #ifndef SQLITE_OMIT_HEX_INTEGER
754   else if( zNum[0]=='0'
755         && (zNum[1]=='x' || zNum[1]=='X')
756         && sqlite3Isxdigit(zNum[2])
757   ){
758     u32 u = 0;
759     zNum += 2;
760     while( zNum[0]=='0' ) zNum++;
761     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
762       u = u*16 + sqlite3HexToInt(zNum[i]);
763     }
764     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
765       memcpy(pValue, &u, 4);
766       return 1;
767     }else{
768       return 0;
769     }
770   }
771 #endif
772   if( !sqlite3Isdigit(zNum[0]) ) return 0;
773   while( zNum[0]=='0' ) zNum++;
774   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
775     v = v*10 + c;
776   }
777 
778   /* The longest decimal representation of a 32 bit integer is 10 digits:
779   **
780   **             1234567890
781   **     2^31 -> 2147483648
782   */
783   testcase( i==10 );
784   if( i>10 ){
785     return 0;
786   }
787   testcase( v-neg==2147483647 );
788   if( v-neg>2147483647 ){
789     return 0;
790   }
791   if( neg ){
792     v = -v;
793   }
794   *pValue = (int)v;
795   return 1;
796 }
797 
798 /*
799 ** Return a 32-bit integer value extracted from a string.  If the
800 ** string is not an integer, just return 0.
801 */
802 int sqlite3Atoi(const char *z){
803   int x = 0;
804   if( z ) sqlite3GetInt32(z, &x);
805   return x;
806 }
807 
808 /*
809 ** The variable-length integer encoding is as follows:
810 **
811 ** KEY:
812 **         A = 0xxxxxxx    7 bits of data and one flag bit
813 **         B = 1xxxxxxx    7 bits of data and one flag bit
814 **         C = xxxxxxxx    8 bits of data
815 **
816 **  7 bits - A
817 ** 14 bits - BA
818 ** 21 bits - BBA
819 ** 28 bits - BBBA
820 ** 35 bits - BBBBA
821 ** 42 bits - BBBBBA
822 ** 49 bits - BBBBBBA
823 ** 56 bits - BBBBBBBA
824 ** 64 bits - BBBBBBBBC
825 */
826 
827 /*
828 ** Write a 64-bit variable-length integer to memory starting at p[0].
829 ** The length of data write will be between 1 and 9 bytes.  The number
830 ** of bytes written is returned.
831 **
832 ** A variable-length integer consists of the lower 7 bits of each byte
833 ** for all bytes that have the 8th bit set and one byte with the 8th
834 ** bit clear.  Except, if we get to the 9th byte, it stores the full
835 ** 8 bits and is the last byte.
836 */
837 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
838   int i, j, n;
839   u8 buf[10];
840   if( v & (((u64)0xff000000)<<32) ){
841     p[8] = (u8)v;
842     v >>= 8;
843     for(i=7; i>=0; i--){
844       p[i] = (u8)((v & 0x7f) | 0x80);
845       v >>= 7;
846     }
847     return 9;
848   }
849   n = 0;
850   do{
851     buf[n++] = (u8)((v & 0x7f) | 0x80);
852     v >>= 7;
853   }while( v!=0 );
854   buf[0] &= 0x7f;
855   assert( n<=9 );
856   for(i=0, j=n-1; j>=0; j--, i++){
857     p[i] = buf[j];
858   }
859   return n;
860 }
861 int sqlite3PutVarint(unsigned char *p, u64 v){
862   if( v<=0x7f ){
863     p[0] = v&0x7f;
864     return 1;
865   }
866   if( v<=0x3fff ){
867     p[0] = ((v>>7)&0x7f)|0x80;
868     p[1] = v&0x7f;
869     return 2;
870   }
871   return putVarint64(p,v);
872 }
873 
874 /*
875 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
876 ** are defined here rather than simply putting the constant expressions
877 ** inline in order to work around bugs in the RVT compiler.
878 **
879 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
880 **
881 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
882 */
883 #define SLOT_2_0     0x001fc07f
884 #define SLOT_4_2_0   0xf01fc07f
885 
886 
887 /*
888 ** Read a 64-bit variable-length integer from memory starting at p[0].
889 ** Return the number of bytes read.  The value is stored in *v.
890 */
891 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
892   u32 a,b,s;
893 
894   a = *p;
895   /* a: p0 (unmasked) */
896   if (!(a&0x80))
897   {
898     *v = a;
899     return 1;
900   }
901 
902   p++;
903   b = *p;
904   /* b: p1 (unmasked) */
905   if (!(b&0x80))
906   {
907     a &= 0x7f;
908     a = a<<7;
909     a |= b;
910     *v = a;
911     return 2;
912   }
913 
914   /* Verify that constants are precomputed correctly */
915   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
916   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
917 
918   p++;
919   a = a<<14;
920   a |= *p;
921   /* a: p0<<14 | p2 (unmasked) */
922   if (!(a&0x80))
923   {
924     a &= SLOT_2_0;
925     b &= 0x7f;
926     b = b<<7;
927     a |= b;
928     *v = a;
929     return 3;
930   }
931 
932   /* CSE1 from below */
933   a &= SLOT_2_0;
934   p++;
935   b = b<<14;
936   b |= *p;
937   /* b: p1<<14 | p3 (unmasked) */
938   if (!(b&0x80))
939   {
940     b &= SLOT_2_0;
941     /* moved CSE1 up */
942     /* a &= (0x7f<<14)|(0x7f); */
943     a = a<<7;
944     a |= b;
945     *v = a;
946     return 4;
947   }
948 
949   /* a: p0<<14 | p2 (masked) */
950   /* b: p1<<14 | p3 (unmasked) */
951   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
952   /* moved CSE1 up */
953   /* a &= (0x7f<<14)|(0x7f); */
954   b &= SLOT_2_0;
955   s = a;
956   /* s: p0<<14 | p2 (masked) */
957 
958   p++;
959   a = a<<14;
960   a |= *p;
961   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
962   if (!(a&0x80))
963   {
964     /* we can skip these cause they were (effectively) done above
965     ** while calculating s */
966     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
967     /* b &= (0x7f<<14)|(0x7f); */
968     b = b<<7;
969     a |= b;
970     s = s>>18;
971     *v = ((u64)s)<<32 | a;
972     return 5;
973   }
974 
975   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
976   s = s<<7;
977   s |= b;
978   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
979 
980   p++;
981   b = b<<14;
982   b |= *p;
983   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
984   if (!(b&0x80))
985   {
986     /* we can skip this cause it was (effectively) done above in calc'ing s */
987     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
988     a &= SLOT_2_0;
989     a = a<<7;
990     a |= b;
991     s = s>>18;
992     *v = ((u64)s)<<32 | a;
993     return 6;
994   }
995 
996   p++;
997   a = a<<14;
998   a |= *p;
999   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1000   if (!(a&0x80))
1001   {
1002     a &= SLOT_4_2_0;
1003     b &= SLOT_2_0;
1004     b = b<<7;
1005     a |= b;
1006     s = s>>11;
1007     *v = ((u64)s)<<32 | a;
1008     return 7;
1009   }
1010 
1011   /* CSE2 from below */
1012   a &= SLOT_2_0;
1013   p++;
1014   b = b<<14;
1015   b |= *p;
1016   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1017   if (!(b&0x80))
1018   {
1019     b &= SLOT_4_2_0;
1020     /* moved CSE2 up */
1021     /* a &= (0x7f<<14)|(0x7f); */
1022     a = a<<7;
1023     a |= b;
1024     s = s>>4;
1025     *v = ((u64)s)<<32 | a;
1026     return 8;
1027   }
1028 
1029   p++;
1030   a = a<<15;
1031   a |= *p;
1032   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1033 
1034   /* moved CSE2 up */
1035   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1036   b &= SLOT_2_0;
1037   b = b<<8;
1038   a |= b;
1039 
1040   s = s<<4;
1041   b = p[-4];
1042   b &= 0x7f;
1043   b = b>>3;
1044   s |= b;
1045 
1046   *v = ((u64)s)<<32 | a;
1047 
1048   return 9;
1049 }
1050 
1051 /*
1052 ** Read a 32-bit variable-length integer from memory starting at p[0].
1053 ** Return the number of bytes read.  The value is stored in *v.
1054 **
1055 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1056 ** integer, then set *v to 0xffffffff.
1057 **
1058 ** A MACRO version, getVarint32, is provided which inlines the
1059 ** single-byte case.  All code should use the MACRO version as
1060 ** this function assumes the single-byte case has already been handled.
1061 */
1062 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1063   u32 a,b;
1064 
1065   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1066   ** by the getVarin32() macro */
1067   a = *p;
1068   /* a: p0 (unmasked) */
1069 #ifndef getVarint32
1070   if (!(a&0x80))
1071   {
1072     /* Values between 0 and 127 */
1073     *v = a;
1074     return 1;
1075   }
1076 #endif
1077 
1078   /* The 2-byte case */
1079   p++;
1080   b = *p;
1081   /* b: p1 (unmasked) */
1082   if (!(b&0x80))
1083   {
1084     /* Values between 128 and 16383 */
1085     a &= 0x7f;
1086     a = a<<7;
1087     *v = a | b;
1088     return 2;
1089   }
1090 
1091   /* The 3-byte case */
1092   p++;
1093   a = a<<14;
1094   a |= *p;
1095   /* a: p0<<14 | p2 (unmasked) */
1096   if (!(a&0x80))
1097   {
1098     /* Values between 16384 and 2097151 */
1099     a &= (0x7f<<14)|(0x7f);
1100     b &= 0x7f;
1101     b = b<<7;
1102     *v = a | b;
1103     return 3;
1104   }
1105 
1106   /* A 32-bit varint is used to store size information in btrees.
1107   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1108   ** A 3-byte varint is sufficient, for example, to record the size
1109   ** of a 1048569-byte BLOB or string.
1110   **
1111   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1112   ** rare larger cases can be handled by the slower 64-bit varint
1113   ** routine.
1114   */
1115 #if 1
1116   {
1117     u64 v64;
1118     u8 n;
1119 
1120     p -= 2;
1121     n = sqlite3GetVarint(p, &v64);
1122     assert( n>3 && n<=9 );
1123     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1124       *v = 0xffffffff;
1125     }else{
1126       *v = (u32)v64;
1127     }
1128     return n;
1129   }
1130 
1131 #else
1132   /* For following code (kept for historical record only) shows an
1133   ** unrolling for the 3- and 4-byte varint cases.  This code is
1134   ** slightly faster, but it is also larger and much harder to test.
1135   */
1136   p++;
1137   b = b<<14;
1138   b |= *p;
1139   /* b: p1<<14 | p3 (unmasked) */
1140   if (!(b&0x80))
1141   {
1142     /* Values between 2097152 and 268435455 */
1143     b &= (0x7f<<14)|(0x7f);
1144     a &= (0x7f<<14)|(0x7f);
1145     a = a<<7;
1146     *v = a | b;
1147     return 4;
1148   }
1149 
1150   p++;
1151   a = a<<14;
1152   a |= *p;
1153   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1154   if (!(a&0x80))
1155   {
1156     /* Values  between 268435456 and 34359738367 */
1157     a &= SLOT_4_2_0;
1158     b &= SLOT_4_2_0;
1159     b = b<<7;
1160     *v = a | b;
1161     return 5;
1162   }
1163 
1164   /* We can only reach this point when reading a corrupt database
1165   ** file.  In that case we are not in any hurry.  Use the (relatively
1166   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1167   ** value. */
1168   {
1169     u64 v64;
1170     u8 n;
1171 
1172     p -= 4;
1173     n = sqlite3GetVarint(p, &v64);
1174     assert( n>5 && n<=9 );
1175     *v = (u32)v64;
1176     return n;
1177   }
1178 #endif
1179 }
1180 
1181 /*
1182 ** Return the number of bytes that will be needed to store the given
1183 ** 64-bit integer.
1184 */
1185 int sqlite3VarintLen(u64 v){
1186   int i;
1187   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1188   return i;
1189 }
1190 
1191 
1192 /*
1193 ** Read or write a four-byte big-endian integer value.
1194 */
1195 u32 sqlite3Get4byte(const u8 *p){
1196 #if SQLITE_BYTEORDER==4321
1197   u32 x;
1198   memcpy(&x,p,4);
1199   return x;
1200 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1201   u32 x;
1202   memcpy(&x,p,4);
1203   return __builtin_bswap32(x);
1204 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1205   u32 x;
1206   memcpy(&x,p,4);
1207   return _byteswap_ulong(x);
1208 #else
1209   testcase( p[0]&0x80 );
1210   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1211 #endif
1212 }
1213 void sqlite3Put4byte(unsigned char *p, u32 v){
1214 #if SQLITE_BYTEORDER==4321
1215   memcpy(p,&v,4);
1216 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1217   u32 x = __builtin_bswap32(v);
1218   memcpy(p,&x,4);
1219 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1220   u32 x = _byteswap_ulong(v);
1221   memcpy(p,&x,4);
1222 #else
1223   p[0] = (u8)(v>>24);
1224   p[1] = (u8)(v>>16);
1225   p[2] = (u8)(v>>8);
1226   p[3] = (u8)v;
1227 #endif
1228 }
1229 
1230 
1231 
1232 /*
1233 ** Translate a single byte of Hex into an integer.
1234 ** This routine only works if h really is a valid hexadecimal
1235 ** character:  0..9a..fA..F
1236 */
1237 u8 sqlite3HexToInt(int h){
1238   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1239 #ifdef SQLITE_ASCII
1240   h += 9*(1&(h>>6));
1241 #endif
1242 #ifdef SQLITE_EBCDIC
1243   h += 9*(1&~(h>>4));
1244 #endif
1245   return (u8)(h & 0xf);
1246 }
1247 
1248 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1249 /*
1250 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1251 ** value.  Return a pointer to its binary value.  Space to hold the
1252 ** binary value has been obtained from malloc and must be freed by
1253 ** the calling routine.
1254 */
1255 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1256   char *zBlob;
1257   int i;
1258 
1259   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1260   n--;
1261   if( zBlob ){
1262     for(i=0; i<n; i+=2){
1263       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1264     }
1265     zBlob[i/2] = 0;
1266   }
1267   return zBlob;
1268 }
1269 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1270 
1271 /*
1272 ** Log an error that is an API call on a connection pointer that should
1273 ** not have been used.  The "type" of connection pointer is given as the
1274 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1275 */
1276 static void logBadConnection(const char *zType){
1277   sqlite3_log(SQLITE_MISUSE,
1278      "API call with %s database connection pointer",
1279      zType
1280   );
1281 }
1282 
1283 /*
1284 ** Check to make sure we have a valid db pointer.  This test is not
1285 ** foolproof but it does provide some measure of protection against
1286 ** misuse of the interface such as passing in db pointers that are
1287 ** NULL or which have been previously closed.  If this routine returns
1288 ** 1 it means that the db pointer is valid and 0 if it should not be
1289 ** dereferenced for any reason.  The calling function should invoke
1290 ** SQLITE_MISUSE immediately.
1291 **
1292 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1293 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1294 ** open properly and is not fit for general use but which can be
1295 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1296 */
1297 int sqlite3SafetyCheckOk(sqlite3 *db){
1298   u32 magic;
1299   if( db==0 ){
1300     logBadConnection("NULL");
1301     return 0;
1302   }
1303   magic = db->magic;
1304   if( magic!=SQLITE_MAGIC_OPEN ){
1305     if( sqlite3SafetyCheckSickOrOk(db) ){
1306       testcase( sqlite3GlobalConfig.xLog!=0 );
1307       logBadConnection("unopened");
1308     }
1309     return 0;
1310   }else{
1311     return 1;
1312   }
1313 }
1314 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1315   u32 magic;
1316   magic = db->magic;
1317   if( magic!=SQLITE_MAGIC_SICK &&
1318       magic!=SQLITE_MAGIC_OPEN &&
1319       magic!=SQLITE_MAGIC_BUSY ){
1320     testcase( sqlite3GlobalConfig.xLog!=0 );
1321     logBadConnection("invalid");
1322     return 0;
1323   }else{
1324     return 1;
1325   }
1326 }
1327 
1328 /*
1329 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1330 ** the other 64-bit signed integer at *pA and store the result in *pA.
1331 ** Return 0 on success.  Or if the operation would have resulted in an
1332 ** overflow, leave *pA unchanged and return 1.
1333 */
1334 int sqlite3AddInt64(i64 *pA, i64 iB){
1335 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1336   return __builtin_add_overflow(*pA, iB, pA);
1337 #else
1338   i64 iA = *pA;
1339   testcase( iA==0 ); testcase( iA==1 );
1340   testcase( iB==-1 ); testcase( iB==0 );
1341   if( iB>=0 ){
1342     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1343     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1344     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1345   }else{
1346     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1347     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1348     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1349   }
1350   *pA += iB;
1351   return 0;
1352 #endif
1353 }
1354 int sqlite3SubInt64(i64 *pA, i64 iB){
1355 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1356   return __builtin_sub_overflow(*pA, iB, pA);
1357 #else
1358   testcase( iB==SMALLEST_INT64+1 );
1359   if( iB==SMALLEST_INT64 ){
1360     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1361     if( (*pA)>=0 ) return 1;
1362     *pA -= iB;
1363     return 0;
1364   }else{
1365     return sqlite3AddInt64(pA, -iB);
1366   }
1367 #endif
1368 }
1369 int sqlite3MulInt64(i64 *pA, i64 iB){
1370 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1371   return __builtin_mul_overflow(*pA, iB, pA);
1372 #else
1373   i64 iA = *pA;
1374   if( iB>0 ){
1375     if( iA>LARGEST_INT64/iB ) return 1;
1376     if( iA<SMALLEST_INT64/iB ) return 1;
1377   }else if( iB<0 ){
1378     if( iA>0 ){
1379       if( iB<SMALLEST_INT64/iA ) return 1;
1380     }else if( iA<0 ){
1381       if( iB==SMALLEST_INT64 ) return 1;
1382       if( iA==SMALLEST_INT64 ) return 1;
1383       if( -iA>LARGEST_INT64/-iB ) return 1;
1384     }
1385   }
1386   *pA = iA*iB;
1387   return 0;
1388 #endif
1389 }
1390 
1391 /*
1392 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1393 ** if the integer has a value of -2147483648, return +2147483647
1394 */
1395 int sqlite3AbsInt32(int x){
1396   if( x>=0 ) return x;
1397   if( x==(int)0x80000000 ) return 0x7fffffff;
1398   return -x;
1399 }
1400 
1401 #ifdef SQLITE_ENABLE_8_3_NAMES
1402 /*
1403 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1404 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1405 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1406 ** three characters, then shorten the suffix on z[] to be the last three
1407 ** characters of the original suffix.
1408 **
1409 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1410 ** do the suffix shortening regardless of URI parameter.
1411 **
1412 ** Examples:
1413 **
1414 **     test.db-journal    =>   test.nal
1415 **     test.db-wal        =>   test.wal
1416 **     test.db-shm        =>   test.shm
1417 **     test.db-mj7f3319fa =>   test.9fa
1418 */
1419 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1420 #if SQLITE_ENABLE_8_3_NAMES<2
1421   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1422 #endif
1423   {
1424     int i, sz;
1425     sz = sqlite3Strlen30(z);
1426     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1427     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1428   }
1429 }
1430 #endif
1431 
1432 /*
1433 ** Find (an approximate) sum of two LogEst values.  This computation is
1434 ** not a simple "+" operator because LogEst is stored as a logarithmic
1435 ** value.
1436 **
1437 */
1438 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1439   static const unsigned char x[] = {
1440      10, 10,                         /* 0,1 */
1441       9, 9,                          /* 2,3 */
1442       8, 8,                          /* 4,5 */
1443       7, 7, 7,                       /* 6,7,8 */
1444       6, 6, 6,                       /* 9,10,11 */
1445       5, 5, 5,                       /* 12-14 */
1446       4, 4, 4, 4,                    /* 15-18 */
1447       3, 3, 3, 3, 3, 3,              /* 19-24 */
1448       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1449   };
1450   if( a>=b ){
1451     if( a>b+49 ) return a;
1452     if( a>b+31 ) return a+1;
1453     return a+x[a-b];
1454   }else{
1455     if( b>a+49 ) return b;
1456     if( b>a+31 ) return b+1;
1457     return b+x[b-a];
1458   }
1459 }
1460 
1461 /*
1462 ** Convert an integer into a LogEst.  In other words, compute an
1463 ** approximation for 10*log2(x).
1464 */
1465 LogEst sqlite3LogEst(u64 x){
1466   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1467   LogEst y = 40;
1468   if( x<8 ){
1469     if( x<2 ) return 0;
1470     while( x<8 ){  y -= 10; x <<= 1; }
1471   }else{
1472 #if GCC_VERSION>=5004000
1473     int i = 60 - __builtin_clzll(x);
1474     y += i*10;
1475     x >>= i;
1476 #else
1477     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1478     while( x>15 ){  y += 10; x >>= 1; }
1479 #endif
1480   }
1481   return a[x&7] + y - 10;
1482 }
1483 
1484 #ifndef SQLITE_OMIT_VIRTUALTABLE
1485 /*
1486 ** Convert a double into a LogEst
1487 ** In other words, compute an approximation for 10*log2(x).
1488 */
1489 LogEst sqlite3LogEstFromDouble(double x){
1490   u64 a;
1491   LogEst e;
1492   assert( sizeof(x)==8 && sizeof(a)==8 );
1493   if( x<=1 ) return 0;
1494   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1495   memcpy(&a, &x, 8);
1496   e = (a>>52) - 1022;
1497   return e*10;
1498 }
1499 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1500 
1501 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1502     defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1503     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1504 /*
1505 ** Convert a LogEst into an integer.
1506 **
1507 ** Note that this routine is only used when one or more of various
1508 ** non-standard compile-time options is enabled.
1509 */
1510 u64 sqlite3LogEstToInt(LogEst x){
1511   u64 n;
1512   n = x%10;
1513   x /= 10;
1514   if( n>=5 ) n -= 2;
1515   else if( n>=1 ) n -= 1;
1516 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1517     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1518   if( x>60 ) return (u64)LARGEST_INT64;
1519 #else
1520   /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1521   ** possible to this routine is 310, resulting in a maximum x of 31 */
1522   assert( x<=60 );
1523 #endif
1524   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1525 }
1526 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1527 
1528 /*
1529 ** Add a new name/number pair to a VList.  This might require that the
1530 ** VList object be reallocated, so return the new VList.  If an OOM
1531 ** error occurs, the original VList returned and the
1532 ** db->mallocFailed flag is set.
1533 **
1534 ** A VList is really just an array of integers.  To destroy a VList,
1535 ** simply pass it to sqlite3DbFree().
1536 **
1537 ** The first integer is the number of integers allocated for the whole
1538 ** VList.  The second integer is the number of integers actually used.
1539 ** Each name/number pair is encoded by subsequent groups of 3 or more
1540 ** integers.
1541 **
1542 ** Each name/number pair starts with two integers which are the numeric
1543 ** value for the pair and the size of the name/number pair, respectively.
1544 ** The text name overlays one or more following integers.  The text name
1545 ** is always zero-terminated.
1546 **
1547 ** Conceptually:
1548 **
1549 **    struct VList {
1550 **      int nAlloc;   // Number of allocated slots
1551 **      int nUsed;    // Number of used slots
1552 **      struct VListEntry {
1553 **        int iValue;    // Value for this entry
1554 **        int nSlot;     // Slots used by this entry
1555 **        // ... variable name goes here
1556 **      } a[0];
1557 **    }
1558 **
1559 ** During code generation, pointers to the variable names within the
1560 ** VList are taken.  When that happens, nAlloc is set to zero as an
1561 ** indication that the VList may never again be enlarged, since the
1562 ** accompanying realloc() would invalidate the pointers.
1563 */
1564 VList *sqlite3VListAdd(
1565   sqlite3 *db,           /* The database connection used for malloc() */
1566   VList *pIn,            /* The input VList.  Might be NULL */
1567   const char *zName,     /* Name of symbol to add */
1568   int nName,             /* Bytes of text in zName */
1569   int iVal               /* Value to associate with zName */
1570 ){
1571   int nInt;              /* number of sizeof(int) objects needed for zName */
1572   char *z;               /* Pointer to where zName will be stored */
1573   int i;                 /* Index in pIn[] where zName is stored */
1574 
1575   nInt = nName/4 + 3;
1576   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1577   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1578     /* Enlarge the allocation */
1579     int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt;
1580     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1581     if( pOut==0 ) return pIn;
1582     if( pIn==0 ) pOut[1] = 2;
1583     pIn = pOut;
1584     pIn[0] = nAlloc;
1585   }
1586   i = pIn[1];
1587   pIn[i] = iVal;
1588   pIn[i+1] = nInt;
1589   z = (char*)&pIn[i+2];
1590   pIn[1] = i+nInt;
1591   assert( pIn[1]<=pIn[0] );
1592   memcpy(z, zName, nName);
1593   z[nName] = 0;
1594   return pIn;
1595 }
1596 
1597 /*
1598 ** Return a pointer to the name of a variable in the given VList that
1599 ** has the value iVal.  Or return a NULL if there is no such variable in
1600 ** the list
1601 */
1602 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1603   int i, mx;
1604   if( pIn==0 ) return 0;
1605   mx = pIn[1];
1606   i = 2;
1607   do{
1608     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1609     i += pIn[i+1];
1610   }while( i<mx );
1611   return 0;
1612 }
1613 
1614 /*
1615 ** Return the number of the variable named zName, if it is in VList.
1616 ** or return 0 if there is no such variable.
1617 */
1618 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1619   int i, mx;
1620   if( pIn==0 ) return 0;
1621   mx = pIn[1];
1622   i = 2;
1623   do{
1624     const char *z = (const char*)&pIn[i+2];
1625     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1626     i += pIn[i+1];
1627   }while( i<mx );
1628   return 0;
1629 }
1630