1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifndef SQLITE_OMIT_FLOATING_POINT 21 #include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 /* 35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, 36 ** or to bypass normal error detection during testing in order to let 37 ** execute proceed futher downstream. 38 ** 39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The 40 ** sqlite3FaultSim() function only returns non-zero during testing. 41 ** 42 ** During testing, if the test harness has set a fault-sim callback using 43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then 44 ** each call to sqlite3FaultSim() is relayed to that application-supplied 45 ** callback and the integer return value form the application-supplied 46 ** callback is returned by sqlite3FaultSim(). 47 ** 48 ** The integer argument to sqlite3FaultSim() is a code to identify which 49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() 50 ** should have a unique code. To prevent legacy testing applications from 51 ** breaking, the codes should not be changed or reused. 52 */ 53 #ifndef SQLITE_UNTESTABLE 54 int sqlite3FaultSim(int iTest){ 55 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; 56 return xCallback ? xCallback(iTest) : SQLITE_OK; 57 } 58 #endif 59 60 #ifndef SQLITE_OMIT_FLOATING_POINT 61 /* 62 ** Return true if the floating point value is Not a Number (NaN). 63 */ 64 int sqlite3IsNaN(double x){ 65 u64 y; 66 memcpy(&y,&x,sizeof(y)); 67 return IsNaN(y); 68 } 69 #endif /* SQLITE_OMIT_FLOATING_POINT */ 70 71 /* 72 ** Compute a string length that is limited to what can be stored in 73 ** lower 30 bits of a 32-bit signed integer. 74 ** 75 ** The value returned will never be negative. Nor will it ever be greater 76 ** than the actual length of the string. For very long strings (greater 77 ** than 1GiB) the value returned might be less than the true string length. 78 */ 79 int sqlite3Strlen30(const char *z){ 80 if( z==0 ) return 0; 81 return 0x3fffffff & (int)strlen(z); 82 } 83 84 /* 85 ** Return the declared type of a column. Or return zDflt if the column 86 ** has no declared type. 87 ** 88 ** The column type is an extra string stored after the zero-terminator on 89 ** the column name if and only if the COLFLAG_HASTYPE flag is set. 90 */ 91 char *sqlite3ColumnType(Column *pCol, char *zDflt){ 92 if( pCol->colFlags & COLFLAG_HASTYPE ){ 93 return pCol->zName + strlen(pCol->zName) + 1; 94 }else{ 95 return zDflt; 96 } 97 } 98 99 /* 100 ** Helper function for sqlite3Error() - called rarely. Broken out into 101 ** a separate routine to avoid unnecessary register saves on entry to 102 ** sqlite3Error(). 103 */ 104 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ 105 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 106 sqlite3SystemError(db, err_code); 107 } 108 109 /* 110 ** Set the current error code to err_code and clear any prior error message. 111 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates 112 ** that would be appropriate. 113 */ 114 void sqlite3Error(sqlite3 *db, int err_code){ 115 assert( db!=0 ); 116 db->errCode = err_code; 117 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); 118 } 119 120 /* 121 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state 122 ** and error message. 123 */ 124 void sqlite3ErrorClear(sqlite3 *db){ 125 assert( db!=0 ); 126 db->errCode = SQLITE_OK; 127 if( db->pErr ) sqlite3ValueSetNull(db->pErr); 128 } 129 130 /* 131 ** Load the sqlite3.iSysErrno field if that is an appropriate thing 132 ** to do based on the SQLite error code in rc. 133 */ 134 void sqlite3SystemError(sqlite3 *db, int rc){ 135 if( rc==SQLITE_IOERR_NOMEM ) return; 136 rc &= 0xff; 137 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ 138 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); 139 } 140 } 141 142 /* 143 ** Set the most recent error code and error string for the sqlite 144 ** handle "db". The error code is set to "err_code". 145 ** 146 ** If it is not NULL, string zFormat specifies the format of the 147 ** error string in the style of the printf functions: The following 148 ** format characters are allowed: 149 ** 150 ** %s Insert a string 151 ** %z A string that should be freed after use 152 ** %d Insert an integer 153 ** %T Insert a token 154 ** %S Insert the first element of a SrcList 155 ** 156 ** zFormat and any string tokens that follow it are assumed to be 157 ** encoded in UTF-8. 158 ** 159 ** To clear the most recent error for sqlite handle "db", sqlite3Error 160 ** should be called with err_code set to SQLITE_OK and zFormat set 161 ** to NULL. 162 */ 163 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ 164 assert( db!=0 ); 165 db->errCode = err_code; 166 sqlite3SystemError(db, err_code); 167 if( zFormat==0 ){ 168 sqlite3Error(db, err_code); 169 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ 170 char *z; 171 va_list ap; 172 va_start(ap, zFormat); 173 z = sqlite3VMPrintf(db, zFormat, ap); 174 va_end(ap); 175 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 176 } 177 } 178 179 /* 180 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 181 ** The following formatting characters are allowed: 182 ** 183 ** %s Insert a string 184 ** %z A string that should be freed after use 185 ** %d Insert an integer 186 ** %T Insert a token 187 ** %S Insert the first element of a SrcList 188 ** 189 ** This function should be used to report any error that occurs while 190 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 191 ** last thing the sqlite3_prepare() function does is copy the error 192 ** stored by this function into the database handle using sqlite3Error(). 193 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used 194 ** during statement execution (sqlite3_step() etc.). 195 */ 196 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 197 char *zMsg; 198 va_list ap; 199 sqlite3 *db = pParse->db; 200 va_start(ap, zFormat); 201 zMsg = sqlite3VMPrintf(db, zFormat, ap); 202 va_end(ap); 203 if( db->suppressErr ){ 204 sqlite3DbFree(db, zMsg); 205 }else{ 206 pParse->nErr++; 207 sqlite3DbFree(db, pParse->zErrMsg); 208 pParse->zErrMsg = zMsg; 209 pParse->rc = SQLITE_ERROR; 210 pParse->pWith = 0; 211 } 212 } 213 214 /* 215 ** If database connection db is currently parsing SQL, then transfer 216 ** error code errCode to that parser if the parser has not already 217 ** encountered some other kind of error. 218 */ 219 int sqlite3ErrorToParser(sqlite3 *db, int errCode){ 220 Parse *pParse; 221 if( db==0 || (pParse = db->pParse)==0 ) return errCode; 222 pParse->rc = errCode; 223 pParse->nErr++; 224 return errCode; 225 } 226 227 /* 228 ** Convert an SQL-style quoted string into a normal string by removing 229 ** the quote characters. The conversion is done in-place. If the 230 ** input does not begin with a quote character, then this routine 231 ** is a no-op. 232 ** 233 ** The input string must be zero-terminated. A new zero-terminator 234 ** is added to the dequoted string. 235 ** 236 ** The return value is -1 if no dequoting occurs or the length of the 237 ** dequoted string, exclusive of the zero terminator, if dequoting does 238 ** occur. 239 ** 240 ** 2002-02-14: This routine is extended to remove MS-Access style 241 ** brackets from around identifiers. For example: "[a-b-c]" becomes 242 ** "a-b-c". 243 */ 244 void sqlite3Dequote(char *z){ 245 char quote; 246 int i, j; 247 if( z==0 ) return; 248 quote = z[0]; 249 if( !sqlite3Isquote(quote) ) return; 250 if( quote=='[' ) quote = ']'; 251 for(i=1, j=0;; i++){ 252 assert( z[i] ); 253 if( z[i]==quote ){ 254 if( z[i+1]==quote ){ 255 z[j++] = quote; 256 i++; 257 }else{ 258 break; 259 } 260 }else{ 261 z[j++] = z[i]; 262 } 263 } 264 z[j] = 0; 265 } 266 void sqlite3DequoteExpr(Expr *p){ 267 assert( sqlite3Isquote(p->u.zToken[0]) ); 268 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; 269 sqlite3Dequote(p->u.zToken); 270 } 271 272 /* 273 ** If the input token p is quoted, try to adjust the token to remove 274 ** the quotes. This is not always possible: 275 ** 276 ** "abc" -> abc 277 ** "ab""cd" -> (not possible because of the interior "") 278 ** 279 ** Remove the quotes if possible. This is a optimization. The overall 280 ** system should still return the correct answer even if this routine 281 ** is always a no-op. 282 */ 283 void sqlite3DequoteToken(Token *p){ 284 int i; 285 if( p->n<2 ) return; 286 if( !sqlite3Isquote(p->z[0]) ) return; 287 for(i=1; i<p->n-1; i++){ 288 if( sqlite3Isquote(p->z[i]) ) return; 289 } 290 p->n -= 2; 291 p->z++; 292 } 293 294 /* 295 ** Generate a Token object from a string 296 */ 297 void sqlite3TokenInit(Token *p, char *z){ 298 p->z = z; 299 p->n = sqlite3Strlen30(z); 300 } 301 302 /* Convenient short-hand */ 303 #define UpperToLower sqlite3UpperToLower 304 305 /* 306 ** Some systems have stricmp(). Others have strcasecmp(). Because 307 ** there is no consistency, we will define our own. 308 ** 309 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 310 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 311 ** the contents of two buffers containing UTF-8 strings in a 312 ** case-independent fashion, using the same definition of "case 313 ** independence" that SQLite uses internally when comparing identifiers. 314 */ 315 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 316 if( zLeft==0 ){ 317 return zRight ? -1 : 0; 318 }else if( zRight==0 ){ 319 return 1; 320 } 321 return sqlite3StrICmp(zLeft, zRight); 322 } 323 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 324 unsigned char *a, *b; 325 int c, x; 326 a = (unsigned char *)zLeft; 327 b = (unsigned char *)zRight; 328 for(;;){ 329 c = *a; 330 x = *b; 331 if( c==x ){ 332 if( c==0 ) break; 333 }else{ 334 c = (int)UpperToLower[c] - (int)UpperToLower[x]; 335 if( c ) break; 336 } 337 a++; 338 b++; 339 } 340 return c; 341 } 342 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 343 register unsigned char *a, *b; 344 if( zLeft==0 ){ 345 return zRight ? -1 : 0; 346 }else if( zRight==0 ){ 347 return 1; 348 } 349 a = (unsigned char *)zLeft; 350 b = (unsigned char *)zRight; 351 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 352 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 353 } 354 355 /* 356 ** Compute an 8-bit hash on a string that is insensitive to case differences 357 */ 358 u8 sqlite3StrIHash(const char *z){ 359 u8 h = 0; 360 if( z==0 ) return 0; 361 while( z[0] ){ 362 h += UpperToLower[(unsigned char)z[0]]; 363 z++; 364 } 365 return h; 366 } 367 368 /* 369 ** Compute 10 to the E-th power. Examples: E==1 results in 10. 370 ** E==2 results in 100. E==50 results in 1.0e50. 371 ** 372 ** This routine only works for values of E between 1 and 341. 373 */ 374 static LONGDOUBLE_TYPE sqlite3Pow10(int E){ 375 #if defined(_MSC_VER) 376 static const LONGDOUBLE_TYPE x[] = { 377 1.0e+001L, 378 1.0e+002L, 379 1.0e+004L, 380 1.0e+008L, 381 1.0e+016L, 382 1.0e+032L, 383 1.0e+064L, 384 1.0e+128L, 385 1.0e+256L 386 }; 387 LONGDOUBLE_TYPE r = 1.0; 388 int i; 389 assert( E>=0 && E<=307 ); 390 for(i=0; E!=0; i++, E >>=1){ 391 if( E & 1 ) r *= x[i]; 392 } 393 return r; 394 #else 395 LONGDOUBLE_TYPE x = 10.0; 396 LONGDOUBLE_TYPE r = 1.0; 397 while(1){ 398 if( E & 1 ) r *= x; 399 E >>= 1; 400 if( E==0 ) break; 401 x *= x; 402 } 403 return r; 404 #endif 405 } 406 407 /* 408 ** The string z[] is an text representation of a real number. 409 ** Convert this string to a double and write it into *pResult. 410 ** 411 ** The string z[] is length bytes in length (bytes, not characters) and 412 ** uses the encoding enc. The string is not necessarily zero-terminated. 413 ** 414 ** Return TRUE if the result is a valid real number (or integer) and FALSE 415 ** if the string is empty or contains extraneous text. More specifically 416 ** return 417 ** 1 => The input string is a pure integer 418 ** 2 or more => The input has a decimal point or eNNN clause 419 ** 0 or less => The input string is not a valid number 420 ** -1 => Not a valid number, but has a valid prefix which 421 ** includes a decimal point and/or an eNNN clause 422 ** 423 ** Valid numbers are in one of these formats: 424 ** 425 ** [+-]digits[E[+-]digits] 426 ** [+-]digits.[digits][E[+-]digits] 427 ** [+-].digits[E[+-]digits] 428 ** 429 ** Leading and trailing whitespace is ignored for the purpose of determining 430 ** validity. 431 ** 432 ** If some prefix of the input string is a valid number, this routine 433 ** returns FALSE but it still converts the prefix and writes the result 434 ** into *pResult. 435 */ 436 #if defined(_MSC_VER) 437 #pragma warning(disable : 4756) 438 #endif 439 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 440 #ifndef SQLITE_OMIT_FLOATING_POINT 441 int incr; 442 const char *zEnd; 443 /* sign * significand * (10 ^ (esign * exponent)) */ 444 int sign = 1; /* sign of significand */ 445 i64 s = 0; /* significand */ 446 int d = 0; /* adjust exponent for shifting decimal point */ 447 int esign = 1; /* sign of exponent */ 448 int e = 0; /* exponent */ 449 int eValid = 1; /* True exponent is either not used or is well-formed */ 450 double result; 451 int nDigit = 0; /* Number of digits processed */ 452 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ 453 454 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 455 *pResult = 0.0; /* Default return value, in case of an error */ 456 if( length==0 ) return 0; 457 458 if( enc==SQLITE_UTF8 ){ 459 incr = 1; 460 zEnd = z + length; 461 }else{ 462 int i; 463 incr = 2; 464 length &= ~1; 465 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 466 testcase( enc==SQLITE_UTF16LE ); 467 testcase( enc==SQLITE_UTF16BE ); 468 for(i=3-enc; i<length && z[i]==0; i+=2){} 469 if( i<length ) eType = -100; 470 zEnd = &z[i^1]; 471 z += (enc&1); 472 } 473 474 /* skip leading spaces */ 475 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 476 if( z>=zEnd ) return 0; 477 478 /* get sign of significand */ 479 if( *z=='-' ){ 480 sign = -1; 481 z+=incr; 482 }else if( *z=='+' ){ 483 z+=incr; 484 } 485 486 /* copy max significant digits to significand */ 487 while( z<zEnd && sqlite3Isdigit(*z) ){ 488 s = s*10 + (*z - '0'); 489 z+=incr; nDigit++; 490 if( s>=((LARGEST_INT64-9)/10) ){ 491 /* skip non-significant significand digits 492 ** (increase exponent by d to shift decimal left) */ 493 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } 494 } 495 } 496 if( z>=zEnd ) goto do_atof_calc; 497 498 /* if decimal point is present */ 499 if( *z=='.' ){ 500 z+=incr; 501 eType++; 502 /* copy digits from after decimal to significand 503 ** (decrease exponent by d to shift decimal right) */ 504 while( z<zEnd && sqlite3Isdigit(*z) ){ 505 if( s<((LARGEST_INT64-9)/10) ){ 506 s = s*10 + (*z - '0'); 507 d--; 508 nDigit++; 509 } 510 z+=incr; 511 } 512 } 513 if( z>=zEnd ) goto do_atof_calc; 514 515 /* if exponent is present */ 516 if( *z=='e' || *z=='E' ){ 517 z+=incr; 518 eValid = 0; 519 eType++; 520 521 /* This branch is needed to avoid a (harmless) buffer overread. The 522 ** special comment alerts the mutation tester that the correct answer 523 ** is obtained even if the branch is omitted */ 524 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ 525 526 /* get sign of exponent */ 527 if( *z=='-' ){ 528 esign = -1; 529 z+=incr; 530 }else if( *z=='+' ){ 531 z+=incr; 532 } 533 /* copy digits to exponent */ 534 while( z<zEnd && sqlite3Isdigit(*z) ){ 535 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 536 z+=incr; 537 eValid = 1; 538 } 539 } 540 541 /* skip trailing spaces */ 542 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 543 544 do_atof_calc: 545 /* adjust exponent by d, and update sign */ 546 e = (e*esign) + d; 547 if( e<0 ) { 548 esign = -1; 549 e *= -1; 550 } else { 551 esign = 1; 552 } 553 554 if( s==0 ) { 555 /* In the IEEE 754 standard, zero is signed. */ 556 result = sign<0 ? -(double)0 : (double)0; 557 } else { 558 /* Attempt to reduce exponent. 559 ** 560 ** Branches that are not required for the correct answer but which only 561 ** help to obtain the correct answer faster are marked with special 562 ** comments, as a hint to the mutation tester. 563 */ 564 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ 565 if( esign>0 ){ 566 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ 567 s *= 10; 568 }else{ 569 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ 570 s /= 10; 571 } 572 e--; 573 } 574 575 /* adjust the sign of significand */ 576 s = sign<0 ? -s : s; 577 578 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ 579 result = (double)s; 580 }else{ 581 /* attempt to handle extremely small/large numbers better */ 582 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ 583 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ 584 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); 585 if( esign<0 ){ 586 result = s / scale; 587 result /= 1.0e+308; 588 }else{ 589 result = s * scale; 590 result *= 1.0e+308; 591 } 592 }else{ assert( e>=342 ); 593 if( esign<0 ){ 594 result = 0.0*s; 595 }else{ 596 #ifdef INFINITY 597 result = INFINITY*s; 598 #else 599 result = 1e308*1e308*s; /* Infinity */ 600 #endif 601 } 602 } 603 }else{ 604 LONGDOUBLE_TYPE scale = sqlite3Pow10(e); 605 if( esign<0 ){ 606 result = s / scale; 607 }else{ 608 result = s * scale; 609 } 610 } 611 } 612 } 613 614 /* store the result */ 615 *pResult = result; 616 617 /* return true if number and no extra non-whitespace chracters after */ 618 if( z==zEnd && nDigit>0 && eValid && eType>0 ){ 619 return eType; 620 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ 621 return -1; 622 }else{ 623 return 0; 624 } 625 #else 626 return !sqlite3Atoi64(z, pResult, length, enc); 627 #endif /* SQLITE_OMIT_FLOATING_POINT */ 628 } 629 #if defined(_MSC_VER) 630 #pragma warning(default : 4756) 631 #endif 632 633 /* 634 ** Render an signed 64-bit integer as text. Store the result in zOut[]. 635 ** 636 ** The caller must ensure that zOut[] is at least 21 bytes in size. 637 */ 638 void sqlite3Int64ToText(i64 v, char *zOut){ 639 int i; 640 u64 x; 641 char zTemp[22]; 642 if( v<0 ){ 643 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; 644 }else{ 645 x = v; 646 } 647 i = sizeof(zTemp)-2; 648 zTemp[sizeof(zTemp)-1] = 0; 649 do{ 650 zTemp[i--] = (x%10) + '0'; 651 x = x/10; 652 }while( x ); 653 if( v<0 ) zTemp[i--] = '-'; 654 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); 655 } 656 657 /* 658 ** Compare the 19-character string zNum against the text representation 659 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 660 ** if zNum is less than, equal to, or greater than the string. 661 ** Note that zNum must contain exactly 19 characters. 662 ** 663 ** Unlike memcmp() this routine is guaranteed to return the difference 664 ** in the values of the last digit if the only difference is in the 665 ** last digit. So, for example, 666 ** 667 ** compare2pow63("9223372036854775800", 1) 668 ** 669 ** will return -8. 670 */ 671 static int compare2pow63(const char *zNum, int incr){ 672 int c = 0; 673 int i; 674 /* 012345678901234567 */ 675 const char *pow63 = "922337203685477580"; 676 for(i=0; c==0 && i<18; i++){ 677 c = (zNum[i*incr]-pow63[i])*10; 678 } 679 if( c==0 ){ 680 c = zNum[18*incr] - '8'; 681 testcase( c==(-1) ); 682 testcase( c==0 ); 683 testcase( c==(+1) ); 684 } 685 return c; 686 } 687 688 /* 689 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This 690 ** routine does *not* accept hexadecimal notation. 691 ** 692 ** Returns: 693 ** 694 ** -1 Not even a prefix of the input text looks like an integer 695 ** 0 Successful transformation. Fits in a 64-bit signed integer. 696 ** 1 Excess non-space text after the integer value 697 ** 2 Integer too large for a 64-bit signed integer or is malformed 698 ** 3 Special case of 9223372036854775808 699 ** 700 ** length is the number of bytes in the string (bytes, not characters). 701 ** The string is not necessarily zero-terminated. The encoding is 702 ** given by enc. 703 */ 704 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 705 int incr; 706 u64 u = 0; 707 int neg = 0; /* assume positive */ 708 int i; 709 int c = 0; 710 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ 711 int rc; /* Baseline return code */ 712 const char *zStart; 713 const char *zEnd = zNum + length; 714 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); 715 if( enc==SQLITE_UTF8 ){ 716 incr = 1; 717 }else{ 718 incr = 2; 719 length &= ~1; 720 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); 721 for(i=3-enc; i<length && zNum[i]==0; i+=2){} 722 nonNum = i<length; 723 zEnd = &zNum[i^1]; 724 zNum += (enc&1); 725 } 726 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 727 if( zNum<zEnd ){ 728 if( *zNum=='-' ){ 729 neg = 1; 730 zNum+=incr; 731 }else if( *zNum=='+' ){ 732 zNum+=incr; 733 } 734 } 735 zStart = zNum; 736 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 737 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 738 u = u*10 + c - '0'; 739 } 740 testcase( i==18*incr ); 741 testcase( i==19*incr ); 742 testcase( i==20*incr ); 743 if( u>LARGEST_INT64 ){ 744 /* This test and assignment is needed only to suppress UB warnings 745 ** from clang and -fsanitize=undefined. This test and assignment make 746 ** the code a little larger and slower, and no harm comes from omitting 747 ** them, but we must appaise the undefined-behavior pharisees. */ 748 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 749 }else if( neg ){ 750 *pNum = -(i64)u; 751 }else{ 752 *pNum = (i64)u; 753 } 754 rc = 0; 755 if( i==0 && zStart==zNum ){ /* No digits */ 756 rc = -1; 757 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ 758 rc = 1; 759 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ 760 int jj = i; 761 do{ 762 if( !sqlite3Isspace(zNum[jj]) ){ 763 rc = 1; /* Extra non-space text after the integer */ 764 break; 765 } 766 jj += incr; 767 }while( &zNum[jj]<zEnd ); 768 } 769 if( i<19*incr ){ 770 /* Less than 19 digits, so we know that it fits in 64 bits */ 771 assert( u<=LARGEST_INT64 ); 772 return rc; 773 }else{ 774 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 775 c = i>19*incr ? 1 : compare2pow63(zNum, incr); 776 if( c<0 ){ 777 /* zNum is less than 9223372036854775808 so it fits */ 778 assert( u<=LARGEST_INT64 ); 779 return rc; 780 }else{ 781 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; 782 if( c>0 ){ 783 /* zNum is greater than 9223372036854775808 so it overflows */ 784 return 2; 785 }else{ 786 /* zNum is exactly 9223372036854775808. Fits if negative. The 787 ** special case 2 overflow if positive */ 788 assert( u-1==LARGEST_INT64 ); 789 return neg ? rc : 3; 790 } 791 } 792 } 793 } 794 795 /* 796 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, 797 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, 798 ** whereas sqlite3Atoi64() does not. 799 ** 800 ** Returns: 801 ** 802 ** 0 Successful transformation. Fits in a 64-bit signed integer. 803 ** 1 Excess text after the integer value 804 ** 2 Integer too large for a 64-bit signed integer or is malformed 805 ** 3 Special case of 9223372036854775808 806 */ 807 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ 808 #ifndef SQLITE_OMIT_HEX_INTEGER 809 if( z[0]=='0' 810 && (z[1]=='x' || z[1]=='X') 811 ){ 812 u64 u = 0; 813 int i, k; 814 for(i=2; z[i]=='0'; i++){} 815 for(k=i; sqlite3Isxdigit(z[k]); k++){ 816 u = u*16 + sqlite3HexToInt(z[k]); 817 } 818 memcpy(pOut, &u, 8); 819 return (z[k]==0 && k-i<=16) ? 0 : 2; 820 }else 821 #endif /* SQLITE_OMIT_HEX_INTEGER */ 822 { 823 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); 824 } 825 } 826 827 /* 828 ** If zNum represents an integer that will fit in 32-bits, then set 829 ** *pValue to that integer and return true. Otherwise return false. 830 ** 831 ** This routine accepts both decimal and hexadecimal notation for integers. 832 ** 833 ** Any non-numeric characters that following zNum are ignored. 834 ** This is different from sqlite3Atoi64() which requires the 835 ** input number to be zero-terminated. 836 */ 837 int sqlite3GetInt32(const char *zNum, int *pValue){ 838 sqlite_int64 v = 0; 839 int i, c; 840 int neg = 0; 841 if( zNum[0]=='-' ){ 842 neg = 1; 843 zNum++; 844 }else if( zNum[0]=='+' ){ 845 zNum++; 846 } 847 #ifndef SQLITE_OMIT_HEX_INTEGER 848 else if( zNum[0]=='0' 849 && (zNum[1]=='x' || zNum[1]=='X') 850 && sqlite3Isxdigit(zNum[2]) 851 ){ 852 u32 u = 0; 853 zNum += 2; 854 while( zNum[0]=='0' ) zNum++; 855 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ 856 u = u*16 + sqlite3HexToInt(zNum[i]); 857 } 858 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ 859 memcpy(pValue, &u, 4); 860 return 1; 861 }else{ 862 return 0; 863 } 864 } 865 #endif 866 if( !sqlite3Isdigit(zNum[0]) ) return 0; 867 while( zNum[0]=='0' ) zNum++; 868 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 869 v = v*10 + c; 870 } 871 872 /* The longest decimal representation of a 32 bit integer is 10 digits: 873 ** 874 ** 1234567890 875 ** 2^31 -> 2147483648 876 */ 877 testcase( i==10 ); 878 if( i>10 ){ 879 return 0; 880 } 881 testcase( v-neg==2147483647 ); 882 if( v-neg>2147483647 ){ 883 return 0; 884 } 885 if( neg ){ 886 v = -v; 887 } 888 *pValue = (int)v; 889 return 1; 890 } 891 892 /* 893 ** Return a 32-bit integer value extracted from a string. If the 894 ** string is not an integer, just return 0. 895 */ 896 int sqlite3Atoi(const char *z){ 897 int x = 0; 898 sqlite3GetInt32(z, &x); 899 return x; 900 } 901 902 /* 903 ** Try to convert z into an unsigned 32-bit integer. Return true on 904 ** success and false if there is an error. 905 ** 906 ** Only decimal notation is accepted. 907 */ 908 int sqlite3GetUInt32(const char *z, u32 *pI){ 909 u64 v = 0; 910 int i; 911 for(i=0; sqlite3Isdigit(z[i]); i++){ 912 v = v*10 + z[i] - '0'; 913 if( v>4294967296LL ){ *pI = 0; return 0; } 914 } 915 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } 916 *pI = (u32)v; 917 return 1; 918 } 919 920 /* 921 ** The variable-length integer encoding is as follows: 922 ** 923 ** KEY: 924 ** A = 0xxxxxxx 7 bits of data and one flag bit 925 ** B = 1xxxxxxx 7 bits of data and one flag bit 926 ** C = xxxxxxxx 8 bits of data 927 ** 928 ** 7 bits - A 929 ** 14 bits - BA 930 ** 21 bits - BBA 931 ** 28 bits - BBBA 932 ** 35 bits - BBBBA 933 ** 42 bits - BBBBBA 934 ** 49 bits - BBBBBBA 935 ** 56 bits - BBBBBBBA 936 ** 64 bits - BBBBBBBBC 937 */ 938 939 /* 940 ** Write a 64-bit variable-length integer to memory starting at p[0]. 941 ** The length of data write will be between 1 and 9 bytes. The number 942 ** of bytes written is returned. 943 ** 944 ** A variable-length integer consists of the lower 7 bits of each byte 945 ** for all bytes that have the 8th bit set and one byte with the 8th 946 ** bit clear. Except, if we get to the 9th byte, it stores the full 947 ** 8 bits and is the last byte. 948 */ 949 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ 950 int i, j, n; 951 u8 buf[10]; 952 if( v & (((u64)0xff000000)<<32) ){ 953 p[8] = (u8)v; 954 v >>= 8; 955 for(i=7; i>=0; i--){ 956 p[i] = (u8)((v & 0x7f) | 0x80); 957 v >>= 7; 958 } 959 return 9; 960 } 961 n = 0; 962 do{ 963 buf[n++] = (u8)((v & 0x7f) | 0x80); 964 v >>= 7; 965 }while( v!=0 ); 966 buf[0] &= 0x7f; 967 assert( n<=9 ); 968 for(i=0, j=n-1; j>=0; j--, i++){ 969 p[i] = buf[j]; 970 } 971 return n; 972 } 973 int sqlite3PutVarint(unsigned char *p, u64 v){ 974 if( v<=0x7f ){ 975 p[0] = v&0x7f; 976 return 1; 977 } 978 if( v<=0x3fff ){ 979 p[0] = ((v>>7)&0x7f)|0x80; 980 p[1] = v&0x7f; 981 return 2; 982 } 983 return putVarint64(p,v); 984 } 985 986 /* 987 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 988 ** are defined here rather than simply putting the constant expressions 989 ** inline in order to work around bugs in the RVT compiler. 990 ** 991 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 992 ** 993 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 994 */ 995 #define SLOT_2_0 0x001fc07f 996 #define SLOT_4_2_0 0xf01fc07f 997 998 999 /* 1000 ** Read a 64-bit variable-length integer from memory starting at p[0]. 1001 ** Return the number of bytes read. The value is stored in *v. 1002 */ 1003 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 1004 u32 a,b,s; 1005 1006 if( ((signed char*)p)[0]>=0 ){ 1007 *v = *p; 1008 return 1; 1009 } 1010 if( ((signed char*)p)[1]>=0 ){ 1011 *v = ((u32)(p[0]&0x7f)<<7) | p[1]; 1012 return 2; 1013 } 1014 1015 /* Verify that constants are precomputed correctly */ 1016 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 1017 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 1018 1019 a = ((u32)p[0])<<14; 1020 b = p[1]; 1021 p += 2; 1022 a |= *p; 1023 /* a: p0<<14 | p2 (unmasked) */ 1024 if (!(a&0x80)) 1025 { 1026 a &= SLOT_2_0; 1027 b &= 0x7f; 1028 b = b<<7; 1029 a |= b; 1030 *v = a; 1031 return 3; 1032 } 1033 1034 /* CSE1 from below */ 1035 a &= SLOT_2_0; 1036 p++; 1037 b = b<<14; 1038 b |= *p; 1039 /* b: p1<<14 | p3 (unmasked) */ 1040 if (!(b&0x80)) 1041 { 1042 b &= SLOT_2_0; 1043 /* moved CSE1 up */ 1044 /* a &= (0x7f<<14)|(0x7f); */ 1045 a = a<<7; 1046 a |= b; 1047 *v = a; 1048 return 4; 1049 } 1050 1051 /* a: p0<<14 | p2 (masked) */ 1052 /* b: p1<<14 | p3 (unmasked) */ 1053 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1054 /* moved CSE1 up */ 1055 /* a &= (0x7f<<14)|(0x7f); */ 1056 b &= SLOT_2_0; 1057 s = a; 1058 /* s: p0<<14 | p2 (masked) */ 1059 1060 p++; 1061 a = a<<14; 1062 a |= *p; 1063 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1064 if (!(a&0x80)) 1065 { 1066 /* we can skip these cause they were (effectively) done above 1067 ** while calculating s */ 1068 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1069 /* b &= (0x7f<<14)|(0x7f); */ 1070 b = b<<7; 1071 a |= b; 1072 s = s>>18; 1073 *v = ((u64)s)<<32 | a; 1074 return 5; 1075 } 1076 1077 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1078 s = s<<7; 1079 s |= b; 1080 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 1081 1082 p++; 1083 b = b<<14; 1084 b |= *p; 1085 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 1086 if (!(b&0x80)) 1087 { 1088 /* we can skip this cause it was (effectively) done above in calc'ing s */ 1089 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 1090 a &= SLOT_2_0; 1091 a = a<<7; 1092 a |= b; 1093 s = s>>18; 1094 *v = ((u64)s)<<32 | a; 1095 return 6; 1096 } 1097 1098 p++; 1099 a = a<<14; 1100 a |= *p; 1101 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 1102 if (!(a&0x80)) 1103 { 1104 a &= SLOT_4_2_0; 1105 b &= SLOT_2_0; 1106 b = b<<7; 1107 a |= b; 1108 s = s>>11; 1109 *v = ((u64)s)<<32 | a; 1110 return 7; 1111 } 1112 1113 /* CSE2 from below */ 1114 a &= SLOT_2_0; 1115 p++; 1116 b = b<<14; 1117 b |= *p; 1118 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 1119 if (!(b&0x80)) 1120 { 1121 b &= SLOT_4_2_0; 1122 /* moved CSE2 up */ 1123 /* a &= (0x7f<<14)|(0x7f); */ 1124 a = a<<7; 1125 a |= b; 1126 s = s>>4; 1127 *v = ((u64)s)<<32 | a; 1128 return 8; 1129 } 1130 1131 p++; 1132 a = a<<15; 1133 a |= *p; 1134 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 1135 1136 /* moved CSE2 up */ 1137 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 1138 b &= SLOT_2_0; 1139 b = b<<8; 1140 a |= b; 1141 1142 s = s<<4; 1143 b = p[-4]; 1144 b &= 0x7f; 1145 b = b>>3; 1146 s |= b; 1147 1148 *v = ((u64)s)<<32 | a; 1149 1150 return 9; 1151 } 1152 1153 /* 1154 ** Read a 32-bit variable-length integer from memory starting at p[0]. 1155 ** Return the number of bytes read. The value is stored in *v. 1156 ** 1157 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 1158 ** integer, then set *v to 0xffffffff. 1159 ** 1160 ** A MACRO version, getVarint32, is provided which inlines the 1161 ** single-byte case. All code should use the MACRO version as 1162 ** this function assumes the single-byte case has already been handled. 1163 */ 1164 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 1165 u32 a,b; 1166 1167 /* The 1-byte case. Overwhelmingly the most common. Handled inline 1168 ** by the getVarin32() macro */ 1169 a = *p; 1170 /* a: p0 (unmasked) */ 1171 #ifndef getVarint32 1172 if (!(a&0x80)) 1173 { 1174 /* Values between 0 and 127 */ 1175 *v = a; 1176 return 1; 1177 } 1178 #endif 1179 1180 /* The 2-byte case */ 1181 p++; 1182 b = *p; 1183 /* b: p1 (unmasked) */ 1184 if (!(b&0x80)) 1185 { 1186 /* Values between 128 and 16383 */ 1187 a &= 0x7f; 1188 a = a<<7; 1189 *v = a | b; 1190 return 2; 1191 } 1192 1193 /* The 3-byte case */ 1194 p++; 1195 a = a<<14; 1196 a |= *p; 1197 /* a: p0<<14 | p2 (unmasked) */ 1198 if (!(a&0x80)) 1199 { 1200 /* Values between 16384 and 2097151 */ 1201 a &= (0x7f<<14)|(0x7f); 1202 b &= 0x7f; 1203 b = b<<7; 1204 *v = a | b; 1205 return 3; 1206 } 1207 1208 /* A 32-bit varint is used to store size information in btrees. 1209 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 1210 ** A 3-byte varint is sufficient, for example, to record the size 1211 ** of a 1048569-byte BLOB or string. 1212 ** 1213 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 1214 ** rare larger cases can be handled by the slower 64-bit varint 1215 ** routine. 1216 */ 1217 #if 1 1218 { 1219 u64 v64; 1220 u8 n; 1221 1222 n = sqlite3GetVarint(p-2, &v64); 1223 assert( n>3 && n<=9 ); 1224 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 1225 *v = 0xffffffff; 1226 }else{ 1227 *v = (u32)v64; 1228 } 1229 return n; 1230 } 1231 1232 #else 1233 /* For following code (kept for historical record only) shows an 1234 ** unrolling for the 3- and 4-byte varint cases. This code is 1235 ** slightly faster, but it is also larger and much harder to test. 1236 */ 1237 p++; 1238 b = b<<14; 1239 b |= *p; 1240 /* b: p1<<14 | p3 (unmasked) */ 1241 if (!(b&0x80)) 1242 { 1243 /* Values between 2097152 and 268435455 */ 1244 b &= (0x7f<<14)|(0x7f); 1245 a &= (0x7f<<14)|(0x7f); 1246 a = a<<7; 1247 *v = a | b; 1248 return 4; 1249 } 1250 1251 p++; 1252 a = a<<14; 1253 a |= *p; 1254 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 1255 if (!(a&0x80)) 1256 { 1257 /* Values between 268435456 and 34359738367 */ 1258 a &= SLOT_4_2_0; 1259 b &= SLOT_4_2_0; 1260 b = b<<7; 1261 *v = a | b; 1262 return 5; 1263 } 1264 1265 /* We can only reach this point when reading a corrupt database 1266 ** file. In that case we are not in any hurry. Use the (relatively 1267 ** slow) general-purpose sqlite3GetVarint() routine to extract the 1268 ** value. */ 1269 { 1270 u64 v64; 1271 u8 n; 1272 1273 p -= 4; 1274 n = sqlite3GetVarint(p, &v64); 1275 assert( n>5 && n<=9 ); 1276 *v = (u32)v64; 1277 return n; 1278 } 1279 #endif 1280 } 1281 1282 /* 1283 ** Return the number of bytes that will be needed to store the given 1284 ** 64-bit integer. 1285 */ 1286 int sqlite3VarintLen(u64 v){ 1287 int i; 1288 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } 1289 return i; 1290 } 1291 1292 1293 /* 1294 ** Read or write a four-byte big-endian integer value. 1295 */ 1296 u32 sqlite3Get4byte(const u8 *p){ 1297 #if SQLITE_BYTEORDER==4321 1298 u32 x; 1299 memcpy(&x,p,4); 1300 return x; 1301 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1302 u32 x; 1303 memcpy(&x,p,4); 1304 return __builtin_bswap32(x); 1305 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1306 u32 x; 1307 memcpy(&x,p,4); 1308 return _byteswap_ulong(x); 1309 #else 1310 testcase( p[0]&0x80 ); 1311 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 1312 #endif 1313 } 1314 void sqlite3Put4byte(unsigned char *p, u32 v){ 1315 #if SQLITE_BYTEORDER==4321 1316 memcpy(p,&v,4); 1317 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 1318 u32 x = __builtin_bswap32(v); 1319 memcpy(p,&x,4); 1320 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 1321 u32 x = _byteswap_ulong(v); 1322 memcpy(p,&x,4); 1323 #else 1324 p[0] = (u8)(v>>24); 1325 p[1] = (u8)(v>>16); 1326 p[2] = (u8)(v>>8); 1327 p[3] = (u8)v; 1328 #endif 1329 } 1330 1331 1332 1333 /* 1334 ** Translate a single byte of Hex into an integer. 1335 ** This routine only works if h really is a valid hexadecimal 1336 ** character: 0..9a..fA..F 1337 */ 1338 u8 sqlite3HexToInt(int h){ 1339 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 1340 #ifdef SQLITE_ASCII 1341 h += 9*(1&(h>>6)); 1342 #endif 1343 #ifdef SQLITE_EBCDIC 1344 h += 9*(1&~(h>>4)); 1345 #endif 1346 return (u8)(h & 0xf); 1347 } 1348 1349 #if !defined(SQLITE_OMIT_BLOB_LITERAL) 1350 /* 1351 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1352 ** value. Return a pointer to its binary value. Space to hold the 1353 ** binary value has been obtained from malloc and must be freed by 1354 ** the calling routine. 1355 */ 1356 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1357 char *zBlob; 1358 int i; 1359 1360 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); 1361 n--; 1362 if( zBlob ){ 1363 for(i=0; i<n; i+=2){ 1364 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1365 } 1366 zBlob[i/2] = 0; 1367 } 1368 return zBlob; 1369 } 1370 #endif /* !SQLITE_OMIT_BLOB_LITERAL */ 1371 1372 /* 1373 ** Log an error that is an API call on a connection pointer that should 1374 ** not have been used. The "type" of connection pointer is given as the 1375 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1376 */ 1377 static void logBadConnection(const char *zType){ 1378 sqlite3_log(SQLITE_MISUSE, 1379 "API call with %s database connection pointer", 1380 zType 1381 ); 1382 } 1383 1384 /* 1385 ** Check to make sure we have a valid db pointer. This test is not 1386 ** foolproof but it does provide some measure of protection against 1387 ** misuse of the interface such as passing in db pointers that are 1388 ** NULL or which have been previously closed. If this routine returns 1389 ** 1 it means that the db pointer is valid and 0 if it should not be 1390 ** dereferenced for any reason. The calling function should invoke 1391 ** SQLITE_MISUSE immediately. 1392 ** 1393 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1394 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1395 ** open properly and is not fit for general use but which can be 1396 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1397 */ 1398 int sqlite3SafetyCheckOk(sqlite3 *db){ 1399 u32 magic; 1400 if( db==0 ){ 1401 logBadConnection("NULL"); 1402 return 0; 1403 } 1404 magic = db->magic; 1405 if( magic!=SQLITE_MAGIC_OPEN ){ 1406 if( sqlite3SafetyCheckSickOrOk(db) ){ 1407 testcase( sqlite3GlobalConfig.xLog!=0 ); 1408 logBadConnection("unopened"); 1409 } 1410 return 0; 1411 }else{ 1412 return 1; 1413 } 1414 } 1415 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1416 u32 magic; 1417 magic = db->magic; 1418 if( magic!=SQLITE_MAGIC_SICK && 1419 magic!=SQLITE_MAGIC_OPEN && 1420 magic!=SQLITE_MAGIC_BUSY ){ 1421 testcase( sqlite3GlobalConfig.xLog!=0 ); 1422 logBadConnection("invalid"); 1423 return 0; 1424 }else{ 1425 return 1; 1426 } 1427 } 1428 1429 /* 1430 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1431 ** the other 64-bit signed integer at *pA and store the result in *pA. 1432 ** Return 0 on success. Or if the operation would have resulted in an 1433 ** overflow, leave *pA unchanged and return 1. 1434 */ 1435 int sqlite3AddInt64(i64 *pA, i64 iB){ 1436 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1437 return __builtin_add_overflow(*pA, iB, pA); 1438 #else 1439 i64 iA = *pA; 1440 testcase( iA==0 ); testcase( iA==1 ); 1441 testcase( iB==-1 ); testcase( iB==0 ); 1442 if( iB>=0 ){ 1443 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1444 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1445 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1446 }else{ 1447 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1448 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1449 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1450 } 1451 *pA += iB; 1452 return 0; 1453 #endif 1454 } 1455 int sqlite3SubInt64(i64 *pA, i64 iB){ 1456 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1457 return __builtin_sub_overflow(*pA, iB, pA); 1458 #else 1459 testcase( iB==SMALLEST_INT64+1 ); 1460 if( iB==SMALLEST_INT64 ){ 1461 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1462 if( (*pA)>=0 ) return 1; 1463 *pA -= iB; 1464 return 0; 1465 }else{ 1466 return sqlite3AddInt64(pA, -iB); 1467 } 1468 #endif 1469 } 1470 int sqlite3MulInt64(i64 *pA, i64 iB){ 1471 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) 1472 return __builtin_mul_overflow(*pA, iB, pA); 1473 #else 1474 i64 iA = *pA; 1475 if( iB>0 ){ 1476 if( iA>LARGEST_INT64/iB ) return 1; 1477 if( iA<SMALLEST_INT64/iB ) return 1; 1478 }else if( iB<0 ){ 1479 if( iA>0 ){ 1480 if( iB<SMALLEST_INT64/iA ) return 1; 1481 }else if( iA<0 ){ 1482 if( iB==SMALLEST_INT64 ) return 1; 1483 if( iA==SMALLEST_INT64 ) return 1; 1484 if( -iA>LARGEST_INT64/-iB ) return 1; 1485 } 1486 } 1487 *pA = iA*iB; 1488 return 0; 1489 #endif 1490 } 1491 1492 /* 1493 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1494 ** if the integer has a value of -2147483648, return +2147483647 1495 */ 1496 int sqlite3AbsInt32(int x){ 1497 if( x>=0 ) return x; 1498 if( x==(int)0x80000000 ) return 0x7fffffff; 1499 return -x; 1500 } 1501 1502 #ifdef SQLITE_ENABLE_8_3_NAMES 1503 /* 1504 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1505 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1506 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1507 ** three characters, then shorten the suffix on z[] to be the last three 1508 ** characters of the original suffix. 1509 ** 1510 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1511 ** do the suffix shortening regardless of URI parameter. 1512 ** 1513 ** Examples: 1514 ** 1515 ** test.db-journal => test.nal 1516 ** test.db-wal => test.wal 1517 ** test.db-shm => test.shm 1518 ** test.db-mj7f3319fa => test.9fa 1519 */ 1520 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1521 #if SQLITE_ENABLE_8_3_NAMES<2 1522 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1523 #endif 1524 { 1525 int i, sz; 1526 sz = sqlite3Strlen30(z); 1527 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1528 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1529 } 1530 } 1531 #endif 1532 1533 /* 1534 ** Find (an approximate) sum of two LogEst values. This computation is 1535 ** not a simple "+" operator because LogEst is stored as a logarithmic 1536 ** value. 1537 ** 1538 */ 1539 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ 1540 static const unsigned char x[] = { 1541 10, 10, /* 0,1 */ 1542 9, 9, /* 2,3 */ 1543 8, 8, /* 4,5 */ 1544 7, 7, 7, /* 6,7,8 */ 1545 6, 6, 6, /* 9,10,11 */ 1546 5, 5, 5, /* 12-14 */ 1547 4, 4, 4, 4, /* 15-18 */ 1548 3, 3, 3, 3, 3, 3, /* 19-24 */ 1549 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ 1550 }; 1551 if( a>=b ){ 1552 if( a>b+49 ) return a; 1553 if( a>b+31 ) return a+1; 1554 return a+x[a-b]; 1555 }else{ 1556 if( b>a+49 ) return b; 1557 if( b>a+31 ) return b+1; 1558 return b+x[b-a]; 1559 } 1560 } 1561 1562 /* 1563 ** Convert an integer into a LogEst. In other words, compute an 1564 ** approximation for 10*log2(x). 1565 */ 1566 LogEst sqlite3LogEst(u64 x){ 1567 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; 1568 LogEst y = 40; 1569 if( x<8 ){ 1570 if( x<2 ) return 0; 1571 while( x<8 ){ y -= 10; x <<= 1; } 1572 }else{ 1573 #if GCC_VERSION>=5004000 1574 int i = 60 - __builtin_clzll(x); 1575 y += i*10; 1576 x >>= i; 1577 #else 1578 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ 1579 while( x>15 ){ y += 10; x >>= 1; } 1580 #endif 1581 } 1582 return a[x&7] + y - 10; 1583 } 1584 1585 #ifndef SQLITE_OMIT_VIRTUALTABLE 1586 /* 1587 ** Convert a double into a LogEst 1588 ** In other words, compute an approximation for 10*log2(x). 1589 */ 1590 LogEst sqlite3LogEstFromDouble(double x){ 1591 u64 a; 1592 LogEst e; 1593 assert( sizeof(x)==8 && sizeof(a)==8 ); 1594 if( x<=1 ) return 0; 1595 if( x<=2000000000 ) return sqlite3LogEst((u64)x); 1596 memcpy(&a, &x, 8); 1597 e = (a>>52) - 1022; 1598 return e*10; 1599 } 1600 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1601 1602 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1603 defined(SQLITE_ENABLE_STAT4) || \ 1604 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1605 /* 1606 ** Convert a LogEst into an integer. 1607 ** 1608 ** Note that this routine is only used when one or more of various 1609 ** non-standard compile-time options is enabled. 1610 */ 1611 u64 sqlite3LogEstToInt(LogEst x){ 1612 u64 n; 1613 n = x%10; 1614 x /= 10; 1615 if( n>=5 ) n -= 2; 1616 else if( n>=1 ) n -= 1; 1617 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ 1618 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) 1619 if( x>60 ) return (u64)LARGEST_INT64; 1620 #else 1621 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input 1622 ** possible to this routine is 310, resulting in a maximum x of 31 */ 1623 assert( x<=60 ); 1624 #endif 1625 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); 1626 } 1627 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ 1628 1629 /* 1630 ** Add a new name/number pair to a VList. This might require that the 1631 ** VList object be reallocated, so return the new VList. If an OOM 1632 ** error occurs, the original VList returned and the 1633 ** db->mallocFailed flag is set. 1634 ** 1635 ** A VList is really just an array of integers. To destroy a VList, 1636 ** simply pass it to sqlite3DbFree(). 1637 ** 1638 ** The first integer is the number of integers allocated for the whole 1639 ** VList. The second integer is the number of integers actually used. 1640 ** Each name/number pair is encoded by subsequent groups of 3 or more 1641 ** integers. 1642 ** 1643 ** Each name/number pair starts with two integers which are the numeric 1644 ** value for the pair and the size of the name/number pair, respectively. 1645 ** The text name overlays one or more following integers. The text name 1646 ** is always zero-terminated. 1647 ** 1648 ** Conceptually: 1649 ** 1650 ** struct VList { 1651 ** int nAlloc; // Number of allocated slots 1652 ** int nUsed; // Number of used slots 1653 ** struct VListEntry { 1654 ** int iValue; // Value for this entry 1655 ** int nSlot; // Slots used by this entry 1656 ** // ... variable name goes here 1657 ** } a[0]; 1658 ** } 1659 ** 1660 ** During code generation, pointers to the variable names within the 1661 ** VList are taken. When that happens, nAlloc is set to zero as an 1662 ** indication that the VList may never again be enlarged, since the 1663 ** accompanying realloc() would invalidate the pointers. 1664 */ 1665 VList *sqlite3VListAdd( 1666 sqlite3 *db, /* The database connection used for malloc() */ 1667 VList *pIn, /* The input VList. Might be NULL */ 1668 const char *zName, /* Name of symbol to add */ 1669 int nName, /* Bytes of text in zName */ 1670 int iVal /* Value to associate with zName */ 1671 ){ 1672 int nInt; /* number of sizeof(int) objects needed for zName */ 1673 char *z; /* Pointer to where zName will be stored */ 1674 int i; /* Index in pIn[] where zName is stored */ 1675 1676 nInt = nName/4 + 3; 1677 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ 1678 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ 1679 /* Enlarge the allocation */ 1680 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; 1681 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); 1682 if( pOut==0 ) return pIn; 1683 if( pIn==0 ) pOut[1] = 2; 1684 pIn = pOut; 1685 pIn[0] = nAlloc; 1686 } 1687 i = pIn[1]; 1688 pIn[i] = iVal; 1689 pIn[i+1] = nInt; 1690 z = (char*)&pIn[i+2]; 1691 pIn[1] = i+nInt; 1692 assert( pIn[1]<=pIn[0] ); 1693 memcpy(z, zName, nName); 1694 z[nName] = 0; 1695 return pIn; 1696 } 1697 1698 /* 1699 ** Return a pointer to the name of a variable in the given VList that 1700 ** has the value iVal. Or return a NULL if there is no such variable in 1701 ** the list 1702 */ 1703 const char *sqlite3VListNumToName(VList *pIn, int iVal){ 1704 int i, mx; 1705 if( pIn==0 ) return 0; 1706 mx = pIn[1]; 1707 i = 2; 1708 do{ 1709 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; 1710 i += pIn[i+1]; 1711 }while( i<mx ); 1712 return 0; 1713 } 1714 1715 /* 1716 ** Return the number of the variable named zName, if it is in VList. 1717 ** or return 0 if there is no such variable. 1718 */ 1719 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ 1720 int i, mx; 1721 if( pIn==0 ) return 0; 1722 mx = pIn[1]; 1723 i = 2; 1724 do{ 1725 const char *z = (const char*)&pIn[i+2]; 1726 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; 1727 i += pIn[i+1]; 1728 }while( i<mx ); 1729 return 0; 1730 } 1731