1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 ** $Id: util.c,v 1.261 2009/06/24 10:26:33 drh Exp $ 18 */ 19 #include "sqliteInt.h" 20 #include <stdarg.h> 21 #ifdef SQLITE_HAVE_ISNAN 22 # include <math.h> 23 #endif 24 25 /* 26 ** Routine needed to support the testcase() macro. 27 */ 28 #ifdef SQLITE_COVERAGE_TEST 29 void sqlite3Coverage(int x){ 30 static int dummy = 0; 31 dummy += x; 32 } 33 #endif 34 35 /* 36 ** Return true if the floating point value is Not a Number (NaN). 37 ** 38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 39 ** Otherwise, we have our own implementation that works on most systems. 40 */ 41 int sqlite3IsNaN(double x){ 42 int rc; /* The value return */ 43 #if !defined(SQLITE_HAVE_ISNAN) 44 /* 45 ** Systems that support the isnan() library function should probably 46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 47 ** found that many systems do not have a working isnan() function so 48 ** this implementation is provided as an alternative. 49 ** 50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 51 ** On the other hand, the use of -ffast-math comes with the following 52 ** warning: 53 ** 54 ** This option [-ffast-math] should never be turned on by any 55 ** -O option since it can result in incorrect output for programs 56 ** which depend on an exact implementation of IEEE or ISO 57 ** rules/specifications for math functions. 58 ** 59 ** Under MSVC, this NaN test may fail if compiled with a floating- 60 ** point precision mode other than /fp:precise. From the MSDN 61 ** documentation: 62 ** 63 ** The compiler [with /fp:precise] will properly handle comparisons 64 ** involving NaN. For example, x != x evaluates to true if x is NaN 65 ** ... 66 */ 67 #ifdef __FAST_MATH__ 68 # error SQLite will not work correctly with the -ffast-math option of GCC. 69 #endif 70 volatile double y = x; 71 volatile double z = y; 72 rc = (y!=z); 73 #else /* if defined(SQLITE_HAVE_ISNAN) */ 74 rc = isnan(x); 75 #endif /* SQLITE_HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 80 /* 81 ** Compute a string length that is limited to what can be stored in 82 ** lower 30 bits of a 32-bit signed integer. 83 ** 84 ** The value returned will never be negative. Nor will it ever be greater 85 ** than the actual length of the string. For very long strings (greater 86 ** than 1GiB) the value returned might be less than the true string length. 87 */ 88 int sqlite3Strlen30(const char *z){ 89 const char *z2 = z; 90 if( z==0 ) return 0; 91 while( *z2 ){ z2++; } 92 return 0x3fffffff & (int)(z2 - z); 93 } 94 95 /* 96 ** Set the most recent error code and error string for the sqlite 97 ** handle "db". The error code is set to "err_code". 98 ** 99 ** If it is not NULL, string zFormat specifies the format of the 100 ** error string in the style of the printf functions: The following 101 ** format characters are allowed: 102 ** 103 ** %s Insert a string 104 ** %z A string that should be freed after use 105 ** %d Insert an integer 106 ** %T Insert a token 107 ** %S Insert the first element of a SrcList 108 ** 109 ** zFormat and any string tokens that follow it are assumed to be 110 ** encoded in UTF-8. 111 ** 112 ** To clear the most recent error for sqlite handle "db", sqlite3Error 113 ** should be called with err_code set to SQLITE_OK and zFormat set 114 ** to NULL. 115 */ 116 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 117 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 118 db->errCode = err_code; 119 if( zFormat ){ 120 char *z; 121 va_list ap; 122 va_start(ap, zFormat); 123 z = sqlite3VMPrintf(db, zFormat, ap); 124 va_end(ap); 125 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 126 }else{ 127 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 128 } 129 } 130 } 131 132 /* 133 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 134 ** The following formatting characters are allowed: 135 ** 136 ** %s Insert a string 137 ** %z A string that should be freed after use 138 ** %d Insert an integer 139 ** %T Insert a token 140 ** %S Insert the first element of a SrcList 141 ** 142 ** This function should be used to report any error that occurs whilst 143 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 144 ** last thing the sqlite3_prepare() function does is copy the error 145 ** stored by this function into the database handle using sqlite3Error(). 146 ** Function sqlite3Error() should be used during statement execution 147 ** (sqlite3_step() etc.). 148 */ 149 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 150 va_list ap; 151 sqlite3 *db = pParse->db; 152 pParse->nErr++; 153 sqlite3DbFree(db, pParse->zErrMsg); 154 va_start(ap, zFormat); 155 pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); 156 va_end(ap); 157 pParse->rc = SQLITE_ERROR; 158 } 159 160 /* 161 ** Clear the error message in pParse, if any 162 */ 163 void sqlite3ErrorClear(Parse *pParse){ 164 sqlite3DbFree(pParse->db, pParse->zErrMsg); 165 pParse->zErrMsg = 0; 166 pParse->nErr = 0; 167 } 168 169 /* 170 ** Convert an SQL-style quoted string into a normal string by removing 171 ** the quote characters. The conversion is done in-place. If the 172 ** input does not begin with a quote character, then this routine 173 ** is a no-op. 174 ** 175 ** The input string must be zero-terminated. A new zero-terminator 176 ** is added to the dequoted string. 177 ** 178 ** The return value is -1 if no dequoting occurs or the length of the 179 ** dequoted string, exclusive of the zero terminator, if dequoting does 180 ** occur. 181 ** 182 ** 2002-Feb-14: This routine is extended to remove MS-Access style 183 ** brackets from around identifers. For example: "[a-b-c]" becomes 184 ** "a-b-c". 185 */ 186 int sqlite3Dequote(char *z){ 187 char quote; 188 int i, j; 189 if( z==0 ) return -1; 190 quote = z[0]; 191 switch( quote ){ 192 case '\'': break; 193 case '"': break; 194 case '`': break; /* For MySQL compatibility */ 195 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 196 default: return -1; 197 } 198 for(i=1, j=0; ALWAYS(z[i]); i++){ 199 if( z[i]==quote ){ 200 if( z[i+1]==quote ){ 201 z[j++] = quote; 202 i++; 203 }else{ 204 break; 205 } 206 }else{ 207 z[j++] = z[i]; 208 } 209 } 210 z[j] = 0; 211 return j; 212 } 213 214 /* Convenient short-hand */ 215 #define UpperToLower sqlite3UpperToLower 216 217 /* 218 ** Some systems have stricmp(). Others have strcasecmp(). Because 219 ** there is no consistency, we will define our own. 220 */ 221 int sqlite3StrICmp(const char *zLeft, const char *zRight){ 222 register unsigned char *a, *b; 223 a = (unsigned char *)zLeft; 224 b = (unsigned char *)zRight; 225 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 226 return UpperToLower[*a] - UpperToLower[*b]; 227 } 228 int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ 229 register unsigned char *a, *b; 230 a = (unsigned char *)zLeft; 231 b = (unsigned char *)zRight; 232 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 233 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 234 } 235 236 /* 237 ** Return TRUE if z is a pure numeric string. Return FALSE and leave 238 ** *realnum unchanged if the string contains any character which is not 239 ** part of a number. 240 ** 241 ** If the string is pure numeric, set *realnum to TRUE if the string 242 ** contains the '.' character or an "E+000" style exponentiation suffix. 243 ** Otherwise set *realnum to FALSE. Note that just becaue *realnum is 244 ** false does not mean that the number can be successfully converted into 245 ** an integer - it might be too big. 246 ** 247 ** An empty string is considered non-numeric. 248 */ 249 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ 250 int incr = (enc==SQLITE_UTF8?1:2); 251 if( enc==SQLITE_UTF16BE ) z++; 252 if( *z=='-' || *z=='+' ) z += incr; 253 if( !sqlite3Isdigit(*z) ){ 254 return 0; 255 } 256 z += incr; 257 *realnum = 0; 258 while( sqlite3Isdigit(*z) ){ z += incr; } 259 if( *z=='.' ){ 260 z += incr; 261 if( !sqlite3Isdigit(*z) ) return 0; 262 while( sqlite3Isdigit(*z) ){ z += incr; } 263 *realnum = 1; 264 } 265 if( *z=='e' || *z=='E' ){ 266 z += incr; 267 if( *z=='+' || *z=='-' ) z += incr; 268 if( !sqlite3Isdigit(*z) ) return 0; 269 while( sqlite3Isdigit(*z) ){ z += incr; } 270 *realnum = 1; 271 } 272 return *z==0; 273 } 274 275 /* 276 ** The string z[] is an ascii representation of a real number. 277 ** Convert this string to a double. 278 ** 279 ** This routine assumes that z[] really is a valid number. If it 280 ** is not, the result is undefined. 281 ** 282 ** This routine is used instead of the library atof() function because 283 ** the library atof() might want to use "," as the decimal point instead 284 ** of "." depending on how locale is set. But that would cause problems 285 ** for SQL. So this routine always uses "." regardless of locale. 286 */ 287 int sqlite3AtoF(const char *z, double *pResult){ 288 #ifndef SQLITE_OMIT_FLOATING_POINT 289 int sign = 1; 290 const char *zBegin = z; 291 LONGDOUBLE_TYPE v1 = 0.0; 292 int nSignificant = 0; 293 while( sqlite3Isspace(*z) ) z++; 294 if( *z=='-' ){ 295 sign = -1; 296 z++; 297 }else if( *z=='+' ){ 298 z++; 299 } 300 while( z[0]=='0' ){ 301 z++; 302 } 303 while( sqlite3Isdigit(*z) ){ 304 v1 = v1*10.0 + (*z - '0'); 305 z++; 306 nSignificant++; 307 } 308 if( *z=='.' ){ 309 LONGDOUBLE_TYPE divisor = 1.0; 310 z++; 311 if( nSignificant==0 ){ 312 while( z[0]=='0' ){ 313 divisor *= 10.0; 314 z++; 315 } 316 } 317 while( sqlite3Isdigit(*z) ){ 318 if( nSignificant<18 ){ 319 v1 = v1*10.0 + (*z - '0'); 320 divisor *= 10.0; 321 nSignificant++; 322 } 323 z++; 324 } 325 v1 /= divisor; 326 } 327 if( *z=='e' || *z=='E' ){ 328 int esign = 1; 329 int eval = 0; 330 LONGDOUBLE_TYPE scale = 1.0; 331 z++; 332 if( *z=='-' ){ 333 esign = -1; 334 z++; 335 }else if( *z=='+' ){ 336 z++; 337 } 338 while( sqlite3Isdigit(*z) ){ 339 eval = eval*10 + *z - '0'; 340 z++; 341 } 342 while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } 343 while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } 344 while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } 345 while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } 346 if( esign<0 ){ 347 v1 /= scale; 348 }else{ 349 v1 *= scale; 350 } 351 } 352 *pResult = (double)(sign<0 ? -v1 : v1); 353 return (int)(z - zBegin); 354 #else 355 return sqlite3Atoi64(z, pResult); 356 #endif /* SQLITE_OMIT_FLOATING_POINT */ 357 } 358 359 /* 360 ** Compare the 19-character string zNum against the text representation 361 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 362 ** if zNum is less than, equal to, or greater than the string. 363 ** 364 ** Unlike memcmp() this routine is guaranteed to return the difference 365 ** in the values of the last digit if the only difference is in the 366 ** last digit. So, for example, 367 ** 368 ** compare2pow63("9223372036854775800") 369 ** 370 ** will return -8. 371 */ 372 static int compare2pow63(const char *zNum){ 373 int c; 374 c = memcmp(zNum,"922337203685477580",18)*10; 375 if( c==0 ){ 376 c = zNum[18] - '8'; 377 } 378 return c; 379 } 380 381 382 /* 383 ** Return TRUE if zNum is a 64-bit signed integer and write 384 ** the value of the integer into *pNum. If zNum is not an integer 385 ** or is an integer that is too large to be expressed with 64 bits, 386 ** then return false. 387 ** 388 ** When this routine was originally written it dealt with only 389 ** 32-bit numbers. At that time, it was much faster than the 390 ** atoi() library routine in RedHat 7.2. 391 */ 392 int sqlite3Atoi64(const char *zNum, i64 *pNum){ 393 i64 v = 0; 394 int neg; 395 int i, c; 396 const char *zStart; 397 while( sqlite3Isspace(*zNum) ) zNum++; 398 if( *zNum=='-' ){ 399 neg = 1; 400 zNum++; 401 }else if( *zNum=='+' ){ 402 neg = 0; 403 zNum++; 404 }else{ 405 neg = 0; 406 } 407 zStart = zNum; 408 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ 409 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ 410 v = v*10 + c - '0'; 411 } 412 *pNum = neg ? -v : v; 413 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ 414 /* zNum is empty or contains non-numeric text or is longer 415 ** than 19 digits (thus guaranting that it is too large) */ 416 return 0; 417 }else if( i<19 ){ 418 /* Less than 19 digits, so we know that it fits in 64 bits */ 419 return 1; 420 }else{ 421 /* 19-digit numbers must be no larger than 9223372036854775807 if positive 422 ** or 9223372036854775808 if negative. Note that 9223372036854665808 423 ** is 2^63. */ 424 return compare2pow63(zNum)<neg; 425 } 426 } 427 428 /* 429 ** The string zNum represents an unsigned integer. The zNum string 430 ** consists of one or more digit characters and is terminated by 431 ** a zero character. Any stray characters in zNum result in undefined 432 ** behavior. 433 ** 434 ** If the unsigned integer that zNum represents will fit in a 435 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. 436 ** 437 ** If the negFlag parameter is true, that means that zNum really represents 438 ** a negative number. (The leading "-" is omitted from zNum.) This 439 ** parameter is needed to determine a boundary case. A string 440 ** of "9223373036854775808" returns false if negFlag is false or true 441 ** if negFlag is true. 442 ** 443 ** Leading zeros are ignored. 444 */ 445 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ 446 int i; 447 int neg = 0; 448 449 assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */ 450 451 if( negFlag ) neg = 1-neg; 452 while( *zNum=='0' ){ 453 zNum++; /* Skip leading zeros. Ticket #2454 */ 454 } 455 for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); } 456 if( i<19 ){ 457 /* Guaranteed to fit if less than 19 digits */ 458 return 1; 459 }else if( i>19 ){ 460 /* Guaranteed to be too big if greater than 19 digits */ 461 return 0; 462 }else{ 463 /* Compare against 2^63. */ 464 return compare2pow63(zNum)<neg; 465 } 466 } 467 468 /* 469 ** If zNum represents an integer that will fit in 32-bits, then set 470 ** *pValue to that integer and return true. Otherwise return false. 471 ** 472 ** Any non-numeric characters that following zNum are ignored. 473 ** This is different from sqlite3Atoi64() which requires the 474 ** input number to be zero-terminated. 475 */ 476 int sqlite3GetInt32(const char *zNum, int *pValue){ 477 sqlite_int64 v = 0; 478 int i, c; 479 int neg = 0; 480 if( zNum[0]=='-' ){ 481 neg = 1; 482 zNum++; 483 }else if( zNum[0]=='+' ){ 484 zNum++; 485 } 486 while( zNum[0]=='0' ) zNum++; 487 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 488 v = v*10 + c; 489 } 490 491 /* The longest decimal representation of a 32 bit integer is 10 digits: 492 ** 493 ** 1234567890 494 ** 2^31 -> 2147483648 495 */ 496 if( i>10 ){ 497 return 0; 498 } 499 if( v-neg>2147483647 ){ 500 return 0; 501 } 502 if( neg ){ 503 v = -v; 504 } 505 *pValue = (int)v; 506 return 1; 507 } 508 509 /* 510 ** The variable-length integer encoding is as follows: 511 ** 512 ** KEY: 513 ** A = 0xxxxxxx 7 bits of data and one flag bit 514 ** B = 1xxxxxxx 7 bits of data and one flag bit 515 ** C = xxxxxxxx 8 bits of data 516 ** 517 ** 7 bits - A 518 ** 14 bits - BA 519 ** 21 bits - BBA 520 ** 28 bits - BBBA 521 ** 35 bits - BBBBA 522 ** 42 bits - BBBBBA 523 ** 49 bits - BBBBBBA 524 ** 56 bits - BBBBBBBA 525 ** 64 bits - BBBBBBBBC 526 */ 527 528 /* 529 ** Write a 64-bit variable-length integer to memory starting at p[0]. 530 ** The length of data write will be between 1 and 9 bytes. The number 531 ** of bytes written is returned. 532 ** 533 ** A variable-length integer consists of the lower 7 bits of each byte 534 ** for all bytes that have the 8th bit set and one byte with the 8th 535 ** bit clear. Except, if we get to the 9th byte, it stores the full 536 ** 8 bits and is the last byte. 537 */ 538 int sqlite3PutVarint(unsigned char *p, u64 v){ 539 int i, j, n; 540 u8 buf[10]; 541 if( v & (((u64)0xff000000)<<32) ){ 542 p[8] = (u8)v; 543 v >>= 8; 544 for(i=7; i>=0; i--){ 545 p[i] = (u8)((v & 0x7f) | 0x80); 546 v >>= 7; 547 } 548 return 9; 549 } 550 n = 0; 551 do{ 552 buf[n++] = (u8)((v & 0x7f) | 0x80); 553 v >>= 7; 554 }while( v!=0 ); 555 buf[0] &= 0x7f; 556 assert( n<=9 ); 557 for(i=0, j=n-1; j>=0; j--, i++){ 558 p[i] = buf[j]; 559 } 560 return n; 561 } 562 563 /* 564 ** This routine is a faster version of sqlite3PutVarint() that only 565 ** works for 32-bit positive integers and which is optimized for 566 ** the common case of small integers. A MACRO version, putVarint32, 567 ** is provided which inlines the single-byte case. All code should use 568 ** the MACRO version as this function assumes the single-byte case has 569 ** already been handled. 570 */ 571 int sqlite3PutVarint32(unsigned char *p, u32 v){ 572 #ifndef putVarint32 573 if( (v & ~0x7f)==0 ){ 574 p[0] = v; 575 return 1; 576 } 577 #endif 578 if( (v & ~0x3fff)==0 ){ 579 p[0] = (u8)((v>>7) | 0x80); 580 p[1] = (u8)(v & 0x7f); 581 return 2; 582 } 583 return sqlite3PutVarint(p, v); 584 } 585 586 /* 587 ** Read a 64-bit variable-length integer from memory starting at p[0]. 588 ** Return the number of bytes read. The value is stored in *v. 589 */ 590 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 591 u32 a,b,s; 592 593 a = *p; 594 /* a: p0 (unmasked) */ 595 if (!(a&0x80)) 596 { 597 *v = a; 598 return 1; 599 } 600 601 p++; 602 b = *p; 603 /* b: p1 (unmasked) */ 604 if (!(b&0x80)) 605 { 606 a &= 0x7f; 607 a = a<<7; 608 a |= b; 609 *v = a; 610 return 2; 611 } 612 613 p++; 614 a = a<<14; 615 a |= *p; 616 /* a: p0<<14 | p2 (unmasked) */ 617 if (!(a&0x80)) 618 { 619 a &= (0x7f<<14)|(0x7f); 620 b &= 0x7f; 621 b = b<<7; 622 a |= b; 623 *v = a; 624 return 3; 625 } 626 627 /* CSE1 from below */ 628 a &= (0x7f<<14)|(0x7f); 629 p++; 630 b = b<<14; 631 b |= *p; 632 /* b: p1<<14 | p3 (unmasked) */ 633 if (!(b&0x80)) 634 { 635 b &= (0x7f<<14)|(0x7f); 636 /* moved CSE1 up */ 637 /* a &= (0x7f<<14)|(0x7f); */ 638 a = a<<7; 639 a |= b; 640 *v = a; 641 return 4; 642 } 643 644 /* a: p0<<14 | p2 (masked) */ 645 /* b: p1<<14 | p3 (unmasked) */ 646 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 647 /* moved CSE1 up */ 648 /* a &= (0x7f<<14)|(0x7f); */ 649 b &= (0x7f<<14)|(0x7f); 650 s = a; 651 /* s: p0<<14 | p2 (masked) */ 652 653 p++; 654 a = a<<14; 655 a |= *p; 656 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 657 if (!(a&0x80)) 658 { 659 /* we can skip these cause they were (effectively) done above in calc'ing s */ 660 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 661 /* b &= (0x7f<<14)|(0x7f); */ 662 b = b<<7; 663 a |= b; 664 s = s>>18; 665 *v = ((u64)s)<<32 | a; 666 return 5; 667 } 668 669 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 670 s = s<<7; 671 s |= b; 672 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 673 674 p++; 675 b = b<<14; 676 b |= *p; 677 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 678 if (!(b&0x80)) 679 { 680 /* we can skip this cause it was (effectively) done above in calc'ing s */ 681 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 682 a &= (0x7f<<14)|(0x7f); 683 a = a<<7; 684 a |= b; 685 s = s>>18; 686 *v = ((u64)s)<<32 | a; 687 return 6; 688 } 689 690 p++; 691 a = a<<14; 692 a |= *p; 693 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 694 if (!(a&0x80)) 695 { 696 a &= (0x1f<<28)|(0x7f<<14)|(0x7f); 697 b &= (0x7f<<14)|(0x7f); 698 b = b<<7; 699 a |= b; 700 s = s>>11; 701 *v = ((u64)s)<<32 | a; 702 return 7; 703 } 704 705 /* CSE2 from below */ 706 a &= (0x7f<<14)|(0x7f); 707 p++; 708 b = b<<14; 709 b |= *p; 710 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 711 if (!(b&0x80)) 712 { 713 b &= (0x1f<<28)|(0x7f<<14)|(0x7f); 714 /* moved CSE2 up */ 715 /* a &= (0x7f<<14)|(0x7f); */ 716 a = a<<7; 717 a |= b; 718 s = s>>4; 719 *v = ((u64)s)<<32 | a; 720 return 8; 721 } 722 723 p++; 724 a = a<<15; 725 a |= *p; 726 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 727 728 /* moved CSE2 up */ 729 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 730 b &= (0x7f<<14)|(0x7f); 731 b = b<<8; 732 a |= b; 733 734 s = s<<4; 735 b = p[-4]; 736 b &= 0x7f; 737 b = b>>3; 738 s |= b; 739 740 *v = ((u64)s)<<32 | a; 741 742 return 9; 743 } 744 745 /* 746 ** Read a 32-bit variable-length integer from memory starting at p[0]. 747 ** Return the number of bytes read. The value is stored in *v. 748 ** 749 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 750 ** integer, then set *v to 0xffffffff. 751 ** 752 ** A MACRO version, getVarint32, is provided which inlines the 753 ** single-byte case. All code should use the MACRO version as 754 ** this function assumes the single-byte case has already been handled. 755 */ 756 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 757 u32 a,b; 758 759 /* The 1-byte case. Overwhelmingly the most common. Handled inline 760 ** by the getVarin32() macro */ 761 a = *p; 762 /* a: p0 (unmasked) */ 763 #ifndef getVarint32 764 if (!(a&0x80)) 765 { 766 /* Values between 0 and 127 */ 767 *v = a; 768 return 1; 769 } 770 #endif 771 772 /* The 2-byte case */ 773 p++; 774 b = *p; 775 /* b: p1 (unmasked) */ 776 if (!(b&0x80)) 777 { 778 /* Values between 128 and 16383 */ 779 a &= 0x7f; 780 a = a<<7; 781 *v = a | b; 782 return 2; 783 } 784 785 /* The 3-byte case */ 786 p++; 787 a = a<<14; 788 a |= *p; 789 /* a: p0<<14 | p2 (unmasked) */ 790 if (!(a&0x80)) 791 { 792 /* Values between 16384 and 2097151 */ 793 a &= (0x7f<<14)|(0x7f); 794 b &= 0x7f; 795 b = b<<7; 796 *v = a | b; 797 return 3; 798 } 799 800 /* A 32-bit varint is used to store size information in btrees. 801 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 802 ** A 3-byte varint is sufficient, for example, to record the size 803 ** of a 1048569-byte BLOB or string. 804 ** 805 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 806 ** rare larger cases can be handled by the slower 64-bit varint 807 ** routine. 808 */ 809 #if 1 810 { 811 u64 v64; 812 u8 n; 813 814 p -= 2; 815 n = sqlite3GetVarint(p, &v64); 816 assert( n>3 && n<=9 ); 817 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 818 *v = 0xffffffff; 819 }else{ 820 *v = (u32)v64; 821 } 822 return n; 823 } 824 825 #else 826 /* For following code (kept for historical record only) shows an 827 ** unrolling for the 3- and 4-byte varint cases. This code is 828 ** slightly faster, but it is also larger and much harder to test. 829 */ 830 p++; 831 b = b<<14; 832 b |= *p; 833 /* b: p1<<14 | p3 (unmasked) */ 834 if (!(b&0x80)) 835 { 836 /* Values between 2097152 and 268435455 */ 837 b &= (0x7f<<14)|(0x7f); 838 a &= (0x7f<<14)|(0x7f); 839 a = a<<7; 840 *v = a | b; 841 return 4; 842 } 843 844 p++; 845 a = a<<14; 846 a |= *p; 847 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 848 if (!(a&0x80)) 849 { 850 /* Walues between 268435456 and 34359738367 */ 851 a &= (0x1f<<28)|(0x7f<<14)|(0x7f); 852 b &= (0x1f<<28)|(0x7f<<14)|(0x7f); 853 b = b<<7; 854 *v = a | b; 855 return 5; 856 } 857 858 /* We can only reach this point when reading a corrupt database 859 ** file. In that case we are not in any hurry. Use the (relatively 860 ** slow) general-purpose sqlite3GetVarint() routine to extract the 861 ** value. */ 862 { 863 u64 v64; 864 u8 n; 865 866 p -= 4; 867 n = sqlite3GetVarint(p, &v64); 868 assert( n>5 && n<=9 ); 869 *v = (u32)v64; 870 return n; 871 } 872 #endif 873 } 874 875 /* 876 ** Return the number of bytes that will be needed to store the given 877 ** 64-bit integer. 878 */ 879 int sqlite3VarintLen(u64 v){ 880 int i = 0; 881 do{ 882 i++; 883 v >>= 7; 884 }while( v!=0 && ALWAYS(i<9) ); 885 return i; 886 } 887 888 889 /* 890 ** Read or write a four-byte big-endian integer value. 891 */ 892 u32 sqlite3Get4byte(const u8 *p){ 893 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 894 } 895 void sqlite3Put4byte(unsigned char *p, u32 v){ 896 p[0] = (u8)(v>>24); 897 p[1] = (u8)(v>>16); 898 p[2] = (u8)(v>>8); 899 p[3] = (u8)v; 900 } 901 902 903 904 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 905 /* 906 ** Translate a single byte of Hex into an integer. 907 ** This routinen only works if h really is a valid hexadecimal 908 ** character: 0..9a..fA..F 909 */ 910 static u8 hexToInt(int h){ 911 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 912 #ifdef SQLITE_ASCII 913 h += 9*(1&(h>>6)); 914 #endif 915 #ifdef SQLITE_EBCDIC 916 h += 9*(1&~(h>>4)); 917 #endif 918 return (u8)(h & 0xf); 919 } 920 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 921 922 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 923 /* 924 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 925 ** value. Return a pointer to its binary value. Space to hold the 926 ** binary value has been obtained from malloc and must be freed by 927 ** the calling routine. 928 */ 929 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 930 char *zBlob; 931 int i; 932 933 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 934 n--; 935 if( zBlob ){ 936 for(i=0; i<n; i+=2){ 937 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); 938 } 939 zBlob[i/2] = 0; 940 } 941 return zBlob; 942 } 943 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 944 945 946 /* 947 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. 948 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN 949 ** when this routine is called. 950 ** 951 ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN 952 ** value indicates that the database connection passed into the API is 953 ** open and is not being used by another thread. By changing the value 954 ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. 955 ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN 956 ** when the API exits. 957 ** 958 ** This routine is a attempt to detect if two threads use the 959 ** same sqlite* pointer at the same time. There is a race 960 ** condition so it is possible that the error is not detected. 961 ** But usually the problem will be seen. The result will be an 962 ** error which can be used to debug the application that is 963 ** using SQLite incorrectly. 964 ** 965 ** Ticket #202: If db->magic is not a valid open value, take care not 966 ** to modify the db structure at all. It could be that db is a stale 967 ** pointer. In other words, it could be that there has been a prior 968 ** call to sqlite3_close(db) and db has been deallocated. And we do 969 ** not want to write into deallocated memory. 970 */ 971 #ifdef SQLITE_DEBUG 972 int sqlite3SafetyOn(sqlite3 *db){ 973 if( db->magic==SQLITE_MAGIC_OPEN ){ 974 db->magic = SQLITE_MAGIC_BUSY; 975 assert( sqlite3_mutex_held(db->mutex) ); 976 return 0; 977 }else if( db->magic==SQLITE_MAGIC_BUSY ){ 978 db->magic = SQLITE_MAGIC_ERROR; 979 db->u1.isInterrupted = 1; 980 } 981 return 1; 982 } 983 #endif 984 985 /* 986 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. 987 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY 988 ** when this routine is called. 989 */ 990 #ifdef SQLITE_DEBUG 991 int sqlite3SafetyOff(sqlite3 *db){ 992 if( db->magic==SQLITE_MAGIC_BUSY ){ 993 db->magic = SQLITE_MAGIC_OPEN; 994 assert( sqlite3_mutex_held(db->mutex) ); 995 return 0; 996 }else{ 997 db->magic = SQLITE_MAGIC_ERROR; 998 db->u1.isInterrupted = 1; 999 return 1; 1000 } 1001 } 1002 #endif 1003 1004 /* 1005 ** Check to make sure we have a valid db pointer. This test is not 1006 ** foolproof but it does provide some measure of protection against 1007 ** misuse of the interface such as passing in db pointers that are 1008 ** NULL or which have been previously closed. If this routine returns 1009 ** 1 it means that the db pointer is valid and 0 if it should not be 1010 ** dereferenced for any reason. The calling function should invoke 1011 ** SQLITE_MISUSE immediately. 1012 ** 1013 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1014 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1015 ** open properly and is not fit for general use but which can be 1016 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1017 */ 1018 int sqlite3SafetyCheckOk(sqlite3 *db){ 1019 u32 magic; 1020 if( db==0 ) return 0; 1021 magic = db->magic; 1022 if( magic!=SQLITE_MAGIC_OPEN 1023 #ifdef SQLITE_DEBUG 1024 && magic!=SQLITE_MAGIC_BUSY 1025 #endif 1026 ){ 1027 return 0; 1028 }else{ 1029 return 1; 1030 } 1031 } 1032 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1033 u32 magic; 1034 magic = db->magic; 1035 if( magic!=SQLITE_MAGIC_SICK && 1036 magic!=SQLITE_MAGIC_OPEN && 1037 magic!=SQLITE_MAGIC_BUSY ) return 0; 1038 return 1; 1039 } 1040