xref: /sqlite-3.40.0/src/util.c (revision 50f79f56)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifdef SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 #ifndef SQLITE_OMIT_FLOATING_POINT
35 /*
36 ** Return true if the floating point value is Not a Number (NaN).
37 **
38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39 ** Otherwise, we have our own implementation that works on most systems.
40 */
41 int sqlite3IsNaN(double x){
42   int rc;   /* The value return */
43 #if !defined(SQLITE_HAVE_ISNAN)
44   /*
45   ** Systems that support the isnan() library function should probably
46   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
47   ** found that many systems do not have a working isnan() function so
48   ** this implementation is provided as an alternative.
49   **
50   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
51   ** On the other hand, the use of -ffast-math comes with the following
52   ** warning:
53   **
54   **      This option [-ffast-math] should never be turned on by any
55   **      -O option since it can result in incorrect output for programs
56   **      which depend on an exact implementation of IEEE or ISO
57   **      rules/specifications for math functions.
58   **
59   ** Under MSVC, this NaN test may fail if compiled with a floating-
60   ** point precision mode other than /fp:precise.  From the MSDN
61   ** documentation:
62   **
63   **      The compiler [with /fp:precise] will properly handle comparisons
64   **      involving NaN. For example, x != x evaluates to true if x is NaN
65   **      ...
66   */
67 #ifdef __FAST_MATH__
68 # error SQLite will not work correctly with the -ffast-math option of GCC.
69 #endif
70   volatile double y = x;
71   volatile double z = y;
72   rc = (y!=z);
73 #else  /* if defined(SQLITE_HAVE_ISNAN) */
74   rc = isnan(x);
75 #endif /* SQLITE_HAVE_ISNAN */
76   testcase( rc );
77   return rc;
78 }
79 #endif /* SQLITE_OMIT_FLOATING_POINT */
80 
81 /*
82 ** Compute a string length that is limited to what can be stored in
83 ** lower 30 bits of a 32-bit signed integer.
84 **
85 ** The value returned will never be negative.  Nor will it ever be greater
86 ** than the actual length of the string.  For very long strings (greater
87 ** than 1GiB) the value returned might be less than the true string length.
88 */
89 int sqlite3Strlen30(const char *z){
90   const char *z2 = z;
91   if( z==0 ) return 0;
92   while( *z2 ){ z2++; }
93   return 0x3fffffff & (int)(z2 - z);
94 }
95 
96 /*
97 ** Set the most recent error code and error string for the sqlite
98 ** handle "db". The error code is set to "err_code".
99 **
100 ** If it is not NULL, string zFormat specifies the format of the
101 ** error string in the style of the printf functions: The following
102 ** format characters are allowed:
103 **
104 **      %s      Insert a string
105 **      %z      A string that should be freed after use
106 **      %d      Insert an integer
107 **      %T      Insert a token
108 **      %S      Insert the first element of a SrcList
109 **
110 ** zFormat and any string tokens that follow it are assumed to be
111 ** encoded in UTF-8.
112 **
113 ** To clear the most recent error for sqlite handle "db", sqlite3Error
114 ** should be called with err_code set to SQLITE_OK and zFormat set
115 ** to NULL.
116 */
117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
118   if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
119     db->errCode = err_code;
120     if( zFormat ){
121       char *z;
122       va_list ap;
123       va_start(ap, zFormat);
124       z = sqlite3VMPrintf(db, zFormat, ap);
125       va_end(ap);
126       sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
127     }else{
128       sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
129     }
130   }
131 }
132 
133 /*
134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
135 ** The following formatting characters are allowed:
136 **
137 **      %s      Insert a string
138 **      %z      A string that should be freed after use
139 **      %d      Insert an integer
140 **      %T      Insert a token
141 **      %S      Insert the first element of a SrcList
142 **
143 ** This function should be used to report any error that occurs whilst
144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
145 ** last thing the sqlite3_prepare() function does is copy the error
146 ** stored by this function into the database handle using sqlite3Error().
147 ** Function sqlite3Error() should be used during statement execution
148 ** (sqlite3_step() etc.).
149 */
150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
151   char *zMsg;
152   va_list ap;
153   sqlite3 *db = pParse->db;
154   va_start(ap, zFormat);
155   zMsg = sqlite3VMPrintf(db, zFormat, ap);
156   va_end(ap);
157   if( db->suppressErr ){
158     sqlite3DbFree(db, zMsg);
159   }else{
160     pParse->nErr++;
161     sqlite3DbFree(db, pParse->zErrMsg);
162     pParse->zErrMsg = zMsg;
163     pParse->rc = SQLITE_ERROR;
164   }
165 }
166 
167 /*
168 ** Convert an SQL-style quoted string into a normal string by removing
169 ** the quote characters.  The conversion is done in-place.  If the
170 ** input does not begin with a quote character, then this routine
171 ** is a no-op.
172 **
173 ** The input string must be zero-terminated.  A new zero-terminator
174 ** is added to the dequoted string.
175 **
176 ** The return value is -1 if no dequoting occurs or the length of the
177 ** dequoted string, exclusive of the zero terminator, if dequoting does
178 ** occur.
179 **
180 ** 2002-Feb-14: This routine is extended to remove MS-Access style
181 ** brackets from around identifers.  For example:  "[a-b-c]" becomes
182 ** "a-b-c".
183 */
184 int sqlite3Dequote(char *z){
185   char quote;
186   int i, j;
187   if( z==0 ) return -1;
188   quote = z[0];
189   switch( quote ){
190     case '\'':  break;
191     case '"':   break;
192     case '`':   break;                /* For MySQL compatibility */
193     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
194     default:    return -1;
195   }
196   for(i=1, j=0; ALWAYS(z[i]); i++){
197     if( z[i]==quote ){
198       if( z[i+1]==quote ){
199         z[j++] = quote;
200         i++;
201       }else{
202         break;
203       }
204     }else{
205       z[j++] = z[i];
206     }
207   }
208   z[j] = 0;
209   return j;
210 }
211 
212 /* Convenient short-hand */
213 #define UpperToLower sqlite3UpperToLower
214 
215 /*
216 ** Some systems have stricmp().  Others have strcasecmp().  Because
217 ** there is no consistency, we will define our own.
218 **
219 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
220 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
221 ** the contents of two buffers containing UTF-8 strings in a
222 ** case-independent fashion, using the same definition of "case
223 ** independence" that SQLite uses internally when comparing identifiers.
224 */
225 int sqlite3_stricmp(const char *zLeft, const char *zRight){
226   register unsigned char *a, *b;
227   a = (unsigned char *)zLeft;
228   b = (unsigned char *)zRight;
229   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
230   return UpperToLower[*a] - UpperToLower[*b];
231 }
232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
233   register unsigned char *a, *b;
234   a = (unsigned char *)zLeft;
235   b = (unsigned char *)zRight;
236   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
237   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
238 }
239 
240 /*
241 ** The string z[] is an text representation of a real number.
242 ** Convert this string to a double and write it into *pResult.
243 **
244 ** The string z[] is length bytes in length (bytes, not characters) and
245 ** uses the encoding enc.  The string is not necessarily zero-terminated.
246 **
247 ** Return TRUE if the result is a valid real number (or integer) and FALSE
248 ** if the string is empty or contains extraneous text.  Valid numbers
249 ** are in one of these formats:
250 **
251 **    [+-]digits[E[+-]digits]
252 **    [+-]digits.[digits][E[+-]digits]
253 **    [+-].digits[E[+-]digits]
254 **
255 ** Leading and trailing whitespace is ignored for the purpose of determining
256 ** validity.
257 **
258 ** If some prefix of the input string is a valid number, this routine
259 ** returns FALSE but it still converts the prefix and writes the result
260 ** into *pResult.
261 */
262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
263 #ifndef SQLITE_OMIT_FLOATING_POINT
264   int incr = (enc==SQLITE_UTF8?1:2);
265   const char *zEnd = z + length;
266   /* sign * significand * (10 ^ (esign * exponent)) */
267   int sign = 1;    /* sign of significand */
268   i64 s = 0;       /* significand */
269   int d = 0;       /* adjust exponent for shifting decimal point */
270   int esign = 1;   /* sign of exponent */
271   int e = 0;       /* exponent */
272   int eValid = 1;  /* True exponent is either not used or is well-formed */
273   double result;
274   int nDigits = 0;
275 
276   *pResult = 0.0;   /* Default return value, in case of an error */
277 
278   if( enc==SQLITE_UTF16BE ) z++;
279 
280   /* skip leading spaces */
281   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
282   if( z>=zEnd ) return 0;
283 
284   /* get sign of significand */
285   if( *z=='-' ){
286     sign = -1;
287     z+=incr;
288   }else if( *z=='+' ){
289     z+=incr;
290   }
291 
292   /* skip leading zeroes */
293   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
294 
295   /* copy max significant digits to significand */
296   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
297     s = s*10 + (*z - '0');
298     z+=incr, nDigits++;
299   }
300 
301   /* skip non-significant significand digits
302   ** (increase exponent by d to shift decimal left) */
303   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
304   if( z>=zEnd ) goto do_atof_calc;
305 
306   /* if decimal point is present */
307   if( *z=='.' ){
308     z+=incr;
309     /* copy digits from after decimal to significand
310     ** (decrease exponent by d to shift decimal right) */
311     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
312       s = s*10 + (*z - '0');
313       z+=incr, nDigits++, d--;
314     }
315     /* skip non-significant digits */
316     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
317   }
318   if( z>=zEnd ) goto do_atof_calc;
319 
320   /* if exponent is present */
321   if( *z=='e' || *z=='E' ){
322     z+=incr;
323     eValid = 0;
324     if( z>=zEnd ) goto do_atof_calc;
325     /* get sign of exponent */
326     if( *z=='-' ){
327       esign = -1;
328       z+=incr;
329     }else if( *z=='+' ){
330       z+=incr;
331     }
332     /* copy digits to exponent */
333     while( z<zEnd && sqlite3Isdigit(*z) ){
334       e = e<10000 ? (e*10 + (*z - '0')) : 10000;
335       z+=incr;
336       eValid = 1;
337     }
338   }
339 
340   /* skip trailing spaces */
341   if( nDigits && eValid ){
342     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
343   }
344 
345 do_atof_calc:
346   /* adjust exponent by d, and update sign */
347   e = (e*esign) + d;
348   if( e<0 ) {
349     esign = -1;
350     e *= -1;
351   } else {
352     esign = 1;
353   }
354 
355   /* if 0 significand */
356   if( !s ) {
357     /* In the IEEE 754 standard, zero is signed.
358     ** Add the sign if we've seen at least one digit */
359     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
360   } else {
361     /* attempt to reduce exponent */
362     if( esign>0 ){
363       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
364     }else{
365       while( !(s%10) && e>0 ) e--,s/=10;
366     }
367 
368     /* adjust the sign of significand */
369     s = sign<0 ? -s : s;
370 
371     /* if exponent, scale significand as appropriate
372     ** and store in result. */
373     if( e ){
374       double scale = 1.0;
375       /* attempt to handle extremely small/large numbers better */
376       if( e>307 && e<342 ){
377         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
378         if( esign<0 ){
379           result = s / scale;
380           result /= 1.0e+308;
381         }else{
382           result = s * scale;
383           result *= 1.0e+308;
384         }
385       }else if( e>=342 ){
386         if( esign<0 ){
387           result = 0.0*s;
388         }else{
389           result = 1e308*1e308*s;  /* Infinity */
390         }
391       }else{
392         /* 1.0e+22 is the largest power of 10 than can be
393         ** represented exactly. */
394         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
395         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
396         if( esign<0 ){
397           result = s / scale;
398         }else{
399           result = s * scale;
400         }
401       }
402     } else {
403       result = (double)s;
404     }
405   }
406 
407   /* store the result */
408   *pResult = result;
409 
410   /* return true if number and no extra non-whitespace chracters after */
411   return z>=zEnd && nDigits>0 && eValid;
412 #else
413   return !sqlite3Atoi64(z, pResult, length, enc);
414 #endif /* SQLITE_OMIT_FLOATING_POINT */
415 }
416 
417 /*
418 ** Compare the 19-character string zNum against the text representation
419 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
420 ** if zNum is less than, equal to, or greater than the string.
421 ** Note that zNum must contain exactly 19 characters.
422 **
423 ** Unlike memcmp() this routine is guaranteed to return the difference
424 ** in the values of the last digit if the only difference is in the
425 ** last digit.  So, for example,
426 **
427 **      compare2pow63("9223372036854775800", 1)
428 **
429 ** will return -8.
430 */
431 static int compare2pow63(const char *zNum, int incr){
432   int c = 0;
433   int i;
434                     /* 012345678901234567 */
435   const char *pow63 = "922337203685477580";
436   for(i=0; c==0 && i<18; i++){
437     c = (zNum[i*incr]-pow63[i])*10;
438   }
439   if( c==0 ){
440     c = zNum[18*incr] - '8';
441     testcase( c==(-1) );
442     testcase( c==0 );
443     testcase( c==(+1) );
444   }
445   return c;
446 }
447 
448 
449 /*
450 ** Convert zNum to a 64-bit signed integer.
451 **
452 ** If the zNum value is representable as a 64-bit twos-complement
453 ** integer, then write that value into *pNum and return 0.
454 **
455 ** If zNum is exactly 9223372036854665808, return 2.  This special
456 ** case is broken out because while 9223372036854665808 cannot be a
457 ** signed 64-bit integer, its negative -9223372036854665808 can be.
458 **
459 ** If zNum is too big for a 64-bit integer and is not
460 ** 9223372036854665808 then return 1.
461 **
462 ** length is the number of bytes in the string (bytes, not characters).
463 ** The string is not necessarily zero-terminated.  The encoding is
464 ** given by enc.
465 */
466 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
467   int incr = (enc==SQLITE_UTF8?1:2);
468   u64 u = 0;
469   int neg = 0; /* assume positive */
470   int i;
471   int c = 0;
472   const char *zStart;
473   const char *zEnd = zNum + length;
474   if( enc==SQLITE_UTF16BE ) zNum++;
475   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
476   if( zNum<zEnd ){
477     if( *zNum=='-' ){
478       neg = 1;
479       zNum+=incr;
480     }else if( *zNum=='+' ){
481       zNum+=incr;
482     }
483   }
484   zStart = zNum;
485   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
486   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
487     u = u*10 + c - '0';
488   }
489   if( u>LARGEST_INT64 ){
490     *pNum = SMALLEST_INT64;
491   }else if( neg ){
492     *pNum = -(i64)u;
493   }else{
494     *pNum = (i64)u;
495   }
496   testcase( i==18 );
497   testcase( i==19 );
498   testcase( i==20 );
499   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
500     /* zNum is empty or contains non-numeric text or is longer
501     ** than 19 digits (thus guaranteeing that it is too large) */
502     return 1;
503   }else if( i<19*incr ){
504     /* Less than 19 digits, so we know that it fits in 64 bits */
505     assert( u<=LARGEST_INT64 );
506     return 0;
507   }else{
508     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
509     c = compare2pow63(zNum, incr);
510     if( c<0 ){
511       /* zNum is less than 9223372036854775808 so it fits */
512       assert( u<=LARGEST_INT64 );
513       return 0;
514     }else if( c>0 ){
515       /* zNum is greater than 9223372036854775808 so it overflows */
516       return 1;
517     }else{
518       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
519       ** special case 2 overflow if positive */
520       assert( u-1==LARGEST_INT64 );
521       assert( (*pNum)==SMALLEST_INT64 );
522       return neg ? 0 : 2;
523     }
524   }
525 }
526 
527 /*
528 ** If zNum represents an integer that will fit in 32-bits, then set
529 ** *pValue to that integer and return true.  Otherwise return false.
530 **
531 ** Any non-numeric characters that following zNum are ignored.
532 ** This is different from sqlite3Atoi64() which requires the
533 ** input number to be zero-terminated.
534 */
535 int sqlite3GetInt32(const char *zNum, int *pValue){
536   sqlite_int64 v = 0;
537   int i, c;
538   int neg = 0;
539   if( zNum[0]=='-' ){
540     neg = 1;
541     zNum++;
542   }else if( zNum[0]=='+' ){
543     zNum++;
544   }
545   while( zNum[0]=='0' ) zNum++;
546   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
547     v = v*10 + c;
548   }
549 
550   /* The longest decimal representation of a 32 bit integer is 10 digits:
551   **
552   **             1234567890
553   **     2^31 -> 2147483648
554   */
555   testcase( i==10 );
556   if( i>10 ){
557     return 0;
558   }
559   testcase( v-neg==2147483647 );
560   if( v-neg>2147483647 ){
561     return 0;
562   }
563   if( neg ){
564     v = -v;
565   }
566   *pValue = (int)v;
567   return 1;
568 }
569 
570 /*
571 ** Return a 32-bit integer value extracted from a string.  If the
572 ** string is not an integer, just return 0.
573 */
574 int sqlite3Atoi(const char *z){
575   int x = 0;
576   if( z ) sqlite3GetInt32(z, &x);
577   return x;
578 }
579 
580 /*
581 ** The variable-length integer encoding is as follows:
582 **
583 ** KEY:
584 **         A = 0xxxxxxx    7 bits of data and one flag bit
585 **         B = 1xxxxxxx    7 bits of data and one flag bit
586 **         C = xxxxxxxx    8 bits of data
587 **
588 **  7 bits - A
589 ** 14 bits - BA
590 ** 21 bits - BBA
591 ** 28 bits - BBBA
592 ** 35 bits - BBBBA
593 ** 42 bits - BBBBBA
594 ** 49 bits - BBBBBBA
595 ** 56 bits - BBBBBBBA
596 ** 64 bits - BBBBBBBBC
597 */
598 
599 /*
600 ** Write a 64-bit variable-length integer to memory starting at p[0].
601 ** The length of data write will be between 1 and 9 bytes.  The number
602 ** of bytes written is returned.
603 **
604 ** A variable-length integer consists of the lower 7 bits of each byte
605 ** for all bytes that have the 8th bit set and one byte with the 8th
606 ** bit clear.  Except, if we get to the 9th byte, it stores the full
607 ** 8 bits and is the last byte.
608 */
609 int sqlite3PutVarint(unsigned char *p, u64 v){
610   int i, j, n;
611   u8 buf[10];
612   if( v & (((u64)0xff000000)<<32) ){
613     p[8] = (u8)v;
614     v >>= 8;
615     for(i=7; i>=0; i--){
616       p[i] = (u8)((v & 0x7f) | 0x80);
617       v >>= 7;
618     }
619     return 9;
620   }
621   n = 0;
622   do{
623     buf[n++] = (u8)((v & 0x7f) | 0x80);
624     v >>= 7;
625   }while( v!=0 );
626   buf[0] &= 0x7f;
627   assert( n<=9 );
628   for(i=0, j=n-1; j>=0; j--, i++){
629     p[i] = buf[j];
630   }
631   return n;
632 }
633 
634 /*
635 ** This routine is a faster version of sqlite3PutVarint() that only
636 ** works for 32-bit positive integers and which is optimized for
637 ** the common case of small integers.  A MACRO version, putVarint32,
638 ** is provided which inlines the single-byte case.  All code should use
639 ** the MACRO version as this function assumes the single-byte case has
640 ** already been handled.
641 */
642 int sqlite3PutVarint32(unsigned char *p, u32 v){
643 #ifndef putVarint32
644   if( (v & ~0x7f)==0 ){
645     p[0] = v;
646     return 1;
647   }
648 #endif
649   if( (v & ~0x3fff)==0 ){
650     p[0] = (u8)((v>>7) | 0x80);
651     p[1] = (u8)(v & 0x7f);
652     return 2;
653   }
654   return sqlite3PutVarint(p, v);
655 }
656 
657 /*
658 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
659 ** are defined here rather than simply putting the constant expressions
660 ** inline in order to work around bugs in the RVT compiler.
661 **
662 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
663 **
664 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
665 */
666 #define SLOT_2_0     0x001fc07f
667 #define SLOT_4_2_0   0xf01fc07f
668 
669 
670 /*
671 ** Read a 64-bit variable-length integer from memory starting at p[0].
672 ** Return the number of bytes read.  The value is stored in *v.
673 */
674 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
675   u32 a,b,s;
676 
677   a = *p;
678   /* a: p0 (unmasked) */
679   if (!(a&0x80))
680   {
681     *v = a;
682     return 1;
683   }
684 
685   p++;
686   b = *p;
687   /* b: p1 (unmasked) */
688   if (!(b&0x80))
689   {
690     a &= 0x7f;
691     a = a<<7;
692     a |= b;
693     *v = a;
694     return 2;
695   }
696 
697   /* Verify that constants are precomputed correctly */
698   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
699   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
700 
701   p++;
702   a = a<<14;
703   a |= *p;
704   /* a: p0<<14 | p2 (unmasked) */
705   if (!(a&0x80))
706   {
707     a &= SLOT_2_0;
708     b &= 0x7f;
709     b = b<<7;
710     a |= b;
711     *v = a;
712     return 3;
713   }
714 
715   /* CSE1 from below */
716   a &= SLOT_2_0;
717   p++;
718   b = b<<14;
719   b |= *p;
720   /* b: p1<<14 | p3 (unmasked) */
721   if (!(b&0x80))
722   {
723     b &= SLOT_2_0;
724     /* moved CSE1 up */
725     /* a &= (0x7f<<14)|(0x7f); */
726     a = a<<7;
727     a |= b;
728     *v = a;
729     return 4;
730   }
731 
732   /* a: p0<<14 | p2 (masked) */
733   /* b: p1<<14 | p3 (unmasked) */
734   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
735   /* moved CSE1 up */
736   /* a &= (0x7f<<14)|(0x7f); */
737   b &= SLOT_2_0;
738   s = a;
739   /* s: p0<<14 | p2 (masked) */
740 
741   p++;
742   a = a<<14;
743   a |= *p;
744   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
745   if (!(a&0x80))
746   {
747     /* we can skip these cause they were (effectively) done above in calc'ing s */
748     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
749     /* b &= (0x7f<<14)|(0x7f); */
750     b = b<<7;
751     a |= b;
752     s = s>>18;
753     *v = ((u64)s)<<32 | a;
754     return 5;
755   }
756 
757   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
758   s = s<<7;
759   s |= b;
760   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
761 
762   p++;
763   b = b<<14;
764   b |= *p;
765   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
766   if (!(b&0x80))
767   {
768     /* we can skip this cause it was (effectively) done above in calc'ing s */
769     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
770     a &= SLOT_2_0;
771     a = a<<7;
772     a |= b;
773     s = s>>18;
774     *v = ((u64)s)<<32 | a;
775     return 6;
776   }
777 
778   p++;
779   a = a<<14;
780   a |= *p;
781   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
782   if (!(a&0x80))
783   {
784     a &= SLOT_4_2_0;
785     b &= SLOT_2_0;
786     b = b<<7;
787     a |= b;
788     s = s>>11;
789     *v = ((u64)s)<<32 | a;
790     return 7;
791   }
792 
793   /* CSE2 from below */
794   a &= SLOT_2_0;
795   p++;
796   b = b<<14;
797   b |= *p;
798   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
799   if (!(b&0x80))
800   {
801     b &= SLOT_4_2_0;
802     /* moved CSE2 up */
803     /* a &= (0x7f<<14)|(0x7f); */
804     a = a<<7;
805     a |= b;
806     s = s>>4;
807     *v = ((u64)s)<<32 | a;
808     return 8;
809   }
810 
811   p++;
812   a = a<<15;
813   a |= *p;
814   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
815 
816   /* moved CSE2 up */
817   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
818   b &= SLOT_2_0;
819   b = b<<8;
820   a |= b;
821 
822   s = s<<4;
823   b = p[-4];
824   b &= 0x7f;
825   b = b>>3;
826   s |= b;
827 
828   *v = ((u64)s)<<32 | a;
829 
830   return 9;
831 }
832 
833 /*
834 ** Read a 32-bit variable-length integer from memory starting at p[0].
835 ** Return the number of bytes read.  The value is stored in *v.
836 **
837 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
838 ** integer, then set *v to 0xffffffff.
839 **
840 ** A MACRO version, getVarint32, is provided which inlines the
841 ** single-byte case.  All code should use the MACRO version as
842 ** this function assumes the single-byte case has already been handled.
843 */
844 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
845   u32 a,b;
846 
847   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
848   ** by the getVarin32() macro */
849   a = *p;
850   /* a: p0 (unmasked) */
851 #ifndef getVarint32
852   if (!(a&0x80))
853   {
854     /* Values between 0 and 127 */
855     *v = a;
856     return 1;
857   }
858 #endif
859 
860   /* The 2-byte case */
861   p++;
862   b = *p;
863   /* b: p1 (unmasked) */
864   if (!(b&0x80))
865   {
866     /* Values between 128 and 16383 */
867     a &= 0x7f;
868     a = a<<7;
869     *v = a | b;
870     return 2;
871   }
872 
873   /* The 3-byte case */
874   p++;
875   a = a<<14;
876   a |= *p;
877   /* a: p0<<14 | p2 (unmasked) */
878   if (!(a&0x80))
879   {
880     /* Values between 16384 and 2097151 */
881     a &= (0x7f<<14)|(0x7f);
882     b &= 0x7f;
883     b = b<<7;
884     *v = a | b;
885     return 3;
886   }
887 
888   /* A 32-bit varint is used to store size information in btrees.
889   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
890   ** A 3-byte varint is sufficient, for example, to record the size
891   ** of a 1048569-byte BLOB or string.
892   **
893   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
894   ** rare larger cases can be handled by the slower 64-bit varint
895   ** routine.
896   */
897 #if 1
898   {
899     u64 v64;
900     u8 n;
901 
902     p -= 2;
903     n = sqlite3GetVarint(p, &v64);
904     assert( n>3 && n<=9 );
905     if( (v64 & SQLITE_MAX_U32)!=v64 ){
906       *v = 0xffffffff;
907     }else{
908       *v = (u32)v64;
909     }
910     return n;
911   }
912 
913 #else
914   /* For following code (kept for historical record only) shows an
915   ** unrolling for the 3- and 4-byte varint cases.  This code is
916   ** slightly faster, but it is also larger and much harder to test.
917   */
918   p++;
919   b = b<<14;
920   b |= *p;
921   /* b: p1<<14 | p3 (unmasked) */
922   if (!(b&0x80))
923   {
924     /* Values between 2097152 and 268435455 */
925     b &= (0x7f<<14)|(0x7f);
926     a &= (0x7f<<14)|(0x7f);
927     a = a<<7;
928     *v = a | b;
929     return 4;
930   }
931 
932   p++;
933   a = a<<14;
934   a |= *p;
935   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
936   if (!(a&0x80))
937   {
938     /* Values  between 268435456 and 34359738367 */
939     a &= SLOT_4_2_0;
940     b &= SLOT_4_2_0;
941     b = b<<7;
942     *v = a | b;
943     return 5;
944   }
945 
946   /* We can only reach this point when reading a corrupt database
947   ** file.  In that case we are not in any hurry.  Use the (relatively
948   ** slow) general-purpose sqlite3GetVarint() routine to extract the
949   ** value. */
950   {
951     u64 v64;
952     u8 n;
953 
954     p -= 4;
955     n = sqlite3GetVarint(p, &v64);
956     assert( n>5 && n<=9 );
957     *v = (u32)v64;
958     return n;
959   }
960 #endif
961 }
962 
963 /*
964 ** Return the number of bytes that will be needed to store the given
965 ** 64-bit integer.
966 */
967 int sqlite3VarintLen(u64 v){
968   int i = 0;
969   do{
970     i++;
971     v >>= 7;
972   }while( v!=0 && ALWAYS(i<9) );
973   return i;
974 }
975 
976 
977 /*
978 ** Read or write a four-byte big-endian integer value.
979 */
980 u32 sqlite3Get4byte(const u8 *p){
981   return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
982 }
983 void sqlite3Put4byte(unsigned char *p, u32 v){
984   p[0] = (u8)(v>>24);
985   p[1] = (u8)(v>>16);
986   p[2] = (u8)(v>>8);
987   p[3] = (u8)v;
988 }
989 
990 
991 
992 /*
993 ** Translate a single byte of Hex into an integer.
994 ** This routine only works if h really is a valid hexadecimal
995 ** character:  0..9a..fA..F
996 */
997 u8 sqlite3HexToInt(int h){
998   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
999 #ifdef SQLITE_ASCII
1000   h += 9*(1&(h>>6));
1001 #endif
1002 #ifdef SQLITE_EBCDIC
1003   h += 9*(1&~(h>>4));
1004 #endif
1005   return (u8)(h & 0xf);
1006 }
1007 
1008 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1009 /*
1010 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1011 ** value.  Return a pointer to its binary value.  Space to hold the
1012 ** binary value has been obtained from malloc and must be freed by
1013 ** the calling routine.
1014 */
1015 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1016   char *zBlob;
1017   int i;
1018 
1019   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1020   n--;
1021   if( zBlob ){
1022     for(i=0; i<n; i+=2){
1023       zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1024     }
1025     zBlob[i/2] = 0;
1026   }
1027   return zBlob;
1028 }
1029 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1030 
1031 /*
1032 ** Log an error that is an API call on a connection pointer that should
1033 ** not have been used.  The "type" of connection pointer is given as the
1034 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1035 */
1036 static void logBadConnection(const char *zType){
1037   sqlite3_log(SQLITE_MISUSE,
1038      "API call with %s database connection pointer",
1039      zType
1040   );
1041 }
1042 
1043 /*
1044 ** Check to make sure we have a valid db pointer.  This test is not
1045 ** foolproof but it does provide some measure of protection against
1046 ** misuse of the interface such as passing in db pointers that are
1047 ** NULL or which have been previously closed.  If this routine returns
1048 ** 1 it means that the db pointer is valid and 0 if it should not be
1049 ** dereferenced for any reason.  The calling function should invoke
1050 ** SQLITE_MISUSE immediately.
1051 **
1052 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1053 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1054 ** open properly and is not fit for general use but which can be
1055 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1056 */
1057 int sqlite3SafetyCheckOk(sqlite3 *db){
1058   u32 magic;
1059   if( db==0 ){
1060     logBadConnection("NULL");
1061     return 0;
1062   }
1063   magic = db->magic;
1064   if( magic!=SQLITE_MAGIC_OPEN ){
1065     if( sqlite3SafetyCheckSickOrOk(db) ){
1066       testcase( sqlite3GlobalConfig.xLog!=0 );
1067       logBadConnection("unopened");
1068     }
1069     return 0;
1070   }else{
1071     return 1;
1072   }
1073 }
1074 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1075   u32 magic;
1076   magic = db->magic;
1077   if( magic!=SQLITE_MAGIC_SICK &&
1078       magic!=SQLITE_MAGIC_OPEN &&
1079       magic!=SQLITE_MAGIC_BUSY ){
1080     testcase( sqlite3GlobalConfig.xLog!=0 );
1081     logBadConnection("invalid");
1082     return 0;
1083   }else{
1084     return 1;
1085   }
1086 }
1087 
1088 /*
1089 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1090 ** the other 64-bit signed integer at *pA and store the result in *pA.
1091 ** Return 0 on success.  Or if the operation would have resulted in an
1092 ** overflow, leave *pA unchanged and return 1.
1093 */
1094 int sqlite3AddInt64(i64 *pA, i64 iB){
1095   i64 iA = *pA;
1096   testcase( iA==0 ); testcase( iA==1 );
1097   testcase( iB==-1 ); testcase( iB==0 );
1098   if( iB>=0 ){
1099     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1100     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1101     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1102     *pA += iB;
1103   }else{
1104     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1105     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1106     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1107     *pA += iB;
1108   }
1109   return 0;
1110 }
1111 int sqlite3SubInt64(i64 *pA, i64 iB){
1112   testcase( iB==SMALLEST_INT64+1 );
1113   if( iB==SMALLEST_INT64 ){
1114     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1115     if( (*pA)>=0 ) return 1;
1116     *pA -= iB;
1117     return 0;
1118   }else{
1119     return sqlite3AddInt64(pA, -iB);
1120   }
1121 }
1122 #define TWOPOWER32 (((i64)1)<<32)
1123 #define TWOPOWER31 (((i64)1)<<31)
1124 int sqlite3MulInt64(i64 *pA, i64 iB){
1125   i64 iA = *pA;
1126   i64 iA1, iA0, iB1, iB0, r;
1127 
1128   iA1 = iA/TWOPOWER32;
1129   iA0 = iA % TWOPOWER32;
1130   iB1 = iB/TWOPOWER32;
1131   iB0 = iB % TWOPOWER32;
1132   if( iA1*iB1 != 0 ) return 1;
1133   assert( iA1*iB0==0 || iA0*iB1==0 );
1134   r = iA1*iB0 + iA0*iB1;
1135   testcase( r==(-TWOPOWER31)-1 );
1136   testcase( r==(-TWOPOWER31) );
1137   testcase( r==TWOPOWER31 );
1138   testcase( r==TWOPOWER31-1 );
1139   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1140   r *= TWOPOWER32;
1141   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1142   *pA = r;
1143   return 0;
1144 }
1145 
1146 /*
1147 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1148 ** if the integer has a value of -2147483648, return +2147483647
1149 */
1150 int sqlite3AbsInt32(int x){
1151   if( x>=0 ) return x;
1152   if( x==(int)0x80000000 ) return 0x7fffffff;
1153   return -x;
1154 }
1155 
1156 #ifdef SQLITE_ENABLE_8_3_NAMES
1157 /*
1158 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1159 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1160 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1161 ** three characters, then shorten the suffix on z[] to be the last three
1162 ** characters of the original suffix.
1163 **
1164 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1165 ** do the suffix shortening regardless of URI parameter.
1166 **
1167 ** Examples:
1168 **
1169 **     test.db-journal    =>   test.nal
1170 **     test.db-wal        =>   test.wal
1171 **     test.db-shm        =>   test.shm
1172 **     test.db-mj7f3319fa =>   test.9fa
1173 */
1174 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1175 #if SQLITE_ENABLE_8_3_NAMES<2
1176   if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1177 #endif
1178   {
1179     int i, sz;
1180     sz = sqlite3Strlen30(z);
1181     for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1182     if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1183   }
1184 }
1185 #endif
1186