1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Utility functions used throughout sqlite. 13 ** 14 ** This file contains functions for allocating memory, comparing 15 ** strings, and stuff like that. 16 ** 17 */ 18 #include "sqliteInt.h" 19 #include <stdarg.h> 20 #ifdef SQLITE_HAVE_ISNAN 21 # include <math.h> 22 #endif 23 24 /* 25 ** Routine needed to support the testcase() macro. 26 */ 27 #ifdef SQLITE_COVERAGE_TEST 28 void sqlite3Coverage(int x){ 29 static unsigned dummy = 0; 30 dummy += (unsigned)x; 31 } 32 #endif 33 34 #ifndef SQLITE_OMIT_FLOATING_POINT 35 /* 36 ** Return true if the floating point value is Not a Number (NaN). 37 ** 38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. 39 ** Otherwise, we have our own implementation that works on most systems. 40 */ 41 int sqlite3IsNaN(double x){ 42 int rc; /* The value return */ 43 #if !defined(SQLITE_HAVE_ISNAN) 44 /* 45 ** Systems that support the isnan() library function should probably 46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have 47 ** found that many systems do not have a working isnan() function so 48 ** this implementation is provided as an alternative. 49 ** 50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. 51 ** On the other hand, the use of -ffast-math comes with the following 52 ** warning: 53 ** 54 ** This option [-ffast-math] should never be turned on by any 55 ** -O option since it can result in incorrect output for programs 56 ** which depend on an exact implementation of IEEE or ISO 57 ** rules/specifications for math functions. 58 ** 59 ** Under MSVC, this NaN test may fail if compiled with a floating- 60 ** point precision mode other than /fp:precise. From the MSDN 61 ** documentation: 62 ** 63 ** The compiler [with /fp:precise] will properly handle comparisons 64 ** involving NaN. For example, x != x evaluates to true if x is NaN 65 ** ... 66 */ 67 #ifdef __FAST_MATH__ 68 # error SQLite will not work correctly with the -ffast-math option of GCC. 69 #endif 70 volatile double y = x; 71 volatile double z = y; 72 rc = (y!=z); 73 #else /* if defined(SQLITE_HAVE_ISNAN) */ 74 rc = isnan(x); 75 #endif /* SQLITE_HAVE_ISNAN */ 76 testcase( rc ); 77 return rc; 78 } 79 #endif /* SQLITE_OMIT_FLOATING_POINT */ 80 81 /* 82 ** Compute a string length that is limited to what can be stored in 83 ** lower 30 bits of a 32-bit signed integer. 84 ** 85 ** The value returned will never be negative. Nor will it ever be greater 86 ** than the actual length of the string. For very long strings (greater 87 ** than 1GiB) the value returned might be less than the true string length. 88 */ 89 int sqlite3Strlen30(const char *z){ 90 const char *z2 = z; 91 if( z==0 ) return 0; 92 while( *z2 ){ z2++; } 93 return 0x3fffffff & (int)(z2 - z); 94 } 95 96 /* 97 ** Set the most recent error code and error string for the sqlite 98 ** handle "db". The error code is set to "err_code". 99 ** 100 ** If it is not NULL, string zFormat specifies the format of the 101 ** error string in the style of the printf functions: The following 102 ** format characters are allowed: 103 ** 104 ** %s Insert a string 105 ** %z A string that should be freed after use 106 ** %d Insert an integer 107 ** %T Insert a token 108 ** %S Insert the first element of a SrcList 109 ** 110 ** zFormat and any string tokens that follow it are assumed to be 111 ** encoded in UTF-8. 112 ** 113 ** To clear the most recent error for sqlite handle "db", sqlite3Error 114 ** should be called with err_code set to SQLITE_OK and zFormat set 115 ** to NULL. 116 */ 117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ 118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ 119 db->errCode = err_code; 120 if( zFormat ){ 121 char *z; 122 va_list ap; 123 va_start(ap, zFormat); 124 z = sqlite3VMPrintf(db, zFormat, ap); 125 va_end(ap); 126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); 127 }else{ 128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 129 } 130 } 131 } 132 133 /* 134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. 135 ** The following formatting characters are allowed: 136 ** 137 ** %s Insert a string 138 ** %z A string that should be freed after use 139 ** %d Insert an integer 140 ** %T Insert a token 141 ** %S Insert the first element of a SrcList 142 ** 143 ** This function should be used to report any error that occurs whilst 144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The 145 ** last thing the sqlite3_prepare() function does is copy the error 146 ** stored by this function into the database handle using sqlite3Error(). 147 ** Function sqlite3Error() should be used during statement execution 148 ** (sqlite3_step() etc.). 149 */ 150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ 151 char *zMsg; 152 va_list ap; 153 sqlite3 *db = pParse->db; 154 va_start(ap, zFormat); 155 zMsg = sqlite3VMPrintf(db, zFormat, ap); 156 va_end(ap); 157 if( db->suppressErr ){ 158 sqlite3DbFree(db, zMsg); 159 }else{ 160 pParse->nErr++; 161 sqlite3DbFree(db, pParse->zErrMsg); 162 pParse->zErrMsg = zMsg; 163 pParse->rc = SQLITE_ERROR; 164 } 165 } 166 167 /* 168 ** Convert an SQL-style quoted string into a normal string by removing 169 ** the quote characters. The conversion is done in-place. If the 170 ** input does not begin with a quote character, then this routine 171 ** is a no-op. 172 ** 173 ** The input string must be zero-terminated. A new zero-terminator 174 ** is added to the dequoted string. 175 ** 176 ** The return value is -1 if no dequoting occurs or the length of the 177 ** dequoted string, exclusive of the zero terminator, if dequoting does 178 ** occur. 179 ** 180 ** 2002-Feb-14: This routine is extended to remove MS-Access style 181 ** brackets from around identifers. For example: "[a-b-c]" becomes 182 ** "a-b-c". 183 */ 184 int sqlite3Dequote(char *z){ 185 char quote; 186 int i, j; 187 if( z==0 ) return -1; 188 quote = z[0]; 189 switch( quote ){ 190 case '\'': break; 191 case '"': break; 192 case '`': break; /* For MySQL compatibility */ 193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 194 default: return -1; 195 } 196 for(i=1, j=0; ALWAYS(z[i]); i++){ 197 if( z[i]==quote ){ 198 if( z[i+1]==quote ){ 199 z[j++] = quote; 200 i++; 201 }else{ 202 break; 203 } 204 }else{ 205 z[j++] = z[i]; 206 } 207 } 208 z[j] = 0; 209 return j; 210 } 211 212 /* Convenient short-hand */ 213 #define UpperToLower sqlite3UpperToLower 214 215 /* 216 ** Some systems have stricmp(). Others have strcasecmp(). Because 217 ** there is no consistency, we will define our own. 218 ** 219 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and 220 ** sqlite3_strnicmp() APIs allow applications and extensions to compare 221 ** the contents of two buffers containing UTF-8 strings in a 222 ** case-independent fashion, using the same definition of "case 223 ** independence" that SQLite uses internally when comparing identifiers. 224 */ 225 int sqlite3_stricmp(const char *zLeft, const char *zRight){ 226 register unsigned char *a, *b; 227 a = (unsigned char *)zLeft; 228 b = (unsigned char *)zRight; 229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 230 return UpperToLower[*a] - UpperToLower[*b]; 231 } 232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ 233 register unsigned char *a, *b; 234 a = (unsigned char *)zLeft; 235 b = (unsigned char *)zRight; 236 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } 237 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; 238 } 239 240 /* 241 ** The string z[] is an text representation of a real number. 242 ** Convert this string to a double and write it into *pResult. 243 ** 244 ** The string z[] is length bytes in length (bytes, not characters) and 245 ** uses the encoding enc. The string is not necessarily zero-terminated. 246 ** 247 ** Return TRUE if the result is a valid real number (or integer) and FALSE 248 ** if the string is empty or contains extraneous text. Valid numbers 249 ** are in one of these formats: 250 ** 251 ** [+-]digits[E[+-]digits] 252 ** [+-]digits.[digits][E[+-]digits] 253 ** [+-].digits[E[+-]digits] 254 ** 255 ** Leading and trailing whitespace is ignored for the purpose of determining 256 ** validity. 257 ** 258 ** If some prefix of the input string is a valid number, this routine 259 ** returns FALSE but it still converts the prefix and writes the result 260 ** into *pResult. 261 */ 262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ 263 #ifndef SQLITE_OMIT_FLOATING_POINT 264 int incr = (enc==SQLITE_UTF8?1:2); 265 const char *zEnd = z + length; 266 /* sign * significand * (10 ^ (esign * exponent)) */ 267 int sign = 1; /* sign of significand */ 268 i64 s = 0; /* significand */ 269 int d = 0; /* adjust exponent for shifting decimal point */ 270 int esign = 1; /* sign of exponent */ 271 int e = 0; /* exponent */ 272 int eValid = 1; /* True exponent is either not used or is well-formed */ 273 double result; 274 int nDigits = 0; 275 276 *pResult = 0.0; /* Default return value, in case of an error */ 277 278 if( enc==SQLITE_UTF16BE ) z++; 279 280 /* skip leading spaces */ 281 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 282 if( z>=zEnd ) return 0; 283 284 /* get sign of significand */ 285 if( *z=='-' ){ 286 sign = -1; 287 z+=incr; 288 }else if( *z=='+' ){ 289 z+=incr; 290 } 291 292 /* skip leading zeroes */ 293 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; 294 295 /* copy max significant digits to significand */ 296 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 297 s = s*10 + (*z - '0'); 298 z+=incr, nDigits++; 299 } 300 301 /* skip non-significant significand digits 302 ** (increase exponent by d to shift decimal left) */ 303 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; 304 if( z>=zEnd ) goto do_atof_calc; 305 306 /* if decimal point is present */ 307 if( *z=='.' ){ 308 z+=incr; 309 /* copy digits from after decimal to significand 310 ** (decrease exponent by d to shift decimal right) */ 311 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ 312 s = s*10 + (*z - '0'); 313 z+=incr, nDigits++, d--; 314 } 315 /* skip non-significant digits */ 316 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; 317 } 318 if( z>=zEnd ) goto do_atof_calc; 319 320 /* if exponent is present */ 321 if( *z=='e' || *z=='E' ){ 322 z+=incr; 323 eValid = 0; 324 if( z>=zEnd ) goto do_atof_calc; 325 /* get sign of exponent */ 326 if( *z=='-' ){ 327 esign = -1; 328 z+=incr; 329 }else if( *z=='+' ){ 330 z+=incr; 331 } 332 /* copy digits to exponent */ 333 while( z<zEnd && sqlite3Isdigit(*z) ){ 334 e = e<10000 ? (e*10 + (*z - '0')) : 10000; 335 z+=incr; 336 eValid = 1; 337 } 338 } 339 340 /* skip trailing spaces */ 341 if( nDigits && eValid ){ 342 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; 343 } 344 345 do_atof_calc: 346 /* adjust exponent by d, and update sign */ 347 e = (e*esign) + d; 348 if( e<0 ) { 349 esign = -1; 350 e *= -1; 351 } else { 352 esign = 1; 353 } 354 355 /* if 0 significand */ 356 if( !s ) { 357 /* In the IEEE 754 standard, zero is signed. 358 ** Add the sign if we've seen at least one digit */ 359 result = (sign<0 && nDigits) ? -(double)0 : (double)0; 360 } else { 361 /* attempt to reduce exponent */ 362 if( esign>0 ){ 363 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; 364 }else{ 365 while( !(s%10) && e>0 ) e--,s/=10; 366 } 367 368 /* adjust the sign of significand */ 369 s = sign<0 ? -s : s; 370 371 /* if exponent, scale significand as appropriate 372 ** and store in result. */ 373 if( e ){ 374 double scale = 1.0; 375 /* attempt to handle extremely small/large numbers better */ 376 if( e>307 && e<342 ){ 377 while( e%308 ) { scale *= 1.0e+1; e -= 1; } 378 if( esign<0 ){ 379 result = s / scale; 380 result /= 1.0e+308; 381 }else{ 382 result = s * scale; 383 result *= 1.0e+308; 384 } 385 }else if( e>=342 ){ 386 if( esign<0 ){ 387 result = 0.0*s; 388 }else{ 389 result = 1e308*1e308*s; /* Infinity */ 390 } 391 }else{ 392 /* 1.0e+22 is the largest power of 10 than can be 393 ** represented exactly. */ 394 while( e%22 ) { scale *= 1.0e+1; e -= 1; } 395 while( e>0 ) { scale *= 1.0e+22; e -= 22; } 396 if( esign<0 ){ 397 result = s / scale; 398 }else{ 399 result = s * scale; 400 } 401 } 402 } else { 403 result = (double)s; 404 } 405 } 406 407 /* store the result */ 408 *pResult = result; 409 410 /* return true if number and no extra non-whitespace chracters after */ 411 return z>=zEnd && nDigits>0 && eValid; 412 #else 413 return !sqlite3Atoi64(z, pResult, length, enc); 414 #endif /* SQLITE_OMIT_FLOATING_POINT */ 415 } 416 417 /* 418 ** Compare the 19-character string zNum against the text representation 419 ** value 2^63: 9223372036854775808. Return negative, zero, or positive 420 ** if zNum is less than, equal to, or greater than the string. 421 ** Note that zNum must contain exactly 19 characters. 422 ** 423 ** Unlike memcmp() this routine is guaranteed to return the difference 424 ** in the values of the last digit if the only difference is in the 425 ** last digit. So, for example, 426 ** 427 ** compare2pow63("9223372036854775800", 1) 428 ** 429 ** will return -8. 430 */ 431 static int compare2pow63(const char *zNum, int incr){ 432 int c = 0; 433 int i; 434 /* 012345678901234567 */ 435 const char *pow63 = "922337203685477580"; 436 for(i=0; c==0 && i<18; i++){ 437 c = (zNum[i*incr]-pow63[i])*10; 438 } 439 if( c==0 ){ 440 c = zNum[18*incr] - '8'; 441 testcase( c==(-1) ); 442 testcase( c==0 ); 443 testcase( c==(+1) ); 444 } 445 return c; 446 } 447 448 449 /* 450 ** Convert zNum to a 64-bit signed integer. 451 ** 452 ** If the zNum value is representable as a 64-bit twos-complement 453 ** integer, then write that value into *pNum and return 0. 454 ** 455 ** If zNum is exactly 9223372036854665808, return 2. This special 456 ** case is broken out because while 9223372036854665808 cannot be a 457 ** signed 64-bit integer, its negative -9223372036854665808 can be. 458 ** 459 ** If zNum is too big for a 64-bit integer and is not 460 ** 9223372036854665808 then return 1. 461 ** 462 ** length is the number of bytes in the string (bytes, not characters). 463 ** The string is not necessarily zero-terminated. The encoding is 464 ** given by enc. 465 */ 466 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ 467 int incr = (enc==SQLITE_UTF8?1:2); 468 u64 u = 0; 469 int neg = 0; /* assume positive */ 470 int i; 471 int c = 0; 472 const char *zStart; 473 const char *zEnd = zNum + length; 474 if( enc==SQLITE_UTF16BE ) zNum++; 475 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; 476 if( zNum<zEnd ){ 477 if( *zNum=='-' ){ 478 neg = 1; 479 zNum+=incr; 480 }else if( *zNum=='+' ){ 481 zNum+=incr; 482 } 483 } 484 zStart = zNum; 485 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ 486 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ 487 u = u*10 + c - '0'; 488 } 489 if( u>LARGEST_INT64 ){ 490 *pNum = SMALLEST_INT64; 491 }else if( neg ){ 492 *pNum = -(i64)u; 493 }else{ 494 *pNum = (i64)u; 495 } 496 testcase( i==18 ); 497 testcase( i==19 ); 498 testcase( i==20 ); 499 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){ 500 /* zNum is empty or contains non-numeric text or is longer 501 ** than 19 digits (thus guaranteeing that it is too large) */ 502 return 1; 503 }else if( i<19*incr ){ 504 /* Less than 19 digits, so we know that it fits in 64 bits */ 505 assert( u<=LARGEST_INT64 ); 506 return 0; 507 }else{ 508 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ 509 c = compare2pow63(zNum, incr); 510 if( c<0 ){ 511 /* zNum is less than 9223372036854775808 so it fits */ 512 assert( u<=LARGEST_INT64 ); 513 return 0; 514 }else if( c>0 ){ 515 /* zNum is greater than 9223372036854775808 so it overflows */ 516 return 1; 517 }else{ 518 /* zNum is exactly 9223372036854775808. Fits if negative. The 519 ** special case 2 overflow if positive */ 520 assert( u-1==LARGEST_INT64 ); 521 assert( (*pNum)==SMALLEST_INT64 ); 522 return neg ? 0 : 2; 523 } 524 } 525 } 526 527 /* 528 ** If zNum represents an integer that will fit in 32-bits, then set 529 ** *pValue to that integer and return true. Otherwise return false. 530 ** 531 ** Any non-numeric characters that following zNum are ignored. 532 ** This is different from sqlite3Atoi64() which requires the 533 ** input number to be zero-terminated. 534 */ 535 int sqlite3GetInt32(const char *zNum, int *pValue){ 536 sqlite_int64 v = 0; 537 int i, c; 538 int neg = 0; 539 if( zNum[0]=='-' ){ 540 neg = 1; 541 zNum++; 542 }else if( zNum[0]=='+' ){ 543 zNum++; 544 } 545 while( zNum[0]=='0' ) zNum++; 546 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ 547 v = v*10 + c; 548 } 549 550 /* The longest decimal representation of a 32 bit integer is 10 digits: 551 ** 552 ** 1234567890 553 ** 2^31 -> 2147483648 554 */ 555 testcase( i==10 ); 556 if( i>10 ){ 557 return 0; 558 } 559 testcase( v-neg==2147483647 ); 560 if( v-neg>2147483647 ){ 561 return 0; 562 } 563 if( neg ){ 564 v = -v; 565 } 566 *pValue = (int)v; 567 return 1; 568 } 569 570 /* 571 ** Return a 32-bit integer value extracted from a string. If the 572 ** string is not an integer, just return 0. 573 */ 574 int sqlite3Atoi(const char *z){ 575 int x = 0; 576 if( z ) sqlite3GetInt32(z, &x); 577 return x; 578 } 579 580 /* 581 ** The variable-length integer encoding is as follows: 582 ** 583 ** KEY: 584 ** A = 0xxxxxxx 7 bits of data and one flag bit 585 ** B = 1xxxxxxx 7 bits of data and one flag bit 586 ** C = xxxxxxxx 8 bits of data 587 ** 588 ** 7 bits - A 589 ** 14 bits - BA 590 ** 21 bits - BBA 591 ** 28 bits - BBBA 592 ** 35 bits - BBBBA 593 ** 42 bits - BBBBBA 594 ** 49 bits - BBBBBBA 595 ** 56 bits - BBBBBBBA 596 ** 64 bits - BBBBBBBBC 597 */ 598 599 /* 600 ** Write a 64-bit variable-length integer to memory starting at p[0]. 601 ** The length of data write will be between 1 and 9 bytes. The number 602 ** of bytes written is returned. 603 ** 604 ** A variable-length integer consists of the lower 7 bits of each byte 605 ** for all bytes that have the 8th bit set and one byte with the 8th 606 ** bit clear. Except, if we get to the 9th byte, it stores the full 607 ** 8 bits and is the last byte. 608 */ 609 int sqlite3PutVarint(unsigned char *p, u64 v){ 610 int i, j, n; 611 u8 buf[10]; 612 if( v & (((u64)0xff000000)<<32) ){ 613 p[8] = (u8)v; 614 v >>= 8; 615 for(i=7; i>=0; i--){ 616 p[i] = (u8)((v & 0x7f) | 0x80); 617 v >>= 7; 618 } 619 return 9; 620 } 621 n = 0; 622 do{ 623 buf[n++] = (u8)((v & 0x7f) | 0x80); 624 v >>= 7; 625 }while( v!=0 ); 626 buf[0] &= 0x7f; 627 assert( n<=9 ); 628 for(i=0, j=n-1; j>=0; j--, i++){ 629 p[i] = buf[j]; 630 } 631 return n; 632 } 633 634 /* 635 ** This routine is a faster version of sqlite3PutVarint() that only 636 ** works for 32-bit positive integers and which is optimized for 637 ** the common case of small integers. A MACRO version, putVarint32, 638 ** is provided which inlines the single-byte case. All code should use 639 ** the MACRO version as this function assumes the single-byte case has 640 ** already been handled. 641 */ 642 int sqlite3PutVarint32(unsigned char *p, u32 v){ 643 #ifndef putVarint32 644 if( (v & ~0x7f)==0 ){ 645 p[0] = v; 646 return 1; 647 } 648 #endif 649 if( (v & ~0x3fff)==0 ){ 650 p[0] = (u8)((v>>7) | 0x80); 651 p[1] = (u8)(v & 0x7f); 652 return 2; 653 } 654 return sqlite3PutVarint(p, v); 655 } 656 657 /* 658 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants 659 ** are defined here rather than simply putting the constant expressions 660 ** inline in order to work around bugs in the RVT compiler. 661 ** 662 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f 663 ** 664 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 665 */ 666 #define SLOT_2_0 0x001fc07f 667 #define SLOT_4_2_0 0xf01fc07f 668 669 670 /* 671 ** Read a 64-bit variable-length integer from memory starting at p[0]. 672 ** Return the number of bytes read. The value is stored in *v. 673 */ 674 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ 675 u32 a,b,s; 676 677 a = *p; 678 /* a: p0 (unmasked) */ 679 if (!(a&0x80)) 680 { 681 *v = a; 682 return 1; 683 } 684 685 p++; 686 b = *p; 687 /* b: p1 (unmasked) */ 688 if (!(b&0x80)) 689 { 690 a &= 0x7f; 691 a = a<<7; 692 a |= b; 693 *v = a; 694 return 2; 695 } 696 697 /* Verify that constants are precomputed correctly */ 698 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); 699 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); 700 701 p++; 702 a = a<<14; 703 a |= *p; 704 /* a: p0<<14 | p2 (unmasked) */ 705 if (!(a&0x80)) 706 { 707 a &= SLOT_2_0; 708 b &= 0x7f; 709 b = b<<7; 710 a |= b; 711 *v = a; 712 return 3; 713 } 714 715 /* CSE1 from below */ 716 a &= SLOT_2_0; 717 p++; 718 b = b<<14; 719 b |= *p; 720 /* b: p1<<14 | p3 (unmasked) */ 721 if (!(b&0x80)) 722 { 723 b &= SLOT_2_0; 724 /* moved CSE1 up */ 725 /* a &= (0x7f<<14)|(0x7f); */ 726 a = a<<7; 727 a |= b; 728 *v = a; 729 return 4; 730 } 731 732 /* a: p0<<14 | p2 (masked) */ 733 /* b: p1<<14 | p3 (unmasked) */ 734 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 735 /* moved CSE1 up */ 736 /* a &= (0x7f<<14)|(0x7f); */ 737 b &= SLOT_2_0; 738 s = a; 739 /* s: p0<<14 | p2 (masked) */ 740 741 p++; 742 a = a<<14; 743 a |= *p; 744 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 745 if (!(a&0x80)) 746 { 747 /* we can skip these cause they were (effectively) done above in calc'ing s */ 748 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 749 /* b &= (0x7f<<14)|(0x7f); */ 750 b = b<<7; 751 a |= b; 752 s = s>>18; 753 *v = ((u64)s)<<32 | a; 754 return 5; 755 } 756 757 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 758 s = s<<7; 759 s |= b; 760 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ 761 762 p++; 763 b = b<<14; 764 b |= *p; 765 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ 766 if (!(b&0x80)) 767 { 768 /* we can skip this cause it was (effectively) done above in calc'ing s */ 769 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ 770 a &= SLOT_2_0; 771 a = a<<7; 772 a |= b; 773 s = s>>18; 774 *v = ((u64)s)<<32 | a; 775 return 6; 776 } 777 778 p++; 779 a = a<<14; 780 a |= *p; 781 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ 782 if (!(a&0x80)) 783 { 784 a &= SLOT_4_2_0; 785 b &= SLOT_2_0; 786 b = b<<7; 787 a |= b; 788 s = s>>11; 789 *v = ((u64)s)<<32 | a; 790 return 7; 791 } 792 793 /* CSE2 from below */ 794 a &= SLOT_2_0; 795 p++; 796 b = b<<14; 797 b |= *p; 798 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ 799 if (!(b&0x80)) 800 { 801 b &= SLOT_4_2_0; 802 /* moved CSE2 up */ 803 /* a &= (0x7f<<14)|(0x7f); */ 804 a = a<<7; 805 a |= b; 806 s = s>>4; 807 *v = ((u64)s)<<32 | a; 808 return 8; 809 } 810 811 p++; 812 a = a<<15; 813 a |= *p; 814 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ 815 816 /* moved CSE2 up */ 817 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ 818 b &= SLOT_2_0; 819 b = b<<8; 820 a |= b; 821 822 s = s<<4; 823 b = p[-4]; 824 b &= 0x7f; 825 b = b>>3; 826 s |= b; 827 828 *v = ((u64)s)<<32 | a; 829 830 return 9; 831 } 832 833 /* 834 ** Read a 32-bit variable-length integer from memory starting at p[0]. 835 ** Return the number of bytes read. The value is stored in *v. 836 ** 837 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned 838 ** integer, then set *v to 0xffffffff. 839 ** 840 ** A MACRO version, getVarint32, is provided which inlines the 841 ** single-byte case. All code should use the MACRO version as 842 ** this function assumes the single-byte case has already been handled. 843 */ 844 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ 845 u32 a,b; 846 847 /* The 1-byte case. Overwhelmingly the most common. Handled inline 848 ** by the getVarin32() macro */ 849 a = *p; 850 /* a: p0 (unmasked) */ 851 #ifndef getVarint32 852 if (!(a&0x80)) 853 { 854 /* Values between 0 and 127 */ 855 *v = a; 856 return 1; 857 } 858 #endif 859 860 /* The 2-byte case */ 861 p++; 862 b = *p; 863 /* b: p1 (unmasked) */ 864 if (!(b&0x80)) 865 { 866 /* Values between 128 and 16383 */ 867 a &= 0x7f; 868 a = a<<7; 869 *v = a | b; 870 return 2; 871 } 872 873 /* The 3-byte case */ 874 p++; 875 a = a<<14; 876 a |= *p; 877 /* a: p0<<14 | p2 (unmasked) */ 878 if (!(a&0x80)) 879 { 880 /* Values between 16384 and 2097151 */ 881 a &= (0x7f<<14)|(0x7f); 882 b &= 0x7f; 883 b = b<<7; 884 *v = a | b; 885 return 3; 886 } 887 888 /* A 32-bit varint is used to store size information in btrees. 889 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. 890 ** A 3-byte varint is sufficient, for example, to record the size 891 ** of a 1048569-byte BLOB or string. 892 ** 893 ** We only unroll the first 1-, 2-, and 3- byte cases. The very 894 ** rare larger cases can be handled by the slower 64-bit varint 895 ** routine. 896 */ 897 #if 1 898 { 899 u64 v64; 900 u8 n; 901 902 p -= 2; 903 n = sqlite3GetVarint(p, &v64); 904 assert( n>3 && n<=9 ); 905 if( (v64 & SQLITE_MAX_U32)!=v64 ){ 906 *v = 0xffffffff; 907 }else{ 908 *v = (u32)v64; 909 } 910 return n; 911 } 912 913 #else 914 /* For following code (kept for historical record only) shows an 915 ** unrolling for the 3- and 4-byte varint cases. This code is 916 ** slightly faster, but it is also larger and much harder to test. 917 */ 918 p++; 919 b = b<<14; 920 b |= *p; 921 /* b: p1<<14 | p3 (unmasked) */ 922 if (!(b&0x80)) 923 { 924 /* Values between 2097152 and 268435455 */ 925 b &= (0x7f<<14)|(0x7f); 926 a &= (0x7f<<14)|(0x7f); 927 a = a<<7; 928 *v = a | b; 929 return 4; 930 } 931 932 p++; 933 a = a<<14; 934 a |= *p; 935 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ 936 if (!(a&0x80)) 937 { 938 /* Values between 268435456 and 34359738367 */ 939 a &= SLOT_4_2_0; 940 b &= SLOT_4_2_0; 941 b = b<<7; 942 *v = a | b; 943 return 5; 944 } 945 946 /* We can only reach this point when reading a corrupt database 947 ** file. In that case we are not in any hurry. Use the (relatively 948 ** slow) general-purpose sqlite3GetVarint() routine to extract the 949 ** value. */ 950 { 951 u64 v64; 952 u8 n; 953 954 p -= 4; 955 n = sqlite3GetVarint(p, &v64); 956 assert( n>5 && n<=9 ); 957 *v = (u32)v64; 958 return n; 959 } 960 #endif 961 } 962 963 /* 964 ** Return the number of bytes that will be needed to store the given 965 ** 64-bit integer. 966 */ 967 int sqlite3VarintLen(u64 v){ 968 int i = 0; 969 do{ 970 i++; 971 v >>= 7; 972 }while( v!=0 && ALWAYS(i<9) ); 973 return i; 974 } 975 976 977 /* 978 ** Read or write a four-byte big-endian integer value. 979 */ 980 u32 sqlite3Get4byte(const u8 *p){ 981 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; 982 } 983 void sqlite3Put4byte(unsigned char *p, u32 v){ 984 p[0] = (u8)(v>>24); 985 p[1] = (u8)(v>>16); 986 p[2] = (u8)(v>>8); 987 p[3] = (u8)v; 988 } 989 990 991 992 /* 993 ** Translate a single byte of Hex into an integer. 994 ** This routine only works if h really is a valid hexadecimal 995 ** character: 0..9a..fA..F 996 */ 997 u8 sqlite3HexToInt(int h){ 998 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); 999 #ifdef SQLITE_ASCII 1000 h += 9*(1&(h>>6)); 1001 #endif 1002 #ifdef SQLITE_EBCDIC 1003 h += 9*(1&~(h>>4)); 1004 #endif 1005 return (u8)(h & 0xf); 1006 } 1007 1008 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) 1009 /* 1010 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary 1011 ** value. Return a pointer to its binary value. Space to hold the 1012 ** binary value has been obtained from malloc and must be freed by 1013 ** the calling routine. 1014 */ 1015 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ 1016 char *zBlob; 1017 int i; 1018 1019 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); 1020 n--; 1021 if( zBlob ){ 1022 for(i=0; i<n; i+=2){ 1023 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); 1024 } 1025 zBlob[i/2] = 0; 1026 } 1027 return zBlob; 1028 } 1029 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ 1030 1031 /* 1032 ** Log an error that is an API call on a connection pointer that should 1033 ** not have been used. The "type" of connection pointer is given as the 1034 ** argument. The zType is a word like "NULL" or "closed" or "invalid". 1035 */ 1036 static void logBadConnection(const char *zType){ 1037 sqlite3_log(SQLITE_MISUSE, 1038 "API call with %s database connection pointer", 1039 zType 1040 ); 1041 } 1042 1043 /* 1044 ** Check to make sure we have a valid db pointer. This test is not 1045 ** foolproof but it does provide some measure of protection against 1046 ** misuse of the interface such as passing in db pointers that are 1047 ** NULL or which have been previously closed. If this routine returns 1048 ** 1 it means that the db pointer is valid and 0 if it should not be 1049 ** dereferenced for any reason. The calling function should invoke 1050 ** SQLITE_MISUSE immediately. 1051 ** 1052 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for 1053 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to 1054 ** open properly and is not fit for general use but which can be 1055 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). 1056 */ 1057 int sqlite3SafetyCheckOk(sqlite3 *db){ 1058 u32 magic; 1059 if( db==0 ){ 1060 logBadConnection("NULL"); 1061 return 0; 1062 } 1063 magic = db->magic; 1064 if( magic!=SQLITE_MAGIC_OPEN ){ 1065 if( sqlite3SafetyCheckSickOrOk(db) ){ 1066 testcase( sqlite3GlobalConfig.xLog!=0 ); 1067 logBadConnection("unopened"); 1068 } 1069 return 0; 1070 }else{ 1071 return 1; 1072 } 1073 } 1074 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ 1075 u32 magic; 1076 magic = db->magic; 1077 if( magic!=SQLITE_MAGIC_SICK && 1078 magic!=SQLITE_MAGIC_OPEN && 1079 magic!=SQLITE_MAGIC_BUSY ){ 1080 testcase( sqlite3GlobalConfig.xLog!=0 ); 1081 logBadConnection("invalid"); 1082 return 0; 1083 }else{ 1084 return 1; 1085 } 1086 } 1087 1088 /* 1089 ** Attempt to add, substract, or multiply the 64-bit signed value iB against 1090 ** the other 64-bit signed integer at *pA and store the result in *pA. 1091 ** Return 0 on success. Or if the operation would have resulted in an 1092 ** overflow, leave *pA unchanged and return 1. 1093 */ 1094 int sqlite3AddInt64(i64 *pA, i64 iB){ 1095 i64 iA = *pA; 1096 testcase( iA==0 ); testcase( iA==1 ); 1097 testcase( iB==-1 ); testcase( iB==0 ); 1098 if( iB>=0 ){ 1099 testcase( iA>0 && LARGEST_INT64 - iA == iB ); 1100 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); 1101 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; 1102 *pA += iB; 1103 }else{ 1104 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); 1105 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); 1106 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; 1107 *pA += iB; 1108 } 1109 return 0; 1110 } 1111 int sqlite3SubInt64(i64 *pA, i64 iB){ 1112 testcase( iB==SMALLEST_INT64+1 ); 1113 if( iB==SMALLEST_INT64 ){ 1114 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); 1115 if( (*pA)>=0 ) return 1; 1116 *pA -= iB; 1117 return 0; 1118 }else{ 1119 return sqlite3AddInt64(pA, -iB); 1120 } 1121 } 1122 #define TWOPOWER32 (((i64)1)<<32) 1123 #define TWOPOWER31 (((i64)1)<<31) 1124 int sqlite3MulInt64(i64 *pA, i64 iB){ 1125 i64 iA = *pA; 1126 i64 iA1, iA0, iB1, iB0, r; 1127 1128 iA1 = iA/TWOPOWER32; 1129 iA0 = iA % TWOPOWER32; 1130 iB1 = iB/TWOPOWER32; 1131 iB0 = iB % TWOPOWER32; 1132 if( iA1*iB1 != 0 ) return 1; 1133 assert( iA1*iB0==0 || iA0*iB1==0 ); 1134 r = iA1*iB0 + iA0*iB1; 1135 testcase( r==(-TWOPOWER31)-1 ); 1136 testcase( r==(-TWOPOWER31) ); 1137 testcase( r==TWOPOWER31 ); 1138 testcase( r==TWOPOWER31-1 ); 1139 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; 1140 r *= TWOPOWER32; 1141 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; 1142 *pA = r; 1143 return 0; 1144 } 1145 1146 /* 1147 ** Compute the absolute value of a 32-bit signed integer, of possible. Or 1148 ** if the integer has a value of -2147483648, return +2147483647 1149 */ 1150 int sqlite3AbsInt32(int x){ 1151 if( x>=0 ) return x; 1152 if( x==(int)0x80000000 ) return 0x7fffffff; 1153 return -x; 1154 } 1155 1156 #ifdef SQLITE_ENABLE_8_3_NAMES 1157 /* 1158 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 1159 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 1160 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 1161 ** three characters, then shorten the suffix on z[] to be the last three 1162 ** characters of the original suffix. 1163 ** 1164 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 1165 ** do the suffix shortening regardless of URI parameter. 1166 ** 1167 ** Examples: 1168 ** 1169 ** test.db-journal => test.nal 1170 ** test.db-wal => test.wal 1171 ** test.db-shm => test.shm 1172 ** test.db-mj7f3319fa => test.9fa 1173 */ 1174 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ 1175 #if SQLITE_ENABLE_8_3_NAMES<2 1176 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) 1177 #endif 1178 { 1179 int i, sz; 1180 sz = sqlite3Strlen30(z); 1181 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 1182 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); 1183 } 1184 } 1185 #endif 1186