1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifdef SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static int dummy = 0; 30 dummy += x; 31 } 32 #endif 33 34 #ifndef SQLITE_OMIT_FLOATING_POINT 35 /* 36 ** Return true if the floating point value is Not a Number (NaN). 37 ** 38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 39 ** Otherwise, we have our own implementation that works on most systems. 40 */ 41 int sqlite3IsNaN(double x){ 42 int rc; /* The value return */ 43 #if !defined(SQLITE_HAVE_ISNAN) 44 /* 45 ** Systems that support the isnan() library function should probably 46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 47 ** found that many systems do not have a working isnan() function so 48 ** this implementation is provided as an alternative. 49 ** 50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 51 ** On the other hand, the use of -ffast-math comes with the following 52 ** warning: 53 ** 54 ** This option [-ffast-math] should never be turned on by any 55 ** -O option since it can result in incorrect output for programs 56 ** which depend on an exact implementation of IEEE or ISO 57 ** rules/specifications for math functions. 58 ** 59 ** Under MSVC, this NaN test may fail if compiled with a floating- 60 ** point precision mode other than /fp:precise. From the MSDN 61 ** documentation: 62 ** 63 ** The compiler [with /fp:precise] will properly handle comparisons 64 ** involving NaN. For example, x != x evaluates to true if x is NaN 65 ** ... 66 */ 67 #ifdef __FAST_MATH__ 68 # error SQLite will not work correctly with the -ffast-math option of GCC. 69 #endif 70 volatile double y = x; 71 volatile double z = y; 72 rc = (y!=z); 73 #else /* if defined(SQLITE_HAVE_ISNAN) */ 74 rc = isnan(x); 75 #endif /* SQLITE_HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 #endif /* SQLITE_OMIT_FLOATING_POINT */ 80 81 /* 82 ** Compute a string length that is limited to what can be stored in 83 ** lower 30 bits of a 32-bit signed integer. 84 ** 85 ** The value returned will never be negative. Nor will it ever be greater 86 ** than the actual length of the string. For very long strings (greater 87 ** than 1GiB) the value returned might be less than the true string length. 88 */ 89 int sqlite3Strlen30(const char *z){ 90 const char *z2 = z; 91 if( z==0 ) return 0; 92 while( *z2 ){ z2++; } 93 return 0x3fffffff & (int)(z2 - z); 94 } 95 96 /* 97 ** Set the most recent error code and error string for the sqlite 98 ** handle "db". The error code is set to "err_code". 99 ** 100 ** If it is not NULL, string zFormat specifies the format of the 101 ** error string in the style of the printf functions: The following 102 ** format characters are allowed: 103 ** 104 ** %s Insert a string 105 ** %z A string that should be freed after use 106 ** %d Insert an integer 107 ** %T Insert a token 108 ** %S Insert the first element of a SrcList 109 ** 110 ** zFormat and any string tokens that follow it are assumed to be 111 ** encoded in UTF-8. 112 ** 113 ** To clear the most recent error for sqlite handle "db", sqlite3Error 114 ** should be called with err_code set to SQLITE_OK and zFormat set 115 ** to NULL. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 119 db->errCode = err_code; 120 if( zFormat ){ 121 char *z; 122 va_list ap; 123 va_start(ap, zFormat); 124 z = sqlite3VMPrintf(db, zFormat, ap); 125 va_end(ap); 126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 127 }else{ 128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 129 } 130 } 131 } 132 133 /* 134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 135 ** The following formatting characters are allowed: 136 ** 137 ** %s Insert a string 138 ** %z A string that should be freed after use 139 ** %d Insert an integer 140 ** %T Insert a token 141 ** %S Insert the first element of a SrcList 142 ** 143 ** This function should be used to report any error that occurs whilst 144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 145 ** last thing the sqlite3_prepare() function does is copy the error 146 ** stored by this function into the database handle using sqlite3Error(). 147 ** Function sqlite3Error() should be used during statement execution 148 ** (sqlite3_step() etc.). 149 */ 150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 151 char *zMsg; 152 va_list ap; 153 sqlite3 *db = pParse->db; 154 va_start(ap, zFormat); 155 zMsg = sqlite3VMPrintf(db, zFormat, ap); 156 va_end(ap); 157 if( db->suppressErr ){ 158 sqlite3DbFree(db, zMsg); 159 }else{ 160 pParse->nErr++; 161 sqlite3DbFree(db, pParse->zErrMsg); 162 pParse->zErrMsg = zMsg; 163 pParse->rc = SQLITE_ERROR; 164 } 165 } 166 167 /* 168 ** Convert an SQL-style quoted string into a normal string by removing 169 ** the quote characters. The conversion is done in-place. If the 170 ** input does not begin with a quote character, then this routine 171 ** is a no-op. 172 ** 173 ** The input string must be zero-terminated. A new zero-terminator 174 ** is added to the dequoted string. 175 ** 176 ** The return value is -1 if no dequoting occurs or the length of the 177 ** dequoted string, exclusive of the zero terminator, if dequoting does 178 ** occur. 179 ** 180 ** 2002-Feb-14: This routine is extended to remove MS-Access style 181 ** brackets from around identifers. For example: "[a-b-c]" becomes 182 ** "a-b-c". 183 */ 184 int sqlite3Dequote(char *z){ 185 char quote; 186 int i, j; 187 if( z==0 ) return -1; 188 quote = z[0]; 189 switch( quote ){ 190 case '\'': break; 191 case '"': break; 192 case '`': break; /* For MySQL compatibility */ 193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 194 default: return -1; 195 } 196 for(i=1, j=0; ALWAYS(z[i]); i++){ 197 if( z[i]==quote ){ 198 if( z[i+1]==quote ){ 199 z[j++] = quote; 200 i++; 201 }else{ 202 break; 203 } 204 }else{ 205 z[j++] = z[i]; 206 } 207 } 208 z[j] = 0; 209 return j; 210 } 211 212 /* Convenient short-hand */ 213 #define UpperToLower sqlite3UpperToLower 214 215 /* 216 ** Some systems have stricmp(). Others have strcasecmp(). Because 217 ** there is no consistency, we will define our own. 218 */ 219 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 220 register unsigned char *a, *b; 221 a = (unsigned char *)zLeft; 222 b = (unsigned char *)zRight; 223 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 224 return UpperToLower[*a] - UpperToLower[*b]; 225 } 226 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 227 register unsigned char *a, *b; 228 a = (unsigned char *)zLeft; 229 b = (unsigned char *)zRight; 230 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 231 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 232 } 233 234 /* 235 ** Return TRUE if z is a pure numeric string. Return FALSE and leave 236 ** *realnum unchanged if the string contains any character which is not 237 ** part of a number. 238 ** 239 ** If the string is pure numeric, set *realnum to TRUE if the string 240 ** contains the '.' character or an "E+000" style exponentiation suffix. 241 ** Otherwise set *realnum to FALSE. Note that just becaue *realnum is 242 ** false does not mean that the number can be successfully converted into 243 ** an integer - it might be too big. 244 ** 245 ** An empty string is considered non-numeric. 246 */ 247 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ 248 int incr = (enc==SQLITE_UTF8?1:2); 249 if( enc==SQLITE_UTF16BE ) z++; 250 if( *z=='-' || *z=='+' ) z += incr; 251 if( !sqlite3Isdigit(*z) ){ 252 return 0; 253 } 254 z += incr; 255 *realnum = 0; 256 while( sqlite3Isdigit(*z) ){ z += incr; } 257 #ifndef SQLITE_OMIT_FLOATING_POINT 258 if( *z=='.' ){ 259 z += incr; 260 if( !sqlite3Isdigit(*z) ) return 0; 261 while( sqlite3Isdigit(*z) ){ z += incr; } 262 *realnum = 1; 263 } 264 if( *z=='e' || *z=='E' ){ 265 z += incr; 266 if( *z=='+' || *z=='-' ) z += incr; 267 if( !sqlite3Isdigit(*z) ) return 0; 268 while( sqlite3Isdigit(*z) ){ z += incr; } 269 *realnum = 1; 270 } 271 #endif 272 return *z==0; 273 } 274 275 /* 276 ** The string z[] is an ASCII representation of a real number. 277 ** Convert this string to a double. 278 ** 279 ** This routine assumes that z[] really is a valid number. If it 280 ** is not, the result is undefined. 281 ** 282 ** This routine is used instead of the library atof() function because 283 ** the library atof() might want to use "," as the decimal point instead 284 ** of "." depending on how locale is set. But that would cause problems 285 ** for SQL. So this routine always uses "." regardless of locale. 286 */ 287 int sqlite3AtoF(const char *z, double *pResult){ 288 #ifndef SQLITE_OMIT_FLOATING_POINT 289 const char *zBegin = z; 290 /* sign * significand * (10 ^ (esign * exponent)) */ 291 int sign = 1; /* sign of significand */ 292 i64 s = 0; /* significand */ 293 int d = 0; /* adjust exponent for shifting decimal point */ 294 int esign = 1; /* sign of exponent */ 295 int e = 0; /* exponent */ 296 double result; 297 int nDigits = 0; 298 299 /* skip leading spaces */ 300 while( sqlite3Isspace(*z) ) z++; 301 /* get sign of significand */ 302 if( *z=='-' ){ 303 sign = -1; 304 z++; 305 }else if( *z=='+' ){ 306 z++; 307 } 308 /* skip leading zeroes */ 309 while( z[0]=='0' ) z++, nDigits++; 310 311 /* copy max significant digits to significand */ 312 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 313 s = s*10 + (*z - '0'); 314 z++, nDigits++; 315 } 316 /* skip non-significant significand digits 317 ** (increase exponent by d to shift decimal left) */ 318 while( sqlite3Isdigit(*z) ) z++, nDigits++, d++; 319 320 /* if decimal point is present */ 321 if( *z=='.' ){ 322 z++; 323 /* copy digits from after decimal to significand 324 ** (decrease exponent by d to shift decimal right) */ 325 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 326 s = s*10 + (*z - '0'); 327 z++, nDigits++, d--; 328 } 329 /* skip non-significant digits */ 330 while( sqlite3Isdigit(*z) ) z++, nDigits++; 331 } 332 333 /* if exponent is present */ 334 if( *z=='e' || *z=='E' ){ 335 z++; 336 /* get sign of exponent */ 337 if( *z=='-' ){ 338 esign = -1; 339 z++; 340 }else if( *z=='+' ){ 341 z++; 342 } 343 /* copy digits to exponent */ 344 while( sqlite3Isdigit(*z) ){ 345 e = e*10 + (*z - '0'); 346 z++; 347 } 348 } 349 350 /* adjust exponent by d, and update sign */ 351 e = (e*esign) + d; 352 if( e<0 ) { 353 esign = -1; 354 e *= -1; 355 } else { 356 esign = 1; 357 } 358 359 /* if 0 significand */ 360 if( !s ) { 361 /* In the IEEE 754 standard, zero is signed. 362 ** Add the sign if we've seen at least one digit */ 363 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 364 } else { 365 /* attempt to reduce exponent */ 366 if( esign>0 ){ 367 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 368 }else{ 369 while( !(s%10) && e>0 ) e--,s/=10; 370 } 371 372 /* adjust the sign of significand */ 373 s = sign<0 ? -s : s; 374 375 /* if exponent, scale significand as appropriate 376 ** and store in result. */ 377 if( e ){ 378 double scale = 1.0; 379 /* attempt to handle extremely small/large numbers better */ 380 if( e>307 && e<342 ){ 381 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 382 if( esign<0 ){ 383 result = s / scale; 384 result /= 1.0e+308; 385 }else{ 386 result = s * scale; 387 result *= 1.0e+308; 388 } 389 }else{ 390 /* 1.0e+22 is the largest power of 10 than can be 391 ** represented exactly. */ 392 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 393 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 394 if( esign<0 ){ 395 result = s / scale; 396 }else{ 397 result = s * scale; 398 } 399 } 400 } else { 401 result = (double)s; 402 } 403 } 404 405 /* store the result */ 406 *pResult = result; 407 408 /* return number of characters used */ 409 return (int)(z - zBegin); 410 #else 411 return sqlite3Atoi64(z, pResult); 412 #endif /* SQLITE_OMIT_FLOATING_POINT */ 413 } 414 415 /* 416 ** Compare the 19-character string zNum against the text representation 417 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 418 ** if zNum is less than, equal to, or greater than the string. 419 ** 420 ** Unlike memcmp() this routine is guaranteed to return the difference 421 ** in the values of the last digit if the only difference is in the 422 ** last digit. So, for example, 423 ** 424 ** compare2pow63("9223372036854775800") 425 ** 426 ** will return -8. 427 */ 428 static int compare2pow63(const char *zNum){ 429 int c; 430 c = memcmp(zNum,"922337203685477580",18)*10; 431 if( c==0 ){ 432 c = zNum[18] - '8'; 433 testcase( c==(-1) ); 434 testcase( c==0 ); 435 testcase( c==(+1) ); 436 } 437 return c; 438 } 439 440 441 /* 442 ** Return TRUE if zNum is a 64-bit signed integer and write 443 ** the value of the integer into *pNum. If zNum is not an integer 444 ** or is an integer that is too large to be expressed with 64 bits, 445 ** then return false. 446 ** 447 ** When this routine was originally written it dealt with only 448 ** 32-bit numbers. At that time, it was much faster than the 449 ** atoi() library routine in RedHat 7.2. 450 */ 451 int sqlite3Atoi64(const char *zNum, i64 *pNum){ 452 i64 v = 0; 453 int neg; 454 int i, c; 455 const char *zStart; 456 while( sqlite3Isspace(*zNum) ) zNum++; 457 if( *zNum=='-' ){ 458 neg = 1; 459 zNum++; 460 }else if( *zNum=='+' ){ 461 neg = 0; 462 zNum++; 463 }else{ 464 neg = 0; 465 } 466 zStart = zNum; 467 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ 468 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ 469 v = v*10 + c - '0'; 470 } 471 *pNum = neg ? -v : v; 472 testcase( i==18 ); 473 testcase( i==19 ); 474 testcase( i==20 ); 475 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ 476 /* zNum is empty or contains non-numeric text or is longer 477 ** than 19 digits (thus guaranting that it is too large) */ 478 return 0; 479 }else if( i<19 ){ 480 /* Less than 19 digits, so we know that it fits in 64 bits */ 481 return 1; 482 }else{ 483 /* 19-digit numbers must be no larger than 9223372036854775807 if positive 484 ** or 9223372036854775808 if negative. Note that 9223372036854665808 485 ** is 2^63. */ 486 return compare2pow63(zNum)<neg; 487 } 488 } 489 490 /* 491 ** The string zNum represents an unsigned integer. The zNum string 492 ** consists of one or more digit characters and is terminated by 493 ** a zero character. Any stray characters in zNum result in undefined 494 ** behavior. 495 ** 496 ** If the unsigned integer that zNum represents will fit in a 497 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. 498 ** 499 ** If the negFlag parameter is true, that means that zNum really represents 500 ** a negative number. (The leading "-" is omitted from zNum.) This 501 ** parameter is needed to determine a boundary case. A string 502 ** of "9223373036854775808" returns false if negFlag is false or true 503 ** if negFlag is true. 504 ** 505 ** Leading zeros are ignored. 506 */ 507 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ 508 int i; 509 int neg = 0; 510 511 assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */ 512 513 if( negFlag ) neg = 1-neg; 514 while( *zNum=='0' ){ 515 zNum++; /* Skip leading zeros. Ticket #2454 */ 516 } 517 for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); } 518 testcase( i==18 ); 519 testcase( i==19 ); 520 testcase( i==20 ); 521 if( i<19 ){ 522 /* Guaranteed to fit if less than 19 digits */ 523 return 1; 524 }else if( i>19 ){ 525 /* Guaranteed to be too big if greater than 19 digits */ 526 return 0; 527 }else{ 528 /* Compare against 2^63. */ 529 return compare2pow63(zNum)<neg; 530 } 531 } 532 533 /* 534 ** If zNum represents an integer that will fit in 32-bits, then set 535 ** *pValue to that integer and return true. Otherwise return false. 536 ** 537 ** Any non-numeric characters that following zNum are ignored. 538 ** This is different from sqlite3Atoi64() which requires the 539 ** input number to be zero-terminated. 540 */ 541 int sqlite3GetInt32(const char *zNum, int *pValue){ 542 sqlite_int64 v = 0; 543 int i, c; 544 int neg = 0; 545 if( zNum[0]=='-' ){ 546 neg = 1; 547 zNum++; 548 }else if( zNum[0]=='+' ){ 549 zNum++; 550 } 551 while( zNum[0]=='0' ) zNum++; 552 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 553 v = v*10 + c; 554 } 555 556 /* The longest decimal representation of a 32 bit integer is 10 digits: 557 ** 558 ** 1234567890 559 ** 2^31 -> 2147483648 560 */ 561 testcase( i==10 ); 562 if( i>10 ){ 563 return 0; 564 } 565 testcase( v-neg==2147483647 ); 566 if( v-neg>2147483647 ){ 567 return 0; 568 } 569 if( neg ){ 570 v = -v; 571 } 572 *pValue = (int)v; 573 return 1; 574 } 575 576 /* 577 ** The variable-length integer encoding is as follows: 578 ** 579 ** KEY: 580 ** A = 0xxxxxxx 7 bits of data and one flag bit 581 ** B = 1xxxxxxx 7 bits of data and one flag bit 582 ** C = xxxxxxxx 8 bits of data 583 ** 584 ** 7 bits - A 585 ** 14 bits - BA 586 ** 21 bits - BBA 587 ** 28 bits - BBBA 588 ** 35 bits - BBBBA 589 ** 42 bits - BBBBBA 590 ** 49 bits - BBBBBBA 591 ** 56 bits - BBBBBBBA 592 ** 64 bits - BBBBBBBBC 593 */ 594 595 /* 596 ** Write a 64-bit variable-length integer to memory starting at p[0]. 597 ** The length of data write will be between 1 and 9 bytes. The number 598 ** of bytes written is returned. 599 ** 600 ** A variable-length integer consists of the lower 7 bits of each byte 601 ** for all bytes that have the 8th bit set and one byte with the 8th 602 ** bit clear. Except, if we get to the 9th byte, it stores the full 603 ** 8 bits and is the last byte. 604 */ 605 int sqlite3PutVarint(unsigned char *p, u64 v){ 606 int i, j, n; 607 u8 buf[10]; 608 if( v & (((u64)0xff000000)<<32) ){ 609 p[8] = (u8)v; 610 v >>= 8; 611 for(i=7; i>=0; i--){ 612 p[i] = (u8)((v & 0x7f) | 0x80); 613 v >>= 7; 614 } 615 return 9; 616 } 617 n = 0; 618 do{ 619 buf[n++] = (u8)((v & 0x7f) | 0x80); 620 v >>= 7; 621 }while( v!=0 ); 622 buf[0] &= 0x7f; 623 assert( n<=9 ); 624 for(i=0, j=n-1; j>=0; j--, i++){ 625 p[i] = buf[j]; 626 } 627 return n; 628 } 629 630 /* 631 ** This routine is a faster version of sqlite3PutVarint() that only 632 ** works for 32-bit positive integers and which is optimized for 633 ** the common case of small integers. A MACRO version, putVarint32, 634 ** is provided which inlines the single-byte case. All code should use 635 ** the MACRO version as this function assumes the single-byte case has 636 ** already been handled. 637 */ 638 int sqlite3PutVarint32(unsigned char *p, u32 v){ 639 #ifndef putVarint32 640 if( (v & ~0x7f)==0 ){ 641 p[0] = v; 642 return 1; 643 } 644 #endif 645 if( (v & ~0x3fff)==0 ){ 646 p[0] = (u8)((v>>7) | 0x80); 647 p[1] = (u8)(v & 0x7f); 648 return 2; 649 } 650 return sqlite3PutVarint(p, v); 651 } 652 653 /* 654 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 655 ** are defined here rather than simply putting the constant expressions 656 ** inline in order to work around bugs in the RVT compiler. 657 ** 658 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 659 ** 660 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 661 */ 662 #define SLOT_2_0 0x001fc07f 663 #define SLOT_4_2_0 0xf01fc07f 664 665 666 /* 667 ** Read a 64-bit variable-length integer from memory starting at p[0]. 668 ** Return the number of bytes read. The value is stored in *v. 669 */ 670 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 671 u32 a,b,s; 672 673 a = *p; 674 /* a: p0 (unmasked) */ 675 if (!(a&0x80)) 676 { 677 *v = a; 678 return 1; 679 } 680 681 p++; 682 b = *p; 683 /* b: p1 (unmasked) */ 684 if (!(b&0x80)) 685 { 686 a &= 0x7f; 687 a = a<<7; 688 a |= b; 689 *v = a; 690 return 2; 691 } 692 693 /* Verify that constants are precomputed correctly */ 694 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 695 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 696 697 p++; 698 a = a<<14; 699 a |= *p; 700 /* a: p0<<14 | p2 (unmasked) */ 701 if (!(a&0x80)) 702 { 703 a &= SLOT_2_0; 704 b &= 0x7f; 705 b = b<<7; 706 a |= b; 707 *v = a; 708 return 3; 709 } 710 711 /* CSE1 from below */ 712 a &= SLOT_2_0; 713 p++; 714 b = b<<14; 715 b |= *p; 716 /* b: p1<<14 | p3 (unmasked) */ 717 if (!(b&0x80)) 718 { 719 b &= SLOT_2_0; 720 /* moved CSE1 up */ 721 /* a &= (0x7f<<14)|(0x7f); */ 722 a = a<<7; 723 a |= b; 724 *v = a; 725 return 4; 726 } 727 728 /* a: p0<<14 | p2 (masked) */ 729 /* b: p1<<14 | p3 (unmasked) */ 730 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 731 /* moved CSE1 up */ 732 /* a &= (0x7f<<14)|(0x7f); */ 733 b &= SLOT_2_0; 734 s = a; 735 /* s: p0<<14 | p2 (masked) */ 736 737 p++; 738 a = a<<14; 739 a |= *p; 740 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 741 if (!(a&0x80)) 742 { 743 /* we can skip these cause they were (effectively) done above in calc'ing s */ 744 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 745 /* b &= (0x7f<<14)|(0x7f); */ 746 b = b<<7; 747 a |= b; 748 s = s>>18; 749 *v = ((u64)s)<<32 | a; 750 return 5; 751 } 752 753 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 754 s = s<<7; 755 s |= b; 756 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 757 758 p++; 759 b = b<<14; 760 b |= *p; 761 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 762 if (!(b&0x80)) 763 { 764 /* we can skip this cause it was (effectively) done above in calc'ing s */ 765 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 766 a &= SLOT_2_0; 767 a = a<<7; 768 a |= b; 769 s = s>>18; 770 *v = ((u64)s)<<32 | a; 771 return 6; 772 } 773 774 p++; 775 a = a<<14; 776 a |= *p; 777 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 778 if (!(a&0x80)) 779 { 780 a &= SLOT_4_2_0; 781 b &= SLOT_2_0; 782 b = b<<7; 783 a |= b; 784 s = s>>11; 785 *v = ((u64)s)<<32 | a; 786 return 7; 787 } 788 789 /* CSE2 from below */ 790 a &= SLOT_2_0; 791 p++; 792 b = b<<14; 793 b |= *p; 794 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 795 if (!(b&0x80)) 796 { 797 b &= SLOT_4_2_0; 798 /* moved CSE2 up */ 799 /* a &= (0x7f<<14)|(0x7f); */ 800 a = a<<7; 801 a |= b; 802 s = s>>4; 803 *v = ((u64)s)<<32 | a; 804 return 8; 805 } 806 807 p++; 808 a = a<<15; 809 a |= *p; 810 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 811 812 /* moved CSE2 up */ 813 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 814 b &= SLOT_2_0; 815 b = b<<8; 816 a |= b; 817 818 s = s<<4; 819 b = p[-4]; 820 b &= 0x7f; 821 b = b>>3; 822 s |= b; 823 824 *v = ((u64)s)<<32 | a; 825 826 return 9; 827 } 828 829 /* 830 ** Read a 32-bit variable-length integer from memory starting at p[0]. 831 ** Return the number of bytes read. The value is stored in *v. 832 ** 833 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 834 ** integer, then set *v to 0xffffffff. 835 ** 836 ** A MACRO version, getVarint32, is provided which inlines the 837 ** single-byte case. All code should use the MACRO version as 838 ** this function assumes the single-byte case has already been handled. 839 */ 840 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 841 u32 a,b; 842 843 /* The 1-byte case. Overwhelmingly the most common. Handled inline 844 ** by the getVarin32() macro */ 845 a = *p; 846 /* a: p0 (unmasked) */ 847 #ifndef getVarint32 848 if (!(a&0x80)) 849 { 850 /* Values between 0 and 127 */ 851 *v = a; 852 return 1; 853 } 854 #endif 855 856 /* The 2-byte case */ 857 p++; 858 b = *p; 859 /* b: p1 (unmasked) */ 860 if (!(b&0x80)) 861 { 862 /* Values between 128 and 16383 */ 863 a &= 0x7f; 864 a = a<<7; 865 *v = a | b; 866 return 2; 867 } 868 869 /* The 3-byte case */ 870 p++; 871 a = a<<14; 872 a |= *p; 873 /* a: p0<<14 | p2 (unmasked) */ 874 if (!(a&0x80)) 875 { 876 /* Values between 16384 and 2097151 */ 877 a &= (0x7f<<14)|(0x7f); 878 b &= 0x7f; 879 b = b<<7; 880 *v = a | b; 881 return 3; 882 } 883 884 /* A 32-bit varint is used to store size information in btrees. 885 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 886 ** A 3-byte varint is sufficient, for example, to record the size 887 ** of a 1048569-byte BLOB or string. 888 ** 889 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 890 ** rare larger cases can be handled by the slower 64-bit varint 891 ** routine. 892 */ 893 #if 1 894 { 895 u64 v64; 896 u8 n; 897 898 p -= 2; 899 n = sqlite3GetVarint(p, &v64); 900 assert( n>3 && n<=9 ); 901 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 902 *v = 0xffffffff; 903 }else{ 904 *v = (u32)v64; 905 } 906 return n; 907 } 908 909 #else 910 /* For following code (kept for historical record only) shows an 911 ** unrolling for the 3- and 4-byte varint cases. This code is 912 ** slightly faster, but it is also larger and much harder to test. 913 */ 914 p++; 915 b = b<<14; 916 b |= *p; 917 /* b: p1<<14 | p3 (unmasked) */ 918 if (!(b&0x80)) 919 { 920 /* Values between 2097152 and 268435455 */ 921 b &= (0x7f<<14)|(0x7f); 922 a &= (0x7f<<14)|(0x7f); 923 a = a<<7; 924 *v = a | b; 925 return 4; 926 } 927 928 p++; 929 a = a<<14; 930 a |= *p; 931 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 932 if (!(a&0x80)) 933 { 934 /* Values between 268435456 and 34359738367 */ 935 a &= SLOT_4_2_0; 936 b &= SLOT_4_2_0; 937 b = b<<7; 938 *v = a | b; 939 return 5; 940 } 941 942 /* We can only reach this point when reading a corrupt database 943 ** file. In that case we are not in any hurry. Use the (relatively 944 ** slow) general-purpose sqlite3GetVarint() routine to extract the 945 ** value. */ 946 { 947 u64 v64; 948 u8 n; 949 950 p -= 4; 951 n = sqlite3GetVarint(p, &v64); 952 assert( n>5 && n<=9 ); 953 *v = (u32)v64; 954 return n; 955 } 956 #endif 957 } 958 959 /* 960 ** Return the number of bytes that will be needed to store the given 961 ** 64-bit integer. 962 */ 963 int sqlite3VarintLen(u64 v){ 964 int i = 0; 965 do{ 966 i++; 967 v >>= 7; 968 }while( v!=0 && ALWAYS(i<9) ); 969 return i; 970 } 971 972 973 /* 974 ** Read or write a four-byte big-endian integer value. 975 */ 976 u32 sqlite3Get4byte(const u8 *p){ 977 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 978 } 979 void sqlite3Put4byte(unsigned char *p, u32 v){ 980 p[0] = (u8)(v>>24); 981 p[1] = (u8)(v>>16); 982 p[2] = (u8)(v>>8); 983 p[3] = (u8)v; 984 } 985 986 987 988 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 989 /* 990 ** Translate a single byte of Hex into an integer. 991 ** This routine only works if h really is a valid hexadecimal 992 ** character: 0..9a..fA..F 993 */ 994 static u8 hexToInt(int h){ 995 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 996 #ifdef SQLITE_ASCII 997 h += 9*(1&(h>>6)); 998 #endif 999 #ifdef SQLITE_EBCDIC 1000 h += 9*(1&~(h>>4)); 1001 #endif 1002 return (u8)(h & 0xf); 1003 } 1004 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1005 1006 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1007 /* 1008 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1009 ** value. Return a pointer to its binary value. Space to hold the 1010 ** binary value has been obtained from malloc and must be freed by 1011 ** the calling routine. 1012 */ 1013 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1014 char *zBlob; 1015 int i; 1016 1017 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1018 n--; 1019 if( zBlob ){ 1020 for(i=0; i<n; i+=2){ 1021 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 1022 } 1023 zBlob[i/2] = 0; 1024 } 1025 return zBlob; 1026 } 1027 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1028 1029 /* 1030 ** Log an error that is an API call on a connection pointer that should 1031 ** not have been used. The "type" of connection pointer is given as the 1032 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1033 */ 1034 static void logBadConnection(const char *zType){ 1035 sqlite3_log(SQLITE_MISUSE, 1036 "API call with %s database connection pointer", 1037 zType 1038 ); 1039 } 1040 1041 /* 1042 ** Check to make sure we have a valid db pointer. This test is not 1043 ** foolproof but it does provide some measure of protection against 1044 ** misuse of the interface such as passing in db pointers that are 1045 ** NULL or which have been previously closed. If this routine returns 1046 ** 1 it means that the db pointer is valid and 0 if it should not be 1047 ** dereferenced for any reason. The calling function should invoke 1048 ** SQLITE_MISUSE immediately. 1049 ** 1050 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1051 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1052 ** open properly and is not fit for general use but which can be 1053 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1054 */ 1055 int sqlite3SafetyCheckOk(sqlite3 *db){ 1056 u32 magic; 1057 if( db==0 ){ 1058 logBadConnection("NULL"); 1059 return 0; 1060 } 1061 magic = db->magic; 1062 if( magic!=SQLITE_MAGIC_OPEN ){ 1063 if( sqlite3SafetyCheckSickOrOk(db) ){ 1064 testcase( sqlite3GlobalConfig.xLog!=0 ); 1065 logBadConnection("unopened"); 1066 } 1067 return 0; 1068 }else{ 1069 return 1; 1070 } 1071 } 1072 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1073 u32 magic; 1074 magic = db->magic; 1075 if( magic!=SQLITE_MAGIC_SICK && 1076 magic!=SQLITE_MAGIC_OPEN && 1077 magic!=SQLITE_MAGIC_BUSY ){ 1078 testcase( sqlite3GlobalConfig.xLog!=0 ); 1079 logBadConnection("invalid"); 1080 return 0; 1081 }else{ 1082 return 1; 1083 } 1084 } 1085