xref: /sqlite-3.40.0/src/util.c (revision 77441faf)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 /*
35 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36 ** or to bypass normal error detection during testing in order to let
37 ** execute proceed futher downstream.
38 **
39 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
40 ** sqlite3FaultSim() function only returns non-zero during testing.
41 **
42 ** During testing, if the test harness has set a fault-sim callback using
43 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44 ** each call to sqlite3FaultSim() is relayed to that application-supplied
45 ** callback and the integer return value form the application-supplied
46 ** callback is returned by sqlite3FaultSim().
47 **
48 ** The integer argument to sqlite3FaultSim() is a code to identify which
49 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50 ** should have a unique code.  To prevent legacy testing applications from
51 ** breaking, the codes should not be changed or reused.
52 */
53 #ifndef SQLITE_UNTESTABLE
54 int sqlite3FaultSim(int iTest){
55   int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56   return xCallback ? xCallback(iTest) : SQLITE_OK;
57 }
58 #endif
59 
60 #ifndef SQLITE_OMIT_FLOATING_POINT
61 /*
62 ** Return true if the floating point value is Not a Number (NaN).
63 */
64 int sqlite3IsNaN(double x){
65   u64 y;
66   memcpy(&y,&x,sizeof(y));
67   return IsNaN(y);
68 }
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
70 
71 /*
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
74 **
75 ** The value returned will never be negative.  Nor will it ever be greater
76 ** than the actual length of the string.  For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
78 */
79 int sqlite3Strlen30(const char *z){
80   if( z==0 ) return 0;
81   return 0x3fffffff & (int)strlen(z);
82 }
83 
84 /*
85 ** Return the declared type of a column.  Or return zDflt if the column
86 ** has no declared type.
87 **
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
90 */
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92   if( pCol->colFlags & COLFLAG_HASTYPE ){
93     return pCol->zName + strlen(pCol->zName) + 1;
94   }else{
95     return zDflt;
96   }
97 }
98 
99 /*
100 ** Helper function for sqlite3Error() - called rarely.  Broken out into
101 ** a separate routine to avoid unnecessary register saves on entry to
102 ** sqlite3Error().
103 */
104 static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
105   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
106   sqlite3SystemError(db, err_code);
107 }
108 
109 /*
110 ** Set the current error code to err_code and clear any prior error message.
111 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
112 ** that would be appropriate.
113 */
114 void sqlite3Error(sqlite3 *db, int err_code){
115   assert( db!=0 );
116   db->errCode = err_code;
117   if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
118 }
119 
120 /*
121 ** The equivalent of sqlite3Error(db, SQLITE_OK).  Clear the error state
122 ** and error message.
123 */
124 void sqlite3ErrorClear(sqlite3 *db){
125   assert( db!=0 );
126   db->errCode = SQLITE_OK;
127   if( db->pErr ) sqlite3ValueSetNull(db->pErr);
128 }
129 
130 /*
131 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
132 ** to do based on the SQLite error code in rc.
133 */
134 void sqlite3SystemError(sqlite3 *db, int rc){
135   if( rc==SQLITE_IOERR_NOMEM ) return;
136   rc &= 0xff;
137   if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
138     db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
139   }
140 }
141 
142 /*
143 ** Set the most recent error code and error string for the sqlite
144 ** handle "db". The error code is set to "err_code".
145 **
146 ** If it is not NULL, string zFormat specifies the format of the
147 ** error string in the style of the printf functions: The following
148 ** format characters are allowed:
149 **
150 **      %s      Insert a string
151 **      %z      A string that should be freed after use
152 **      %d      Insert an integer
153 **      %T      Insert a token
154 **      %S      Insert the first element of a SrcList
155 **
156 ** zFormat and any string tokens that follow it are assumed to be
157 ** encoded in UTF-8.
158 **
159 ** To clear the most recent error for sqlite handle "db", sqlite3Error
160 ** should be called with err_code set to SQLITE_OK and zFormat set
161 ** to NULL.
162 */
163 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
164   assert( db!=0 );
165   db->errCode = err_code;
166   sqlite3SystemError(db, err_code);
167   if( zFormat==0 ){
168     sqlite3Error(db, err_code);
169   }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
170     char *z;
171     va_list ap;
172     va_start(ap, zFormat);
173     z = sqlite3VMPrintf(db, zFormat, ap);
174     va_end(ap);
175     sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
176   }
177 }
178 
179 /*
180 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
181 ** The following formatting characters are allowed:
182 **
183 **      %s      Insert a string
184 **      %z      A string that should be freed after use
185 **      %d      Insert an integer
186 **      %T      Insert a token
187 **      %S      Insert the first element of a SrcList
188 **
189 ** This function should be used to report any error that occurs while
190 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
191 ** last thing the sqlite3_prepare() function does is copy the error
192 ** stored by this function into the database handle using sqlite3Error().
193 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
194 ** during statement execution (sqlite3_step() etc.).
195 */
196 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
197   char *zMsg;
198   va_list ap;
199   sqlite3 *db = pParse->db;
200   va_start(ap, zFormat);
201   zMsg = sqlite3VMPrintf(db, zFormat, ap);
202   va_end(ap);
203   if( db->suppressErr ){
204     sqlite3DbFree(db, zMsg);
205   }else{
206     pParse->nErr++;
207     sqlite3DbFree(db, pParse->zErrMsg);
208     pParse->zErrMsg = zMsg;
209     pParse->rc = SQLITE_ERROR;
210     pParse->pWith = 0;
211   }
212 }
213 
214 /*
215 ** If database connection db is currently parsing SQL, then transfer
216 ** error code errCode to that parser if the parser has not already
217 ** encountered some other kind of error.
218 */
219 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
220   Parse *pParse;
221   if( db==0 || (pParse = db->pParse)==0 ) return errCode;
222   pParse->rc = errCode;
223   pParse->nErr++;
224   return errCode;
225 }
226 
227 /*
228 ** Convert an SQL-style quoted string into a normal string by removing
229 ** the quote characters.  The conversion is done in-place.  If the
230 ** input does not begin with a quote character, then this routine
231 ** is a no-op.
232 **
233 ** The input string must be zero-terminated.  A new zero-terminator
234 ** is added to the dequoted string.
235 **
236 ** The return value is -1 if no dequoting occurs or the length of the
237 ** dequoted string, exclusive of the zero terminator, if dequoting does
238 ** occur.
239 **
240 ** 2002-02-14: This routine is extended to remove MS-Access style
241 ** brackets from around identifiers.  For example:  "[a-b-c]" becomes
242 ** "a-b-c".
243 */
244 void sqlite3Dequote(char *z){
245   char quote;
246   int i, j;
247   if( z==0 ) return;
248   quote = z[0];
249   if( !sqlite3Isquote(quote) ) return;
250   if( quote=='[' ) quote = ']';
251   for(i=1, j=0;; i++){
252     assert( z[i] );
253     if( z[i]==quote ){
254       if( z[i+1]==quote ){
255         z[j++] = quote;
256         i++;
257       }else{
258         break;
259       }
260     }else{
261       z[j++] = z[i];
262     }
263   }
264   z[j] = 0;
265 }
266 void sqlite3DequoteExpr(Expr *p){
267   assert( sqlite3Isquote(p->u.zToken[0]) );
268   p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
269   sqlite3Dequote(p->u.zToken);
270 }
271 
272 /*
273 ** If the input token p is quoted, try to adjust the token to remove
274 ** the quotes.  This is not always possible:
275 **
276 **     "abc"     ->   abc
277 **     "ab""cd"  ->   (not possible because of the interior "")
278 **
279 ** Remove the quotes if possible.  This is a optimization.  The overall
280 ** system should still return the correct answer even if this routine
281 ** is always a no-op.
282 */
283 void sqlite3DequoteToken(Token *p){
284   int i;
285   if( p->n<2 ) return;
286   if( !sqlite3Isquote(p->z[0]) ) return;
287   for(i=1; i<p->n-1; i++){
288     if( sqlite3Isquote(p->z[i]) ) return;
289   }
290   p->n -= 2;
291   p->z++;
292 }
293 
294 /*
295 ** Generate a Token object from a string
296 */
297 void sqlite3TokenInit(Token *p, char *z){
298   p->z = z;
299   p->n = sqlite3Strlen30(z);
300 }
301 
302 /* Convenient short-hand */
303 #define UpperToLower sqlite3UpperToLower
304 
305 /*
306 ** Some systems have stricmp().  Others have strcasecmp().  Because
307 ** there is no consistency, we will define our own.
308 **
309 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
310 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
311 ** the contents of two buffers containing UTF-8 strings in a
312 ** case-independent fashion, using the same definition of "case
313 ** independence" that SQLite uses internally when comparing identifiers.
314 */
315 int sqlite3_stricmp(const char *zLeft, const char *zRight){
316   if( zLeft==0 ){
317     return zRight ? -1 : 0;
318   }else if( zRight==0 ){
319     return 1;
320   }
321   return sqlite3StrICmp(zLeft, zRight);
322 }
323 int sqlite3StrICmp(const char *zLeft, const char *zRight){
324   unsigned char *a, *b;
325   int c, x;
326   a = (unsigned char *)zLeft;
327   b = (unsigned char *)zRight;
328   for(;;){
329     c = *a;
330     x = *b;
331     if( c==x ){
332       if( c==0 ) break;
333     }else{
334       c = (int)UpperToLower[c] - (int)UpperToLower[x];
335       if( c ) break;
336     }
337     a++;
338     b++;
339   }
340   return c;
341 }
342 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
343   register unsigned char *a, *b;
344   if( zLeft==0 ){
345     return zRight ? -1 : 0;
346   }else if( zRight==0 ){
347     return 1;
348   }
349   a = (unsigned char *)zLeft;
350   b = (unsigned char *)zRight;
351   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
352   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
353 }
354 
355 /*
356 ** Compute an 8-bit hash on a string that is insensitive to case differences
357 */
358 u8 sqlite3StrIHash(const char *z){
359   u8 h = 0;
360   if( z==0 ) return 0;
361   while( z[0] ){
362     h += UpperToLower[(unsigned char)z[0]];
363     z++;
364   }
365   return h;
366 }
367 
368 /*
369 ** Compute 10 to the E-th power.  Examples:  E==1 results in 10.
370 ** E==2 results in 100.  E==50 results in 1.0e50.
371 **
372 ** This routine only works for values of E between 1 and 341.
373 */
374 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
375 #if defined(_MSC_VER)
376   static const LONGDOUBLE_TYPE x[] = {
377     1.0e+001L,
378     1.0e+002L,
379     1.0e+004L,
380     1.0e+008L,
381     1.0e+016L,
382     1.0e+032L,
383     1.0e+064L,
384     1.0e+128L,
385     1.0e+256L
386   };
387   LONGDOUBLE_TYPE r = 1.0;
388   int i;
389   assert( E>=0 && E<=307 );
390   for(i=0; E!=0; i++, E >>=1){
391     if( E & 1 ) r *= x[i];
392   }
393   return r;
394 #else
395   LONGDOUBLE_TYPE x = 10.0;
396   LONGDOUBLE_TYPE r = 1.0;
397   while(1){
398     if( E & 1 ) r *= x;
399     E >>= 1;
400     if( E==0 ) break;
401     x *= x;
402   }
403   return r;
404 #endif
405 }
406 
407 /*
408 ** The string z[] is an text representation of a real number.
409 ** Convert this string to a double and write it into *pResult.
410 **
411 ** The string z[] is length bytes in length (bytes, not characters) and
412 ** uses the encoding enc.  The string is not necessarily zero-terminated.
413 **
414 ** Return TRUE if the result is a valid real number (or integer) and FALSE
415 ** if the string is empty or contains extraneous text.  More specifically
416 ** return
417 **      1          =>  The input string is a pure integer
418 **      2 or more  =>  The input has a decimal point or eNNN clause
419 **      0 or less  =>  The input string is not a valid number
420 **     -1          =>  Not a valid number, but has a valid prefix which
421 **                     includes a decimal point and/or an eNNN clause
422 **
423 ** Valid numbers are in one of these formats:
424 **
425 **    [+-]digits[E[+-]digits]
426 **    [+-]digits.[digits][E[+-]digits]
427 **    [+-].digits[E[+-]digits]
428 **
429 ** Leading and trailing whitespace is ignored for the purpose of determining
430 ** validity.
431 **
432 ** If some prefix of the input string is a valid number, this routine
433 ** returns FALSE but it still converts the prefix and writes the result
434 ** into *pResult.
435 */
436 #if defined(_MSC_VER)
437 #pragma warning(disable : 4756)
438 #endif
439 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
440 #ifndef SQLITE_OMIT_FLOATING_POINT
441   int incr;
442   const char *zEnd;
443   /* sign * significand * (10 ^ (esign * exponent)) */
444   int sign = 1;    /* sign of significand */
445   i64 s = 0;       /* significand */
446   int d = 0;       /* adjust exponent for shifting decimal point */
447   int esign = 1;   /* sign of exponent */
448   int e = 0;       /* exponent */
449   int eValid = 1;  /* True exponent is either not used or is well-formed */
450   double result;
451   int nDigit = 0;  /* Number of digits processed */
452   int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
453 
454   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
455   *pResult = 0.0;   /* Default return value, in case of an error */
456   if( length==0 ) return 0;
457 
458   if( enc==SQLITE_UTF8 ){
459     incr = 1;
460     zEnd = z + length;
461   }else{
462     int i;
463     incr = 2;
464     length &= ~1;
465     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
466     testcase( enc==SQLITE_UTF16LE );
467     testcase( enc==SQLITE_UTF16BE );
468     for(i=3-enc; i<length && z[i]==0; i+=2){}
469     if( i<length ) eType = -100;
470     zEnd = &z[i^1];
471     z += (enc&1);
472   }
473 
474   /* skip leading spaces */
475   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
476   if( z>=zEnd ) return 0;
477 
478   /* get sign of significand */
479   if( *z=='-' ){
480     sign = -1;
481     z+=incr;
482   }else if( *z=='+' ){
483     z+=incr;
484   }
485 
486   /* copy max significant digits to significand */
487   while( z<zEnd && sqlite3Isdigit(*z) ){
488     s = s*10 + (*z - '0');
489     z+=incr; nDigit++;
490     if( s>=((LARGEST_INT64-9)/10) ){
491       /* skip non-significant significand digits
492       ** (increase exponent by d to shift decimal left) */
493       while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
494     }
495   }
496   if( z>=zEnd ) goto do_atof_calc;
497 
498   /* if decimal point is present */
499   if( *z=='.' ){
500     z+=incr;
501     eType++;
502     /* copy digits from after decimal to significand
503     ** (decrease exponent by d to shift decimal right) */
504     while( z<zEnd && sqlite3Isdigit(*z) ){
505       if( s<((LARGEST_INT64-9)/10) ){
506         s = s*10 + (*z - '0');
507         d--;
508         nDigit++;
509       }
510       z+=incr;
511     }
512   }
513   if( z>=zEnd ) goto do_atof_calc;
514 
515   /* if exponent is present */
516   if( *z=='e' || *z=='E' ){
517     z+=incr;
518     eValid = 0;
519     eType++;
520 
521     /* This branch is needed to avoid a (harmless) buffer overread.  The
522     ** special comment alerts the mutation tester that the correct answer
523     ** is obtained even if the branch is omitted */
524     if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/
525 
526     /* get sign of exponent */
527     if( *z=='-' ){
528       esign = -1;
529       z+=incr;
530     }else if( *z=='+' ){
531       z+=incr;
532     }
533     /* copy digits to exponent */
534     while( z<zEnd && sqlite3Isdigit(*z) ){
535       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
536       z+=incr;
537       eValid = 1;
538     }
539   }
540 
541   /* skip trailing spaces */
542   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
543 
544 do_atof_calc:
545   /* adjust exponent by d, and update sign */
546   e = (e*esign) + d;
547   if( e<0 ) {
548     esign = -1;
549     e *= -1;
550   } else {
551     esign = 1;
552   }
553 
554   if( s==0 ) {
555     /* In the IEEE 754 standard, zero is signed. */
556     result = sign<0 ? -(double)0 : (double)0;
557   } else {
558     /* Attempt to reduce exponent.
559     **
560     ** Branches that are not required for the correct answer but which only
561     ** help to obtain the correct answer faster are marked with special
562     ** comments, as a hint to the mutation tester.
563     */
564     while( e>0 ){                                       /*OPTIMIZATION-IF-TRUE*/
565       if( esign>0 ){
566         if( s>=(LARGEST_INT64/10) ) break;             /*OPTIMIZATION-IF-FALSE*/
567         s *= 10;
568       }else{
569         if( s%10!=0 ) break;                           /*OPTIMIZATION-IF-FALSE*/
570         s /= 10;
571       }
572       e--;
573     }
574 
575     /* adjust the sign of significand */
576     s = sign<0 ? -s : s;
577 
578     if( e==0 ){                                         /*OPTIMIZATION-IF-TRUE*/
579       result = (double)s;
580     }else{
581       /* attempt to handle extremely small/large numbers better */
582       if( e>307 ){                                      /*OPTIMIZATION-IF-TRUE*/
583         if( e<342 ){                                    /*OPTIMIZATION-IF-TRUE*/
584           LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
585           if( esign<0 ){
586             result = s / scale;
587             result /= 1.0e+308;
588           }else{
589             result = s * scale;
590             result *= 1.0e+308;
591           }
592         }else{ assert( e>=342 );
593           if( esign<0 ){
594             result = 0.0*s;
595           }else{
596 #ifdef INFINITY
597             result = INFINITY*s;
598 #else
599             result = 1e308*1e308*s;  /* Infinity */
600 #endif
601           }
602         }
603       }else{
604         LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
605         if( esign<0 ){
606           result = s / scale;
607         }else{
608           result = s * scale;
609         }
610       }
611     }
612   }
613 
614   /* store the result */
615   *pResult = result;
616 
617   /* return true if number and no extra non-whitespace chracters after */
618   if( z==zEnd && nDigit>0 && eValid && eType>0 ){
619     return eType;
620   }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
621     return -1;
622   }else{
623     return 0;
624   }
625 #else
626   return !sqlite3Atoi64(z, pResult, length, enc);
627 #endif /* SQLITE_OMIT_FLOATING_POINT */
628 }
629 #if defined(_MSC_VER)
630 #pragma warning(default : 4756)
631 #endif
632 
633 /*
634 ** Render an signed 64-bit integer as text.  Store the result in zOut[].
635 **
636 ** The caller must ensure that zOut[] is at least 21 bytes in size.
637 */
638 void sqlite3Int64ToText(i64 v, char *zOut){
639   int i;
640   u64 x;
641   char zTemp[22];
642   if( v<0 ){
643     x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
644   }else{
645     x = v;
646   }
647   i = sizeof(zTemp)-2;
648   zTemp[sizeof(zTemp)-1] = 0;
649   do{
650     zTemp[i--] = (x%10) + '0';
651     x = x/10;
652   }while( x );
653   if( v<0 ) zTemp[i--] = '-';
654   memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
655 }
656 
657 /*
658 ** Compare the 19-character string zNum against the text representation
659 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
660 ** if zNum is less than, equal to, or greater than the string.
661 ** Note that zNum must contain exactly 19 characters.
662 **
663 ** Unlike memcmp() this routine is guaranteed to return the difference
664 ** in the values of the last digit if the only difference is in the
665 ** last digit.  So, for example,
666 **
667 **      compare2pow63("9223372036854775800", 1)
668 **
669 ** will return -8.
670 */
671 static int compare2pow63(const char *zNum, int incr){
672   int c = 0;
673   int i;
674                     /* 012345678901234567 */
675   const char *pow63 = "922337203685477580";
676   for(i=0; c==0 && i<18; i++){
677     c = (zNum[i*incr]-pow63[i])*10;
678   }
679   if( c==0 ){
680     c = zNum[18*incr] - '8';
681     testcase( c==(-1) );
682     testcase( c==0 );
683     testcase( c==(+1) );
684   }
685   return c;
686 }
687 
688 /*
689 ** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
690 ** routine does *not* accept hexadecimal notation.
691 **
692 ** Returns:
693 **
694 **    -1    Not even a prefix of the input text looks like an integer
695 **     0    Successful transformation.  Fits in a 64-bit signed integer.
696 **     1    Excess non-space text after the integer value
697 **     2    Integer too large for a 64-bit signed integer or is malformed
698 **     3    Special case of 9223372036854775808
699 **
700 ** length is the number of bytes in the string (bytes, not characters).
701 ** The string is not necessarily zero-terminated.  The encoding is
702 ** given by enc.
703 */
704 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
705   int incr;
706   u64 u = 0;
707   int neg = 0; /* assume positive */
708   int i;
709   int c = 0;
710   int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
711   int rc;          /* Baseline return code */
712   const char *zStart;
713   const char *zEnd = zNum + length;
714   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
715   if( enc==SQLITE_UTF8 ){
716     incr = 1;
717   }else{
718     incr = 2;
719     length &= ~1;
720     assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
721     for(i=3-enc; i<length && zNum[i]==0; i+=2){}
722     nonNum = i<length;
723     zEnd = &zNum[i^1];
724     zNum += (enc&1);
725   }
726   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
727   if( zNum<zEnd ){
728     if( *zNum=='-' ){
729       neg = 1;
730       zNum+=incr;
731     }else if( *zNum=='+' ){
732       zNum+=incr;
733     }
734   }
735   zStart = zNum;
736   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
737   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
738     u = u*10 + c - '0';
739   }
740   testcase( i==18*incr );
741   testcase( i==19*incr );
742   testcase( i==20*incr );
743   if( u>LARGEST_INT64 ){
744     /* This test and assignment is needed only to suppress UB warnings
745     ** from clang and -fsanitize=undefined.  This test and assignment make
746     ** the code a little larger and slower, and no harm comes from omitting
747     ** them, but we must appaise the undefined-behavior pharisees. */
748     *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
749   }else if( neg ){
750     *pNum = -(i64)u;
751   }else{
752     *pNum = (i64)u;
753   }
754   rc = 0;
755   if( i==0 && zStart==zNum ){    /* No digits */
756     rc = -1;
757   }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
758     rc = 1;
759   }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
760     int jj = i;
761     do{
762       if( !sqlite3Isspace(zNum[jj]) ){
763         rc = 1;          /* Extra non-space text after the integer */
764         break;
765       }
766       jj += incr;
767     }while( &zNum[jj]<zEnd );
768   }
769   if( i<19*incr ){
770     /* Less than 19 digits, so we know that it fits in 64 bits */
771     assert( u<=LARGEST_INT64 );
772     return rc;
773   }else{
774     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
775     c = i>19*incr ? 1 : compare2pow63(zNum, incr);
776     if( c<0 ){
777       /* zNum is less than 9223372036854775808 so it fits */
778       assert( u<=LARGEST_INT64 );
779       return rc;
780     }else{
781       *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
782       if( c>0 ){
783         /* zNum is greater than 9223372036854775808 so it overflows */
784         return 2;
785       }else{
786         /* zNum is exactly 9223372036854775808.  Fits if negative.  The
787         ** special case 2 overflow if positive */
788         assert( u-1==LARGEST_INT64 );
789         return neg ? rc : 3;
790       }
791     }
792   }
793 }
794 
795 /*
796 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
797 ** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
798 ** whereas sqlite3Atoi64() does not.
799 **
800 ** Returns:
801 **
802 **     0    Successful transformation.  Fits in a 64-bit signed integer.
803 **     1    Excess text after the integer value
804 **     2    Integer too large for a 64-bit signed integer or is malformed
805 **     3    Special case of 9223372036854775808
806 */
807 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
808 #ifndef SQLITE_OMIT_HEX_INTEGER
809   if( z[0]=='0'
810    && (z[1]=='x' || z[1]=='X')
811   ){
812     u64 u = 0;
813     int i, k;
814     for(i=2; z[i]=='0'; i++){}
815     for(k=i; sqlite3Isxdigit(z[k]); k++){
816       u = u*16 + sqlite3HexToInt(z[k]);
817     }
818     memcpy(pOut, &u, 8);
819     return (z[k]==0 && k-i<=16) ? 0 : 2;
820   }else
821 #endif /* SQLITE_OMIT_HEX_INTEGER */
822   {
823     return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
824   }
825 }
826 
827 /*
828 ** If zNum represents an integer that will fit in 32-bits, then set
829 ** *pValue to that integer and return true.  Otherwise return false.
830 **
831 ** This routine accepts both decimal and hexadecimal notation for integers.
832 **
833 ** Any non-numeric characters that following zNum are ignored.
834 ** This is different from sqlite3Atoi64() which requires the
835 ** input number to be zero-terminated.
836 */
837 int sqlite3GetInt32(const char *zNum, int *pValue){
838   sqlite_int64 v = 0;
839   int i, c;
840   int neg = 0;
841   if( zNum[0]=='-' ){
842     neg = 1;
843     zNum++;
844   }else if( zNum[0]=='+' ){
845     zNum++;
846   }
847 #ifndef SQLITE_OMIT_HEX_INTEGER
848   else if( zNum[0]=='0'
849         && (zNum[1]=='x' || zNum[1]=='X')
850         && sqlite3Isxdigit(zNum[2])
851   ){
852     u32 u = 0;
853     zNum += 2;
854     while( zNum[0]=='0' ) zNum++;
855     for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
856       u = u*16 + sqlite3HexToInt(zNum[i]);
857     }
858     if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
859       memcpy(pValue, &u, 4);
860       return 1;
861     }else{
862       return 0;
863     }
864   }
865 #endif
866   if( !sqlite3Isdigit(zNum[0]) ) return 0;
867   while( zNum[0]=='0' ) zNum++;
868   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
869     v = v*10 + c;
870   }
871 
872   /* The longest decimal representation of a 32 bit integer is 10 digits:
873   **
874   **             1234567890
875   **     2^31 -> 2147483648
876   */
877   testcase( i==10 );
878   if( i>10 ){
879     return 0;
880   }
881   testcase( v-neg==2147483647 );
882   if( v-neg>2147483647 ){
883     return 0;
884   }
885   if( neg ){
886     v = -v;
887   }
888   *pValue = (int)v;
889   return 1;
890 }
891 
892 /*
893 ** Return a 32-bit integer value extracted from a string.  If the
894 ** string is not an integer, just return 0.
895 */
896 int sqlite3Atoi(const char *z){
897   int x = 0;
898   sqlite3GetInt32(z, &x);
899   return x;
900 }
901 
902 /*
903 ** Try to convert z into an unsigned 32-bit integer.  Return true on
904 ** success and false if there is an error.
905 **
906 ** Only decimal notation is accepted.
907 */
908 int sqlite3GetUInt32(const char *z, u32 *pI){
909   u64 v = 0;
910   int i;
911   for(i=0; sqlite3Isdigit(z[i]); i++){
912     v = v*10 + z[i] - '0';
913     if( v>4294967296LL ){ *pI = 0; return 0; }
914   }
915   if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
916   *pI = (u32)v;
917   return 1;
918 }
919 
920 /*
921 ** The variable-length integer encoding is as follows:
922 **
923 ** KEY:
924 **         A = 0xxxxxxx    7 bits of data and one flag bit
925 **         B = 1xxxxxxx    7 bits of data and one flag bit
926 **         C = xxxxxxxx    8 bits of data
927 **
928 **  7 bits - A
929 ** 14 bits - BA
930 ** 21 bits - BBA
931 ** 28 bits - BBBA
932 ** 35 bits - BBBBA
933 ** 42 bits - BBBBBA
934 ** 49 bits - BBBBBBA
935 ** 56 bits - BBBBBBBA
936 ** 64 bits - BBBBBBBBC
937 */
938 
939 /*
940 ** Write a 64-bit variable-length integer to memory starting at p[0].
941 ** The length of data write will be between 1 and 9 bytes.  The number
942 ** of bytes written is returned.
943 **
944 ** A variable-length integer consists of the lower 7 bits of each byte
945 ** for all bytes that have the 8th bit set and one byte with the 8th
946 ** bit clear.  Except, if we get to the 9th byte, it stores the full
947 ** 8 bits and is the last byte.
948 */
949 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
950   int i, j, n;
951   u8 buf[10];
952   if( v & (((u64)0xff000000)<<32) ){
953     p[8] = (u8)v;
954     v >>= 8;
955     for(i=7; i>=0; i--){
956       p[i] = (u8)((v & 0x7f) | 0x80);
957       v >>= 7;
958     }
959     return 9;
960   }
961   n = 0;
962   do{
963     buf[n++] = (u8)((v & 0x7f) | 0x80);
964     v >>= 7;
965   }while( v!=0 );
966   buf[0] &= 0x7f;
967   assert( n<=9 );
968   for(i=0, j=n-1; j>=0; j--, i++){
969     p[i] = buf[j];
970   }
971   return n;
972 }
973 int sqlite3PutVarint(unsigned char *p, u64 v){
974   if( v<=0x7f ){
975     p[0] = v&0x7f;
976     return 1;
977   }
978   if( v<=0x3fff ){
979     p[0] = ((v>>7)&0x7f)|0x80;
980     p[1] = v&0x7f;
981     return 2;
982   }
983   return putVarint64(p,v);
984 }
985 
986 /*
987 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
988 ** are defined here rather than simply putting the constant expressions
989 ** inline in order to work around bugs in the RVT compiler.
990 **
991 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
992 **
993 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
994 */
995 #define SLOT_2_0     0x001fc07f
996 #define SLOT_4_2_0   0xf01fc07f
997 
998 
999 /*
1000 ** Read a 64-bit variable-length integer from memory starting at p[0].
1001 ** Return the number of bytes read.  The value is stored in *v.
1002 */
1003 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
1004   u32 a,b,s;
1005 
1006   if( ((signed char*)p)[0]>=0 ){
1007     *v = *p;
1008     return 1;
1009   }
1010   if( ((signed char*)p)[1]>=0 ){
1011     *v = ((u32)(p[0]&0x7f)<<7) | p[1];
1012     return 2;
1013   }
1014 
1015   /* Verify that constants are precomputed correctly */
1016   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
1017   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
1018 
1019   a = ((u32)p[0])<<14;
1020   b = p[1];
1021   p += 2;
1022   a |= *p;
1023   /* a: p0<<14 | p2 (unmasked) */
1024   if (!(a&0x80))
1025   {
1026     a &= SLOT_2_0;
1027     b &= 0x7f;
1028     b = b<<7;
1029     a |= b;
1030     *v = a;
1031     return 3;
1032   }
1033 
1034   /* CSE1 from below */
1035   a &= SLOT_2_0;
1036   p++;
1037   b = b<<14;
1038   b |= *p;
1039   /* b: p1<<14 | p3 (unmasked) */
1040   if (!(b&0x80))
1041   {
1042     b &= SLOT_2_0;
1043     /* moved CSE1 up */
1044     /* a &= (0x7f<<14)|(0x7f); */
1045     a = a<<7;
1046     a |= b;
1047     *v = a;
1048     return 4;
1049   }
1050 
1051   /* a: p0<<14 | p2 (masked) */
1052   /* b: p1<<14 | p3 (unmasked) */
1053   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1054   /* moved CSE1 up */
1055   /* a &= (0x7f<<14)|(0x7f); */
1056   b &= SLOT_2_0;
1057   s = a;
1058   /* s: p0<<14 | p2 (masked) */
1059 
1060   p++;
1061   a = a<<14;
1062   a |= *p;
1063   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1064   if (!(a&0x80))
1065   {
1066     /* we can skip these cause they were (effectively) done above
1067     ** while calculating s */
1068     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1069     /* b &= (0x7f<<14)|(0x7f); */
1070     b = b<<7;
1071     a |= b;
1072     s = s>>18;
1073     *v = ((u64)s)<<32 | a;
1074     return 5;
1075   }
1076 
1077   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1078   s = s<<7;
1079   s |= b;
1080   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1081 
1082   p++;
1083   b = b<<14;
1084   b |= *p;
1085   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1086   if (!(b&0x80))
1087   {
1088     /* we can skip this cause it was (effectively) done above in calc'ing s */
1089     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1090     a &= SLOT_2_0;
1091     a = a<<7;
1092     a |= b;
1093     s = s>>18;
1094     *v = ((u64)s)<<32 | a;
1095     return 6;
1096   }
1097 
1098   p++;
1099   a = a<<14;
1100   a |= *p;
1101   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1102   if (!(a&0x80))
1103   {
1104     a &= SLOT_4_2_0;
1105     b &= SLOT_2_0;
1106     b = b<<7;
1107     a |= b;
1108     s = s>>11;
1109     *v = ((u64)s)<<32 | a;
1110     return 7;
1111   }
1112 
1113   /* CSE2 from below */
1114   a &= SLOT_2_0;
1115   p++;
1116   b = b<<14;
1117   b |= *p;
1118   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1119   if (!(b&0x80))
1120   {
1121     b &= SLOT_4_2_0;
1122     /* moved CSE2 up */
1123     /* a &= (0x7f<<14)|(0x7f); */
1124     a = a<<7;
1125     a |= b;
1126     s = s>>4;
1127     *v = ((u64)s)<<32 | a;
1128     return 8;
1129   }
1130 
1131   p++;
1132   a = a<<15;
1133   a |= *p;
1134   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1135 
1136   /* moved CSE2 up */
1137   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1138   b &= SLOT_2_0;
1139   b = b<<8;
1140   a |= b;
1141 
1142   s = s<<4;
1143   b = p[-4];
1144   b &= 0x7f;
1145   b = b>>3;
1146   s |= b;
1147 
1148   *v = ((u64)s)<<32 | a;
1149 
1150   return 9;
1151 }
1152 
1153 /*
1154 ** Read a 32-bit variable-length integer from memory starting at p[0].
1155 ** Return the number of bytes read.  The value is stored in *v.
1156 **
1157 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1158 ** integer, then set *v to 0xffffffff.
1159 **
1160 ** A MACRO version, getVarint32, is provided which inlines the
1161 ** single-byte case.  All code should use the MACRO version as
1162 ** this function assumes the single-byte case has already been handled.
1163 */
1164 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1165   u32 a,b;
1166 
1167   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
1168   ** by the getVarin32() macro */
1169   a = *p;
1170   /* a: p0 (unmasked) */
1171 #ifndef getVarint32
1172   if (!(a&0x80))
1173   {
1174     /* Values between 0 and 127 */
1175     *v = a;
1176     return 1;
1177   }
1178 #endif
1179 
1180   /* The 2-byte case */
1181   p++;
1182   b = *p;
1183   /* b: p1 (unmasked) */
1184   if (!(b&0x80))
1185   {
1186     /* Values between 128 and 16383 */
1187     a &= 0x7f;
1188     a = a<<7;
1189     *v = a | b;
1190     return 2;
1191   }
1192 
1193   /* The 3-byte case */
1194   p++;
1195   a = a<<14;
1196   a |= *p;
1197   /* a: p0<<14 | p2 (unmasked) */
1198   if (!(a&0x80))
1199   {
1200     /* Values between 16384 and 2097151 */
1201     a &= (0x7f<<14)|(0x7f);
1202     b &= 0x7f;
1203     b = b<<7;
1204     *v = a | b;
1205     return 3;
1206   }
1207 
1208   /* A 32-bit varint is used to store size information in btrees.
1209   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1210   ** A 3-byte varint is sufficient, for example, to record the size
1211   ** of a 1048569-byte BLOB or string.
1212   **
1213   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
1214   ** rare larger cases can be handled by the slower 64-bit varint
1215   ** routine.
1216   */
1217 #if 1
1218   {
1219     u64 v64;
1220     u8 n;
1221 
1222     n = sqlite3GetVarint(p-2, &v64);
1223     assert( n>3 && n<=9 );
1224     if( (v64 & SQLITE_MAX_U32)!=v64 ){
1225       *v = 0xffffffff;
1226     }else{
1227       *v = (u32)v64;
1228     }
1229     return n;
1230   }
1231 
1232 #else
1233   /* For following code (kept for historical record only) shows an
1234   ** unrolling for the 3- and 4-byte varint cases.  This code is
1235   ** slightly faster, but it is also larger and much harder to test.
1236   */
1237   p++;
1238   b = b<<14;
1239   b |= *p;
1240   /* b: p1<<14 | p3 (unmasked) */
1241   if (!(b&0x80))
1242   {
1243     /* Values between 2097152 and 268435455 */
1244     b &= (0x7f<<14)|(0x7f);
1245     a &= (0x7f<<14)|(0x7f);
1246     a = a<<7;
1247     *v = a | b;
1248     return 4;
1249   }
1250 
1251   p++;
1252   a = a<<14;
1253   a |= *p;
1254   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1255   if (!(a&0x80))
1256   {
1257     /* Values  between 268435456 and 34359738367 */
1258     a &= SLOT_4_2_0;
1259     b &= SLOT_4_2_0;
1260     b = b<<7;
1261     *v = a | b;
1262     return 5;
1263   }
1264 
1265   /* We can only reach this point when reading a corrupt database
1266   ** file.  In that case we are not in any hurry.  Use the (relatively
1267   ** slow) general-purpose sqlite3GetVarint() routine to extract the
1268   ** value. */
1269   {
1270     u64 v64;
1271     u8 n;
1272 
1273     p -= 4;
1274     n = sqlite3GetVarint(p, &v64);
1275     assert( n>5 && n<=9 );
1276     *v = (u32)v64;
1277     return n;
1278   }
1279 #endif
1280 }
1281 
1282 /*
1283 ** Return the number of bytes that will be needed to store the given
1284 ** 64-bit integer.
1285 */
1286 int sqlite3VarintLen(u64 v){
1287   int i;
1288   for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1289   return i;
1290 }
1291 
1292 
1293 /*
1294 ** Read or write a four-byte big-endian integer value.
1295 */
1296 u32 sqlite3Get4byte(const u8 *p){
1297 #if SQLITE_BYTEORDER==4321
1298   u32 x;
1299   memcpy(&x,p,4);
1300   return x;
1301 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1302   u32 x;
1303   memcpy(&x,p,4);
1304   return __builtin_bswap32(x);
1305 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1306   u32 x;
1307   memcpy(&x,p,4);
1308   return _byteswap_ulong(x);
1309 #else
1310   testcase( p[0]&0x80 );
1311   return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1312 #endif
1313 }
1314 void sqlite3Put4byte(unsigned char *p, u32 v){
1315 #if SQLITE_BYTEORDER==4321
1316   memcpy(p,&v,4);
1317 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1318   u32 x = __builtin_bswap32(v);
1319   memcpy(p,&x,4);
1320 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1321   u32 x = _byteswap_ulong(v);
1322   memcpy(p,&x,4);
1323 #else
1324   p[0] = (u8)(v>>24);
1325   p[1] = (u8)(v>>16);
1326   p[2] = (u8)(v>>8);
1327   p[3] = (u8)v;
1328 #endif
1329 }
1330 
1331 
1332 
1333 /*
1334 ** Translate a single byte of Hex into an integer.
1335 ** This routine only works if h really is a valid hexadecimal
1336 ** character:  0..9a..fA..F
1337 */
1338 u8 sqlite3HexToInt(int h){
1339   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
1340 #ifdef SQLITE_ASCII
1341   h += 9*(1&(h>>6));
1342 #endif
1343 #ifdef SQLITE_EBCDIC
1344   h += 9*(1&~(h>>4));
1345 #endif
1346   return (u8)(h & 0xf);
1347 }
1348 
1349 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1350 /*
1351 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1352 ** value.  Return a pointer to its binary value.  Space to hold the
1353 ** binary value has been obtained from malloc and must be freed by
1354 ** the calling routine.
1355 */
1356 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1357   char *zBlob;
1358   int i;
1359 
1360   zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1361   n--;
1362   if( zBlob ){
1363     for(i=0; i<n; i+=2){
1364       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1365     }
1366     zBlob[i/2] = 0;
1367   }
1368   return zBlob;
1369 }
1370 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1371 
1372 /*
1373 ** Log an error that is an API call on a connection pointer that should
1374 ** not have been used.  The "type" of connection pointer is given as the
1375 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1376 */
1377 static void logBadConnection(const char *zType){
1378   sqlite3_log(SQLITE_MISUSE,
1379      "API call with %s database connection pointer",
1380      zType
1381   );
1382 }
1383 
1384 /*
1385 ** Check to make sure we have a valid db pointer.  This test is not
1386 ** foolproof but it does provide some measure of protection against
1387 ** misuse of the interface such as passing in db pointers that are
1388 ** NULL or which have been previously closed.  If this routine returns
1389 ** 1 it means that the db pointer is valid and 0 if it should not be
1390 ** dereferenced for any reason.  The calling function should invoke
1391 ** SQLITE_MISUSE immediately.
1392 **
1393 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1394 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1395 ** open properly and is not fit for general use but which can be
1396 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1397 */
1398 int sqlite3SafetyCheckOk(sqlite3 *db){
1399   u32 magic;
1400   if( db==0 ){
1401     logBadConnection("NULL");
1402     return 0;
1403   }
1404   magic = db->magic;
1405   if( magic!=SQLITE_MAGIC_OPEN ){
1406     if( sqlite3SafetyCheckSickOrOk(db) ){
1407       testcase( sqlite3GlobalConfig.xLog!=0 );
1408       logBadConnection("unopened");
1409     }
1410     return 0;
1411   }else{
1412     return 1;
1413   }
1414 }
1415 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1416   u32 magic;
1417   magic = db->magic;
1418   if( magic!=SQLITE_MAGIC_SICK &&
1419       magic!=SQLITE_MAGIC_OPEN &&
1420       magic!=SQLITE_MAGIC_BUSY ){
1421     testcase( sqlite3GlobalConfig.xLog!=0 );
1422     logBadConnection("invalid");
1423     return 0;
1424   }else{
1425     return 1;
1426   }
1427 }
1428 
1429 /*
1430 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1431 ** the other 64-bit signed integer at *pA and store the result in *pA.
1432 ** Return 0 on success.  Or if the operation would have resulted in an
1433 ** overflow, leave *pA unchanged and return 1.
1434 */
1435 int sqlite3AddInt64(i64 *pA, i64 iB){
1436 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1437   return __builtin_add_overflow(*pA, iB, pA);
1438 #else
1439   i64 iA = *pA;
1440   testcase( iA==0 ); testcase( iA==1 );
1441   testcase( iB==-1 ); testcase( iB==0 );
1442   if( iB>=0 ){
1443     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1444     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1445     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1446   }else{
1447     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1448     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1449     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1450   }
1451   *pA += iB;
1452   return 0;
1453 #endif
1454 }
1455 int sqlite3SubInt64(i64 *pA, i64 iB){
1456 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1457   return __builtin_sub_overflow(*pA, iB, pA);
1458 #else
1459   testcase( iB==SMALLEST_INT64+1 );
1460   if( iB==SMALLEST_INT64 ){
1461     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1462     if( (*pA)>=0 ) return 1;
1463     *pA -= iB;
1464     return 0;
1465   }else{
1466     return sqlite3AddInt64(pA, -iB);
1467   }
1468 #endif
1469 }
1470 int sqlite3MulInt64(i64 *pA, i64 iB){
1471 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1472   return __builtin_mul_overflow(*pA, iB, pA);
1473 #else
1474   i64 iA = *pA;
1475   if( iB>0 ){
1476     if( iA>LARGEST_INT64/iB ) return 1;
1477     if( iA<SMALLEST_INT64/iB ) return 1;
1478   }else if( iB<0 ){
1479     if( iA>0 ){
1480       if( iB<SMALLEST_INT64/iA ) return 1;
1481     }else if( iA<0 ){
1482       if( iB==SMALLEST_INT64 ) return 1;
1483       if( iA==SMALLEST_INT64 ) return 1;
1484       if( -iA>LARGEST_INT64/-iB ) return 1;
1485     }
1486   }
1487   *pA = iA*iB;
1488   return 0;
1489 #endif
1490 }
1491 
1492 /*
1493 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1494 ** if the integer has a value of -2147483648, return +2147483647
1495 */
1496 int sqlite3AbsInt32(int x){
1497   if( x>=0 ) return x;
1498   if( x==(int)0x80000000 ) return 0x7fffffff;
1499   return -x;
1500 }
1501 
1502 #ifdef SQLITE_ENABLE_8_3_NAMES
1503 /*
1504 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1505 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1506 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1507 ** three characters, then shorten the suffix on z[] to be the last three
1508 ** characters of the original suffix.
1509 **
1510 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1511 ** do the suffix shortening regardless of URI parameter.
1512 **
1513 ** Examples:
1514 **
1515 **     test.db-journal    =>   test.nal
1516 **     test.db-wal        =>   test.wal
1517 **     test.db-shm        =>   test.shm
1518 **     test.db-mj7f3319fa =>   test.9fa
1519 */
1520 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1521 #if SQLITE_ENABLE_8_3_NAMES<2
1522   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1523 #endif
1524   {
1525     int i, sz;
1526     sz = sqlite3Strlen30(z);
1527     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1528     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1529   }
1530 }
1531 #endif
1532 
1533 /*
1534 ** Find (an approximate) sum of two LogEst values.  This computation is
1535 ** not a simple "+" operator because LogEst is stored as a logarithmic
1536 ** value.
1537 **
1538 */
1539 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1540   static const unsigned char x[] = {
1541      10, 10,                         /* 0,1 */
1542       9, 9,                          /* 2,3 */
1543       8, 8,                          /* 4,5 */
1544       7, 7, 7,                       /* 6,7,8 */
1545       6, 6, 6,                       /* 9,10,11 */
1546       5, 5, 5,                       /* 12-14 */
1547       4, 4, 4, 4,                    /* 15-18 */
1548       3, 3, 3, 3, 3, 3,              /* 19-24 */
1549       2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
1550   };
1551   if( a>=b ){
1552     if( a>b+49 ) return a;
1553     if( a>b+31 ) return a+1;
1554     return a+x[a-b];
1555   }else{
1556     if( b>a+49 ) return b;
1557     if( b>a+31 ) return b+1;
1558     return b+x[b-a];
1559   }
1560 }
1561 
1562 /*
1563 ** Convert an integer into a LogEst.  In other words, compute an
1564 ** approximation for 10*log2(x).
1565 */
1566 LogEst sqlite3LogEst(u64 x){
1567   static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1568   LogEst y = 40;
1569   if( x<8 ){
1570     if( x<2 ) return 0;
1571     while( x<8 ){  y -= 10; x <<= 1; }
1572   }else{
1573 #if GCC_VERSION>=5004000
1574     int i = 60 - __builtin_clzll(x);
1575     y += i*10;
1576     x >>= i;
1577 #else
1578     while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
1579     while( x>15 ){  y += 10; x >>= 1; }
1580 #endif
1581   }
1582   return a[x&7] + y - 10;
1583 }
1584 
1585 #ifndef SQLITE_OMIT_VIRTUALTABLE
1586 /*
1587 ** Convert a double into a LogEst
1588 ** In other words, compute an approximation for 10*log2(x).
1589 */
1590 LogEst sqlite3LogEstFromDouble(double x){
1591   u64 a;
1592   LogEst e;
1593   assert( sizeof(x)==8 && sizeof(a)==8 );
1594   if( x<=1 ) return 0;
1595   if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1596   memcpy(&a, &x, 8);
1597   e = (a>>52) - 1022;
1598   return e*10;
1599 }
1600 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1601 
1602 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1603     defined(SQLITE_ENABLE_STAT4) || \
1604     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1605 /*
1606 ** Convert a LogEst into an integer.
1607 **
1608 ** Note that this routine is only used when one or more of various
1609 ** non-standard compile-time options is enabled.
1610 */
1611 u64 sqlite3LogEstToInt(LogEst x){
1612   u64 n;
1613   n = x%10;
1614   x /= 10;
1615   if( n>=5 ) n -= 2;
1616   else if( n>=1 ) n -= 1;
1617 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1618     defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1619   if( x>60 ) return (u64)LARGEST_INT64;
1620 #else
1621   /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
1622   ** possible to this routine is 310, resulting in a maximum x of 31 */
1623   assert( x<=60 );
1624 #endif
1625   return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1626 }
1627 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1628 
1629 /*
1630 ** Add a new name/number pair to a VList.  This might require that the
1631 ** VList object be reallocated, so return the new VList.  If an OOM
1632 ** error occurs, the original VList returned and the
1633 ** db->mallocFailed flag is set.
1634 **
1635 ** A VList is really just an array of integers.  To destroy a VList,
1636 ** simply pass it to sqlite3DbFree().
1637 **
1638 ** The first integer is the number of integers allocated for the whole
1639 ** VList.  The second integer is the number of integers actually used.
1640 ** Each name/number pair is encoded by subsequent groups of 3 or more
1641 ** integers.
1642 **
1643 ** Each name/number pair starts with two integers which are the numeric
1644 ** value for the pair and the size of the name/number pair, respectively.
1645 ** The text name overlays one or more following integers.  The text name
1646 ** is always zero-terminated.
1647 **
1648 ** Conceptually:
1649 **
1650 **    struct VList {
1651 **      int nAlloc;   // Number of allocated slots
1652 **      int nUsed;    // Number of used slots
1653 **      struct VListEntry {
1654 **        int iValue;    // Value for this entry
1655 **        int nSlot;     // Slots used by this entry
1656 **        // ... variable name goes here
1657 **      } a[0];
1658 **    }
1659 **
1660 ** During code generation, pointers to the variable names within the
1661 ** VList are taken.  When that happens, nAlloc is set to zero as an
1662 ** indication that the VList may never again be enlarged, since the
1663 ** accompanying realloc() would invalidate the pointers.
1664 */
1665 VList *sqlite3VListAdd(
1666   sqlite3 *db,           /* The database connection used for malloc() */
1667   VList *pIn,            /* The input VList.  Might be NULL */
1668   const char *zName,     /* Name of symbol to add */
1669   int nName,             /* Bytes of text in zName */
1670   int iVal               /* Value to associate with zName */
1671 ){
1672   int nInt;              /* number of sizeof(int) objects needed for zName */
1673   char *z;               /* Pointer to where zName will be stored */
1674   int i;                 /* Index in pIn[] where zName is stored */
1675 
1676   nInt = nName/4 + 3;
1677   assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
1678   if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1679     /* Enlarge the allocation */
1680     sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1681     VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1682     if( pOut==0 ) return pIn;
1683     if( pIn==0 ) pOut[1] = 2;
1684     pIn = pOut;
1685     pIn[0] = nAlloc;
1686   }
1687   i = pIn[1];
1688   pIn[i] = iVal;
1689   pIn[i+1] = nInt;
1690   z = (char*)&pIn[i+2];
1691   pIn[1] = i+nInt;
1692   assert( pIn[1]<=pIn[0] );
1693   memcpy(z, zName, nName);
1694   z[nName] = 0;
1695   return pIn;
1696 }
1697 
1698 /*
1699 ** Return a pointer to the name of a variable in the given VList that
1700 ** has the value iVal.  Or return a NULL if there is no such variable in
1701 ** the list
1702 */
1703 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1704   int i, mx;
1705   if( pIn==0 ) return 0;
1706   mx = pIn[1];
1707   i = 2;
1708   do{
1709     if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1710     i += pIn[i+1];
1711   }while( i<mx );
1712   return 0;
1713 }
1714 
1715 /*
1716 ** Return the number of the variable named zName, if it is in VList.
1717 ** or return 0 if there is no such variable.
1718 */
1719 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1720   int i, mx;
1721   if( pIn==0 ) return 0;
1722   mx = pIn[1];
1723   i = 2;
1724   do{
1725     const char *z = (const char*)&pIn[i+2];
1726     if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1727     i += pIn[i+1];
1728   }while( i<mx );
1729   return 0;
1730 }
1731