1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 ** $Id: util.c,v 1.245 2008/12/10 22:15:00 drh Exp $ 18 */ 19 #include "sqliteInt.h" 20 #include <stdarg.h> 21 #include <ctype.h> 22 23 24 /* 25 ** Return true if the floating point value is Not a Number (NaN). 26 */ 27 int sqlite3IsNaN(double x){ 28 /* This NaN test sometimes fails if compiled on GCC with -ffast-math. 29 ** On the other hand, the use of -ffast-math comes with the following 30 ** warning: 31 ** 32 ** This option [-ffast-math] should never be turned on by any 33 ** -O option since it can result in incorrect output for programs 34 ** which depend on an exact implementation of IEEE or ISO 35 ** rules/specifications for math functions. 36 ** 37 ** Under MSVC, this NaN test may fail if compiled with a floating- 38 ** point precision mode other than /fp:precise. From the MSDN 39 ** documentation: 40 ** 41 ** The compiler [with /fp:precise] will properly handle comparisons 42 ** involving NaN. For example, x != x evaluates to true if x is NaN 43 ** ... 44 */ 45 #ifdef __FAST_MATH__ 46 # error SQLite will not work correctly with the -ffast-math option of GCC. 47 #endif 48 volatile double y = x; 49 volatile double z = y; 50 return y!=z; 51 } 52 53 /* 54 ** Compute a string length that is limited to what can be stored in 55 ** lower 30 bits of a 32-bit signed integer. 56 */ 57 int sqlite3Strlen30(const char *z){ 58 const char *z2 = z; 59 while( *z2 ){ z2++; } 60 return 0x3fffffff & (int)(z2 - z); 61 } 62 63 /* 64 ** Return the length of a string, except do not allow the string length 65 ** to exceed the SQLITE_LIMIT_LENGTH setting. 66 */ 67 int sqlite3Strlen(sqlite3 *db, const char *z){ 68 const char *z2 = z; 69 int len; 70 int x; 71 while( *z2 ){ z2++; } 72 x = (int)(z2 - z); 73 len = 0x7fffffff & x; 74 if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){ 75 return db->aLimit[SQLITE_LIMIT_LENGTH]; 76 }else{ 77 return len; 78 } 79 } 80 81 /* 82 ** Set the most recent error code and error string for the sqlite 83 ** handle "db". The error code is set to "err_code". 84 ** 85 ** If it is not NULL, string zFormat specifies the format of the 86 ** error string in the style of the printf functions: The following 87 ** format characters are allowed: 88 ** 89 ** %s Insert a string 90 ** %z A string that should be freed after use 91 ** %d Insert an integer 92 ** %T Insert a token 93 ** %S Insert the first element of a SrcList 94 ** 95 ** zFormat and any string tokens that follow it are assumed to be 96 ** encoded in UTF-8. 97 ** 98 ** To clear the most recent error for sqlite handle "db", sqlite3Error 99 ** should be called with err_code set to SQLITE_OK and zFormat set 100 ** to NULL. 101 */ 102 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 103 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 104 db->errCode = err_code; 105 if( zFormat ){ 106 char *z; 107 va_list ap; 108 va_start(ap, zFormat); 109 z = sqlite3VMPrintf(db, zFormat, ap); 110 va_end(ap); 111 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 112 }else{ 113 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 114 } 115 } 116 } 117 118 /* 119 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 120 ** The following formatting characters are allowed: 121 ** 122 ** %s Insert a string 123 ** %z A string that should be freed after use 124 ** %d Insert an integer 125 ** %T Insert a token 126 ** %S Insert the first element of a SrcList 127 ** 128 ** This function should be used to report any error that occurs whilst 129 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 130 ** last thing the sqlite3_prepare() function does is copy the error 131 ** stored by this function into the database handle using sqlite3Error(). 132 ** Function sqlite3Error() should be used during statement execution 133 ** (sqlite3_step() etc.). 134 */ 135 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 136 va_list ap; 137 sqlite3 *db = pParse->db; 138 pParse->nErr++; 139 sqlite3DbFree(db, pParse->zErrMsg); 140 va_start(ap, zFormat); 141 pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); 142 va_end(ap); 143 if( pParse->rc==SQLITE_OK ){ 144 pParse->rc = SQLITE_ERROR; 145 } 146 } 147 148 /* 149 ** Clear the error message in pParse, if any 150 */ 151 void sqlite3ErrorClear(Parse *pParse){ 152 sqlite3DbFree(pParse->db, pParse->zErrMsg); 153 pParse->zErrMsg = 0; 154 pParse->nErr = 0; 155 } 156 157 /* 158 ** Convert an SQL-style quoted string into a normal string by removing 159 ** the quote characters. The conversion is done in-place. If the 160 ** input does not begin with a quote character, then this routine 161 ** is a no-op. 162 ** 163 ** 2002-Feb-14: This routine is extended to remove MS-Access style 164 ** brackets from around identifers. For example: "[a-b-c]" becomes 165 ** "a-b-c". 166 */ 167 void sqlite3Dequote(char *z){ 168 char quote; 169 int i, j; 170 if( z==0 ) return; 171 quote = z[0]; 172 switch( quote ){ 173 case '\'': break; 174 case '"': break; 175 case '`': break; /* For MySQL compatibility */ 176 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 177 default: return; 178 } 179 for(i=1, j=0; z[i]; i++){ 180 if( z[i]==quote ){ 181 if( z[i+1]==quote ){ 182 z[j++] = quote; 183 i++; 184 }else{ 185 z[j++] = 0; 186 break; 187 } 188 }else{ 189 z[j++] = z[i]; 190 } 191 } 192 } 193 194 /* Convenient short-hand */ 195 #define UpperToLower sqlite3UpperToLower 196 197 /* 198 ** Some systems have stricmp(). Others have strcasecmp(). Because 199 ** there is no consistency, we will define our own. 200 */ 201 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 202 register unsigned char *a, *b; 203 a = (unsigned char *)zLeft; 204 b = (unsigned char *)zRight; 205 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 206 return UpperToLower[*a] - UpperToLower[*b]; 207 } 208 int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ 209 register unsigned char *a, *b; 210 a = (unsigned char *)zLeft; 211 b = (unsigned char *)zRight; 212 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 213 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 214 } 215 216 /* 217 ** Return TRUE if z is a pure numeric string. Return FALSE if the 218 ** string contains any character which is not part of a number. If 219 ** the string is numeric and contains the '.' character, set *realnum 220 ** to TRUE (otherwise FALSE). 221 ** 222 ** An empty string is considered non-numeric. 223 */ 224 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ 225 int incr = (enc==SQLITE_UTF8?1:2); 226 if( enc==SQLITE_UTF16BE ) z++; 227 if( *z=='-' || *z=='+' ) z += incr; 228 if( !isdigit(*(u8*)z) ){ 229 return 0; 230 } 231 z += incr; 232 if( realnum ) *realnum = 0; 233 while( isdigit(*(u8*)z) ){ z += incr; } 234 if( *z=='.' ){ 235 z += incr; 236 if( !isdigit(*(u8*)z) ) return 0; 237 while( isdigit(*(u8*)z) ){ z += incr; } 238 if( realnum ) *realnum = 1; 239 } 240 if( *z=='e' || *z=='E' ){ 241 z += incr; 242 if( *z=='+' || *z=='-' ) z += incr; 243 if( !isdigit(*(u8*)z) ) return 0; 244 while( isdigit(*(u8*)z) ){ z += incr; } 245 if( realnum ) *realnum = 1; 246 } 247 return *z==0; 248 } 249 250 /* 251 ** The string z[] is an ascii representation of a real number. 252 ** Convert this string to a double. 253 ** 254 ** This routine assumes that z[] really is a valid number. If it 255 ** is not, the result is undefined. 256 ** 257 ** This routine is used instead of the library atof() function because 258 ** the library atof() might want to use "," as the decimal point instead 259 ** of "." depending on how locale is set. But that would cause problems 260 ** for SQL. So this routine always uses "." regardless of locale. 261 */ 262 int sqlite3AtoF(const char *z, double *pResult){ 263 #ifndef SQLITE_OMIT_FLOATING_POINT 264 int sign = 1; 265 const char *zBegin = z; 266 LONGDOUBLE_TYPE v1 = 0.0; 267 int nSignificant = 0; 268 while( isspace(*(u8*)z) ) z++; 269 if( *z=='-' ){ 270 sign = -1; 271 z++; 272 }else if( *z=='+' ){ 273 z++; 274 } 275 while( z[0]=='0' ){ 276 z++; 277 } 278 while( isdigit(*(u8*)z) ){ 279 v1 = v1*10.0 + (*z - '0'); 280 z++; 281 nSignificant++; 282 } 283 if( *z=='.' ){ 284 LONGDOUBLE_TYPE divisor = 1.0; 285 z++; 286 if( nSignificant==0 ){ 287 while( z[0]=='0' ){ 288 divisor *= 10.0; 289 z++; 290 } 291 } 292 while( isdigit(*(u8*)z) ){ 293 if( nSignificant<18 ){ 294 v1 = v1*10.0 + (*z - '0'); 295 divisor *= 10.0; 296 nSignificant++; 297 } 298 z++; 299 } 300 v1 /= divisor; 301 } 302 if( *z=='e' || *z=='E' ){ 303 int esign = 1; 304 int eval = 0; 305 LONGDOUBLE_TYPE scale = 1.0; 306 z++; 307 if( *z=='-' ){ 308 esign = -1; 309 z++; 310 }else if( *z=='+' ){ 311 z++; 312 } 313 while( isdigit(*(u8*)z) ){ 314 eval = eval*10 + *z - '0'; 315 z++; 316 } 317 while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } 318 while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } 319 while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } 320 while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } 321 if( esign<0 ){ 322 v1 /= scale; 323 }else{ 324 v1 *= scale; 325 } 326 } 327 *pResult = (double)(sign<0 ? -v1 : v1); 328 return (int)(z - zBegin); 329 #else 330 return sqlite3Atoi64(z, pResult); 331 #endif /* SQLITE_OMIT_FLOATING_POINT */ 332 } 333 334 /* 335 ** Compare the 19-character string zNum against the text representation 336 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 337 ** if zNum is less than, equal to, or greater than the string. 338 ** 339 ** Unlike memcmp() this routine is guaranteed to return the difference 340 ** in the values of the last digit if the only difference is in the 341 ** last digit. So, for example, 342 ** 343 ** compare2pow63("9223372036854775800") 344 ** 345 ** will return -8. 346 */ 347 static int compare2pow63(const char *zNum){ 348 int c; 349 c = memcmp(zNum,"922337203685477580",18); 350 if( c==0 ){ 351 c = zNum[18] - '8'; 352 } 353 return c; 354 } 355 356 357 /* 358 ** Return TRUE if zNum is a 64-bit signed integer and write 359 ** the value of the integer into *pNum. If zNum is not an integer 360 ** or is an integer that is too large to be expressed with 64 bits, 361 ** then return false. 362 ** 363 ** When this routine was originally written it dealt with only 364 ** 32-bit numbers. At that time, it was much faster than the 365 ** atoi() library routine in RedHat 7.2. 366 */ 367 int sqlite3Atoi64(const char *zNum, i64 *pNum){ 368 i64 v = 0; 369 int neg; 370 int i, c; 371 const char *zStart; 372 while( isspace(*(u8*)zNum) ) zNum++; 373 if( *zNum=='-' ){ 374 neg = 1; 375 zNum++; 376 }else if( *zNum=='+' ){ 377 neg = 0; 378 zNum++; 379 }else{ 380 neg = 0; 381 } 382 zStart = zNum; 383 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ 384 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ 385 v = v*10 + c - '0'; 386 } 387 *pNum = neg ? -v : v; 388 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ 389 /* zNum is empty or contains non-numeric text or is longer 390 ** than 19 digits (thus guaranting that it is too large) */ 391 return 0; 392 }else if( i<19 ){ 393 /* Less than 19 digits, so we know that it fits in 64 bits */ 394 return 1; 395 }else{ 396 /* 19-digit numbers must be no larger than 9223372036854775807 if positive 397 ** or 9223372036854775808 if negative. Note that 9223372036854665808 398 ** is 2^63. */ 399 return compare2pow63(zNum)<neg; 400 } 401 } 402 403 /* 404 ** The string zNum represents an integer. There might be some other 405 ** information following the integer too, but that part is ignored. 406 ** If the integer that the prefix of zNum represents will fit in a 407 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. 408 ** 409 ** This routine returns FALSE for the string -9223372036854775808 even that 410 ** that number will, in theory fit in a 64-bit integer. Positive 411 ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return 412 ** false. 413 */ 414 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ 415 int i, c; 416 int neg = 0; 417 if( *zNum=='-' ){ 418 neg = 1; 419 zNum++; 420 }else if( *zNum=='+' ){ 421 zNum++; 422 } 423 if( negFlag ) neg = 1-neg; 424 while( *zNum=='0' ){ 425 zNum++; /* Skip leading zeros. Ticket #2454 */ 426 } 427 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} 428 if( i<19 ){ 429 /* Guaranteed to fit if less than 19 digits */ 430 return 1; 431 }else if( i>19 ){ 432 /* Guaranteed to be too big if greater than 19 digits */ 433 return 0; 434 }else{ 435 /* Compare against 2^63. */ 436 return compare2pow63(zNum)<neg; 437 } 438 } 439 440 /* 441 ** If zNum represents an integer that will fit in 32-bits, then set 442 ** *pValue to that integer and return true. Otherwise return false. 443 ** 444 ** Any non-numeric characters that following zNum are ignored. 445 ** This is different from sqlite3Atoi64() which requires the 446 ** input number to be zero-terminated. 447 */ 448 int sqlite3GetInt32(const char *zNum, int *pValue){ 449 sqlite_int64 v = 0; 450 int i, c; 451 int neg = 0; 452 if( zNum[0]=='-' ){ 453 neg = 1; 454 zNum++; 455 }else if( zNum[0]=='+' ){ 456 zNum++; 457 } 458 while( zNum[0]=='0' ) zNum++; 459 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 460 v = v*10 + c; 461 } 462 463 /* The longest decimal representation of a 32 bit integer is 10 digits: 464 ** 465 ** 1234567890 466 ** 2^31 -> 2147483648 467 */ 468 if( i>10 ){ 469 return 0; 470 } 471 if( v-neg>2147483647 ){ 472 return 0; 473 } 474 if( neg ){ 475 v = -v; 476 } 477 *pValue = (int)v; 478 return 1; 479 } 480 481 /* 482 ** The variable-length integer encoding is as follows: 483 ** 484 ** KEY: 485 ** A = 0xxxxxxx 7 bits of data and one flag bit 486 ** B = 1xxxxxxx 7 bits of data and one flag bit 487 ** C = xxxxxxxx 8 bits of data 488 ** 489 ** 7 bits - A 490 ** 14 bits - BA 491 ** 21 bits - BBA 492 ** 28 bits - BBBA 493 ** 35 bits - BBBBA 494 ** 42 bits - BBBBBA 495 ** 49 bits - BBBBBBA 496 ** 56 bits - BBBBBBBA 497 ** 64 bits - BBBBBBBBC 498 */ 499 500 /* 501 ** Write a 64-bit variable-length integer to memory starting at p[0]. 502 ** The length of data write will be between 1 and 9 bytes. The number 503 ** of bytes written is returned. 504 ** 505 ** A variable-length integer consists of the lower 7 bits of each byte 506 ** for all bytes that have the 8th bit set and one byte with the 8th 507 ** bit clear. Except, if we get to the 9th byte, it stores the full 508 ** 8 bits and is the last byte. 509 */ 510 int sqlite3PutVarint(unsigned char *p, u64 v){ 511 int i, j, n; 512 u8 buf[10]; 513 if( v & (((u64)0xff000000)<<32) ){ 514 p[8] = (u8)v; 515 v >>= 8; 516 for(i=7; i>=0; i--){ 517 p[i] = (u8)((v & 0x7f) | 0x80); 518 v >>= 7; 519 } 520 return 9; 521 } 522 n = 0; 523 do{ 524 buf[n++] = (u8)((v & 0x7f) | 0x80); 525 v >>= 7; 526 }while( v!=0 ); 527 buf[0] &= 0x7f; 528 assert( n<=9 ); 529 for(i=0, j=n-1; j>=0; j--, i++){ 530 p[i] = buf[j]; 531 } 532 return n; 533 } 534 535 /* 536 ** This routine is a faster version of sqlite3PutVarint() that only 537 ** works for 32-bit positive integers and which is optimized for 538 ** the common case of small integers. A MACRO version, putVarint32, 539 ** is provided which inlines the single-byte case. All code should use 540 ** the MACRO version as this function assumes the single-byte case has 541 ** already been handled. 542 */ 543 int sqlite3PutVarint32(unsigned char *p, u32 v){ 544 #ifndef putVarint32 545 if( (v & ~0x7f)==0 ){ 546 p[0] = v; 547 return 1; 548 } 549 #endif 550 if( (v & ~0x3fff)==0 ){ 551 p[0] = (u8)((v>>7) | 0x80); 552 p[1] = (u8)(v & 0x7f); 553 return 2; 554 } 555 return sqlite3PutVarint(p, v); 556 } 557 558 /* 559 ** Read a 64-bit variable-length integer from memory starting at p[0]. 560 ** Return the number of bytes read. The value is stored in *v. 561 */ 562 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 563 u32 a,b,s; 564 565 a = *p; 566 /* a: p0 (unmasked) */ 567 if (!(a&0x80)) 568 { 569 *v = a; 570 return 1; 571 } 572 573 p++; 574 b = *p; 575 /* b: p1 (unmasked) */ 576 if (!(b&0x80)) 577 { 578 a &= 0x7f; 579 a = a<<7; 580 a |= b; 581 *v = a; 582 return 2; 583 } 584 585 p++; 586 a = a<<14; 587 a |= *p; 588 /* a: p0<<14 | p2 (unmasked) */ 589 if (!(a&0x80)) 590 { 591 a &= (0x7f<<14)|(0x7f); 592 b &= 0x7f; 593 b = b<<7; 594 a |= b; 595 *v = a; 596 return 3; 597 } 598 599 /* CSE1 from below */ 600 a &= (0x7f<<14)|(0x7f); 601 p++; 602 b = b<<14; 603 b |= *p; 604 /* b: p1<<14 | p3 (unmasked) */ 605 if (!(b&0x80)) 606 { 607 b &= (0x7f<<14)|(0x7f); 608 /* moved CSE1 up */ 609 /* a &= (0x7f<<14)|(0x7f); */ 610 a = a<<7; 611 a |= b; 612 *v = a; 613 return 4; 614 } 615 616 /* a: p0<<14 | p2 (masked) */ 617 /* b: p1<<14 | p3 (unmasked) */ 618 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 619 /* moved CSE1 up */ 620 /* a &= (0x7f<<14)|(0x7f); */ 621 b &= (0x7f<<14)|(0x7f); 622 s = a; 623 /* s: p0<<14 | p2 (masked) */ 624 625 p++; 626 a = a<<14; 627 a |= *p; 628 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 629 if (!(a&0x80)) 630 { 631 /* we can skip these cause they were (effectively) done above in calc'ing s */ 632 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 633 /* b &= (0x7f<<14)|(0x7f); */ 634 b = b<<7; 635 a |= b; 636 s = s>>18; 637 *v = ((u64)s)<<32 | a; 638 return 5; 639 } 640 641 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 642 s = s<<7; 643 s |= b; 644 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 645 646 p++; 647 b = b<<14; 648 b |= *p; 649 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 650 if (!(b&0x80)) 651 { 652 /* we can skip this cause it was (effectively) done above in calc'ing s */ 653 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 654 a &= (0x7f<<14)|(0x7f); 655 a = a<<7; 656 a |= b; 657 s = s>>18; 658 *v = ((u64)s)<<32 | a; 659 return 6; 660 } 661 662 p++; 663 a = a<<14; 664 a |= *p; 665 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 666 if (!(a&0x80)) 667 { 668 a &= (0x7f<<28)|(0x7f<<14)|(0x7f); 669 b &= (0x7f<<14)|(0x7f); 670 b = b<<7; 671 a |= b; 672 s = s>>11; 673 *v = ((u64)s)<<32 | a; 674 return 7; 675 } 676 677 /* CSE2 from below */ 678 a &= (0x7f<<14)|(0x7f); 679 p++; 680 b = b<<14; 681 b |= *p; 682 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 683 if (!(b&0x80)) 684 { 685 b &= (0x7f<<28)|(0x7f<<14)|(0x7f); 686 /* moved CSE2 up */ 687 /* a &= (0x7f<<14)|(0x7f); */ 688 a = a<<7; 689 a |= b; 690 s = s>>4; 691 *v = ((u64)s)<<32 | a; 692 return 8; 693 } 694 695 p++; 696 a = a<<15; 697 a |= *p; 698 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 699 700 /* moved CSE2 up */ 701 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 702 b &= (0x7f<<14)|(0x7f); 703 b = b<<8; 704 a |= b; 705 706 s = s<<4; 707 b = p[-4]; 708 b &= 0x7f; 709 b = b>>3; 710 s |= b; 711 712 *v = ((u64)s)<<32 | a; 713 714 return 9; 715 } 716 717 /* 718 ** Read a 32-bit variable-length integer from memory starting at p[0]. 719 ** Return the number of bytes read. The value is stored in *v. 720 ** A MACRO version, getVarint32, is provided which inlines the 721 ** single-byte case. All code should use the MACRO version as 722 ** this function assumes the single-byte case has already been handled. 723 */ 724 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 725 u32 a,b; 726 727 a = *p; 728 /* a: p0 (unmasked) */ 729 #ifndef getVarint32 730 if (!(a&0x80)) 731 { 732 *v = a; 733 return 1; 734 } 735 #endif 736 737 p++; 738 b = *p; 739 /* b: p1 (unmasked) */ 740 if (!(b&0x80)) 741 { 742 a &= 0x7f; 743 a = a<<7; 744 *v = a | b; 745 return 2; 746 } 747 748 p++; 749 a = a<<14; 750 a |= *p; 751 /* a: p0<<14 | p2 (unmasked) */ 752 if (!(a&0x80)) 753 { 754 a &= (0x7f<<14)|(0x7f); 755 b &= 0x7f; 756 b = b<<7; 757 *v = a | b; 758 return 3; 759 } 760 761 p++; 762 b = b<<14; 763 b |= *p; 764 /* b: p1<<14 | p3 (unmasked) */ 765 if (!(b&0x80)) 766 { 767 b &= (0x7f<<14)|(0x7f); 768 a &= (0x7f<<14)|(0x7f); 769 a = a<<7; 770 *v = a | b; 771 return 4; 772 } 773 774 p++; 775 a = a<<14; 776 a |= *p; 777 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 778 if (!(a&0x80)) 779 { 780 a &= (0x7f<<28)|(0x7f<<14)|(0x7f); 781 b &= (0x7f<<28)|(0x7f<<14)|(0x7f); 782 b = b<<7; 783 *v = a | b; 784 return 5; 785 } 786 787 /* We can only reach this point when reading a corrupt database 788 ** file. In that case we are not in any hurry. Use the (relatively 789 ** slow) general-purpose sqlite3GetVarint() routine to extract the 790 ** value. */ 791 { 792 u64 v64; 793 u8 n; 794 795 p -= 4; 796 n = sqlite3GetVarint(p, &v64); 797 assert( n>5 && n<=9 ); 798 *v = (u32)v64; 799 return n; 800 } 801 } 802 803 /* 804 ** Return the number of bytes that will be needed to store the given 805 ** 64-bit integer. 806 */ 807 int sqlite3VarintLen(u64 v){ 808 int i = 0; 809 do{ 810 i++; 811 v >>= 7; 812 }while( v!=0 && i<9 ); 813 return i; 814 } 815 816 817 /* 818 ** Read or write a four-byte big-endian integer value. 819 */ 820 u32 sqlite3Get4byte(const u8 *p){ 821 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 822 } 823 void sqlite3Put4byte(unsigned char *p, u32 v){ 824 p[0] = (u8)(v>>24); 825 p[1] = (u8)(v>>16); 826 p[2] = (u8)(v>>8); 827 p[3] = (u8)v; 828 } 829 830 831 832 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 833 /* 834 ** Translate a single byte of Hex into an integer. 835 ** This routinen only works if h really is a valid hexadecimal 836 ** character: 0..9a..fA..F 837 */ 838 static u8 hexToInt(int h){ 839 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 840 #ifdef SQLITE_ASCII 841 h += 9*(1&(h>>6)); 842 #endif 843 #ifdef SQLITE_EBCDIC 844 h += 9*(1&~(h>>4)); 845 #endif 846 return (u8)(h & 0xf); 847 } 848 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 849 850 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 851 /* 852 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 853 ** value. Return a pointer to its binary value. Space to hold the 854 ** binary value has been obtained from malloc and must be freed by 855 ** the calling routine. 856 */ 857 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 858 char *zBlob; 859 int i; 860 861 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 862 n--; 863 if( zBlob ){ 864 for(i=0; i<n; i+=2){ 865 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 866 } 867 zBlob[i/2] = 0; 868 } 869 return zBlob; 870 } 871 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 872 873 874 /* 875 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. 876 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN 877 ** when this routine is called. 878 ** 879 ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN 880 ** value indicates that the database connection passed into the API is 881 ** open and is not being used by another thread. By changing the value 882 ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. 883 ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN 884 ** when the API exits. 885 ** 886 ** This routine is a attempt to detect if two threads use the 887 ** same sqlite* pointer at the same time. There is a race 888 ** condition so it is possible that the error is not detected. 889 ** But usually the problem will be seen. The result will be an 890 ** error which can be used to debug the application that is 891 ** using SQLite incorrectly. 892 ** 893 ** Ticket #202: If db->magic is not a valid open value, take care not 894 ** to modify the db structure at all. It could be that db is a stale 895 ** pointer. In other words, it could be that there has been a prior 896 ** call to sqlite3_close(db) and db has been deallocated. And we do 897 ** not want to write into deallocated memory. 898 */ 899 #ifdef SQLITE_DEBUG 900 int sqlite3SafetyOn(sqlite3 *db){ 901 if( db->magic==SQLITE_MAGIC_OPEN ){ 902 db->magic = SQLITE_MAGIC_BUSY; 903 assert( sqlite3_mutex_held(db->mutex) ); 904 return 0; 905 }else if( db->magic==SQLITE_MAGIC_BUSY ){ 906 db->magic = SQLITE_MAGIC_ERROR; 907 db->u1.isInterrupted = 1; 908 } 909 return 1; 910 } 911 #endif 912 913 /* 914 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. 915 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY 916 ** when this routine is called. 917 */ 918 #ifdef SQLITE_DEBUG 919 int sqlite3SafetyOff(sqlite3 *db){ 920 if( db->magic==SQLITE_MAGIC_BUSY ){ 921 db->magic = SQLITE_MAGIC_OPEN; 922 assert( sqlite3_mutex_held(db->mutex) ); 923 return 0; 924 }else{ 925 db->magic = SQLITE_MAGIC_ERROR; 926 db->u1.isInterrupted = 1; 927 return 1; 928 } 929 } 930 #endif 931 932 /* 933 ** Check to make sure we have a valid db pointer. This test is not 934 ** foolproof but it does provide some measure of protection against 935 ** misuse of the interface such as passing in db pointers that are 936 ** NULL or which have been previously closed. If this routine returns 937 ** 1 it means that the db pointer is valid and 0 if it should not be 938 ** dereferenced for any reason. The calling function should invoke 939 ** SQLITE_MISUSE immediately. 940 ** 941 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 942 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 943 ** open properly and is not fit for general use but which can be 944 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 945 */ 946 int sqlite3SafetyCheckOk(sqlite3 *db){ 947 u32 magic; 948 if( db==0 ) return 0; 949 magic = db->magic; 950 if( magic!=SQLITE_MAGIC_OPEN && 951 magic!=SQLITE_MAGIC_BUSY ) return 0; 952 return 1; 953 } 954 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 955 u32 magic; 956 if( db==0 ) return 0; 957 magic = db->magic; 958 if( magic!=SQLITE_MAGIC_SICK && 959 magic!=SQLITE_MAGIC_OPEN && 960 magic!=SQLITE_MAGIC_BUSY ) return 0; 961 return 1; 962 } 963