1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Give a callback to the test harness that can be used to simulate faults 36 ** in places where it is difficult or expensive to do so purely by means 37 ** of inputs. 38 ** 39 ** The intent of the integer argument is to let the fault simulator know 40 ** which of multiple sqlite3FaultSim() calls has been hit. 41 ** 42 ** Return whatever integer value the test callback returns, or return 43 ** SQLITE_OK if no test callback is installed. 44 */ 45 #ifndef SQLITE_OMIT_BUILTIN_TEST 46 int sqlite3FaultSim(int iTest){ 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 48 return xCallback ? xCallback(iTest) : SQLITE_OK; 49 } 50 #endif 51 52 #ifndef SQLITE_OMIT_FLOATING_POINT 53 /* 54 ** Return true if the floating point value is Not a Number (NaN). 55 ** 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 57 ** Otherwise, we have our own implementation that works on most systems. 58 */ 59 int sqlite3IsNaN(double x){ 60 int rc; /* The value return */ 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN 62 /* 63 ** Systems that support the isnan() library function should probably 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 65 ** found that many systems do not have a working isnan() function so 66 ** this implementation is provided as an alternative. 67 ** 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 69 ** On the other hand, the use of -ffast-math comes with the following 70 ** warning: 71 ** 72 ** This option [-ffast-math] should never be turned on by any 73 ** -O option since it can result in incorrect output for programs 74 ** which depend on an exact implementation of IEEE or ISO 75 ** rules/specifications for math functions. 76 ** 77 ** Under MSVC, this NaN test may fail if compiled with a floating- 78 ** point precision mode other than /fp:precise. From the MSDN 79 ** documentation: 80 ** 81 ** The compiler [with /fp:precise] will properly handle comparisons 82 ** involving NaN. For example, x != x evaluates to true if x is NaN 83 ** ... 84 */ 85 #ifdef __FAST_MATH__ 86 # error SQLite will not work correctly with the -ffast-math option of GCC. 87 #endif 88 volatile double y = x; 89 volatile double z = y; 90 rc = (y!=z); 91 #else /* if HAVE_ISNAN */ 92 rc = isnan(x); 93 #endif /* HAVE_ISNAN */ 94 testcase( rc ); 95 return rc; 96 } 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ 98 99 /* 100 ** Compute a string length that is limited to what can be stored in 101 ** lower 30 bits of a 32-bit signed integer. 102 ** 103 ** The value returned will never be negative. Nor will it ever be greater 104 ** than the actual length of the string. For very long strings (greater 105 ** than 1GiB) the value returned might be less than the true string length. 106 */ 107 int sqlite3Strlen30(const char *z){ 108 if( z==0 ) return 0; 109 return 0x3fffffff & (int)strlen(z); 110 } 111 112 /* 113 ** Set the current error code to err_code and clear any prior error message. 114 */ 115 void sqlite3Error(sqlite3 *db, int err_code){ 116 assert( db!=0 ); 117 db->errCode = err_code; 118 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 119 } 120 121 /* 122 ** Set the most recent error code and error string for the sqlite 123 ** handle "db". The error code is set to "err_code". 124 ** 125 ** If it is not NULL, string zFormat specifies the format of the 126 ** error string in the style of the printf functions: The following 127 ** format characters are allowed: 128 ** 129 ** %s Insert a string 130 ** %z A string that should be freed after use 131 ** %d Insert an integer 132 ** %T Insert a token 133 ** %S Insert the first element of a SrcList 134 ** 135 ** zFormat and any string tokens that follow it are assumed to be 136 ** encoded in UTF-8. 137 ** 138 ** To clear the most recent error for sqlite handle "db", sqlite3Error 139 ** should be called with err_code set to SQLITE_OK and zFormat set 140 ** to NULL. 141 */ 142 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 143 assert( db!=0 ); 144 db->errCode = err_code; 145 if( zFormat==0 ){ 146 sqlite3Error(db, err_code); 147 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 148 char *z; 149 va_list ap; 150 va_start(ap, zFormat); 151 z = sqlite3VMPrintf(db, zFormat, ap); 152 va_end(ap); 153 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 154 } 155 } 156 157 /* 158 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 159 ** The following formatting characters are allowed: 160 ** 161 ** %s Insert a string 162 ** %z A string that should be freed after use 163 ** %d Insert an integer 164 ** %T Insert a token 165 ** %S Insert the first element of a SrcList 166 ** 167 ** This function should be used to report any error that occurs while 168 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 169 ** last thing the sqlite3_prepare() function does is copy the error 170 ** stored by this function into the database handle using sqlite3Error(). 171 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 172 ** during statement execution (sqlite3_step() etc.). 173 */ 174 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 175 char *zMsg; 176 va_list ap; 177 sqlite3 *db = pParse->db; 178 va_start(ap, zFormat); 179 zMsg = sqlite3VMPrintf(db, zFormat, ap); 180 va_end(ap); 181 if( db->suppressErr ){ 182 sqlite3DbFree(db, zMsg); 183 }else{ 184 pParse->nErr++; 185 sqlite3DbFree(db, pParse->zErrMsg); 186 pParse->zErrMsg = zMsg; 187 pParse->rc = SQLITE_ERROR; 188 } 189 } 190 191 /* 192 ** Convert an SQL-style quoted string into a normal string by removing 193 ** the quote characters. The conversion is done in-place. If the 194 ** input does not begin with a quote character, then this routine 195 ** is a no-op. 196 ** 197 ** The input string must be zero-terminated. A new zero-terminator 198 ** is added to the dequoted string. 199 ** 200 ** The return value is -1 if no dequoting occurs or the length of the 201 ** dequoted string, exclusive of the zero terminator, if dequoting does 202 ** occur. 203 ** 204 ** 2002-Feb-14: This routine is extended to remove MS-Access style 205 ** brackets from around identifiers. For example: "[a-b-c]" becomes 206 ** "a-b-c". 207 */ 208 int sqlite3Dequote(char *z){ 209 char quote; 210 int i, j; 211 if( z==0 ) return -1; 212 quote = z[0]; 213 switch( quote ){ 214 case '\'': break; 215 case '"': break; 216 case '`': break; /* For MySQL compatibility */ 217 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 218 default: return -1; 219 } 220 for(i=1, j=0;; i++){ 221 assert( z[i] ); 222 if( z[i]==quote ){ 223 if( z[i+1]==quote ){ 224 z[j++] = quote; 225 i++; 226 }else{ 227 break; 228 } 229 }else{ 230 z[j++] = z[i]; 231 } 232 } 233 z[j] = 0; 234 return j; 235 } 236 237 /* 238 ** Generate a Token object from a string 239 */ 240 void sqlite3TokenInit(Token *p, char *z){ 241 p->z = z; 242 p->n = sqlite3Strlen30(z); 243 } 244 245 /* Convenient short-hand */ 246 #define UpperToLower sqlite3UpperToLower 247 248 /* 249 ** Some systems have stricmp(). Others have strcasecmp(). Because 250 ** there is no consistency, we will define our own. 251 ** 252 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 253 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 254 ** the contents of two buffers containing UTF-8 strings in a 255 ** case-independent fashion, using the same definition of "case 256 ** independence" that SQLite uses internally when comparing identifiers. 257 */ 258 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 259 if( zLeft==0 ){ 260 return zRight ? -1 : 0; 261 }else if( zRight==0 ){ 262 return 1; 263 } 264 return sqlite3StrICmp(zLeft, zRight); 265 } 266 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 267 unsigned char *a, *b; 268 int c; 269 a = (unsigned char *)zLeft; 270 b = (unsigned char *)zRight; 271 for(;;){ 272 c = (int)UpperToLower[*a] - (int)UpperToLower[*b]; 273 if( c || *a==0 ) break; 274 a++; 275 b++; 276 } 277 return c; 278 } 279 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 280 register unsigned char *a, *b; 281 if( zLeft==0 ){ 282 return zRight ? -1 : 0; 283 }else if( zRight==0 ){ 284 return 1; 285 } 286 a = (unsigned char *)zLeft; 287 b = (unsigned char *)zRight; 288 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 289 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 290 } 291 292 /* 293 ** The string z[] is an text representation of a real number. 294 ** Convert this string to a double and write it into *pResult. 295 ** 296 ** The string z[] is length bytes in length (bytes, not characters) and 297 ** uses the encoding enc. The string is not necessarily zero-terminated. 298 ** 299 ** Return TRUE if the result is a valid real number (or integer) and FALSE 300 ** if the string is empty or contains extraneous text. Valid numbers 301 ** are in one of these formats: 302 ** 303 ** [+-]digits[E[+-]digits] 304 ** [+-]digits.[digits][E[+-]digits] 305 ** [+-].digits[E[+-]digits] 306 ** 307 ** Leading and trailing whitespace is ignored for the purpose of determining 308 ** validity. 309 ** 310 ** If some prefix of the input string is a valid number, this routine 311 ** returns FALSE but it still converts the prefix and writes the result 312 ** into *pResult. 313 */ 314 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 315 #ifndef SQLITE_OMIT_FLOATING_POINT 316 int incr; 317 const char *zEnd = z + length; 318 /* sign * significand * (10 ^ (esign * exponent)) */ 319 int sign = 1; /* sign of significand */ 320 i64 s = 0; /* significand */ 321 int d = 0; /* adjust exponent for shifting decimal point */ 322 int esign = 1; /* sign of exponent */ 323 int e = 0; /* exponent */ 324 int eValid = 1; /* True exponent is either not used or is well-formed */ 325 double result; 326 int nDigits = 0; 327 int nonNum = 0; 328 329 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 330 *pResult = 0.0; /* Default return value, in case of an error */ 331 332 if( enc==SQLITE_UTF8 ){ 333 incr = 1; 334 }else{ 335 int i; 336 incr = 2; 337 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 338 for(i=3-enc; i<length && z[i]==0; i+=2){} 339 nonNum = i<length; 340 zEnd = z+i+enc-3; 341 z += (enc&1); 342 } 343 344 /* skip leading spaces */ 345 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 346 if( z>=zEnd ) return 0; 347 348 /* get sign of significand */ 349 if( *z=='-' ){ 350 sign = -1; 351 z+=incr; 352 }else if( *z=='+' ){ 353 z+=incr; 354 } 355 356 /* skip leading zeroes */ 357 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 358 359 /* copy max significant digits to significand */ 360 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 361 s = s*10 + (*z - '0'); 362 z+=incr, nDigits++; 363 } 364 365 /* skip non-significant significand digits 366 ** (increase exponent by d to shift decimal left) */ 367 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 368 if( z>=zEnd ) goto do_atof_calc; 369 370 /* if decimal point is present */ 371 if( *z=='.' ){ 372 z+=incr; 373 /* copy digits from after decimal to significand 374 ** (decrease exponent by d to shift decimal right) */ 375 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 376 s = s*10 + (*z - '0'); 377 z+=incr, nDigits++, d--; 378 } 379 /* skip non-significant digits */ 380 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 381 } 382 if( z>=zEnd ) goto do_atof_calc; 383 384 /* if exponent is present */ 385 if( *z=='e' || *z=='E' ){ 386 z+=incr; 387 eValid = 0; 388 if( z>=zEnd ) goto do_atof_calc; 389 /* get sign of exponent */ 390 if( *z=='-' ){ 391 esign = -1; 392 z+=incr; 393 }else if( *z=='+' ){ 394 z+=incr; 395 } 396 /* copy digits to exponent */ 397 while( z<zEnd && sqlite3Isdigit(*z) ){ 398 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 399 z+=incr; 400 eValid = 1; 401 } 402 } 403 404 /* skip trailing spaces */ 405 if( nDigits && eValid ){ 406 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 407 } 408 409 do_atof_calc: 410 /* adjust exponent by d, and update sign */ 411 e = (e*esign) + d; 412 if( e<0 ) { 413 esign = -1; 414 e *= -1; 415 } else { 416 esign = 1; 417 } 418 419 /* if 0 significand */ 420 if( !s ) { 421 /* In the IEEE 754 standard, zero is signed. 422 ** Add the sign if we've seen at least one digit */ 423 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 424 } else { 425 /* attempt to reduce exponent */ 426 if( esign>0 ){ 427 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 428 }else{ 429 while( !(s%10) && e>0 ) e--,s/=10; 430 } 431 432 /* adjust the sign of significand */ 433 s = sign<0 ? -s : s; 434 435 /* if exponent, scale significand as appropriate 436 ** and store in result. */ 437 if( e ){ 438 LONGDOUBLE_TYPE scale = 1.0; 439 /* attempt to handle extremely small/large numbers better */ 440 if( e>307 && e<342 ){ 441 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 442 if( esign<0 ){ 443 result = s / scale; 444 result /= 1.0e+308; 445 }else{ 446 result = s * scale; 447 result *= 1.0e+308; 448 } 449 }else if( e>=342 ){ 450 if( esign<0 ){ 451 result = 0.0*s; 452 }else{ 453 result = 1e308*1e308*s; /* Infinity */ 454 } 455 }else{ 456 /* 1.0e+22 is the largest power of 10 than can be 457 ** represented exactly. */ 458 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 459 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 460 if( esign<0 ){ 461 result = s / scale; 462 }else{ 463 result = s * scale; 464 } 465 } 466 } else { 467 result = (double)s; 468 } 469 } 470 471 /* store the result */ 472 *pResult = result; 473 474 /* return true if number and no extra non-whitespace chracters after */ 475 return z>=zEnd && nDigits>0 && eValid && nonNum==0; 476 #else 477 return !sqlite3Atoi64(z, pResult, length, enc); 478 #endif /* SQLITE_OMIT_FLOATING_POINT */ 479 } 480 481 /* 482 ** Compare the 19-character string zNum against the text representation 483 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 484 ** if zNum is less than, equal to, or greater than the string. 485 ** Note that zNum must contain exactly 19 characters. 486 ** 487 ** Unlike memcmp() this routine is guaranteed to return the difference 488 ** in the values of the last digit if the only difference is in the 489 ** last digit. So, for example, 490 ** 491 ** compare2pow63("9223372036854775800", 1) 492 ** 493 ** will return -8. 494 */ 495 static int compare2pow63(const char *zNum, int incr){ 496 int c = 0; 497 int i; 498 /* 012345678901234567 */ 499 const char *pow63 = "922337203685477580"; 500 for(i=0; c==0 && i<18; i++){ 501 c = (zNum[i*incr]-pow63[i])*10; 502 } 503 if( c==0 ){ 504 c = zNum[18*incr] - '8'; 505 testcase( c==(-1) ); 506 testcase( c==0 ); 507 testcase( c==(+1) ); 508 } 509 return c; 510 } 511 512 /* 513 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 514 ** routine does *not* accept hexadecimal notation. 515 ** 516 ** If the zNum value is representable as a 64-bit twos-complement 517 ** integer, then write that value into *pNum and return 0. 518 ** 519 ** If zNum is exactly 9223372036854775808, return 2. This special 520 ** case is broken out because while 9223372036854775808 cannot be a 521 ** signed 64-bit integer, its negative -9223372036854775808 can be. 522 ** 523 ** If zNum is too big for a 64-bit integer and is not 524 ** 9223372036854775808 or if zNum contains any non-numeric text, 525 ** then return 1. 526 ** 527 ** length is the number of bytes in the string (bytes, not characters). 528 ** The string is not necessarily zero-terminated. The encoding is 529 ** given by enc. 530 */ 531 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 532 int incr; 533 u64 u = 0; 534 int neg = 0; /* assume positive */ 535 int i; 536 int c = 0; 537 int nonNum = 0; 538 const char *zStart; 539 const char *zEnd = zNum + length; 540 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 541 if( enc==SQLITE_UTF8 ){ 542 incr = 1; 543 }else{ 544 incr = 2; 545 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 546 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 547 nonNum = i<length; 548 zEnd = zNum+i+enc-3; 549 zNum += (enc&1); 550 } 551 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 552 if( zNum<zEnd ){ 553 if( *zNum=='-' ){ 554 neg = 1; 555 zNum+=incr; 556 }else if( *zNum=='+' ){ 557 zNum+=incr; 558 } 559 } 560 zStart = zNum; 561 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 562 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 563 u = u*10 + c - '0'; 564 } 565 if( u>LARGEST_INT64 ){ 566 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 567 }else if( neg ){ 568 *pNum = -(i64)u; 569 }else{ 570 *pNum = (i64)u; 571 } 572 testcase( i==18 ); 573 testcase( i==19 ); 574 testcase( i==20 ); 575 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) 576 || i>19*incr || nonNum ){ 577 /* zNum is empty or contains non-numeric text or is longer 578 ** than 19 digits (thus guaranteeing that it is too large) */ 579 return 1; 580 }else if( i<19*incr ){ 581 /* Less than 19 digits, so we know that it fits in 64 bits */ 582 assert( u<=LARGEST_INT64 ); 583 return 0; 584 }else{ 585 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 586 c = compare2pow63(zNum, incr); 587 if( c<0 ){ 588 /* zNum is less than 9223372036854775808 so it fits */ 589 assert( u<=LARGEST_INT64 ); 590 return 0; 591 }else if( c>0 ){ 592 /* zNum is greater than 9223372036854775808 so it overflows */ 593 return 1; 594 }else{ 595 /* zNum is exactly 9223372036854775808. Fits if negative. The 596 ** special case 2 overflow if positive */ 597 assert( u-1==LARGEST_INT64 ); 598 return neg ? 0 : 2; 599 } 600 } 601 } 602 603 /* 604 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 605 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 606 ** whereas sqlite3Atoi64() does not. 607 ** 608 ** Returns: 609 ** 610 ** 0 Successful transformation. Fits in a 64-bit signed integer. 611 ** 1 Integer too large for a 64-bit signed integer or is malformed 612 ** 2 Special case of 9223372036854775808 613 */ 614 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 615 #ifndef SQLITE_OMIT_HEX_INTEGER 616 if( z[0]=='0' 617 && (z[1]=='x' || z[1]=='X') 618 && sqlite3Isxdigit(z[2]) 619 ){ 620 u64 u = 0; 621 int i, k; 622 for(i=2; z[i]=='0'; i++){} 623 for(k=i; sqlite3Isxdigit(z[k]); k++){ 624 u = u*16 + sqlite3HexToInt(z[k]); 625 } 626 memcpy(pOut, &u, 8); 627 return (z[k]==0 && k-i<=16) ? 0 : 1; 628 }else 629 #endif /* SQLITE_OMIT_HEX_INTEGER */ 630 { 631 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 632 } 633 } 634 635 /* 636 ** If zNum represents an integer that will fit in 32-bits, then set 637 ** *pValue to that integer and return true. Otherwise return false. 638 ** 639 ** This routine accepts both decimal and hexadecimal notation for integers. 640 ** 641 ** Any non-numeric characters that following zNum are ignored. 642 ** This is different from sqlite3Atoi64() which requires the 643 ** input number to be zero-terminated. 644 */ 645 int sqlite3GetInt32(const char *zNum, int *pValue){ 646 sqlite_int64 v = 0; 647 int i, c; 648 int neg = 0; 649 if( zNum[0]=='-' ){ 650 neg = 1; 651 zNum++; 652 }else if( zNum[0]=='+' ){ 653 zNum++; 654 } 655 #ifndef SQLITE_OMIT_HEX_INTEGER 656 else if( zNum[0]=='0' 657 && (zNum[1]=='x' || zNum[1]=='X') 658 && sqlite3Isxdigit(zNum[2]) 659 ){ 660 u32 u = 0; 661 zNum += 2; 662 while( zNum[0]=='0' ) zNum++; 663 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 664 u = u*16 + sqlite3HexToInt(zNum[i]); 665 } 666 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 667 memcpy(pValue, &u, 4); 668 return 1; 669 }else{ 670 return 0; 671 } 672 } 673 #endif 674 while( zNum[0]=='0' ) zNum++; 675 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 676 v = v*10 + c; 677 } 678 679 /* The longest decimal representation of a 32 bit integer is 10 digits: 680 ** 681 ** 1234567890 682 ** 2^31 -> 2147483648 683 */ 684 testcase( i==10 ); 685 if( i>10 ){ 686 return 0; 687 } 688 testcase( v-neg==2147483647 ); 689 if( v-neg>2147483647 ){ 690 return 0; 691 } 692 if( neg ){ 693 v = -v; 694 } 695 *pValue = (int)v; 696 return 1; 697 } 698 699 /* 700 ** Return a 32-bit integer value extracted from a string. If the 701 ** string is not an integer, just return 0. 702 */ 703 int sqlite3Atoi(const char *z){ 704 int x = 0; 705 if( z ) sqlite3GetInt32(z, &x); 706 return x; 707 } 708 709 /* 710 ** The variable-length integer encoding is as follows: 711 ** 712 ** KEY: 713 ** A = 0xxxxxxx 7 bits of data and one flag bit 714 ** B = 1xxxxxxx 7 bits of data and one flag bit 715 ** C = xxxxxxxx 8 bits of data 716 ** 717 ** 7 bits - A 718 ** 14 bits - BA 719 ** 21 bits - BBA 720 ** 28 bits - BBBA 721 ** 35 bits - BBBBA 722 ** 42 bits - BBBBBA 723 ** 49 bits - BBBBBBA 724 ** 56 bits - BBBBBBBA 725 ** 64 bits - BBBBBBBBC 726 */ 727 728 /* 729 ** Write a 64-bit variable-length integer to memory starting at p[0]. 730 ** The length of data write will be between 1 and 9 bytes. The number 731 ** of bytes written is returned. 732 ** 733 ** A variable-length integer consists of the lower 7 bits of each byte 734 ** for all bytes that have the 8th bit set and one byte with the 8th 735 ** bit clear. Except, if we get to the 9th byte, it stores the full 736 ** 8 bits and is the last byte. 737 */ 738 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 739 int i, j, n; 740 u8 buf[10]; 741 if( v & (((u64)0xff000000)<<32) ){ 742 p[8] = (u8)v; 743 v >>= 8; 744 for(i=7; i>=0; i--){ 745 p[i] = (u8)((v & 0x7f) | 0x80); 746 v >>= 7; 747 } 748 return 9; 749 } 750 n = 0; 751 do{ 752 buf[n++] = (u8)((v & 0x7f) | 0x80); 753 v >>= 7; 754 }while( v!=0 ); 755 buf[0] &= 0x7f; 756 assert( n<=9 ); 757 for(i=0, j=n-1; j>=0; j--, i++){ 758 p[i] = buf[j]; 759 } 760 return n; 761 } 762 int sqlite3PutVarint(unsigned char *p, u64 v){ 763 if( v<=0x7f ){ 764 p[0] = v&0x7f; 765 return 1; 766 } 767 if( v<=0x3fff ){ 768 p[0] = ((v>>7)&0x7f)|0x80; 769 p[1] = v&0x7f; 770 return 2; 771 } 772 return putVarint64(p,v); 773 } 774 775 /* 776 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 777 ** are defined here rather than simply putting the constant expressions 778 ** inline in order to work around bugs in the RVT compiler. 779 ** 780 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 781 ** 782 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 783 */ 784 #define SLOT_2_0 0x001fc07f 785 #define SLOT_4_2_0 0xf01fc07f 786 787 788 /* 789 ** Read a 64-bit variable-length integer from memory starting at p[0]. 790 ** Return the number of bytes read. The value is stored in *v. 791 */ 792 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 793 u32 a,b,s; 794 795 a = *p; 796 /* a: p0 (unmasked) */ 797 if (!(a&0x80)) 798 { 799 *v = a; 800 return 1; 801 } 802 803 p++; 804 b = *p; 805 /* b: p1 (unmasked) */ 806 if (!(b&0x80)) 807 { 808 a &= 0x7f; 809 a = a<<7; 810 a |= b; 811 *v = a; 812 return 2; 813 } 814 815 /* Verify that constants are precomputed correctly */ 816 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 817 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 818 819 p++; 820 a = a<<14; 821 a |= *p; 822 /* a: p0<<14 | p2 (unmasked) */ 823 if (!(a&0x80)) 824 { 825 a &= SLOT_2_0; 826 b &= 0x7f; 827 b = b<<7; 828 a |= b; 829 *v = a; 830 return 3; 831 } 832 833 /* CSE1 from below */ 834 a &= SLOT_2_0; 835 p++; 836 b = b<<14; 837 b |= *p; 838 /* b: p1<<14 | p3 (unmasked) */ 839 if (!(b&0x80)) 840 { 841 b &= SLOT_2_0; 842 /* moved CSE1 up */ 843 /* a &= (0x7f<<14)|(0x7f); */ 844 a = a<<7; 845 a |= b; 846 *v = a; 847 return 4; 848 } 849 850 /* a: p0<<14 | p2 (masked) */ 851 /* b: p1<<14 | p3 (unmasked) */ 852 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 853 /* moved CSE1 up */ 854 /* a &= (0x7f<<14)|(0x7f); */ 855 b &= SLOT_2_0; 856 s = a; 857 /* s: p0<<14 | p2 (masked) */ 858 859 p++; 860 a = a<<14; 861 a |= *p; 862 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 863 if (!(a&0x80)) 864 { 865 /* we can skip these cause they were (effectively) done above 866 ** while calculating s */ 867 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 868 /* b &= (0x7f<<14)|(0x7f); */ 869 b = b<<7; 870 a |= b; 871 s = s>>18; 872 *v = ((u64)s)<<32 | a; 873 return 5; 874 } 875 876 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 877 s = s<<7; 878 s |= b; 879 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 880 881 p++; 882 b = b<<14; 883 b |= *p; 884 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 885 if (!(b&0x80)) 886 { 887 /* we can skip this cause it was (effectively) done above in calc'ing s */ 888 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 889 a &= SLOT_2_0; 890 a = a<<7; 891 a |= b; 892 s = s>>18; 893 *v = ((u64)s)<<32 | a; 894 return 6; 895 } 896 897 p++; 898 a = a<<14; 899 a |= *p; 900 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 901 if (!(a&0x80)) 902 { 903 a &= SLOT_4_2_0; 904 b &= SLOT_2_0; 905 b = b<<7; 906 a |= b; 907 s = s>>11; 908 *v = ((u64)s)<<32 | a; 909 return 7; 910 } 911 912 /* CSE2 from below */ 913 a &= SLOT_2_0; 914 p++; 915 b = b<<14; 916 b |= *p; 917 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 918 if (!(b&0x80)) 919 { 920 b &= SLOT_4_2_0; 921 /* moved CSE2 up */ 922 /* a &= (0x7f<<14)|(0x7f); */ 923 a = a<<7; 924 a |= b; 925 s = s>>4; 926 *v = ((u64)s)<<32 | a; 927 return 8; 928 } 929 930 p++; 931 a = a<<15; 932 a |= *p; 933 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 934 935 /* moved CSE2 up */ 936 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 937 b &= SLOT_2_0; 938 b = b<<8; 939 a |= b; 940 941 s = s<<4; 942 b = p[-4]; 943 b &= 0x7f; 944 b = b>>3; 945 s |= b; 946 947 *v = ((u64)s)<<32 | a; 948 949 return 9; 950 } 951 952 /* 953 ** Read a 32-bit variable-length integer from memory starting at p[0]. 954 ** Return the number of bytes read. The value is stored in *v. 955 ** 956 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 957 ** integer, then set *v to 0xffffffff. 958 ** 959 ** A MACRO version, getVarint32, is provided which inlines the 960 ** single-byte case. All code should use the MACRO version as 961 ** this function assumes the single-byte case has already been handled. 962 */ 963 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 964 u32 a,b; 965 966 /* The 1-byte case. Overwhelmingly the most common. Handled inline 967 ** by the getVarin32() macro */ 968 a = *p; 969 /* a: p0 (unmasked) */ 970 #ifndef getVarint32 971 if (!(a&0x80)) 972 { 973 /* Values between 0 and 127 */ 974 *v = a; 975 return 1; 976 } 977 #endif 978 979 /* The 2-byte case */ 980 p++; 981 b = *p; 982 /* b: p1 (unmasked) */ 983 if (!(b&0x80)) 984 { 985 /* Values between 128 and 16383 */ 986 a &= 0x7f; 987 a = a<<7; 988 *v = a | b; 989 return 2; 990 } 991 992 /* The 3-byte case */ 993 p++; 994 a = a<<14; 995 a |= *p; 996 /* a: p0<<14 | p2 (unmasked) */ 997 if (!(a&0x80)) 998 { 999 /* Values between 16384 and 2097151 */ 1000 a &= (0x7f<<14)|(0x7f); 1001 b &= 0x7f; 1002 b = b<<7; 1003 *v = a | b; 1004 return 3; 1005 } 1006 1007 /* A 32-bit varint is used to store size information in btrees. 1008 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1009 ** A 3-byte varint is sufficient, for example, to record the size 1010 ** of a 1048569-byte BLOB or string. 1011 ** 1012 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1013 ** rare larger cases can be handled by the slower 64-bit varint 1014 ** routine. 1015 */ 1016 #if 1 1017 { 1018 u64 v64; 1019 u8 n; 1020 1021 p -= 2; 1022 n = sqlite3GetVarint(p, &v64); 1023 assert( n>3 && n<=9 ); 1024 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1025 *v = 0xffffffff; 1026 }else{ 1027 *v = (u32)v64; 1028 } 1029 return n; 1030 } 1031 1032 #else 1033 /* For following code (kept for historical record only) shows an 1034 ** unrolling for the 3- and 4-byte varint cases. This code is 1035 ** slightly faster, but it is also larger and much harder to test. 1036 */ 1037 p++; 1038 b = b<<14; 1039 b |= *p; 1040 /* b: p1<<14 | p3 (unmasked) */ 1041 if (!(b&0x80)) 1042 { 1043 /* Values between 2097152 and 268435455 */ 1044 b &= (0x7f<<14)|(0x7f); 1045 a &= (0x7f<<14)|(0x7f); 1046 a = a<<7; 1047 *v = a | b; 1048 return 4; 1049 } 1050 1051 p++; 1052 a = a<<14; 1053 a |= *p; 1054 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1055 if (!(a&0x80)) 1056 { 1057 /* Values between 268435456 and 34359738367 */ 1058 a &= SLOT_4_2_0; 1059 b &= SLOT_4_2_0; 1060 b = b<<7; 1061 *v = a | b; 1062 return 5; 1063 } 1064 1065 /* We can only reach this point when reading a corrupt database 1066 ** file. In that case we are not in any hurry. Use the (relatively 1067 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1068 ** value. */ 1069 { 1070 u64 v64; 1071 u8 n; 1072 1073 p -= 4; 1074 n = sqlite3GetVarint(p, &v64); 1075 assert( n>5 && n<=9 ); 1076 *v = (u32)v64; 1077 return n; 1078 } 1079 #endif 1080 } 1081 1082 /* 1083 ** Return the number of bytes that will be needed to store the given 1084 ** 64-bit integer. 1085 */ 1086 int sqlite3VarintLen(u64 v){ 1087 int i; 1088 for(i=1; (v >>= 7)!=0; i++){ assert( i<9 ); } 1089 return i; 1090 } 1091 1092 1093 /* 1094 ** Read or write a four-byte big-endian integer value. 1095 */ 1096 u32 sqlite3Get4byte(const u8 *p){ 1097 #if SQLITE_BYTEORDER==4321 1098 u32 x; 1099 memcpy(&x,p,4); 1100 return x; 1101 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1102 && defined(__GNUC__) && GCC_VERSION>=4003000 1103 u32 x; 1104 memcpy(&x,p,4); 1105 return __builtin_bswap32(x); 1106 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1107 && defined(_MSC_VER) && _MSC_VER>=1300 1108 u32 x; 1109 memcpy(&x,p,4); 1110 return _byteswap_ulong(x); 1111 #else 1112 testcase( p[0]&0x80 ); 1113 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1114 #endif 1115 } 1116 void sqlite3Put4byte(unsigned char *p, u32 v){ 1117 #if SQLITE_BYTEORDER==4321 1118 memcpy(p,&v,4); 1119 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1120 && defined(__GNUC__) && GCC_VERSION>=4003000 1121 u32 x = __builtin_bswap32(v); 1122 memcpy(p,&x,4); 1123 #elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \ 1124 && defined(_MSC_VER) && _MSC_VER>=1300 1125 u32 x = _byteswap_ulong(v); 1126 memcpy(p,&x,4); 1127 #else 1128 p[0] = (u8)(v>>24); 1129 p[1] = (u8)(v>>16); 1130 p[2] = (u8)(v>>8); 1131 p[3] = (u8)v; 1132 #endif 1133 } 1134 1135 1136 1137 /* 1138 ** Translate a single byte of Hex into an integer. 1139 ** This routine only works if h really is a valid hexadecimal 1140 ** character: 0..9a..fA..F 1141 */ 1142 u8 sqlite3HexToInt(int h){ 1143 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1144 #ifdef SQLITE_ASCII 1145 h += 9*(1&(h>>6)); 1146 #endif 1147 #ifdef SQLITE_EBCDIC 1148 h += 9*(1&~(h>>4)); 1149 #endif 1150 return (u8)(h & 0xf); 1151 } 1152 1153 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1154 /* 1155 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1156 ** value. Return a pointer to its binary value. Space to hold the 1157 ** binary value has been obtained from malloc and must be freed by 1158 ** the calling routine. 1159 */ 1160 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1161 char *zBlob; 1162 int i; 1163 1164 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1165 n--; 1166 if( zBlob ){ 1167 for(i=0; i<n; i+=2){ 1168 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1169 } 1170 zBlob[i/2] = 0; 1171 } 1172 return zBlob; 1173 } 1174 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1175 1176 /* 1177 ** Log an error that is an API call on a connection pointer that should 1178 ** not have been used. The "type" of connection pointer is given as the 1179 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1180 */ 1181 static void logBadConnection(const char *zType){ 1182 sqlite3_log(SQLITE_MISUSE, 1183 "API call with %s database connection pointer", 1184 zType 1185 ); 1186 } 1187 1188 /* 1189 ** Check to make sure we have a valid db pointer. This test is not 1190 ** foolproof but it does provide some measure of protection against 1191 ** misuse of the interface such as passing in db pointers that are 1192 ** NULL or which have been previously closed. If this routine returns 1193 ** 1 it means that the db pointer is valid and 0 if it should not be 1194 ** dereferenced for any reason. The calling function should invoke 1195 ** SQLITE_MISUSE immediately. 1196 ** 1197 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1198 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1199 ** open properly and is not fit for general use but which can be 1200 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1201 */ 1202 int sqlite3SafetyCheckOk(sqlite3 *db){ 1203 u32 magic; 1204 if( db==0 ){ 1205 logBadConnection("NULL"); 1206 return 0; 1207 } 1208 magic = db->magic; 1209 if( magic!=SQLITE_MAGIC_OPEN ){ 1210 if( sqlite3SafetyCheckSickOrOk(db) ){ 1211 testcase( sqlite3GlobalConfig.xLog!=0 ); 1212 logBadConnection("unopened"); 1213 } 1214 return 0; 1215 }else{ 1216 return 1; 1217 } 1218 } 1219 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1220 u32 magic; 1221 magic = db->magic; 1222 if( magic!=SQLITE_MAGIC_SICK && 1223 magic!=SQLITE_MAGIC_OPEN && 1224 magic!=SQLITE_MAGIC_BUSY ){ 1225 testcase( sqlite3GlobalConfig.xLog!=0 ); 1226 logBadConnection("invalid"); 1227 return 0; 1228 }else{ 1229 return 1; 1230 } 1231 } 1232 1233 /* 1234 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1235 ** the other 64-bit signed integer at *pA and store the result in *pA. 1236 ** Return 0 on success. Or if the operation would have resulted in an 1237 ** overflow, leave *pA unchanged and return 1. 1238 */ 1239 int sqlite3AddInt64(i64 *pA, i64 iB){ 1240 i64 iA = *pA; 1241 testcase( iA==0 ); testcase( iA==1 ); 1242 testcase( iB==-1 ); testcase( iB==0 ); 1243 if( iB>=0 ){ 1244 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1245 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1246 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1247 }else{ 1248 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1249 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1250 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1251 } 1252 *pA += iB; 1253 return 0; 1254 } 1255 int sqlite3SubInt64(i64 *pA, i64 iB){ 1256 testcase( iB==SMALLEST_INT64+1 ); 1257 if( iB==SMALLEST_INT64 ){ 1258 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1259 if( (*pA)>=0 ) return 1; 1260 *pA -= iB; 1261 return 0; 1262 }else{ 1263 return sqlite3AddInt64(pA, -iB); 1264 } 1265 } 1266 #define TWOPOWER32 (((i64)1)<<32) 1267 #define TWOPOWER31 (((i64)1)<<31) 1268 int sqlite3MulInt64(i64 *pA, i64 iB){ 1269 i64 iA = *pA; 1270 i64 iA1, iA0, iB1, iB0, r; 1271 1272 iA1 = iA/TWOPOWER32; 1273 iA0 = iA % TWOPOWER32; 1274 iB1 = iB/TWOPOWER32; 1275 iB0 = iB % TWOPOWER32; 1276 if( iA1==0 ){ 1277 if( iB1==0 ){ 1278 *pA *= iB; 1279 return 0; 1280 } 1281 r = iA0*iB1; 1282 }else if( iB1==0 ){ 1283 r = iA1*iB0; 1284 }else{ 1285 /* If both iA1 and iB1 are non-zero, overflow will result */ 1286 return 1; 1287 } 1288 testcase( r==(-TWOPOWER31)-1 ); 1289 testcase( r==(-TWOPOWER31) ); 1290 testcase( r==TWOPOWER31 ); 1291 testcase( r==TWOPOWER31-1 ); 1292 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1293 r *= TWOPOWER32; 1294 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1295 *pA = r; 1296 return 0; 1297 } 1298 1299 /* 1300 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1301 ** if the integer has a value of -2147483648, return +2147483647 1302 */ 1303 int sqlite3AbsInt32(int x){ 1304 if( x>=0 ) return x; 1305 if( x==(int)0x80000000 ) return 0x7fffffff; 1306 return -x; 1307 } 1308 1309 #ifdef SQLITE_ENABLE_8_3_NAMES 1310 /* 1311 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1312 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1313 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1314 ** three characters, then shorten the suffix on z[] to be the last three 1315 ** characters of the original suffix. 1316 ** 1317 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1318 ** do the suffix shortening regardless of URI parameter. 1319 ** 1320 ** Examples: 1321 ** 1322 ** test.db-journal => test.nal 1323 ** test.db-wal => test.wal 1324 ** test.db-shm => test.shm 1325 ** test.db-mj7f3319fa => test.9fa 1326 */ 1327 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1328 #if SQLITE_ENABLE_8_3_NAMES<2 1329 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1330 #endif 1331 { 1332 int i, sz; 1333 sz = sqlite3Strlen30(z); 1334 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1335 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1336 } 1337 } 1338 #endif 1339 1340 /* 1341 ** Find (an approximate) sum of two LogEst values. This computation is 1342 ** not a simple "+" operator because LogEst is stored as a logarithmic 1343 ** value. 1344 ** 1345 */ 1346 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1347 static const unsigned char x[] = { 1348 10, 10, /* 0,1 */ 1349 9, 9, /* 2,3 */ 1350 8, 8, /* 4,5 */ 1351 7, 7, 7, /* 6,7,8 */ 1352 6, 6, 6, /* 9,10,11 */ 1353 5, 5, 5, /* 12-14 */ 1354 4, 4, 4, 4, /* 15-18 */ 1355 3, 3, 3, 3, 3, 3, /* 19-24 */ 1356 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1357 }; 1358 if( a>=b ){ 1359 if( a>b+49 ) return a; 1360 if( a>b+31 ) return a+1; 1361 return a+x[a-b]; 1362 }else{ 1363 if( b>a+49 ) return b; 1364 if( b>a+31 ) return b+1; 1365 return b+x[b-a]; 1366 } 1367 } 1368 1369 /* 1370 ** Convert an integer into a LogEst. In other words, compute an 1371 ** approximation for 10*log2(x). 1372 */ 1373 LogEst sqlite3LogEst(u64 x){ 1374 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1375 LogEst y = 40; 1376 if( x<8 ){ 1377 if( x<2 ) return 0; 1378 while( x<8 ){ y -= 10; x <<= 1; } 1379 }else{ 1380 while( x>255 ){ y += 40; x >>= 4; } 1381 while( x>15 ){ y += 10; x >>= 1; } 1382 } 1383 return a[x&7] + y - 10; 1384 } 1385 1386 #ifndef SQLITE_OMIT_VIRTUALTABLE 1387 /* 1388 ** Convert a double into a LogEst 1389 ** In other words, compute an approximation for 10*log2(x). 1390 */ 1391 LogEst sqlite3LogEstFromDouble(double x){ 1392 u64 a; 1393 LogEst e; 1394 assert( sizeof(x)==8 && sizeof(a)==8 ); 1395 if( x<=1 ) return 0; 1396 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1397 memcpy(&a, &x, 8); 1398 e = (a>>52) - 1022; 1399 return e*10; 1400 } 1401 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1402 1403 /* 1404 ** Convert a LogEst into an integer. 1405 */ 1406 u64 sqlite3LogEstToInt(LogEst x){ 1407 u64 n; 1408 if( x<10 ) return 1; 1409 n = x%10; 1410 x /= 10; 1411 if( n>=5 ) n -= 2; 1412 else if( n>=1 ) n -= 1; 1413 if( x>=3 ){ 1414 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3); 1415 } 1416 return (n+8)>>(3-x); 1417 } 1418